SelectionDAGNodes.h revision 8c2b52552c90f39e4b2fed43e309e599e742b6ac
1//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SDNode class and derived classes, which are used to
11// represent the nodes and operations present in a SelectionDAG.  These nodes
12// and operations are machine code level operations, with some similarities to
13// the GCC RTL representation.
14//
15// Clients should include the SelectionDAG.h file instead of this file directly.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20#define LLVM_CODEGEN_SELECTIONDAGNODES_H
21
22#include "llvm/Constants.h"
23#include "llvm/ADT/FoldingSet.h"
24#include "llvm/ADT/GraphTraits.h"
25#include "llvm/ADT/ilist_node.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/CodeGen/ValueTypes.h"
29#include "llvm/CodeGen/MachineMemOperand.h"
30#include "llvm/Support/MathExtras.h"
31#include "llvm/System/DataTypes.h"
32#include "llvm/Support/DebugLoc.h"
33#include <cassert>
34
35namespace llvm {
36
37class SelectionDAG;
38class GlobalValue;
39class MachineBasicBlock;
40class MachineConstantPoolValue;
41class SDNode;
42class Value;
43template <typename T> struct DenseMapInfo;
44template <typename T> struct simplify_type;
45template <typename T> struct ilist_traits;
46
47/// SDVTList - This represents a list of ValueType's that has been intern'd by
48/// a SelectionDAG.  Instances of this simple value class are returned by
49/// SelectionDAG::getVTList(...).
50///
51struct SDVTList {
52  const EVT *VTs;
53  unsigned int NumVTs;
54};
55
56/// ISD namespace - This namespace contains an enum which represents all of the
57/// SelectionDAG node types and value types.
58///
59namespace ISD {
60
61  //===--------------------------------------------------------------------===//
62  /// ISD::NodeType enum - This enum defines the target-independent operators
63  /// for a SelectionDAG.
64  ///
65  /// Targets may also define target-dependent operator codes for SDNodes. For
66  /// example, on x86, these are the enum values in the X86ISD namespace.
67  /// Targets should aim to use target-independent operators to model their
68  /// instruction sets as much as possible, and only use target-dependent
69  /// operators when they have special requirements.
70  ///
71  /// Finally, during and after selection proper, SNodes may use special
72  /// operator codes that correspond directly with MachineInstr opcodes. These
73  /// are used to represent selected instructions. See the isMachineOpcode()
74  /// and getMachineOpcode() member functions of SDNode.
75  ///
76  enum NodeType {
77    // DELETED_NODE - This is an illegal value that is used to catch
78    // errors.  This opcode is not a legal opcode for any node.
79    DELETED_NODE,
80
81    // EntryToken - This is the marker used to indicate the start of the region.
82    EntryToken,
83
84    // TokenFactor - This node takes multiple tokens as input and produces a
85    // single token result.  This is used to represent the fact that the operand
86    // operators are independent of each other.
87    TokenFactor,
88
89    // AssertSext, AssertZext - These nodes record if a register contains a
90    // value that has already been zero or sign extended from a narrower type.
91    // These nodes take two operands.  The first is the node that has already
92    // been extended, and the second is a value type node indicating the width
93    // of the extension
94    AssertSext, AssertZext,
95
96    // Various leaf nodes.
97    BasicBlock, VALUETYPE, CONDCODE, Register,
98    Constant, ConstantFP,
99    GlobalAddress, GlobalTLSAddress, FrameIndex,
100    JumpTable, ConstantPool, ExternalSymbol, BlockAddress,
101
102    // The address of the GOT
103    GLOBAL_OFFSET_TABLE,
104
105    // FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
106    // llvm.returnaddress on the DAG.  These nodes take one operand, the index
107    // of the frame or return address to return.  An index of zero corresponds
108    // to the current function's frame or return address, an index of one to the
109    // parent's frame or return address, and so on.
110    FRAMEADDR, RETURNADDR,
111
112    // FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
113    // first (possible) on-stack argument. This is needed for correct stack
114    // adjustment during unwind.
115    FRAME_TO_ARGS_OFFSET,
116
117    // RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the
118    // address of the exception block on entry to an landing pad block.
119    EXCEPTIONADDR,
120
121    // RESULT, OUTCHAIN = LSDAADDR(INCHAIN) - This node represents the
122    // address of the Language Specific Data Area for the enclosing function.
123    LSDAADDR,
124
125    // RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents
126    // the selection index of the exception thrown.
127    EHSELECTION,
128
129    // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
130    // 'eh_return' gcc dwarf builtin, which is used to return from
131    // exception. The general meaning is: adjust stack by OFFSET and pass
132    // execution to HANDLER. Many platform-related details also :)
133    EH_RETURN,
134
135    // TargetConstant* - Like Constant*, but the DAG does not do any folding or
136    // simplification of the constant.
137    TargetConstant,
138    TargetConstantFP,
139
140    // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
141    // anything else with this node, and this is valid in the target-specific
142    // dag, turning into a GlobalAddress operand.
143    TargetGlobalAddress,
144    TargetGlobalTLSAddress,
145    TargetFrameIndex,
146    TargetJumpTable,
147    TargetConstantPool,
148    TargetExternalSymbol,
149    TargetBlockAddress,
150
151    /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
152    /// This node represents a target intrinsic function with no side effects.
153    /// The first operand is the ID number of the intrinsic from the
154    /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
155    /// node has returns the result of the intrinsic.
156    INTRINSIC_WO_CHAIN,
157
158    /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
159    /// This node represents a target intrinsic function with side effects that
160    /// returns a result.  The first operand is a chain pointer.  The second is
161    /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
162    /// operands to the intrinsic follow.  The node has two results, the result
163    /// of the intrinsic and an output chain.
164    INTRINSIC_W_CHAIN,
165
166    /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
167    /// This node represents a target intrinsic function with side effects that
168    /// does not return a result.  The first operand is a chain pointer.  The
169    /// second is the ID number of the intrinsic from the llvm::Intrinsic
170    /// namespace.  The operands to the intrinsic follow.
171    INTRINSIC_VOID,
172
173    // CopyToReg - This node has three operands: a chain, a register number to
174    // set to this value, and a value.
175    CopyToReg,
176
177    // CopyFromReg - This node indicates that the input value is a virtual or
178    // physical register that is defined outside of the scope of this
179    // SelectionDAG.  The register is available from the RegisterSDNode object.
180    CopyFromReg,
181
182    // UNDEF - An undefined node
183    UNDEF,
184
185    // EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
186    // a Constant, which is required to be operand #1) half of the integer or
187    // float value specified as operand #0.  This is only for use before
188    // legalization, for values that will be broken into multiple registers.
189    EXTRACT_ELEMENT,
190
191    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
192    // two values of the same integer value type, this produces a value twice as
193    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
194    BUILD_PAIR,
195
196    // MERGE_VALUES - This node takes multiple discrete operands and returns
197    // them all as its individual results.  This nodes has exactly the same
198    // number of inputs and outputs. This node is useful for some pieces of the
199    // code generator that want to think about a single node with multiple
200    // results, not multiple nodes.
201    MERGE_VALUES,
202
203    // Simple integer binary arithmetic operators.
204    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
205
206    // SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
207    // a signed/unsigned value of type i[2*N], and return the full value as
208    // two results, each of type iN.
209    SMUL_LOHI, UMUL_LOHI,
210
211    // SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
212    // remainder result.
213    SDIVREM, UDIVREM,
214
215    // CARRY_FALSE - This node is used when folding other nodes,
216    // like ADDC/SUBC, which indicate the carry result is always false.
217    CARRY_FALSE,
218
219    // Carry-setting nodes for multiple precision addition and subtraction.
220    // These nodes take two operands of the same value type, and produce two
221    // results.  The first result is the normal add or sub result, the second
222    // result is the carry flag result.
223    ADDC, SUBC,
224
225    // Carry-using nodes for multiple precision addition and subtraction.  These
226    // nodes take three operands: The first two are the normal lhs and rhs to
227    // the add or sub, and the third is the input carry flag.  These nodes
228    // produce two results; the normal result of the add or sub, and the output
229    // carry flag.  These nodes both read and write a carry flag to allow them
230    // to them to be chained together for add and sub of arbitrarily large
231    // values.
232    ADDE, SUBE,
233
234    // RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
235    // These nodes take two operands: the normal LHS and RHS to the add. They
236    // produce two results: the normal result of the add, and a boolean that
237    // indicates if an overflow occured (*not* a flag, because it may be stored
238    // to memory, etc.).  If the type of the boolean is not i1 then the high
239    // bits conform to getBooleanContents.
240    // These nodes are generated from the llvm.[su]add.with.overflow intrinsics.
241    SADDO, UADDO,
242
243    // Same for subtraction
244    SSUBO, USUBO,
245
246    // Same for multiplication
247    SMULO, UMULO,
248
249    // Simple binary floating point operators.
250    FADD, FSUB, FMUL, FDIV, FREM,
251
252    // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
253    // DAG node does not require that X and Y have the same type, just that they
254    // are both floating point.  X and the result must have the same type.
255    // FCOPYSIGN(f32, f64) is allowed.
256    FCOPYSIGN,
257
258    // INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
259    // value as an integer 0/1 value.
260    FGETSIGN,
261
262    /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector with the
263    /// specified, possibly variable, elements.  The number of elements is
264    /// required to be a power of two.  The types of the operands must all be
265    /// the same and must match the vector element type, except that integer
266    /// types are allowed to be larger than the element type, in which case
267    /// the operands are implicitly truncated.
268    BUILD_VECTOR,
269
270    /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
271    /// at IDX replaced with VAL.  If the type of VAL is larger than the vector
272    /// element type then VAL is truncated before replacement.
273    INSERT_VECTOR_ELT,
274
275    /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
276    /// identified by the (potentially variable) element number IDX.  If the
277    /// return type is an integer type larger than the element type of the
278    /// vector, the result is extended to the width of the return type.
279    EXTRACT_VECTOR_ELT,
280
281    /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
282    /// vector type with the same length and element type, this produces a
283    /// concatenated vector result value, with length equal to the sum of the
284    /// lengths of the input vectors.
285    CONCAT_VECTORS,
286
287    /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
288    /// vector value) starting with the (potentially variable) element number
289    /// IDX, which must be a multiple of the result vector length.
290    EXTRACT_SUBVECTOR,
291
292    /// VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as
293    /// VEC1/VEC2.  A VECTOR_SHUFFLE node also contains an array of constant int
294    /// values that indicate which value (or undef) each result element will
295    /// get.  These constant ints are accessible through the
296    /// ShuffleVectorSDNode class.  This is quite similar to the Altivec
297    /// 'vperm' instruction, except that the indices must be constants and are
298    /// in terms of the element size of VEC1/VEC2, not in terms of bytes.
299    VECTOR_SHUFFLE,
300
301    /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
302    /// scalar value into element 0 of the resultant vector type.  The top
303    /// elements 1 to N-1 of the N-element vector are undefined.  The type
304    /// of the operand must match the vector element type, except when they
305    /// are integer types.  In this case the operand is allowed to be wider
306    /// than the vector element type, and is implicitly truncated to it.
307    SCALAR_TO_VECTOR,
308
309    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
310    // an unsigned/signed value of type i[2*N], then return the top part.
311    MULHU, MULHS,
312
313    // Bitwise operators - logical and, logical or, logical xor, shift left,
314    // shift right algebraic (shift in sign bits), shift right logical (shift in
315    // zeroes), rotate left, rotate right, and byteswap.
316    AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
317
318    // Counting operators
319    CTTZ, CTLZ, CTPOP,
320
321    // Select(COND, TRUEVAL, FALSEVAL).  If the type of the boolean COND is not
322    // i1 then the high bits must conform to getBooleanContents.
323    SELECT,
324
325    // Select with condition operator - This selects between a true value and
326    // a false value (ops #2 and #3) based on the boolean result of comparing
327    // the lhs and rhs (ops #0 and #1) of a conditional expression with the
328    // condition code in op #4, a CondCodeSDNode.
329    SELECT_CC,
330
331    // SetCC operator - This evaluates to a true value iff the condition is
332    // true.  If the result value type is not i1 then the high bits conform
333    // to getBooleanContents.  The operands to this are the left and right
334    // operands to compare (ops #0, and #1) and the condition code to compare
335    // them with (op #2) as a CondCodeSDNode.
336    SETCC,
337
338    // RESULT = VSETCC(LHS, RHS, COND) operator - This evaluates to a vector of
339    // integer elements with all bits of the result elements set to true if the
340    // comparison is true or all cleared if the comparison is false.  The
341    // operands to this are the left and right operands to compare (LHS/RHS) and
342    // the condition code to compare them with (COND) as a CondCodeSDNode.
343    VSETCC,
344
345    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
346    // integer shift operations, just like ADD/SUB_PARTS.  The operation
347    // ordering is:
348    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
349    SHL_PARTS, SRA_PARTS, SRL_PARTS,
350
351    // Conversion operators.  These are all single input single output
352    // operations.  For all of these, the result type must be strictly
353    // wider or narrower (depending on the operation) than the source
354    // type.
355
356    // SIGN_EXTEND - Used for integer types, replicating the sign bit
357    // into new bits.
358    SIGN_EXTEND,
359
360    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
361    ZERO_EXTEND,
362
363    // ANY_EXTEND - Used for integer types.  The high bits are undefined.
364    ANY_EXTEND,
365
366    // TRUNCATE - Completely drop the high bits.
367    TRUNCATE,
368
369    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
370    // depends on the first letter) to floating point.
371    SINT_TO_FP,
372    UINT_TO_FP,
373
374    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
375    // sign extend a small value in a large integer register (e.g. sign
376    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
377    // with the 7th bit).  The size of the smaller type is indicated by the 1th
378    // operand, a ValueType node.
379    SIGN_EXTEND_INREG,
380
381    /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
382    /// integer.
383    FP_TO_SINT,
384    FP_TO_UINT,
385
386    /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
387    /// down to the precision of the destination VT.  TRUNC is a flag, which is
388    /// always an integer that is zero or one.  If TRUNC is 0, this is a
389    /// normal rounding, if it is 1, this FP_ROUND is known to not change the
390    /// value of Y.
391    ///
392    /// The TRUNC = 1 case is used in cases where we know that the value will
393    /// not be modified by the node, because Y is not using any of the extra
394    /// precision of source type.  This allows certain transformations like
395    /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
396    /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
397    FP_ROUND,
398
399    // FLT_ROUNDS_ - Returns current rounding mode:
400    // -1 Undefined
401    //  0 Round to 0
402    //  1 Round to nearest
403    //  2 Round to +inf
404    //  3 Round to -inf
405    FLT_ROUNDS_,
406
407    /// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and
408    /// rounds it to a floating point value.  It then promotes it and returns it
409    /// in a register of the same size.  This operation effectively just
410    /// discards excess precision.  The type to round down to is specified by
411    /// the VT operand, a VTSDNode.
412    FP_ROUND_INREG,
413
414    /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
415    FP_EXTEND,
416
417    // BIT_CONVERT - Theis operator converts between integer and FP values, as
418    // if one was stored to memory as integer and the other was loaded from the
419    // same address (or equivalently for vector format conversions, etc).  The
420    // source and result are required to have the same bit size (e.g.
421    // f32 <-> i32).  This can also be used for int-to-int or fp-to-fp
422    // conversions, but that is a noop, deleted by getNode().
423    BIT_CONVERT,
424
425    // CONVERT_RNDSAT - This operator is used to support various conversions
426    // between various types (float, signed, unsigned and vectors of those
427    // types) with rounding and saturation. NOTE: Avoid using this operator as
428    // most target don't support it and the operator might be removed in the
429    // future. It takes the following arguments:
430    //   0) value
431    //   1) dest type (type to convert to)
432    //   2) src type (type to convert from)
433    //   3) rounding imm
434    //   4) saturation imm
435    //   5) ISD::CvtCode indicating the type of conversion to do
436    CONVERT_RNDSAT,
437
438    // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
439    // FLOG, FLOG2, FLOG10, FEXP, FEXP2,
440    // FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR - Perform various unary floating
441    // point operations. These are inspired by libm.
442    FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
443    FLOG, FLOG2, FLOG10, FEXP, FEXP2,
444    FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR,
445
446    // LOAD and STORE have token chains as their first operand, then the same
447    // operands as an LLVM load/store instruction, then an offset node that
448    // is added / subtracted from the base pointer to form the address (for
449    // indexed memory ops).
450    LOAD, STORE,
451
452    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
453    // to a specified boundary.  This node always has two return values: a new
454    // stack pointer value and a chain. The first operand is the token chain,
455    // the second is the number of bytes to allocate, and the third is the
456    // alignment boundary.  The size is guaranteed to be a multiple of the stack
457    // alignment, and the alignment is guaranteed to be bigger than the stack
458    // alignment (if required) or 0 to get standard stack alignment.
459    DYNAMIC_STACKALLOC,
460
461    // Control flow instructions.  These all have token chains.
462
463    // BR - Unconditional branch.  The first operand is the chain
464    // operand, the second is the MBB to branch to.
465    BR,
466
467    // BRIND - Indirect branch.  The first operand is the chain, the second
468    // is the value to branch to, which must be of the same type as the target's
469    // pointer type.
470    BRIND,
471
472    // BR_JT - Jumptable branch. The first operand is the chain, the second
473    // is the jumptable index, the last one is the jumptable entry index.
474    BR_JT,
475
476    // BRCOND - Conditional branch.  The first operand is the chain, the
477    // second is the condition, the third is the block to branch to if the
478    // condition is true.  If the type of the condition is not i1, then the
479    // high bits must conform to getBooleanContents.
480    BRCOND,
481
482    // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
483    // that the condition is represented as condition code, and two nodes to
484    // compare, rather than as a combined SetCC node.  The operands in order are
485    // chain, cc, lhs, rhs, block to branch to if condition is true.
486    BR_CC,
487
488    // INLINEASM - Represents an inline asm block.  This node always has two
489    // return values: a chain and a flag result.  The inputs are as follows:
490    //   Operand #0   : Input chain.
491    //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
492    //   Operand #2n+2: A RegisterNode.
493    //   Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
494    //   Operand #last: Optional, an incoming flag.
495    INLINEASM,
496
497    // DBG_LABEL, EH_LABEL - Represents a label in mid basic block used to track
498    // locations needed for debug and exception handling tables.  These nodes
499    // take a chain as input and return a chain.
500    DBG_LABEL,
501    EH_LABEL,
502
503    // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
504    // value, the same type as the pointer type for the system, and an output
505    // chain.
506    STACKSAVE,
507
508    // STACKRESTORE has two operands, an input chain and a pointer to restore to
509    // it returns an output chain.
510    STACKRESTORE,
511
512    // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
513    // a call sequence, and carry arbitrary information that target might want
514    // to know.  The first operand is a chain, the rest are specified by the
515    // target and not touched by the DAG optimizers.
516    // CALLSEQ_START..CALLSEQ_END pairs may not be nested.
517    CALLSEQ_START,  // Beginning of a call sequence
518    CALLSEQ_END,    // End of a call sequence
519
520    // VAARG - VAARG has three operands: an input chain, a pointer, and a
521    // SRCVALUE.  It returns a pair of values: the vaarg value and a new chain.
522    VAARG,
523
524    // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
525    // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
526    // source.
527    VACOPY,
528
529    // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
530    // pointer, and a SRCVALUE.
531    VAEND, VASTART,
532
533    // SRCVALUE - This is a node type that holds a Value* that is used to
534    // make reference to a value in the LLVM IR.
535    SRCVALUE,
536
537    // PCMARKER - This corresponds to the pcmarker intrinsic.
538    PCMARKER,
539
540    // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
541    // The only operand is a chain and a value and a chain are produced.  The
542    // value is the contents of the architecture specific cycle counter like
543    // register (or other high accuracy low latency clock source)
544    READCYCLECOUNTER,
545
546    // HANDLENODE node - Used as a handle for various purposes.
547    HANDLENODE,
548
549    // DBG_STOPPOINT - This node is used to represent a source location for
550    // debug info.  It takes token chain as input, and carries a line number,
551    // column number, and a pointer to a CompileUnit object identifying
552    // the containing compilation unit.  It produces a token chain as output.
553    DBG_STOPPOINT,
554
555    // DEBUG_LOC - This node is used to represent source line information
556    // embedded in the code.  It takes a token chain as input, then a line
557    // number, then a column then a file id (provided by MachineModuleInfo.) It
558    // produces a token chain as output.
559    DEBUG_LOC,
560
561    // TRAMPOLINE - This corresponds to the init_trampoline intrinsic.
562    // It takes as input a token chain, the pointer to the trampoline,
563    // the pointer to the nested function, the pointer to pass for the
564    // 'nest' parameter, a SRCVALUE for the trampoline and another for
565    // the nested function (allowing targets to access the original
566    // Function*).  It produces the result of the intrinsic and a token
567    // chain as output.
568    TRAMPOLINE,
569
570    // TRAP - Trapping instruction
571    TRAP,
572
573    // PREFETCH - This corresponds to a prefetch intrinsic. It takes chains are
574    // their first operand. The other operands are the address to prefetch,
575    // read / write specifier, and locality specifier.
576    PREFETCH,
577
578    // OUTCHAIN = MEMBARRIER(INCHAIN, load-load, load-store, store-load,
579    //                       store-store, device)
580    // This corresponds to the memory.barrier intrinsic.
581    // it takes an input chain, 4 operands to specify the type of barrier, an
582    // operand specifying if the barrier applies to device and uncached memory
583    // and produces an output chain.
584    MEMBARRIER,
585
586    // Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
587    // this corresponds to the atomic.lcs intrinsic.
588    // cmp is compared to *ptr, and if equal, swap is stored in *ptr.
589    // the return is always the original value in *ptr
590    ATOMIC_CMP_SWAP,
591
592    // Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
593    // this corresponds to the atomic.swap intrinsic.
594    // amt is stored to *ptr atomically.
595    // the return is always the original value in *ptr
596    ATOMIC_SWAP,
597
598    // Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amt)
599    // this corresponds to the atomic.load.[OpName] intrinsic.
600    // op(*ptr, amt) is stored to *ptr atomically.
601    // the return is always the original value in *ptr
602    ATOMIC_LOAD_ADD,
603    ATOMIC_LOAD_SUB,
604    ATOMIC_LOAD_AND,
605    ATOMIC_LOAD_OR,
606    ATOMIC_LOAD_XOR,
607    ATOMIC_LOAD_NAND,
608    ATOMIC_LOAD_MIN,
609    ATOMIC_LOAD_MAX,
610    ATOMIC_LOAD_UMIN,
611    ATOMIC_LOAD_UMAX,
612
613    /// BUILTIN_OP_END - This must be the last enum value in this list.
614    /// The target-specific pre-isel opcode values start here.
615    BUILTIN_OP_END
616  };
617
618  /// FIRST_TARGET_MEMORY_OPCODE - Target-specific pre-isel operations
619  /// which do not reference a specific memory location should be less than
620  /// this value. Those that do must not be less than this value, and can
621  /// be used with SelectionDAG::getMemIntrinsicNode.
622  static const int FIRST_TARGET_MEMORY_OPCODE = 1 << 14;
623
624  /// Node predicates
625
626  /// isBuildVectorAllOnes - Return true if the specified node is a
627  /// BUILD_VECTOR where all of the elements are ~0 or undef.
628  bool isBuildVectorAllOnes(const SDNode *N);
629
630  /// isBuildVectorAllZeros - Return true if the specified node is a
631  /// BUILD_VECTOR where all of the elements are 0 or undef.
632  bool isBuildVectorAllZeros(const SDNode *N);
633
634  /// isScalarToVector - Return true if the specified node is a
635  /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
636  /// element is not an undef.
637  bool isScalarToVector(const SDNode *N);
638
639  /// isDebugLabel - Return true if the specified node represents a debug
640  /// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
641  bool isDebugLabel(const SDNode *N);
642
643  //===--------------------------------------------------------------------===//
644  /// MemIndexedMode enum - This enum defines the load / store indexed
645  /// addressing modes.
646  ///
647  /// UNINDEXED    "Normal" load / store. The effective address is already
648  ///              computed and is available in the base pointer. The offset
649  ///              operand is always undefined. In addition to producing a
650  ///              chain, an unindexed load produces one value (result of the
651  ///              load); an unindexed store does not produce a value.
652  ///
653  /// PRE_INC      Similar to the unindexed mode where the effective address is
654  /// PRE_DEC      the value of the base pointer add / subtract the offset.
655  ///              It considers the computation as being folded into the load /
656  ///              store operation (i.e. the load / store does the address
657  ///              computation as well as performing the memory transaction).
658  ///              The base operand is always undefined. In addition to
659  ///              producing a chain, pre-indexed load produces two values
660  ///              (result of the load and the result of the address
661  ///              computation); a pre-indexed store produces one value (result
662  ///              of the address computation).
663  ///
664  /// POST_INC     The effective address is the value of the base pointer. The
665  /// POST_DEC     value of the offset operand is then added to / subtracted
666  ///              from the base after memory transaction. In addition to
667  ///              producing a chain, post-indexed load produces two values
668  ///              (the result of the load and the result of the base +/- offset
669  ///              computation); a post-indexed store produces one value (the
670  ///              the result of the base +/- offset computation).
671  ///
672  enum MemIndexedMode {
673    UNINDEXED = 0,
674    PRE_INC,
675    PRE_DEC,
676    POST_INC,
677    POST_DEC,
678    LAST_INDEXED_MODE
679  };
680
681  //===--------------------------------------------------------------------===//
682  /// LoadExtType enum - This enum defines the three variants of LOADEXT
683  /// (load with extension).
684  ///
685  /// SEXTLOAD loads the integer operand and sign extends it to a larger
686  ///          integer result type.
687  /// ZEXTLOAD loads the integer operand and zero extends it to a larger
688  ///          integer result type.
689  /// EXTLOAD  is used for three things: floating point extending loads,
690  ///          integer extending loads [the top bits are undefined], and vector
691  ///          extending loads [load into low elt].
692  ///
693  enum LoadExtType {
694    NON_EXTLOAD = 0,
695    EXTLOAD,
696    SEXTLOAD,
697    ZEXTLOAD,
698    LAST_LOADEXT_TYPE
699  };
700
701  //===--------------------------------------------------------------------===//
702  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
703  /// below work out, when considering SETFALSE (something that never exists
704  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
705  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
706  /// to.  If the "N" column is 1, the result of the comparison is undefined if
707  /// the input is a NAN.
708  ///
709  /// All of these (except for the 'always folded ops') should be handled for
710  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
711  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
712  ///
713  /// Note that these are laid out in a specific order to allow bit-twiddling
714  /// to transform conditions.
715  enum CondCode {
716    // Opcode          N U L G E       Intuitive operation
717    SETFALSE,      //    0 0 0 0       Always false (always folded)
718    SETOEQ,        //    0 0 0 1       True if ordered and equal
719    SETOGT,        //    0 0 1 0       True if ordered and greater than
720    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
721    SETOLT,        //    0 1 0 0       True if ordered and less than
722    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
723    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
724    SETO,          //    0 1 1 1       True if ordered (no nans)
725    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
726    SETUEQ,        //    1 0 0 1       True if unordered or equal
727    SETUGT,        //    1 0 1 0       True if unordered or greater than
728    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
729    SETULT,        //    1 1 0 0       True if unordered or less than
730    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
731    SETUNE,        //    1 1 1 0       True if unordered or not equal
732    SETTRUE,       //    1 1 1 1       Always true (always folded)
733    // Don't care operations: undefined if the input is a nan.
734    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
735    SETEQ,         //  1 X 0 0 1       True if equal
736    SETGT,         //  1 X 0 1 0       True if greater than
737    SETGE,         //  1 X 0 1 1       True if greater than or equal
738    SETLT,         //  1 X 1 0 0       True if less than
739    SETLE,         //  1 X 1 0 1       True if less than or equal
740    SETNE,         //  1 X 1 1 0       True if not equal
741    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
742
743    SETCC_INVALID       // Marker value.
744  };
745
746  /// isSignedIntSetCC - Return true if this is a setcc instruction that
747  /// performs a signed comparison when used with integer operands.
748  inline bool isSignedIntSetCC(CondCode Code) {
749    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
750  }
751
752  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
753  /// performs an unsigned comparison when used with integer operands.
754  inline bool isUnsignedIntSetCC(CondCode Code) {
755    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
756  }
757
758  /// isTrueWhenEqual - Return true if the specified condition returns true if
759  /// the two operands to the condition are equal.  Note that if one of the two
760  /// operands is a NaN, this value is meaningless.
761  inline bool isTrueWhenEqual(CondCode Cond) {
762    return ((int)Cond & 1) != 0;
763  }
764
765  /// getUnorderedFlavor - This function returns 0 if the condition is always
766  /// false if an operand is a NaN, 1 if the condition is always true if the
767  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
768  /// NaN.
769  inline unsigned getUnorderedFlavor(CondCode Cond) {
770    return ((int)Cond >> 3) & 3;
771  }
772
773  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
774  /// 'op' is a valid SetCC operation.
775  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
776
777  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
778  /// when given the operation for (X op Y).
779  CondCode getSetCCSwappedOperands(CondCode Operation);
780
781  /// getSetCCOrOperation - Return the result of a logical OR between different
782  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
783  /// function returns SETCC_INVALID if it is not possible to represent the
784  /// resultant comparison.
785  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
786
787  /// getSetCCAndOperation - Return the result of a logical AND between
788  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
789  /// function returns SETCC_INVALID if it is not possible to represent the
790  /// resultant comparison.
791  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
792
793  //===--------------------------------------------------------------------===//
794  /// CvtCode enum - This enum defines the various converts CONVERT_RNDSAT
795  /// supports.
796  enum CvtCode {
797    CVT_FF,     // Float from Float
798    CVT_FS,     // Float from Signed
799    CVT_FU,     // Float from Unsigned
800    CVT_SF,     // Signed from Float
801    CVT_UF,     // Unsigned from Float
802    CVT_SS,     // Signed from Signed
803    CVT_SU,     // Signed from Unsigned
804    CVT_US,     // Unsigned from Signed
805    CVT_UU,     // Unsigned from Unsigned
806    CVT_INVALID // Marker - Invalid opcode
807  };
808}  // end llvm::ISD namespace
809
810
811//===----------------------------------------------------------------------===//
812/// SDValue - Unlike LLVM values, Selection DAG nodes may return multiple
813/// values as the result of a computation.  Many nodes return multiple values,
814/// from loads (which define a token and a return value) to ADDC (which returns
815/// a result and a carry value), to calls (which may return an arbitrary number
816/// of values).
817///
818/// As such, each use of a SelectionDAG computation must indicate the node that
819/// computes it as well as which return value to use from that node.  This pair
820/// of information is represented with the SDValue value type.
821///
822class SDValue {
823  SDNode *Node;       // The node defining the value we are using.
824  unsigned ResNo;     // Which return value of the node we are using.
825public:
826  SDValue() : Node(0), ResNo(0) {}
827  SDValue(SDNode *node, unsigned resno) : Node(node), ResNo(resno) {}
828
829  /// get the index which selects a specific result in the SDNode
830  unsigned getResNo() const { return ResNo; }
831
832  /// get the SDNode which holds the desired result
833  SDNode *getNode() const { return Node; }
834
835  /// set the SDNode
836  void setNode(SDNode *N) { Node = N; }
837
838  bool operator==(const SDValue &O) const {
839    return Node == O.Node && ResNo == O.ResNo;
840  }
841  bool operator!=(const SDValue &O) const {
842    return !operator==(O);
843  }
844  bool operator<(const SDValue &O) const {
845    return Node < O.Node || (Node == O.Node && ResNo < O.ResNo);
846  }
847
848  SDValue getValue(unsigned R) const {
849    return SDValue(Node, R);
850  }
851
852  // isOperandOf - Return true if this node is an operand of N.
853  bool isOperandOf(SDNode *N) const;
854
855  /// getValueType - Return the ValueType of the referenced return value.
856  ///
857  inline EVT getValueType() const;
858
859  /// getValueSizeInBits - Returns the size of the value in bits.
860  ///
861  unsigned getValueSizeInBits() const {
862    return getValueType().getSizeInBits();
863  }
864
865  // Forwarding methods - These forward to the corresponding methods in SDNode.
866  inline unsigned getOpcode() const;
867  inline unsigned getNumOperands() const;
868  inline const SDValue &getOperand(unsigned i) const;
869  inline uint64_t getConstantOperandVal(unsigned i) const;
870  inline bool isTargetMemoryOpcode() const;
871  inline bool isTargetOpcode() const;
872  inline bool isMachineOpcode() const;
873  inline unsigned getMachineOpcode() const;
874  inline const DebugLoc getDebugLoc() const;
875
876
877  /// reachesChainWithoutSideEffects - Return true if this operand (which must
878  /// be a chain) reaches the specified operand without crossing any
879  /// side-effecting instructions.  In practice, this looks through token
880  /// factors and non-volatile loads.  In order to remain efficient, this only
881  /// looks a couple of nodes in, it does not do an exhaustive search.
882  bool reachesChainWithoutSideEffects(SDValue Dest,
883                                      unsigned Depth = 2) const;
884
885  /// use_empty - Return true if there are no nodes using value ResNo
886  /// of Node.
887  ///
888  inline bool use_empty() const;
889
890  /// hasOneUse - Return true if there is exactly one node using value
891  /// ResNo of Node.
892  ///
893  inline bool hasOneUse() const;
894};
895
896
897template<> struct DenseMapInfo<SDValue> {
898  static inline SDValue getEmptyKey() {
899    return SDValue((SDNode*)-1, -1U);
900  }
901  static inline SDValue getTombstoneKey() {
902    return SDValue((SDNode*)-1, 0);
903  }
904  static unsigned getHashValue(const SDValue &Val) {
905    return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
906            (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
907  }
908  static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
909    return LHS == RHS;
910  }
911  static bool isPod() { return true; }
912};
913
914/// simplify_type specializations - Allow casting operators to work directly on
915/// SDValues as if they were SDNode*'s.
916template<> struct simplify_type<SDValue> {
917  typedef SDNode* SimpleType;
918  static SimpleType getSimplifiedValue(const SDValue &Val) {
919    return static_cast<SimpleType>(Val.getNode());
920  }
921};
922template<> struct simplify_type<const SDValue> {
923  typedef SDNode* SimpleType;
924  static SimpleType getSimplifiedValue(const SDValue &Val) {
925    return static_cast<SimpleType>(Val.getNode());
926  }
927};
928
929/// SDUse - Represents a use of a SDNode. This class holds an SDValue,
930/// which records the SDNode being used and the result number, a
931/// pointer to the SDNode using the value, and Next and Prev pointers,
932/// which link together all the uses of an SDNode.
933///
934class SDUse {
935  /// Val - The value being used.
936  SDValue Val;
937  /// User - The user of this value.
938  SDNode *User;
939  /// Prev, Next - Pointers to the uses list of the SDNode referred by
940  /// this operand.
941  SDUse **Prev, *Next;
942
943  SDUse(const SDUse &U);          // Do not implement
944  void operator=(const SDUse &U); // Do not implement
945
946public:
947  SDUse() : Val(), User(NULL), Prev(NULL), Next(NULL) {}
948
949  /// Normally SDUse will just implicitly convert to an SDValue that it holds.
950  operator const SDValue&() const { return Val; }
951
952  /// If implicit conversion to SDValue doesn't work, the get() method returns
953  /// the SDValue.
954  const SDValue &get() const { return Val; }
955
956  /// getUser - This returns the SDNode that contains this Use.
957  SDNode *getUser() { return User; }
958
959  /// getNext - Get the next SDUse in the use list.
960  SDUse *getNext() const { return Next; }
961
962  /// getNode - Convenience function for get().getNode().
963  SDNode *getNode() const { return Val.getNode(); }
964  /// getResNo - Convenience function for get().getResNo().
965  unsigned getResNo() const { return Val.getResNo(); }
966  /// getValueType - Convenience function for get().getValueType().
967  EVT getValueType() const { return Val.getValueType(); }
968
969  /// operator== - Convenience function for get().operator==
970  bool operator==(const SDValue &V) const {
971    return Val == V;
972  }
973
974  /// operator!= - Convenience function for get().operator!=
975  bool operator!=(const SDValue &V) const {
976    return Val != V;
977  }
978
979  /// operator< - Convenience function for get().operator<
980  bool operator<(const SDValue &V) const {
981    return Val < V;
982  }
983
984private:
985  friend class SelectionDAG;
986  friend class SDNode;
987
988  void setUser(SDNode *p) { User = p; }
989
990  /// set - Remove this use from its existing use list, assign it the
991  /// given value, and add it to the new value's node's use list.
992  inline void set(const SDValue &V);
993  /// setInitial - like set, but only supports initializing a newly-allocated
994  /// SDUse with a non-null value.
995  inline void setInitial(const SDValue &V);
996  /// setNode - like set, but only sets the Node portion of the value,
997  /// leaving the ResNo portion unmodified.
998  inline void setNode(SDNode *N);
999
1000  void addToList(SDUse **List) {
1001    Next = *List;
1002    if (Next) Next->Prev = &Next;
1003    Prev = List;
1004    *List = this;
1005  }
1006
1007  void removeFromList() {
1008    *Prev = Next;
1009    if (Next) Next->Prev = Prev;
1010  }
1011};
1012
1013/// simplify_type specializations - Allow casting operators to work directly on
1014/// SDValues as if they were SDNode*'s.
1015template<> struct simplify_type<SDUse> {
1016  typedef SDNode* SimpleType;
1017  static SimpleType getSimplifiedValue(const SDUse &Val) {
1018    return static_cast<SimpleType>(Val.getNode());
1019  }
1020};
1021template<> struct simplify_type<const SDUse> {
1022  typedef SDNode* SimpleType;
1023  static SimpleType getSimplifiedValue(const SDUse &Val) {
1024    return static_cast<SimpleType>(Val.getNode());
1025  }
1026};
1027
1028
1029/// SDNode - Represents one node in the SelectionDAG.
1030///
1031class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
1032private:
1033  /// NodeType - The operation that this node performs.
1034  ///
1035  int16_t NodeType;
1036
1037  /// OperandsNeedDelete - This is true if OperandList was new[]'d.  If true,
1038  /// then they will be delete[]'d when the node is destroyed.
1039  uint16_t OperandsNeedDelete : 1;
1040
1041protected:
1042  /// SubclassData - This member is defined by this class, but is not used for
1043  /// anything.  Subclasses can use it to hold whatever state they find useful.
1044  /// This field is initialized to zero by the ctor.
1045  uint16_t SubclassData : 15;
1046
1047private:
1048  /// NodeId - Unique id per SDNode in the DAG.
1049  int NodeId;
1050
1051  /// OperandList - The values that are used by this operation.
1052  ///
1053  SDUse *OperandList;
1054
1055  /// ValueList - The types of the values this node defines.  SDNode's may
1056  /// define multiple values simultaneously.
1057  const EVT *ValueList;
1058
1059  /// UseList - List of uses for this SDNode.
1060  SDUse *UseList;
1061
1062  /// NumOperands/NumValues - The number of entries in the Operand/Value list.
1063  unsigned short NumOperands, NumValues;
1064
1065  /// debugLoc - source line information.
1066  DebugLoc debugLoc;
1067
1068  /// getValueTypeList - Return a pointer to the specified value type.
1069  static const EVT *getValueTypeList(EVT VT);
1070
1071  friend class SelectionDAG;
1072  friend struct ilist_traits<SDNode>;
1073
1074public:
1075  //===--------------------------------------------------------------------===//
1076  //  Accessors
1077  //
1078
1079  /// getOpcode - Return the SelectionDAG opcode value for this node. For
1080  /// pre-isel nodes (those for which isMachineOpcode returns false), these
1081  /// are the opcode values in the ISD and <target>ISD namespaces. For
1082  /// post-isel opcodes, see getMachineOpcode.
1083  unsigned getOpcode()  const { return (unsigned short)NodeType; }
1084
1085  /// isTargetOpcode - Test if this node has a target-specific opcode (in the
1086  /// \<target\>ISD namespace).
1087  bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
1088
1089  /// isTargetMemoryOpcode - Test if this node has a target-specific
1090  /// memory-referencing opcode (in the \<target\>ISD namespace and
1091  /// greater than FIRST_TARGET_MEMORY_OPCODE).
1092  bool isTargetMemoryOpcode() const {
1093    return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE;
1094  }
1095
1096  /// isMachineOpcode - Test if this node has a post-isel opcode, directly
1097  /// corresponding to a MachineInstr opcode.
1098  bool isMachineOpcode() const { return NodeType < 0; }
1099
1100  /// getMachineOpcode - This may only be called if isMachineOpcode returns
1101  /// true. It returns the MachineInstr opcode value that the node's opcode
1102  /// corresponds to.
1103  unsigned getMachineOpcode() const {
1104    assert(isMachineOpcode() && "Not a MachineInstr opcode!");
1105    return ~NodeType;
1106  }
1107
1108  /// use_empty - Return true if there are no uses of this node.
1109  ///
1110  bool use_empty() const { return UseList == NULL; }
1111
1112  /// hasOneUse - Return true if there is exactly one use of this node.
1113  ///
1114  bool hasOneUse() const {
1115    return !use_empty() && next(use_begin()) == use_end();
1116  }
1117
1118  /// use_size - Return the number of uses of this node. This method takes
1119  /// time proportional to the number of uses.
1120  ///
1121  size_t use_size() const { return std::distance(use_begin(), use_end()); }
1122
1123  /// getNodeId - Return the unique node id.
1124  ///
1125  int getNodeId() const { return NodeId; }
1126
1127  /// setNodeId - Set unique node id.
1128  void setNodeId(int Id) { NodeId = Id; }
1129
1130  /// getDebugLoc - Return the source location info.
1131  const DebugLoc getDebugLoc() const { return debugLoc; }
1132
1133  /// setDebugLoc - Set source location info.  Try to avoid this, putting
1134  /// it in the constructor is preferable.
1135  void setDebugLoc(const DebugLoc dl) { debugLoc = dl; }
1136
1137  /// use_iterator - This class provides iterator support for SDUse
1138  /// operands that use a specific SDNode.
1139  class use_iterator
1140    : public std::iterator<std::forward_iterator_tag, SDUse, ptrdiff_t> {
1141    SDUse *Op;
1142    explicit use_iterator(SDUse *op) : Op(op) {
1143    }
1144    friend class SDNode;
1145  public:
1146    typedef std::iterator<std::forward_iterator_tag,
1147                          SDUse, ptrdiff_t>::reference reference;
1148    typedef std::iterator<std::forward_iterator_tag,
1149                          SDUse, ptrdiff_t>::pointer pointer;
1150
1151    use_iterator(const use_iterator &I) : Op(I.Op) {}
1152    use_iterator() : Op(0) {}
1153
1154    bool operator==(const use_iterator &x) const {
1155      return Op == x.Op;
1156    }
1157    bool operator!=(const use_iterator &x) const {
1158      return !operator==(x);
1159    }
1160
1161    /// atEnd - return true if this iterator is at the end of uses list.
1162    bool atEnd() const { return Op == 0; }
1163
1164    // Iterator traversal: forward iteration only.
1165    use_iterator &operator++() {          // Preincrement
1166      assert(Op && "Cannot increment end iterator!");
1167      Op = Op->getNext();
1168      return *this;
1169    }
1170
1171    use_iterator operator++(int) {        // Postincrement
1172      use_iterator tmp = *this; ++*this; return tmp;
1173    }
1174
1175    /// Retrieve a pointer to the current user node.
1176    SDNode *operator*() const {
1177      assert(Op && "Cannot dereference end iterator!");
1178      return Op->getUser();
1179    }
1180
1181    SDNode *operator->() const { return operator*(); }
1182
1183    SDUse &getUse() const { return *Op; }
1184
1185    /// getOperandNo - Retrieve the operand # of this use in its user.
1186    ///
1187    unsigned getOperandNo() const {
1188      assert(Op && "Cannot dereference end iterator!");
1189      return (unsigned)(Op - Op->getUser()->OperandList);
1190    }
1191  };
1192
1193  /// use_begin/use_end - Provide iteration support to walk over all uses
1194  /// of an SDNode.
1195
1196  use_iterator use_begin() const {
1197    return use_iterator(UseList);
1198  }
1199
1200  static use_iterator use_end() { return use_iterator(0); }
1201
1202
1203  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
1204  /// indicated value.  This method ignores uses of other values defined by this
1205  /// operation.
1206  bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
1207
1208  /// hasAnyUseOfValue - Return true if there are any use of the indicated
1209  /// value. This method ignores uses of other values defined by this operation.
1210  bool hasAnyUseOfValue(unsigned Value) const;
1211
1212  /// isOnlyUserOf - Return true if this node is the only use of N.
1213  ///
1214  bool isOnlyUserOf(SDNode *N) const;
1215
1216  /// isOperandOf - Return true if this node is an operand of N.
1217  ///
1218  bool isOperandOf(SDNode *N) const;
1219
1220  /// isPredecessorOf - Return true if this node is a predecessor of N. This
1221  /// node is either an operand of N or it can be reached by recursively
1222  /// traversing up the operands.
1223  /// NOTE: this is an expensive method. Use it carefully.
1224  bool isPredecessorOf(SDNode *N) const;
1225
1226  /// getNumOperands - Return the number of values used by this operation.
1227  ///
1228  unsigned getNumOperands() const { return NumOperands; }
1229
1230  /// getConstantOperandVal - Helper method returns the integer value of a
1231  /// ConstantSDNode operand.
1232  uint64_t getConstantOperandVal(unsigned Num) const;
1233
1234  const SDValue &getOperand(unsigned Num) const {
1235    assert(Num < NumOperands && "Invalid child # of SDNode!");
1236    return OperandList[Num];
1237  }
1238
1239  typedef SDUse* op_iterator;
1240  op_iterator op_begin() const { return OperandList; }
1241  op_iterator op_end() const { return OperandList+NumOperands; }
1242
1243  SDVTList getVTList() const {
1244    SDVTList X = { ValueList, NumValues };
1245    return X;
1246  };
1247
1248  /// getFlaggedNode - If this node has a flag operand, return the node
1249  /// to which the flag operand points. Otherwise return NULL.
1250  SDNode *getFlaggedNode() const {
1251    if (getNumOperands() != 0 &&
1252      getOperand(getNumOperands()-1).getValueType().getSimpleVT() == MVT::Flag)
1253      return getOperand(getNumOperands()-1).getNode();
1254    return 0;
1255  }
1256
1257  // If this is a pseudo op, like copyfromreg, look to see if there is a
1258  // real target node flagged to it.  If so, return the target node.
1259  const SDNode *getFlaggedMachineNode() const {
1260    const SDNode *FoundNode = this;
1261
1262    // Climb up flag edges until a machine-opcode node is found, or the
1263    // end of the chain is reached.
1264    while (!FoundNode->isMachineOpcode()) {
1265      const SDNode *N = FoundNode->getFlaggedNode();
1266      if (!N) break;
1267      FoundNode = N;
1268    }
1269
1270    return FoundNode;
1271  }
1272
1273  /// getNumValues - Return the number of values defined/returned by this
1274  /// operator.
1275  ///
1276  unsigned getNumValues() const { return NumValues; }
1277
1278  /// getValueType - Return the type of a specified result.
1279  ///
1280  EVT getValueType(unsigned ResNo) const {
1281    assert(ResNo < NumValues && "Illegal result number!");
1282    return ValueList[ResNo];
1283  }
1284
1285  /// getValueSizeInBits - Returns MVT::getSizeInBits(getValueType(ResNo)).
1286  ///
1287  unsigned getValueSizeInBits(unsigned ResNo) const {
1288    return getValueType(ResNo).getSizeInBits();
1289  }
1290
1291  typedef const EVT* value_iterator;
1292  value_iterator value_begin() const { return ValueList; }
1293  value_iterator value_end() const { return ValueList+NumValues; }
1294
1295  /// getOperationName - Return the opcode of this operation for printing.
1296  ///
1297  std::string getOperationName(const SelectionDAG *G = 0) const;
1298  static const char* getIndexedModeName(ISD::MemIndexedMode AM);
1299  void print_types(raw_ostream &OS, const SelectionDAG *G) const;
1300  void print_details(raw_ostream &OS, const SelectionDAG *G) const;
1301  void print(raw_ostream &OS, const SelectionDAG *G = 0) const;
1302  void printr(raw_ostream &OS, const SelectionDAG *G = 0) const;
1303  void dump() const;
1304  void dumpr() const;
1305  void dump(const SelectionDAG *G) const;
1306  void dumpr(const SelectionDAG *G) const;
1307
1308  static bool classof(const SDNode *) { return true; }
1309
1310  /// Profile - Gather unique data for the node.
1311  ///
1312  void Profile(FoldingSetNodeID &ID) const;
1313
1314  /// addUse - This method should only be used by the SDUse class.
1315  ///
1316  void addUse(SDUse &U) { U.addToList(&UseList); }
1317
1318protected:
1319  static SDVTList getSDVTList(EVT VT) {
1320    SDVTList Ret = { getValueTypeList(VT), 1 };
1321    return Ret;
1322  }
1323
1324  SDNode(unsigned Opc, const DebugLoc dl, SDVTList VTs, const SDValue *Ops,
1325         unsigned NumOps)
1326    : NodeType(Opc), OperandsNeedDelete(true), SubclassData(0),
1327      NodeId(-1),
1328      OperandList(NumOps ? new SDUse[NumOps] : 0),
1329      ValueList(VTs.VTs), UseList(NULL),
1330      NumOperands(NumOps), NumValues(VTs.NumVTs),
1331      debugLoc(dl) {
1332    for (unsigned i = 0; i != NumOps; ++i) {
1333      OperandList[i].setUser(this);
1334      OperandList[i].setInitial(Ops[i]);
1335    }
1336  }
1337
1338  /// This constructor adds no operands itself; operands can be
1339  /// set later with InitOperands.
1340  SDNode(unsigned Opc, const DebugLoc dl, SDVTList VTs)
1341    : NodeType(Opc), OperandsNeedDelete(false), SubclassData(0),
1342      NodeId(-1), OperandList(0), ValueList(VTs.VTs), UseList(NULL),
1343      NumOperands(0), NumValues(VTs.NumVTs),
1344      debugLoc(dl) {}
1345
1346  /// InitOperands - Initialize the operands list of this with 1 operand.
1347  void InitOperands(SDUse *Ops, const SDValue &Op0) {
1348    Ops[0].setUser(this);
1349    Ops[0].setInitial(Op0);
1350    NumOperands = 1;
1351    OperandList = Ops;
1352  }
1353
1354  /// InitOperands - Initialize the operands list of this with 2 operands.
1355  void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1) {
1356    Ops[0].setUser(this);
1357    Ops[0].setInitial(Op0);
1358    Ops[1].setUser(this);
1359    Ops[1].setInitial(Op1);
1360    NumOperands = 2;
1361    OperandList = Ops;
1362  }
1363
1364  /// InitOperands - Initialize the operands list of this with 3 operands.
1365  void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
1366                    const SDValue &Op2) {
1367    Ops[0].setUser(this);
1368    Ops[0].setInitial(Op0);
1369    Ops[1].setUser(this);
1370    Ops[1].setInitial(Op1);
1371    Ops[2].setUser(this);
1372    Ops[2].setInitial(Op2);
1373    NumOperands = 3;
1374    OperandList = Ops;
1375  }
1376
1377  /// InitOperands - Initialize the operands list of this with 4 operands.
1378  void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
1379                    const SDValue &Op2, const SDValue &Op3) {
1380    Ops[0].setUser(this);
1381    Ops[0].setInitial(Op0);
1382    Ops[1].setUser(this);
1383    Ops[1].setInitial(Op1);
1384    Ops[2].setUser(this);
1385    Ops[2].setInitial(Op2);
1386    Ops[3].setUser(this);
1387    Ops[3].setInitial(Op3);
1388    NumOperands = 4;
1389    OperandList = Ops;
1390  }
1391
1392  /// InitOperands - Initialize the operands list of this with N operands.
1393  void InitOperands(SDUse *Ops, const SDValue *Vals, unsigned N) {
1394    for (unsigned i = 0; i != N; ++i) {
1395      Ops[i].setUser(this);
1396      Ops[i].setInitial(Vals[i]);
1397    }
1398    NumOperands = N;
1399    OperandList = Ops;
1400  }
1401
1402  /// DropOperands - Release the operands and set this node to have
1403  /// zero operands.
1404  void DropOperands();
1405};
1406
1407
1408// Define inline functions from the SDValue class.
1409
1410inline unsigned SDValue::getOpcode() const {
1411  return Node->getOpcode();
1412}
1413inline EVT SDValue::getValueType() const {
1414  return Node->getValueType(ResNo);
1415}
1416inline unsigned SDValue::getNumOperands() const {
1417  return Node->getNumOperands();
1418}
1419inline const SDValue &SDValue::getOperand(unsigned i) const {
1420  return Node->getOperand(i);
1421}
1422inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
1423  return Node->getConstantOperandVal(i);
1424}
1425inline bool SDValue::isTargetOpcode() const {
1426  return Node->isTargetOpcode();
1427}
1428inline bool SDValue::isTargetMemoryOpcode() const {
1429  return Node->isTargetMemoryOpcode();
1430}
1431inline bool SDValue::isMachineOpcode() const {
1432  return Node->isMachineOpcode();
1433}
1434inline unsigned SDValue::getMachineOpcode() const {
1435  return Node->getMachineOpcode();
1436}
1437inline bool SDValue::use_empty() const {
1438  return !Node->hasAnyUseOfValue(ResNo);
1439}
1440inline bool SDValue::hasOneUse() const {
1441  return Node->hasNUsesOfValue(1, ResNo);
1442}
1443inline const DebugLoc SDValue::getDebugLoc() const {
1444  return Node->getDebugLoc();
1445}
1446
1447// Define inline functions from the SDUse class.
1448
1449inline void SDUse::set(const SDValue &V) {
1450  if (Val.getNode()) removeFromList();
1451  Val = V;
1452  if (V.getNode()) V.getNode()->addUse(*this);
1453}
1454
1455inline void SDUse::setInitial(const SDValue &V) {
1456  Val = V;
1457  V.getNode()->addUse(*this);
1458}
1459
1460inline void SDUse::setNode(SDNode *N) {
1461  if (Val.getNode()) removeFromList();
1462  Val.setNode(N);
1463  if (N) N->addUse(*this);
1464}
1465
1466/// UnarySDNode - This class is used for single-operand SDNodes.  This is solely
1467/// to allow co-allocation of node operands with the node itself.
1468class UnarySDNode : public SDNode {
1469  SDUse Op;
1470public:
1471  UnarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X)
1472    : SDNode(Opc, dl, VTs) {
1473    InitOperands(&Op, X);
1474  }
1475};
1476
1477/// BinarySDNode - This class is used for two-operand SDNodes.  This is solely
1478/// to allow co-allocation of node operands with the node itself.
1479class BinarySDNode : public SDNode {
1480  SDUse Ops[2];
1481public:
1482  BinarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X, SDValue Y)
1483    : SDNode(Opc, dl, VTs) {
1484    InitOperands(Ops, X, Y);
1485  }
1486};
1487
1488/// TernarySDNode - This class is used for three-operand SDNodes. This is solely
1489/// to allow co-allocation of node operands with the node itself.
1490class TernarySDNode : public SDNode {
1491  SDUse Ops[3];
1492public:
1493  TernarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X, SDValue Y,
1494                SDValue Z)
1495    : SDNode(Opc, dl, VTs) {
1496    InitOperands(Ops, X, Y, Z);
1497  }
1498};
1499
1500
1501/// HandleSDNode - This class is used to form a handle around another node that
1502/// is persistant and is updated across invocations of replaceAllUsesWith on its
1503/// operand.  This node should be directly created by end-users and not added to
1504/// the AllNodes list.
1505class HandleSDNode : public SDNode {
1506  SDUse Op;
1507public:
1508  // FIXME: Remove the "noinline" attribute once <rdar://problem/5852746> is
1509  // fixed.
1510#ifdef __GNUC__
1511  explicit __attribute__((__noinline__)) HandleSDNode(SDValue X)
1512#else
1513  explicit HandleSDNode(SDValue X)
1514#endif
1515    : SDNode(ISD::HANDLENODE, DebugLoc::getUnknownLoc(),
1516             getSDVTList(MVT::Other)) {
1517    InitOperands(&Op, X);
1518  }
1519  ~HandleSDNode();
1520  const SDValue &getValue() const { return Op; }
1521};
1522
1523/// Abstact virtual class for operations for memory operations
1524class MemSDNode : public SDNode {
1525private:
1526  // MemoryVT - VT of in-memory value.
1527  EVT MemoryVT;
1528
1529protected:
1530  /// MMO - Memory reference information.
1531  MachineMemOperand *MMO;
1532
1533public:
1534  MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT MemoryVT,
1535            MachineMemOperand *MMO);
1536
1537  MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, const SDValue *Ops,
1538            unsigned NumOps, EVT MemoryVT, MachineMemOperand *MMO);
1539
1540  bool readMem() const { return MMO->isLoad(); }
1541  bool writeMem() const { return MMO->isStore(); }
1542
1543  /// Returns alignment and volatility of the memory access
1544  unsigned getOriginalAlignment() const {
1545    return MMO->getBaseAlignment();
1546  }
1547  unsigned getAlignment() const {
1548    return MMO->getAlignment();
1549  }
1550
1551  /// getRawSubclassData - Return the SubclassData value, which contains an
1552  /// encoding of the volatile flag, as well as bits used by subclasses. This
1553  /// function should only be used to compute a FoldingSetNodeID value.
1554  unsigned getRawSubclassData() const {
1555    return SubclassData;
1556  }
1557
1558  bool isVolatile() const { return (SubclassData >> 5) & 1; }
1559
1560  /// Returns the SrcValue and offset that describes the location of the access
1561  const Value *getSrcValue() const { return MMO->getValue(); }
1562  int64_t getSrcValueOffset() const { return MMO->getOffset(); }
1563
1564  /// getMemoryVT - Return the type of the in-memory value.
1565  EVT getMemoryVT() const { return MemoryVT; }
1566
1567  /// getMemOperand - Return a MachineMemOperand object describing the memory
1568  /// reference performed by operation.
1569  MachineMemOperand *getMemOperand() const { return MMO; }
1570
1571  /// refineAlignment - Update this MemSDNode's MachineMemOperand information
1572  /// to reflect the alignment of NewMMO, if it has a greater alignment.
1573  /// This must only be used when the new alignment applies to all users of
1574  /// this MachineMemOperand.
1575  void refineAlignment(const MachineMemOperand *NewMMO) {
1576    MMO->refineAlignment(NewMMO);
1577  }
1578
1579  const SDValue &getChain() const { return getOperand(0); }
1580  const SDValue &getBasePtr() const {
1581    return getOperand(getOpcode() == ISD::STORE ? 2 : 1);
1582  }
1583
1584  // Methods to support isa and dyn_cast
1585  static bool classof(const MemSDNode *) { return true; }
1586  static bool classof(const SDNode *N) {
1587    // For some targets, we lower some target intrinsics to a MemIntrinsicNode
1588    // with either an intrinsic or a target opcode.
1589    return N->getOpcode() == ISD::LOAD                ||
1590           N->getOpcode() == ISD::STORE               ||
1591           N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
1592           N->getOpcode() == ISD::ATOMIC_SWAP         ||
1593           N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
1594           N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
1595           N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
1596           N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
1597           N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
1598           N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
1599           N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
1600           N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
1601           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
1602           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX    ||
1603           N->isTargetMemoryOpcode();
1604  }
1605};
1606
1607/// AtomicSDNode - A SDNode reprenting atomic operations.
1608///
1609class AtomicSDNode : public MemSDNode {
1610  SDUse Ops[4];
1611
1612public:
1613  // Opc:   opcode for atomic
1614  // VTL:    value type list
1615  // Chain:  memory chain for operaand
1616  // Ptr:    address to update as a SDValue
1617  // Cmp:    compare value
1618  // Swp:    swap value
1619  // SrcVal: address to update as a Value (used for MemOperand)
1620  // Align:  alignment of memory
1621  AtomicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTL, EVT MemVT,
1622               SDValue Chain, SDValue Ptr,
1623               SDValue Cmp, SDValue Swp, MachineMemOperand *MMO)
1624    : MemSDNode(Opc, dl, VTL, MemVT, MMO) {
1625    assert(readMem() && "Atomic MachineMemOperand is not a load!");
1626    assert(writeMem() && "Atomic MachineMemOperand is not a store!");
1627    InitOperands(Ops, Chain, Ptr, Cmp, Swp);
1628  }
1629  AtomicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTL, EVT MemVT,
1630               SDValue Chain, SDValue Ptr,
1631               SDValue Val, MachineMemOperand *MMO)
1632    : MemSDNode(Opc, dl, VTL, MemVT, MMO) {
1633    assert(readMem() && "Atomic MachineMemOperand is not a load!");
1634    assert(writeMem() && "Atomic MachineMemOperand is not a store!");
1635    InitOperands(Ops, Chain, Ptr, Val);
1636  }
1637
1638  const SDValue &getBasePtr() const { return getOperand(1); }
1639  const SDValue &getVal() const { return getOperand(2); }
1640
1641  bool isCompareAndSwap() const {
1642    unsigned Op = getOpcode();
1643    return Op == ISD::ATOMIC_CMP_SWAP;
1644  }
1645
1646  // Methods to support isa and dyn_cast
1647  static bool classof(const AtomicSDNode *) { return true; }
1648  static bool classof(const SDNode *N) {
1649    return N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
1650           N->getOpcode() == ISD::ATOMIC_SWAP         ||
1651           N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
1652           N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
1653           N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
1654           N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
1655           N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
1656           N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
1657           N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
1658           N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
1659           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
1660           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX;
1661  }
1662};
1663
1664/// MemIntrinsicSDNode - This SDNode is used for target intrinsics that touch
1665/// memory and need an associated MachineMemOperand. Its opcode may be
1666/// INTRINSIC_VOID, INTRINSIC_W_CHAIN, or a target-specific opcode with a
1667/// value not less than FIRST_TARGET_MEMORY_OPCODE.
1668class MemIntrinsicSDNode : public MemSDNode {
1669public:
1670  MemIntrinsicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
1671                     const SDValue *Ops, unsigned NumOps,
1672                     EVT MemoryVT, MachineMemOperand *MMO)
1673    : MemSDNode(Opc, dl, VTs, Ops, NumOps, MemoryVT, MMO) {
1674  }
1675
1676  // Methods to support isa and dyn_cast
1677  static bool classof(const MemIntrinsicSDNode *) { return true; }
1678  static bool classof(const SDNode *N) {
1679    // We lower some target intrinsics to their target opcode
1680    // early a node with a target opcode can be of this class
1681    return N->getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1682           N->getOpcode() == ISD::INTRINSIC_VOID ||
1683           N->isTargetMemoryOpcode();
1684  }
1685};
1686
1687/// ShuffleVectorSDNode - This SDNode is used to implement the code generator
1688/// support for the llvm IR shufflevector instruction.  It combines elements
1689/// from two input vectors into a new input vector, with the selection and
1690/// ordering of elements determined by an array of integers, referred to as
1691/// the shuffle mask.  For input vectors of width N, mask indices of 0..N-1
1692/// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
1693/// An index of -1 is treated as undef, such that the code generator may put
1694/// any value in the corresponding element of the result.
1695class ShuffleVectorSDNode : public SDNode {
1696  SDUse Ops[2];
1697
1698  // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
1699  // is freed when the SelectionDAG object is destroyed.
1700  const int *Mask;
1701protected:
1702  friend class SelectionDAG;
1703  ShuffleVectorSDNode(EVT VT, DebugLoc dl, SDValue N1, SDValue N2,
1704                      const int *M)
1705    : SDNode(ISD::VECTOR_SHUFFLE, dl, getSDVTList(VT)), Mask(M) {
1706    InitOperands(Ops, N1, N2);
1707  }
1708public:
1709
1710  void getMask(SmallVectorImpl<int> &M) const {
1711    EVT VT = getValueType(0);
1712    M.clear();
1713    for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1714      M.push_back(Mask[i]);
1715  }
1716  int getMaskElt(unsigned Idx) const {
1717    assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!");
1718    return Mask[Idx];
1719  }
1720
1721  bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
1722  int  getSplatIndex() const {
1723    assert(isSplat() && "Cannot get splat index for non-splat!");
1724    return Mask[0];
1725  }
1726  static bool isSplatMask(const int *Mask, EVT VT);
1727
1728  static bool classof(const ShuffleVectorSDNode *) { return true; }
1729  static bool classof(const SDNode *N) {
1730    return N->getOpcode() == ISD::VECTOR_SHUFFLE;
1731  }
1732};
1733
1734class ConstantSDNode : public SDNode {
1735  const ConstantInt *Value;
1736  friend class SelectionDAG;
1737  ConstantSDNode(bool isTarget, const ConstantInt *val, EVT VT)
1738    : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant,
1739             DebugLoc::getUnknownLoc(), getSDVTList(VT)), Value(val) {
1740  }
1741public:
1742
1743  const ConstantInt *getConstantIntValue() const { return Value; }
1744  const APInt &getAPIntValue() const { return Value->getValue(); }
1745  uint64_t getZExtValue() const { return Value->getZExtValue(); }
1746  int64_t getSExtValue() const { return Value->getSExtValue(); }
1747
1748  bool isNullValue() const { return Value->isNullValue(); }
1749  bool isAllOnesValue() const { return Value->isAllOnesValue(); }
1750
1751  static bool classof(const ConstantSDNode *) { return true; }
1752  static bool classof(const SDNode *N) {
1753    return N->getOpcode() == ISD::Constant ||
1754           N->getOpcode() == ISD::TargetConstant;
1755  }
1756};
1757
1758class ConstantFPSDNode : public SDNode {
1759  const ConstantFP *Value;
1760  friend class SelectionDAG;
1761  ConstantFPSDNode(bool isTarget, const ConstantFP *val, EVT VT)
1762    : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP,
1763             DebugLoc::getUnknownLoc(), getSDVTList(VT)), Value(val) {
1764  }
1765public:
1766
1767  const APFloat& getValueAPF() const { return Value->getValueAPF(); }
1768  const ConstantFP *getConstantFPValue() const { return Value; }
1769
1770  /// isExactlyValue - We don't rely on operator== working on double values, as
1771  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1772  /// As such, this method can be used to do an exact bit-for-bit comparison of
1773  /// two floating point values.
1774
1775  /// We leave the version with the double argument here because it's just so
1776  /// convenient to write "2.0" and the like.  Without this function we'd
1777  /// have to duplicate its logic everywhere it's called.
1778  bool isExactlyValue(double V) const {
1779    bool ignored;
1780    // convert is not supported on this type
1781    if (&Value->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
1782      return false;
1783    APFloat Tmp(V);
1784    Tmp.convert(Value->getValueAPF().getSemantics(),
1785                APFloat::rmNearestTiesToEven, &ignored);
1786    return isExactlyValue(Tmp);
1787  }
1788  bool isExactlyValue(const APFloat& V) const;
1789
1790  bool isValueValidForType(EVT VT, const APFloat& Val);
1791
1792  static bool classof(const ConstantFPSDNode *) { return true; }
1793  static bool classof(const SDNode *N) {
1794    return N->getOpcode() == ISD::ConstantFP ||
1795           N->getOpcode() == ISD::TargetConstantFP;
1796  }
1797};
1798
1799class GlobalAddressSDNode : public SDNode {
1800  GlobalValue *TheGlobal;
1801  int64_t Offset;
1802  unsigned char TargetFlags;
1803  friend class SelectionDAG;
1804  GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA, EVT VT,
1805                      int64_t o, unsigned char TargetFlags);
1806public:
1807
1808  GlobalValue *getGlobal() const { return TheGlobal; }
1809  int64_t getOffset() const { return Offset; }
1810  unsigned char getTargetFlags() const { return TargetFlags; }
1811  // Return the address space this GlobalAddress belongs to.
1812  unsigned getAddressSpace() const;
1813
1814  static bool classof(const GlobalAddressSDNode *) { return true; }
1815  static bool classof(const SDNode *N) {
1816    return N->getOpcode() == ISD::GlobalAddress ||
1817           N->getOpcode() == ISD::TargetGlobalAddress ||
1818           N->getOpcode() == ISD::GlobalTLSAddress ||
1819           N->getOpcode() == ISD::TargetGlobalTLSAddress;
1820  }
1821};
1822
1823class FrameIndexSDNode : public SDNode {
1824  int FI;
1825  friend class SelectionDAG;
1826  FrameIndexSDNode(int fi, EVT VT, bool isTarg)
1827    : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
1828      DebugLoc::getUnknownLoc(), getSDVTList(VT)), FI(fi) {
1829  }
1830public:
1831
1832  int getIndex() const { return FI; }
1833
1834  static bool classof(const FrameIndexSDNode *) { return true; }
1835  static bool classof(const SDNode *N) {
1836    return N->getOpcode() == ISD::FrameIndex ||
1837           N->getOpcode() == ISD::TargetFrameIndex;
1838  }
1839};
1840
1841class JumpTableSDNode : public SDNode {
1842  int JTI;
1843  unsigned char TargetFlags;
1844  friend class SelectionDAG;
1845  JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned char TF)
1846    : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
1847      DebugLoc::getUnknownLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) {
1848  }
1849public:
1850
1851  int getIndex() const { return JTI; }
1852  unsigned char getTargetFlags() const { return TargetFlags; }
1853
1854  static bool classof(const JumpTableSDNode *) { return true; }
1855  static bool classof(const SDNode *N) {
1856    return N->getOpcode() == ISD::JumpTable ||
1857           N->getOpcode() == ISD::TargetJumpTable;
1858  }
1859};
1860
1861class ConstantPoolSDNode : public SDNode {
1862  union {
1863    Constant *ConstVal;
1864    MachineConstantPoolValue *MachineCPVal;
1865  } Val;
1866  int Offset;  // It's a MachineConstantPoolValue if top bit is set.
1867  unsigned Alignment;  // Minimum alignment requirement of CP (not log2 value).
1868  unsigned char TargetFlags;
1869  friend class SelectionDAG;
1870  ConstantPoolSDNode(bool isTarget, Constant *c, EVT VT, int o, unsigned Align,
1871                     unsigned char TF)
1872    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1873             DebugLoc::getUnknownLoc(),
1874             getSDVTList(VT)), Offset(o), Alignment(Align), TargetFlags(TF) {
1875    assert((int)Offset >= 0 && "Offset is too large");
1876    Val.ConstVal = c;
1877  }
1878  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1879                     EVT VT, int o, unsigned Align, unsigned char TF)
1880    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1881             DebugLoc::getUnknownLoc(),
1882             getSDVTList(VT)), Offset(o), Alignment(Align), TargetFlags(TF) {
1883    assert((int)Offset >= 0 && "Offset is too large");
1884    Val.MachineCPVal = v;
1885    Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1);
1886  }
1887public:
1888
1889
1890  bool isMachineConstantPoolEntry() const {
1891    return (int)Offset < 0;
1892  }
1893
1894  Constant *getConstVal() const {
1895    assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
1896    return Val.ConstVal;
1897  }
1898
1899  MachineConstantPoolValue *getMachineCPVal() const {
1900    assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
1901    return Val.MachineCPVal;
1902  }
1903
1904  int getOffset() const {
1905    return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1));
1906  }
1907
1908  // Return the alignment of this constant pool object, which is either 0 (for
1909  // default alignment) or the desired value.
1910  unsigned getAlignment() const { return Alignment; }
1911  unsigned char getTargetFlags() const { return TargetFlags; }
1912
1913  const Type *getType() const;
1914
1915  static bool classof(const ConstantPoolSDNode *) { return true; }
1916  static bool classof(const SDNode *N) {
1917    return N->getOpcode() == ISD::ConstantPool ||
1918           N->getOpcode() == ISD::TargetConstantPool;
1919  }
1920};
1921
1922class BasicBlockSDNode : public SDNode {
1923  MachineBasicBlock *MBB;
1924  friend class SelectionDAG;
1925  /// Debug info is meaningful and potentially useful here, but we create
1926  /// blocks out of order when they're jumped to, which makes it a bit
1927  /// harder.  Let's see if we need it first.
1928  explicit BasicBlockSDNode(MachineBasicBlock *mbb)
1929    : SDNode(ISD::BasicBlock, DebugLoc::getUnknownLoc(),
1930             getSDVTList(MVT::Other)), MBB(mbb) {
1931  }
1932public:
1933
1934  MachineBasicBlock *getBasicBlock() const { return MBB; }
1935
1936  static bool classof(const BasicBlockSDNode *) { return true; }
1937  static bool classof(const SDNode *N) {
1938    return N->getOpcode() == ISD::BasicBlock;
1939  }
1940};
1941
1942/// BuildVectorSDNode - A "pseudo-class" with methods for operating on
1943/// BUILD_VECTORs.
1944class BuildVectorSDNode : public SDNode {
1945  // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
1946  explicit BuildVectorSDNode();        // Do not implement
1947public:
1948  /// isConstantSplat - Check if this is a constant splat, and if so, find the
1949  /// smallest element size that splats the vector.  If MinSplatBits is
1950  /// nonzero, the element size must be at least that large.  Note that the
1951  /// splat element may be the entire vector (i.e., a one element vector).
1952  /// Returns the splat element value in SplatValue.  Any undefined bits in
1953  /// that value are zero, and the corresponding bits in the SplatUndef mask
1954  /// are set.  The SplatBitSize value is set to the splat element size in
1955  /// bits.  HasAnyUndefs is set to true if any bits in the vector are
1956  /// undefined.
1957  bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
1958                       unsigned &SplatBitSize, bool &HasAnyUndefs,
1959                       unsigned MinSplatBits = 0);
1960
1961  static inline bool classof(const BuildVectorSDNode *) { return true; }
1962  static inline bool classof(const SDNode *N) {
1963    return N->getOpcode() == ISD::BUILD_VECTOR;
1964  }
1965};
1966
1967/// SrcValueSDNode - An SDNode that holds an arbitrary LLVM IR Value. This is
1968/// used when the SelectionDAG needs to make a simple reference to something
1969/// in the LLVM IR representation.
1970///
1971class SrcValueSDNode : public SDNode {
1972  const Value *V;
1973  friend class SelectionDAG;
1974  /// Create a SrcValue for a general value.
1975  explicit SrcValueSDNode(const Value *v)
1976    : SDNode(ISD::SRCVALUE, DebugLoc::getUnknownLoc(),
1977             getSDVTList(MVT::Other)), V(v) {}
1978
1979public:
1980  /// getValue - return the contained Value.
1981  const Value *getValue() const { return V; }
1982
1983  static bool classof(const SrcValueSDNode *) { return true; }
1984  static bool classof(const SDNode *N) {
1985    return N->getOpcode() == ISD::SRCVALUE;
1986  }
1987};
1988
1989
1990class RegisterSDNode : public SDNode {
1991  unsigned Reg;
1992  friend class SelectionDAG;
1993  RegisterSDNode(unsigned reg, EVT VT)
1994    : SDNode(ISD::Register, DebugLoc::getUnknownLoc(),
1995             getSDVTList(VT)), Reg(reg) {
1996  }
1997public:
1998
1999  unsigned getReg() const { return Reg; }
2000
2001  static bool classof(const RegisterSDNode *) { return true; }
2002  static bool classof(const SDNode *N) {
2003    return N->getOpcode() == ISD::Register;
2004  }
2005};
2006
2007class DbgStopPointSDNode : public SDNode {
2008  SDUse Chain;
2009  unsigned Line;
2010  unsigned Column;
2011  MDNode *CU;
2012  friend class SelectionDAG;
2013  DbgStopPointSDNode(SDValue ch, unsigned l, unsigned c,
2014                     MDNode *cu)
2015    : SDNode(ISD::DBG_STOPPOINT, DebugLoc::getUnknownLoc(),
2016      getSDVTList(MVT::Other)), Line(l), Column(c), CU(cu) {
2017    InitOperands(&Chain, ch);
2018  }
2019public:
2020  unsigned getLine() const { return Line; }
2021  unsigned getColumn() const { return Column; }
2022  MDNode *getCompileUnit() const { return CU; }
2023
2024  static bool classof(const DbgStopPointSDNode *) { return true; }
2025  static bool classof(const SDNode *N) {
2026    return N->getOpcode() == ISD::DBG_STOPPOINT;
2027  }
2028};
2029
2030class BlockAddressSDNode : public SDNode {
2031  BlockAddress *BA;
2032  friend class SelectionDAG;
2033  BlockAddressSDNode(unsigned NodeTy, DebugLoc dl, EVT VT, BlockAddress *ba)
2034    : SDNode(NodeTy, dl, getSDVTList(VT)), BA(ba) {
2035  }
2036public:
2037  BlockAddress *getBlockAddress() const { return BA; }
2038
2039  static bool classof(const BlockAddressSDNode *) { return true; }
2040  static bool classof(const SDNode *N) {
2041    return N->getOpcode() == ISD::BlockAddress ||
2042           N->getOpcode() == ISD::TargetBlockAddress;
2043  }
2044};
2045
2046class LabelSDNode : public SDNode {
2047  SDUse Chain;
2048  unsigned LabelID;
2049  friend class SelectionDAG;
2050  LabelSDNode(unsigned NodeTy, DebugLoc dl, SDValue ch, unsigned id)
2051    : SDNode(NodeTy, dl, getSDVTList(MVT::Other)), LabelID(id) {
2052    InitOperands(&Chain, ch);
2053  }
2054public:
2055  unsigned getLabelID() const { return LabelID; }
2056
2057  static bool classof(const LabelSDNode *) { return true; }
2058  static bool classof(const SDNode *N) {
2059    return N->getOpcode() == ISD::DBG_LABEL ||
2060           N->getOpcode() == ISD::EH_LABEL;
2061  }
2062};
2063
2064class ExternalSymbolSDNode : public SDNode {
2065  const char *Symbol;
2066  unsigned char TargetFlags;
2067
2068  friend class SelectionDAG;
2069  ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned char TF, EVT VT)
2070    : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
2071             DebugLoc::getUnknownLoc(),
2072             getSDVTList(VT)), Symbol(Sym), TargetFlags(TF) {
2073  }
2074public:
2075
2076  const char *getSymbol() const { return Symbol; }
2077  unsigned char getTargetFlags() const { return TargetFlags; }
2078
2079  static bool classof(const ExternalSymbolSDNode *) { return true; }
2080  static bool classof(const SDNode *N) {
2081    return N->getOpcode() == ISD::ExternalSymbol ||
2082           N->getOpcode() == ISD::TargetExternalSymbol;
2083  }
2084};
2085
2086class CondCodeSDNode : public SDNode {
2087  ISD::CondCode Condition;
2088  friend class SelectionDAG;
2089  explicit CondCodeSDNode(ISD::CondCode Cond)
2090    : SDNode(ISD::CONDCODE, DebugLoc::getUnknownLoc(),
2091             getSDVTList(MVT::Other)), Condition(Cond) {
2092  }
2093public:
2094
2095  ISD::CondCode get() const { return Condition; }
2096
2097  static bool classof(const CondCodeSDNode *) { return true; }
2098  static bool classof(const SDNode *N) {
2099    return N->getOpcode() == ISD::CONDCODE;
2100  }
2101};
2102
2103/// CvtRndSatSDNode - NOTE: avoid using this node as this may disappear in the
2104/// future and most targets don't support it.
2105class CvtRndSatSDNode : public SDNode {
2106  ISD::CvtCode CvtCode;
2107  friend class SelectionDAG;
2108  explicit CvtRndSatSDNode(EVT VT, DebugLoc dl, const SDValue *Ops,
2109                           unsigned NumOps, ISD::CvtCode Code)
2110    : SDNode(ISD::CONVERT_RNDSAT, dl, getSDVTList(VT), Ops, NumOps),
2111      CvtCode(Code) {
2112    assert(NumOps == 5 && "wrong number of operations");
2113  }
2114public:
2115  ISD::CvtCode getCvtCode() const { return CvtCode; }
2116
2117  static bool classof(const CvtRndSatSDNode *) { return true; }
2118  static bool classof(const SDNode *N) {
2119    return N->getOpcode() == ISD::CONVERT_RNDSAT;
2120  }
2121};
2122
2123namespace ISD {
2124  struct ArgFlagsTy {
2125  private:
2126    static const uint64_t NoFlagSet      = 0ULL;
2127    static const uint64_t ZExt           = 1ULL<<0;  ///< Zero extended
2128    static const uint64_t ZExtOffs       = 0;
2129    static const uint64_t SExt           = 1ULL<<1;  ///< Sign extended
2130    static const uint64_t SExtOffs       = 1;
2131    static const uint64_t InReg          = 1ULL<<2;  ///< Passed in register
2132    static const uint64_t InRegOffs      = 2;
2133    static const uint64_t SRet           = 1ULL<<3;  ///< Hidden struct-ret ptr
2134    static const uint64_t SRetOffs       = 3;
2135    static const uint64_t ByVal          = 1ULL<<4;  ///< Struct passed by value
2136    static const uint64_t ByValOffs      = 4;
2137    static const uint64_t Nest           = 1ULL<<5;  ///< Nested fn static chain
2138    static const uint64_t NestOffs       = 5;
2139    static const uint64_t ByValAlign     = 0xFULL << 6; //< Struct alignment
2140    static const uint64_t ByValAlignOffs = 6;
2141    static const uint64_t Split          = 1ULL << 10;
2142    static const uint64_t SplitOffs      = 10;
2143    static const uint64_t OrigAlign      = 0x1FULL<<27;
2144    static const uint64_t OrigAlignOffs  = 27;
2145    static const uint64_t ByValSize      = 0xffffffffULL << 32; //< Struct size
2146    static const uint64_t ByValSizeOffs  = 32;
2147
2148    static const uint64_t One            = 1ULL; //< 1 of this type, for shifts
2149
2150    uint64_t Flags;
2151  public:
2152    ArgFlagsTy() : Flags(0) { }
2153
2154    bool isZExt()   const { return Flags & ZExt; }
2155    void setZExt()  { Flags |= One << ZExtOffs; }
2156
2157    bool isSExt()   const { return Flags & SExt; }
2158    void setSExt()  { Flags |= One << SExtOffs; }
2159
2160    bool isInReg()  const { return Flags & InReg; }
2161    void setInReg() { Flags |= One << InRegOffs; }
2162
2163    bool isSRet()   const { return Flags & SRet; }
2164    void setSRet()  { Flags |= One << SRetOffs; }
2165
2166    bool isByVal()  const { return Flags & ByVal; }
2167    void setByVal() { Flags |= One << ByValOffs; }
2168
2169    bool isNest()   const { return Flags & Nest; }
2170    void setNest()  { Flags |= One << NestOffs; }
2171
2172    unsigned getByValAlign() const {
2173      return (unsigned)
2174        ((One << ((Flags & ByValAlign) >> ByValAlignOffs)) / 2);
2175    }
2176    void setByValAlign(unsigned A) {
2177      Flags = (Flags & ~ByValAlign) |
2178        (uint64_t(Log2_32(A) + 1) << ByValAlignOffs);
2179    }
2180
2181    bool isSplit()   const { return Flags & Split; }
2182    void setSplit()  { Flags |= One << SplitOffs; }
2183
2184    unsigned getOrigAlign() const {
2185      return (unsigned)
2186        ((One << ((Flags & OrigAlign) >> OrigAlignOffs)) / 2);
2187    }
2188    void setOrigAlign(unsigned A) {
2189      Flags = (Flags & ~OrigAlign) |
2190        (uint64_t(Log2_32(A) + 1) << OrigAlignOffs);
2191    }
2192
2193    unsigned getByValSize() const {
2194      return (unsigned)((Flags & ByValSize) >> ByValSizeOffs);
2195    }
2196    void setByValSize(unsigned S) {
2197      Flags = (Flags & ~ByValSize) | (uint64_t(S) << ByValSizeOffs);
2198    }
2199
2200    /// getArgFlagsString - Returns the flags as a string, eg: "zext align:4".
2201    std::string getArgFlagsString();
2202
2203    /// getRawBits - Represent the flags as a bunch of bits.
2204    uint64_t getRawBits() const { return Flags; }
2205  };
2206
2207  /// InputArg - This struct carries flags and type information about a
2208  /// single incoming (formal) argument or incoming (from the perspective
2209  /// of the caller) return value virtual register.
2210  ///
2211  struct InputArg {
2212    ArgFlagsTy Flags;
2213    EVT VT;
2214    bool Used;
2215
2216    InputArg() : VT(MVT::Other), Used(false) {}
2217    InputArg(ISD::ArgFlagsTy flags, EVT vt, bool used)
2218      : Flags(flags), VT(vt), Used(used) {
2219      assert(VT.isSimple() &&
2220             "InputArg value type must be Simple!");
2221    }
2222  };
2223
2224  /// OutputArg - This struct carries flags and a value for a
2225  /// single outgoing (actual) argument or outgoing (from the perspective
2226  /// of the caller) return value virtual register.
2227  ///
2228  struct OutputArg {
2229    ArgFlagsTy Flags;
2230    SDValue Val;
2231    bool IsFixed;
2232
2233    OutputArg() : IsFixed(false) {}
2234    OutputArg(ISD::ArgFlagsTy flags, SDValue val, bool isfixed)
2235      : Flags(flags), Val(val), IsFixed(isfixed) {
2236      assert(Val.getValueType().isSimple() &&
2237             "OutputArg value type must be Simple!");
2238    }
2239  };
2240}
2241
2242/// VTSDNode - This class is used to represent EVT's, which are used
2243/// to parameterize some operations.
2244class VTSDNode : public SDNode {
2245  EVT ValueType;
2246  friend class SelectionDAG;
2247  explicit VTSDNode(EVT VT)
2248    : SDNode(ISD::VALUETYPE, DebugLoc::getUnknownLoc(),
2249             getSDVTList(MVT::Other)), ValueType(VT) {
2250  }
2251public:
2252
2253  EVT getVT() const { return ValueType; }
2254
2255  static bool classof(const VTSDNode *) { return true; }
2256  static bool classof(const SDNode *N) {
2257    return N->getOpcode() == ISD::VALUETYPE;
2258  }
2259};
2260
2261/// LSBaseSDNode - Base class for LoadSDNode and StoreSDNode
2262///
2263class LSBaseSDNode : public MemSDNode {
2264  //! Operand array for load and store
2265  /*!
2266    \note Moving this array to the base class captures more
2267    common functionality shared between LoadSDNode and
2268    StoreSDNode
2269   */
2270  SDUse Ops[4];
2271public:
2272  LSBaseSDNode(ISD::NodeType NodeTy, DebugLoc dl, SDValue *Operands,
2273               unsigned numOperands, SDVTList VTs, ISD::MemIndexedMode AM,
2274               EVT MemVT, MachineMemOperand *MMO)
2275    : MemSDNode(NodeTy, dl, VTs, MemVT, MMO) {
2276    SubclassData |= AM << 2;
2277    assert(getAddressingMode() == AM && "MemIndexedMode encoding error!");
2278    InitOperands(Ops, Operands, numOperands);
2279    assert((getOffset().getOpcode() == ISD::UNDEF || isIndexed()) &&
2280           "Only indexed loads and stores have a non-undef offset operand");
2281  }
2282
2283  const SDValue &getOffset() const {
2284    return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
2285  }
2286
2287  /// getAddressingMode - Return the addressing mode for this load or store:
2288  /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2289  ISD::MemIndexedMode getAddressingMode() const {
2290    return ISD::MemIndexedMode((SubclassData >> 2) & 7);
2291  }
2292
2293  /// isIndexed - Return true if this is a pre/post inc/dec load/store.
2294  bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2295
2296  /// isUnindexed - Return true if this is NOT a pre/post inc/dec load/store.
2297  bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2298
2299  static bool classof(const LSBaseSDNode *) { return true; }
2300  static bool classof(const SDNode *N) {
2301    return N->getOpcode() == ISD::LOAD ||
2302           N->getOpcode() == ISD::STORE;
2303  }
2304};
2305
2306/// LoadSDNode - This class is used to represent ISD::LOAD nodes.
2307///
2308class LoadSDNode : public LSBaseSDNode {
2309  friend class SelectionDAG;
2310  LoadSDNode(SDValue *ChainPtrOff, DebugLoc dl, SDVTList VTs,
2311             ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT,
2312             MachineMemOperand *MMO)
2313    : LSBaseSDNode(ISD::LOAD, dl, ChainPtrOff, 3,
2314                   VTs, AM, MemVT, MMO) {
2315    SubclassData |= (unsigned short)ETy;
2316    assert(getExtensionType() == ETy && "LoadExtType encoding error!");
2317    assert(readMem() && "Load MachineMemOperand is not a load!");
2318    assert(!writeMem() && "Load MachineMemOperand is a store!");
2319  }
2320public:
2321
2322  /// getExtensionType - Return whether this is a plain node,
2323  /// or one of the varieties of value-extending loads.
2324  ISD::LoadExtType getExtensionType() const {
2325    return ISD::LoadExtType(SubclassData & 3);
2326  }
2327
2328  const SDValue &getBasePtr() const { return getOperand(1); }
2329  const SDValue &getOffset() const { return getOperand(2); }
2330
2331  static bool classof(const LoadSDNode *) { return true; }
2332  static bool classof(const SDNode *N) {
2333    return N->getOpcode() == ISD::LOAD;
2334  }
2335};
2336
2337/// StoreSDNode - This class is used to represent ISD::STORE nodes.
2338///
2339class StoreSDNode : public LSBaseSDNode {
2340  friend class SelectionDAG;
2341  StoreSDNode(SDValue *ChainValuePtrOff, DebugLoc dl, SDVTList VTs,
2342              ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT,
2343              MachineMemOperand *MMO)
2344    : LSBaseSDNode(ISD::STORE, dl, ChainValuePtrOff, 4,
2345                   VTs, AM, MemVT, MMO) {
2346    SubclassData |= (unsigned short)isTrunc;
2347    assert(isTruncatingStore() == isTrunc && "isTrunc encoding error!");
2348    assert(!readMem() && "Store MachineMemOperand is a load!");
2349    assert(writeMem() && "Store MachineMemOperand is not a store!");
2350  }
2351public:
2352
2353  /// isTruncatingStore - Return true if the op does a truncation before store.
2354  /// For integers this is the same as doing a TRUNCATE and storing the result.
2355  /// For floats, it is the same as doing an FP_ROUND and storing the result.
2356  bool isTruncatingStore() const { return SubclassData & 1; }
2357
2358  const SDValue &getValue() const { return getOperand(1); }
2359  const SDValue &getBasePtr() const { return getOperand(2); }
2360  const SDValue &getOffset() const { return getOperand(3); }
2361
2362  static bool classof(const StoreSDNode *) { return true; }
2363  static bool classof(const SDNode *N) {
2364    return N->getOpcode() == ISD::STORE;
2365  }
2366};
2367
2368/// MachineSDNode - An SDNode that represents everything that will be needed
2369/// to construct a MachineInstr. These nodes are created during the
2370/// instruction selection proper phase.
2371///
2372class MachineSDNode : public SDNode {
2373public:
2374  typedef MachineMemOperand **mmo_iterator;
2375
2376private:
2377  friend class SelectionDAG;
2378  MachineSDNode(unsigned Opc, const DebugLoc DL, SDVTList VTs)
2379    : SDNode(Opc, DL, VTs), MemRefs(0), MemRefsEnd(0) {}
2380
2381  /// LocalOperands - Operands for this instruction, if they fit here. If
2382  /// they don't, this field is unused.
2383  SDUse LocalOperands[4];
2384
2385  /// MemRefs - Memory reference descriptions for this instruction.
2386  mmo_iterator MemRefs;
2387  mmo_iterator MemRefsEnd;
2388
2389public:
2390  mmo_iterator memoperands_begin() const { return MemRefs; }
2391  mmo_iterator memoperands_end() const { return MemRefsEnd; }
2392  bool memoperands_empty() const { return MemRefsEnd == MemRefs; }
2393
2394  /// setMemRefs - Assign this MachineSDNodes's memory reference descriptor
2395  /// list. This does not transfer ownership.
2396  void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
2397    MemRefs = NewMemRefs;
2398    MemRefsEnd = NewMemRefsEnd;
2399  }
2400
2401  static bool classof(const MachineSDNode *) { return true; }
2402  static bool classof(const SDNode *N) {
2403    return N->isMachineOpcode();
2404  }
2405};
2406
2407class SDNodeIterator : public std::iterator<std::forward_iterator_tag,
2408                                            SDNode, ptrdiff_t> {
2409  SDNode *Node;
2410  unsigned Operand;
2411
2412  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
2413public:
2414  bool operator==(const SDNodeIterator& x) const {
2415    return Operand == x.Operand;
2416  }
2417  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
2418
2419  const SDNodeIterator &operator=(const SDNodeIterator &I) {
2420    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
2421    Operand = I.Operand;
2422    return *this;
2423  }
2424
2425  pointer operator*() const {
2426    return Node->getOperand(Operand).getNode();
2427  }
2428  pointer operator->() const { return operator*(); }
2429
2430  SDNodeIterator& operator++() {                // Preincrement
2431    ++Operand;
2432    return *this;
2433  }
2434  SDNodeIterator operator++(int) { // Postincrement
2435    SDNodeIterator tmp = *this; ++*this; return tmp;
2436  }
2437
2438  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
2439  static SDNodeIterator end  (SDNode *N) {
2440    return SDNodeIterator(N, N->getNumOperands());
2441  }
2442
2443  unsigned getOperand() const { return Operand; }
2444  const SDNode *getNode() const { return Node; }
2445};
2446
2447template <> struct GraphTraits<SDNode*> {
2448  typedef SDNode NodeType;
2449  typedef SDNodeIterator ChildIteratorType;
2450  static inline NodeType *getEntryNode(SDNode *N) { return N; }
2451  static inline ChildIteratorType child_begin(NodeType *N) {
2452    return SDNodeIterator::begin(N);
2453  }
2454  static inline ChildIteratorType child_end(NodeType *N) {
2455    return SDNodeIterator::end(N);
2456  }
2457};
2458
2459/// LargestSDNode - The largest SDNode class.
2460///
2461typedef LoadSDNode LargestSDNode;
2462
2463/// MostAlignedSDNode - The SDNode class with the greatest alignment
2464/// requirement.
2465///
2466typedef GlobalAddressSDNode MostAlignedSDNode;
2467
2468namespace ISD {
2469  /// isNormalLoad - Returns true if the specified node is a non-extending
2470  /// and unindexed load.
2471  inline bool isNormalLoad(const SDNode *N) {
2472    const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
2473    return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
2474      Ld->getAddressingMode() == ISD::UNINDEXED;
2475  }
2476
2477  /// isNON_EXTLoad - Returns true if the specified node is a non-extending
2478  /// load.
2479  inline bool isNON_EXTLoad(const SDNode *N) {
2480    return isa<LoadSDNode>(N) &&
2481      cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
2482  }
2483
2484  /// isEXTLoad - Returns true if the specified node is a EXTLOAD.
2485  ///
2486  inline bool isEXTLoad(const SDNode *N) {
2487    return isa<LoadSDNode>(N) &&
2488      cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
2489  }
2490
2491  /// isSEXTLoad - Returns true if the specified node is a SEXTLOAD.
2492  ///
2493  inline bool isSEXTLoad(const SDNode *N) {
2494    return isa<LoadSDNode>(N) &&
2495      cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
2496  }
2497
2498  /// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD.
2499  ///
2500  inline bool isZEXTLoad(const SDNode *N) {
2501    return isa<LoadSDNode>(N) &&
2502      cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
2503  }
2504
2505  /// isUNINDEXEDLoad - Returns true if the specified node is an unindexed load.
2506  ///
2507  inline bool isUNINDEXEDLoad(const SDNode *N) {
2508    return isa<LoadSDNode>(N) &&
2509      cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2510  }
2511
2512  /// isNormalStore - Returns true if the specified node is a non-truncating
2513  /// and unindexed store.
2514  inline bool isNormalStore(const SDNode *N) {
2515    const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
2516    return St && !St->isTruncatingStore() &&
2517      St->getAddressingMode() == ISD::UNINDEXED;
2518  }
2519
2520  /// isNON_TRUNCStore - Returns true if the specified node is a non-truncating
2521  /// store.
2522  inline bool isNON_TRUNCStore(const SDNode *N) {
2523    return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore();
2524  }
2525
2526  /// isTRUNCStore - Returns true if the specified node is a truncating
2527  /// store.
2528  inline bool isTRUNCStore(const SDNode *N) {
2529    return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore();
2530  }
2531
2532  /// isUNINDEXEDStore - Returns true if the specified node is an
2533  /// unindexed store.
2534  inline bool isUNINDEXEDStore(const SDNode *N) {
2535    return isa<StoreSDNode>(N) &&
2536      cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2537  }
2538}
2539
2540
2541} // end llvm namespace
2542
2543#endif
2544