SelectionDAGNodes.h revision 7362ce08cb2c1f0b544b18dbc21630fb4baebcfc
1//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SDNode class and derived classes, which are used to
11// represent the nodes and operations present in a SelectionDAG.  These nodes
12// and operations are machine code level operations, with some similarities to
13// the GCC RTL representation.
14//
15// Clients should include the SelectionDAG.h file instead of this file directly.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20#define LLVM_CODEGEN_SELECTIONDAGNODES_H
21
22#include "llvm/Constants.h"
23#include "llvm/ADT/FoldingSet.h"
24#include "llvm/ADT/GraphTraits.h"
25#include "llvm/ADT/ilist_node.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/CodeGen/ValueTypes.h"
29#include "llvm/CodeGen/MachineMemOperand.h"
30#include "llvm/Support/Allocator.h"
31#include "llvm/Support/RecyclingAllocator.h"
32#include "llvm/Support/DataTypes.h"
33#include "llvm/Support/DebugLoc.h"
34#include <cassert>
35#include <climits>
36
37namespace llvm {
38
39class SelectionDAG;
40class GlobalValue;
41class MachineBasicBlock;
42class MachineConstantPoolValue;
43class SDNode;
44class Value;
45template <typename T> struct DenseMapInfo;
46template <typename T> struct simplify_type;
47template <typename T> struct ilist_traits;
48
49/// SDVTList - This represents a list of ValueType's that has been intern'd by
50/// a SelectionDAG.  Instances of this simple value class are returned by
51/// SelectionDAG::getVTList(...).
52///
53struct SDVTList {
54  const EVT *VTs;
55  unsigned int NumVTs;
56};
57
58/// ISD namespace - This namespace contains an enum which represents all of the
59/// SelectionDAG node types and value types.
60///
61namespace ISD {
62
63  //===--------------------------------------------------------------------===//
64  /// ISD::NodeType enum - This enum defines the target-independent operators
65  /// for a SelectionDAG.
66  ///
67  /// Targets may also define target-dependent operator codes for SDNodes. For
68  /// example, on x86, these are the enum values in the X86ISD namespace.
69  /// Targets should aim to use target-independent operators to model their
70  /// instruction sets as much as possible, and only use target-dependent
71  /// operators when they have special requirements.
72  ///
73  /// Finally, during and after selection proper, SNodes may use special
74  /// operator codes that correspond directly with MachineInstr opcodes. These
75  /// are used to represent selected instructions. See the isMachineOpcode()
76  /// and getMachineOpcode() member functions of SDNode.
77  ///
78  enum NodeType {
79    // DELETED_NODE - This is an illegal value that is used to catch
80    // errors.  This opcode is not a legal opcode for any node.
81    DELETED_NODE,
82
83    // EntryToken - This is the marker used to indicate the start of the region.
84    EntryToken,
85
86    // TokenFactor - This node takes multiple tokens as input and produces a
87    // single token result.  This is used to represent the fact that the operand
88    // operators are independent of each other.
89    TokenFactor,
90
91    // AssertSext, AssertZext - These nodes record if a register contains a
92    // value that has already been zero or sign extended from a narrower type.
93    // These nodes take two operands.  The first is the node that has already
94    // been extended, and the second is a value type node indicating the width
95    // of the extension
96    AssertSext, AssertZext,
97
98    // Various leaf nodes.
99    BasicBlock, VALUETYPE, CONDCODE, Register,
100    Constant, ConstantFP,
101    GlobalAddress, GlobalTLSAddress, FrameIndex,
102    JumpTable, ConstantPool, ExternalSymbol,
103
104    // The address of the GOT
105    GLOBAL_OFFSET_TABLE,
106
107    // FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
108    // llvm.returnaddress on the DAG.  These nodes take one operand, the index
109    // of the frame or return address to return.  An index of zero corresponds
110    // to the current function's frame or return address, an index of one to the
111    // parent's frame or return address, and so on.
112    FRAMEADDR, RETURNADDR,
113
114    // FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
115    // first (possible) on-stack argument. This is needed for correct stack
116    // adjustment during unwind.
117    FRAME_TO_ARGS_OFFSET,
118
119    // RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the
120    // address of the exception block on entry to an landing pad block.
121    EXCEPTIONADDR,
122
123    // RESULT, OUTCHAIN = LSDAADDR(INCHAIN) - This node represents the
124    // address of the Language Specific Data Area for the enclosing function.
125    LSDAADDR,
126
127    // RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents
128    // the selection index of the exception thrown.
129    EHSELECTION,
130
131    // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
132    // 'eh_return' gcc dwarf builtin, which is used to return from
133    // exception. The general meaning is: adjust stack by OFFSET and pass
134    // execution to HANDLER. Many platform-related details also :)
135    EH_RETURN,
136
137    // TargetConstant* - Like Constant*, but the DAG does not do any folding or
138    // simplification of the constant.
139    TargetConstant,
140    TargetConstantFP,
141
142    // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
143    // anything else with this node, and this is valid in the target-specific
144    // dag, turning into a GlobalAddress operand.
145    TargetGlobalAddress,
146    TargetGlobalTLSAddress,
147    TargetFrameIndex,
148    TargetJumpTable,
149    TargetConstantPool,
150    TargetExternalSymbol,
151
152    /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
153    /// This node represents a target intrinsic function with no side effects.
154    /// The first operand is the ID number of the intrinsic from the
155    /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
156    /// node has returns the result of the intrinsic.
157    INTRINSIC_WO_CHAIN,
158
159    /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
160    /// This node represents a target intrinsic function with side effects that
161    /// returns a result.  The first operand is a chain pointer.  The second is
162    /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
163    /// operands to the intrinsic follow.  The node has two results, the result
164    /// of the intrinsic and an output chain.
165    INTRINSIC_W_CHAIN,
166
167    /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
168    /// This node represents a target intrinsic function with side effects that
169    /// does not return a result.  The first operand is a chain pointer.  The
170    /// second is the ID number of the intrinsic from the llvm::Intrinsic
171    /// namespace.  The operands to the intrinsic follow.
172    INTRINSIC_VOID,
173
174    // CopyToReg - This node has three operands: a chain, a register number to
175    // set to this value, and a value.
176    CopyToReg,
177
178    // CopyFromReg - This node indicates that the input value is a virtual or
179    // physical register that is defined outside of the scope of this
180    // SelectionDAG.  The register is available from the RegisterSDNode object.
181    CopyFromReg,
182
183    // UNDEF - An undefined node
184    UNDEF,
185
186    // EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
187    // a Constant, which is required to be operand #1) half of the integer or
188    // float value specified as operand #0.  This is only for use before
189    // legalization, for values that will be broken into multiple registers.
190    EXTRACT_ELEMENT,
191
192    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
193    // two values of the same integer value type, this produces a value twice as
194    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
195    BUILD_PAIR,
196
197    // MERGE_VALUES - This node takes multiple discrete operands and returns
198    // them all as its individual results.  This nodes has exactly the same
199    // number of inputs and outputs. This node is useful for some pieces of the
200    // code generator that want to think about a single node with multiple
201    // results, not multiple nodes.
202    MERGE_VALUES,
203
204    // Simple integer binary arithmetic operators.
205    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
206
207    // SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
208    // a signed/unsigned value of type i[2*N], and return the full value as
209    // two results, each of type iN.
210    SMUL_LOHI, UMUL_LOHI,
211
212    // SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
213    // remainder result.
214    SDIVREM, UDIVREM,
215
216    // CARRY_FALSE - This node is used when folding other nodes,
217    // like ADDC/SUBC, which indicate the carry result is always false.
218    CARRY_FALSE,
219
220    // Carry-setting nodes for multiple precision addition and subtraction.
221    // These nodes take two operands of the same value type, and produce two
222    // results.  The first result is the normal add or sub result, the second
223    // result is the carry flag result.
224    ADDC, SUBC,
225
226    // Carry-using nodes for multiple precision addition and subtraction.  These
227    // nodes take three operands: The first two are the normal lhs and rhs to
228    // the add or sub, and the third is the input carry flag.  These nodes
229    // produce two results; the normal result of the add or sub, and the output
230    // carry flag.  These nodes both read and write a carry flag to allow them
231    // to them to be chained together for add and sub of arbitrarily large
232    // values.
233    ADDE, SUBE,
234
235    // RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
236    // These nodes take two operands: the normal LHS and RHS to the add. They
237    // produce two results: the normal result of the add, and a boolean that
238    // indicates if an overflow occured (*not* a flag, because it may be stored
239    // to memory, etc.).  If the type of the boolean is not i1 then the high
240    // bits conform to getBooleanContents.
241    // These nodes are generated from the llvm.[su]add.with.overflow intrinsics.
242    SADDO, UADDO,
243
244    // Same for subtraction
245    SSUBO, USUBO,
246
247    // Same for multiplication
248    SMULO, UMULO,
249
250    // Simple binary floating point operators.
251    FADD, FSUB, FMUL, FDIV, FREM,
252
253    // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
254    // DAG node does not require that X and Y have the same type, just that they
255    // are both floating point.  X and the result must have the same type.
256    // FCOPYSIGN(f32, f64) is allowed.
257    FCOPYSIGN,
258
259    // INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
260    // value as an integer 0/1 value.
261    FGETSIGN,
262
263    /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector with the
264    /// specified, possibly variable, elements.  The number of elements is
265    /// required to be a power of two.  The types of the operands must all be
266    /// the same and must match the vector element type, except that integer
267    /// types are allowed to be larger than the element type, in which case
268    /// the operands are implicitly truncated.
269    BUILD_VECTOR,
270
271    /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
272    /// at IDX replaced with VAL.  If the type of VAL is larger than the vector
273    /// element type then VAL is truncated before replacement.
274    INSERT_VECTOR_ELT,
275
276    /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
277    /// identified by the (potentially variable) element number IDX.  If the
278    /// return type is an integer type larger than the element type of the
279    /// vector, the result is extended to the width of the return type.
280    EXTRACT_VECTOR_ELT,
281
282    /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
283    /// vector type with the same length and element type, this produces a
284    /// concatenated vector result value, with length equal to the sum of the
285    /// lengths of the input vectors.
286    CONCAT_VECTORS,
287
288    /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
289    /// vector value) starting with the (potentially variable) element number
290    /// IDX, which must be a multiple of the result vector length.
291    EXTRACT_SUBVECTOR,
292
293    /// VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as
294    /// VEC1/VEC2.  A VECTOR_SHUFFLE node also contains an array of constant int
295    /// values that indicate which value (or undef) each result element will
296    /// get.  These constant ints are accessible through the
297    /// ShuffleVectorSDNode class.  This is quite similar to the Altivec
298    /// 'vperm' instruction, except that the indices must be constants and are
299    /// in terms of the element size of VEC1/VEC2, not in terms of bytes.
300    VECTOR_SHUFFLE,
301
302    /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
303    /// scalar value into element 0 of the resultant vector type.  The top
304    /// elements 1 to N-1 of the N-element vector are undefined.  The type
305    /// of the operand must match the vector element type, except when they
306    /// are integer types.  In this case the operand is allowed to be wider
307    /// than the vector element type, and is implicitly truncated to it.
308    SCALAR_TO_VECTOR,
309
310    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
311    // an unsigned/signed value of type i[2*N], then return the top part.
312    MULHU, MULHS,
313
314    // Bitwise operators - logical and, logical or, logical xor, shift left,
315    // shift right algebraic (shift in sign bits), shift right logical (shift in
316    // zeroes), rotate left, rotate right, and byteswap.
317    AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
318
319    // Counting operators
320    CTTZ, CTLZ, CTPOP,
321
322    // Select(COND, TRUEVAL, FALSEVAL).  If the type of the boolean COND is not
323    // i1 then the high bits must conform to getBooleanContents.
324    SELECT,
325
326    // Select with condition operator - This selects between a true value and
327    // a false value (ops #2 and #3) based on the boolean result of comparing
328    // the lhs and rhs (ops #0 and #1) of a conditional expression with the
329    // condition code in op #4, a CondCodeSDNode.
330    SELECT_CC,
331
332    // SetCC operator - This evaluates to a true value iff the condition is
333    // true.  If the result value type is not i1 then the high bits conform
334    // to getBooleanContents.  The operands to this are the left and right
335    // operands to compare (ops #0, and #1) and the condition code to compare
336    // them with (op #2) as a CondCodeSDNode.
337    SETCC,
338
339    // RESULT = VSETCC(LHS, RHS, COND) operator - This evaluates to a vector of
340    // integer elements with all bits of the result elements set to true if the
341    // comparison is true or all cleared if the comparison is false.  The
342    // operands to this are the left and right operands to compare (LHS/RHS) and
343    // the condition code to compare them with (COND) as a CondCodeSDNode.
344    VSETCC,
345
346    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
347    // integer shift operations, just like ADD/SUB_PARTS.  The operation
348    // ordering is:
349    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
350    SHL_PARTS, SRA_PARTS, SRL_PARTS,
351
352    // Conversion operators.  These are all single input single output
353    // operations.  For all of these, the result type must be strictly
354    // wider or narrower (depending on the operation) than the source
355    // type.
356
357    // SIGN_EXTEND - Used for integer types, replicating the sign bit
358    // into new bits.
359    SIGN_EXTEND,
360
361    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
362    ZERO_EXTEND,
363
364    // ANY_EXTEND - Used for integer types.  The high bits are undefined.
365    ANY_EXTEND,
366
367    // TRUNCATE - Completely drop the high bits.
368    TRUNCATE,
369
370    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
371    // depends on the first letter) to floating point.
372    SINT_TO_FP,
373    UINT_TO_FP,
374
375    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
376    // sign extend a small value in a large integer register (e.g. sign
377    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
378    // with the 7th bit).  The size of the smaller type is indicated by the 1th
379    // operand, a ValueType node.
380    SIGN_EXTEND_INREG,
381
382    /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
383    /// integer.
384    FP_TO_SINT,
385    FP_TO_UINT,
386
387    /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
388    /// down to the precision of the destination VT.  TRUNC is a flag, which is
389    /// always an integer that is zero or one.  If TRUNC is 0, this is a
390    /// normal rounding, if it is 1, this FP_ROUND is known to not change the
391    /// value of Y.
392    ///
393    /// The TRUNC = 1 case is used in cases where we know that the value will
394    /// not be modified by the node, because Y is not using any of the extra
395    /// precision of source type.  This allows certain transformations like
396    /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
397    /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
398    FP_ROUND,
399
400    // FLT_ROUNDS_ - Returns current rounding mode:
401    // -1 Undefined
402    //  0 Round to 0
403    //  1 Round to nearest
404    //  2 Round to +inf
405    //  3 Round to -inf
406    FLT_ROUNDS_,
407
408    /// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and
409    /// rounds it to a floating point value.  It then promotes it and returns it
410    /// in a register of the same size.  This operation effectively just
411    /// discards excess precision.  The type to round down to is specified by
412    /// the VT operand, a VTSDNode.
413    FP_ROUND_INREG,
414
415    /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
416    FP_EXTEND,
417
418    // BIT_CONVERT - Theis operator converts between integer and FP values, as
419    // if one was stored to memory as integer and the other was loaded from the
420    // same address (or equivalently for vector format conversions, etc).  The
421    // source and result are required to have the same bit size (e.g.
422    // f32 <-> i32).  This can also be used for int-to-int or fp-to-fp
423    // conversions, but that is a noop, deleted by getNode().
424    BIT_CONVERT,
425
426    // CONVERT_RNDSAT - This operator is used to support various conversions
427    // between various types (float, signed, unsigned and vectors of those
428    // types) with rounding and saturation. NOTE: Avoid using this operator as
429    // most target don't support it and the operator might be removed in the
430    // future. It takes the following arguments:
431    //   0) value
432    //   1) dest type (type to convert to)
433    //   2) src type (type to convert from)
434    //   3) rounding imm
435    //   4) saturation imm
436    //   5) ISD::CvtCode indicating the type of conversion to do
437    CONVERT_RNDSAT,
438
439    // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
440    // FLOG, FLOG2, FLOG10, FEXP, FEXP2,
441    // FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR - Perform various unary floating
442    // point operations. These are inspired by libm.
443    FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
444    FLOG, FLOG2, FLOG10, FEXP, FEXP2,
445    FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR,
446
447    // LOAD and STORE have token chains as their first operand, then the same
448    // operands as an LLVM load/store instruction, then an offset node that
449    // is added / subtracted from the base pointer to form the address (for
450    // indexed memory ops).
451    LOAD, STORE,
452
453    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
454    // to a specified boundary.  This node always has two return values: a new
455    // stack pointer value and a chain. The first operand is the token chain,
456    // the second is the number of bytes to allocate, and the third is the
457    // alignment boundary.  The size is guaranteed to be a multiple of the stack
458    // alignment, and the alignment is guaranteed to be bigger than the stack
459    // alignment (if required) or 0 to get standard stack alignment.
460    DYNAMIC_STACKALLOC,
461
462    // Control flow instructions.  These all have token chains.
463
464    // BR - Unconditional branch.  The first operand is the chain
465    // operand, the second is the MBB to branch to.
466    BR,
467
468    // BRIND - Indirect branch.  The first operand is the chain, the second
469    // is the value to branch to, which must be of the same type as the target's
470    // pointer type.
471    BRIND,
472
473    // BR_JT - Jumptable branch. The first operand is the chain, the second
474    // is the jumptable index, the last one is the jumptable entry index.
475    BR_JT,
476
477    // BRCOND - Conditional branch.  The first operand is the chain, the
478    // second is the condition, the third is the block to branch to if the
479    // condition is true.  If the type of the condition is not i1, then the
480    // high bits must conform to getBooleanContents.
481    BRCOND,
482
483    // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
484    // that the condition is represented as condition code, and two nodes to
485    // compare, rather than as a combined SetCC node.  The operands in order are
486    // chain, cc, lhs, rhs, block to branch to if condition is true.
487    BR_CC,
488
489    // INLINEASM - Represents an inline asm block.  This node always has two
490    // return values: a chain and a flag result.  The inputs are as follows:
491    //   Operand #0   : Input chain.
492    //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
493    //   Operand #2n+2: A RegisterNode.
494    //   Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
495    //   Operand #last: Optional, an incoming flag.
496    INLINEASM,
497
498    // DBG_LABEL, EH_LABEL - Represents a label in mid basic block used to track
499    // locations needed for debug and exception handling tables.  These nodes
500    // take a chain as input and return a chain.
501    DBG_LABEL,
502    EH_LABEL,
503
504    // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
505    // value, the same type as the pointer type for the system, and an output
506    // chain.
507    STACKSAVE,
508
509    // STACKRESTORE has two operands, an input chain and a pointer to restore to
510    // it returns an output chain.
511    STACKRESTORE,
512
513    // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
514    // a call sequence, and carry arbitrary information that target might want
515    // to know.  The first operand is a chain, the rest are specified by the
516    // target and not touched by the DAG optimizers.
517    // CALLSEQ_START..CALLSEQ_END pairs may not be nested.
518    CALLSEQ_START,  // Beginning of a call sequence
519    CALLSEQ_END,    // End of a call sequence
520
521    // VAARG - VAARG has three operands: an input chain, a pointer, and a
522    // SRCVALUE.  It returns a pair of values: the vaarg value and a new chain.
523    VAARG,
524
525    // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
526    // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
527    // source.
528    VACOPY,
529
530    // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
531    // pointer, and a SRCVALUE.
532    VAEND, VASTART,
533
534    // SRCVALUE - This is a node type that holds a Value* that is used to
535    // make reference to a value in the LLVM IR.
536    SRCVALUE,
537
538    // MEMOPERAND - This is a node that contains a MachineMemOperand which
539    // records information about a memory reference. This is used to make
540    // AliasAnalysis queries from the backend.
541    MEMOPERAND,
542
543    // PCMARKER - This corresponds to the pcmarker intrinsic.
544    PCMARKER,
545
546    // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
547    // The only operand is a chain and a value and a chain are produced.  The
548    // value is the contents of the architecture specific cycle counter like
549    // register (or other high accuracy low latency clock source)
550    READCYCLECOUNTER,
551
552    // HANDLENODE node - Used as a handle for various purposes.
553    HANDLENODE,
554
555    // DBG_STOPPOINT - This node is used to represent a source location for
556    // debug info.  It takes token chain as input, and carries a line number,
557    // column number, and a pointer to a CompileUnit object identifying
558    // the containing compilation unit.  It produces a token chain as output.
559    DBG_STOPPOINT,
560
561    // DEBUG_LOC - This node is used to represent source line information
562    // embedded in the code.  It takes a token chain as input, then a line
563    // number, then a column then a file id (provided by MachineModuleInfo.) It
564    // produces a token chain as output.
565    DEBUG_LOC,
566
567    // TRAMPOLINE - This corresponds to the init_trampoline intrinsic.
568    // It takes as input a token chain, the pointer to the trampoline,
569    // the pointer to the nested function, the pointer to pass for the
570    // 'nest' parameter, a SRCVALUE for the trampoline and another for
571    // the nested function (allowing targets to access the original
572    // Function*).  It produces the result of the intrinsic and a token
573    // chain as output.
574    TRAMPOLINE,
575
576    // TRAP - Trapping instruction
577    TRAP,
578
579    // PREFETCH - This corresponds to a prefetch intrinsic. It takes chains are
580    // their first operand. The other operands are the address to prefetch,
581    // read / write specifier, and locality specifier.
582    PREFETCH,
583
584    // OUTCHAIN = MEMBARRIER(INCHAIN, load-load, load-store, store-load,
585    //                       store-store, device)
586    // This corresponds to the memory.barrier intrinsic.
587    // it takes an input chain, 4 operands to specify the type of barrier, an
588    // operand specifying if the barrier applies to device and uncached memory
589    // and produces an output chain.
590    MEMBARRIER,
591
592    // Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
593    // this corresponds to the atomic.lcs intrinsic.
594    // cmp is compared to *ptr, and if equal, swap is stored in *ptr.
595    // the return is always the original value in *ptr
596    ATOMIC_CMP_SWAP,
597
598    // Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
599    // this corresponds to the atomic.swap intrinsic.
600    // amt is stored to *ptr atomically.
601    // the return is always the original value in *ptr
602    ATOMIC_SWAP,
603
604    // Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amt)
605    // this corresponds to the atomic.load.[OpName] intrinsic.
606    // op(*ptr, amt) is stored to *ptr atomically.
607    // the return is always the original value in *ptr
608    ATOMIC_LOAD_ADD,
609    ATOMIC_LOAD_SUB,
610    ATOMIC_LOAD_AND,
611    ATOMIC_LOAD_OR,
612    ATOMIC_LOAD_XOR,
613    ATOMIC_LOAD_NAND,
614    ATOMIC_LOAD_MIN,
615    ATOMIC_LOAD_MAX,
616    ATOMIC_LOAD_UMIN,
617    ATOMIC_LOAD_UMAX,
618
619    // BUILTIN_OP_END - This must be the last enum value in this list.
620    BUILTIN_OP_END
621  };
622
623  /// Node predicates
624
625  /// isBuildVectorAllOnes - Return true if the specified node is a
626  /// BUILD_VECTOR where all of the elements are ~0 or undef.
627  bool isBuildVectorAllOnes(const SDNode *N);
628
629  /// isBuildVectorAllZeros - Return true if the specified node is a
630  /// BUILD_VECTOR where all of the elements are 0 or undef.
631  bool isBuildVectorAllZeros(const SDNode *N);
632
633  /// isScalarToVector - Return true if the specified node is a
634  /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
635  /// element is not an undef.
636  bool isScalarToVector(const SDNode *N);
637
638  /// isDebugLabel - Return true if the specified node represents a debug
639  /// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
640  bool isDebugLabel(const SDNode *N);
641
642  //===--------------------------------------------------------------------===//
643  /// MemIndexedMode enum - This enum defines the load / store indexed
644  /// addressing modes.
645  ///
646  /// UNINDEXED    "Normal" load / store. The effective address is already
647  ///              computed and is available in the base pointer. The offset
648  ///              operand is always undefined. In addition to producing a
649  ///              chain, an unindexed load produces one value (result of the
650  ///              load); an unindexed store does not produce a value.
651  ///
652  /// PRE_INC      Similar to the unindexed mode where the effective address is
653  /// PRE_DEC      the value of the base pointer add / subtract the offset.
654  ///              It considers the computation as being folded into the load /
655  ///              store operation (i.e. the load / store does the address
656  ///              computation as well as performing the memory transaction).
657  ///              The base operand is always undefined. In addition to
658  ///              producing a chain, pre-indexed load produces two values
659  ///              (result of the load and the result of the address
660  ///              computation); a pre-indexed store produces one value (result
661  ///              of the address computation).
662  ///
663  /// POST_INC     The effective address is the value of the base pointer. The
664  /// POST_DEC     value of the offset operand is then added to / subtracted
665  ///              from the base after memory transaction. In addition to
666  ///              producing a chain, post-indexed load produces two values
667  ///              (the result of the load and the result of the base +/- offset
668  ///              computation); a post-indexed store produces one value (the
669  ///              the result of the base +/- offset computation).
670  ///
671  enum MemIndexedMode {
672    UNINDEXED = 0,
673    PRE_INC,
674    PRE_DEC,
675    POST_INC,
676    POST_DEC,
677    LAST_INDEXED_MODE
678  };
679
680  //===--------------------------------------------------------------------===//
681  /// LoadExtType enum - This enum defines the three variants of LOADEXT
682  /// (load with extension).
683  ///
684  /// SEXTLOAD loads the integer operand and sign extends it to a larger
685  ///          integer result type.
686  /// ZEXTLOAD loads the integer operand and zero extends it to a larger
687  ///          integer result type.
688  /// EXTLOAD  is used for three things: floating point extending loads,
689  ///          integer extending loads [the top bits are undefined], and vector
690  ///          extending loads [load into low elt].
691  ///
692  enum LoadExtType {
693    NON_EXTLOAD = 0,
694    EXTLOAD,
695    SEXTLOAD,
696    ZEXTLOAD,
697    LAST_LOADEXT_TYPE
698  };
699
700  //===--------------------------------------------------------------------===//
701  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
702  /// below work out, when considering SETFALSE (something that never exists
703  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
704  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
705  /// to.  If the "N" column is 1, the result of the comparison is undefined if
706  /// the input is a NAN.
707  ///
708  /// All of these (except for the 'always folded ops') should be handled for
709  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
710  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
711  ///
712  /// Note that these are laid out in a specific order to allow bit-twiddling
713  /// to transform conditions.
714  enum CondCode {
715    // Opcode          N U L G E       Intuitive operation
716    SETFALSE,      //    0 0 0 0       Always false (always folded)
717    SETOEQ,        //    0 0 0 1       True if ordered and equal
718    SETOGT,        //    0 0 1 0       True if ordered and greater than
719    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
720    SETOLT,        //    0 1 0 0       True if ordered and less than
721    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
722    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
723    SETO,          //    0 1 1 1       True if ordered (no nans)
724    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
725    SETUEQ,        //    1 0 0 1       True if unordered or equal
726    SETUGT,        //    1 0 1 0       True if unordered or greater than
727    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
728    SETULT,        //    1 1 0 0       True if unordered or less than
729    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
730    SETUNE,        //    1 1 1 0       True if unordered or not equal
731    SETTRUE,       //    1 1 1 1       Always true (always folded)
732    // Don't care operations: undefined if the input is a nan.
733    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
734    SETEQ,         //  1 X 0 0 1       True if equal
735    SETGT,         //  1 X 0 1 0       True if greater than
736    SETGE,         //  1 X 0 1 1       True if greater than or equal
737    SETLT,         //  1 X 1 0 0       True if less than
738    SETLE,         //  1 X 1 0 1       True if less than or equal
739    SETNE,         //  1 X 1 1 0       True if not equal
740    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
741
742    SETCC_INVALID       // Marker value.
743  };
744
745  /// isSignedIntSetCC - Return true if this is a setcc instruction that
746  /// performs a signed comparison when used with integer operands.
747  inline bool isSignedIntSetCC(CondCode Code) {
748    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
749  }
750
751  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
752  /// performs an unsigned comparison when used with integer operands.
753  inline bool isUnsignedIntSetCC(CondCode Code) {
754    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
755  }
756
757  /// isTrueWhenEqual - Return true if the specified condition returns true if
758  /// the two operands to the condition are equal.  Note that if one of the two
759  /// operands is a NaN, this value is meaningless.
760  inline bool isTrueWhenEqual(CondCode Cond) {
761    return ((int)Cond & 1) != 0;
762  }
763
764  /// getUnorderedFlavor - This function returns 0 if the condition is always
765  /// false if an operand is a NaN, 1 if the condition is always true if the
766  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
767  /// NaN.
768  inline unsigned getUnorderedFlavor(CondCode Cond) {
769    return ((int)Cond >> 3) & 3;
770  }
771
772  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
773  /// 'op' is a valid SetCC operation.
774  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
775
776  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
777  /// when given the operation for (X op Y).
778  CondCode getSetCCSwappedOperands(CondCode Operation);
779
780  /// getSetCCOrOperation - Return the result of a logical OR between different
781  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
782  /// function returns SETCC_INVALID if it is not possible to represent the
783  /// resultant comparison.
784  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
785
786  /// getSetCCAndOperation - Return the result of a logical AND between
787  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
788  /// function returns SETCC_INVALID if it is not possible to represent the
789  /// resultant comparison.
790  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
791
792  //===--------------------------------------------------------------------===//
793  /// CvtCode enum - This enum defines the various converts CONVERT_RNDSAT
794  /// supports.
795  enum CvtCode {
796    CVT_FF,     // Float from Float
797    CVT_FS,     // Float from Signed
798    CVT_FU,     // Float from Unsigned
799    CVT_SF,     // Signed from Float
800    CVT_UF,     // Unsigned from Float
801    CVT_SS,     // Signed from Signed
802    CVT_SU,     // Signed from Unsigned
803    CVT_US,     // Unsigned from Signed
804    CVT_UU,     // Unsigned from Unsigned
805    CVT_INVALID // Marker - Invalid opcode
806  };
807}  // end llvm::ISD namespace
808
809
810//===----------------------------------------------------------------------===//
811/// SDValue - Unlike LLVM values, Selection DAG nodes may return multiple
812/// values as the result of a computation.  Many nodes return multiple values,
813/// from loads (which define a token and a return value) to ADDC (which returns
814/// a result and a carry value), to calls (which may return an arbitrary number
815/// of values).
816///
817/// As such, each use of a SelectionDAG computation must indicate the node that
818/// computes it as well as which return value to use from that node.  This pair
819/// of information is represented with the SDValue value type.
820///
821class SDValue {
822  SDNode *Node;       // The node defining the value we are using.
823  unsigned ResNo;     // Which return value of the node we are using.
824public:
825  SDValue() : Node(0), ResNo(0) {}
826  SDValue(SDNode *node, unsigned resno) : Node(node), ResNo(resno) {}
827
828  /// get the index which selects a specific result in the SDNode
829  unsigned getResNo() const { return ResNo; }
830
831  /// get the SDNode which holds the desired result
832  SDNode *getNode() const { return Node; }
833
834  /// set the SDNode
835  void setNode(SDNode *N) { Node = N; }
836
837  bool operator==(const SDValue &O) const {
838    return Node == O.Node && ResNo == O.ResNo;
839  }
840  bool operator!=(const SDValue &O) const {
841    return !operator==(O);
842  }
843  bool operator<(const SDValue &O) const {
844    return Node < O.Node || (Node == O.Node && ResNo < O.ResNo);
845  }
846
847  SDValue getValue(unsigned R) const {
848    return SDValue(Node, R);
849  }
850
851  // isOperandOf - Return true if this node is an operand of N.
852  bool isOperandOf(SDNode *N) const;
853
854  /// getValueType - Return the ValueType of the referenced return value.
855  ///
856  inline EVT getValueType() const;
857
858  /// getValueSizeInBits - Returns the size of the value in bits.
859  ///
860  unsigned getValueSizeInBits() const {
861    return getValueType().getSizeInBits();
862  }
863
864  // Forwarding methods - These forward to the corresponding methods in SDNode.
865  inline unsigned getOpcode() const;
866  inline unsigned getNumOperands() const;
867  inline const SDValue &getOperand(unsigned i) const;
868  inline uint64_t getConstantOperandVal(unsigned i) const;
869  inline bool isTargetOpcode() const;
870  inline bool isMachineOpcode() const;
871  inline unsigned getMachineOpcode() const;
872  inline const DebugLoc getDebugLoc() const;
873
874
875  /// reachesChainWithoutSideEffects - Return true if this operand (which must
876  /// be a chain) reaches the specified operand without crossing any
877  /// side-effecting instructions.  In practice, this looks through token
878  /// factors and non-volatile loads.  In order to remain efficient, this only
879  /// looks a couple of nodes in, it does not do an exhaustive search.
880  bool reachesChainWithoutSideEffects(SDValue Dest,
881                                      unsigned Depth = 2) const;
882
883  /// use_empty - Return true if there are no nodes using value ResNo
884  /// of Node.
885  ///
886  inline bool use_empty() const;
887
888  /// hasOneUse - Return true if there is exactly one node using value
889  /// ResNo of Node.
890  ///
891  inline bool hasOneUse() const;
892};
893
894
895template<> struct DenseMapInfo<SDValue> {
896  static inline SDValue getEmptyKey() {
897    return SDValue((SDNode*)-1, -1U);
898  }
899  static inline SDValue getTombstoneKey() {
900    return SDValue((SDNode*)-1, 0);
901  }
902  static unsigned getHashValue(const SDValue &Val) {
903    return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
904            (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
905  }
906  static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
907    return LHS == RHS;
908  }
909  static bool isPod() { return true; }
910};
911
912/// simplify_type specializations - Allow casting operators to work directly on
913/// SDValues as if they were SDNode*'s.
914template<> struct simplify_type<SDValue> {
915  typedef SDNode* SimpleType;
916  static SimpleType getSimplifiedValue(const SDValue &Val) {
917    return static_cast<SimpleType>(Val.getNode());
918  }
919};
920template<> struct simplify_type<const SDValue> {
921  typedef SDNode* SimpleType;
922  static SimpleType getSimplifiedValue(const SDValue &Val) {
923    return static_cast<SimpleType>(Val.getNode());
924  }
925};
926
927/// SDUse - Represents a use of a SDNode. This class holds an SDValue,
928/// which records the SDNode being used and the result number, a
929/// pointer to the SDNode using the value, and Next and Prev pointers,
930/// which link together all the uses of an SDNode.
931///
932class SDUse {
933  /// Val - The value being used.
934  SDValue Val;
935  /// User - The user of this value.
936  SDNode *User;
937  /// Prev, Next - Pointers to the uses list of the SDNode referred by
938  /// this operand.
939  SDUse **Prev, *Next;
940
941  SDUse(const SDUse &U);          // Do not implement
942  void operator=(const SDUse &U); // Do not implement
943
944public:
945  SDUse() : Val(), User(NULL), Prev(NULL), Next(NULL) {}
946
947  /// Normally SDUse will just implicitly convert to an SDValue that it holds.
948  operator const SDValue&() const { return Val; }
949
950  /// If implicit conversion to SDValue doesn't work, the get() method returns
951  /// the SDValue.
952  const SDValue &get() const { return Val; }
953
954  /// getUser - This returns the SDNode that contains this Use.
955  SDNode *getUser() { return User; }
956
957  /// getNext - Get the next SDUse in the use list.
958  SDUse *getNext() const { return Next; }
959
960  /// getNode - Convenience function for get().getNode().
961  SDNode *getNode() const { return Val.getNode(); }
962  /// getResNo - Convenience function for get().getResNo().
963  unsigned getResNo() const { return Val.getResNo(); }
964  /// getValueType - Convenience function for get().getValueType().
965  EVT getValueType() const { return Val.getValueType(); }
966
967  /// operator== - Convenience function for get().operator==
968  bool operator==(const SDValue &V) const {
969    return Val == V;
970  }
971
972  /// operator!= - Convenience function for get().operator!=
973  bool operator!=(const SDValue &V) const {
974    return Val != V;
975  }
976
977  /// operator< - Convenience function for get().operator<
978  bool operator<(const SDValue &V) const {
979    return Val < V;
980  }
981
982private:
983  friend class SelectionDAG;
984  friend class SDNode;
985
986  void setUser(SDNode *p) { User = p; }
987
988  /// set - Remove this use from its existing use list, assign it the
989  /// given value, and add it to the new value's node's use list.
990  inline void set(const SDValue &V);
991  /// setInitial - like set, but only supports initializing a newly-allocated
992  /// SDUse with a non-null value.
993  inline void setInitial(const SDValue &V);
994  /// setNode - like set, but only sets the Node portion of the value,
995  /// leaving the ResNo portion unmodified.
996  inline void setNode(SDNode *N);
997
998  void addToList(SDUse **List) {
999    Next = *List;
1000    if (Next) Next->Prev = &Next;
1001    Prev = List;
1002    *List = this;
1003  }
1004
1005  void removeFromList() {
1006    *Prev = Next;
1007    if (Next) Next->Prev = Prev;
1008  }
1009};
1010
1011/// simplify_type specializations - Allow casting operators to work directly on
1012/// SDValues as if they were SDNode*'s.
1013template<> struct simplify_type<SDUse> {
1014  typedef SDNode* SimpleType;
1015  static SimpleType getSimplifiedValue(const SDUse &Val) {
1016    return static_cast<SimpleType>(Val.getNode());
1017  }
1018};
1019template<> struct simplify_type<const SDUse> {
1020  typedef SDNode* SimpleType;
1021  static SimpleType getSimplifiedValue(const SDUse &Val) {
1022    return static_cast<SimpleType>(Val.getNode());
1023  }
1024};
1025
1026
1027/// SDNode - Represents one node in the SelectionDAG.
1028///
1029class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
1030private:
1031  /// NodeType - The operation that this node performs.
1032  ///
1033  short NodeType;
1034
1035  /// OperandsNeedDelete - This is true if OperandList was new[]'d.  If true,
1036  /// then they will be delete[]'d when the node is destroyed.
1037  unsigned short OperandsNeedDelete : 1;
1038
1039protected:
1040  /// SubclassData - This member is defined by this class, but is not used for
1041  /// anything.  Subclasses can use it to hold whatever state they find useful.
1042  /// This field is initialized to zero by the ctor.
1043  unsigned short SubclassData : 15;
1044
1045private:
1046  /// NodeId - Unique id per SDNode in the DAG.
1047  int NodeId;
1048
1049  /// OperandList - The values that are used by this operation.
1050  ///
1051  SDUse *OperandList;
1052
1053  /// ValueList - The types of the values this node defines.  SDNode's may
1054  /// define multiple values simultaneously.
1055  const EVT *ValueList;
1056
1057  /// UseList - List of uses for this SDNode.
1058  SDUse *UseList;
1059
1060  /// NumOperands/NumValues - The number of entries in the Operand/Value list.
1061  unsigned short NumOperands, NumValues;
1062
1063  /// debugLoc - source line information.
1064  DebugLoc debugLoc;
1065
1066  /// getValueTypeList - Return a pointer to the specified value type.
1067  static const EVT *getValueTypeList(EVT VT);
1068
1069  friend class SelectionDAG;
1070  friend struct ilist_traits<SDNode>;
1071
1072public:
1073  //===--------------------------------------------------------------------===//
1074  //  Accessors
1075  //
1076
1077  /// getOpcode - Return the SelectionDAG opcode value for this node. For
1078  /// pre-isel nodes (those for which isMachineOpcode returns false), these
1079  /// are the opcode values in the ISD and <target>ISD namespaces. For
1080  /// post-isel opcodes, see getMachineOpcode.
1081  unsigned getOpcode()  const { return (unsigned short)NodeType; }
1082
1083  /// isTargetOpcode - Test if this node has a target-specific opcode (in the
1084  /// \<target\>ISD namespace).
1085  bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
1086
1087  /// isMachineOpcode - Test if this node has a post-isel opcode, directly
1088  /// corresponding to a MachineInstr opcode.
1089  bool isMachineOpcode() const { return NodeType < 0; }
1090
1091  /// getMachineOpcode - This may only be called if isMachineOpcode returns
1092  /// true. It returns the MachineInstr opcode value that the node's opcode
1093  /// corresponds to.
1094  unsigned getMachineOpcode() const {
1095    assert(isMachineOpcode() && "Not a MachineInstr opcode!");
1096    return ~NodeType;
1097  }
1098
1099  /// use_empty - Return true if there are no uses of this node.
1100  ///
1101  bool use_empty() const { return UseList == NULL; }
1102
1103  /// hasOneUse - Return true if there is exactly one use of this node.
1104  ///
1105  bool hasOneUse() const {
1106    return !use_empty() && next(use_begin()) == use_end();
1107  }
1108
1109  /// use_size - Return the number of uses of this node. This method takes
1110  /// time proportional to the number of uses.
1111  ///
1112  size_t use_size() const { return std::distance(use_begin(), use_end()); }
1113
1114  /// getNodeId - Return the unique node id.
1115  ///
1116  int getNodeId() const { return NodeId; }
1117
1118  /// setNodeId - Set unique node id.
1119  void setNodeId(int Id) { NodeId = Id; }
1120
1121  /// getDebugLoc - Return the source location info.
1122  const DebugLoc getDebugLoc() const { return debugLoc; }
1123
1124  /// setDebugLoc - Set source location info.  Try to avoid this, putting
1125  /// it in the constructor is preferable.
1126  void setDebugLoc(const DebugLoc dl) { debugLoc = dl; }
1127
1128  /// use_iterator - This class provides iterator support for SDUse
1129  /// operands that use a specific SDNode.
1130  class use_iterator
1131    : public std::iterator<std::forward_iterator_tag, SDUse, ptrdiff_t> {
1132    SDUse *Op;
1133    explicit use_iterator(SDUse *op) : Op(op) {
1134    }
1135    friend class SDNode;
1136  public:
1137    typedef std::iterator<std::forward_iterator_tag,
1138                          SDUse, ptrdiff_t>::reference reference;
1139    typedef std::iterator<std::forward_iterator_tag,
1140                          SDUse, ptrdiff_t>::pointer pointer;
1141
1142    use_iterator(const use_iterator &I) : Op(I.Op) {}
1143    use_iterator() : Op(0) {}
1144
1145    bool operator==(const use_iterator &x) const {
1146      return Op == x.Op;
1147    }
1148    bool operator!=(const use_iterator &x) const {
1149      return !operator==(x);
1150    }
1151
1152    /// atEnd - return true if this iterator is at the end of uses list.
1153    bool atEnd() const { return Op == 0; }
1154
1155    // Iterator traversal: forward iteration only.
1156    use_iterator &operator++() {          // Preincrement
1157      assert(Op && "Cannot increment end iterator!");
1158      Op = Op->getNext();
1159      return *this;
1160    }
1161
1162    use_iterator operator++(int) {        // Postincrement
1163      use_iterator tmp = *this; ++*this; return tmp;
1164    }
1165
1166    /// Retrieve a pointer to the current user node.
1167    SDNode *operator*() const {
1168      assert(Op && "Cannot dereference end iterator!");
1169      return Op->getUser();
1170    }
1171
1172    SDNode *operator->() const { return operator*(); }
1173
1174    SDUse &getUse() const { return *Op; }
1175
1176    /// getOperandNo - Retrieve the operand # of this use in its user.
1177    ///
1178    unsigned getOperandNo() const {
1179      assert(Op && "Cannot dereference end iterator!");
1180      return (unsigned)(Op - Op->getUser()->OperandList);
1181    }
1182  };
1183
1184  /// use_begin/use_end - Provide iteration support to walk over all uses
1185  /// of an SDNode.
1186
1187  use_iterator use_begin() const {
1188    return use_iterator(UseList);
1189  }
1190
1191  static use_iterator use_end() { return use_iterator(0); }
1192
1193
1194  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
1195  /// indicated value.  This method ignores uses of other values defined by this
1196  /// operation.
1197  bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
1198
1199  /// hasAnyUseOfValue - Return true if there are any use of the indicated
1200  /// value. This method ignores uses of other values defined by this operation.
1201  bool hasAnyUseOfValue(unsigned Value) const;
1202
1203  /// isOnlyUserOf - Return true if this node is the only use of N.
1204  ///
1205  bool isOnlyUserOf(SDNode *N) const;
1206
1207  /// isOperandOf - Return true if this node is an operand of N.
1208  ///
1209  bool isOperandOf(SDNode *N) const;
1210
1211  /// isPredecessorOf - Return true if this node is a predecessor of N. This
1212  /// node is either an operand of N or it can be reached by recursively
1213  /// traversing up the operands.
1214  /// NOTE: this is an expensive method. Use it carefully.
1215  bool isPredecessorOf(SDNode *N) const;
1216
1217  /// getNumOperands - Return the number of values used by this operation.
1218  ///
1219  unsigned getNumOperands() const { return NumOperands; }
1220
1221  /// getConstantOperandVal - Helper method returns the integer value of a
1222  /// ConstantSDNode operand.
1223  uint64_t getConstantOperandVal(unsigned Num) const;
1224
1225  const SDValue &getOperand(unsigned Num) const {
1226    assert(Num < NumOperands && "Invalid child # of SDNode!");
1227    return OperandList[Num];
1228  }
1229
1230  typedef SDUse* op_iterator;
1231  op_iterator op_begin() const { return OperandList; }
1232  op_iterator op_end() const { return OperandList+NumOperands; }
1233
1234  SDVTList getVTList() const {
1235    SDVTList X = { ValueList, NumValues };
1236    return X;
1237  };
1238
1239  /// getFlaggedNode - If this node has a flag operand, return the node
1240  /// to which the flag operand points. Otherwise return NULL.
1241  SDNode *getFlaggedNode() const {
1242    if (getNumOperands() != 0 &&
1243      getOperand(getNumOperands()-1).getValueType().getSimpleVT() == MVT::Flag)
1244      return getOperand(getNumOperands()-1).getNode();
1245    return 0;
1246  }
1247
1248  // If this is a pseudo op, like copyfromreg, look to see if there is a
1249  // real target node flagged to it.  If so, return the target node.
1250  const SDNode *getFlaggedMachineNode() const {
1251    const SDNode *FoundNode = this;
1252
1253    // Climb up flag edges until a machine-opcode node is found, or the
1254    // end of the chain is reached.
1255    while (!FoundNode->isMachineOpcode()) {
1256      const SDNode *N = FoundNode->getFlaggedNode();
1257      if (!N) break;
1258      FoundNode = N;
1259    }
1260
1261    return FoundNode;
1262  }
1263
1264  /// getNumValues - Return the number of values defined/returned by this
1265  /// operator.
1266  ///
1267  unsigned getNumValues() const { return NumValues; }
1268
1269  /// getValueType - Return the type of a specified result.
1270  ///
1271  EVT getValueType(unsigned ResNo) const {
1272    assert(ResNo < NumValues && "Illegal result number!");
1273    return ValueList[ResNo];
1274  }
1275
1276  /// getValueSizeInBits - Returns MVT::getSizeInBits(getValueType(ResNo)).
1277  ///
1278  unsigned getValueSizeInBits(unsigned ResNo) const {
1279    return getValueType(ResNo).getSizeInBits();
1280  }
1281
1282  typedef const EVT* value_iterator;
1283  value_iterator value_begin() const { return ValueList; }
1284  value_iterator value_end() const { return ValueList+NumValues; }
1285
1286  /// getOperationName - Return the opcode of this operation for printing.
1287  ///
1288  std::string getOperationName(const SelectionDAG *G = 0) const;
1289  static const char* getIndexedModeName(ISD::MemIndexedMode AM);
1290  void print_types(raw_ostream &OS, const SelectionDAG *G) const;
1291  void print_details(raw_ostream &OS, const SelectionDAG *G) const;
1292  void print(raw_ostream &OS, const SelectionDAG *G = 0) const;
1293  void printr(raw_ostream &OS, const SelectionDAG *G = 0) const;
1294  void dump() const;
1295  void dumpr() const;
1296  void dump(const SelectionDAG *G) const;
1297
1298  static bool classof(const SDNode *) { return true; }
1299
1300  /// Profile - Gather unique data for the node.
1301  ///
1302  void Profile(FoldingSetNodeID &ID) const;
1303
1304  /// addUse - This method should only be used by the SDUse class.
1305  ///
1306  void addUse(SDUse &U) { U.addToList(&UseList); }
1307
1308protected:
1309  static SDVTList getSDVTList(EVT VT) {
1310    SDVTList Ret = { getValueTypeList(VT), 1 };
1311    return Ret;
1312  }
1313
1314  SDNode(unsigned Opc, const DebugLoc dl, SDVTList VTs, const SDValue *Ops,
1315         unsigned NumOps)
1316    : NodeType(Opc), OperandsNeedDelete(true), SubclassData(0),
1317      NodeId(-1),
1318      OperandList(NumOps ? new SDUse[NumOps] : 0),
1319      ValueList(VTs.VTs), UseList(NULL),
1320      NumOperands(NumOps), NumValues(VTs.NumVTs),
1321      debugLoc(dl) {
1322    for (unsigned i = 0; i != NumOps; ++i) {
1323      OperandList[i].setUser(this);
1324      OperandList[i].setInitial(Ops[i]);
1325    }
1326  }
1327
1328  /// This constructor adds no operands itself; operands can be
1329  /// set later with InitOperands.
1330  SDNode(unsigned Opc, const DebugLoc dl, SDVTList VTs)
1331    : NodeType(Opc), OperandsNeedDelete(false), SubclassData(0),
1332      NodeId(-1), OperandList(0), ValueList(VTs.VTs), UseList(NULL),
1333      NumOperands(0), NumValues(VTs.NumVTs),
1334      debugLoc(dl) {}
1335
1336  /// InitOperands - Initialize the operands list of this with 1 operand.
1337  void InitOperands(SDUse *Ops, const SDValue &Op0) {
1338    Ops[0].setUser(this);
1339    Ops[0].setInitial(Op0);
1340    NumOperands = 1;
1341    OperandList = Ops;
1342  }
1343
1344  /// InitOperands - Initialize the operands list of this with 2 operands.
1345  void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1) {
1346    Ops[0].setUser(this);
1347    Ops[0].setInitial(Op0);
1348    Ops[1].setUser(this);
1349    Ops[1].setInitial(Op1);
1350    NumOperands = 2;
1351    OperandList = Ops;
1352  }
1353
1354  /// InitOperands - Initialize the operands list of this with 3 operands.
1355  void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
1356                    const SDValue &Op2) {
1357    Ops[0].setUser(this);
1358    Ops[0].setInitial(Op0);
1359    Ops[1].setUser(this);
1360    Ops[1].setInitial(Op1);
1361    Ops[2].setUser(this);
1362    Ops[2].setInitial(Op2);
1363    NumOperands = 3;
1364    OperandList = Ops;
1365  }
1366
1367  /// InitOperands - Initialize the operands list of this with 4 operands.
1368  void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
1369                    const SDValue &Op2, const SDValue &Op3) {
1370    Ops[0].setUser(this);
1371    Ops[0].setInitial(Op0);
1372    Ops[1].setUser(this);
1373    Ops[1].setInitial(Op1);
1374    Ops[2].setUser(this);
1375    Ops[2].setInitial(Op2);
1376    Ops[3].setUser(this);
1377    Ops[3].setInitial(Op3);
1378    NumOperands = 4;
1379    OperandList = Ops;
1380  }
1381
1382  /// InitOperands - Initialize the operands list of this with N operands.
1383  void InitOperands(SDUse *Ops, const SDValue *Vals, unsigned N) {
1384    for (unsigned i = 0; i != N; ++i) {
1385      Ops[i].setUser(this);
1386      Ops[i].setInitial(Vals[i]);
1387    }
1388    NumOperands = N;
1389    OperandList = Ops;
1390  }
1391
1392  /// DropOperands - Release the operands and set this node to have
1393  /// zero operands.
1394  void DropOperands();
1395};
1396
1397
1398// Define inline functions from the SDValue class.
1399
1400inline unsigned SDValue::getOpcode() const {
1401  return Node->getOpcode();
1402}
1403inline EVT SDValue::getValueType() const {
1404  return Node->getValueType(ResNo);
1405}
1406inline unsigned SDValue::getNumOperands() const {
1407  return Node->getNumOperands();
1408}
1409inline const SDValue &SDValue::getOperand(unsigned i) const {
1410  return Node->getOperand(i);
1411}
1412inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
1413  return Node->getConstantOperandVal(i);
1414}
1415inline bool SDValue::isTargetOpcode() const {
1416  return Node->isTargetOpcode();
1417}
1418inline bool SDValue::isMachineOpcode() const {
1419  return Node->isMachineOpcode();
1420}
1421inline unsigned SDValue::getMachineOpcode() const {
1422  return Node->getMachineOpcode();
1423}
1424inline bool SDValue::use_empty() const {
1425  return !Node->hasAnyUseOfValue(ResNo);
1426}
1427inline bool SDValue::hasOneUse() const {
1428  return Node->hasNUsesOfValue(1, ResNo);
1429}
1430inline const DebugLoc SDValue::getDebugLoc() const {
1431  return Node->getDebugLoc();
1432}
1433
1434// Define inline functions from the SDUse class.
1435
1436inline void SDUse::set(const SDValue &V) {
1437  if (Val.getNode()) removeFromList();
1438  Val = V;
1439  if (V.getNode()) V.getNode()->addUse(*this);
1440}
1441
1442inline void SDUse::setInitial(const SDValue &V) {
1443  Val = V;
1444  V.getNode()->addUse(*this);
1445}
1446
1447inline void SDUse::setNode(SDNode *N) {
1448  if (Val.getNode()) removeFromList();
1449  Val.setNode(N);
1450  if (N) N->addUse(*this);
1451}
1452
1453/// UnarySDNode - This class is used for single-operand SDNodes.  This is solely
1454/// to allow co-allocation of node operands with the node itself.
1455class UnarySDNode : public SDNode {
1456  SDUse Op;
1457public:
1458  UnarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X)
1459    : SDNode(Opc, dl, VTs) {
1460    InitOperands(&Op, X);
1461  }
1462};
1463
1464/// BinarySDNode - This class is used for two-operand SDNodes.  This is solely
1465/// to allow co-allocation of node operands with the node itself.
1466class BinarySDNode : public SDNode {
1467  SDUse Ops[2];
1468public:
1469  BinarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X, SDValue Y)
1470    : SDNode(Opc, dl, VTs) {
1471    InitOperands(Ops, X, Y);
1472  }
1473};
1474
1475/// TernarySDNode - This class is used for three-operand SDNodes. This is solely
1476/// to allow co-allocation of node operands with the node itself.
1477class TernarySDNode : public SDNode {
1478  SDUse Ops[3];
1479public:
1480  TernarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X, SDValue Y,
1481                SDValue Z)
1482    : SDNode(Opc, dl, VTs) {
1483    InitOperands(Ops, X, Y, Z);
1484  }
1485};
1486
1487
1488/// HandleSDNode - This class is used to form a handle around another node that
1489/// is persistant and is updated across invocations of replaceAllUsesWith on its
1490/// operand.  This node should be directly created by end-users and not added to
1491/// the AllNodes list.
1492class HandleSDNode : public SDNode {
1493  SDUse Op;
1494public:
1495  // FIXME: Remove the "noinline" attribute once <rdar://problem/5852746> is
1496  // fixed.
1497#ifdef __GNUC__
1498  explicit __attribute__((__noinline__)) HandleSDNode(SDValue X)
1499#else
1500  explicit HandleSDNode(SDValue X)
1501#endif
1502    : SDNode(ISD::HANDLENODE, DebugLoc::getUnknownLoc(),
1503             getSDVTList(MVT::Other)) {
1504    InitOperands(&Op, X);
1505  }
1506  ~HandleSDNode();
1507  const SDValue &getValue() const { return Op; }
1508};
1509
1510/// Abstact virtual class for operations for memory operations
1511class MemSDNode : public SDNode {
1512private:
1513  // MemoryVT - VT of in-memory value.
1514  EVT MemoryVT;
1515
1516  //! SrcValue - Memory location for alias analysis.
1517  const Value *SrcValue;
1518
1519  //! SVOffset - Memory location offset. Note that base is defined in MemSDNode
1520  int SVOffset;
1521
1522public:
1523  MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT MemoryVT,
1524            const Value *srcValue, int SVOff,
1525            unsigned alignment, bool isvolatile);
1526
1527  MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, const SDValue *Ops,
1528            unsigned NumOps, EVT MemoryVT, const Value *srcValue, int SVOff,
1529            unsigned alignment, bool isvolatile);
1530
1531  /// Returns alignment and volatility of the memory access
1532  unsigned getAlignment() const { return (1u << (SubclassData >> 6)) >> 1; }
1533  bool isVolatile() const { return (SubclassData >> 5) & 1; }
1534
1535  /// getRawSubclassData - Return the SubclassData value, which contains an
1536  /// encoding of the alignment and volatile information, as well as bits
1537  /// used by subclasses. This function should only be used to compute a
1538  /// FoldingSetNodeID value.
1539  unsigned getRawSubclassData() const {
1540    return SubclassData;
1541  }
1542
1543  /// Returns the SrcValue and offset that describes the location of the access
1544  const Value *getSrcValue() const { return SrcValue; }
1545  int getSrcValueOffset() const { return SVOffset; }
1546
1547  /// getMemoryVT - Return the type of the in-memory value.
1548  EVT getMemoryVT() const { return MemoryVT; }
1549
1550  /// getMemOperand - Return a MachineMemOperand object describing the memory
1551  /// reference performed by operation.
1552  MachineMemOperand getMemOperand() const;
1553
1554  const SDValue &getChain() const { return getOperand(0); }
1555  const SDValue &getBasePtr() const {
1556    return getOperand(getOpcode() == ISD::STORE ? 2 : 1);
1557  }
1558
1559  // Methods to support isa and dyn_cast
1560  static bool classof(const MemSDNode *) { return true; }
1561  static bool classof(const SDNode *N) {
1562    // For some targets, we lower some target intrinsics to a MemIntrinsicNode
1563    // with either an intrinsic or a target opcode.
1564    return N->getOpcode() == ISD::LOAD                ||
1565           N->getOpcode() == ISD::STORE               ||
1566           N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
1567           N->getOpcode() == ISD::ATOMIC_SWAP         ||
1568           N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
1569           N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
1570           N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
1571           N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
1572           N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
1573           N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
1574           N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
1575           N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
1576           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
1577           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX    ||
1578           N->getOpcode() == ISD::INTRINSIC_W_CHAIN   ||
1579           N->getOpcode() == ISD::INTRINSIC_VOID      ||
1580           N->isTargetOpcode();
1581  }
1582};
1583
1584/// AtomicSDNode - A SDNode reprenting atomic operations.
1585///
1586class AtomicSDNode : public MemSDNode {
1587  SDUse Ops[4];
1588
1589public:
1590  // Opc:   opcode for atomic
1591  // VTL:    value type list
1592  // Chain:  memory chain for operaand
1593  // Ptr:    address to update as a SDValue
1594  // Cmp:    compare value
1595  // Swp:    swap value
1596  // SrcVal: address to update as a Value (used for MemOperand)
1597  // Align:  alignment of memory
1598  AtomicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTL, EVT MemVT,
1599               SDValue Chain, SDValue Ptr,
1600               SDValue Cmp, SDValue Swp, const Value* SrcVal,
1601               unsigned Align=0)
1602    : MemSDNode(Opc, dl, VTL, MemVT, SrcVal, /*SVOffset=*/0,
1603                Align, /*isVolatile=*/true) {
1604    InitOperands(Ops, Chain, Ptr, Cmp, Swp);
1605  }
1606  AtomicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTL, EVT MemVT,
1607               SDValue Chain, SDValue Ptr,
1608               SDValue Val, const Value* SrcVal, unsigned Align=0)
1609    : MemSDNode(Opc, dl, VTL, MemVT, SrcVal, /*SVOffset=*/0,
1610                Align, /*isVolatile=*/true) {
1611    InitOperands(Ops, Chain, Ptr, Val);
1612  }
1613
1614  const SDValue &getBasePtr() const { return getOperand(1); }
1615  const SDValue &getVal() const { return getOperand(2); }
1616
1617  bool isCompareAndSwap() const {
1618    unsigned Op = getOpcode();
1619    return Op == ISD::ATOMIC_CMP_SWAP;
1620  }
1621
1622  // Methods to support isa and dyn_cast
1623  static bool classof(const AtomicSDNode *) { return true; }
1624  static bool classof(const SDNode *N) {
1625    return N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
1626           N->getOpcode() == ISD::ATOMIC_SWAP         ||
1627           N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
1628           N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
1629           N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
1630           N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
1631           N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
1632           N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
1633           N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
1634           N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
1635           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
1636           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX;
1637  }
1638};
1639
1640/// MemIntrinsicSDNode - This SDNode is used for target intrinsic that touches
1641/// memory and need an associated memory operand.
1642///
1643class MemIntrinsicSDNode : public MemSDNode {
1644  bool ReadMem;  // Intrinsic reads memory
1645  bool WriteMem; // Intrinsic writes memory
1646public:
1647  MemIntrinsicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
1648                     const SDValue *Ops, unsigned NumOps,
1649                     EVT MemoryVT, const Value *srcValue, int SVO,
1650                     unsigned Align, bool Vol, bool ReadMem, bool WriteMem)
1651    : MemSDNode(Opc, dl, VTs, Ops, NumOps, MemoryVT, srcValue, SVO, Align, Vol),
1652      ReadMem(ReadMem), WriteMem(WriteMem) {
1653  }
1654
1655  bool readMem() const { return ReadMem; }
1656  bool writeMem() const { return WriteMem; }
1657
1658  // Methods to support isa and dyn_cast
1659  static bool classof(const MemIntrinsicSDNode *) { return true; }
1660  static bool classof(const SDNode *N) {
1661    // We lower some target intrinsics to their target opcode
1662    // early a node with a target opcode can be of this class
1663    return N->getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1664           N->getOpcode() == ISD::INTRINSIC_VOID ||
1665           N->isTargetOpcode();
1666  }
1667};
1668
1669/// ShuffleVectorSDNode - This SDNode is used to implement the code generator
1670/// support for the llvm IR shufflevector instruction.  It combines elements
1671/// from two input vectors into a new input vector, with the selection and
1672/// ordering of elements determined by an array of integers, referred to as
1673/// the shuffle mask.  For input vectors of width N, mask indices of 0..N-1
1674/// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
1675/// An index of -1 is treated as undef, such that the code generator may put
1676/// any value in the corresponding element of the result.
1677class ShuffleVectorSDNode : public SDNode {
1678  SDUse Ops[2];
1679
1680  // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
1681  // is freed when the SelectionDAG object is destroyed.
1682  const int *Mask;
1683protected:
1684  friend class SelectionDAG;
1685  ShuffleVectorSDNode(EVT VT, DebugLoc dl, SDValue N1, SDValue N2,
1686                      const int *M)
1687    : SDNode(ISD::VECTOR_SHUFFLE, dl, getSDVTList(VT)), Mask(M) {
1688    InitOperands(Ops, N1, N2);
1689  }
1690public:
1691
1692  void getMask(SmallVectorImpl<int> &M) const {
1693    EVT VT = getValueType(0);
1694    M.clear();
1695    for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1696      M.push_back(Mask[i]);
1697  }
1698  int getMaskElt(unsigned Idx) const {
1699    assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!");
1700    return Mask[Idx];
1701  }
1702
1703  bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
1704  int  getSplatIndex() const {
1705    assert(isSplat() && "Cannot get splat index for non-splat!");
1706    return Mask[0];
1707  }
1708  static bool isSplatMask(const int *Mask, EVT VT);
1709
1710  static bool classof(const ShuffleVectorSDNode *) { return true; }
1711  static bool classof(const SDNode *N) {
1712    return N->getOpcode() == ISD::VECTOR_SHUFFLE;
1713  }
1714};
1715
1716class ConstantSDNode : public SDNode {
1717  const ConstantInt *Value;
1718  friend class SelectionDAG;
1719  ConstantSDNode(bool isTarget, const ConstantInt *val, EVT VT)
1720    : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant,
1721             DebugLoc::getUnknownLoc(), getSDVTList(VT)), Value(val) {
1722  }
1723public:
1724
1725  const ConstantInt *getConstantIntValue() const { return Value; }
1726  const APInt &getAPIntValue() const { return Value->getValue(); }
1727  uint64_t getZExtValue() const { return Value->getZExtValue(); }
1728  int64_t getSExtValue() const { return Value->getSExtValue(); }
1729
1730  bool isNullValue() const { return Value->isNullValue(); }
1731  bool isAllOnesValue() const { return Value->isAllOnesValue(); }
1732
1733  static bool classof(const ConstantSDNode *) { return true; }
1734  static bool classof(const SDNode *N) {
1735    return N->getOpcode() == ISD::Constant ||
1736           N->getOpcode() == ISD::TargetConstant;
1737  }
1738};
1739
1740class ConstantFPSDNode : public SDNode {
1741  const ConstantFP *Value;
1742  friend class SelectionDAG;
1743  ConstantFPSDNode(bool isTarget, const ConstantFP *val, EVT VT)
1744    : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP,
1745             DebugLoc::getUnknownLoc(), getSDVTList(VT)), Value(val) {
1746  }
1747public:
1748
1749  const APFloat& getValueAPF() const { return Value->getValueAPF(); }
1750  const ConstantFP *getConstantFPValue() const { return Value; }
1751
1752  /// isExactlyValue - We don't rely on operator== working on double values, as
1753  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1754  /// As such, this method can be used to do an exact bit-for-bit comparison of
1755  /// two floating point values.
1756
1757  /// We leave the version with the double argument here because it's just so
1758  /// convenient to write "2.0" and the like.  Without this function we'd
1759  /// have to duplicate its logic everywhere it's called.
1760  bool isExactlyValue(double V) const {
1761    bool ignored;
1762    // convert is not supported on this type
1763    if (&Value->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
1764      return false;
1765    APFloat Tmp(V);
1766    Tmp.convert(Value->getValueAPF().getSemantics(),
1767                APFloat::rmNearestTiesToEven, &ignored);
1768    return isExactlyValue(Tmp);
1769  }
1770  bool isExactlyValue(const APFloat& V) const;
1771
1772  bool isValueValidForType(EVT VT, const APFloat& Val);
1773
1774  static bool classof(const ConstantFPSDNode *) { return true; }
1775  static bool classof(const SDNode *N) {
1776    return N->getOpcode() == ISD::ConstantFP ||
1777           N->getOpcode() == ISD::TargetConstantFP;
1778  }
1779};
1780
1781class GlobalAddressSDNode : public SDNode {
1782  GlobalValue *TheGlobal;
1783  int64_t Offset;
1784  unsigned char TargetFlags;
1785  friend class SelectionDAG;
1786  GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA, EVT VT,
1787                      int64_t o, unsigned char TargetFlags);
1788public:
1789
1790  GlobalValue *getGlobal() const { return TheGlobal; }
1791  int64_t getOffset() const { return Offset; }
1792  unsigned char getTargetFlags() const { return TargetFlags; }
1793  // Return the address space this GlobalAddress belongs to.
1794  unsigned getAddressSpace() const;
1795
1796  static bool classof(const GlobalAddressSDNode *) { return true; }
1797  static bool classof(const SDNode *N) {
1798    return N->getOpcode() == ISD::GlobalAddress ||
1799           N->getOpcode() == ISD::TargetGlobalAddress ||
1800           N->getOpcode() == ISD::GlobalTLSAddress ||
1801           N->getOpcode() == ISD::TargetGlobalTLSAddress;
1802  }
1803};
1804
1805class FrameIndexSDNode : public SDNode {
1806  int FI;
1807  friend class SelectionDAG;
1808  FrameIndexSDNode(int fi, EVT VT, bool isTarg)
1809    : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
1810      DebugLoc::getUnknownLoc(), getSDVTList(VT)), FI(fi) {
1811  }
1812public:
1813
1814  int getIndex() const { return FI; }
1815
1816  static bool classof(const FrameIndexSDNode *) { return true; }
1817  static bool classof(const SDNode *N) {
1818    return N->getOpcode() == ISD::FrameIndex ||
1819           N->getOpcode() == ISD::TargetFrameIndex;
1820  }
1821};
1822
1823class JumpTableSDNode : public SDNode {
1824  int JTI;
1825  unsigned char TargetFlags;
1826  friend class SelectionDAG;
1827  JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned char TF)
1828    : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
1829      DebugLoc::getUnknownLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) {
1830  }
1831public:
1832
1833  int getIndex() const { return JTI; }
1834  unsigned char getTargetFlags() const { return TargetFlags; }
1835
1836  static bool classof(const JumpTableSDNode *) { return true; }
1837  static bool classof(const SDNode *N) {
1838    return N->getOpcode() == ISD::JumpTable ||
1839           N->getOpcode() == ISD::TargetJumpTable;
1840  }
1841};
1842
1843class ConstantPoolSDNode : public SDNode {
1844  union {
1845    Constant *ConstVal;
1846    MachineConstantPoolValue *MachineCPVal;
1847  } Val;
1848  int Offset;  // It's a MachineConstantPoolValue if top bit is set.
1849  unsigned Alignment;  // Minimum alignment requirement of CP (not log2 value).
1850  unsigned char TargetFlags;
1851  friend class SelectionDAG;
1852  ConstantPoolSDNode(bool isTarget, Constant *c, EVT VT, int o, unsigned Align,
1853                     unsigned char TF)
1854    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1855             DebugLoc::getUnknownLoc(),
1856             getSDVTList(VT)), Offset(o), Alignment(Align), TargetFlags(TF) {
1857    assert((int)Offset >= 0 && "Offset is too large");
1858    Val.ConstVal = c;
1859  }
1860  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1861                     EVT VT, int o, unsigned Align, unsigned char TF)
1862    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1863             DebugLoc::getUnknownLoc(),
1864             getSDVTList(VT)), Offset(o), Alignment(Align), TargetFlags(TF) {
1865    assert((int)Offset >= 0 && "Offset is too large");
1866    Val.MachineCPVal = v;
1867    Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1);
1868  }
1869public:
1870
1871
1872  bool isMachineConstantPoolEntry() const {
1873    return (int)Offset < 0;
1874  }
1875
1876  Constant *getConstVal() const {
1877    assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
1878    return Val.ConstVal;
1879  }
1880
1881  MachineConstantPoolValue *getMachineCPVal() const {
1882    assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
1883    return Val.MachineCPVal;
1884  }
1885
1886  int getOffset() const {
1887    return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1));
1888  }
1889
1890  // Return the alignment of this constant pool object, which is either 0 (for
1891  // default alignment) or the desired value.
1892  unsigned getAlignment() const { return Alignment; }
1893  unsigned char getTargetFlags() const { return TargetFlags; }
1894
1895  const Type *getType() const;
1896
1897  static bool classof(const ConstantPoolSDNode *) { return true; }
1898  static bool classof(const SDNode *N) {
1899    return N->getOpcode() == ISD::ConstantPool ||
1900           N->getOpcode() == ISD::TargetConstantPool;
1901  }
1902};
1903
1904class BasicBlockSDNode : public SDNode {
1905  MachineBasicBlock *MBB;
1906  friend class SelectionDAG;
1907  /// Debug info is meaningful and potentially useful here, but we create
1908  /// blocks out of order when they're jumped to, which makes it a bit
1909  /// harder.  Let's see if we need it first.
1910  explicit BasicBlockSDNode(MachineBasicBlock *mbb)
1911    : SDNode(ISD::BasicBlock, DebugLoc::getUnknownLoc(),
1912             getSDVTList(MVT::Other)), MBB(mbb) {
1913  }
1914public:
1915
1916  MachineBasicBlock *getBasicBlock() const { return MBB; }
1917
1918  static bool classof(const BasicBlockSDNode *) { return true; }
1919  static bool classof(const SDNode *N) {
1920    return N->getOpcode() == ISD::BasicBlock;
1921  }
1922};
1923
1924/// BuildVectorSDNode - A "pseudo-class" with methods for operating on
1925/// BUILD_VECTORs.
1926class BuildVectorSDNode : public SDNode {
1927  // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
1928  explicit BuildVectorSDNode();        // Do not implement
1929public:
1930  /// isConstantSplat - Check if this is a constant splat, and if so, find the
1931  /// smallest element size that splats the vector.  If MinSplatBits is
1932  /// nonzero, the element size must be at least that large.  Note that the
1933  /// splat element may be the entire vector (i.e., a one element vector).
1934  /// Returns the splat element value in SplatValue.  Any undefined bits in
1935  /// that value are zero, and the corresponding bits in the SplatUndef mask
1936  /// are set.  The SplatBitSize value is set to the splat element size in
1937  /// bits.  HasAnyUndefs is set to true if any bits in the vector are
1938  /// undefined.
1939  bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
1940                       unsigned &SplatBitSize, bool &HasAnyUndefs,
1941                       unsigned MinSplatBits = 0);
1942
1943  static inline bool classof(const BuildVectorSDNode *) { return true; }
1944  static inline bool classof(const SDNode *N) {
1945    return N->getOpcode() == ISD::BUILD_VECTOR;
1946  }
1947};
1948
1949/// SrcValueSDNode - An SDNode that holds an arbitrary LLVM IR Value. This is
1950/// used when the SelectionDAG needs to make a simple reference to something
1951/// in the LLVM IR representation.
1952///
1953/// Note that this is not used for carrying alias information; that is done
1954/// with MemOperandSDNode, which includes a Value which is required to be a
1955/// pointer, and several other fields specific to memory references.
1956///
1957class SrcValueSDNode : public SDNode {
1958  const Value *V;
1959  friend class SelectionDAG;
1960  /// Create a SrcValue for a general value.
1961  explicit SrcValueSDNode(const Value *v)
1962    : SDNode(ISD::SRCVALUE, DebugLoc::getUnknownLoc(),
1963             getSDVTList(MVT::Other)), V(v) {}
1964
1965public:
1966  /// getValue - return the contained Value.
1967  const Value *getValue() const { return V; }
1968
1969  static bool classof(const SrcValueSDNode *) { return true; }
1970  static bool classof(const SDNode *N) {
1971    return N->getOpcode() == ISD::SRCVALUE;
1972  }
1973};
1974
1975
1976/// MemOperandSDNode - An SDNode that holds a MachineMemOperand. This is
1977/// used to represent a reference to memory after ISD::LOAD
1978/// and ISD::STORE have been lowered.
1979///
1980class MemOperandSDNode : public SDNode {
1981  friend class SelectionDAG;
1982  /// Create a MachineMemOperand node
1983  explicit MemOperandSDNode(const MachineMemOperand &mo)
1984    : SDNode(ISD::MEMOPERAND, DebugLoc::getUnknownLoc(),
1985             getSDVTList(MVT::Other)), MO(mo) {}
1986
1987public:
1988  /// MO - The contained MachineMemOperand.
1989  const MachineMemOperand MO;
1990
1991  static bool classof(const MemOperandSDNode *) { return true; }
1992  static bool classof(const SDNode *N) {
1993    return N->getOpcode() == ISD::MEMOPERAND;
1994  }
1995};
1996
1997
1998class RegisterSDNode : public SDNode {
1999  unsigned Reg;
2000  friend class SelectionDAG;
2001  RegisterSDNode(unsigned reg, EVT VT)
2002    : SDNode(ISD::Register, DebugLoc::getUnknownLoc(),
2003             getSDVTList(VT)), Reg(reg) {
2004  }
2005public:
2006
2007  unsigned getReg() const { return Reg; }
2008
2009  static bool classof(const RegisterSDNode *) { return true; }
2010  static bool classof(const SDNode *N) {
2011    return N->getOpcode() == ISD::Register;
2012  }
2013};
2014
2015class DbgStopPointSDNode : public SDNode {
2016  SDUse Chain;
2017  unsigned Line;
2018  unsigned Column;
2019  Value *CU;
2020  friend class SelectionDAG;
2021  DbgStopPointSDNode(SDValue ch, unsigned l, unsigned c,
2022                     Value *cu)
2023    : SDNode(ISD::DBG_STOPPOINT, DebugLoc::getUnknownLoc(),
2024      getSDVTList(MVT::Other)), Line(l), Column(c), CU(cu) {
2025    InitOperands(&Chain, ch);
2026  }
2027public:
2028  unsigned getLine() const { return Line; }
2029  unsigned getColumn() const { return Column; }
2030  Value *getCompileUnit() const { return CU; }
2031
2032  static bool classof(const DbgStopPointSDNode *) { return true; }
2033  static bool classof(const SDNode *N) {
2034    return N->getOpcode() == ISD::DBG_STOPPOINT;
2035  }
2036};
2037
2038class LabelSDNode : public SDNode {
2039  SDUse Chain;
2040  unsigned LabelID;
2041  friend class SelectionDAG;
2042LabelSDNode(unsigned NodeTy, DebugLoc dl, SDValue ch, unsigned id)
2043    : SDNode(NodeTy, dl, getSDVTList(MVT::Other)), LabelID(id) {
2044    InitOperands(&Chain, ch);
2045  }
2046public:
2047  unsigned getLabelID() const { return LabelID; }
2048
2049  static bool classof(const LabelSDNode *) { return true; }
2050  static bool classof(const SDNode *N) {
2051    return N->getOpcode() == ISD::DBG_LABEL ||
2052           N->getOpcode() == ISD::EH_LABEL;
2053  }
2054};
2055
2056class ExternalSymbolSDNode : public SDNode {
2057  const char *Symbol;
2058  unsigned char TargetFlags;
2059
2060  friend class SelectionDAG;
2061  ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned char TF, EVT VT)
2062    : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
2063             DebugLoc::getUnknownLoc(),
2064             getSDVTList(VT)), Symbol(Sym), TargetFlags(TF) {
2065  }
2066public:
2067
2068  const char *getSymbol() const { return Symbol; }
2069  unsigned char getTargetFlags() const { return TargetFlags; }
2070
2071  static bool classof(const ExternalSymbolSDNode *) { return true; }
2072  static bool classof(const SDNode *N) {
2073    return N->getOpcode() == ISD::ExternalSymbol ||
2074           N->getOpcode() == ISD::TargetExternalSymbol;
2075  }
2076};
2077
2078class CondCodeSDNode : public SDNode {
2079  ISD::CondCode Condition;
2080  friend class SelectionDAG;
2081  explicit CondCodeSDNode(ISD::CondCode Cond)
2082    : SDNode(ISD::CONDCODE, DebugLoc::getUnknownLoc(),
2083             getSDVTList(MVT::Other)), Condition(Cond) {
2084  }
2085public:
2086
2087  ISD::CondCode get() const { return Condition; }
2088
2089  static bool classof(const CondCodeSDNode *) { return true; }
2090  static bool classof(const SDNode *N) {
2091    return N->getOpcode() == ISD::CONDCODE;
2092  }
2093};
2094
2095/// CvtRndSatSDNode - NOTE: avoid using this node as this may disappear in the
2096/// future and most targets don't support it.
2097class CvtRndSatSDNode : public SDNode {
2098  ISD::CvtCode CvtCode;
2099  friend class SelectionDAG;
2100  explicit CvtRndSatSDNode(EVT VT, DebugLoc dl, const SDValue *Ops,
2101                           unsigned NumOps, ISD::CvtCode Code)
2102    : SDNode(ISD::CONVERT_RNDSAT, dl, getSDVTList(VT), Ops, NumOps),
2103      CvtCode(Code) {
2104    assert(NumOps == 5 && "wrong number of operations");
2105  }
2106public:
2107  ISD::CvtCode getCvtCode() const { return CvtCode; }
2108
2109  static bool classof(const CvtRndSatSDNode *) { return true; }
2110  static bool classof(const SDNode *N) {
2111    return N->getOpcode() == ISD::CONVERT_RNDSAT;
2112  }
2113};
2114
2115namespace ISD {
2116  struct ArgFlagsTy {
2117  private:
2118    static const uint64_t NoFlagSet      = 0ULL;
2119    static const uint64_t ZExt           = 1ULL<<0;  ///< Zero extended
2120    static const uint64_t ZExtOffs       = 0;
2121    static const uint64_t SExt           = 1ULL<<1;  ///< Sign extended
2122    static const uint64_t SExtOffs       = 1;
2123    static const uint64_t InReg          = 1ULL<<2;  ///< Passed in register
2124    static const uint64_t InRegOffs      = 2;
2125    static const uint64_t SRet           = 1ULL<<3;  ///< Hidden struct-ret ptr
2126    static const uint64_t SRetOffs       = 3;
2127    static const uint64_t ByVal          = 1ULL<<4;  ///< Struct passed by value
2128    static const uint64_t ByValOffs      = 4;
2129    static const uint64_t Nest           = 1ULL<<5;  ///< Nested fn static chain
2130    static const uint64_t NestOffs       = 5;
2131    static const uint64_t ByValAlign     = 0xFULL << 6; //< Struct alignment
2132    static const uint64_t ByValAlignOffs = 6;
2133    static const uint64_t Split          = 1ULL << 10;
2134    static const uint64_t SplitOffs      = 10;
2135    static const uint64_t OrigAlign      = 0x1FULL<<27;
2136    static const uint64_t OrigAlignOffs  = 27;
2137    static const uint64_t ByValSize      = 0xffffffffULL << 32; //< Struct size
2138    static const uint64_t ByValSizeOffs  = 32;
2139
2140    static const uint64_t One            = 1ULL; //< 1 of this type, for shifts
2141
2142    uint64_t Flags;
2143  public:
2144    ArgFlagsTy() : Flags(0) { }
2145
2146    bool isZExt()   const { return Flags & ZExt; }
2147    void setZExt()  { Flags |= One << ZExtOffs; }
2148
2149    bool isSExt()   const { return Flags & SExt; }
2150    void setSExt()  { Flags |= One << SExtOffs; }
2151
2152    bool isInReg()  const { return Flags & InReg; }
2153    void setInReg() { Flags |= One << InRegOffs; }
2154
2155    bool isSRet()   const { return Flags & SRet; }
2156    void setSRet()  { Flags |= One << SRetOffs; }
2157
2158    bool isByVal()  const { return Flags & ByVal; }
2159    void setByVal() { Flags |= One << ByValOffs; }
2160
2161    bool isNest()   const { return Flags & Nest; }
2162    void setNest()  { Flags |= One << NestOffs; }
2163
2164    unsigned getByValAlign() const {
2165      return (unsigned)
2166        ((One << ((Flags & ByValAlign) >> ByValAlignOffs)) / 2);
2167    }
2168    void setByValAlign(unsigned A) {
2169      Flags = (Flags & ~ByValAlign) |
2170        (uint64_t(Log2_32(A) + 1) << ByValAlignOffs);
2171    }
2172
2173    bool isSplit()   const { return Flags & Split; }
2174    void setSplit()  { Flags |= One << SplitOffs; }
2175
2176    unsigned getOrigAlign() const {
2177      return (unsigned)
2178        ((One << ((Flags & OrigAlign) >> OrigAlignOffs)) / 2);
2179    }
2180    void setOrigAlign(unsigned A) {
2181      Flags = (Flags & ~OrigAlign) |
2182        (uint64_t(Log2_32(A) + 1) << OrigAlignOffs);
2183    }
2184
2185    unsigned getByValSize() const {
2186      return (unsigned)((Flags & ByValSize) >> ByValSizeOffs);
2187    }
2188    void setByValSize(unsigned S) {
2189      Flags = (Flags & ~ByValSize) | (uint64_t(S) << ByValSizeOffs);
2190    }
2191
2192    /// getArgFlagsString - Returns the flags as a string, eg: "zext align:4".
2193    std::string getArgFlagsString();
2194
2195    /// getRawBits - Represent the flags as a bunch of bits.
2196    uint64_t getRawBits() const { return Flags; }
2197  };
2198
2199  /// InputArg - This struct carries flags and type information about a
2200  /// single incoming (formal) argument or incoming (from the perspective
2201  /// of the caller) return value virtual register.
2202  ///
2203  struct InputArg {
2204    ArgFlagsTy Flags;
2205    EVT VT;
2206    bool Used;
2207
2208    InputArg() : VT(MVT::Other), Used(false) {}
2209    InputArg(ISD::ArgFlagsTy flags, EVT vt, bool used)
2210      : Flags(flags), VT(vt), Used(used) {
2211      assert(VT.isSimple() &&
2212             "InputArg value type must be Simple!");
2213    }
2214  };
2215
2216  /// OutputArg - This struct carries flags and a value for a
2217  /// single outgoing (actual) argument or outgoing (from the perspective
2218  /// of the caller) return value virtual register.
2219  ///
2220  struct OutputArg {
2221    ArgFlagsTy Flags;
2222    SDValue Val;
2223    bool IsFixed;
2224
2225    OutputArg() : IsFixed(false) {}
2226    OutputArg(ISD::ArgFlagsTy flags, SDValue val, bool isfixed)
2227      : Flags(flags), Val(val), IsFixed(isfixed) {
2228      assert(Val.getValueType().isSimple() &&
2229             "OutputArg value type must be Simple!");
2230    }
2231  };
2232}
2233
2234/// VTSDNode - This class is used to represent EVT's, which are used
2235/// to parameterize some operations.
2236class VTSDNode : public SDNode {
2237  EVT ValueType;
2238  friend class SelectionDAG;
2239  explicit VTSDNode(EVT VT)
2240    : SDNode(ISD::VALUETYPE, DebugLoc::getUnknownLoc(),
2241             getSDVTList(MVT::Other)), ValueType(VT) {
2242  }
2243public:
2244
2245  EVT getVT() const { return ValueType; }
2246
2247  static bool classof(const VTSDNode *) { return true; }
2248  static bool classof(const SDNode *N) {
2249    return N->getOpcode() == ISD::VALUETYPE;
2250  }
2251};
2252
2253/// LSBaseSDNode - Base class for LoadSDNode and StoreSDNode
2254///
2255class LSBaseSDNode : public MemSDNode {
2256  //! Operand array for load and store
2257  /*!
2258    \note Moving this array to the base class captures more
2259    common functionality shared between LoadSDNode and
2260    StoreSDNode
2261   */
2262  SDUse Ops[4];
2263public:
2264  LSBaseSDNode(ISD::NodeType NodeTy, DebugLoc dl, SDValue *Operands,
2265               unsigned numOperands, SDVTList VTs, ISD::MemIndexedMode AM,
2266               EVT VT, const Value *SV, int SVO, unsigned Align, bool Vol)
2267    : MemSDNode(NodeTy, dl, VTs, VT, SV, SVO, Align, Vol) {
2268    assert(Align != 0 && "Loads and stores should have non-zero aligment");
2269    SubclassData |= AM << 2;
2270    assert(getAddressingMode() == AM && "MemIndexedMode encoding error!");
2271    InitOperands(Ops, Operands, numOperands);
2272    assert((getOffset().getOpcode() == ISD::UNDEF || isIndexed()) &&
2273           "Only indexed loads and stores have a non-undef offset operand");
2274  }
2275
2276  const SDValue &getOffset() const {
2277    return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
2278  }
2279
2280  /// getAddressingMode - Return the addressing mode for this load or store:
2281  /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2282  ISD::MemIndexedMode getAddressingMode() const {
2283    return ISD::MemIndexedMode((SubclassData >> 2) & 7);
2284  }
2285
2286  /// isIndexed - Return true if this is a pre/post inc/dec load/store.
2287  bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2288
2289  /// isUnindexed - Return true if this is NOT a pre/post inc/dec load/store.
2290  bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2291
2292  static bool classof(const LSBaseSDNode *) { return true; }
2293  static bool classof(const SDNode *N) {
2294    return N->getOpcode() == ISD::LOAD ||
2295           N->getOpcode() == ISD::STORE;
2296  }
2297};
2298
2299/// LoadSDNode - This class is used to represent ISD::LOAD nodes.
2300///
2301class LoadSDNode : public LSBaseSDNode {
2302  friend class SelectionDAG;
2303  LoadSDNode(SDValue *ChainPtrOff, DebugLoc dl, SDVTList VTs,
2304             ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT LVT,
2305             const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
2306    : LSBaseSDNode(ISD::LOAD, dl, ChainPtrOff, 3,
2307                   VTs, AM, LVT, SV, O, Align, Vol) {
2308    SubclassData |= (unsigned short)ETy;
2309    assert(getExtensionType() == ETy && "LoadExtType encoding error!");
2310  }
2311public:
2312
2313  /// getExtensionType - Return whether this is a plain node,
2314  /// or one of the varieties of value-extending loads.
2315  ISD::LoadExtType getExtensionType() const {
2316    return ISD::LoadExtType(SubclassData & 3);
2317  }
2318
2319  const SDValue &getBasePtr() const { return getOperand(1); }
2320  const SDValue &getOffset() const { return getOperand(2); }
2321
2322  static bool classof(const LoadSDNode *) { return true; }
2323  static bool classof(const SDNode *N) {
2324    return N->getOpcode() == ISD::LOAD;
2325  }
2326};
2327
2328/// StoreSDNode - This class is used to represent ISD::STORE nodes.
2329///
2330class StoreSDNode : public LSBaseSDNode {
2331  friend class SelectionDAG;
2332  StoreSDNode(SDValue *ChainValuePtrOff, DebugLoc dl, SDVTList VTs,
2333              ISD::MemIndexedMode AM, bool isTrunc, EVT SVT,
2334              const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
2335    : LSBaseSDNode(ISD::STORE, dl, ChainValuePtrOff, 4,
2336                   VTs, AM, SVT, SV, O, Align, Vol) {
2337    SubclassData |= (unsigned short)isTrunc;
2338    assert(isTruncatingStore() == isTrunc && "isTrunc encoding error!");
2339  }
2340public:
2341
2342  /// isTruncatingStore - Return true if the op does a truncation before store.
2343  /// For integers this is the same as doing a TRUNCATE and storing the result.
2344  /// For floats, it is the same as doing an FP_ROUND and storing the result.
2345  bool isTruncatingStore() const { return SubclassData & 1; }
2346
2347  const SDValue &getValue() const { return getOperand(1); }
2348  const SDValue &getBasePtr() const { return getOperand(2); }
2349  const SDValue &getOffset() const { return getOperand(3); }
2350
2351  static bool classof(const StoreSDNode *) { return true; }
2352  static bool classof(const SDNode *N) {
2353    return N->getOpcode() == ISD::STORE;
2354  }
2355};
2356
2357
2358class SDNodeIterator : public std::iterator<std::forward_iterator_tag,
2359                                            SDNode, ptrdiff_t> {
2360  SDNode *Node;
2361  unsigned Operand;
2362
2363  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
2364public:
2365  bool operator==(const SDNodeIterator& x) const {
2366    return Operand == x.Operand;
2367  }
2368  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
2369
2370  const SDNodeIterator &operator=(const SDNodeIterator &I) {
2371    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
2372    Operand = I.Operand;
2373    return *this;
2374  }
2375
2376  pointer operator*() const {
2377    return Node->getOperand(Operand).getNode();
2378  }
2379  pointer operator->() const { return operator*(); }
2380
2381  SDNodeIterator& operator++() {                // Preincrement
2382    ++Operand;
2383    return *this;
2384  }
2385  SDNodeIterator operator++(int) { // Postincrement
2386    SDNodeIterator tmp = *this; ++*this; return tmp;
2387  }
2388
2389  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
2390  static SDNodeIterator end  (SDNode *N) {
2391    return SDNodeIterator(N, N->getNumOperands());
2392  }
2393
2394  unsigned getOperand() const { return Operand; }
2395  const SDNode *getNode() const { return Node; }
2396};
2397
2398template <> struct GraphTraits<SDNode*> {
2399  typedef SDNode NodeType;
2400  typedef SDNodeIterator ChildIteratorType;
2401  static inline NodeType *getEntryNode(SDNode *N) { return N; }
2402  static inline ChildIteratorType child_begin(NodeType *N) {
2403    return SDNodeIterator::begin(N);
2404  }
2405  static inline ChildIteratorType child_end(NodeType *N) {
2406    return SDNodeIterator::end(N);
2407  }
2408};
2409
2410/// LargestSDNode - The largest SDNode class.
2411///
2412typedef LoadSDNode LargestSDNode;
2413
2414/// MostAlignedSDNode - The SDNode class with the greatest alignment
2415/// requirement.
2416///
2417typedef GlobalAddressSDNode MostAlignedSDNode;
2418
2419namespace ISD {
2420  /// isNormalLoad - Returns true if the specified node is a non-extending
2421  /// and unindexed load.
2422  inline bool isNormalLoad(const SDNode *N) {
2423    const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
2424    return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
2425      Ld->getAddressingMode() == ISD::UNINDEXED;
2426  }
2427
2428  /// isNON_EXTLoad - Returns true if the specified node is a non-extending
2429  /// load.
2430  inline bool isNON_EXTLoad(const SDNode *N) {
2431    return isa<LoadSDNode>(N) &&
2432      cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
2433  }
2434
2435  /// isEXTLoad - Returns true if the specified node is a EXTLOAD.
2436  ///
2437  inline bool isEXTLoad(const SDNode *N) {
2438    return isa<LoadSDNode>(N) &&
2439      cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
2440  }
2441
2442  /// isSEXTLoad - Returns true if the specified node is a SEXTLOAD.
2443  ///
2444  inline bool isSEXTLoad(const SDNode *N) {
2445    return isa<LoadSDNode>(N) &&
2446      cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
2447  }
2448
2449  /// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD.
2450  ///
2451  inline bool isZEXTLoad(const SDNode *N) {
2452    return isa<LoadSDNode>(N) &&
2453      cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
2454  }
2455
2456  /// isUNINDEXEDLoad - Returns true if the specified node is an unindexed load.
2457  ///
2458  inline bool isUNINDEXEDLoad(const SDNode *N) {
2459    return isa<LoadSDNode>(N) &&
2460      cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2461  }
2462
2463  /// isNormalStore - Returns true if the specified node is a non-truncating
2464  /// and unindexed store.
2465  inline bool isNormalStore(const SDNode *N) {
2466    const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
2467    return St && !St->isTruncatingStore() &&
2468      St->getAddressingMode() == ISD::UNINDEXED;
2469  }
2470
2471  /// isNON_TRUNCStore - Returns true if the specified node is a non-truncating
2472  /// store.
2473  inline bool isNON_TRUNCStore(const SDNode *N) {
2474    return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore();
2475  }
2476
2477  /// isTRUNCStore - Returns true if the specified node is a truncating
2478  /// store.
2479  inline bool isTRUNCStore(const SDNode *N) {
2480    return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore();
2481  }
2482
2483  /// isUNINDEXEDStore - Returns true if the specified node is an
2484  /// unindexed store.
2485  inline bool isUNINDEXEDStore(const SDNode *N) {
2486    return isa<StoreSDNode>(N) &&
2487      cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2488  }
2489}
2490
2491
2492} // end llvm namespace
2493
2494#endif
2495