SelectionDAGNodes.h revision a5682853b9921bbb0dd2ee175c9bd44142d4819e
1//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SDNode class and derived classes, which are used to
11// represent the nodes and operations present in a SelectionDAG.  These nodes
12// and operations are machine code level operations, with some similarities to
13// the GCC RTL representation.
14//
15// Clients should include the SelectionDAG.h file instead of this file directly.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20#define LLVM_CODEGEN_SELECTIONDAGNODES_H
21
22#include "llvm/CodeGen/ValueTypes.h"
23#include "llvm/Value.h"
24#include "llvm/ADT/GraphTraits.h"
25#include "llvm/ADT/iterator"
26#include "llvm/Support/DataTypes.h"
27#include <cassert>
28#include <vector>
29
30namespace llvm {
31
32class SelectionDAG;
33class GlobalValue;
34class MachineBasicBlock;
35class SDNode;
36template <typename T> struct simplify_type;
37template <typename T> struct ilist_traits;
38template<typename NodeTy, typename Traits> class iplist;
39template<typename NodeTy> class ilist_iterator;
40
41/// ISD namespace - This namespace contains an enum which represents all of the
42/// SelectionDAG node types and value types.
43///
44namespace ISD {
45  //===--------------------------------------------------------------------===//
46  /// ISD::NodeType enum - This enum defines all of the operators valid in a
47  /// SelectionDAG.
48  ///
49  enum NodeType {
50    // DELETED_NODE - This is an illegal flag value that is used to catch
51    // errors.  This opcode is not a legal opcode for any node.
52    DELETED_NODE,
53
54    // EntryToken - This is the marker used to indicate the start of the region.
55    EntryToken,
56
57    // Token factor - This node takes multiple tokens as input and produces a
58    // single token result.  This is used to represent the fact that the operand
59    // operators are independent of each other.
60    TokenFactor,
61
62    // AssertSext, AssertZext - These nodes record if a register contains a
63    // value that has already been zero or sign extended from a narrower type.
64    // These nodes take two operands.  The first is the node that has already
65    // been extended, and the second is a value type node indicating the width
66    // of the extension
67    AssertSext, AssertZext,
68
69    // Various leaf nodes.
70    STRING, BasicBlock, VALUETYPE, CONDCODE, Register,
71    Constant, ConstantFP,
72    GlobalAddress, FrameIndex, JumpTable, ConstantPool, ExternalSymbol,
73
74    // TargetConstant* - Like Constant*, but the DAG does not do any folding or
75    // simplification of the constant.
76    TargetConstant,
77    TargetConstantFP,
78
79    // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
80    // anything else with this node, and this is valid in the target-specific
81    // dag, turning into a GlobalAddress operand.
82    TargetGlobalAddress,
83    TargetFrameIndex,
84    TargetJumpTable,
85    TargetConstantPool,
86    TargetExternalSymbol,
87
88    /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
89    /// This node represents a target intrinsic function with no side effects.
90    /// The first operand is the ID number of the intrinsic from the
91    /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
92    /// node has returns the result of the intrinsic.
93    INTRINSIC_WO_CHAIN,
94
95    /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
96    /// This node represents a target intrinsic function with side effects that
97    /// returns a result.  The first operand is a chain pointer.  The second is
98    /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
99    /// operands to the intrinsic follow.  The node has two results, the result
100    /// of the intrinsic and an output chain.
101    INTRINSIC_W_CHAIN,
102
103    /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
104    /// This node represents a target intrinsic function with side effects that
105    /// does not return a result.  The first operand is a chain pointer.  The
106    /// second is the ID number of the intrinsic from the llvm::Intrinsic
107    /// namespace.  The operands to the intrinsic follow.
108    INTRINSIC_VOID,
109
110    // CopyToReg - This node has three operands: a chain, a register number to
111    // set to this value, and a value.
112    CopyToReg,
113
114    // CopyFromReg - This node indicates that the input value is a virtual or
115    // physical register that is defined outside of the scope of this
116    // SelectionDAG.  The register is available from the RegSDNode object.
117    CopyFromReg,
118
119    // UNDEF - An undefined node
120    UNDEF,
121
122    /// FORMAL_ARGUMENTS(CHAIN, CC#, ISVARARG) - This node represents the formal
123    /// arguments for a function.  CC# is a Constant value indicating the
124    /// calling convention of the function, and ISVARARG is a flag that
125    /// indicates whether the function is varargs or not.  This node has one
126    /// result value for each incoming argument, plus one for the output chain.
127    /// It must be custom legalized.
128    ///
129    FORMAL_ARGUMENTS,
130
131    /// RV1, RV2...RVn, CHAIN = CALL(CHAIN, CC#, ISVARARG, ISTAILCALL, CALLEE,
132    ///                              ARG0, SIGN0, ARG1, SIGN1, ... ARGn, SIGNn)
133    /// This node represents a fully general function call, before the legalizer
134    /// runs.  This has one result value for each argument / signness pair, plus
135    /// a chain result. It must be custom legalized.
136    CALL,
137
138    // EXTRACT_ELEMENT - This is used to get the first or second (determined by
139    // a Constant, which is required to be operand #1), element of the aggregate
140    // value specified as operand #0.  This is only for use before legalization,
141    // for values that will be broken into multiple registers.
142    EXTRACT_ELEMENT,
143
144    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
145    // two values of the same integer value type, this produces a value twice as
146    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
147    BUILD_PAIR,
148
149    // MERGE_VALUES - This node takes multiple discrete operands and returns
150    // them all as its individual results.  This nodes has exactly the same
151    // number of inputs and outputs, and is only valid before legalization.
152    // This node is useful for some pieces of the code generator that want to
153    // think about a single node with multiple results, not multiple nodes.
154    MERGE_VALUES,
155
156    // Simple integer binary arithmetic operators.
157    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
158
159    // Carry-setting nodes for multiple precision addition and subtraction.
160    // These nodes take two operands of the same value type, and produce two
161    // results.  The first result is the normal add or sub result, the second
162    // result is the carry flag result.
163    ADDC, SUBC,
164
165    // Carry-using nodes for multiple precision addition and subtraction.  These
166    // nodes take three operands: The first two are the normal lhs and rhs to
167    // the add or sub, and the third is the input carry flag.  These nodes
168    // produce two results; the normal result of the add or sub, and the output
169    // carry flag.  These nodes both read and write a carry flag to allow them
170    // to them to be chained together for add and sub of arbitrarily large
171    // values.
172    ADDE, SUBE,
173
174    // Simple binary floating point operators.
175    FADD, FSUB, FMUL, FDIV, FREM,
176
177    // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
178    // DAG node does not require that X and Y have the same type, just that they
179    // are both floating point.  X and the result must have the same type.
180    // FCOPYSIGN(f32, f64) is allowed.
181    FCOPYSIGN,
182
183    /// VBUILD_VECTOR(ELT1, ELT2, ELT3, ELT4,...,  COUNT,TYPE) - Return a vector
184    /// with the specified, possibly variable, elements.  The number of elements
185    /// is required to be a power of two.
186    VBUILD_VECTOR,
187
188    /// BUILD_VECTOR(ELT1, ELT2, ELT3, ELT4,...) - Return a vector
189    /// with the specified, possibly variable, elements.  The number of elements
190    /// is required to be a power of two.
191    BUILD_VECTOR,
192
193    /// VINSERT_VECTOR_ELT(VECTOR, VAL, IDX,  COUNT,TYPE) - Given a vector
194    /// VECTOR, an element ELEMENT, and a (potentially variable) index IDX,
195    /// return an vector with the specified element of VECTOR replaced with VAL.
196    /// COUNT and TYPE specify the type of vector, as is standard for V* nodes.
197    VINSERT_VECTOR_ELT,
198
199    /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR (a legal packed
200    /// type) with the element at IDX replaced with VAL.
201    INSERT_VECTOR_ELT,
202
203    /// VEXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
204    /// (an MVT::Vector value) identified by the (potentially variable) element
205    /// number IDX.
206    VEXTRACT_VECTOR_ELT,
207
208    /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
209    /// (a legal packed type vector) identified by the (potentially variable)
210    /// element number IDX.
211    EXTRACT_VECTOR_ELT,
212
213    /// VVECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC, COUNT,TYPE) - Returns a vector,
214    /// of the same type as VEC1/VEC2.  SHUFFLEVEC is a VBUILD_VECTOR of
215    /// constant int values that indicate which value each result element will
216    /// get.  The elements of VEC1/VEC2 are enumerated in order.  This is quite
217    /// similar to the Altivec 'vperm' instruction, except that the indices must
218    /// be constants and are in terms of the element size of VEC1/VEC2, not in
219    /// terms of bytes.
220    VVECTOR_SHUFFLE,
221
222    /// VECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC) - Returns a vector, of the same
223    /// type as VEC1/VEC2.  SHUFFLEVEC is a BUILD_VECTOR of constant int values
224    /// (regardless of whether its datatype is legal or not) that indicate
225    /// which value each result element will get.  The elements of VEC1/VEC2 are
226    /// enumerated in order.  This is quite similar to the Altivec 'vperm'
227    /// instruction, except that the indices must be constants and are in terms
228    /// of the element size of VEC1/VEC2, not in terms of bytes.
229    VECTOR_SHUFFLE,
230
231    /// X = VBIT_CONVERT(Y)  and X = VBIT_CONVERT(Y, COUNT,TYPE) - This node
232    /// represents a conversion from or to an ISD::Vector type.
233    ///
234    /// This is lowered to a BIT_CONVERT of the appropriate input/output types.
235    /// The input and output are required to have the same size and at least one
236    /// is required to be a vector (if neither is a vector, just use
237    /// BIT_CONVERT).
238    ///
239    /// If the result is a vector, this takes three operands (like any other
240    /// vector producer) which indicate the size and type of the vector result.
241    /// Otherwise it takes one input.
242    VBIT_CONVERT,
243
244    /// BINOP(LHS, RHS,  COUNT,TYPE)
245    /// Simple abstract vector operators.  Unlike the integer and floating point
246    /// binary operators, these nodes also take two additional operands:
247    /// a constant element count, and a value type node indicating the type of
248    /// the elements.  The order is count, type, op0, op1.  All vector opcodes,
249    /// including VLOAD and VConstant must currently have count and type as
250    /// their last two operands.
251    VADD, VSUB, VMUL, VSDIV, VUDIV,
252    VAND, VOR, VXOR,
253
254    /// VSELECT(COND,LHS,RHS,  COUNT,TYPE) - Select for MVT::Vector values.
255    /// COND is a boolean value.  This node return LHS if COND is true, RHS if
256    /// COND is false.
257    VSELECT,
258
259    /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
260    /// scalar value into the low element of the resultant vector type.  The top
261    /// elements of the vector are undefined.
262    SCALAR_TO_VECTOR,
263
264    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
265    // an unsigned/signed value of type i[2*n], then return the top part.
266    MULHU, MULHS,
267
268    // Bitwise operators - logical and, logical or, logical xor, shift left,
269    // shift right algebraic (shift in sign bits), shift right logical (shift in
270    // zeroes), rotate left, rotate right, and byteswap.
271    AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
272
273    // Counting operators
274    CTTZ, CTLZ, CTPOP,
275
276    // Select(COND, TRUEVAL, FALSEVAL)
277    SELECT,
278
279    // Select with condition operator - This selects between a true value and
280    // a false value (ops #2 and #3) based on the boolean result of comparing
281    // the lhs and rhs (ops #0 and #1) of a conditional expression with the
282    // condition code in op #4, a CondCodeSDNode.
283    SELECT_CC,
284
285    // SetCC operator - This evaluates to a boolean (i1) true value if the
286    // condition is true.  The operands to this are the left and right operands
287    // to compare (ops #0, and #1) and the condition code to compare them with
288    // (op #2) as a CondCodeSDNode.
289    SETCC,
290
291    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
292    // integer shift operations, just like ADD/SUB_PARTS.  The operation
293    // ordering is:
294    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
295    SHL_PARTS, SRA_PARTS, SRL_PARTS,
296
297    // Conversion operators.  These are all single input single output
298    // operations.  For all of these, the result type must be strictly
299    // wider or narrower (depending on the operation) than the source
300    // type.
301
302    // SIGN_EXTEND - Used for integer types, replicating the sign bit
303    // into new bits.
304    SIGN_EXTEND,
305
306    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
307    ZERO_EXTEND,
308
309    // ANY_EXTEND - Used for integer types.  The high bits are undefined.
310    ANY_EXTEND,
311
312    // TRUNCATE - Completely drop the high bits.
313    TRUNCATE,
314
315    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
316    // depends on the first letter) to floating point.
317    SINT_TO_FP,
318    UINT_TO_FP,
319
320    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
321    // sign extend a small value in a large integer register (e.g. sign
322    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
323    // with the 7th bit).  The size of the smaller type is indicated by the 1th
324    // operand, a ValueType node.
325    SIGN_EXTEND_INREG,
326
327    // FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
328    // integer.
329    FP_TO_SINT,
330    FP_TO_UINT,
331
332    // FP_ROUND - Perform a rounding operation from the current
333    // precision down to the specified precision (currently always 64->32).
334    FP_ROUND,
335
336    // FP_ROUND_INREG - This operator takes a floating point register, and
337    // rounds it to a floating point value.  It then promotes it and returns it
338    // in a register of the same size.  This operation effectively just discards
339    // excess precision.  The type to round down to is specified by the 1th
340    // operation, a VTSDNode (currently always 64->32->64).
341    FP_ROUND_INREG,
342
343    // FP_EXTEND - Extend a smaller FP type into a larger FP type.
344    FP_EXTEND,
345
346    // BIT_CONVERT - Theis operator converts between integer and FP values, as
347    // if one was stored to memory as integer and the other was loaded from the
348    // same address (or equivalently for vector format conversions, etc).  The
349    // source and result are required to have the same bit size (e.g.
350    // f32 <-> i32).  This can also be used for int-to-int or fp-to-fp
351    // conversions, but that is a noop, deleted by getNode().
352    BIT_CONVERT,
353
354    // FNEG, FABS, FSQRT, FSIN, FCOS - Perform unary floating point negation,
355    // absolute value, square root, sine and cosine operations.
356    FNEG, FABS, FSQRT, FSIN, FCOS,
357
358    // Other operators.  LOAD and STORE have token chains as their first
359    // operand, then the same operands as an LLVM load/store instruction, then a
360    // SRCVALUE node that provides alias analysis information.
361    LOAD, STORE,
362
363    // Abstract vector version of LOAD.  VLOAD has a constant element count as
364    // the first operand, followed by a value type node indicating the type of
365    // the elements, a token chain, a pointer operand, and a SRCVALUE node.
366    VLOAD,
367
368    // EXTLOAD, SEXTLOAD, ZEXTLOAD - These three operators all load a value from
369    // memory and extend them to a larger value (e.g. load a byte into a word
370    // register).  All three of these have four operands, a token chain, a
371    // pointer to load from, a SRCVALUE for alias analysis, and a VALUETYPE node
372    // indicating the type to load.
373    //
374    // SEXTLOAD loads the integer operand and sign extends it to a larger
375    //          integer result type.
376    // ZEXTLOAD loads the integer operand and zero extends it to a larger
377    //          integer result type.
378    // EXTLOAD  is used for three things: floating point extending loads,
379    //          integer extending loads [the top bits are undefined], and vector
380    //          extending loads [load into low elt].
381    EXTLOAD, SEXTLOAD, ZEXTLOAD,
382
383    // TRUNCSTORE - This operators truncates (for integer) or rounds (for FP) a
384    // value and stores it to memory in one operation.  This can be used for
385    // either integer or floating point operands.  The first four operands of
386    // this are the same as a standard store.  The fifth is the ValueType to
387    // store it as (which will be smaller than the source value).
388    TRUNCSTORE,
389
390    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
391    // to a specified boundary.  The first operand is the token chain, the
392    // second is the number of bytes to allocate, and the third is the alignment
393    // boundary.  The size is guaranteed to be a multiple of the stack
394    // alignment, and the alignment is guaranteed to be bigger than the stack
395    // alignment (if required) or 0 to get standard stack alignment.
396    DYNAMIC_STACKALLOC,
397
398    // Control flow instructions.  These all have token chains.
399
400    // BR - Unconditional branch.  The first operand is the chain
401    // operand, the second is the MBB to branch to.
402    BR,
403
404    // BRIND - Indirect branch.  The first operand is the chain, the second
405    // is the value to branch to, which must be of the same type as the target's
406    // pointer type.
407    BRIND,
408
409    // BRCOND - Conditional branch.  The first operand is the chain,
410    // the second is the condition, the third is the block to branch
411    // to if the condition is true.
412    BRCOND,
413
414    // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
415    // that the condition is represented as condition code, and two nodes to
416    // compare, rather than as a combined SetCC node.  The operands in order are
417    // chain, cc, lhs, rhs, block to branch to if condition is true.
418    BR_CC,
419
420    // RET - Return from function.  The first operand is the chain,
421    // and any subsequent operands are pairs of return value and return value
422    // signness for the function.  This operation can have variable number of
423    // operands.
424    RET,
425
426    // INLINEASM - Represents an inline asm block.  This node always has two
427    // return values: a chain and a flag result.  The inputs are as follows:
428    //   Operand #0   : Input chain.
429    //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
430    //   Operand #2n+2: A RegisterNode.
431    //   Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
432    //   Operand #last: Optional, an incoming flag.
433    INLINEASM,
434
435    // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
436    // value, the same type as the pointer type for the system, and an output
437    // chain.
438    STACKSAVE,
439
440    // STACKRESTORE has two operands, an input chain and a pointer to restore to
441    // it returns an output chain.
442    STACKRESTORE,
443
444    // MEMSET/MEMCPY/MEMMOVE - The first operand is the chain, and the rest
445    // correspond to the operands of the LLVM intrinsic functions.  The only
446    // result is a token chain.  The alignment argument is guaranteed to be a
447    // Constant node.
448    MEMSET,
449    MEMMOVE,
450    MEMCPY,
451
452    // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
453    // a call sequence, and carry arbitrary information that target might want
454    // to know.  The first operand is a chain, the rest are specified by the
455    // target and not touched by the DAG optimizers.
456    CALLSEQ_START,  // Beginning of a call sequence
457    CALLSEQ_END,    // End of a call sequence
458
459    // VAARG - VAARG has three operands: an input chain, a pointer, and a
460    // SRCVALUE.  It returns a pair of values: the vaarg value and a new chain.
461    VAARG,
462
463    // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
464    // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
465    // source.
466    VACOPY,
467
468    // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
469    // pointer, and a SRCVALUE.
470    VAEND, VASTART,
471
472    // SRCVALUE - This corresponds to a Value*, and is used to associate memory
473    // locations with their value.  This allows one use alias analysis
474    // information in the backend.
475    SRCVALUE,
476
477    // PCMARKER - This corresponds to the pcmarker intrinsic.
478    PCMARKER,
479
480    // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
481    // The only operand is a chain and a value and a chain are produced.  The
482    // value is the contents of the architecture specific cycle counter like
483    // register (or other high accuracy low latency clock source)
484    READCYCLECOUNTER,
485
486    // HANDLENODE node - Used as a handle for various purposes.
487    HANDLENODE,
488
489    // LOCATION - This node is used to represent a source location for debug
490    // info.  It takes token chain as input, then a line number, then a column
491    // number, then a filename, then a working dir.  It produces a token chain
492    // as output.
493    LOCATION,
494
495    // DEBUG_LOC - This node is used to represent source line information
496    // embedded in the code.  It takes a token chain as input, then a line
497    // number, then a column then a file id (provided by MachineDebugInfo.) It
498    // produces a token chain as output.
499    DEBUG_LOC,
500
501    // DEBUG_LABEL - This node is used to mark a location in the code where a
502    // label should be generated for use by the debug information.  It takes a
503    // token chain as input and then a unique id (provided by MachineDebugInfo.)
504    // It produces a token chain as output.
505    DEBUG_LABEL,
506
507    // BUILTIN_OP_END - This must be the last enum value in this list.
508    BUILTIN_OP_END
509  };
510
511  /// Node predicates
512
513  /// isBuildVectorAllOnes - Return true if the specified node is a
514  /// BUILD_VECTOR where all of the elements are ~0 or undef.
515  bool isBuildVectorAllOnes(const SDNode *N);
516
517  /// isBuildVectorAllZeros - Return true if the specified node is a
518  /// BUILD_VECTOR where all of the elements are 0 or undef.
519  bool isBuildVectorAllZeros(const SDNode *N);
520
521  //===--------------------------------------------------------------------===//
522  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
523  /// below work out, when considering SETFALSE (something that never exists
524  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
525  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
526  /// to.  If the "N" column is 1, the result of the comparison is undefined if
527  /// the input is a NAN.
528  ///
529  /// All of these (except for the 'always folded ops') should be handled for
530  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
531  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
532  ///
533  /// Note that these are laid out in a specific order to allow bit-twiddling
534  /// to transform conditions.
535  enum CondCode {
536    // Opcode          N U L G E       Intuitive operation
537    SETFALSE,      //    0 0 0 0       Always false (always folded)
538    SETOEQ,        //    0 0 0 1       True if ordered and equal
539    SETOGT,        //    0 0 1 0       True if ordered and greater than
540    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
541    SETOLT,        //    0 1 0 0       True if ordered and less than
542    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
543    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
544    SETO,          //    0 1 1 1       True if ordered (no nans)
545    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
546    SETUEQ,        //    1 0 0 1       True if unordered or equal
547    SETUGT,        //    1 0 1 0       True if unordered or greater than
548    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
549    SETULT,        //    1 1 0 0       True if unordered or less than
550    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
551    SETUNE,        //    1 1 1 0       True if unordered or not equal
552    SETTRUE,       //    1 1 1 1       Always true (always folded)
553    // Don't care operations: undefined if the input is a nan.
554    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
555    SETEQ,         //  1 X 0 0 1       True if equal
556    SETGT,         //  1 X 0 1 0       True if greater than
557    SETGE,         //  1 X 0 1 1       True if greater than or equal
558    SETLT,         //  1 X 1 0 0       True if less than
559    SETLE,         //  1 X 1 0 1       True if less than or equal
560    SETNE,         //  1 X 1 1 0       True if not equal
561    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
562
563    SETCC_INVALID       // Marker value.
564  };
565
566  /// isSignedIntSetCC - Return true if this is a setcc instruction that
567  /// performs a signed comparison when used with integer operands.
568  inline bool isSignedIntSetCC(CondCode Code) {
569    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
570  }
571
572  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
573  /// performs an unsigned comparison when used with integer operands.
574  inline bool isUnsignedIntSetCC(CondCode Code) {
575    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
576  }
577
578  /// isTrueWhenEqual - Return true if the specified condition returns true if
579  /// the two operands to the condition are equal.  Note that if one of the two
580  /// operands is a NaN, this value is meaningless.
581  inline bool isTrueWhenEqual(CondCode Cond) {
582    return ((int)Cond & 1) != 0;
583  }
584
585  /// getUnorderedFlavor - This function returns 0 if the condition is always
586  /// false if an operand is a NaN, 1 if the condition is always true if the
587  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
588  /// NaN.
589  inline unsigned getUnorderedFlavor(CondCode Cond) {
590    return ((int)Cond >> 3) & 3;
591  }
592
593  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
594  /// 'op' is a valid SetCC operation.
595  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
596
597  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
598  /// when given the operation for (X op Y).
599  CondCode getSetCCSwappedOperands(CondCode Operation);
600
601  /// getSetCCOrOperation - Return the result of a logical OR between different
602  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
603  /// function returns SETCC_INVALID if it is not possible to represent the
604  /// resultant comparison.
605  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
606
607  /// getSetCCAndOperation - Return the result of a logical AND between
608  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
609  /// function returns SETCC_INVALID if it is not possible to represent the
610  /// resultant comparison.
611  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
612}  // end llvm::ISD namespace
613
614
615//===----------------------------------------------------------------------===//
616/// SDOperand - Unlike LLVM values, Selection DAG nodes may return multiple
617/// values as the result of a computation.  Many nodes return multiple values,
618/// from loads (which define a token and a return value) to ADDC (which returns
619/// a result and a carry value), to calls (which may return an arbitrary number
620/// of values).
621///
622/// As such, each use of a SelectionDAG computation must indicate the node that
623/// computes it as well as which return value to use from that node.  This pair
624/// of information is represented with the SDOperand value type.
625///
626class SDOperand {
627public:
628  SDNode *Val;        // The node defining the value we are using.
629  unsigned ResNo;     // Which return value of the node we are using.
630
631  SDOperand() : Val(0), ResNo(0) {}
632  SDOperand(SDNode *val, unsigned resno) : Val(val), ResNo(resno) {}
633
634  bool operator==(const SDOperand &O) const {
635    return Val == O.Val && ResNo == O.ResNo;
636  }
637  bool operator!=(const SDOperand &O) const {
638    return !operator==(O);
639  }
640  bool operator<(const SDOperand &O) const {
641    return Val < O.Val || (Val == O.Val && ResNo < O.ResNo);
642  }
643
644  SDOperand getValue(unsigned R) const {
645    return SDOperand(Val, R);
646  }
647
648  // isOperand - Return true if this node is an operand of N.
649  bool isOperand(SDNode *N) const;
650
651  /// getValueType - Return the ValueType of the referenced return value.
652  ///
653  inline MVT::ValueType getValueType() const;
654
655  // Forwarding methods - These forward to the corresponding methods in SDNode.
656  inline unsigned getOpcode() const;
657  inline unsigned getNumOperands() const;
658  inline const SDOperand &getOperand(unsigned i) const;
659  inline bool isTargetOpcode() const;
660  inline unsigned getTargetOpcode() const;
661
662  /// hasOneUse - Return true if there is exactly one operation using this
663  /// result value of the defining operator.
664  inline bool hasOneUse() const;
665};
666
667
668/// simplify_type specializations - Allow casting operators to work directly on
669/// SDOperands as if they were SDNode*'s.
670template<> struct simplify_type<SDOperand> {
671  typedef SDNode* SimpleType;
672  static SimpleType getSimplifiedValue(const SDOperand &Val) {
673    return static_cast<SimpleType>(Val.Val);
674  }
675};
676template<> struct simplify_type<const SDOperand> {
677  typedef SDNode* SimpleType;
678  static SimpleType getSimplifiedValue(const SDOperand &Val) {
679    return static_cast<SimpleType>(Val.Val);
680  }
681};
682
683
684/// SDNode - Represents one node in the SelectionDAG.
685///
686class SDNode {
687  /// NodeType - The operation that this node performs.
688  ///
689  unsigned short NodeType;
690
691  /// NodeId - Unique id per SDNode in the DAG.
692  int NodeId;
693
694  /// OperandList - The values that are used by this operation.
695  ///
696  SDOperand *OperandList;
697
698  /// ValueList - The types of the values this node defines.  SDNode's may
699  /// define multiple values simultaneously.
700  MVT::ValueType *ValueList;
701
702  /// NumOperands/NumValues - The number of entries in the Operand/Value list.
703  unsigned short NumOperands, NumValues;
704
705  /// Prev/Next pointers - These pointers form the linked list of of the
706  /// AllNodes list in the current DAG.
707  SDNode *Prev, *Next;
708  friend struct ilist_traits<SDNode>;
709
710  /// NextInBucket - This is used by the SelectionDAGCSEMap.
711  void *NextInBucket;
712
713  /// Uses - These are all of the SDNode's that use a value produced by this
714  /// node.
715  std::vector<SDNode*> Uses;
716
717  // Out-of-line virtual method to give class a home.
718  virtual void ANCHOR();
719public:
720  virtual ~SDNode() {
721    assert(NumOperands == 0 && "Operand list not cleared before deletion");
722    NodeType = ISD::DELETED_NODE;
723  }
724
725  //===--------------------------------------------------------------------===//
726  //  Accessors
727  //
728  unsigned getOpcode()  const { return NodeType; }
729  bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
730  unsigned getTargetOpcode() const {
731    assert(isTargetOpcode() && "Not a target opcode!");
732    return NodeType - ISD::BUILTIN_OP_END;
733  }
734
735  size_t use_size() const { return Uses.size(); }
736  bool use_empty() const { return Uses.empty(); }
737  bool hasOneUse() const { return Uses.size() == 1; }
738
739  /// getNodeId - Return the unique node id.
740  ///
741  int getNodeId() const { return NodeId; }
742
743  typedef std::vector<SDNode*>::const_iterator use_iterator;
744  use_iterator use_begin() const { return Uses.begin(); }
745  use_iterator use_end() const { return Uses.end(); }
746
747  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
748  /// indicated value.  This method ignores uses of other values defined by this
749  /// operation.
750  bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
751
752  // isOnlyUse - Return true if this node is the only use of N.
753  bool isOnlyUse(SDNode *N) const;
754
755  // isOperand - Return true if this node is an operand of N.
756  bool isOperand(SDNode *N) const;
757
758  /// getNumOperands - Return the number of values used by this operation.
759  ///
760  unsigned getNumOperands() const { return NumOperands; }
761
762  const SDOperand &getOperand(unsigned Num) const {
763    assert(Num < NumOperands && "Invalid child # of SDNode!");
764    return OperandList[Num];
765  }
766  typedef const SDOperand* op_iterator;
767  op_iterator op_begin() const { return OperandList; }
768  op_iterator op_end() const { return OperandList+NumOperands; }
769
770
771  /// getNumValues - Return the number of values defined/returned by this
772  /// operator.
773  ///
774  unsigned getNumValues() const { return NumValues; }
775
776  /// getValueType - Return the type of a specified result.
777  ///
778  MVT::ValueType getValueType(unsigned ResNo) const {
779    assert(ResNo < NumValues && "Illegal result number!");
780    return ValueList[ResNo];
781  }
782
783  typedef const MVT::ValueType* value_iterator;
784  value_iterator value_begin() const { return ValueList; }
785  value_iterator value_end() const { return ValueList+NumValues; }
786
787  /// getOperationName - Return the opcode of this operation for printing.
788  ///
789  const char* getOperationName(const SelectionDAG *G = 0) const;
790  void dump() const;
791  void dump(const SelectionDAG *G) const;
792
793  static bool classof(const SDNode *) { return true; }
794
795
796  /// NextInBucket accessors, these are private to SelectionDAGCSEMap.
797  void *getNextInBucket() const { return NextInBucket; }
798  void SetNextInBucket(void *N) { NextInBucket = N; }
799
800protected:
801  friend class SelectionDAG;
802
803  /// getValueTypeList - Return a pointer to the specified value type.
804  ///
805  static MVT::ValueType *getValueTypeList(MVT::ValueType VT);
806
807  SDNode(unsigned NT, MVT::ValueType VT) : NodeType(NT), NodeId(-1) {
808    OperandList = 0; NumOperands = 0;
809    ValueList = getValueTypeList(VT);
810    NumValues = 1;
811    Prev = 0; Next = 0;
812    NextInBucket = 0;
813  }
814  SDNode(unsigned NT, SDOperand Op)
815    : NodeType(NT), NodeId(-1) {
816    OperandList = new SDOperand[1];
817    OperandList[0] = Op;
818    NumOperands = 1;
819    Op.Val->Uses.push_back(this);
820    ValueList = 0;
821    NumValues = 0;
822    Prev = 0; Next = 0;
823    NextInBucket = 0;
824  }
825  SDNode(unsigned NT, SDOperand N1, SDOperand N2)
826    : NodeType(NT), NodeId(-1) {
827    OperandList = new SDOperand[2];
828    OperandList[0] = N1;
829    OperandList[1] = N2;
830    NumOperands = 2;
831    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
832    ValueList = 0;
833    NumValues = 0;
834    Prev = 0; Next = 0;
835    NextInBucket = 0;
836  }
837  SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3)
838    : NodeType(NT), NodeId(-1) {
839    OperandList = new SDOperand[3];
840    OperandList[0] = N1;
841    OperandList[1] = N2;
842    OperandList[2] = N3;
843    NumOperands = 3;
844
845    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
846    N3.Val->Uses.push_back(this);
847    ValueList = 0;
848    NumValues = 0;
849    Prev = 0; Next = 0;
850    NextInBucket = 0;
851  }
852  SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3, SDOperand N4)
853    : NodeType(NT), NodeId(-1) {
854    OperandList = new SDOperand[4];
855    OperandList[0] = N1;
856    OperandList[1] = N2;
857    OperandList[2] = N3;
858    OperandList[3] = N4;
859    NumOperands = 4;
860
861    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
862    N3.Val->Uses.push_back(this); N4.Val->Uses.push_back(this);
863    ValueList = 0;
864    NumValues = 0;
865    Prev = 0; Next = 0;
866    NextInBucket = 0;
867  }
868  SDNode(unsigned Opc, const std::vector<SDOperand> &Nodes)
869    : NodeType(Opc), NodeId(-1) {
870    NumOperands = Nodes.size();
871    OperandList = new SDOperand[NumOperands];
872
873    for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
874      OperandList[i] = Nodes[i];
875      SDNode *N = OperandList[i].Val;
876      N->Uses.push_back(this);
877    }
878    ValueList = 0;
879    NumValues = 0;
880    Prev = 0; Next = 0;
881    NextInBucket = 0;
882  }
883
884  /// MorphNodeTo - This clears the return value and operands list, and sets the
885  /// opcode of the node to the specified value.  This should only be used by
886  /// the SelectionDAG class.
887  void MorphNodeTo(unsigned Opc) {
888    NodeType = Opc;
889    ValueList = 0;
890    NumValues = 0;
891
892    // Clear the operands list, updating used nodes to remove this from their
893    // use list.
894    for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
895      I->Val->removeUser(this);
896    delete [] OperandList;
897    OperandList = 0;
898    NumOperands = 0;
899  }
900
901  void setValueTypes(MVT::ValueType *List, unsigned NumVal) {
902    assert(NumValues == 0 && "Should not have values yet!");
903    ValueList = List;
904    NumValues = NumVal;
905  }
906
907  void setOperands(SDOperand Op0) {
908    assert(NumOperands == 0 && "Should not have operands yet!");
909    OperandList = new SDOperand[1];
910    OperandList[0] = Op0;
911    NumOperands = 1;
912    Op0.Val->Uses.push_back(this);
913  }
914  void setOperands(SDOperand Op0, SDOperand Op1) {
915    assert(NumOperands == 0 && "Should not have operands yet!");
916    OperandList = new SDOperand[2];
917    OperandList[0] = Op0;
918    OperandList[1] = Op1;
919    NumOperands = 2;
920    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
921  }
922  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2) {
923    assert(NumOperands == 0 && "Should not have operands yet!");
924    OperandList = new SDOperand[3];
925    OperandList[0] = Op0;
926    OperandList[1] = Op1;
927    OperandList[2] = Op2;
928    NumOperands = 3;
929    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
930    Op2.Val->Uses.push_back(this);
931  }
932  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
933    assert(NumOperands == 0 && "Should not have operands yet!");
934    OperandList = new SDOperand[4];
935    OperandList[0] = Op0;
936    OperandList[1] = Op1;
937    OperandList[2] = Op2;
938    OperandList[3] = Op3;
939    NumOperands = 4;
940    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
941    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
942  }
943  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
944                   SDOperand Op4) {
945    assert(NumOperands == 0 && "Should not have operands yet!");
946    OperandList = new SDOperand[5];
947    OperandList[0] = Op0;
948    OperandList[1] = Op1;
949    OperandList[2] = Op2;
950    OperandList[3] = Op3;
951    OperandList[4] = Op4;
952    NumOperands = 5;
953    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
954    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
955    Op4.Val->Uses.push_back(this);
956  }
957  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
958                   SDOperand Op4, SDOperand Op5) {
959    assert(NumOperands == 0 && "Should not have operands yet!");
960    OperandList = new SDOperand[6];
961    OperandList[0] = Op0;
962    OperandList[1] = Op1;
963    OperandList[2] = Op2;
964    OperandList[3] = Op3;
965    OperandList[4] = Op4;
966    OperandList[5] = Op5;
967    NumOperands = 6;
968    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
969    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
970    Op4.Val->Uses.push_back(this); Op5.Val->Uses.push_back(this);
971  }
972  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
973                   SDOperand Op4, SDOperand Op5, SDOperand Op6) {
974    assert(NumOperands == 0 && "Should not have operands yet!");
975    OperandList = new SDOperand[7];
976    OperandList[0] = Op0;
977    OperandList[1] = Op1;
978    OperandList[2] = Op2;
979    OperandList[3] = Op3;
980    OperandList[4] = Op4;
981    OperandList[5] = Op5;
982    OperandList[6] = Op6;
983    NumOperands = 7;
984    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
985    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
986    Op4.Val->Uses.push_back(this); Op5.Val->Uses.push_back(this);
987    Op6.Val->Uses.push_back(this);
988  }
989  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
990                   SDOperand Op4, SDOperand Op5, SDOperand Op6, SDOperand Op7) {
991    assert(NumOperands == 0 && "Should not have operands yet!");
992    OperandList = new SDOperand[8];
993    OperandList[0] = Op0;
994    OperandList[1] = Op1;
995    OperandList[2] = Op2;
996    OperandList[3] = Op3;
997    OperandList[4] = Op4;
998    OperandList[5] = Op5;
999    OperandList[6] = Op6;
1000    OperandList[7] = Op7;
1001    NumOperands = 8;
1002    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
1003    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
1004    Op4.Val->Uses.push_back(this); Op5.Val->Uses.push_back(this);
1005    Op6.Val->Uses.push_back(this); Op7.Val->Uses.push_back(this);
1006  }
1007
1008  void addUser(SDNode *User) {
1009    Uses.push_back(User);
1010  }
1011  void removeUser(SDNode *User) {
1012    // Remove this user from the operand's use list.
1013    for (unsigned i = Uses.size(); ; --i) {
1014      assert(i != 0 && "Didn't find user!");
1015      if (Uses[i-1] == User) {
1016        Uses[i-1] = Uses.back();
1017        Uses.pop_back();
1018        return;
1019      }
1020    }
1021  }
1022
1023  void setNodeId(int Id) {
1024    NodeId = Id;
1025  }
1026};
1027
1028
1029// Define inline functions from the SDOperand class.
1030
1031inline unsigned SDOperand::getOpcode() const {
1032  return Val->getOpcode();
1033}
1034inline MVT::ValueType SDOperand::getValueType() const {
1035  return Val->getValueType(ResNo);
1036}
1037inline unsigned SDOperand::getNumOperands() const {
1038  return Val->getNumOperands();
1039}
1040inline const SDOperand &SDOperand::getOperand(unsigned i) const {
1041  return Val->getOperand(i);
1042}
1043inline bool SDOperand::isTargetOpcode() const {
1044  return Val->isTargetOpcode();
1045}
1046inline unsigned SDOperand::getTargetOpcode() const {
1047  return Val->getTargetOpcode();
1048}
1049inline bool SDOperand::hasOneUse() const {
1050  return Val->hasNUsesOfValue(1, ResNo);
1051}
1052
1053/// HandleSDNode - This class is used to form a handle around another node that
1054/// is persistant and is updated across invocations of replaceAllUsesWith on its
1055/// operand.  This node should be directly created by end-users and not added to
1056/// the AllNodes list.
1057class HandleSDNode : public SDNode {
1058public:
1059  HandleSDNode(SDOperand X) : SDNode(ISD::HANDLENODE, X) {}
1060  ~HandleSDNode() {
1061    MorphNodeTo(ISD::HANDLENODE);  // Drops operand uses.
1062  }
1063
1064  SDOperand getValue() const { return getOperand(0); }
1065};
1066
1067class StringSDNode : public SDNode {
1068  std::string Value;
1069protected:
1070  friend class SelectionDAG;
1071  StringSDNode(const std::string &val)
1072    : SDNode(ISD::STRING, MVT::Other), Value(val) {
1073  }
1074public:
1075  const std::string &getValue() const { return Value; }
1076  static bool classof(const StringSDNode *) { return true; }
1077  static bool classof(const SDNode *N) {
1078    return N->getOpcode() == ISD::STRING;
1079  }
1080};
1081
1082class ConstantSDNode : public SDNode {
1083  uint64_t Value;
1084protected:
1085  friend class SelectionDAG;
1086  ConstantSDNode(bool isTarget, uint64_t val, MVT::ValueType VT)
1087    : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, VT), Value(val) {
1088  }
1089public:
1090
1091  uint64_t getValue() const { return Value; }
1092
1093  int64_t getSignExtended() const {
1094    unsigned Bits = MVT::getSizeInBits(getValueType(0));
1095    return ((int64_t)Value << (64-Bits)) >> (64-Bits);
1096  }
1097
1098  bool isNullValue() const { return Value == 0; }
1099  bool isAllOnesValue() const {
1100    return Value == MVT::getIntVTBitMask(getValueType(0));
1101  }
1102
1103  static bool classof(const ConstantSDNode *) { return true; }
1104  static bool classof(const SDNode *N) {
1105    return N->getOpcode() == ISD::Constant ||
1106           N->getOpcode() == ISD::TargetConstant;
1107  }
1108};
1109
1110class ConstantFPSDNode : public SDNode {
1111  double Value;
1112protected:
1113  friend class SelectionDAG;
1114  ConstantFPSDNode(bool isTarget, double val, MVT::ValueType VT)
1115    : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, VT),
1116      Value(val) {
1117  }
1118public:
1119
1120  double getValue() const { return Value; }
1121
1122  /// isExactlyValue - We don't rely on operator== working on double values, as
1123  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1124  /// As such, this method can be used to do an exact bit-for-bit comparison of
1125  /// two floating point values.
1126  bool isExactlyValue(double V) const;
1127
1128  static bool classof(const ConstantFPSDNode *) { return true; }
1129  static bool classof(const SDNode *N) {
1130    return N->getOpcode() == ISD::ConstantFP ||
1131           N->getOpcode() == ISD::TargetConstantFP;
1132  }
1133};
1134
1135class GlobalAddressSDNode : public SDNode {
1136  GlobalValue *TheGlobal;
1137  int Offset;
1138protected:
1139  friend class SelectionDAG;
1140  GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT::ValueType VT,
1141                      int o=0)
1142    : SDNode(isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress, VT),
1143      Offset(o) {
1144    TheGlobal = const_cast<GlobalValue*>(GA);
1145  }
1146public:
1147
1148  GlobalValue *getGlobal() const { return TheGlobal; }
1149  int getOffset() const { return Offset; }
1150
1151  static bool classof(const GlobalAddressSDNode *) { return true; }
1152  static bool classof(const SDNode *N) {
1153    return N->getOpcode() == ISD::GlobalAddress ||
1154           N->getOpcode() == ISD::TargetGlobalAddress;
1155  }
1156};
1157
1158
1159class FrameIndexSDNode : public SDNode {
1160  int FI;
1161protected:
1162  friend class SelectionDAG;
1163  FrameIndexSDNode(int fi, MVT::ValueType VT, bool isTarg)
1164    : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, VT), FI(fi) {}
1165public:
1166
1167  int getIndex() const { return FI; }
1168
1169  static bool classof(const FrameIndexSDNode *) { return true; }
1170  static bool classof(const SDNode *N) {
1171    return N->getOpcode() == ISD::FrameIndex ||
1172           N->getOpcode() == ISD::TargetFrameIndex;
1173  }
1174};
1175
1176class JumpTableSDNode : public SDNode {
1177  int JTI;
1178protected:
1179  friend class SelectionDAG;
1180  JumpTableSDNode(int jti, MVT::ValueType VT, bool isTarg)
1181    : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable, VT),
1182    JTI(jti) {}
1183public:
1184
1185    int getIndex() const { return JTI; }
1186
1187  static bool classof(const JumpTableSDNode *) { return true; }
1188  static bool classof(const SDNode *N) {
1189    return N->getOpcode() == ISD::JumpTable ||
1190           N->getOpcode() == ISD::TargetJumpTable;
1191  }
1192};
1193
1194class ConstantPoolSDNode : public SDNode {
1195  Constant *C;
1196  int Offset;
1197  unsigned Alignment;
1198protected:
1199  friend class SelectionDAG;
1200  ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT,
1201                     int o=0)
1202    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, VT),
1203      C(c), Offset(o), Alignment(0) {}
1204  ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT, int o,
1205                     unsigned Align)
1206    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, VT),
1207      C(c), Offset(o), Alignment(Align) {}
1208public:
1209
1210  Constant *get() const { return C; }
1211  int getOffset() const { return Offset; }
1212
1213  // Return the alignment of this constant pool object, which is either 0 (for
1214  // default alignment) or log2 of the desired value.
1215  unsigned getAlignment() const { return Alignment; }
1216
1217  static bool classof(const ConstantPoolSDNode *) { return true; }
1218  static bool classof(const SDNode *N) {
1219    return N->getOpcode() == ISD::ConstantPool ||
1220           N->getOpcode() == ISD::TargetConstantPool;
1221  }
1222};
1223
1224class BasicBlockSDNode : public SDNode {
1225  MachineBasicBlock *MBB;
1226protected:
1227  friend class SelectionDAG;
1228  BasicBlockSDNode(MachineBasicBlock *mbb)
1229    : SDNode(ISD::BasicBlock, MVT::Other), MBB(mbb) {}
1230public:
1231
1232  MachineBasicBlock *getBasicBlock() const { return MBB; }
1233
1234  static bool classof(const BasicBlockSDNode *) { return true; }
1235  static bool classof(const SDNode *N) {
1236    return N->getOpcode() == ISD::BasicBlock;
1237  }
1238};
1239
1240class SrcValueSDNode : public SDNode {
1241  const Value *V;
1242  int offset;
1243protected:
1244  friend class SelectionDAG;
1245  SrcValueSDNode(const Value* v, int o)
1246    : SDNode(ISD::SRCVALUE, MVT::Other), V(v), offset(o) {}
1247
1248public:
1249  const Value *getValue() const { return V; }
1250  int getOffset() const { return offset; }
1251
1252  static bool classof(const SrcValueSDNode *) { return true; }
1253  static bool classof(const SDNode *N) {
1254    return N->getOpcode() == ISD::SRCVALUE;
1255  }
1256};
1257
1258
1259class RegisterSDNode : public SDNode {
1260  unsigned Reg;
1261protected:
1262  friend class SelectionDAG;
1263  RegisterSDNode(unsigned reg, MVT::ValueType VT)
1264    : SDNode(ISD::Register, VT), Reg(reg) {}
1265public:
1266
1267  unsigned getReg() const { return Reg; }
1268
1269  static bool classof(const RegisterSDNode *) { return true; }
1270  static bool classof(const SDNode *N) {
1271    return N->getOpcode() == ISD::Register;
1272  }
1273};
1274
1275class ExternalSymbolSDNode : public SDNode {
1276  const char *Symbol;
1277protected:
1278  friend class SelectionDAG;
1279  ExternalSymbolSDNode(bool isTarget, const char *Sym, MVT::ValueType VT)
1280    : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, VT),
1281      Symbol(Sym) {
1282    }
1283public:
1284
1285  const char *getSymbol() const { return Symbol; }
1286
1287  static bool classof(const ExternalSymbolSDNode *) { return true; }
1288  static bool classof(const SDNode *N) {
1289    return N->getOpcode() == ISD::ExternalSymbol ||
1290           N->getOpcode() == ISD::TargetExternalSymbol;
1291  }
1292};
1293
1294class CondCodeSDNode : public SDNode {
1295  ISD::CondCode Condition;
1296protected:
1297  friend class SelectionDAG;
1298  CondCodeSDNode(ISD::CondCode Cond)
1299    : SDNode(ISD::CONDCODE, MVT::Other), Condition(Cond) {
1300  }
1301public:
1302
1303  ISD::CondCode get() const { return Condition; }
1304
1305  static bool classof(const CondCodeSDNode *) { return true; }
1306  static bool classof(const SDNode *N) {
1307    return N->getOpcode() == ISD::CONDCODE;
1308  }
1309};
1310
1311/// VTSDNode - This class is used to represent MVT::ValueType's, which are used
1312/// to parameterize some operations.
1313class VTSDNode : public SDNode {
1314  MVT::ValueType ValueType;
1315protected:
1316  friend class SelectionDAG;
1317  VTSDNode(MVT::ValueType VT)
1318    : SDNode(ISD::VALUETYPE, MVT::Other), ValueType(VT) {}
1319public:
1320
1321  MVT::ValueType getVT() const { return ValueType; }
1322
1323  static bool classof(const VTSDNode *) { return true; }
1324  static bool classof(const SDNode *N) {
1325    return N->getOpcode() == ISD::VALUETYPE;
1326  }
1327};
1328
1329
1330class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
1331  SDNode *Node;
1332  unsigned Operand;
1333
1334  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
1335public:
1336  bool operator==(const SDNodeIterator& x) const {
1337    return Operand == x.Operand;
1338  }
1339  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
1340
1341  const SDNodeIterator &operator=(const SDNodeIterator &I) {
1342    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
1343    Operand = I.Operand;
1344    return *this;
1345  }
1346
1347  pointer operator*() const {
1348    return Node->getOperand(Operand).Val;
1349  }
1350  pointer operator->() const { return operator*(); }
1351
1352  SDNodeIterator& operator++() {                // Preincrement
1353    ++Operand;
1354    return *this;
1355  }
1356  SDNodeIterator operator++(int) { // Postincrement
1357    SDNodeIterator tmp = *this; ++*this; return tmp;
1358  }
1359
1360  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
1361  static SDNodeIterator end  (SDNode *N) {
1362    return SDNodeIterator(N, N->getNumOperands());
1363  }
1364
1365  unsigned getOperand() const { return Operand; }
1366  const SDNode *getNode() const { return Node; }
1367};
1368
1369template <> struct GraphTraits<SDNode*> {
1370  typedef SDNode NodeType;
1371  typedef SDNodeIterator ChildIteratorType;
1372  static inline NodeType *getEntryNode(SDNode *N) { return N; }
1373  static inline ChildIteratorType child_begin(NodeType *N) {
1374    return SDNodeIterator::begin(N);
1375  }
1376  static inline ChildIteratorType child_end(NodeType *N) {
1377    return SDNodeIterator::end(N);
1378  }
1379};
1380
1381template<>
1382struct ilist_traits<SDNode> {
1383  static SDNode *getPrev(const SDNode *N) { return N->Prev; }
1384  static SDNode *getNext(const SDNode *N) { return N->Next; }
1385
1386  static void setPrev(SDNode *N, SDNode *Prev) { N->Prev = Prev; }
1387  static void setNext(SDNode *N, SDNode *Next) { N->Next = Next; }
1388
1389  static SDNode *createSentinel() {
1390    return new SDNode(ISD::EntryToken, MVT::Other);
1391  }
1392  static void destroySentinel(SDNode *N) { delete N; }
1393  //static SDNode *createNode(const SDNode &V) { return new SDNode(V); }
1394
1395
1396  void addNodeToList(SDNode *NTy) {}
1397  void removeNodeFromList(SDNode *NTy) {}
1398  void transferNodesFromList(iplist<SDNode, ilist_traits> &L2,
1399                             const ilist_iterator<SDNode> &X,
1400                             const ilist_iterator<SDNode> &Y) {}
1401};
1402
1403} // end llvm namespace
1404
1405#endif
1406