SelectionDAGNodes.h revision 7a24cdc4ed5c357e9de4e36a39379e0aa67f6f9c
1//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SDNode class and derived classes, which are used to
11// represent the nodes and operations present in a SelectionDAG.  These nodes
12// and operations are machine code level operations, with some similarities to
13// the GCC RTL representation.
14//
15// Clients should include the SelectionDAG.h file instead of this file directly.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20#define LLVM_CODEGEN_SELECTIONDAGNODES_H
21
22#include "llvm/Value.h"
23#include "llvm/ADT/FoldingSet.h"
24#include "llvm/ADT/GraphTraits.h"
25#include "llvm/ADT/iterator.h"
26#include "llvm/ADT/APFloat.h"
27#include "llvm/ADT/APInt.h"
28#include "llvm/ADT/alist.h"
29#include "llvm/CodeGen/ValueTypes.h"
30#include "llvm/CodeGen/MachineMemOperand.h"
31#include "llvm/Support/Allocator.h"
32#include "llvm/Support/RecyclingAllocator.h"
33#include "llvm/Support/DataTypes.h"
34#include <cassert>
35
36namespace llvm {
37
38class SelectionDAG;
39class GlobalValue;
40class MachineBasicBlock;
41class MachineConstantPoolValue;
42class SDNode;
43class CompileUnitDesc;
44template <typename T> struct DenseMapInfo;
45template <typename T> struct simplify_type;
46
47/// SDVTList - This represents a list of ValueType's that has been intern'd by
48/// a SelectionDAG.  Instances of this simple value class are returned by
49/// SelectionDAG::getVTList(...).
50///
51struct SDVTList {
52  const MVT *VTs;
53  unsigned short NumVTs;
54};
55
56/// ISD namespace - This namespace contains an enum which represents all of the
57/// SelectionDAG node types and value types.
58///
59namespace ISD {
60
61  //===--------------------------------------------------------------------===//
62  /// ISD::NodeType enum - This enum defines all of the operators valid in a
63  /// SelectionDAG.
64  ///
65  enum NodeType {
66    // DELETED_NODE - This is an illegal flag value that is used to catch
67    // errors.  This opcode is not a legal opcode for any node.
68    DELETED_NODE,
69
70    // EntryToken - This is the marker used to indicate the start of the region.
71    EntryToken,
72
73    // Token factor - This node takes multiple tokens as input and produces a
74    // single token result.  This is used to represent the fact that the operand
75    // operators are independent of each other.
76    TokenFactor,
77
78    // AssertSext, AssertZext - These nodes record if a register contains a
79    // value that has already been zero or sign extended from a narrower type.
80    // These nodes take two operands.  The first is the node that has already
81    // been extended, and the second is a value type node indicating the width
82    // of the extension
83    AssertSext, AssertZext,
84
85    // Various leaf nodes.
86    BasicBlock, VALUETYPE, ARG_FLAGS, CONDCODE, Register,
87    Constant, ConstantFP,
88    GlobalAddress, GlobalTLSAddress, FrameIndex,
89    JumpTable, ConstantPool, ExternalSymbol,
90
91    // The address of the GOT
92    GLOBAL_OFFSET_TABLE,
93
94    // FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
95    // llvm.returnaddress on the DAG.  These nodes take one operand, the index
96    // of the frame or return address to return.  An index of zero corresponds
97    // to the current function's frame or return address, an index of one to the
98    // parent's frame or return address, and so on.
99    FRAMEADDR, RETURNADDR,
100
101    // FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
102    // first (possible) on-stack argument. This is needed for correct stack
103    // adjustment during unwind.
104    FRAME_TO_ARGS_OFFSET,
105
106    // RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the
107    // address of the exception block on entry to an landing pad block.
108    EXCEPTIONADDR,
109
110    // RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents
111    // the selection index of the exception thrown.
112    EHSELECTION,
113
114    // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
115    // 'eh_return' gcc dwarf builtin, which is used to return from
116    // exception. The general meaning is: adjust stack by OFFSET and pass
117    // execution to HANDLER. Many platform-related details also :)
118    EH_RETURN,
119
120    // TargetConstant* - Like Constant*, but the DAG does not do any folding or
121    // simplification of the constant.
122    TargetConstant,
123    TargetConstantFP,
124
125    // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
126    // anything else with this node, and this is valid in the target-specific
127    // dag, turning into a GlobalAddress operand.
128    TargetGlobalAddress,
129    TargetGlobalTLSAddress,
130    TargetFrameIndex,
131    TargetJumpTable,
132    TargetConstantPool,
133    TargetExternalSymbol,
134
135    /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
136    /// This node represents a target intrinsic function with no side effects.
137    /// The first operand is the ID number of the intrinsic from the
138    /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
139    /// node has returns the result of the intrinsic.
140    INTRINSIC_WO_CHAIN,
141
142    /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
143    /// This node represents a target intrinsic function with side effects that
144    /// returns a result.  The first operand is a chain pointer.  The second is
145    /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
146    /// operands to the intrinsic follow.  The node has two results, the result
147    /// of the intrinsic and an output chain.
148    INTRINSIC_W_CHAIN,
149
150    /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
151    /// This node represents a target intrinsic function with side effects that
152    /// does not return a result.  The first operand is a chain pointer.  The
153    /// second is the ID number of the intrinsic from the llvm::Intrinsic
154    /// namespace.  The operands to the intrinsic follow.
155    INTRINSIC_VOID,
156
157    // CopyToReg - This node has three operands: a chain, a register number to
158    // set to this value, and a value.
159    CopyToReg,
160
161    // CopyFromReg - This node indicates that the input value is a virtual or
162    // physical register that is defined outside of the scope of this
163    // SelectionDAG.  The register is available from the RegisterSDNode object.
164    CopyFromReg,
165
166    // UNDEF - An undefined node
167    UNDEF,
168
169    /// FORMAL_ARGUMENTS(CHAIN, CC#, ISVARARG, FLAG0, ..., FLAGn) - This node
170    /// represents the formal arguments for a function.  CC# is a Constant value
171    /// indicating the calling convention of the function, and ISVARARG is a
172    /// flag that indicates whether the function is varargs or not. This node
173    /// has one result value for each incoming argument, plus one for the output
174    /// chain. It must be custom legalized. See description of CALL node for
175    /// FLAG argument contents explanation.
176    ///
177    FORMAL_ARGUMENTS,
178
179    /// RV1, RV2...RVn, CHAIN = CALL(CHAIN, CC#, ISVARARG, ISTAILCALL, CALLEE,
180    ///                              ARG0, FLAG0, ARG1, FLAG1, ... ARGn, FLAGn)
181    /// This node represents a fully general function call, before the legalizer
182    /// runs.  This has one result value for each argument / flag pair, plus
183    /// a chain result. It must be custom legalized. Flag argument indicates
184    /// misc. argument attributes. Currently:
185    /// Bit 0 - signness
186    /// Bit 1 - 'inreg' attribute
187    /// Bit 2 - 'sret' attribute
188    /// Bit 4 - 'byval' attribute
189    /// Bit 5 - 'nest' attribute
190    /// Bit 6-9 - alignment of byval structures
191    /// Bit 10-26 - size of byval structures
192    /// Bits 31:27 - argument ABI alignment in the first argument piece and
193    /// alignment '1' in other argument pieces.
194    CALL,
195
196    // EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
197    // a Constant, which is required to be operand #1) half of the integer or
198    // float value specified as operand #0.  This is only for use before
199    // legalization, for values that will be broken into multiple registers.
200    EXTRACT_ELEMENT,
201
202    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
203    // two values of the same integer value type, this produces a value twice as
204    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
205    BUILD_PAIR,
206
207    // MERGE_VALUES - This node takes multiple discrete operands and returns
208    // them all as its individual results.  This nodes has exactly the same
209    // number of inputs and outputs, and is only valid before legalization.
210    // This node is useful for some pieces of the code generator that want to
211    // think about a single node with multiple results, not multiple nodes.
212    MERGE_VALUES,
213
214    // Simple integer binary arithmetic operators.
215    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
216
217    // SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
218    // a signed/unsigned value of type i[2*N], and return the full value as
219    // two results, each of type iN.
220    SMUL_LOHI, UMUL_LOHI,
221
222    // SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
223    // remainder result.
224    SDIVREM, UDIVREM,
225
226    // CARRY_FALSE - This node is used when folding other nodes,
227    // like ADDC/SUBC, which indicate the carry result is always false.
228    CARRY_FALSE,
229
230    // Carry-setting nodes for multiple precision addition and subtraction.
231    // These nodes take two operands of the same value type, and produce two
232    // results.  The first result is the normal add or sub result, the second
233    // result is the carry flag result.
234    ADDC, SUBC,
235
236    // Carry-using nodes for multiple precision addition and subtraction.  These
237    // nodes take three operands: The first two are the normal lhs and rhs to
238    // the add or sub, and the third is the input carry flag.  These nodes
239    // produce two results; the normal result of the add or sub, and the output
240    // carry flag.  These nodes both read and write a carry flag to allow them
241    // to them to be chained together for add and sub of arbitrarily large
242    // values.
243    ADDE, SUBE,
244
245    // Simple binary floating point operators.
246    FADD, FSUB, FMUL, FDIV, FREM,
247
248    // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
249    // DAG node does not require that X and Y have the same type, just that they
250    // are both floating point.  X and the result must have the same type.
251    // FCOPYSIGN(f32, f64) is allowed.
252    FCOPYSIGN,
253
254    // INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
255    // value as an integer 0/1 value.
256    FGETSIGN,
257
258    /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector
259    /// with the specified, possibly variable, elements.  The number of elements
260    /// is required to be a power of two.
261    BUILD_VECTOR,
262
263    /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
264    /// at IDX replaced with VAL.  If the type of VAL is larger than the vector
265    /// element type then VAL is truncated before replacement.
266    INSERT_VECTOR_ELT,
267
268    /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
269    /// identified by the (potentially variable) element number IDX.
270    EXTRACT_VECTOR_ELT,
271
272    /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
273    /// vector type with the same length and element type, this produces a
274    /// concatenated vector result value, with length equal to the sum of the
275    /// lengths of the input vectors.
276    CONCAT_VECTORS,
277
278    /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
279    /// vector value) starting with the (potentially variable) element number
280    /// IDX, which must be a multiple of the result vector length.
281    EXTRACT_SUBVECTOR,
282
283    /// VECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC) - Returns a vector, of the same
284    /// type as VEC1/VEC2.  SHUFFLEVEC is a BUILD_VECTOR of constant int values
285    /// (maybe of an illegal datatype) or undef that indicate which value each
286    /// result element will get.  The elements of VEC1/VEC2 are enumerated in
287    /// order.  This is quite similar to the Altivec 'vperm' instruction, except
288    /// that the indices must be constants and are in terms of the element size
289    /// of VEC1/VEC2, not in terms of bytes.
290    VECTOR_SHUFFLE,
291
292    /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
293    /// scalar value into element 0 of the resultant vector type.  The top
294    /// elements 1 to N-1 of the N-element vector are undefined.
295    SCALAR_TO_VECTOR,
296
297    // EXTRACT_SUBREG - This node is used to extract a sub-register value.
298    // This node takes a superreg and a constant sub-register index as operands.
299    // Note sub-register indices must be increasing. That is, if the
300    // sub-register index of a 8-bit sub-register is N, then the index for a
301    // 16-bit sub-register must be at least N+1.
302    EXTRACT_SUBREG,
303
304    // INSERT_SUBREG - This node is used to insert a sub-register value.
305    // This node takes a superreg, a subreg value, and a constant sub-register
306    // index as operands.
307    INSERT_SUBREG,
308
309    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
310    // an unsigned/signed value of type i[2*N], then return the top part.
311    MULHU, MULHS,
312
313    // Bitwise operators - logical and, logical or, logical xor, shift left,
314    // shift right algebraic (shift in sign bits), shift right logical (shift in
315    // zeroes), rotate left, rotate right, and byteswap.
316    AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
317
318    // Counting operators
319    CTTZ, CTLZ, CTPOP,
320
321    // Select(COND, TRUEVAL, FALSEVAL)
322    SELECT,
323
324    // Select with condition operator - This selects between a true value and
325    // a false value (ops #2 and #3) based on the boolean result of comparing
326    // the lhs and rhs (ops #0 and #1) of a conditional expression with the
327    // condition code in op #4, a CondCodeSDNode.
328    SELECT_CC,
329
330    // SetCC operator - This evaluates to a boolean (i1) true value if the
331    // condition is true.  The operands to this are the left and right operands
332    // to compare (ops #0, and #1) and the condition code to compare them with
333    // (op #2) as a CondCodeSDNode.
334    SETCC,
335
336    // Vector SetCC operator - This evaluates to a vector of integer elements
337    // with the high bit in each element set to true if the comparison is true
338    // and false if the comparison is false.  All other bits in each element
339    // are undefined.  The operands to this are the left and right operands
340    // to compare (ops #0, and #1) and the condition code to compare them with
341    // (op #2) as a CondCodeSDNode.
342    VSETCC,
343
344    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
345    // integer shift operations, just like ADD/SUB_PARTS.  The operation
346    // ordering is:
347    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
348    SHL_PARTS, SRA_PARTS, SRL_PARTS,
349
350    // Conversion operators.  These are all single input single output
351    // operations.  For all of these, the result type must be strictly
352    // wider or narrower (depending on the operation) than the source
353    // type.
354
355    // SIGN_EXTEND - Used for integer types, replicating the sign bit
356    // into new bits.
357    SIGN_EXTEND,
358
359    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
360    ZERO_EXTEND,
361
362    // ANY_EXTEND - Used for integer types.  The high bits are undefined.
363    ANY_EXTEND,
364
365    // TRUNCATE - Completely drop the high bits.
366    TRUNCATE,
367
368    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
369    // depends on the first letter) to floating point.
370    SINT_TO_FP,
371    UINT_TO_FP,
372
373    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
374    // sign extend a small value in a large integer register (e.g. sign
375    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
376    // with the 7th bit).  The size of the smaller type is indicated by the 1th
377    // operand, a ValueType node.
378    SIGN_EXTEND_INREG,
379
380    /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
381    /// integer.
382    FP_TO_SINT,
383    FP_TO_UINT,
384
385    /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
386    /// down to the precision of the destination VT.  TRUNC is a flag, which is
387    /// always an integer that is zero or one.  If TRUNC is 0, this is a
388    /// normal rounding, if it is 1, this FP_ROUND is known to not change the
389    /// value of Y.
390    ///
391    /// The TRUNC = 1 case is used in cases where we know that the value will
392    /// not be modified by the node, because Y is not using any of the extra
393    /// precision of source type.  This allows certain transformations like
394    /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
395    /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
396    FP_ROUND,
397
398    // FLT_ROUNDS_ - Returns current rounding mode:
399    // -1 Undefined
400    //  0 Round to 0
401    //  1 Round to nearest
402    //  2 Round to +inf
403    //  3 Round to -inf
404    FLT_ROUNDS_,
405
406    /// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and
407    /// rounds it to a floating point value.  It then promotes it and returns it
408    /// in a register of the same size.  This operation effectively just
409    /// discards excess precision.  The type to round down to is specified by
410    /// the VT operand, a VTSDNode.
411    FP_ROUND_INREG,
412
413    /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
414    FP_EXTEND,
415
416    // BIT_CONVERT - Theis operator converts between integer and FP values, as
417    // if one was stored to memory as integer and the other was loaded from the
418    // same address (or equivalently for vector format conversions, etc).  The
419    // source and result are required to have the same bit size (e.g.
420    // f32 <-> i32).  This can also be used for int-to-int or fp-to-fp
421    // conversions, but that is a noop, deleted by getNode().
422    BIT_CONVERT,
423
424    // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW - Perform unary floating point
425    // negation, absolute value, square root, sine and cosine, powi, and pow
426    // operations.
427    FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
428
429    // LOAD and STORE have token chains as their first operand, then the same
430    // operands as an LLVM load/store instruction, then an offset node that
431    // is added / subtracted from the base pointer to form the address (for
432    // indexed memory ops).
433    LOAD, STORE,
434
435    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
436    // to a specified boundary.  This node always has two return values: a new
437    // stack pointer value and a chain. The first operand is the token chain,
438    // the second is the number of bytes to allocate, and the third is the
439    // alignment boundary.  The size is guaranteed to be a multiple of the stack
440    // alignment, and the alignment is guaranteed to be bigger than the stack
441    // alignment (if required) or 0 to get standard stack alignment.
442    DYNAMIC_STACKALLOC,
443
444    // Control flow instructions.  These all have token chains.
445
446    // BR - Unconditional branch.  The first operand is the chain
447    // operand, the second is the MBB to branch to.
448    BR,
449
450    // BRIND - Indirect branch.  The first operand is the chain, the second
451    // is the value to branch to, which must be of the same type as the target's
452    // pointer type.
453    BRIND,
454
455    // BR_JT - Jumptable branch. The first operand is the chain, the second
456    // is the jumptable index, the last one is the jumptable entry index.
457    BR_JT,
458
459    // BRCOND - Conditional branch.  The first operand is the chain,
460    // the second is the condition, the third is the block to branch
461    // to if the condition is true.
462    BRCOND,
463
464    // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
465    // that the condition is represented as condition code, and two nodes to
466    // compare, rather than as a combined SetCC node.  The operands in order are
467    // chain, cc, lhs, rhs, block to branch to if condition is true.
468    BR_CC,
469
470    // RET - Return from function.  The first operand is the chain,
471    // and any subsequent operands are pairs of return value and return value
472    // signness for the function.  This operation can have variable number of
473    // operands.
474    RET,
475
476    // INLINEASM - Represents an inline asm block.  This node always has two
477    // return values: a chain and a flag result.  The inputs are as follows:
478    //   Operand #0   : Input chain.
479    //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
480    //   Operand #2n+2: A RegisterNode.
481    //   Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
482    //   Operand #last: Optional, an incoming flag.
483    INLINEASM,
484
485    // DBG_LABEL, EH_LABEL - Represents a label in mid basic block used to track
486    // locations needed for debug and exception handling tables.  These nodes
487    // take a chain as input and return a chain.
488    DBG_LABEL,
489    EH_LABEL,
490
491    // DECLARE - Represents a llvm.dbg.declare intrinsic. It's used to track
492    // local variable declarations for debugging information. First operand is
493    // a chain, while the next two operands are first two arguments (address
494    // and variable) of a llvm.dbg.declare instruction.
495    DECLARE,
496
497    // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
498    // value, the same type as the pointer type for the system, and an output
499    // chain.
500    STACKSAVE,
501
502    // STACKRESTORE has two operands, an input chain and a pointer to restore to
503    // it returns an output chain.
504    STACKRESTORE,
505
506    // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
507    // a call sequence, and carry arbitrary information that target might want
508    // to know.  The first operand is a chain, the rest are specified by the
509    // target and not touched by the DAG optimizers.
510    // CALLSEQ_START..CALLSEQ_END pairs may not be nested.
511    CALLSEQ_START,  // Beginning of a call sequence
512    CALLSEQ_END,    // End of a call sequence
513
514    // VAARG - VAARG has three operands: an input chain, a pointer, and a
515    // SRCVALUE.  It returns a pair of values: the vaarg value and a new chain.
516    VAARG,
517
518    // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
519    // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
520    // source.
521    VACOPY,
522
523    // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
524    // pointer, and a SRCVALUE.
525    VAEND, VASTART,
526
527    // SRCVALUE - This is a node type that holds a Value* that is used to
528    // make reference to a value in the LLVM IR.
529    SRCVALUE,
530
531    // MEMOPERAND - This is a node that contains a MachineMemOperand which
532    // records information about a memory reference. This is used to make
533    // AliasAnalysis queries from the backend.
534    MEMOPERAND,
535
536    // PCMARKER - This corresponds to the pcmarker intrinsic.
537    PCMARKER,
538
539    // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
540    // The only operand is a chain and a value and a chain are produced.  The
541    // value is the contents of the architecture specific cycle counter like
542    // register (or other high accuracy low latency clock source)
543    READCYCLECOUNTER,
544
545    // HANDLENODE node - Used as a handle for various purposes.
546    HANDLENODE,
547
548    // DBG_STOPPOINT - This node is used to represent a source location for
549    // debug info.  It takes token chain as input, and carries a line number,
550    // column number, and a pointer to a CompileUnitDesc object identifying
551    // the containing compilation unit.  It produces a token chain as output.
552    DBG_STOPPOINT,
553
554    // DEBUG_LOC - This node is used to represent source line information
555    // embedded in the code.  It takes a token chain as input, then a line
556    // number, then a column then a file id (provided by MachineModuleInfo.) It
557    // produces a token chain as output.
558    DEBUG_LOC,
559
560    // TRAMPOLINE - This corresponds to the init_trampoline intrinsic.
561    // It takes as input a token chain, the pointer to the trampoline,
562    // the pointer to the nested function, the pointer to pass for the
563    // 'nest' parameter, a SRCVALUE for the trampoline and another for
564    // the nested function (allowing targets to access the original
565    // Function*).  It produces the result of the intrinsic and a token
566    // chain as output.
567    TRAMPOLINE,
568
569    // TRAP - Trapping instruction
570    TRAP,
571
572    // PREFETCH - This corresponds to a prefetch intrinsic. It takes chains are
573    // their first operand. The other operands are the address to prefetch,
574    // read / write specifier, and locality specifier.
575    PREFETCH,
576
577    // OUTCHAIN = MEMBARRIER(INCHAIN, load-load, load-store, store-load,
578    //                       store-store, device)
579    // This corresponds to the memory.barrier intrinsic.
580    // it takes an input chain, 4 operands to specify the type of barrier, an
581    // operand specifying if the barrier applies to device and uncached memory
582    // and produces an output chain.
583    MEMBARRIER,
584
585    // Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
586    // this corresponds to the atomic.lcs intrinsic.
587    // cmp is compared to *ptr, and if equal, swap is stored in *ptr.
588    // the return is always the original value in *ptr
589    ATOMIC_CMP_SWAP,
590
591    // Val, OUTCHAIN = ATOMIC_LOAD_ADD(INCHAIN, ptr, amt)
592    // this corresponds to the atomic.las intrinsic.
593    // *ptr + amt is stored to *ptr atomically.
594    // the return is always the original value in *ptr
595    ATOMIC_LOAD_ADD,
596
597    // Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
598    // this corresponds to the atomic.swap intrinsic.
599    // amt is stored to *ptr atomically.
600    // the return is always the original value in *ptr
601    ATOMIC_SWAP,
602
603    // Val, OUTCHAIN = ATOMIC_LOAD_SUB(INCHAIN, ptr, amt)
604    // this corresponds to the atomic.lss intrinsic.
605    // *ptr - amt is stored to *ptr atomically.
606    // the return is always the original value in *ptr
607    ATOMIC_LOAD_SUB,
608
609    // Val, OUTCHAIN = ATOMIC_L[OpName]S(INCHAIN, ptr, amt)
610    // this corresponds to the atomic.[OpName] intrinsic.
611    // op(*ptr, amt) is stored to *ptr atomically.
612    // the return is always the original value in *ptr
613    ATOMIC_LOAD_AND,
614    ATOMIC_LOAD_OR,
615    ATOMIC_LOAD_XOR,
616    ATOMIC_LOAD_NAND,
617    ATOMIC_LOAD_MIN,
618    ATOMIC_LOAD_MAX,
619    ATOMIC_LOAD_UMIN,
620    ATOMIC_LOAD_UMAX,
621
622    // BUILTIN_OP_END - This must be the last enum value in this list.
623    BUILTIN_OP_END
624  };
625
626  /// Node predicates
627
628  /// isBuildVectorAllOnes - Return true if the specified node is a
629  /// BUILD_VECTOR where all of the elements are ~0 or undef.
630  bool isBuildVectorAllOnes(const SDNode *N);
631
632  /// isBuildVectorAllZeros - Return true if the specified node is a
633  /// BUILD_VECTOR where all of the elements are 0 or undef.
634  bool isBuildVectorAllZeros(const SDNode *N);
635
636  /// isScalarToVector - Return true if the specified node is a
637  /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
638  /// element is not an undef.
639  bool isScalarToVector(const SDNode *N);
640
641  /// isDebugLabel - Return true if the specified node represents a debug
642  /// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
643  bool isDebugLabel(const SDNode *N);
644
645  //===--------------------------------------------------------------------===//
646  /// MemIndexedMode enum - This enum defines the load / store indexed
647  /// addressing modes.
648  ///
649  /// UNINDEXED    "Normal" load / store. The effective address is already
650  ///              computed and is available in the base pointer. The offset
651  ///              operand is always undefined. In addition to producing a
652  ///              chain, an unindexed load produces one value (result of the
653  ///              load); an unindexed store does not produce a value.
654  ///
655  /// PRE_INC      Similar to the unindexed mode where the effective address is
656  /// PRE_DEC      the value of the base pointer add / subtract the offset.
657  ///              It considers the computation as being folded into the load /
658  ///              store operation (i.e. the load / store does the address
659  ///              computation as well as performing the memory transaction).
660  ///              The base operand is always undefined. In addition to
661  ///              producing a chain, pre-indexed load produces two values
662  ///              (result of the load and the result of the address
663  ///              computation); a pre-indexed store produces one value (result
664  ///              of the address computation).
665  ///
666  /// POST_INC     The effective address is the value of the base pointer. The
667  /// POST_DEC     value of the offset operand is then added to / subtracted
668  ///              from the base after memory transaction. In addition to
669  ///              producing a chain, post-indexed load produces two values
670  ///              (the result of the load and the result of the base +/- offset
671  ///              computation); a post-indexed store produces one value (the
672  ///              the result of the base +/- offset computation).
673  ///
674  enum MemIndexedMode {
675    UNINDEXED = 0,
676    PRE_INC,
677    PRE_DEC,
678    POST_INC,
679    POST_DEC,
680    LAST_INDEXED_MODE
681  };
682
683  //===--------------------------------------------------------------------===//
684  /// LoadExtType enum - This enum defines the three variants of LOADEXT
685  /// (load with extension).
686  ///
687  /// SEXTLOAD loads the integer operand and sign extends it to a larger
688  ///          integer result type.
689  /// ZEXTLOAD loads the integer operand and zero extends it to a larger
690  ///          integer result type.
691  /// EXTLOAD  is used for three things: floating point extending loads,
692  ///          integer extending loads [the top bits are undefined], and vector
693  ///          extending loads [load into low elt].
694  ///
695  enum LoadExtType {
696    NON_EXTLOAD = 0,
697    EXTLOAD,
698    SEXTLOAD,
699    ZEXTLOAD,
700    LAST_LOADX_TYPE
701  };
702
703  //===--------------------------------------------------------------------===//
704  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
705  /// below work out, when considering SETFALSE (something that never exists
706  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
707  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
708  /// to.  If the "N" column is 1, the result of the comparison is undefined if
709  /// the input is a NAN.
710  ///
711  /// All of these (except for the 'always folded ops') should be handled for
712  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
713  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
714  ///
715  /// Note that these are laid out in a specific order to allow bit-twiddling
716  /// to transform conditions.
717  enum CondCode {
718    // Opcode          N U L G E       Intuitive operation
719    SETFALSE,      //    0 0 0 0       Always false (always folded)
720    SETOEQ,        //    0 0 0 1       True if ordered and equal
721    SETOGT,        //    0 0 1 0       True if ordered and greater than
722    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
723    SETOLT,        //    0 1 0 0       True if ordered and less than
724    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
725    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
726    SETO,          //    0 1 1 1       True if ordered (no nans)
727    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
728    SETUEQ,        //    1 0 0 1       True if unordered or equal
729    SETUGT,        //    1 0 1 0       True if unordered or greater than
730    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
731    SETULT,        //    1 1 0 0       True if unordered or less than
732    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
733    SETUNE,        //    1 1 1 0       True if unordered or not equal
734    SETTRUE,       //    1 1 1 1       Always true (always folded)
735    // Don't care operations: undefined if the input is a nan.
736    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
737    SETEQ,         //  1 X 0 0 1       True if equal
738    SETGT,         //  1 X 0 1 0       True if greater than
739    SETGE,         //  1 X 0 1 1       True if greater than or equal
740    SETLT,         //  1 X 1 0 0       True if less than
741    SETLE,         //  1 X 1 0 1       True if less than or equal
742    SETNE,         //  1 X 1 1 0       True if not equal
743    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
744
745    SETCC_INVALID       // Marker value.
746  };
747
748  /// isSignedIntSetCC - Return true if this is a setcc instruction that
749  /// performs a signed comparison when used with integer operands.
750  inline bool isSignedIntSetCC(CondCode Code) {
751    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
752  }
753
754  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
755  /// performs an unsigned comparison when used with integer operands.
756  inline bool isUnsignedIntSetCC(CondCode Code) {
757    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
758  }
759
760  /// isTrueWhenEqual - Return true if the specified condition returns true if
761  /// the two operands to the condition are equal.  Note that if one of the two
762  /// operands is a NaN, this value is meaningless.
763  inline bool isTrueWhenEqual(CondCode Cond) {
764    return ((int)Cond & 1) != 0;
765  }
766
767  /// getUnorderedFlavor - This function returns 0 if the condition is always
768  /// false if an operand is a NaN, 1 if the condition is always true if the
769  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
770  /// NaN.
771  inline unsigned getUnorderedFlavor(CondCode Cond) {
772    return ((int)Cond >> 3) & 3;
773  }
774
775  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
776  /// 'op' is a valid SetCC operation.
777  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
778
779  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
780  /// when given the operation for (X op Y).
781  CondCode getSetCCSwappedOperands(CondCode Operation);
782
783  /// getSetCCOrOperation - Return the result of a logical OR between different
784  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
785  /// function returns SETCC_INVALID if it is not possible to represent the
786  /// resultant comparison.
787  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
788
789  /// getSetCCAndOperation - Return the result of a logical AND between
790  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
791  /// function returns SETCC_INVALID if it is not possible to represent the
792  /// resultant comparison.
793  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
794}  // end llvm::ISD namespace
795
796
797//===----------------------------------------------------------------------===//
798/// SDOperand - Unlike LLVM values, Selection DAG nodes may return multiple
799/// values as the result of a computation.  Many nodes return multiple values,
800/// from loads (which define a token and a return value) to ADDC (which returns
801/// a result and a carry value), to calls (which may return an arbitrary number
802/// of values).
803///
804/// As such, each use of a SelectionDAG computation must indicate the node that
805/// computes it as well as which return value to use from that node.  This pair
806/// of information is represented with the SDOperand value type.
807///
808class SDOperand {
809public:
810  SDNode *Val;        // The node defining the value we are using.
811  unsigned ResNo;     // Which return value of the node we are using.
812
813  SDOperand() : Val(0), ResNo(0) {}
814  SDOperand(SDNode *val, unsigned resno) : Val(val), ResNo(resno) {}
815
816  bool operator==(const SDOperand &O) const {
817    return Val == O.Val && ResNo == O.ResNo;
818  }
819  bool operator!=(const SDOperand &O) const {
820    return !operator==(O);
821  }
822  bool operator<(const SDOperand &O) const {
823    return Val < O.Val || (Val == O.Val && ResNo < O.ResNo);
824  }
825
826  SDOperand getValue(unsigned R) const {
827    return SDOperand(Val, R);
828  }
829
830  // isOperandOf - Return true if this node is an operand of N.
831  bool isOperandOf(SDNode *N) const;
832
833  /// getValueType - Return the ValueType of the referenced return value.
834  ///
835  inline MVT getValueType() const;
836
837  /// getValueSizeInBits - Returns the size of the value in bits.
838  ///
839  unsigned getValueSizeInBits() const {
840    return getValueType().getSizeInBits();
841  }
842
843  // Forwarding methods - These forward to the corresponding methods in SDNode.
844  inline unsigned getOpcode() const;
845  inline unsigned getNumOperands() const;
846  inline const SDOperand &getOperand(unsigned i) const;
847  inline uint64_t getConstantOperandVal(unsigned i) const;
848  inline bool isTargetOpcode() const;
849  inline bool isMachineOpcode() const;
850  inline unsigned getMachineOpcode() const;
851
852
853  /// reachesChainWithoutSideEffects - Return true if this operand (which must
854  /// be a chain) reaches the specified operand without crossing any
855  /// side-effecting instructions.  In practice, this looks through token
856  /// factors and non-volatile loads.  In order to remain efficient, this only
857  /// looks a couple of nodes in, it does not do an exhaustive search.
858  bool reachesChainWithoutSideEffects(SDOperand Dest,
859                                      unsigned Depth = 2) const;
860
861  /// use_empty - Return true if there are no nodes using value ResNo
862  /// of node Val.
863  ///
864  inline bool use_empty() const;
865
866  /// use_empty - Return true if there is exactly one node using value
867  /// ResNo of node Val.
868  ///
869  inline bool hasOneUse() const;
870};
871
872
873template<> struct DenseMapInfo<SDOperand> {
874  static inline SDOperand getEmptyKey() {
875    return SDOperand((SDNode*)-1, -1U);
876  }
877  static inline SDOperand getTombstoneKey() {
878    return SDOperand((SDNode*)-1, 0);
879  }
880  static unsigned getHashValue(const SDOperand &Val) {
881    return ((unsigned)((uintptr_t)Val.Val >> 4) ^
882            (unsigned)((uintptr_t)Val.Val >> 9)) + Val.ResNo;
883  }
884  static bool isEqual(const SDOperand &LHS, const SDOperand &RHS) {
885    return LHS == RHS;
886  }
887  static bool isPod() { return true; }
888};
889
890/// simplify_type specializations - Allow casting operators to work directly on
891/// SDOperands as if they were SDNode*'s.
892template<> struct simplify_type<SDOperand> {
893  typedef SDNode* SimpleType;
894  static SimpleType getSimplifiedValue(const SDOperand &Val) {
895    return static_cast<SimpleType>(Val.Val);
896  }
897};
898template<> struct simplify_type<const SDOperand> {
899  typedef SDNode* SimpleType;
900  static SimpleType getSimplifiedValue(const SDOperand &Val) {
901    return static_cast<SimpleType>(Val.Val);
902  }
903};
904
905/// SDUse - Represents a use of the SDNode referred by
906/// the SDOperand.
907class SDUse {
908  SDOperand Operand;
909  /// User - Parent node of this operand.
910  SDNode    *User;
911  /// Prev, next - Pointers to the uses list of the SDNode referred by
912  /// this operand.
913  SDUse **Prev, *Next;
914public:
915  friend class SDNode;
916  SDUse(): Operand(), User(NULL), Prev(NULL), Next(NULL) {}
917
918  SDUse(SDNode *val, unsigned resno) :
919    Operand(val,resno), User(NULL), Prev(NULL), Next(NULL) {}
920
921  SDUse& operator= (const SDOperand& Op) {
922      Operand = Op;
923      Next = NULL;
924      Prev = NULL;
925      return *this;
926  }
927
928  SDUse& operator= (const SDUse& Op) {
929      Operand = Op;
930      Next = NULL;
931      Prev = NULL;
932      return *this;
933  }
934
935  SDUse * getNext() { return Next; }
936
937  SDNode *getUser() { return User; }
938
939  void setUser(SDNode *p) { User = p; }
940
941  operator SDOperand() const { return Operand; }
942
943  const SDOperand& getSDOperand() const { return Operand; }
944
945  SDNode* &getVal () { return Operand.Val; }
946
947  bool operator==(const SDOperand &O) const {
948    return Operand == O;
949  }
950
951  bool operator!=(const SDOperand &O) const {
952    return !(Operand == O);
953  }
954
955  bool operator<(const SDOperand &O) const {
956    return Operand < O;
957  }
958
959protected:
960  void addToList(SDUse **List) {
961    Next = *List;
962    if (Next) Next->Prev = &Next;
963    Prev = List;
964    *List = this;
965  }
966
967  void removeFromList() {
968    *Prev = Next;
969    if (Next) Next->Prev = Prev;
970  }
971};
972
973
974/// simplify_type specializations - Allow casting operators to work directly on
975/// SDOperands as if they were SDNode*'s.
976template<> struct simplify_type<SDUse> {
977  typedef SDNode* SimpleType;
978  static SimpleType getSimplifiedValue(const SDUse &Val) {
979    return static_cast<SimpleType>(Val.getSDOperand().Val);
980  }
981};
982template<> struct simplify_type<const SDUse> {
983  typedef SDNode* SimpleType;
984  static SimpleType getSimplifiedValue(const SDUse &Val) {
985    return static_cast<SimpleType>(Val.getSDOperand().Val);
986  }
987};
988
989
990/// SDOperandPtr - A helper SDOperand pointer class, that can handle
991/// arrays of SDUse and arrays of SDOperand objects. This is required
992/// in many places inside the SelectionDAG.
993///
994class SDOperandPtr {
995  const SDOperand *ptr; // The pointer to the SDOperand object
996  int object_size;      // The size of the object containg the SDOperand
997public:
998  SDOperandPtr() : ptr(0), object_size(0) {}
999
1000  SDOperandPtr(SDUse * use_ptr) {
1001    ptr = &use_ptr->getSDOperand();
1002    object_size = (int)sizeof(SDUse);
1003  }
1004
1005  SDOperandPtr(const SDOperand * op_ptr) {
1006    ptr = op_ptr;
1007    object_size = (int)sizeof(SDOperand);
1008  }
1009
1010  const SDOperand operator *() { return *ptr; }
1011  const SDOperand *operator ->() { return ptr; }
1012  SDOperandPtr operator ++ () {
1013    ptr = (SDOperand*)((char *)ptr + object_size);
1014    return *this;
1015  }
1016
1017  SDOperandPtr operator ++ (int) {
1018    SDOperandPtr tmp = *this;
1019    ptr = (SDOperand*)((char *)ptr + object_size);
1020    return tmp;
1021  }
1022
1023  SDOperand operator[] (int idx) const {
1024    return *(SDOperand*)((char*) ptr + object_size * idx);
1025  }
1026};
1027
1028/// SDNode - Represents one node in the SelectionDAG.
1029///
1030class SDNode : public FoldingSetNode {
1031private:
1032  /// NodeType - The operation that this node performs.
1033  ///
1034  short NodeType;
1035
1036  /// OperandsNeedDelete - This is true if OperandList was new[]'d.  If true,
1037  /// then they will be delete[]'d when the node is destroyed.
1038  unsigned short OperandsNeedDelete : 1;
1039
1040protected:
1041  /// SubclassData - This member is defined by this class, but is not used for
1042  /// anything.  Subclasses can use it to hold whatever state they find useful.
1043  /// This field is initialized to zero by the ctor.
1044  unsigned short SubclassData : 15;
1045
1046private:
1047  /// NodeId - Unique id per SDNode in the DAG.
1048  int NodeId;
1049
1050  /// OperandList - The values that are used by this operation.
1051  ///
1052  SDUse *OperandList;
1053
1054  /// ValueList - The types of the values this node defines.  SDNode's may
1055  /// define multiple values simultaneously.
1056  const MVT *ValueList;
1057
1058  /// NumOperands/NumValues - The number of entries in the Operand/Value list.
1059  unsigned short NumOperands, NumValues;
1060
1061  /// Uses - List of uses for this SDNode.
1062  SDUse *Uses;
1063
1064  /// addUse - add SDUse to the list of uses.
1065  void addUse(SDUse &U) { U.addToList(&Uses); }
1066
1067  // Out-of-line virtual method to give class a home.
1068  virtual void ANCHOR();
1069public:
1070  virtual ~SDNode() {
1071    assert(NumOperands == 0 && "Operand list not cleared before deletion");
1072    NodeType = ISD::DELETED_NODE;
1073  }
1074
1075  //===--------------------------------------------------------------------===//
1076  //  Accessors
1077  //
1078
1079  /// getOpcode - Return the SelectionDAG opcode value for this node. For
1080  /// pre-isel nodes (those for which isMachineOpcode returns false), these
1081  /// are the opcode values in the ISD and <target>ISD namespaces. For
1082  /// post-isel opcodes, see getMachineOpcode.
1083  unsigned getOpcode()  const { return (unsigned short)NodeType; }
1084
1085  /// isTargetOpcode - Test if this node has a target-specific opcode (in the
1086  /// <target>ISD namespace).
1087  bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
1088
1089  /// isMachineOpcode - Test if this node has a post-isel opcode, directly
1090  /// corresponding to a MachineInstr opcode.
1091  bool isMachineOpcode() const { return NodeType < 0; }
1092
1093  /// getMachineOpcode - This may only be called if isMachineOpcode returns
1094  /// true. It returns the MachineInstr opcode value that the node's opcode
1095  /// corresponds to.
1096  unsigned getMachineOpcode() const {
1097    assert(isMachineOpcode() && "Not a target opcode!");
1098    return ~NodeType;
1099  }
1100
1101  /// use_empty - Return true if there are no uses of this value.
1102  ///
1103  bool use_empty() const { return Uses == NULL; }
1104
1105  /// hasOneUse - Return true if there is exactly one use of this value.
1106  ///
1107  bool hasOneUse() const {
1108    return !use_empty() && next(use_begin()) == use_end();
1109  }
1110
1111  /// use_size - Return the number of uses of this value. This method takes
1112  /// time proportional to the number of uses.
1113  ///
1114  size_t use_size() const { return std::distance(use_begin(), use_end()); }
1115
1116  /// getNodeId - Return the unique node id.
1117  ///
1118  int getNodeId() const { return NodeId; }
1119
1120  /// setNodeId - Set unique node id.
1121  void setNodeId(int Id) { NodeId = Id; }
1122
1123  /// use_iterator - This class provides iterator support for SDUse
1124  /// operands that use a specific SDNode.
1125  class use_iterator
1126    : public forward_iterator<SDUse, ptrdiff_t> {
1127    SDUse *Op;
1128    explicit use_iterator(SDUse *op) : Op(op) {
1129    }
1130    friend class SDNode;
1131  public:
1132    typedef forward_iterator<SDUse, ptrdiff_t>::reference reference;
1133    typedef forward_iterator<SDUse, ptrdiff_t>::pointer pointer;
1134
1135    use_iterator(const use_iterator &I) : Op(I.Op) {}
1136    use_iterator() : Op(0) {}
1137
1138    bool operator==(const use_iterator &x) const {
1139      return Op == x.Op;
1140    }
1141    bool operator!=(const use_iterator &x) const {
1142      return !operator==(x);
1143    }
1144
1145    /// atEnd - return true if this iterator is at the end of uses list.
1146    bool atEnd() const { return Op == 0; }
1147
1148    // Iterator traversal: forward iteration only.
1149    use_iterator &operator++() {          // Preincrement
1150      assert(Op && "Cannot increment end iterator!");
1151      Op = Op->getNext();
1152      return *this;
1153    }
1154
1155    use_iterator operator++(int) {        // Postincrement
1156      use_iterator tmp = *this; ++*this; return tmp;
1157    }
1158
1159
1160    /// getOperandNum - Retrive a number of a current operand.
1161    unsigned getOperandNum() const {
1162      assert(Op && "Cannot dereference end iterator!");
1163      return (unsigned)(Op - Op->getUser()->OperandList);
1164    }
1165
1166    /// Retrieve a reference to the current operand.
1167    SDUse &operator*() const {
1168      assert(Op && "Cannot dereference end iterator!");
1169      return *Op;
1170    }
1171
1172    /// Retrieve a pointer to the current operand.
1173    SDUse *operator->() const {
1174      assert(Op && "Cannot dereference end iterator!");
1175      return Op;
1176    }
1177  };
1178
1179  /// use_begin/use_end - Provide iteration support to walk over all uses
1180  /// of an SDNode.
1181
1182  use_iterator use_begin(SDNode *node) const {
1183    return use_iterator(node->Uses);
1184  }
1185
1186  use_iterator use_begin() const {
1187    return use_iterator(Uses);
1188  }
1189
1190  static use_iterator use_end() { return use_iterator(0); }
1191
1192
1193  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
1194  /// indicated value.  This method ignores uses of other values defined by this
1195  /// operation.
1196  bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
1197
1198  /// hasAnyUseOfValue - Return true if there are any use of the indicated
1199  /// value. This method ignores uses of other values defined by this operation.
1200  bool hasAnyUseOfValue(unsigned Value) const;
1201
1202  /// isOnlyUseOf - Return true if this node is the only use of N.
1203  ///
1204  bool isOnlyUseOf(SDNode *N) const;
1205
1206  /// isOperandOf - Return true if this node is an operand of N.
1207  ///
1208  bool isOperandOf(SDNode *N) const;
1209
1210  /// isPredecessorOf - Return true if this node is a predecessor of N. This
1211  /// node is either an operand of N or it can be reached by recursively
1212  /// traversing up the operands.
1213  /// NOTE: this is an expensive method. Use it carefully.
1214  bool isPredecessorOf(SDNode *N) const;
1215
1216  /// getNumOperands - Return the number of values used by this operation.
1217  ///
1218  unsigned getNumOperands() const { return NumOperands; }
1219
1220  /// getConstantOperandVal - Helper method returns the integer value of a
1221  /// ConstantSDNode operand.
1222  uint64_t getConstantOperandVal(unsigned Num) const;
1223
1224  const SDOperand &getOperand(unsigned Num) const {
1225    assert(Num < NumOperands && "Invalid child # of SDNode!");
1226    return OperandList[Num].getSDOperand();
1227  }
1228
1229  typedef SDUse* op_iterator;
1230  op_iterator op_begin() const { return OperandList; }
1231  op_iterator op_end() const { return OperandList+NumOperands; }
1232
1233
1234  SDVTList getVTList() const {
1235    SDVTList X = { ValueList, NumValues };
1236    return X;
1237  };
1238
1239  /// getNumValues - Return the number of values defined/returned by this
1240  /// operator.
1241  ///
1242  unsigned getNumValues() const { return NumValues; }
1243
1244  /// getValueType - Return the type of a specified result.
1245  ///
1246  MVT getValueType(unsigned ResNo) const {
1247    assert(ResNo < NumValues && "Illegal result number!");
1248    return ValueList[ResNo];
1249  }
1250
1251  /// getValueSizeInBits - Returns MVT::getSizeInBits(getValueType(ResNo)).
1252  ///
1253  unsigned getValueSizeInBits(unsigned ResNo) const {
1254    return getValueType(ResNo).getSizeInBits();
1255  }
1256
1257  typedef const MVT* value_iterator;
1258  value_iterator value_begin() const { return ValueList; }
1259  value_iterator value_end() const { return ValueList+NumValues; }
1260
1261  /// getOperationName - Return the opcode of this operation for printing.
1262  ///
1263  std::string getOperationName(const SelectionDAG *G = 0) const;
1264  static const char* getIndexedModeName(ISD::MemIndexedMode AM);
1265  void dump() const;
1266  void dump(const SelectionDAG *G) const;
1267
1268  static bool classof(const SDNode *) { return true; }
1269
1270  /// Profile - Gather unique data for the node.
1271  ///
1272  void Profile(FoldingSetNodeID &ID);
1273
1274protected:
1275  friend class SelectionDAG;
1276
1277  /// getValueTypeList - Return a pointer to the specified value type.
1278  ///
1279  static const MVT *getValueTypeList(MVT VT);
1280  static SDVTList getSDVTList(MVT VT) {
1281    SDVTList Ret = { getValueTypeList(VT), 1 };
1282    return Ret;
1283  }
1284
1285  SDNode(unsigned Opc, SDVTList VTs, const SDOperand *Ops, unsigned NumOps)
1286    : NodeType(Opc), OperandsNeedDelete(true), SubclassData(0),
1287      NodeId(-1), Uses(NULL) {
1288    NumOperands = NumOps;
1289    OperandList = NumOps ? new SDUse[NumOperands] : 0;
1290
1291    for (unsigned i = 0; i != NumOps; ++i) {
1292      OperandList[i] = Ops[i];
1293      OperandList[i].setUser(this);
1294      Ops[i].Val->addUse(OperandList[i]);
1295    }
1296
1297    ValueList = VTs.VTs;
1298    NumValues = VTs.NumVTs;
1299  }
1300
1301  SDNode(unsigned Opc, SDVTList VTs, const SDUse *Ops, unsigned NumOps)
1302    : NodeType(Opc), OperandsNeedDelete(true), SubclassData(0),
1303      NodeId(-1), Uses(NULL) {
1304    OperandsNeedDelete = true;
1305    NumOperands = NumOps;
1306    OperandList = NumOps ? new SDUse[NumOperands] : 0;
1307
1308    for (unsigned i = 0; i != NumOps; ++i) {
1309      OperandList[i] = Ops[i];
1310      OperandList[i].setUser(this);
1311      Ops[i].getSDOperand().Val->addUse(OperandList[i]);
1312    }
1313
1314    ValueList = VTs.VTs;
1315    NumValues = VTs.NumVTs;
1316  }
1317
1318  /// This constructor adds no operands itself; operands can be
1319  /// set later with InitOperands.
1320  SDNode(unsigned Opc, SDVTList VTs)
1321    : NodeType(Opc), OperandsNeedDelete(false), SubclassData(0),
1322      NodeId(-1), Uses(NULL) {
1323    NumOperands = 0;
1324    OperandList = 0;
1325    ValueList = VTs.VTs;
1326    NumValues = VTs.NumVTs;
1327  }
1328
1329  /// InitOperands - Initialize the operands list of this node with the
1330  /// specified values, which are part of the node (thus they don't need to be
1331  /// copied in or allocated).
1332  void InitOperands(SDUse *Ops, unsigned NumOps) {
1333    assert(OperandList == 0 && "Operands already set!");
1334    NumOperands = NumOps;
1335    OperandList = Ops;
1336    Uses = NULL;
1337
1338    for (unsigned i = 0; i != NumOps; ++i) {
1339      OperandList[i].setUser(this);
1340      Ops[i].getVal()->addUse(OperandList[i]);
1341    }
1342  }
1343
1344  /// DropOperands - Release the operands and set this node to have
1345  /// zero operands.
1346  void DropOperands();
1347
1348  void addUser(unsigned i, SDNode *User) {
1349    assert(User->OperandList[i].getUser() && "Node without parent");
1350    addUse(User->OperandList[i]);
1351  }
1352
1353  void removeUser(unsigned i, SDNode *User) {
1354    assert(User->OperandList[i].getUser() && "Node without parent");
1355    SDUse &Op = User->OperandList[i];
1356    Op.removeFromList();
1357  }
1358};
1359
1360
1361// Define inline functions from the SDOperand class.
1362
1363inline unsigned SDOperand::getOpcode() const {
1364  return Val->getOpcode();
1365}
1366inline MVT SDOperand::getValueType() const {
1367  return Val->getValueType(ResNo);
1368}
1369inline unsigned SDOperand::getNumOperands() const {
1370  return Val->getNumOperands();
1371}
1372inline const SDOperand &SDOperand::getOperand(unsigned i) const {
1373  return Val->getOperand(i);
1374}
1375inline uint64_t SDOperand::getConstantOperandVal(unsigned i) const {
1376  return Val->getConstantOperandVal(i);
1377}
1378inline bool SDOperand::isTargetOpcode() const {
1379  return Val->isTargetOpcode();
1380}
1381inline bool SDOperand::isMachineOpcode() const {
1382  return Val->isMachineOpcode();
1383}
1384inline unsigned SDOperand::getMachineOpcode() const {
1385  return Val->getMachineOpcode();
1386}
1387inline bool SDOperand::use_empty() const {
1388  return !Val->hasAnyUseOfValue(ResNo);
1389}
1390inline bool SDOperand::hasOneUse() const {
1391  return Val->hasNUsesOfValue(1, ResNo);
1392}
1393
1394/// UnarySDNode - This class is used for single-operand SDNodes.  This is solely
1395/// to allow co-allocation of node operands with the node itself.
1396class UnarySDNode : public SDNode {
1397  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1398  SDUse Op;
1399public:
1400  UnarySDNode(unsigned Opc, SDVTList VTs, SDOperand X)
1401    : SDNode(Opc, VTs) {
1402    Op = X;
1403    InitOperands(&Op, 1);
1404  }
1405};
1406
1407/// BinarySDNode - This class is used for two-operand SDNodes.  This is solely
1408/// to allow co-allocation of node operands with the node itself.
1409class BinarySDNode : public SDNode {
1410  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1411  SDUse Ops[2];
1412public:
1413  BinarySDNode(unsigned Opc, SDVTList VTs, SDOperand X, SDOperand Y)
1414    : SDNode(Opc, VTs) {
1415    Ops[0] = X;
1416    Ops[1] = Y;
1417    InitOperands(Ops, 2);
1418  }
1419};
1420
1421/// TernarySDNode - This class is used for three-operand SDNodes. This is solely
1422/// to allow co-allocation of node operands with the node itself.
1423class TernarySDNode : public SDNode {
1424  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1425  SDUse Ops[3];
1426public:
1427  TernarySDNode(unsigned Opc, SDVTList VTs, SDOperand X, SDOperand Y,
1428                SDOperand Z)
1429    : SDNode(Opc, VTs) {
1430    Ops[0] = X;
1431    Ops[1] = Y;
1432    Ops[2] = Z;
1433    InitOperands(Ops, 3);
1434  }
1435};
1436
1437
1438/// HandleSDNode - This class is used to form a handle around another node that
1439/// is persistant and is updated across invocations of replaceAllUsesWith on its
1440/// operand.  This node should be directly created by end-users and not added to
1441/// the AllNodes list.
1442class HandleSDNode : public SDNode {
1443  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1444  SDUse Op;
1445public:
1446  // FIXME: Remove the "noinline" attribute once <rdar://problem/5852746> is
1447  // fixed.
1448#ifdef __GNUC__
1449  explicit __attribute__((__noinline__)) HandleSDNode(SDOperand X)
1450#else
1451  explicit HandleSDNode(SDOperand X)
1452#endif
1453    : SDNode(ISD::HANDLENODE, getSDVTList(MVT::Other)) {
1454    Op = X;
1455    InitOperands(&Op, 1);
1456  }
1457  ~HandleSDNode();
1458  SDUse getValue() const { return Op; }
1459};
1460
1461/// Abstact virtual class for operations for memory operations
1462class MemSDNode : public SDNode {
1463  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1464
1465private:
1466  // MemoryVT - VT of in-memory value.
1467  MVT MemoryVT;
1468
1469  //! SrcValue - Memory location for alias analysis.
1470  const Value *SrcValue;
1471
1472  //! SVOffset - Memory location offset. Note that base is defined in MemSDNode
1473  int SVOffset;
1474
1475  /// Flags - the low bit indicates whether this is a volatile reference;
1476  /// the remainder is a log2 encoding of the alignment in bytes.
1477  unsigned Flags;
1478
1479public:
1480  MemSDNode(unsigned Opc, SDVTList VTs, MVT MemoryVT,
1481            const Value *srcValue, int SVOff,
1482            unsigned alignment, bool isvolatile);
1483
1484  /// Returns alignment and volatility of the memory access
1485  unsigned getAlignment() const { return (1u << (Flags >> 1)) >> 1; }
1486  bool isVolatile() const { return Flags & 1; }
1487
1488  /// Returns the SrcValue and offset that describes the location of the access
1489  const Value *getSrcValue() const { return SrcValue; }
1490  int getSrcValueOffset() const { return SVOffset; }
1491
1492  /// getMemoryVT - Return the type of the in-memory value.
1493  MVT getMemoryVT() const { return MemoryVT; }
1494
1495  /// getMemOperand - Return a MachineMemOperand object describing the memory
1496  /// reference performed by operation.
1497  MachineMemOperand getMemOperand() const;
1498
1499  const SDOperand &getChain() const { return getOperand(0); }
1500  const SDOperand &getBasePtr() const {
1501    return getOperand(getOpcode() == ISD::STORE ? 2 : 1);
1502  }
1503
1504  // Methods to support isa and dyn_cast
1505  static bool classof(const MemSDNode *) { return true; }
1506  static bool classof(const SDNode *N) {
1507    return N->getOpcode() == ISD::LOAD  ||
1508           N->getOpcode() == ISD::STORE ||
1509           N->getOpcode() == ISD::ATOMIC_CMP_SWAP  ||
1510           N->getOpcode() == ISD::ATOMIC_LOAD_ADD  ||
1511           N->getOpcode() == ISD::ATOMIC_SWAP      ||
1512           N->getOpcode() == ISD::ATOMIC_LOAD_SUB  ||
1513           N->getOpcode() == ISD::ATOMIC_LOAD_AND  ||
1514           N->getOpcode() == ISD::ATOMIC_LOAD_OR   ||
1515           N->getOpcode() == ISD::ATOMIC_LOAD_XOR  ||
1516           N->getOpcode() == ISD::ATOMIC_LOAD_NAND ||
1517           N->getOpcode() == ISD::ATOMIC_LOAD_MIN  ||
1518           N->getOpcode() == ISD::ATOMIC_LOAD_MAX  ||
1519           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN ||
1520           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX;
1521  }
1522};
1523
1524/// Atomic operations node
1525class AtomicSDNode : public MemSDNode {
1526  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1527  SDUse Ops[4];
1528
1529 public:
1530  // Opc:   opcode for atomic
1531  // VTL:    value type list
1532  // Chain:  memory chain for operaand
1533  // Ptr:    address to update as a SDOperand
1534  // Cmp:    compare value
1535  // Swp:    swap value
1536  // SrcVal: address to update as a Value (used for MemOperand)
1537  // Align:  alignment of memory
1538  AtomicSDNode(unsigned Opc, SDVTList VTL, SDOperand Chain, SDOperand Ptr,
1539               SDOperand Cmp, SDOperand Swp, const Value* SrcVal,
1540               unsigned Align=0)
1541    : MemSDNode(Opc, VTL, Cmp.getValueType(), SrcVal, /*SVOffset=*/0,
1542                Align, /*isVolatile=*/true) {
1543    Ops[0] = Chain;
1544    Ops[1] = Ptr;
1545    Ops[2] = Swp;
1546    Ops[3] = Cmp;
1547    InitOperands(Ops, 4);
1548  }
1549  AtomicSDNode(unsigned Opc, SDVTList VTL, SDOperand Chain, SDOperand Ptr,
1550               SDOperand Val, const Value* SrcVal, unsigned Align=0)
1551    : MemSDNode(Opc, VTL, Val.getValueType(), SrcVal, /*SVOffset=*/0,
1552                Align, /*isVolatile=*/true) {
1553    Ops[0] = Chain;
1554    Ops[1] = Ptr;
1555    Ops[2] = Val;
1556    InitOperands(Ops, 3);
1557  }
1558
1559  const SDOperand &getBasePtr() const { return getOperand(1); }
1560  const SDOperand &getVal() const { return getOperand(2); }
1561
1562  bool isCompareAndSwap() const { return getOpcode() == ISD::ATOMIC_CMP_SWAP; }
1563
1564  // Methods to support isa and dyn_cast
1565  static bool classof(const AtomicSDNode *) { return true; }
1566  static bool classof(const SDNode *N) {
1567    return N->getOpcode() == ISD::ATOMIC_CMP_SWAP  ||
1568           N->getOpcode() == ISD::ATOMIC_LOAD_ADD  ||
1569           N->getOpcode() == ISD::ATOMIC_SWAP      ||
1570           N->getOpcode() == ISD::ATOMIC_LOAD_SUB  ||
1571           N->getOpcode() == ISD::ATOMIC_LOAD_AND  ||
1572           N->getOpcode() == ISD::ATOMIC_LOAD_OR   ||
1573           N->getOpcode() == ISD::ATOMIC_LOAD_XOR  ||
1574           N->getOpcode() == ISD::ATOMIC_LOAD_NAND ||
1575           N->getOpcode() == ISD::ATOMIC_LOAD_MIN  ||
1576           N->getOpcode() == ISD::ATOMIC_LOAD_MAX  ||
1577           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN ||
1578           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX;
1579  }
1580};
1581
1582class ConstantSDNode : public SDNode {
1583  APInt Value;
1584  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1585protected:
1586  friend class SelectionDAG;
1587  ConstantSDNode(bool isTarget, const APInt &val, MVT VT)
1588    : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, getSDVTList(VT)),
1589      Value(val) {
1590  }
1591public:
1592
1593  const APInt &getAPIntValue() const { return Value; }
1594  uint64_t getValue() const { return Value.getZExtValue(); }
1595
1596  int64_t getSignExtended() const {
1597    unsigned Bits = getValueType(0).getSizeInBits();
1598    return ((int64_t)Value.getZExtValue() << (64-Bits)) >> (64-Bits);
1599  }
1600
1601  bool isNullValue() const { return Value == 0; }
1602  bool isAllOnesValue() const {
1603    return Value == getValueType(0).getIntegerVTBitMask();
1604  }
1605
1606  static bool classof(const ConstantSDNode *) { return true; }
1607  static bool classof(const SDNode *N) {
1608    return N->getOpcode() == ISD::Constant ||
1609           N->getOpcode() == ISD::TargetConstant;
1610  }
1611};
1612
1613class ConstantFPSDNode : public SDNode {
1614  APFloat Value;
1615  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1616protected:
1617  friend class SelectionDAG;
1618  ConstantFPSDNode(bool isTarget, const APFloat& val, MVT VT)
1619    : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP,
1620             getSDVTList(VT)), Value(val) {
1621  }
1622public:
1623
1624  const APFloat& getValueAPF() const { return Value; }
1625
1626  /// isExactlyValue - We don't rely on operator== working on double values, as
1627  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1628  /// As such, this method can be used to do an exact bit-for-bit comparison of
1629  /// two floating point values.
1630
1631  /// We leave the version with the double argument here because it's just so
1632  /// convenient to write "2.0" and the like.  Without this function we'd
1633  /// have to duplicate its logic everywhere it's called.
1634  bool isExactlyValue(double V) const {
1635    // convert is not supported on this type
1636    if (&Value.getSemantics() == &APFloat::PPCDoubleDouble)
1637      return false;
1638    APFloat Tmp(V);
1639    Tmp.convert(Value.getSemantics(), APFloat::rmNearestTiesToEven);
1640    return isExactlyValue(Tmp);
1641  }
1642  bool isExactlyValue(const APFloat& V) const;
1643
1644  bool isValueValidForType(MVT VT, const APFloat& Val);
1645
1646  static bool classof(const ConstantFPSDNode *) { return true; }
1647  static bool classof(const SDNode *N) {
1648    return N->getOpcode() == ISD::ConstantFP ||
1649           N->getOpcode() == ISD::TargetConstantFP;
1650  }
1651};
1652
1653class GlobalAddressSDNode : public SDNode {
1654  GlobalValue *TheGlobal;
1655  int Offset;
1656  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1657protected:
1658  friend class SelectionDAG;
1659  GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT VT, int o = 0);
1660public:
1661
1662  GlobalValue *getGlobal() const { return TheGlobal; }
1663  int getOffset() const { return Offset; }
1664
1665  static bool classof(const GlobalAddressSDNode *) { return true; }
1666  static bool classof(const SDNode *N) {
1667    return N->getOpcode() == ISD::GlobalAddress ||
1668           N->getOpcode() == ISD::TargetGlobalAddress ||
1669           N->getOpcode() == ISD::GlobalTLSAddress ||
1670           N->getOpcode() == ISD::TargetGlobalTLSAddress;
1671  }
1672};
1673
1674class FrameIndexSDNode : public SDNode {
1675  int FI;
1676  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1677protected:
1678  friend class SelectionDAG;
1679  FrameIndexSDNode(int fi, MVT VT, bool isTarg)
1680    : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, getSDVTList(VT)),
1681      FI(fi) {
1682  }
1683public:
1684
1685  int getIndex() const { return FI; }
1686
1687  static bool classof(const FrameIndexSDNode *) { return true; }
1688  static bool classof(const SDNode *N) {
1689    return N->getOpcode() == ISD::FrameIndex ||
1690           N->getOpcode() == ISD::TargetFrameIndex;
1691  }
1692};
1693
1694class JumpTableSDNode : public SDNode {
1695  int JTI;
1696  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1697protected:
1698  friend class SelectionDAG;
1699  JumpTableSDNode(int jti, MVT VT, bool isTarg)
1700    : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable, getSDVTList(VT)),
1701      JTI(jti) {
1702  }
1703public:
1704
1705  int getIndex() const { return JTI; }
1706
1707  static bool classof(const JumpTableSDNode *) { return true; }
1708  static bool classof(const SDNode *N) {
1709    return N->getOpcode() == ISD::JumpTable ||
1710           N->getOpcode() == ISD::TargetJumpTable;
1711  }
1712};
1713
1714class ConstantPoolSDNode : public SDNode {
1715  union {
1716    Constant *ConstVal;
1717    MachineConstantPoolValue *MachineCPVal;
1718  } Val;
1719  int Offset;  // It's a MachineConstantPoolValue if top bit is set.
1720  unsigned Alignment;
1721  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1722protected:
1723  friend class SelectionDAG;
1724  ConstantPoolSDNode(bool isTarget, Constant *c, MVT VT, int o=0)
1725    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1726             getSDVTList(VT)), Offset(o), Alignment(0) {
1727    assert((int)Offset >= 0 && "Offset is too large");
1728    Val.ConstVal = c;
1729  }
1730  ConstantPoolSDNode(bool isTarget, Constant *c, MVT VT, int o, unsigned Align)
1731    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1732             getSDVTList(VT)), Offset(o), Alignment(Align) {
1733    assert((int)Offset >= 0 && "Offset is too large");
1734    Val.ConstVal = c;
1735  }
1736  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1737                     MVT VT, int o=0)
1738    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1739             getSDVTList(VT)), Offset(o), Alignment(0) {
1740    assert((int)Offset >= 0 && "Offset is too large");
1741    Val.MachineCPVal = v;
1742    Offset |= 1 << (sizeof(unsigned)*8-1);
1743  }
1744  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1745                     MVT VT, int o, unsigned Align)
1746    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1747             getSDVTList(VT)), Offset(o), Alignment(Align) {
1748    assert((int)Offset >= 0 && "Offset is too large");
1749    Val.MachineCPVal = v;
1750    Offset |= 1 << (sizeof(unsigned)*8-1);
1751  }
1752public:
1753
1754  bool isMachineConstantPoolEntry() const {
1755    return (int)Offset < 0;
1756  }
1757
1758  Constant *getConstVal() const {
1759    assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
1760    return Val.ConstVal;
1761  }
1762
1763  MachineConstantPoolValue *getMachineCPVal() const {
1764    assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
1765    return Val.MachineCPVal;
1766  }
1767
1768  int getOffset() const {
1769    return Offset & ~(1 << (sizeof(unsigned)*8-1));
1770  }
1771
1772  // Return the alignment of this constant pool object, which is either 0 (for
1773  // default alignment) or log2 of the desired value.
1774  unsigned getAlignment() const { return Alignment; }
1775
1776  const Type *getType() const;
1777
1778  static bool classof(const ConstantPoolSDNode *) { return true; }
1779  static bool classof(const SDNode *N) {
1780    return N->getOpcode() == ISD::ConstantPool ||
1781           N->getOpcode() == ISD::TargetConstantPool;
1782  }
1783};
1784
1785class BasicBlockSDNode : public SDNode {
1786  MachineBasicBlock *MBB;
1787  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1788protected:
1789  friend class SelectionDAG;
1790  explicit BasicBlockSDNode(MachineBasicBlock *mbb)
1791    : SDNode(ISD::BasicBlock, getSDVTList(MVT::Other)), MBB(mbb) {
1792  }
1793public:
1794
1795  MachineBasicBlock *getBasicBlock() const { return MBB; }
1796
1797  static bool classof(const BasicBlockSDNode *) { return true; }
1798  static bool classof(const SDNode *N) {
1799    return N->getOpcode() == ISD::BasicBlock;
1800  }
1801};
1802
1803/// SrcValueSDNode - An SDNode that holds an arbitrary LLVM IR Value. This is
1804/// used when the SelectionDAG needs to make a simple reference to something
1805/// in the LLVM IR representation.
1806///
1807/// Note that this is not used for carrying alias information; that is done
1808/// with MemOperandSDNode, which includes a Value which is required to be a
1809/// pointer, and several other fields specific to memory references.
1810///
1811class SrcValueSDNode : public SDNode {
1812  const Value *V;
1813  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1814protected:
1815  friend class SelectionDAG;
1816  /// Create a SrcValue for a general value.
1817  explicit SrcValueSDNode(const Value *v)
1818    : SDNode(ISD::SRCVALUE, getSDVTList(MVT::Other)), V(v) {}
1819
1820public:
1821  /// getValue - return the contained Value.
1822  const Value *getValue() const { return V; }
1823
1824  static bool classof(const SrcValueSDNode *) { return true; }
1825  static bool classof(const SDNode *N) {
1826    return N->getOpcode() == ISD::SRCVALUE;
1827  }
1828};
1829
1830
1831/// MemOperandSDNode - An SDNode that holds a MachineMemOperand. This is
1832/// used to represent a reference to memory after ISD::LOAD
1833/// and ISD::STORE have been lowered.
1834///
1835class MemOperandSDNode : public SDNode {
1836  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1837protected:
1838  friend class SelectionDAG;
1839  /// Create a MachineMemOperand node
1840  explicit MemOperandSDNode(const MachineMemOperand &mo)
1841    : SDNode(ISD::MEMOPERAND, getSDVTList(MVT::Other)), MO(mo) {}
1842
1843public:
1844  /// MO - The contained MachineMemOperand.
1845  const MachineMemOperand MO;
1846
1847  static bool classof(const MemOperandSDNode *) { return true; }
1848  static bool classof(const SDNode *N) {
1849    return N->getOpcode() == ISD::MEMOPERAND;
1850  }
1851};
1852
1853
1854class RegisterSDNode : public SDNode {
1855  unsigned Reg;
1856  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1857protected:
1858  friend class SelectionDAG;
1859  RegisterSDNode(unsigned reg, MVT VT)
1860    : SDNode(ISD::Register, getSDVTList(VT)), Reg(reg) {
1861  }
1862public:
1863
1864  unsigned getReg() const { return Reg; }
1865
1866  static bool classof(const RegisterSDNode *) { return true; }
1867  static bool classof(const SDNode *N) {
1868    return N->getOpcode() == ISD::Register;
1869  }
1870};
1871
1872class DbgStopPointSDNode : public SDNode {
1873  SDUse Chain;
1874  unsigned Line;
1875  unsigned Column;
1876  const CompileUnitDesc *CU;
1877  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1878protected:
1879  friend class SelectionDAG;
1880  DbgStopPointSDNode(SDOperand ch, unsigned l, unsigned c,
1881                     const CompileUnitDesc *cu)
1882    : SDNode(ISD::DBG_STOPPOINT, getSDVTList(MVT::Other)),
1883      Line(l), Column(c), CU(cu) {
1884    Chain = ch;
1885    InitOperands(&Chain, 1);
1886  }
1887public:
1888  unsigned getLine() const { return Line; }
1889  unsigned getColumn() const { return Column; }
1890  const CompileUnitDesc *getCompileUnit() const { return CU; }
1891
1892  static bool classof(const DbgStopPointSDNode *) { return true; }
1893  static bool classof(const SDNode *N) {
1894    return N->getOpcode() == ISD::DBG_STOPPOINT;
1895  }
1896};
1897
1898class LabelSDNode : public SDNode {
1899  SDUse Chain;
1900  unsigned LabelID;
1901  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1902protected:
1903  friend class SelectionDAG;
1904  LabelSDNode(unsigned NodeTy, SDOperand ch, unsigned id)
1905    : SDNode(NodeTy, getSDVTList(MVT::Other)), LabelID(id) {
1906    Chain = ch;
1907    InitOperands(&Chain, 1);
1908  }
1909public:
1910  unsigned getLabelID() const { return LabelID; }
1911
1912  static bool classof(const LabelSDNode *) { return true; }
1913  static bool classof(const SDNode *N) {
1914    return N->getOpcode() == ISD::DBG_LABEL ||
1915           N->getOpcode() == ISD::EH_LABEL;
1916  }
1917};
1918
1919class ExternalSymbolSDNode : public SDNode {
1920  const char *Symbol;
1921  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1922protected:
1923  friend class SelectionDAG;
1924  ExternalSymbolSDNode(bool isTarget, const char *Sym, MVT VT)
1925    : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
1926             getSDVTList(VT)), Symbol(Sym) {
1927  }
1928public:
1929
1930  const char *getSymbol() const { return Symbol; }
1931
1932  static bool classof(const ExternalSymbolSDNode *) { return true; }
1933  static bool classof(const SDNode *N) {
1934    return N->getOpcode() == ISD::ExternalSymbol ||
1935           N->getOpcode() == ISD::TargetExternalSymbol;
1936  }
1937};
1938
1939class CondCodeSDNode : public SDNode {
1940  ISD::CondCode Condition;
1941  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1942protected:
1943  friend class SelectionDAG;
1944  explicit CondCodeSDNode(ISD::CondCode Cond)
1945    : SDNode(ISD::CONDCODE, getSDVTList(MVT::Other)), Condition(Cond) {
1946  }
1947public:
1948
1949  ISD::CondCode get() const { return Condition; }
1950
1951  static bool classof(const CondCodeSDNode *) { return true; }
1952  static bool classof(const SDNode *N) {
1953    return N->getOpcode() == ISD::CONDCODE;
1954  }
1955};
1956
1957namespace ISD {
1958  struct ArgFlagsTy {
1959  private:
1960    static const uint64_t NoFlagSet      = 0ULL;
1961    static const uint64_t ZExt           = 1ULL<<0;  ///< Zero extended
1962    static const uint64_t ZExtOffs       = 0;
1963    static const uint64_t SExt           = 1ULL<<1;  ///< Sign extended
1964    static const uint64_t SExtOffs       = 1;
1965    static const uint64_t InReg          = 1ULL<<2;  ///< Passed in register
1966    static const uint64_t InRegOffs      = 2;
1967    static const uint64_t SRet           = 1ULL<<3;  ///< Hidden struct-ret ptr
1968    static const uint64_t SRetOffs       = 3;
1969    static const uint64_t ByVal          = 1ULL<<4;  ///< Struct passed by value
1970    static const uint64_t ByValOffs      = 4;
1971    static const uint64_t Nest           = 1ULL<<5;  ///< Nested fn static chain
1972    static const uint64_t NestOffs       = 5;
1973    static const uint64_t ByValAlign     = 0xFULL << 6; //< Struct alignment
1974    static const uint64_t ByValAlignOffs = 6;
1975    static const uint64_t Split          = 1ULL << 10;
1976    static const uint64_t SplitOffs      = 10;
1977    static const uint64_t OrigAlign      = 0x1FULL<<27;
1978    static const uint64_t OrigAlignOffs  = 27;
1979    static const uint64_t ByValSize      = 0xffffffffULL << 32; //< Struct size
1980    static const uint64_t ByValSizeOffs  = 32;
1981
1982    static const uint64_t One            = 1ULL; //< 1 of this type, for shifts
1983
1984    uint64_t Flags;
1985  public:
1986    ArgFlagsTy() : Flags(0) { }
1987
1988    bool isZExt()   const { return Flags & ZExt; }
1989    void setZExt()  { Flags |= One << ZExtOffs; }
1990
1991    bool isSExt()   const { return Flags & SExt; }
1992    void setSExt()  { Flags |= One << SExtOffs; }
1993
1994    bool isInReg()  const { return Flags & InReg; }
1995    void setInReg() { Flags |= One << InRegOffs; }
1996
1997    bool isSRet()   const { return Flags & SRet; }
1998    void setSRet()  { Flags |= One << SRetOffs; }
1999
2000    bool isByVal()  const { return Flags & ByVal; }
2001    void setByVal() { Flags |= One << ByValOffs; }
2002
2003    bool isNest()   const { return Flags & Nest; }
2004    void setNest()  { Flags |= One << NestOffs; }
2005
2006    unsigned getByValAlign() const {
2007      return (unsigned)
2008        ((One << ((Flags & ByValAlign) >> ByValAlignOffs)) / 2);
2009    }
2010    void setByValAlign(unsigned A) {
2011      Flags = (Flags & ~ByValAlign) |
2012        (uint64_t(Log2_32(A) + 1) << ByValAlignOffs);
2013    }
2014
2015    bool isSplit()   const { return Flags & Split; }
2016    void setSplit()  { Flags |= One << SplitOffs; }
2017
2018    unsigned getOrigAlign() const {
2019      return (unsigned)
2020        ((One << ((Flags & OrigAlign) >> OrigAlignOffs)) / 2);
2021    }
2022    void setOrigAlign(unsigned A) {
2023      Flags = (Flags & ~OrigAlign) |
2024        (uint64_t(Log2_32(A) + 1) << OrigAlignOffs);
2025    }
2026
2027    unsigned getByValSize() const {
2028      return (unsigned)((Flags & ByValSize) >> ByValSizeOffs);
2029    }
2030    void setByValSize(unsigned S) {
2031      Flags = (Flags & ~ByValSize) | (uint64_t(S) << ByValSizeOffs);
2032    }
2033
2034    /// getArgFlagsString - Returns the flags as a string, eg: "zext align:4".
2035    std::string getArgFlagsString();
2036
2037    /// getRawBits - Represent the flags as a bunch of bits.
2038    uint64_t getRawBits() const { return Flags; }
2039  };
2040}
2041
2042/// ARG_FLAGSSDNode - Leaf node holding parameter flags.
2043class ARG_FLAGSSDNode : public SDNode {
2044  ISD::ArgFlagsTy TheFlags;
2045  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2046protected:
2047  friend class SelectionDAG;
2048  explicit ARG_FLAGSSDNode(ISD::ArgFlagsTy Flags)
2049    : SDNode(ISD::ARG_FLAGS, getSDVTList(MVT::Other)), TheFlags(Flags) {
2050  }
2051public:
2052  ISD::ArgFlagsTy getArgFlags() const { return TheFlags; }
2053
2054  static bool classof(const ARG_FLAGSSDNode *) { return true; }
2055  static bool classof(const SDNode *N) {
2056    return N->getOpcode() == ISD::ARG_FLAGS;
2057  }
2058};
2059
2060/// VTSDNode - This class is used to represent MVT's, which are used
2061/// to parameterize some operations.
2062class VTSDNode : public SDNode {
2063  MVT ValueType;
2064  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2065protected:
2066  friend class SelectionDAG;
2067  explicit VTSDNode(MVT VT)
2068    : SDNode(ISD::VALUETYPE, getSDVTList(MVT::Other)), ValueType(VT) {
2069  }
2070public:
2071
2072  MVT getVT() const { return ValueType; }
2073
2074  static bool classof(const VTSDNode *) { return true; }
2075  static bool classof(const SDNode *N) {
2076    return N->getOpcode() == ISD::VALUETYPE;
2077  }
2078};
2079
2080/// LSBaseSDNode - Base class for LoadSDNode and StoreSDNode
2081///
2082class LSBaseSDNode : public MemSDNode {
2083protected:
2084  //! Operand array for load and store
2085  /*!
2086    \note Moving this array to the base class captures more
2087    common functionality shared between LoadSDNode and
2088    StoreSDNode
2089   */
2090  SDUse Ops[4];
2091public:
2092  LSBaseSDNode(ISD::NodeType NodeTy, SDOperand *Operands, unsigned numOperands,
2093               SDVTList VTs, ISD::MemIndexedMode AM, MVT VT,
2094               const Value *SV, int SVO, unsigned Align, bool Vol)
2095    : MemSDNode(NodeTy, VTs, VT, SV, SVO, Align, Vol) {
2096    SubclassData = AM;
2097    for (unsigned i = 0; i != numOperands; ++i)
2098      Ops[i] = Operands[i];
2099    InitOperands(Ops, numOperands);
2100    assert(Align != 0 && "Loads and stores should have non-zero aligment");
2101    assert((getOffset().getOpcode() == ISD::UNDEF || isIndexed()) &&
2102           "Only indexed loads and stores have a non-undef offset operand");
2103  }
2104
2105  const SDOperand &getOffset() const {
2106    return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
2107  }
2108
2109  /// getAddressingMode - Return the addressing mode for this load or store:
2110  /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2111  ISD::MemIndexedMode getAddressingMode() const {
2112    return ISD::MemIndexedMode(SubclassData & 7);
2113  }
2114
2115  /// isIndexed - Return true if this is a pre/post inc/dec load/store.
2116  bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2117
2118  /// isUnindexed - Return true if this is NOT a pre/post inc/dec load/store.
2119  bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2120
2121  static bool classof(const LSBaseSDNode *) { return true; }
2122  static bool classof(const SDNode *N) {
2123    return N->getOpcode() == ISD::LOAD ||
2124           N->getOpcode() == ISD::STORE;
2125  }
2126};
2127
2128/// LoadSDNode - This class is used to represent ISD::LOAD nodes.
2129///
2130class LoadSDNode : public LSBaseSDNode {
2131  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2132protected:
2133  friend class SelectionDAG;
2134  LoadSDNode(SDOperand *ChainPtrOff, SDVTList VTs,
2135             ISD::MemIndexedMode AM, ISD::LoadExtType ETy, MVT LVT,
2136             const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
2137    : LSBaseSDNode(ISD::LOAD, ChainPtrOff, 3,
2138                   VTs, AM, LVT, SV, O, Align, Vol) {
2139    SubclassData |= (unsigned short)ETy << 3;
2140  }
2141public:
2142
2143  /// getExtensionType - Return whether this is a plain node,
2144  /// or one of the varieties of value-extending loads.
2145  ISD::LoadExtType getExtensionType() const {
2146    return ISD::LoadExtType((SubclassData >> 3) & 3);
2147  }
2148
2149  const SDOperand &getBasePtr() const { return getOperand(1); }
2150  const SDOperand &getOffset() const { return getOperand(2); }
2151
2152  static bool classof(const LoadSDNode *) { return true; }
2153  static bool classof(const SDNode *N) {
2154    return N->getOpcode() == ISD::LOAD;
2155  }
2156};
2157
2158/// StoreSDNode - This class is used to represent ISD::STORE nodes.
2159///
2160class StoreSDNode : public LSBaseSDNode {
2161  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2162protected:
2163  friend class SelectionDAG;
2164  StoreSDNode(SDOperand *ChainValuePtrOff, SDVTList VTs,
2165              ISD::MemIndexedMode AM, bool isTrunc, MVT SVT,
2166              const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
2167    : LSBaseSDNode(ISD::STORE, ChainValuePtrOff, 4,
2168                   VTs, AM, SVT, SV, O, Align, Vol) {
2169    SubclassData |= (unsigned short)isTrunc << 3;
2170  }
2171public:
2172
2173  /// isTruncatingStore - Return true if the op does a truncation before store.
2174  /// For integers this is the same as doing a TRUNCATE and storing the result.
2175  /// For floats, it is the same as doing an FP_ROUND and storing the result.
2176  bool isTruncatingStore() const { return (SubclassData >> 3) & 1; }
2177
2178  const SDOperand &getValue() const { return getOperand(1); }
2179  const SDOperand &getBasePtr() const { return getOperand(2); }
2180  const SDOperand &getOffset() const { return getOperand(3); }
2181
2182  static bool classof(const StoreSDNode *) { return true; }
2183  static bool classof(const SDNode *N) {
2184    return N->getOpcode() == ISD::STORE;
2185  }
2186};
2187
2188
2189class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
2190  SDNode *Node;
2191  unsigned Operand;
2192
2193  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
2194public:
2195  bool operator==(const SDNodeIterator& x) const {
2196    return Operand == x.Operand;
2197  }
2198  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
2199
2200  const SDNodeIterator &operator=(const SDNodeIterator &I) {
2201    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
2202    Operand = I.Operand;
2203    return *this;
2204  }
2205
2206  pointer operator*() const {
2207    return Node->getOperand(Operand).Val;
2208  }
2209  pointer operator->() const { return operator*(); }
2210
2211  SDNodeIterator& operator++() {                // Preincrement
2212    ++Operand;
2213    return *this;
2214  }
2215  SDNodeIterator operator++(int) { // Postincrement
2216    SDNodeIterator tmp = *this; ++*this; return tmp;
2217  }
2218
2219  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
2220  static SDNodeIterator end  (SDNode *N) {
2221    return SDNodeIterator(N, N->getNumOperands());
2222  }
2223
2224  unsigned getOperand() const { return Operand; }
2225  const SDNode *getNode() const { return Node; }
2226};
2227
2228template <> struct GraphTraits<SDNode*> {
2229  typedef SDNode NodeType;
2230  typedef SDNodeIterator ChildIteratorType;
2231  static inline NodeType *getEntryNode(SDNode *N) { return N; }
2232  static inline ChildIteratorType child_begin(NodeType *N) {
2233    return SDNodeIterator::begin(N);
2234  }
2235  static inline ChildIteratorType child_end(NodeType *N) {
2236    return SDNodeIterator::end(N);
2237  }
2238};
2239
2240/// LargestSDNode - The largest SDNode class.
2241///
2242typedef LoadSDNode LargestSDNode;
2243
2244// alist_traits specialization for pool-allocating SDNodes.
2245template <>
2246class alist_traits<SDNode, LargestSDNode> {
2247  typedef alist_iterator<SDNode, LargestSDNode> iterator;
2248
2249public:
2250  // Pool-allocate and recycle SDNodes.
2251  typedef RecyclingAllocator<BumpPtrAllocator, SDNode, LargestSDNode>
2252    AllocatorType;
2253
2254  // Allocate the allocator immediately inside the traits class.
2255  AllocatorType Allocator;
2256
2257  void addNodeToList(SDNode*) {}
2258  void removeNodeFromList(SDNode*) {}
2259  void transferNodesFromList(alist_traits &, iterator, iterator) {}
2260  void deleteNode(SDNode *N) {
2261    N->~SDNode();
2262    Allocator.Deallocate(N);
2263  }
2264};
2265
2266namespace ISD {
2267  /// isNormalLoad - Returns true if the specified node is a non-extending
2268  /// and unindexed load.
2269  inline bool isNormalLoad(const SDNode *N) {
2270    const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
2271    return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
2272      Ld->getAddressingMode() == ISD::UNINDEXED;
2273  }
2274
2275  /// isNON_EXTLoad - Returns true if the specified node is a non-extending
2276  /// load.
2277  inline bool isNON_EXTLoad(const SDNode *N) {
2278    return isa<LoadSDNode>(N) &&
2279      cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
2280  }
2281
2282  /// isEXTLoad - Returns true if the specified node is a EXTLOAD.
2283  ///
2284  inline bool isEXTLoad(const SDNode *N) {
2285    return isa<LoadSDNode>(N) &&
2286      cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
2287  }
2288
2289  /// isSEXTLoad - Returns true if the specified node is a SEXTLOAD.
2290  ///
2291  inline bool isSEXTLoad(const SDNode *N) {
2292    return isa<LoadSDNode>(N) &&
2293      cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
2294  }
2295
2296  /// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD.
2297  ///
2298  inline bool isZEXTLoad(const SDNode *N) {
2299    return isa<LoadSDNode>(N) &&
2300      cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
2301  }
2302
2303  /// isUNINDEXEDLoad - Returns true if the specified node is an unindexed load.
2304  ///
2305  inline bool isUNINDEXEDLoad(const SDNode *N) {
2306    return isa<LoadSDNode>(N) &&
2307      cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2308  }
2309
2310  /// isNormalStore - Returns true if the specified node is a non-truncating
2311  /// and unindexed store.
2312  inline bool isNormalStore(const SDNode *N) {
2313    const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
2314    return St && !St->isTruncatingStore() &&
2315      St->getAddressingMode() == ISD::UNINDEXED;
2316  }
2317
2318  /// isNON_TRUNCStore - Returns true if the specified node is a non-truncating
2319  /// store.
2320  inline bool isNON_TRUNCStore(const SDNode *N) {
2321    return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore();
2322  }
2323
2324  /// isTRUNCStore - Returns true if the specified node is a truncating
2325  /// store.
2326  inline bool isTRUNCStore(const SDNode *N) {
2327    return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore();
2328  }
2329
2330  /// isUNINDEXEDStore - Returns true if the specified node is an
2331  /// unindexed store.
2332  inline bool isUNINDEXEDStore(const SDNode *N) {
2333    return isa<StoreSDNode>(N) &&
2334      cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2335  }
2336}
2337
2338
2339} // end llvm namespace
2340
2341#endif
2342