SelectionDAGNodes.h revision a44f4aeca77c6c1627568fe68e92af9c7e33dc7e
1//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SDNode class and derived classes, which are used to
11// represent the nodes and operations present in a SelectionDAG.  These nodes
12// and operations are machine code level operations, with some similarities to
13// the GCC RTL representation.
14//
15// Clients should include the SelectionDAG.h file instead of this file directly.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20#define LLVM_CODEGEN_SELECTIONDAGNODES_H
21
22#include "llvm/CodeGen/ValueTypes.h"
23#include "llvm/ADT/GraphTraits.h"
24#include "llvm/ADT/GraphTraits.h"
25#include "llvm/ADT/iterator"
26#include "llvm/Support/DataTypes.h"
27#include <cassert>
28#include <vector>
29
30namespace llvm {
31
32class SelectionDAG;
33class GlobalValue;
34class MachineBasicBlock;
35class SDNode;
36template <typename T> struct simplify_type;
37
38/// ISD namespace - This namespace contains an enum which represents all of the
39/// SelectionDAG node types and value types.
40///
41namespace ISD {
42  //===--------------------------------------------------------------------===//
43  /// ISD::NodeType enum - This enum defines all of the operators valid in a
44  /// SelectionDAG.
45  ///
46  enum NodeType {
47    // EntryToken - This is the marker used to indicate the start of the region.
48    EntryToken,
49
50    // Token factor - This node is takes multiple tokens as input and produces a
51    // single token result.  This is used to represent the fact that the operand
52    // operators are independent of each other.
53    TokenFactor,
54
55    // Various leaf nodes.
56    Constant, ConstantFP, GlobalAddress, FrameIndex, ConstantPool,
57    BasicBlock, ExternalSymbol,
58
59    // CopyToReg - This node has chain and child nodes, and an associated
60    // register number.  The instruction selector must guarantee that the value
61    // of the value node is available in the register stored in the RegSDNode
62    // object.
63    CopyToReg,
64
65    // CopyFromReg - This node indicates that the input value is a virtual or
66    // physical register that is defined outside of the scope of this
67    // SelectionDAG.  The register is available from the RegSDNode object.
68    CopyFromReg,
69
70    // ImplicitDef - This node indicates that the specified register is
71    // implicitly defined by some operation (e.g. its a live-in argument).  This
72    // register is indicated in the RegSDNode object.  The only operand to this
73    // is the token chain coming in, the only result is the token chain going
74    // out.
75    ImplicitDef,
76
77    // EXTRACT_ELEMENT - This is used to get the first or second (determined by
78    // a Constant, which is required to be operand #1), element of the aggregate
79    // value specified as operand #0.  This is only for use before legalization,
80    // for values that will be broken into multiple registers.
81    EXTRACT_ELEMENT,
82
83    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
84    // two values of the same integer value type, this produces a value twice as
85    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
86    BUILD_PAIR,
87
88
89    // Simple binary arithmetic operators.
90    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
91
92    // Bitwise operators.
93    AND, OR, XOR, SHL, SRA, SRL,
94
95    // Select operator.
96    SELECT,
97
98    // SetCC operator - This evaluates to a boolean (i1) true value if the
99    // condition is true.  These nodes are instances of the
100    // SetCCSDNode class, which contains the condition code as extra
101    // state.
102    SETCC,
103
104    // addc - Three input, two output operator: (X, Y, C) -> (X+Y+C,
105    // Cout).  X,Y are integer inputs of agreeing size, C is a one bit
106    // value, and two values are produced: the sum and a carry out.
107    ADDC, SUBB,
108
109    // Conversion operators.  These are all single input single output
110    // operations.  For all of these, the result type must be strictly
111    // wider or narrower (depending on the operation) than the source
112    // type.
113
114    // SIGN_EXTEND - Used for integer types, replicating the sign bit
115    // into new bits.
116    SIGN_EXTEND,
117
118    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
119    ZERO_EXTEND,
120
121    // TRUNCATE - Completely drop the high bits.
122    TRUNCATE,
123
124    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
125    // depends on the first letter) to floating point.
126    SINT_TO_FP,
127    UINT_TO_FP,
128
129    // FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
130    // integer.
131    FP_TO_SINT,
132    FP_TO_UINT,
133
134    // FP_ROUND - Perform a rounding operation from the current
135    // precision down to the specified precision.
136    FP_ROUND,
137
138    // FP_EXTEND - Extend a smaller FP type into a larger FP type.
139    FP_EXTEND,
140
141    // Other operators.  LOAD and STORE have token chains.
142    LOAD, STORE,
143
144    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
145    // to a specified boundary.  The first operand is the token chain, the
146    // second is the number of bytes to allocate, and the third is the alignment
147    // boundary.
148    DYNAMIC_STACKALLOC,
149
150    // Control flow instructions.  These all have token chains.
151
152    // BR - Unconditional branch.  The first operand is the chain
153    // operand, the second is the MBB to branch to.
154    BR,
155
156    // BRCOND - Conditional branch.  The first operand is the chain,
157    // the second is the condition, the third is the block to branch
158    // to if the condition is true.
159    BRCOND,
160
161    // RET - Return from function.  The first operand is the chain,
162    // and any subsequent operands are the return values for the
163    // function.  This operation can have variable number of operands.
164    RET,
165
166    // CALL - Call to a function pointer.  The first operand is the chain, the
167    // second is the destination function pointer (a GlobalAddress for a direct
168    // call).  Arguments have already been lowered to explicit DAGs according to
169    // the calling convention in effect here.
170    CALL,
171
172    // MEMSET/MEMCPY/MEMMOVE - The first operand is the chain, and the rest
173    // correspond to the operands of the LLVM intrinsic functions.  The only
174    // result is a token chain.  The alignment argument is guaranteed to be a
175    // Constant node.
176    MEMSET,
177    MEMMOVE,
178    MEMCPY,
179
180    // ADJCALLSTACKDOWN/ADJCALLSTACKUP - These operators mark the beginning and
181    // end of a call sequence and indicate how much the stack pointer needs to
182    // be adjusted for that particular call.  The first operand is a chain, the
183    // second is a ConstantSDNode of intptr type.
184    ADJCALLSTACKDOWN,  // Beginning of a call sequence
185    ADJCALLSTACKUP,    // End of a call sequence
186
187
188    // BUILTIN_OP_END - This must be the last enum value in this list.
189    BUILTIN_OP_END,
190  };
191
192  //===--------------------------------------------------------------------===//
193  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
194  /// below work out, when considering SETFALSE (something that never exists
195  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
196  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
197  /// to.  If the "N" column is 1, the result of the comparison is undefined if
198  /// the input is a NAN.
199  ///
200  /// All of these (except for the 'always folded ops') should be handled for
201  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
202  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
203  ///
204  /// Note that these are laid out in a specific order to allow bit-twiddling
205  /// to transform conditions.
206  enum CondCode {
207    // Opcode          N U L G E       Intuitive operation
208    SETFALSE,      //    0 0 0 0       Always false (always folded)
209    SETOEQ,        //    0 0 0 1       True if ordered and equal
210    SETOGT,        //    0 0 1 0       True if ordered and greater than
211    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
212    SETOLT,        //    0 1 0 0       True if ordered and less than
213    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
214    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
215    SETO,          //    0 1 1 1       True if ordered (no nans)
216    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
217    SETUEQ,        //    1 0 0 1       True if unordered or equal
218    SETUGT,        //    1 0 1 0       True if unordered or greater than
219    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
220    SETULT,        //    1 1 0 0       True if unordered or less than
221    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
222    SETUNE,        //    1 1 1 0       True if unordered or not equal
223    SETTRUE,       //    1 1 1 1       Always true (always folded)
224    // Don't care operations: undefined if the input is a nan.
225    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
226    SETEQ,         //  1 X 0 0 1       True if equal
227    SETGT,         //  1 X 0 1 0       True if greater than
228    SETGE,         //  1 X 0 1 1       True if greater than or equal
229    SETLT,         //  1 X 1 0 0       True if less than
230    SETLE,         //  1 X 1 0 1       True if less than or equal
231    SETNE,         //  1 X 1 1 0       True if not equal
232    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
233
234    SETCC_INVALID,      // Marker value.
235  };
236
237  /// isSignedIntSetCC - Return true if this is a setcc instruction that
238  /// performs a signed comparison when used with integer operands.
239  inline bool isSignedIntSetCC(CondCode Code) {
240    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
241  }
242
243  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
244  /// performs an unsigned comparison when used with integer operands.
245  inline bool isUnsignedIntSetCC(CondCode Code) {
246    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
247  }
248
249  /// isTrueWhenEqual - Return true if the specified condition returns true if
250  /// the two operands to the condition are equal.  Note that if one of the two
251  /// operands is a NaN, this value is meaningless.
252  inline bool isTrueWhenEqual(CondCode Cond) {
253    return ((int)Cond & 1) != 0;
254  }
255
256  /// getUnorderedFlavor - This function returns 0 if the condition is always
257  /// false if an operand is a NaN, 1 if the condition is always true if the
258  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
259  /// NaN.
260  inline unsigned getUnorderedFlavor(CondCode Cond) {
261    return ((int)Cond >> 3) & 3;
262  }
263
264  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
265  /// 'op' is a valid SetCC operation.
266  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
267
268  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
269  /// when given the operation for (X op Y).
270  CondCode getSetCCSwappedOperands(CondCode Operation);
271
272  /// getSetCCOrOperation - Return the result of a logical OR between different
273  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
274  /// function returns SETCC_INVALID if it is not possible to represent the
275  /// resultant comparison.
276  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
277
278  /// getSetCCAndOperation - Return the result of a logical AND between
279  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
280  /// function returns SETCC_INVALID if it is not possible to represent the
281  /// resultant comparison.
282  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
283}  // end llvm::ISD namespace
284
285
286//===----------------------------------------------------------------------===//
287/// SDOperand - Unlike LLVM values, Selection DAG nodes may return multiple
288/// values as the result of a computation.  Many nodes return multiple values,
289/// from loads (which define a token and a return value) to ADDC (which returns
290/// a result and a carry value), to calls (which may return an arbitrary number
291/// of values).
292///
293/// As such, each use of a SelectionDAG computation must indicate the node that
294/// computes it as well as which return value to use from that node.  This pair
295/// of information is represented with the SDOperand value type.
296///
297class SDOperand {
298public:
299  SDNode *Val;        // The node defining the value we are using.
300  unsigned ResNo;     // Which return value of the node we are using.
301
302  SDOperand() : Val(0) {}
303  SDOperand(SDNode *val, unsigned resno) : Val(val), ResNo(resno) {}
304
305  bool operator==(const SDOperand &O) const {
306    return Val == O.Val && ResNo == O.ResNo;
307  }
308  bool operator!=(const SDOperand &O) const {
309    return !operator==(O);
310  }
311  bool operator<(const SDOperand &O) const {
312    return Val < O.Val || (Val == O.Val && ResNo < O.ResNo);
313  }
314
315  SDOperand getValue(unsigned R) const {
316    return SDOperand(Val, R);
317  }
318
319  /// getValueType - Return the ValueType of the referenced return value.
320  ///
321  inline MVT::ValueType getValueType() const;
322
323  // Forwarding methods - These forward to the corresponding methods in SDNode.
324  inline unsigned getOpcode() const;
325  inline unsigned getNumOperands() const;
326  inline const SDOperand &getOperand(unsigned i) const;
327
328  /// hasOneUse - Return true if there is exactly one operation using this
329  /// result value of the defining operator.
330  inline bool hasOneUse() const;
331};
332
333
334/// simplify_type specializations - Allow casting operators to work directly on
335/// SDOperands as if they were SDNode*'s.
336template<> struct simplify_type<SDOperand> {
337  typedef SDNode* SimpleType;
338  static SimpleType getSimplifiedValue(const SDOperand &Val) {
339    return static_cast<SimpleType>(Val.Val);
340  }
341};
342template<> struct simplify_type<const SDOperand> {
343  typedef SDNode* SimpleType;
344  static SimpleType getSimplifiedValue(const SDOperand &Val) {
345    return static_cast<SimpleType>(Val.Val);
346  }
347};
348
349
350/// SDNode - Represents one node in the SelectionDAG.
351///
352class SDNode {
353  unsigned NodeType;
354  std::vector<SDOperand> Operands;
355
356  /// Values - The types of the values this node defines.  SDNode's may define
357  /// multiple values simultaneously.
358  std::vector<MVT::ValueType> Values;
359
360  /// Uses - These are all of the SDNode's that use a value produced by this
361  /// node.
362  std::vector<SDNode*> Uses;
363public:
364
365  //===--------------------------------------------------------------------===//
366  //  Accessors
367  //
368  unsigned getOpcode()  const { return NodeType; }
369
370  size_t use_size() const { return Uses.size(); }
371  bool use_empty() const { return Uses.empty(); }
372  bool hasOneUse() const { return Uses.size() == 1; }
373
374  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
375  /// indicated value.  This method ignores uses of other values defined by this
376  /// operation.
377  bool hasNUsesOfValue(unsigned NUses, unsigned Value);
378
379  /// getNumOperands - Return the number of values used by this operation.
380  ///
381  unsigned getNumOperands() const { return Operands.size(); }
382
383  const SDOperand &getOperand(unsigned Num) {
384    assert(Num < Operands.size() && "Invalid child # of SDNode!");
385    return Operands[Num];
386  }
387
388  const SDOperand &getOperand(unsigned Num) const {
389    assert(Num < Operands.size() && "Invalid child # of SDNode!");
390    return Operands[Num];
391  }
392
393  /// getNumValues - Return the number of values defined/returned by this
394  /// operator.
395  ///
396  unsigned getNumValues() const { return Values.size(); }
397
398  /// getValueType - Return the type of a specified result.
399  ///
400  MVT::ValueType getValueType(unsigned ResNo) const {
401    assert(ResNo < Values.size() && "Illegal result number!");
402    return Values[ResNo];
403  }
404
405  /// getOperationName - Return the opcode of this operation for printing.
406  ///
407  const char* getOperationName() const;
408  void dump() const;
409
410  static bool classof(const SDNode *) { return true; }
411
412protected:
413  friend class SelectionDAG;
414
415  SDNode(unsigned NT, MVT::ValueType VT) : NodeType(NT) {
416    Values.reserve(1);
417    Values.push_back(VT);
418  }
419
420  SDNode(unsigned NT, SDOperand Op)
421    : NodeType(NT) {
422    Operands.reserve(1); Operands.push_back(Op);
423    Op.Val->Uses.push_back(this);
424  }
425  SDNode(unsigned NT, SDOperand N1, SDOperand N2)
426    : NodeType(NT) {
427    Operands.reserve(2); Operands.push_back(N1); Operands.push_back(N2);
428    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
429  }
430  SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3)
431    : NodeType(NT) {
432    Operands.reserve(3); Operands.push_back(N1); Operands.push_back(N2);
433    Operands.push_back(N3);
434    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
435    N3.Val->Uses.push_back(this);
436  }
437  SDNode(unsigned NT, std::vector<SDOperand> &Nodes) : NodeType(NT) {
438    Operands.swap(Nodes);
439    for (unsigned i = 0, e = Operands.size(); i != e; ++i)
440      Operands[i].Val->Uses.push_back(this);
441  }
442
443  virtual ~SDNode() {
444    // FIXME: Drop uses.
445  }
446
447  void setValueTypes(MVT::ValueType VT) {
448    Values.reserve(1);
449    Values.push_back(VT);
450  }
451  void setValueTypes(MVT::ValueType VT1, MVT::ValueType VT2) {
452    Values.reserve(2);
453    Values.push_back(VT1);
454    Values.push_back(VT2);
455  }
456  /// Note: this method destroys the vector passed in.
457  void setValueTypes(std::vector<MVT::ValueType> &VTs) {
458    std::swap(Values, VTs);
459  }
460
461  void removeUser(SDNode *User) {
462    // Remove this user from the operand's use list.
463    for (unsigned i = Uses.size(); ; --i) {
464      assert(i != 0 && "Didn't find user!");
465      if (Uses[i-1] == User) {
466        Uses.erase(Uses.begin()+i-1);
467        break;
468      }
469    }
470  }
471};
472
473
474// Define inline functions from the SDOperand class.
475
476inline unsigned SDOperand::getOpcode() const {
477  return Val->getOpcode();
478}
479inline MVT::ValueType SDOperand::getValueType() const {
480  return Val->getValueType(ResNo);
481}
482inline unsigned SDOperand::getNumOperands() const {
483  return Val->getNumOperands();
484}
485inline const SDOperand &SDOperand::getOperand(unsigned i) const {
486  return Val->getOperand(i);
487}
488inline bool SDOperand::hasOneUse() const {
489  return Val->hasNUsesOfValue(1, ResNo);
490}
491
492
493class ConstantSDNode : public SDNode {
494  uint64_t Value;
495protected:
496  friend class SelectionDAG;
497  ConstantSDNode(uint64_t val, MVT::ValueType VT)
498    : SDNode(ISD::Constant, VT), Value(val) {
499  }
500public:
501
502  uint64_t getValue() const { return Value; }
503
504  int64_t getSignExtended() const {
505    unsigned Bits = MVT::getSizeInBits(getValueType(0));
506    return ((int64_t)Value << (64-Bits)) >> (64-Bits);
507  }
508
509  bool isNullValue() const { return Value == 0; }
510  bool isAllOnesValue() const {
511    return Value == (1ULL << MVT::getSizeInBits(getValueType(0)))-1;
512  }
513
514  static bool classof(const ConstantSDNode *) { return true; }
515  static bool classof(const SDNode *N) {
516    return N->getOpcode() == ISD::Constant;
517  }
518};
519
520class ConstantFPSDNode : public SDNode {
521  double Value;
522protected:
523  friend class SelectionDAG;
524  ConstantFPSDNode(double val, MVT::ValueType VT)
525    : SDNode(ISD::ConstantFP, VT), Value(val) {
526  }
527public:
528
529  double getValue() const { return Value; }
530
531  /// isExactlyValue - We don't rely on operator== working on double values, as
532  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
533  /// As such, this method can be used to do an exact bit-for-bit comparison of
534  /// two floating point values.
535  bool isExactlyValue(double V) const {
536    union {
537      double V;
538      uint64_t I;
539    } T1;
540    T1.V = Value;
541    union {
542      double V;
543      uint64_t I;
544    } T2;
545    T2.V = V;
546    return T1.I == T2.I;
547  }
548
549  static bool classof(const ConstantFPSDNode *) { return true; }
550  static bool classof(const SDNode *N) {
551    return N->getOpcode() == ISD::ConstantFP;
552  }
553};
554
555class GlobalAddressSDNode : public SDNode {
556  GlobalValue *TheGlobal;
557protected:
558  friend class SelectionDAG;
559  GlobalAddressSDNode(const GlobalValue *GA, MVT::ValueType VT)
560    : SDNode(ISD::GlobalAddress, VT) {
561    TheGlobal = const_cast<GlobalValue*>(GA);
562  }
563public:
564
565  GlobalValue *getGlobal() const { return TheGlobal; }
566
567  static bool classof(const GlobalAddressSDNode *) { return true; }
568  static bool classof(const SDNode *N) {
569    return N->getOpcode() == ISD::GlobalAddress;
570  }
571};
572
573
574class FrameIndexSDNode : public SDNode {
575  int FI;
576protected:
577  friend class SelectionDAG;
578  FrameIndexSDNode(int fi, MVT::ValueType VT)
579    : SDNode(ISD::FrameIndex, VT), FI(fi) {}
580public:
581
582  int getIndex() const { return FI; }
583
584  static bool classof(const FrameIndexSDNode *) { return true; }
585  static bool classof(const SDNode *N) {
586    return N->getOpcode() == ISD::FrameIndex;
587  }
588};
589
590class ConstantPoolSDNode : public SDNode {
591  unsigned CPI;
592protected:
593  friend class SelectionDAG;
594  ConstantPoolSDNode(unsigned cpi, MVT::ValueType VT)
595    : SDNode(ISD::ConstantPool, VT), CPI(cpi) {}
596public:
597
598  unsigned getIndex() const { return CPI; }
599
600  static bool classof(const ConstantPoolSDNode *) { return true; }
601  static bool classof(const SDNode *N) {
602    return N->getOpcode() == ISD::ConstantPool;
603  }
604};
605
606class BasicBlockSDNode : public SDNode {
607  MachineBasicBlock *MBB;
608protected:
609  friend class SelectionDAG;
610  BasicBlockSDNode(MachineBasicBlock *mbb)
611    : SDNode(ISD::BasicBlock, MVT::Other), MBB(mbb) {}
612public:
613
614  MachineBasicBlock *getBasicBlock() const { return MBB; }
615
616  static bool classof(const BasicBlockSDNode *) { return true; }
617  static bool classof(const SDNode *N) {
618    return N->getOpcode() == ISD::BasicBlock;
619  }
620};
621
622
623class RegSDNode : public SDNode {
624  unsigned Reg;
625protected:
626  friend class SelectionDAG;
627  RegSDNode(SDOperand Chain, SDOperand Src, unsigned reg)
628    : SDNode(ISD::CopyToReg, Chain, Src), Reg(reg) {
629    setValueTypes(MVT::Other);  // Just a token chain.
630  }
631  RegSDNode(unsigned Opc, unsigned reg, MVT::ValueType VT)
632    : SDNode(Opc, VT), Reg(reg) {
633  }
634public:
635
636  unsigned getReg() const { return Reg; }
637
638  static bool classof(const RegSDNode *) { return true; }
639  static bool classof(const SDNode *N) {
640    return N->getOpcode() == ISD::CopyToReg ||
641           N->getOpcode() == ISD::CopyFromReg ||
642           N->getOpcode() == ISD::ImplicitDef;
643  }
644};
645
646class ExternalSymbolSDNode : public SDNode {
647  const char *Symbol;
648protected:
649  friend class SelectionDAG;
650  ExternalSymbolSDNode(const char *Sym, MVT::ValueType VT)
651    : SDNode(ISD::ExternalSymbol, VT), Symbol(Sym) {
652    }
653public:
654
655  const char *getSymbol() const { return Symbol; }
656
657  static bool classof(const ExternalSymbolSDNode *) { return true; }
658  static bool classof(const SDNode *N) {
659    return N->getOpcode() == ISD::ExternalSymbol;
660  }
661};
662
663class SetCCSDNode : public SDNode {
664  ISD::CondCode Condition;
665protected:
666  friend class SelectionDAG;
667  SetCCSDNode(ISD::CondCode Cond, SDOperand LHS, SDOperand RHS)
668    : SDNode(ISD::SETCC, LHS, RHS), Condition(Cond) {
669    setValueTypes(MVT::i1);
670  }
671public:
672
673  ISD::CondCode getCondition() const { return Condition; }
674
675  static bool classof(const SetCCSDNode *) { return true; }
676  static bool classof(const SDNode *N) {
677    return N->getOpcode() == ISD::SETCC;
678  }
679};
680
681
682class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
683  SDNode *Node;
684  unsigned Operand;
685
686  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
687public:
688  bool operator==(const SDNodeIterator& x) const {
689    return Operand == x.Operand;
690  }
691  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
692
693  const SDNodeIterator &operator=(const SDNodeIterator &I) {
694    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
695    Operand = I.Operand;
696    return *this;
697  }
698
699  pointer operator*() const {
700    return Node->getOperand(Operand).Val;
701  }
702  pointer operator->() const { return operator*(); }
703
704  SDNodeIterator& operator++() {                // Preincrement
705    ++Operand;
706    return *this;
707  }
708  SDNodeIterator operator++(int) { // Postincrement
709    SDNodeIterator tmp = *this; ++*this; return tmp;
710  }
711
712  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
713  static SDNodeIterator end  (SDNode *N) {
714    return SDNodeIterator(N, N->getNumOperands());
715  }
716
717  unsigned getOperand() const { return Operand; }
718  const SDNode *getNode() const { return Node; }
719};
720
721template <> struct GraphTraits<SDNode*> {
722  typedef SDNode NodeType;
723  typedef SDNodeIterator ChildIteratorType;
724  static inline NodeType *getEntryNode(SDNode *N) { return N; }
725  static inline ChildIteratorType child_begin(NodeType *N) {
726    return SDNodeIterator::begin(N);
727  }
728  static inline ChildIteratorType child_end(NodeType *N) {
729    return SDNodeIterator::end(N);
730  }
731};
732
733
734
735
736} // end llvm namespace
737
738#endif
739