SelectionDAGNodes.h revision 7ceebb437ebb18efefe72d8d2d0e9c762c3aa6b3
1//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SDNode class and derived classes, which are used to
11// represent the nodes and operations present in a SelectionDAG.  These nodes
12// and operations are machine code level operations, with some similarities to
13// the GCC RTL representation.
14//
15// Clients should include the SelectionDAG.h file instead of this file directly.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20#define LLVM_CODEGEN_SELECTIONDAGNODES_H
21
22#include "llvm/Value.h"
23#include "llvm/ADT/FoldingSet.h"
24#include "llvm/ADT/GraphTraits.h"
25#include "llvm/ADT/iterator"
26#include "llvm/CodeGen/ValueTypes.h"
27#include "llvm/Support/DataTypes.h"
28#include <cassert>
29
30namespace llvm {
31
32class SelectionDAG;
33class GlobalValue;
34class MachineBasicBlock;
35class MachineConstantPoolValue;
36class SDNode;
37template <typename T> struct simplify_type;
38template <typename T> struct ilist_traits;
39template<typename NodeTy, typename Traits> class iplist;
40template<typename NodeTy> class ilist_iterator;
41
42/// SDVTList - This represents a list of ValueType's that has been intern'd by
43/// a SelectionDAG.  Instances of this simple value class are returned by
44/// SelectionDAG::getVTList(...).
45///
46struct SDVTList {
47  const MVT::ValueType *VTs;
48  unsigned short NumVTs;
49};
50
51
52/// ISD namespace - This namespace contains an enum which represents all of the
53/// SelectionDAG node types and value types.
54///
55namespace ISD {
56  //===--------------------------------------------------------------------===//
57  /// ISD::NodeType enum - This enum defines all of the operators valid in a
58  /// SelectionDAG.
59  ///
60  enum NodeType {
61    // DELETED_NODE - This is an illegal flag value that is used to catch
62    // errors.  This opcode is not a legal opcode for any node.
63    DELETED_NODE,
64
65    // EntryToken - This is the marker used to indicate the start of the region.
66    EntryToken,
67
68    // Token factor - This node takes multiple tokens as input and produces a
69    // single token result.  This is used to represent the fact that the operand
70    // operators are independent of each other.
71    TokenFactor,
72
73    // AssertSext, AssertZext - These nodes record if a register contains a
74    // value that has already been zero or sign extended from a narrower type.
75    // These nodes take two operands.  The first is the node that has already
76    // been extended, and the second is a value type node indicating the width
77    // of the extension
78    AssertSext, AssertZext,
79
80    // Various leaf nodes.
81    STRING, BasicBlock, VALUETYPE, CONDCODE, Register,
82    Constant, ConstantFP,
83    GlobalAddress, FrameIndex, JumpTable, ConstantPool, ExternalSymbol,
84
85    // The address of the GOT
86    GLOBAL_OFFSET_TABLE,
87
88    // TargetConstant* - Like Constant*, but the DAG does not do any folding or
89    // simplification of the constant.
90    TargetConstant,
91    TargetConstantFP,
92
93    // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
94    // anything else with this node, and this is valid in the target-specific
95    // dag, turning into a GlobalAddress operand.
96    TargetGlobalAddress,
97    TargetFrameIndex,
98    TargetJumpTable,
99    TargetConstantPool,
100    TargetExternalSymbol,
101
102    /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
103    /// This node represents a target intrinsic function with no side effects.
104    /// The first operand is the ID number of the intrinsic from the
105    /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
106    /// node has returns the result of the intrinsic.
107    INTRINSIC_WO_CHAIN,
108
109    /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
110    /// This node represents a target intrinsic function with side effects that
111    /// returns a result.  The first operand is a chain pointer.  The second is
112    /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
113    /// operands to the intrinsic follow.  The node has two results, the result
114    /// of the intrinsic and an output chain.
115    INTRINSIC_W_CHAIN,
116
117    /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
118    /// This node represents a target intrinsic function with side effects that
119    /// does not return a result.  The first operand is a chain pointer.  The
120    /// second is the ID number of the intrinsic from the llvm::Intrinsic
121    /// namespace.  The operands to the intrinsic follow.
122    INTRINSIC_VOID,
123
124    // CopyToReg - This node has three operands: a chain, a register number to
125    // set to this value, and a value.
126    CopyToReg,
127
128    // CopyFromReg - This node indicates that the input value is a virtual or
129    // physical register that is defined outside of the scope of this
130    // SelectionDAG.  The register is available from the RegSDNode object.
131    CopyFromReg,
132
133    // UNDEF - An undefined node
134    UNDEF,
135
136    /// FORMAL_ARGUMENTS(CHAIN, CC#, ISVARARG) - This node represents the formal
137    /// arguments for a function.  CC# is a Constant value indicating the
138    /// calling convention of the function, and ISVARARG is a flag that
139    /// indicates whether the function is varargs or not.  This node has one
140    /// result value for each incoming argument, plus one for the output chain.
141    /// It must be custom legalized.
142    ///
143    FORMAL_ARGUMENTS,
144
145    /// RV1, RV2...RVn, CHAIN = CALL(CHAIN, CC#, ISVARARG, ISTAILCALL, CALLEE,
146    ///                              ARG0, SIGN0, ARG1, SIGN1, ... ARGn, SIGNn)
147    /// This node represents a fully general function call, before the legalizer
148    /// runs.  This has one result value for each argument / signness pair, plus
149    /// a chain result. It must be custom legalized.
150    CALL,
151
152    // EXTRACT_ELEMENT - This is used to get the first or second (determined by
153    // a Constant, which is required to be operand #1), element of the aggregate
154    // value specified as operand #0.  This is only for use before legalization,
155    // for values that will be broken into multiple registers.
156    EXTRACT_ELEMENT,
157
158    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
159    // two values of the same integer value type, this produces a value twice as
160    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
161    BUILD_PAIR,
162
163    // MERGE_VALUES - This node takes multiple discrete operands and returns
164    // them all as its individual results.  This nodes has exactly the same
165    // number of inputs and outputs, and is only valid before legalization.
166    // This node is useful for some pieces of the code generator that want to
167    // think about a single node with multiple results, not multiple nodes.
168    MERGE_VALUES,
169
170    // Simple integer binary arithmetic operators.
171    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
172
173    // Carry-setting nodes for multiple precision addition and subtraction.
174    // These nodes take two operands of the same value type, and produce two
175    // results.  The first result is the normal add or sub result, the second
176    // result is the carry flag result.
177    ADDC, SUBC,
178
179    // Carry-using nodes for multiple precision addition and subtraction.  These
180    // nodes take three operands: The first two are the normal lhs and rhs to
181    // the add or sub, and the third is the input carry flag.  These nodes
182    // produce two results; the normal result of the add or sub, and the output
183    // carry flag.  These nodes both read and write a carry flag to allow them
184    // to them to be chained together for add and sub of arbitrarily large
185    // values.
186    ADDE, SUBE,
187
188    // Simple binary floating point operators.
189    FADD, FSUB, FMUL, FDIV, FREM,
190
191    // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
192    // DAG node does not require that X and Y have the same type, just that they
193    // are both floating point.  X and the result must have the same type.
194    // FCOPYSIGN(f32, f64) is allowed.
195    FCOPYSIGN,
196
197    /// VBUILD_VECTOR(ELT1, ELT2, ELT3, ELT4,...,  COUNT,TYPE) - Return a vector
198    /// with the specified, possibly variable, elements.  The number of elements
199    /// is required to be a power of two.
200    VBUILD_VECTOR,
201
202    /// BUILD_VECTOR(ELT1, ELT2, ELT3, ELT4,...) - Return a vector
203    /// with the specified, possibly variable, elements.  The number of elements
204    /// is required to be a power of two.
205    BUILD_VECTOR,
206
207    /// VINSERT_VECTOR_ELT(VECTOR, VAL, IDX,  COUNT,TYPE) - Given a vector
208    /// VECTOR, an element ELEMENT, and a (potentially variable) index IDX,
209    /// return an vector with the specified element of VECTOR replaced with VAL.
210    /// COUNT and TYPE specify the type of vector, as is standard for V* nodes.
211    VINSERT_VECTOR_ELT,
212
213    /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR (a legal packed
214    /// type) with the element at IDX replaced with VAL.
215    INSERT_VECTOR_ELT,
216
217    /// VEXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
218    /// (an MVT::Vector value) identified by the (potentially variable) element
219    /// number IDX.
220    VEXTRACT_VECTOR_ELT,
221
222    /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
223    /// (a legal packed type vector) identified by the (potentially variable)
224    /// element number IDX.
225    EXTRACT_VECTOR_ELT,
226
227    /// VVECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC, COUNT,TYPE) - Returns a vector,
228    /// of the same type as VEC1/VEC2.  SHUFFLEVEC is a VBUILD_VECTOR of
229    /// constant int values that indicate which value each result element will
230    /// get.  The elements of VEC1/VEC2 are enumerated in order.  This is quite
231    /// similar to the Altivec 'vperm' instruction, except that the indices must
232    /// be constants and are in terms of the element size of VEC1/VEC2, not in
233    /// terms of bytes.
234    VVECTOR_SHUFFLE,
235
236    /// VECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC) - Returns a vector, of the same
237    /// type as VEC1/VEC2.  SHUFFLEVEC is a BUILD_VECTOR of constant int values
238    /// (regardless of whether its datatype is legal or not) that indicate
239    /// which value each result element will get.  The elements of VEC1/VEC2 are
240    /// enumerated in order.  This is quite similar to the Altivec 'vperm'
241    /// instruction, except that the indices must be constants and are in terms
242    /// of the element size of VEC1/VEC2, not in terms of bytes.
243    VECTOR_SHUFFLE,
244
245    /// X = VBIT_CONVERT(Y)  and X = VBIT_CONVERT(Y, COUNT,TYPE) - This node
246    /// represents a conversion from or to an ISD::Vector type.
247    ///
248    /// This is lowered to a BIT_CONVERT of the appropriate input/output types.
249    /// The input and output are required to have the same size and at least one
250    /// is required to be a vector (if neither is a vector, just use
251    /// BIT_CONVERT).
252    ///
253    /// If the result is a vector, this takes three operands (like any other
254    /// vector producer) which indicate the size and type of the vector result.
255    /// Otherwise it takes one input.
256    VBIT_CONVERT,
257
258    /// BINOP(LHS, RHS,  COUNT,TYPE)
259    /// Simple abstract vector operators.  Unlike the integer and floating point
260    /// binary operators, these nodes also take two additional operands:
261    /// a constant element count, and a value type node indicating the type of
262    /// the elements.  The order is count, type, op0, op1.  All vector opcodes,
263    /// including VLOAD and VConstant must currently have count and type as
264    /// their last two operands.
265    VADD, VSUB, VMUL, VSDIV, VUDIV,
266    VAND, VOR, VXOR,
267
268    /// VSELECT(COND,LHS,RHS,  COUNT,TYPE) - Select for MVT::Vector values.
269    /// COND is a boolean value.  This node return LHS if COND is true, RHS if
270    /// COND is false.
271    VSELECT,
272
273    /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
274    /// scalar value into the low element of the resultant vector type.  The top
275    /// elements of the vector are undefined.
276    SCALAR_TO_VECTOR,
277
278    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
279    // an unsigned/signed value of type i[2*n], then return the top part.
280    MULHU, MULHS,
281
282    // Bitwise operators - logical and, logical or, logical xor, shift left,
283    // shift right algebraic (shift in sign bits), shift right logical (shift in
284    // zeroes), rotate left, rotate right, and byteswap.
285    AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
286
287    // Counting operators
288    CTTZ, CTLZ, CTPOP,
289
290    // Select(COND, TRUEVAL, FALSEVAL)
291    SELECT,
292
293    // Select with condition operator - This selects between a true value and
294    // a false value (ops #2 and #3) based on the boolean result of comparing
295    // the lhs and rhs (ops #0 and #1) of a conditional expression with the
296    // condition code in op #4, a CondCodeSDNode.
297    SELECT_CC,
298
299    // SetCC operator - This evaluates to a boolean (i1) true value if the
300    // condition is true.  The operands to this are the left and right operands
301    // to compare (ops #0, and #1) and the condition code to compare them with
302    // (op #2) as a CondCodeSDNode.
303    SETCC,
304
305    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
306    // integer shift operations, just like ADD/SUB_PARTS.  The operation
307    // ordering is:
308    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
309    SHL_PARTS, SRA_PARTS, SRL_PARTS,
310
311    // Conversion operators.  These are all single input single output
312    // operations.  For all of these, the result type must be strictly
313    // wider or narrower (depending on the operation) than the source
314    // type.
315
316    // SIGN_EXTEND - Used for integer types, replicating the sign bit
317    // into new bits.
318    SIGN_EXTEND,
319
320    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
321    ZERO_EXTEND,
322
323    // ANY_EXTEND - Used for integer types.  The high bits are undefined.
324    ANY_EXTEND,
325
326    // TRUNCATE - Completely drop the high bits.
327    TRUNCATE,
328
329    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
330    // depends on the first letter) to floating point.
331    SINT_TO_FP,
332    UINT_TO_FP,
333
334    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
335    // sign extend a small value in a large integer register (e.g. sign
336    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
337    // with the 7th bit).  The size of the smaller type is indicated by the 1th
338    // operand, a ValueType node.
339    SIGN_EXTEND_INREG,
340
341    // FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
342    // integer.
343    FP_TO_SINT,
344    FP_TO_UINT,
345
346    // FP_ROUND - Perform a rounding operation from the current
347    // precision down to the specified precision (currently always 64->32).
348    FP_ROUND,
349
350    // FP_ROUND_INREG - This operator takes a floating point register, and
351    // rounds it to a floating point value.  It then promotes it and returns it
352    // in a register of the same size.  This operation effectively just discards
353    // excess precision.  The type to round down to is specified by the 1th
354    // operation, a VTSDNode (currently always 64->32->64).
355    FP_ROUND_INREG,
356
357    // FP_EXTEND - Extend a smaller FP type into a larger FP type.
358    FP_EXTEND,
359
360    // BIT_CONVERT - Theis operator converts between integer and FP values, as
361    // if one was stored to memory as integer and the other was loaded from the
362    // same address (or equivalently for vector format conversions, etc).  The
363    // source and result are required to have the same bit size (e.g.
364    // f32 <-> i32).  This can also be used for int-to-int or fp-to-fp
365    // conversions, but that is a noop, deleted by getNode().
366    BIT_CONVERT,
367
368    // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI - Perform unary floating point
369    // negation, absolute value, square root, sine and cosine, and powi
370    // operations.
371    FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI,
372
373    // LOAD and STORE have token chains as their first operand, then the same
374    // operands as an LLVM load/store instruction, then an offset node that
375    // is added / subtracted from the base pointer to form the address (for
376    // indexed memory ops).
377    LOAD, STORE,
378
379    // Abstract vector version of LOAD.  VLOAD has a constant element count as
380    // the first operand, followed by a value type node indicating the type of
381    // the elements, a token chain, a pointer operand, and a SRCVALUE node.
382    VLOAD,
383
384    // TRUNCSTORE - This operators truncates (for integer) or rounds (for FP) a
385    // value and stores it to memory in one operation.  This can be used for
386    // either integer or floating point operands.  The first four operands of
387    // this are the same as a standard store.  The fifth is the ValueType to
388    // store it as (which will be smaller than the source value).
389    TRUNCSTORE,
390
391    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
392    // to a specified boundary.  The first operand is the token chain, the
393    // second is the number of bytes to allocate, and the third is the alignment
394    // boundary.  The size is guaranteed to be a multiple of the stack
395    // alignment, and the alignment is guaranteed to be bigger than the stack
396    // alignment (if required) or 0 to get standard stack alignment.
397    DYNAMIC_STACKALLOC,
398
399    // Control flow instructions.  These all have token chains.
400
401    // BR - Unconditional branch.  The first operand is the chain
402    // operand, the second is the MBB to branch to.
403    BR,
404
405    // BRIND - Indirect branch.  The first operand is the chain, the second
406    // is the value to branch to, which must be of the same type as the target's
407    // pointer type.
408    BRIND,
409
410    // BR_JT - Jumptable branch. The first operand is the chain, the second
411    // is the jumptable index, the last one is the jumptable entry index.
412    BR_JT,
413
414    // BRCOND - Conditional branch.  The first operand is the chain,
415    // the second is the condition, the third is the block to branch
416    // to if the condition is true.
417    BRCOND,
418
419    // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
420    // that the condition is represented as condition code, and two nodes to
421    // compare, rather than as a combined SetCC node.  The operands in order are
422    // chain, cc, lhs, rhs, block to branch to if condition is true.
423    BR_CC,
424
425    // RET - Return from function.  The first operand is the chain,
426    // and any subsequent operands are pairs of return value and return value
427    // signness for the function.  This operation can have variable number of
428    // operands.
429    RET,
430
431    // INLINEASM - Represents an inline asm block.  This node always has two
432    // return values: a chain and a flag result.  The inputs are as follows:
433    //   Operand #0   : Input chain.
434    //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
435    //   Operand #2n+2: A RegisterNode.
436    //   Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
437    //   Operand #last: Optional, an incoming flag.
438    INLINEASM,
439
440    // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
441    // value, the same type as the pointer type for the system, and an output
442    // chain.
443    STACKSAVE,
444
445    // STACKRESTORE has two operands, an input chain and a pointer to restore to
446    // it returns an output chain.
447    STACKRESTORE,
448
449    // MEMSET/MEMCPY/MEMMOVE - The first operand is the chain, and the rest
450    // correspond to the operands of the LLVM intrinsic functions.  The only
451    // result is a token chain.  The alignment argument is guaranteed to be a
452    // Constant node.
453    MEMSET,
454    MEMMOVE,
455    MEMCPY,
456
457    // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
458    // a call sequence, and carry arbitrary information that target might want
459    // to know.  The first operand is a chain, the rest are specified by the
460    // target and not touched by the DAG optimizers.
461    CALLSEQ_START,  // Beginning of a call sequence
462    CALLSEQ_END,    // End of a call sequence
463
464    // VAARG - VAARG has three operands: an input chain, a pointer, and a
465    // SRCVALUE.  It returns a pair of values: the vaarg value and a new chain.
466    VAARG,
467
468    // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
469    // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
470    // source.
471    VACOPY,
472
473    // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
474    // pointer, and a SRCVALUE.
475    VAEND, VASTART,
476
477    // SRCVALUE - This corresponds to a Value*, and is used to associate memory
478    // locations with their value.  This allows one use alias analysis
479    // information in the backend.
480    SRCVALUE,
481
482    // PCMARKER - This corresponds to the pcmarker intrinsic.
483    PCMARKER,
484
485    // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
486    // The only operand is a chain and a value and a chain are produced.  The
487    // value is the contents of the architecture specific cycle counter like
488    // register (or other high accuracy low latency clock source)
489    READCYCLECOUNTER,
490
491    // HANDLENODE node - Used as a handle for various purposes.
492    HANDLENODE,
493
494    // LOCATION - This node is used to represent a source location for debug
495    // info.  It takes token chain as input, then a line number, then a column
496    // number, then a filename, then a working dir.  It produces a token chain
497    // as output.
498    LOCATION,
499
500    // DEBUG_LOC - This node is used to represent source line information
501    // embedded in the code.  It takes a token chain as input, then a line
502    // number, then a column then a file id (provided by MachineDebugInfo.) It
503    // produces a token chain as output.
504    DEBUG_LOC,
505
506    // DEBUG_LABEL - This node is used to mark a location in the code where a
507    // label should be generated for use by the debug information.  It takes a
508    // token chain as input and then a unique id (provided by MachineDebugInfo.)
509    // It produces a token chain as output.
510    DEBUG_LABEL,
511
512    // BUILTIN_OP_END - This must be the last enum value in this list.
513    BUILTIN_OP_END
514  };
515
516  /// Node predicates
517
518  /// isBuildVectorAllOnes - Return true if the specified node is a
519  /// BUILD_VECTOR where all of the elements are ~0 or undef.
520  bool isBuildVectorAllOnes(const SDNode *N);
521
522  /// isBuildVectorAllZeros - Return true if the specified node is a
523  /// BUILD_VECTOR where all of the elements are 0 or undef.
524  bool isBuildVectorAllZeros(const SDNode *N);
525
526  //===--------------------------------------------------------------------===//
527  /// MemOpAddrMode enum - This enum defines the three load / store addressing
528  /// modes.
529  ///
530  /// UNINDEXED    "Normal" load / store. The effective address is already
531  ///              computed and is available in the base pointer. The offset
532  ///              operand is always undefined. In addition to producing a
533  ///              chain, an unindexed load produces one value (result of the
534  ///              load); an unindexed store does not produces a value.
535  ///
536  /// PRE_INC      Similar to the unindexed mode where the effective address is
537  /// PRE_DEC      the value of the base pointer add / subtract the offset.
538  ///              It considers the computation as being folded into the load /
539  ///              store operation (i.e. the load / store does the address
540  ///              computation as well as performing the memory transaction).
541  ///              The base operand is always undefined. In addition to
542  ///              producing a chain, pre-indexed load produces two values
543  ///              (result of the load and the result of the address
544  ///              computation); a pre-indexed store produces one value (result
545  ///              of the address computation).
546  ///
547  /// POST_INC     The effective address is the value of the base pointer. The
548  /// POST_DEC     value of the offset operand is then added to / subtracted
549  ///              from the base after memory transaction. In addition to
550  ///              producing a chain, post-indexed load produces two values
551  ///              (the result of the load and the result of the base +/- offset
552  ///              computation); a post-indexed store produces one value (the
553  ///              the result of the base +/- offset computation).
554  ///
555  enum MemOpAddrMode {
556    UNINDEXED = 0,
557    PRE_INC,
558    PRE_DEC,
559    POST_INC,
560    POST_DEC
561  };
562
563  //===--------------------------------------------------------------------===//
564  /// LoadExtType enum - This enum defines the three variants of LOADEXT
565  /// (load with extension).
566  ///
567  /// SEXTLOAD loads the integer operand and sign extends it to a larger
568  ///          integer result type.
569  /// ZEXTLOAD loads the integer operand and zero extends it to a larger
570  ///          integer result type.
571  /// EXTLOAD  is used for three things: floating point extending loads,
572  ///          integer extending loads [the top bits are undefined], and vector
573  ///          extending loads [load into low elt].
574  ///
575  enum LoadExtType {
576    NON_EXTLOAD = 0,
577    EXTLOAD,
578    SEXTLOAD,
579    ZEXTLOAD,
580    LAST_LOADX_TYPE
581  };
582
583  //===--------------------------------------------------------------------===//
584  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
585  /// below work out, when considering SETFALSE (something that never exists
586  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
587  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
588  /// to.  If the "N" column is 1, the result of the comparison is undefined if
589  /// the input is a NAN.
590  ///
591  /// All of these (except for the 'always folded ops') should be handled for
592  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
593  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
594  ///
595  /// Note that these are laid out in a specific order to allow bit-twiddling
596  /// to transform conditions.
597  enum CondCode {
598    // Opcode          N U L G E       Intuitive operation
599    SETFALSE,      //    0 0 0 0       Always false (always folded)
600    SETOEQ,        //    0 0 0 1       True if ordered and equal
601    SETOGT,        //    0 0 1 0       True if ordered and greater than
602    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
603    SETOLT,        //    0 1 0 0       True if ordered and less than
604    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
605    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
606    SETO,          //    0 1 1 1       True if ordered (no nans)
607    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
608    SETUEQ,        //    1 0 0 1       True if unordered or equal
609    SETUGT,        //    1 0 1 0       True if unordered or greater than
610    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
611    SETULT,        //    1 1 0 0       True if unordered or less than
612    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
613    SETUNE,        //    1 1 1 0       True if unordered or not equal
614    SETTRUE,       //    1 1 1 1       Always true (always folded)
615    // Don't care operations: undefined if the input is a nan.
616    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
617    SETEQ,         //  1 X 0 0 1       True if equal
618    SETGT,         //  1 X 0 1 0       True if greater than
619    SETGE,         //  1 X 0 1 1       True if greater than or equal
620    SETLT,         //  1 X 1 0 0       True if less than
621    SETLE,         //  1 X 1 0 1       True if less than or equal
622    SETNE,         //  1 X 1 1 0       True if not equal
623    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
624
625    SETCC_INVALID       // Marker value.
626  };
627
628  /// isSignedIntSetCC - Return true if this is a setcc instruction that
629  /// performs a signed comparison when used with integer operands.
630  inline bool isSignedIntSetCC(CondCode Code) {
631    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
632  }
633
634  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
635  /// performs an unsigned comparison when used with integer operands.
636  inline bool isUnsignedIntSetCC(CondCode Code) {
637    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
638  }
639
640  /// isTrueWhenEqual - Return true if the specified condition returns true if
641  /// the two operands to the condition are equal.  Note that if one of the two
642  /// operands is a NaN, this value is meaningless.
643  inline bool isTrueWhenEqual(CondCode Cond) {
644    return ((int)Cond & 1) != 0;
645  }
646
647  /// getUnorderedFlavor - This function returns 0 if the condition is always
648  /// false if an operand is a NaN, 1 if the condition is always true if the
649  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
650  /// NaN.
651  inline unsigned getUnorderedFlavor(CondCode Cond) {
652    return ((int)Cond >> 3) & 3;
653  }
654
655  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
656  /// 'op' is a valid SetCC operation.
657  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
658
659  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
660  /// when given the operation for (X op Y).
661  CondCode getSetCCSwappedOperands(CondCode Operation);
662
663  /// getSetCCOrOperation - Return the result of a logical OR between different
664  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
665  /// function returns SETCC_INVALID if it is not possible to represent the
666  /// resultant comparison.
667  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
668
669  /// getSetCCAndOperation - Return the result of a logical AND between
670  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
671  /// function returns SETCC_INVALID if it is not possible to represent the
672  /// resultant comparison.
673  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
674}  // end llvm::ISD namespace
675
676
677//===----------------------------------------------------------------------===//
678/// SDOperand - Unlike LLVM values, Selection DAG nodes may return multiple
679/// values as the result of a computation.  Many nodes return multiple values,
680/// from loads (which define a token and a return value) to ADDC (which returns
681/// a result and a carry value), to calls (which may return an arbitrary number
682/// of values).
683///
684/// As such, each use of a SelectionDAG computation must indicate the node that
685/// computes it as well as which return value to use from that node.  This pair
686/// of information is represented with the SDOperand value type.
687///
688class SDOperand {
689public:
690  SDNode *Val;        // The node defining the value we are using.
691  unsigned ResNo;     // Which return value of the node we are using.
692
693  SDOperand() : Val(0), ResNo(0) {}
694  SDOperand(SDNode *val, unsigned resno) : Val(val), ResNo(resno) {}
695
696  bool operator==(const SDOperand &O) const {
697    return Val == O.Val && ResNo == O.ResNo;
698  }
699  bool operator!=(const SDOperand &O) const {
700    return !operator==(O);
701  }
702  bool operator<(const SDOperand &O) const {
703    return Val < O.Val || (Val == O.Val && ResNo < O.ResNo);
704  }
705
706  SDOperand getValue(unsigned R) const {
707    return SDOperand(Val, R);
708  }
709
710  // isOperand - Return true if this node is an operand of N.
711  bool isOperand(SDNode *N) const;
712
713  /// getValueType - Return the ValueType of the referenced return value.
714  ///
715  inline MVT::ValueType getValueType() const;
716
717  // Forwarding methods - These forward to the corresponding methods in SDNode.
718  inline unsigned getOpcode() const;
719  inline unsigned getNumOperands() const;
720  inline const SDOperand &getOperand(unsigned i) const;
721  inline uint64_t getConstantOperandVal(unsigned i) const;
722  inline bool isTargetOpcode() const;
723  inline unsigned getTargetOpcode() const;
724
725  /// hasOneUse - Return true if there is exactly one operation using this
726  /// result value of the defining operator.
727  inline bool hasOneUse() const;
728};
729
730
731/// simplify_type specializations - Allow casting operators to work directly on
732/// SDOperands as if they were SDNode*'s.
733template<> struct simplify_type<SDOperand> {
734  typedef SDNode* SimpleType;
735  static SimpleType getSimplifiedValue(const SDOperand &Val) {
736    return static_cast<SimpleType>(Val.Val);
737  }
738};
739template<> struct simplify_type<const SDOperand> {
740  typedef SDNode* SimpleType;
741  static SimpleType getSimplifiedValue(const SDOperand &Val) {
742    return static_cast<SimpleType>(Val.Val);
743  }
744};
745
746
747/// SDNode - Represents one node in the SelectionDAG.
748///
749class SDNode : public FoldingSetNode {
750  /// NodeType - The operation that this node performs.
751  ///
752  unsigned short NodeType;
753
754  /// NodeId - Unique id per SDNode in the DAG.
755  int NodeId;
756
757  /// OperandList - The values that are used by this operation.
758  ///
759  SDOperand *OperandList;
760
761  /// ValueList - The types of the values this node defines.  SDNode's may
762  /// define multiple values simultaneously.
763  const MVT::ValueType *ValueList;
764
765  /// NumOperands/NumValues - The number of entries in the Operand/Value list.
766  unsigned short NumOperands, NumValues;
767
768  /// Prev/Next pointers - These pointers form the linked list of of the
769  /// AllNodes list in the current DAG.
770  SDNode *Prev, *Next;
771  friend struct ilist_traits<SDNode>;
772
773  /// Uses - These are all of the SDNode's that use a value produced by this
774  /// node.
775  SmallVector<SDNode*,3> Uses;
776
777  // Out-of-line virtual method to give class a home.
778  virtual void ANCHOR();
779public:
780  virtual ~SDNode() {
781    assert(NumOperands == 0 && "Operand list not cleared before deletion");
782    NodeType = ISD::DELETED_NODE;
783  }
784
785  //===--------------------------------------------------------------------===//
786  //  Accessors
787  //
788  unsigned getOpcode()  const { return NodeType; }
789  bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
790  unsigned getTargetOpcode() const {
791    assert(isTargetOpcode() && "Not a target opcode!");
792    return NodeType - ISD::BUILTIN_OP_END;
793  }
794
795  size_t use_size() const { return Uses.size(); }
796  bool use_empty() const { return Uses.empty(); }
797  bool hasOneUse() const { return Uses.size() == 1; }
798
799  /// getNodeId - Return the unique node id.
800  ///
801  int getNodeId() const { return NodeId; }
802
803  typedef SmallVector<SDNode*,3>::const_iterator use_iterator;
804  use_iterator use_begin() const { return Uses.begin(); }
805  use_iterator use_end() const { return Uses.end(); }
806
807  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
808  /// indicated value.  This method ignores uses of other values defined by this
809  /// operation.
810  bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
811
812  // isOnlyUse - Return true if this node is the only use of N.
813  bool isOnlyUse(SDNode *N) const;
814
815  // isOperand - Return true if this node is an operand of N.
816  bool isOperand(SDNode *N) const;
817
818  // isPredecessor - Return true if this node is a predecessor of N.
819  bool isPredecessor(SDNode *N) const;
820
821  /// getNumOperands - Return the number of values used by this operation.
822  ///
823  unsigned getNumOperands() const { return NumOperands; }
824
825  /// getConstantOperandVal - Helper method returns the integer value of a
826  /// ConstantSDNode operand.
827  uint64_t getConstantOperandVal(unsigned Num) const;
828
829  const SDOperand &getOperand(unsigned Num) const {
830    assert(Num < NumOperands && "Invalid child # of SDNode!");
831    return OperandList[Num];
832  }
833
834  typedef const SDOperand* op_iterator;
835  op_iterator op_begin() const { return OperandList; }
836  op_iterator op_end() const { return OperandList+NumOperands; }
837
838
839  SDVTList getVTList() const {
840    SDVTList X = { ValueList, NumValues };
841    return X;
842  };
843
844  /// getNumValues - Return the number of values defined/returned by this
845  /// operator.
846  ///
847  unsigned getNumValues() const { return NumValues; }
848
849  /// getValueType - Return the type of a specified result.
850  ///
851  MVT::ValueType getValueType(unsigned ResNo) const {
852    assert(ResNo < NumValues && "Illegal result number!");
853    return ValueList[ResNo];
854  }
855
856  typedef const MVT::ValueType* value_iterator;
857  value_iterator value_begin() const { return ValueList; }
858  value_iterator value_end() const { return ValueList+NumValues; }
859
860  /// getOperationName - Return the opcode of this operation for printing.
861  ///
862  const char* getOperationName(const SelectionDAG *G = 0) const;
863  static const char* getAddressingModeName(ISD::MemOpAddrMode AM);
864  void dump() const;
865  void dump(const SelectionDAG *G) const;
866
867  static bool classof(const SDNode *) { return true; }
868
869  /// Profile - Gather unique data for the node.
870  ///
871  void Profile(FoldingSetNodeID &ID);
872
873protected:
874  friend class SelectionDAG;
875
876  /// getValueTypeList - Return a pointer to the specified value type.
877  ///
878  static MVT::ValueType *getValueTypeList(MVT::ValueType VT);
879
880  SDNode(unsigned NT, MVT::ValueType VT) : NodeType(NT), NodeId(-1) {
881    OperandList = 0; NumOperands = 0;
882    ValueList = getValueTypeList(VT);
883    NumValues = 1;
884    Prev = 0; Next = 0;
885  }
886  SDNode(unsigned NT, SDOperand Op)
887    : NodeType(NT), NodeId(-1) {
888    OperandList = new SDOperand[1];
889    OperandList[0] = Op;
890    NumOperands = 1;
891    Op.Val->Uses.push_back(this);
892    ValueList = 0;
893    NumValues = 0;
894    Prev = 0; Next = 0;
895  }
896  SDNode(unsigned NT, SDOperand N1, SDOperand N2)
897    : NodeType(NT), NodeId(-1) {
898    OperandList = new SDOperand[2];
899    OperandList[0] = N1;
900    OperandList[1] = N2;
901    NumOperands = 2;
902    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
903    ValueList = 0;
904    NumValues = 0;
905    Prev = 0; Next = 0;
906  }
907  SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3)
908    : NodeType(NT), NodeId(-1) {
909    OperandList = new SDOperand[3];
910    OperandList[0] = N1;
911    OperandList[1] = N2;
912    OperandList[2] = N3;
913    NumOperands = 3;
914
915    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
916    N3.Val->Uses.push_back(this);
917    ValueList = 0;
918    NumValues = 0;
919    Prev = 0; Next = 0;
920  }
921  SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3, SDOperand N4)
922    : NodeType(NT), NodeId(-1) {
923    OperandList = new SDOperand[4];
924    OperandList[0] = N1;
925    OperandList[1] = N2;
926    OperandList[2] = N3;
927    OperandList[3] = N4;
928    NumOperands = 4;
929
930    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
931    N3.Val->Uses.push_back(this); N4.Val->Uses.push_back(this);
932    ValueList = 0;
933    NumValues = 0;
934    Prev = 0; Next = 0;
935  }
936  SDNode(unsigned Opc, const SDOperand *Ops, unsigned NumOps)
937    : NodeType(Opc), NodeId(-1) {
938    NumOperands = NumOps;
939    OperandList = new SDOperand[NumOperands];
940
941    for (unsigned i = 0, e = NumOps; i != e; ++i) {
942      OperandList[i] = Ops[i];
943      SDNode *N = OperandList[i].Val;
944      N->Uses.push_back(this);
945    }
946    ValueList = 0;
947    NumValues = 0;
948    Prev = 0; Next = 0;
949  }
950
951  /// MorphNodeTo - This clears the return value and operands list, and sets the
952  /// opcode of the node to the specified value.  This should only be used by
953  /// the SelectionDAG class.
954  void MorphNodeTo(unsigned Opc) {
955    NodeType = Opc;
956    ValueList = 0;
957    NumValues = 0;
958
959    // Clear the operands list, updating used nodes to remove this from their
960    // use list.
961    for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
962      I->Val->removeUser(this);
963    delete [] OperandList;
964    OperandList = 0;
965    NumOperands = 0;
966  }
967
968  void setValueTypes(SDVTList L) {
969    assert(NumValues == 0 && "Should not have values yet!");
970    ValueList = L.VTs;
971    NumValues = L.NumVTs;
972  }
973
974  void setOperands(SDOperand Op0) {
975    assert(NumOperands == 0 && "Should not have operands yet!");
976    OperandList = new SDOperand[1];
977    OperandList[0] = Op0;
978    NumOperands = 1;
979    Op0.Val->Uses.push_back(this);
980  }
981  void setOperands(SDOperand Op0, SDOperand Op1) {
982    assert(NumOperands == 0 && "Should not have operands yet!");
983    OperandList = new SDOperand[2];
984    OperandList[0] = Op0;
985    OperandList[1] = Op1;
986    NumOperands = 2;
987    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
988  }
989  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2) {
990    assert(NumOperands == 0 && "Should not have operands yet!");
991    OperandList = new SDOperand[3];
992    OperandList[0] = Op0;
993    OperandList[1] = Op1;
994    OperandList[2] = Op2;
995    NumOperands = 3;
996    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
997    Op2.Val->Uses.push_back(this);
998  }
999  void setOperands(const SDOperand *Ops, unsigned NumOps) {
1000    assert(NumOperands == 0 && "Should not have operands yet!");
1001    NumOperands = NumOps;
1002    OperandList = new SDOperand[NumOperands];
1003
1004    for (unsigned i = 0, e = NumOps; i != e; ++i) {
1005      OperandList[i] = Ops[i];
1006      SDNode *N = OperandList[i].Val;
1007      N->Uses.push_back(this);
1008    }
1009  }
1010
1011  void addUser(SDNode *User) {
1012    Uses.push_back(User);
1013  }
1014  void removeUser(SDNode *User) {
1015    // Remove this user from the operand's use list.
1016    for (unsigned i = Uses.size(); ; --i) {
1017      assert(i != 0 && "Didn't find user!");
1018      if (Uses[i-1] == User) {
1019        Uses[i-1] = Uses.back();
1020        Uses.pop_back();
1021        return;
1022      }
1023    }
1024  }
1025
1026  void setNodeId(int Id) {
1027    NodeId = Id;
1028  }
1029};
1030
1031
1032// Define inline functions from the SDOperand class.
1033
1034inline unsigned SDOperand::getOpcode() const {
1035  return Val->getOpcode();
1036}
1037inline MVT::ValueType SDOperand::getValueType() const {
1038  return Val->getValueType(ResNo);
1039}
1040inline unsigned SDOperand::getNumOperands() const {
1041  return Val->getNumOperands();
1042}
1043inline const SDOperand &SDOperand::getOperand(unsigned i) const {
1044  return Val->getOperand(i);
1045}
1046inline uint64_t SDOperand::getConstantOperandVal(unsigned i) const {
1047  return Val->getConstantOperandVal(i);
1048}
1049inline bool SDOperand::isTargetOpcode() const {
1050  return Val->isTargetOpcode();
1051}
1052inline unsigned SDOperand::getTargetOpcode() const {
1053  return Val->getTargetOpcode();
1054}
1055inline bool SDOperand::hasOneUse() const {
1056  return Val->hasNUsesOfValue(1, ResNo);
1057}
1058
1059/// HandleSDNode - This class is used to form a handle around another node that
1060/// is persistant and is updated across invocations of replaceAllUsesWith on its
1061/// operand.  This node should be directly created by end-users and not added to
1062/// the AllNodes list.
1063class HandleSDNode : public SDNode {
1064public:
1065  HandleSDNode(SDOperand X) : SDNode(ISD::HANDLENODE, X) {}
1066  ~HandleSDNode() {
1067    MorphNodeTo(ISD::HANDLENODE);  // Drops operand uses.
1068  }
1069
1070  SDOperand getValue() const { return getOperand(0); }
1071};
1072
1073class StringSDNode : public SDNode {
1074  std::string Value;
1075protected:
1076  friend class SelectionDAG;
1077  StringSDNode(const std::string &val)
1078    : SDNode(ISD::STRING, MVT::Other), Value(val) {
1079  }
1080public:
1081  const std::string &getValue() const { return Value; }
1082  static bool classof(const StringSDNode *) { return true; }
1083  static bool classof(const SDNode *N) {
1084    return N->getOpcode() == ISD::STRING;
1085  }
1086};
1087
1088class ConstantSDNode : public SDNode {
1089  uint64_t Value;
1090protected:
1091  friend class SelectionDAG;
1092  ConstantSDNode(bool isTarget, uint64_t val, MVT::ValueType VT)
1093    : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, VT), Value(val) {
1094  }
1095public:
1096
1097  uint64_t getValue() const { return Value; }
1098
1099  int64_t getSignExtended() const {
1100    unsigned Bits = MVT::getSizeInBits(getValueType(0));
1101    return ((int64_t)Value << (64-Bits)) >> (64-Bits);
1102  }
1103
1104  bool isNullValue() const { return Value == 0; }
1105  bool isAllOnesValue() const {
1106    return Value == MVT::getIntVTBitMask(getValueType(0));
1107  }
1108
1109  static bool classof(const ConstantSDNode *) { return true; }
1110  static bool classof(const SDNode *N) {
1111    return N->getOpcode() == ISD::Constant ||
1112           N->getOpcode() == ISD::TargetConstant;
1113  }
1114};
1115
1116class ConstantFPSDNode : public SDNode {
1117  double Value;
1118protected:
1119  friend class SelectionDAG;
1120  ConstantFPSDNode(bool isTarget, double val, MVT::ValueType VT)
1121    : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, VT),
1122      Value(val) {
1123  }
1124public:
1125
1126  double getValue() const { return Value; }
1127
1128  /// isExactlyValue - We don't rely on operator== working on double values, as
1129  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1130  /// As such, this method can be used to do an exact bit-for-bit comparison of
1131  /// two floating point values.
1132  bool isExactlyValue(double V) const;
1133
1134  static bool classof(const ConstantFPSDNode *) { return true; }
1135  static bool classof(const SDNode *N) {
1136    return N->getOpcode() == ISD::ConstantFP ||
1137           N->getOpcode() == ISD::TargetConstantFP;
1138  }
1139};
1140
1141class GlobalAddressSDNode : public SDNode {
1142  GlobalValue *TheGlobal;
1143  int Offset;
1144protected:
1145  friend class SelectionDAG;
1146  GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT::ValueType VT,
1147                      int o=0)
1148    : SDNode(isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress, VT),
1149      Offset(o) {
1150    TheGlobal = const_cast<GlobalValue*>(GA);
1151  }
1152public:
1153
1154  GlobalValue *getGlobal() const { return TheGlobal; }
1155  int getOffset() const { return Offset; }
1156
1157  static bool classof(const GlobalAddressSDNode *) { return true; }
1158  static bool classof(const SDNode *N) {
1159    return N->getOpcode() == ISD::GlobalAddress ||
1160           N->getOpcode() == ISD::TargetGlobalAddress;
1161  }
1162};
1163
1164
1165class FrameIndexSDNode : public SDNode {
1166  int FI;
1167protected:
1168  friend class SelectionDAG;
1169  FrameIndexSDNode(int fi, MVT::ValueType VT, bool isTarg)
1170    : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, VT), FI(fi) {}
1171public:
1172
1173  int getIndex() const { return FI; }
1174
1175  static bool classof(const FrameIndexSDNode *) { return true; }
1176  static bool classof(const SDNode *N) {
1177    return N->getOpcode() == ISD::FrameIndex ||
1178           N->getOpcode() == ISD::TargetFrameIndex;
1179  }
1180};
1181
1182class JumpTableSDNode : public SDNode {
1183  int JTI;
1184protected:
1185  friend class SelectionDAG;
1186  JumpTableSDNode(int jti, MVT::ValueType VT, bool isTarg)
1187    : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable, VT),
1188    JTI(jti) {}
1189public:
1190
1191    int getIndex() const { return JTI; }
1192
1193  static bool classof(const JumpTableSDNode *) { return true; }
1194  static bool classof(const SDNode *N) {
1195    return N->getOpcode() == ISD::JumpTable ||
1196           N->getOpcode() == ISD::TargetJumpTable;
1197  }
1198};
1199
1200class ConstantPoolSDNode : public SDNode {
1201  union {
1202    Constant *ConstVal;
1203    MachineConstantPoolValue *MachineCPVal;
1204  } Val;
1205  int Offset;  // It's a MachineConstantPoolValue if top bit is set.
1206  unsigned Alignment;
1207protected:
1208  friend class SelectionDAG;
1209  ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT,
1210                     int o=0)
1211    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, VT),
1212      Offset(o), Alignment(0) {
1213    assert((int)Offset >= 0 && "Offset is too large");
1214    Val.ConstVal = c;
1215  }
1216  ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT, int o,
1217                     unsigned Align)
1218    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, VT),
1219      Offset(o), Alignment(Align) {
1220    assert((int)Offset >= 0 && "Offset is too large");
1221    Val.ConstVal = c;
1222  }
1223  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1224                     MVT::ValueType VT, int o=0)
1225    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, VT),
1226      Offset(o), Alignment(0) {
1227    assert((int)Offset >= 0 && "Offset is too large");
1228    Val.MachineCPVal = v;
1229    Offset |= 1 << (sizeof(unsigned)*8-1);
1230  }
1231  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1232                     MVT::ValueType VT, int o, unsigned Align)
1233    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, VT),
1234      Offset(o), Alignment(Align) {
1235    assert((int)Offset >= 0 && "Offset is too large");
1236    Val.MachineCPVal = v;
1237    Offset |= 1 << (sizeof(unsigned)*8-1);
1238  }
1239public:
1240
1241  bool isMachineConstantPoolEntry() const {
1242    return (int)Offset < 0;
1243  }
1244
1245  Constant *getConstVal() const {
1246    assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
1247    return Val.ConstVal;
1248  }
1249
1250  MachineConstantPoolValue *getMachineCPVal() const {
1251    assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
1252    return Val.MachineCPVal;
1253  }
1254
1255  int getOffset() const {
1256    return Offset & ~(1 << (sizeof(unsigned)*8-1));
1257  }
1258
1259  // Return the alignment of this constant pool object, which is either 0 (for
1260  // default alignment) or log2 of the desired value.
1261  unsigned getAlignment() const { return Alignment; }
1262
1263  const Type *getType() const;
1264
1265  static bool classof(const ConstantPoolSDNode *) { return true; }
1266  static bool classof(const SDNode *N) {
1267    return N->getOpcode() == ISD::ConstantPool ||
1268           N->getOpcode() == ISD::TargetConstantPool;
1269  }
1270};
1271
1272class BasicBlockSDNode : public SDNode {
1273  MachineBasicBlock *MBB;
1274protected:
1275  friend class SelectionDAG;
1276  BasicBlockSDNode(MachineBasicBlock *mbb)
1277    : SDNode(ISD::BasicBlock, MVT::Other), MBB(mbb) {}
1278public:
1279
1280  MachineBasicBlock *getBasicBlock() const { return MBB; }
1281
1282  static bool classof(const BasicBlockSDNode *) { return true; }
1283  static bool classof(const SDNode *N) {
1284    return N->getOpcode() == ISD::BasicBlock;
1285  }
1286};
1287
1288class SrcValueSDNode : public SDNode {
1289  const Value *V;
1290  int offset;
1291protected:
1292  friend class SelectionDAG;
1293  SrcValueSDNode(const Value* v, int o)
1294    : SDNode(ISD::SRCVALUE, MVT::Other), V(v), offset(o) {}
1295
1296public:
1297  const Value *getValue() const { return V; }
1298  int getOffset() const { return offset; }
1299
1300  static bool classof(const SrcValueSDNode *) { return true; }
1301  static bool classof(const SDNode *N) {
1302    return N->getOpcode() == ISD::SRCVALUE;
1303  }
1304};
1305
1306
1307class RegisterSDNode : public SDNode {
1308  unsigned Reg;
1309protected:
1310  friend class SelectionDAG;
1311  RegisterSDNode(unsigned reg, MVT::ValueType VT)
1312    : SDNode(ISD::Register, VT), Reg(reg) {}
1313public:
1314
1315  unsigned getReg() const { return Reg; }
1316
1317  static bool classof(const RegisterSDNode *) { return true; }
1318  static bool classof(const SDNode *N) {
1319    return N->getOpcode() == ISD::Register;
1320  }
1321};
1322
1323class ExternalSymbolSDNode : public SDNode {
1324  const char *Symbol;
1325protected:
1326  friend class SelectionDAG;
1327  ExternalSymbolSDNode(bool isTarget, const char *Sym, MVT::ValueType VT)
1328    : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, VT),
1329      Symbol(Sym) {
1330    }
1331public:
1332
1333  const char *getSymbol() const { return Symbol; }
1334
1335  static bool classof(const ExternalSymbolSDNode *) { return true; }
1336  static bool classof(const SDNode *N) {
1337    return N->getOpcode() == ISD::ExternalSymbol ||
1338           N->getOpcode() == ISD::TargetExternalSymbol;
1339  }
1340};
1341
1342class CondCodeSDNode : public SDNode {
1343  ISD::CondCode Condition;
1344protected:
1345  friend class SelectionDAG;
1346  CondCodeSDNode(ISD::CondCode Cond)
1347    : SDNode(ISD::CONDCODE, MVT::Other), Condition(Cond) {
1348  }
1349public:
1350
1351  ISD::CondCode get() const { return Condition; }
1352
1353  static bool classof(const CondCodeSDNode *) { return true; }
1354  static bool classof(const SDNode *N) {
1355    return N->getOpcode() == ISD::CONDCODE;
1356  }
1357};
1358
1359/// VTSDNode - This class is used to represent MVT::ValueType's, which are used
1360/// to parameterize some operations.
1361class VTSDNode : public SDNode {
1362  MVT::ValueType ValueType;
1363protected:
1364  friend class SelectionDAG;
1365  VTSDNode(MVT::ValueType VT)
1366    : SDNode(ISD::VALUETYPE, MVT::Other), ValueType(VT) {}
1367public:
1368
1369  MVT::ValueType getVT() const { return ValueType; }
1370
1371  static bool classof(const VTSDNode *) { return true; }
1372  static bool classof(const SDNode *N) {
1373    return N->getOpcode() == ISD::VALUETYPE;
1374  }
1375};
1376
1377/// LoadSDNode - This class is used to represent ISD::LOAD nodes.
1378///
1379class LoadSDNode : public SDNode {
1380  // AddrMode - unindexed, pre-indexed, post-indexed.
1381  ISD::MemOpAddrMode AddrMode;
1382
1383  // ExtType - non-ext, anyext, sext, zext.
1384  ISD::LoadExtType ExtType;
1385
1386  // LoadedVT - VT of loaded value before extension.
1387  MVT::ValueType LoadedVT;
1388
1389  // SrcValue - Memory location for alias analysis.
1390  const Value *SrcValue;
1391
1392  // SVOffset - Memory location offset.
1393  int SVOffset;
1394
1395  // Alignment - Alignment of memory location in bytes.
1396  unsigned Alignment;
1397
1398  // IsVolatile - True if the load is volatile.
1399  bool IsVolatile;
1400protected:
1401  friend class SelectionDAG;
1402  LoadSDNode(SDOperand Chain, SDOperand Ptr, SDOperand Off,
1403             ISD::MemOpAddrMode AM, ISD::LoadExtType ETy, MVT::ValueType LVT,
1404             const Value *SV, int O=0, unsigned Align=1, bool Vol=false)
1405    : SDNode(ISD::LOAD, Chain, Ptr, Off),
1406      AddrMode(AM), ExtType(ETy), LoadedVT(LVT), SrcValue(SV), SVOffset(O),
1407      Alignment(Align), IsVolatile(Vol) {
1408    assert((Off.getOpcode() == ISD::UNDEF || AddrMode != ISD::UNINDEXED) &&
1409           "Only indexed load has a non-undef offset operand");
1410  }
1411public:
1412
1413  const SDOperand getChain() const { return getOperand(0); }
1414  const SDOperand getBasePtr() const { return getOperand(1); }
1415  const SDOperand getOffset() const { return getOperand(2); }
1416  ISD::MemOpAddrMode getAddressingMode() const { return AddrMode; }
1417  ISD::LoadExtType getExtensionType() const { return ExtType; }
1418  MVT::ValueType getLoadedVT() const { return LoadedVT; }
1419  const Value *getSrcValue() const { return SrcValue; }
1420  int getSrcValueOffset() const { return SVOffset; }
1421  unsigned getAlignment() const { return Alignment; }
1422  bool isVolatile() const { return IsVolatile; }
1423
1424  static bool classof(const LoadSDNode *) { return true; }
1425  static bool classof(const SDNode *N) {
1426    return N->getOpcode() == ISD::LOAD;
1427  }
1428};
1429
1430/// StoreSDNode - This class is used to represent ISD::STORE nodes.
1431///
1432class StoreSDNode : public SDNode {
1433  // AddrMode - unindexed, pre-indexed, post-indexed.
1434  ISD::MemOpAddrMode AddrMode;
1435
1436  // IsTruncStore - True is the op does a truncation before store.
1437  bool IsTruncStore;
1438
1439  // StoredVT - VT of the value after truncation.
1440  MVT::ValueType StoredVT;
1441
1442  // SrcValue - Memory location for alias analysis.
1443  const Value *SrcValue;
1444
1445  // SVOffset - Memory location offset.
1446  int SVOffset;
1447
1448  // Alignment - Alignment of memory location in bytes.
1449  unsigned Alignment;
1450
1451  // IsVolatile - True if the store is volatile.
1452  bool IsVolatile;
1453protected:
1454  friend class SelectionDAG;
1455  StoreSDNode(SDOperand Chain, SDOperand Value, SDOperand Ptr, SDOperand Off,
1456              ISD::MemOpAddrMode AM, bool isTrunc, MVT::ValueType SVT,
1457              const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
1458    : SDNode(ISD::STORE, Chain, Value, Ptr, Off),
1459      AddrMode(AM), IsTruncStore(isTrunc), StoredVT(SVT), SrcValue(SV),
1460      SVOffset(O), Alignment(Align), IsVolatile(Vol) {
1461    assert((Off.getOpcode() == ISD::UNDEF || AddrMode != ISD::UNINDEXED) &&
1462           "Only indexed store has a non-undef offset operand");
1463  }
1464public:
1465
1466  const SDOperand getChain() const { return getOperand(0); }
1467  const SDOperand getValue() const { return getOperand(1); }
1468  const SDOperand getBasePtr() const { return getOperand(2); }
1469  const SDOperand getOffset() const { return getOperand(3); }
1470  ISD::MemOpAddrMode getAddressingMode() const { return AddrMode; }
1471  bool isTruncatingStore() const { return IsTruncStore; }
1472  MVT::ValueType getStoredVT() const { return StoredVT; }
1473  const Value *getSrcValue() const { return SrcValue; }
1474  int getSrcValueOffset() const { return SVOffset; }
1475  unsigned getAlignment() const { return Alignment; }
1476  bool isVolatile() const { return IsVolatile; }
1477
1478  static bool classof(const LoadSDNode *) { return true; }
1479  static bool classof(const SDNode *N) {
1480    return N->getOpcode() == ISD::STORE;
1481  }
1482};
1483
1484
1485class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
1486  SDNode *Node;
1487  unsigned Operand;
1488
1489  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
1490public:
1491  bool operator==(const SDNodeIterator& x) const {
1492    return Operand == x.Operand;
1493  }
1494  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
1495
1496  const SDNodeIterator &operator=(const SDNodeIterator &I) {
1497    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
1498    Operand = I.Operand;
1499    return *this;
1500  }
1501
1502  pointer operator*() const {
1503    return Node->getOperand(Operand).Val;
1504  }
1505  pointer operator->() const { return operator*(); }
1506
1507  SDNodeIterator& operator++() {                // Preincrement
1508    ++Operand;
1509    return *this;
1510  }
1511  SDNodeIterator operator++(int) { // Postincrement
1512    SDNodeIterator tmp = *this; ++*this; return tmp;
1513  }
1514
1515  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
1516  static SDNodeIterator end  (SDNode *N) {
1517    return SDNodeIterator(N, N->getNumOperands());
1518  }
1519
1520  unsigned getOperand() const { return Operand; }
1521  const SDNode *getNode() const { return Node; }
1522};
1523
1524template <> struct GraphTraits<SDNode*> {
1525  typedef SDNode NodeType;
1526  typedef SDNodeIterator ChildIteratorType;
1527  static inline NodeType *getEntryNode(SDNode *N) { return N; }
1528  static inline ChildIteratorType child_begin(NodeType *N) {
1529    return SDNodeIterator::begin(N);
1530  }
1531  static inline ChildIteratorType child_end(NodeType *N) {
1532    return SDNodeIterator::end(N);
1533  }
1534};
1535
1536template<>
1537struct ilist_traits<SDNode> {
1538  static SDNode *getPrev(const SDNode *N) { return N->Prev; }
1539  static SDNode *getNext(const SDNode *N) { return N->Next; }
1540
1541  static void setPrev(SDNode *N, SDNode *Prev) { N->Prev = Prev; }
1542  static void setNext(SDNode *N, SDNode *Next) { N->Next = Next; }
1543
1544  static SDNode *createSentinel() {
1545    return new SDNode(ISD::EntryToken, MVT::Other);
1546  }
1547  static void destroySentinel(SDNode *N) { delete N; }
1548  //static SDNode *createNode(const SDNode &V) { return new SDNode(V); }
1549
1550
1551  void addNodeToList(SDNode *NTy) {}
1552  void removeNodeFromList(SDNode *NTy) {}
1553  void transferNodesFromList(iplist<SDNode, ilist_traits> &L2,
1554                             const ilist_iterator<SDNode> &X,
1555                             const ilist_iterator<SDNode> &Y) {}
1556};
1557
1558namespace ISD {
1559  /// isNON_EXTLoad - Returns true if the specified node is a non-extending
1560  /// load.
1561  inline bool isNON_EXTLoad(const SDNode *N) {
1562    return N->getOpcode() == ISD::LOAD &&
1563      cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
1564  }
1565
1566  /// isEXTLoad - Returns true if the specified node is a EXTLOAD.
1567  ///
1568  inline bool isEXTLoad(const SDNode *N) {
1569    return N->getOpcode() == ISD::LOAD &&
1570      cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
1571  }
1572
1573  /// isSEXTLoad - Returns true if the specified node is a SEXTLOAD.
1574  ///
1575  inline bool isSEXTLoad(const SDNode *N) {
1576    return N->getOpcode() == ISD::LOAD &&
1577      cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
1578  }
1579
1580  /// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD.
1581  ///
1582  inline bool isZEXTLoad(const SDNode *N) {
1583    return N->getOpcode() == ISD::LOAD &&
1584      cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
1585  }
1586
1587  /// isNON_TRUNCStore - Returns true if the specified node is a non-truncating
1588  /// store.
1589  inline bool isNON_TRUNCStore(const SDNode *N) {
1590    return N->getOpcode() == ISD::STORE &&
1591      !cast<StoreSDNode>(N)->isTruncatingStore();
1592  }
1593
1594  /// isTRUNCStore - Returns true if the specified node is a truncating
1595  /// store.
1596  inline bool isTRUNCStore(const SDNode *N) {
1597    return N->getOpcode() == ISD::STORE &&
1598      cast<StoreSDNode>(N)->isTruncatingStore();
1599  }
1600}
1601
1602
1603} // end llvm namespace
1604
1605#endif
1606