SelectionDAGNodes.h revision a8df166fbef047c90adba3c673162a1b1f6681c4
1//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SDNode class and derived classes, which are used to
11// represent the nodes and operations present in a SelectionDAG.  These nodes
12// and operations are machine code level operations, with some similarities to
13// the GCC RTL representation.
14//
15// Clients should include the SelectionDAG.h file instead of this file directly.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20#define LLVM_CODEGEN_SELECTIONDAGNODES_H
21
22#include "llvm/CodeGen/ValueTypes.h"
23#include "llvm/Value.h"
24#include "llvm/ADT/GraphTraits.h"
25#include "llvm/ADT/iterator"
26#include "llvm/Support/DataTypes.h"
27#include <cassert>
28#include <vector>
29
30namespace llvm {
31
32class SelectionDAG;
33class GlobalValue;
34class MachineBasicBlock;
35class SDNode;
36template <typename T> struct simplify_type;
37template <typename T> struct ilist_traits;
38template<typename NodeTy, typename Traits> class iplist;
39template<typename NodeTy> class ilist_iterator;
40
41/// ISD namespace - This namespace contains an enum which represents all of the
42/// SelectionDAG node types and value types.
43///
44namespace ISD {
45  //===--------------------------------------------------------------------===//
46  /// ISD::NodeType enum - This enum defines all of the operators valid in a
47  /// SelectionDAG.
48  ///
49  enum NodeType {
50    // EntryToken - This is the marker used to indicate the start of the region.
51    EntryToken,
52
53    // Token factor - This node takes multiple tokens as input and produces a
54    // single token result.  This is used to represent the fact that the operand
55    // operators are independent of each other.
56    TokenFactor,
57
58    // AssertSext, AssertZext - These nodes record if a register contains a
59    // value that has already been zero or sign extended from a narrower type.
60    // These nodes take two operands.  The first is the node that has already
61    // been extended, and the second is a value type node indicating the width
62    // of the extension
63    AssertSext, AssertZext,
64
65    // Various leaf nodes.
66    STRING, BasicBlock, VALUETYPE, CONDCODE, Register,
67    Constant, ConstantFP,
68    GlobalAddress, FrameIndex, ConstantPool, ExternalSymbol,
69
70    // TargetConstant* - Like Constant*, but the DAG does not do any folding or
71    // simplification of the constant.
72    TargetConstant,
73    TargetConstantFP,
74
75    // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
76    // anything else with this node, and this is valid in the target-specific
77    // dag, turning into a GlobalAddress operand.
78    TargetGlobalAddress,
79    TargetFrameIndex,
80    TargetConstantPool,
81    TargetExternalSymbol,
82
83    /// RESULT{,OUTCHAIN} = INTRINSIC({INCHAIN,} INTRINSICID, arg1, arg2, ...)
84    /// This node represents a target intrinsic function.  If the intrinsic
85    /// has side effects, the first operand is a chain pointer and the result
86    /// includes an output chain.  After this input is the ID number of the
87    /// intrinsic, from the llvm::intrinsic namespace.  The operands to the
88    /// intrinsic follow.
89    INTRINSIC,
90
91    // CopyToReg - This node has three operands: a chain, a register number to
92    // set to this value, and a value.
93    CopyToReg,
94
95    // CopyFromReg - This node indicates that the input value is a virtual or
96    // physical register that is defined outside of the scope of this
97    // SelectionDAG.  The register is available from the RegSDNode object.
98    CopyFromReg,
99
100    // UNDEF - An undefined node
101    UNDEF,
102
103    // EXTRACT_ELEMENT - This is used to get the first or second (determined by
104    // a Constant, which is required to be operand #1), element of the aggregate
105    // value specified as operand #0.  This is only for use before legalization,
106    // for values that will be broken into multiple registers.
107    EXTRACT_ELEMENT,
108
109    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
110    // two values of the same integer value type, this produces a value twice as
111    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
112    BUILD_PAIR,
113
114    // MERGE_VALUES - This node takes multiple discrete operands and returns
115    // them all as its individual results.  This nodes has exactly the same
116    // number of inputs and outputs, and is only valid before legalization.
117    // This node is useful for some pieces of the code generator that want to
118    // think about a single node with multiple results, not multiple nodes.
119    MERGE_VALUES,
120
121    // Simple integer binary arithmetic operators.
122    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
123
124    // Carry-setting nodes for multiple precision addition and subtraction.
125    // These nodes take two operands of the same value type, and produce two
126    // results.  The first result is the normal add or sub result, the second
127    // result is the carry flag result.
128    ADDC, SUBC,
129
130    // Carry-using nodes for multiple precision addition and subtraction.  These
131    // nodes take three operands: The first two are the normal lhs and rhs to
132    // the add or sub, and the third is the input carry flag.  These nodes
133    // produce two results; the normal result of the add or sub, and the output
134    // carry flag.  These nodes both read and write a carry flag to allow them
135    // to them to be chained together for add and sub of arbitrarily large
136    // values.
137    ADDE, SUBE,
138
139    // Simple binary floating point operators.
140    FADD, FSUB, FMUL, FDIV, FREM,
141
142    // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
143    // DAG node does not require that X and Y have the same type, just that they
144    // are both floating point.  X and the result must have the same type.
145    // FCOPYSIGN(f32, f64) is allowed.
146    FCOPYSIGN,
147
148    /// VBUILD_VECTOR(ELT1, ELT2, ELT3, ELT4,...,  COUNT,TYPE) - Return a vector
149    /// with the specified, possibly variable, elements.  The number of elements
150    /// is required to be a power of two.
151    VBUILD_VECTOR,
152
153    /// BUILD_VECTOR(ELT1, ELT2, ELT3, ELT4,...) - Return a vector
154    /// with the specified, possibly variable, elements.  The number of elements
155    /// is required to be a power of two.
156    BUILD_VECTOR,
157
158    /// VINSERT_VECTOR_ELT(VECTOR, VAL, IDX,  COUNT,TYPE) - Given a vector
159    /// VECTOR, an element ELEMENT, and a (potentially variable) index IDX,
160    /// return an vector with the specified element of VECTOR replaced with VAL.
161    /// COUNT and TYPE specify the type of vector, as is standard for V* nodes.
162    VINSERT_VECTOR_ELT,
163
164    /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR (a legal packed
165    /// type) with the element at IDX replaced with VAL.
166    INSERT_VECTOR_ELT,
167
168    /// VEXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
169    /// (an MVT::Vector value) identified by the (potentially variable) element
170    /// number IDX.
171    VEXTRACT_VECTOR_ELT,
172
173    /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
174    /// (a legal packed type vector) identified by the (potentially variable)
175    /// element number IDX.
176    EXTRACT_VECTOR_ELT,
177
178    /// VECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC) - Returns a vector, of the same
179    /// type as VEC1/VEC2.  SHUFFLEVEC is a BUILD_VECTOR of constant int values
180    /// (regardless of whether its datatype is legal or not) that indicate
181    /// which value each result element will get.  The elements of VEC1/VEC2 are
182    /// enumerated in order.  This is quite similar to the Altivec 'vperm'
183    /// instruction, except that the indices must be constants and are in terms
184    /// of the element size of VEC1/VEC2, not in terms of bytes.
185    VECTOR_SHUFFLE,
186
187    /// X = VBIT_CONVERT(Y)  and X = VBIT_CONVERT(Y, COUNT,TYPE) - This node
188    /// represents a conversion from or to an ISD::Vector type.
189    ///
190    /// This is lowered to a BIT_CONVERT of the appropriate input/output types.
191    /// The input and output are required to have the same size and at least one
192    /// is required to be a vector (if neither is a vector, just use
193    /// BIT_CONVERT).
194    ///
195    /// If the result is a vector, this takes three operands (like any other
196    /// vector producer) which indicate the size and type of the vector result.
197    /// Otherwise it takes one input.
198    VBIT_CONVERT,
199
200    /// BINOP(LHS, RHS,  COUNT,TYPE)
201    /// Simple abstract vector operators.  Unlike the integer and floating point
202    /// binary operators, these nodes also take two additional operands:
203    /// a constant element count, and a value type node indicating the type of
204    /// the elements.  The order is count, type, op0, op1.  All vector opcodes,
205    /// including VLOAD and VConstant must currently have count and type as
206    /// their last two operands.
207    VADD, VSUB, VMUL, VSDIV, VUDIV,
208    VAND, VOR, VXOR,
209
210    /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
211    /// scalar value into the low element of the resultant vector type.  The top
212    /// elements of the vector are undefined.
213    SCALAR_TO_VECTOR,
214
215    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
216    // an unsigned/signed value of type i[2*n], then return the top part.
217    MULHU, MULHS,
218
219    // Bitwise operators - logical and, logical or, logical xor, shift left,
220    // shift right algebraic (shift in sign bits), shift right logical (shift in
221    // zeroes), rotate left, rotate right, and byteswap.
222    AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
223
224    // Counting operators
225    CTTZ, CTLZ, CTPOP,
226
227    // Select(COND, TRUEVAL, FALSEVAL)
228    SELECT,
229
230    // Select with condition operator - This selects between a true value and
231    // a false value (ops #2 and #3) based on the boolean result of comparing
232    // the lhs and rhs (ops #0 and #1) of a conditional expression with the
233    // condition code in op #4, a CondCodeSDNode.
234    SELECT_CC,
235
236    // SetCC operator - This evaluates to a boolean (i1) true value if the
237    // condition is true.  The operands to this are the left and right operands
238    // to compare (ops #0, and #1) and the condition code to compare them with
239    // (op #2) as a CondCodeSDNode.
240    SETCC,
241
242    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
243    // integer shift operations, just like ADD/SUB_PARTS.  The operation
244    // ordering is:
245    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
246    SHL_PARTS, SRA_PARTS, SRL_PARTS,
247
248    // Conversion operators.  These are all single input single output
249    // operations.  For all of these, the result type must be strictly
250    // wider or narrower (depending on the operation) than the source
251    // type.
252
253    // SIGN_EXTEND - Used for integer types, replicating the sign bit
254    // into new bits.
255    SIGN_EXTEND,
256
257    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
258    ZERO_EXTEND,
259
260    // ANY_EXTEND - Used for integer types.  The high bits are undefined.
261    ANY_EXTEND,
262
263    // TRUNCATE - Completely drop the high bits.
264    TRUNCATE,
265
266    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
267    // depends on the first letter) to floating point.
268    SINT_TO_FP,
269    UINT_TO_FP,
270
271    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
272    // sign extend a small value in a large integer register (e.g. sign
273    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
274    // with the 7th bit).  The size of the smaller type is indicated by the 1th
275    // operand, a ValueType node.
276    SIGN_EXTEND_INREG,
277
278    // FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
279    // integer.
280    FP_TO_SINT,
281    FP_TO_UINT,
282
283    // FP_ROUND - Perform a rounding operation from the current
284    // precision down to the specified precision (currently always 64->32).
285    FP_ROUND,
286
287    // FP_ROUND_INREG - This operator takes a floating point register, and
288    // rounds it to a floating point value.  It then promotes it and returns it
289    // in a register of the same size.  This operation effectively just discards
290    // excess precision.  The type to round down to is specified by the 1th
291    // operation, a VTSDNode (currently always 64->32->64).
292    FP_ROUND_INREG,
293
294    // FP_EXTEND - Extend a smaller FP type into a larger FP type.
295    FP_EXTEND,
296
297    // BIT_CONVERT - Theis operator converts between integer and FP values, as
298    // if one was stored to memory as integer and the other was loaded from the
299    // same address (or equivalently for vector format conversions, etc).  The
300    // source and result are required to have the same bit size (e.g.
301    // f32 <-> i32).  This can also be used for int-to-int or fp-to-fp
302    // conversions, but that is a noop, deleted by getNode().
303    BIT_CONVERT,
304
305    // FNEG, FABS, FSQRT, FSIN, FCOS - Perform unary floating point negation,
306    // absolute value, square root, sine and cosine operations.
307    FNEG, FABS, FSQRT, FSIN, FCOS,
308
309    // Other operators.  LOAD and STORE have token chains as their first
310    // operand, then the same operands as an LLVM load/store instruction, then a
311    // SRCVALUE node that provides alias analysis information.
312    LOAD, STORE,
313
314    // Abstract vector version of LOAD.  VLOAD has a constant element count as
315    // the first operand, followed by a value type node indicating the type of
316    // the elements, a token chain, a pointer operand, and a SRCVALUE node.
317    VLOAD,
318
319    // EXTLOAD, SEXTLOAD, ZEXTLOAD - These three operators all load a value from
320    // memory and extend them to a larger value (e.g. load a byte into a word
321    // register).  All three of these have four operands, a token chain, a
322    // pointer to load from, a SRCVALUE for alias analysis, and a VALUETYPE node
323    // indicating the type to load.
324    //
325    // SEXTLOAD loads the integer operand and sign extends it to a larger
326    //          integer result type.
327    // ZEXTLOAD loads the integer operand and zero extends it to a larger
328    //          integer result type.
329    // EXTLOAD  is used for three things: floating point extending loads,
330    //          integer extending loads [the top bits are undefined], and vector
331    //          extending loads [load into low elt].
332    EXTLOAD, SEXTLOAD, ZEXTLOAD,
333
334    // TRUNCSTORE - This operators truncates (for integer) or rounds (for FP) a
335    // value and stores it to memory in one operation.  This can be used for
336    // either integer or floating point operands.  The first four operands of
337    // this are the same as a standard store.  The fifth is the ValueType to
338    // store it as (which will be smaller than the source value).
339    TRUNCSTORE,
340
341    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
342    // to a specified boundary.  The first operand is the token chain, the
343    // second is the number of bytes to allocate, and the third is the alignment
344    // boundary.  The size is guaranteed to be a multiple of the stack
345    // alignment, and the alignment is guaranteed to be bigger than the stack
346    // alignment (if required) or 0 to get standard stack alignment.
347    DYNAMIC_STACKALLOC,
348
349    // Control flow instructions.  These all have token chains.
350
351    // BR - Unconditional branch.  The first operand is the chain
352    // operand, the second is the MBB to branch to.
353    BR,
354
355    // BRCOND - Conditional branch.  The first operand is the chain,
356    // the second is the condition, the third is the block to branch
357    // to if the condition is true.
358    BRCOND,
359
360    // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
361    // that the condition is represented as condition code, and two nodes to
362    // compare, rather than as a combined SetCC node.  The operands in order are
363    // chain, cc, lhs, rhs, block to branch to if condition is true.
364    BR_CC,
365
366    // RET - Return from function.  The first operand is the chain,
367    // and any subsequent operands are the return values for the
368    // function.  This operation can have variable number of operands.
369    RET,
370
371    // INLINEASM - Represents an inline asm block.  This node always has two
372    // return values: a chain and a flag result.  The inputs are as follows:
373    //   Operand #0   : Input chain.
374    //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
375    //   Operand #2n+2: A RegisterNode.
376    //   Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
377    //   Operand #last: Optional, an incoming flag.
378    INLINEASM,
379
380    // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
381    // value, the same type as the pointer type for the system, and an output
382    // chain.
383    STACKSAVE,
384
385    // STACKRESTORE has two operands, an input chain and a pointer to restore to
386    // it returns an output chain.
387    STACKRESTORE,
388
389    // MEMSET/MEMCPY/MEMMOVE - The first operand is the chain, and the rest
390    // correspond to the operands of the LLVM intrinsic functions.  The only
391    // result is a token chain.  The alignment argument is guaranteed to be a
392    // Constant node.
393    MEMSET,
394    MEMMOVE,
395    MEMCPY,
396
397    // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
398    // a call sequence, and carry arbitrary information that target might want
399    // to know.  The first operand is a chain, the rest are specified by the
400    // target and not touched by the DAG optimizers.
401    CALLSEQ_START,  // Beginning of a call sequence
402    CALLSEQ_END,    // End of a call sequence
403
404    // VAARG - VAARG has three operands: an input chain, a pointer, and a
405    // SRCVALUE.  It returns a pair of values: the vaarg value and a new chain.
406    VAARG,
407
408    // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
409    // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
410    // source.
411    VACOPY,
412
413    // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
414    // pointer, and a SRCVALUE.
415    VAEND, VASTART,
416
417    // SRCVALUE - This corresponds to a Value*, and is used to associate memory
418    // locations with their value.  This allows one use alias analysis
419    // information in the backend.
420    SRCVALUE,
421
422    // PCMARKER - This corresponds to the pcmarker intrinsic.
423    PCMARKER,
424
425    // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
426    // The only operand is a chain and a value and a chain are produced.  The
427    // value is the contents of the architecture specific cycle counter like
428    // register (or other high accuracy low latency clock source)
429    READCYCLECOUNTER,
430
431    // HANDLENODE node - Used as a handle for various purposes.
432    HANDLENODE,
433
434    // LOCATION - This node is used to represent a source location for debug
435    // info.  It takes token chain as input, then a line number, then a column
436    // number, then a filename, then a working dir.  It produces a token chain
437    // as output.
438    LOCATION,
439
440    // DEBUG_LOC - This node is used to represent source line information
441    // embedded in the code.  It takes a token chain as input, then a line
442    // number, then a column then a file id (provided by MachineDebugInfo.) It
443    // produces a token chain as output.
444    DEBUG_LOC,
445
446    // DEBUG_LABEL - This node is used to mark a location in the code where a
447    // label should be generated for use by the debug information.  It takes a
448    // token chain as input and then a unique id (provided by MachineDebugInfo.)
449    // It produces a token chain as output.
450    DEBUG_LABEL,
451
452    // BUILTIN_OP_END - This must be the last enum value in this list.
453    BUILTIN_OP_END
454  };
455
456  /// Node predicates
457
458  /// isBuildVectorAllOnes - Return true if the specified node is a
459  /// BUILD_VECTOR where all of the elements are ~0 or undef.
460  bool isBuildVectorAllOnes(const SDNode *N);
461
462  /// isBuildVectorAllZeros - Return true if the specified node is a
463  /// BUILD_VECTOR where all of the elements are 0 or undef.
464  bool isBuildVectorAllZeros(const SDNode *N);
465
466  //===--------------------------------------------------------------------===//
467  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
468  /// below work out, when considering SETFALSE (something that never exists
469  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
470  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
471  /// to.  If the "N" column is 1, the result of the comparison is undefined if
472  /// the input is a NAN.
473  ///
474  /// All of these (except for the 'always folded ops') should be handled for
475  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
476  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
477  ///
478  /// Note that these are laid out in a specific order to allow bit-twiddling
479  /// to transform conditions.
480  enum CondCode {
481    // Opcode          N U L G E       Intuitive operation
482    SETFALSE,      //    0 0 0 0       Always false (always folded)
483    SETOEQ,        //    0 0 0 1       True if ordered and equal
484    SETOGT,        //    0 0 1 0       True if ordered and greater than
485    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
486    SETOLT,        //    0 1 0 0       True if ordered and less than
487    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
488    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
489    SETO,          //    0 1 1 1       True if ordered (no nans)
490    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
491    SETUEQ,        //    1 0 0 1       True if unordered or equal
492    SETUGT,        //    1 0 1 0       True if unordered or greater than
493    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
494    SETULT,        //    1 1 0 0       True if unordered or less than
495    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
496    SETUNE,        //    1 1 1 0       True if unordered or not equal
497    SETTRUE,       //    1 1 1 1       Always true (always folded)
498    // Don't care operations: undefined if the input is a nan.
499    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
500    SETEQ,         //  1 X 0 0 1       True if equal
501    SETGT,         //  1 X 0 1 0       True if greater than
502    SETGE,         //  1 X 0 1 1       True if greater than or equal
503    SETLT,         //  1 X 1 0 0       True if less than
504    SETLE,         //  1 X 1 0 1       True if less than or equal
505    SETNE,         //  1 X 1 1 0       True if not equal
506    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
507
508    SETCC_INVALID       // Marker value.
509  };
510
511  /// isSignedIntSetCC - Return true if this is a setcc instruction that
512  /// performs a signed comparison when used with integer operands.
513  inline bool isSignedIntSetCC(CondCode Code) {
514    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
515  }
516
517  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
518  /// performs an unsigned comparison when used with integer operands.
519  inline bool isUnsignedIntSetCC(CondCode Code) {
520    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
521  }
522
523  /// isTrueWhenEqual - Return true if the specified condition returns true if
524  /// the two operands to the condition are equal.  Note that if one of the two
525  /// operands is a NaN, this value is meaningless.
526  inline bool isTrueWhenEqual(CondCode Cond) {
527    return ((int)Cond & 1) != 0;
528  }
529
530  /// getUnorderedFlavor - This function returns 0 if the condition is always
531  /// false if an operand is a NaN, 1 if the condition is always true if the
532  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
533  /// NaN.
534  inline unsigned getUnorderedFlavor(CondCode Cond) {
535    return ((int)Cond >> 3) & 3;
536  }
537
538  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
539  /// 'op' is a valid SetCC operation.
540  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
541
542  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
543  /// when given the operation for (X op Y).
544  CondCode getSetCCSwappedOperands(CondCode Operation);
545
546  /// getSetCCOrOperation - Return the result of a logical OR between different
547  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
548  /// function returns SETCC_INVALID if it is not possible to represent the
549  /// resultant comparison.
550  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
551
552  /// getSetCCAndOperation - Return the result of a logical AND between
553  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
554  /// function returns SETCC_INVALID if it is not possible to represent the
555  /// resultant comparison.
556  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
557}  // end llvm::ISD namespace
558
559
560//===----------------------------------------------------------------------===//
561/// SDOperand - Unlike LLVM values, Selection DAG nodes may return multiple
562/// values as the result of a computation.  Many nodes return multiple values,
563/// from loads (which define a token and a return value) to ADDC (which returns
564/// a result and a carry value), to calls (which may return an arbitrary number
565/// of values).
566///
567/// As such, each use of a SelectionDAG computation must indicate the node that
568/// computes it as well as which return value to use from that node.  This pair
569/// of information is represented with the SDOperand value type.
570///
571class SDOperand {
572public:
573  SDNode *Val;        // The node defining the value we are using.
574  unsigned ResNo;     // Which return value of the node we are using.
575
576  SDOperand() : Val(0) {}
577  SDOperand(SDNode *val, unsigned resno) : Val(val), ResNo(resno) {}
578
579  bool operator==(const SDOperand &O) const {
580    return Val == O.Val && ResNo == O.ResNo;
581  }
582  bool operator!=(const SDOperand &O) const {
583    return !operator==(O);
584  }
585  bool operator<(const SDOperand &O) const {
586    return Val < O.Val || (Val == O.Val && ResNo < O.ResNo);
587  }
588
589  SDOperand getValue(unsigned R) const {
590    return SDOperand(Val, R);
591  }
592
593  // isOperand - Return true if this node is an operand of N.
594  bool isOperand(SDNode *N) const;
595
596  /// getValueType - Return the ValueType of the referenced return value.
597  ///
598  inline MVT::ValueType getValueType() const;
599
600  // Forwarding methods - These forward to the corresponding methods in SDNode.
601  inline unsigned getOpcode() const;
602  inline unsigned getNodeDepth() const;
603  inline unsigned getNumOperands() const;
604  inline const SDOperand &getOperand(unsigned i) const;
605  inline bool isTargetOpcode() const;
606  inline unsigned getTargetOpcode() const;
607
608  /// hasOneUse - Return true if there is exactly one operation using this
609  /// result value of the defining operator.
610  inline bool hasOneUse() const;
611};
612
613
614/// simplify_type specializations - Allow casting operators to work directly on
615/// SDOperands as if they were SDNode*'s.
616template<> struct simplify_type<SDOperand> {
617  typedef SDNode* SimpleType;
618  static SimpleType getSimplifiedValue(const SDOperand &Val) {
619    return static_cast<SimpleType>(Val.Val);
620  }
621};
622template<> struct simplify_type<const SDOperand> {
623  typedef SDNode* SimpleType;
624  static SimpleType getSimplifiedValue(const SDOperand &Val) {
625    return static_cast<SimpleType>(Val.Val);
626  }
627};
628
629
630/// SDNode - Represents one node in the SelectionDAG.
631///
632class SDNode {
633  /// NodeType - The operation that this node performs.
634  ///
635  unsigned short NodeType;
636
637  /// NodeDepth - Node depth is defined as MAX(Node depth of children)+1.  This
638  /// means that leaves have a depth of 1, things that use only leaves have a
639  /// depth of 2, etc.
640  unsigned short NodeDepth;
641
642  /// OperandList - The values that are used by this operation.
643  ///
644  SDOperand *OperandList;
645
646  /// ValueList - The types of the values this node defines.  SDNode's may
647  /// define multiple values simultaneously.
648  MVT::ValueType *ValueList;
649
650  /// NumOperands/NumValues - The number of entries in the Operand/Value list.
651  unsigned short NumOperands, NumValues;
652
653  /// Prev/Next pointers - These pointers form the linked list of of the
654  /// AllNodes list in the current DAG.
655  SDNode *Prev, *Next;
656  friend struct ilist_traits<SDNode>;
657
658  /// Uses - These are all of the SDNode's that use a value produced by this
659  /// node.
660  std::vector<SDNode*> Uses;
661public:
662  virtual ~SDNode() {
663    assert(NumOperands == 0 && "Operand list not cleared before deletion");
664  }
665
666  //===--------------------------------------------------------------------===//
667  //  Accessors
668  //
669  unsigned getOpcode()  const { return NodeType; }
670  bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
671  unsigned getTargetOpcode() const {
672    assert(isTargetOpcode() && "Not a target opcode!");
673    return NodeType - ISD::BUILTIN_OP_END;
674  }
675
676  size_t use_size() const { return Uses.size(); }
677  bool use_empty() const { return Uses.empty(); }
678  bool hasOneUse() const { return Uses.size() == 1; }
679
680  /// getNodeDepth - Return the distance from this node to the leaves in the
681  /// graph.  The leaves have a depth of 1.
682  unsigned getNodeDepth() const { return NodeDepth; }
683
684  typedef std::vector<SDNode*>::const_iterator use_iterator;
685  use_iterator use_begin() const { return Uses.begin(); }
686  use_iterator use_end() const { return Uses.end(); }
687
688  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
689  /// indicated value.  This method ignores uses of other values defined by this
690  /// operation.
691  bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
692
693  // isOnlyUse - Return true if this node is the only use of N.
694  bool isOnlyUse(SDNode *N) const;
695
696  // isOperand - Return true if this node is an operand of N.
697  bool isOperand(SDNode *N) const;
698
699  /// getNumOperands - Return the number of values used by this operation.
700  ///
701  unsigned getNumOperands() const { return NumOperands; }
702
703  const SDOperand &getOperand(unsigned Num) const {
704    assert(Num < NumOperands && "Invalid child # of SDNode!");
705    return OperandList[Num];
706  }
707  typedef const SDOperand* op_iterator;
708  op_iterator op_begin() const { return OperandList; }
709  op_iterator op_end() const { return OperandList+NumOperands; }
710
711
712  /// getNumValues - Return the number of values defined/returned by this
713  /// operator.
714  ///
715  unsigned getNumValues() const { return NumValues; }
716
717  /// getValueType - Return the type of a specified result.
718  ///
719  MVT::ValueType getValueType(unsigned ResNo) const {
720    assert(ResNo < NumValues && "Illegal result number!");
721    return ValueList[ResNo];
722  }
723
724  typedef const MVT::ValueType* value_iterator;
725  value_iterator value_begin() const { return ValueList; }
726  value_iterator value_end() const { return ValueList+NumValues; }
727
728  /// getOperationName - Return the opcode of this operation for printing.
729  ///
730  const char* getOperationName(const SelectionDAG *G = 0) const;
731  void dump() const;
732  void dump(const SelectionDAG *G) const;
733
734  static bool classof(const SDNode *) { return true; }
735
736protected:
737  friend class SelectionDAG;
738
739  /// getValueTypeList - Return a pointer to the specified value type.
740  ///
741  static MVT::ValueType *getValueTypeList(MVT::ValueType VT);
742
743  SDNode(unsigned NT, MVT::ValueType VT) : NodeType(NT), NodeDepth(1) {
744    OperandList = 0; NumOperands = 0;
745    ValueList = getValueTypeList(VT);
746    NumValues = 1;
747    Prev = 0; Next = 0;
748  }
749  SDNode(unsigned NT, SDOperand Op)
750    : NodeType(NT), NodeDepth(Op.Val->getNodeDepth()+1) {
751    OperandList = new SDOperand[1];
752    OperandList[0] = Op;
753    NumOperands = 1;
754    Op.Val->Uses.push_back(this);
755    ValueList = 0;
756    NumValues = 0;
757    Prev = 0; Next = 0;
758  }
759  SDNode(unsigned NT, SDOperand N1, SDOperand N2)
760    : NodeType(NT) {
761    if (N1.Val->getNodeDepth() > N2.Val->getNodeDepth())
762      NodeDepth = N1.Val->getNodeDepth()+1;
763    else
764      NodeDepth = N2.Val->getNodeDepth()+1;
765    OperandList = new SDOperand[2];
766    OperandList[0] = N1;
767    OperandList[1] = N2;
768    NumOperands = 2;
769    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
770    ValueList = 0;
771    NumValues = 0;
772    Prev = 0; Next = 0;
773  }
774  SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3)
775    : NodeType(NT) {
776    unsigned ND = N1.Val->getNodeDepth();
777    if (ND < N2.Val->getNodeDepth())
778      ND = N2.Val->getNodeDepth();
779    if (ND < N3.Val->getNodeDepth())
780      ND = N3.Val->getNodeDepth();
781    NodeDepth = ND+1;
782
783    OperandList = new SDOperand[3];
784    OperandList[0] = N1;
785    OperandList[1] = N2;
786    OperandList[2] = N3;
787    NumOperands = 3;
788
789    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
790    N3.Val->Uses.push_back(this);
791    ValueList = 0;
792    NumValues = 0;
793    Prev = 0; Next = 0;
794  }
795  SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3, SDOperand N4)
796    : NodeType(NT) {
797    unsigned ND = N1.Val->getNodeDepth();
798    if (ND < N2.Val->getNodeDepth())
799      ND = N2.Val->getNodeDepth();
800    if (ND < N3.Val->getNodeDepth())
801      ND = N3.Val->getNodeDepth();
802    if (ND < N4.Val->getNodeDepth())
803      ND = N4.Val->getNodeDepth();
804    NodeDepth = ND+1;
805
806    OperandList = new SDOperand[4];
807    OperandList[0] = N1;
808    OperandList[1] = N2;
809    OperandList[2] = N3;
810    OperandList[3] = N4;
811    NumOperands = 4;
812
813    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
814    N3.Val->Uses.push_back(this); N4.Val->Uses.push_back(this);
815    ValueList = 0;
816    NumValues = 0;
817    Prev = 0; Next = 0;
818  }
819  SDNode(unsigned Opc, const std::vector<SDOperand> &Nodes) : NodeType(Opc) {
820    NumOperands = Nodes.size();
821    OperandList = new SDOperand[NumOperands];
822
823    unsigned ND = 0;
824    for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
825      OperandList[i] = Nodes[i];
826      SDNode *N = OperandList[i].Val;
827      N->Uses.push_back(this);
828      if (ND < N->getNodeDepth()) ND = N->getNodeDepth();
829    }
830    NodeDepth = ND+1;
831    ValueList = 0;
832    NumValues = 0;
833    Prev = 0; Next = 0;
834  }
835
836  /// MorphNodeTo - This clears the return value and operands list, and sets the
837  /// opcode of the node to the specified value.  This should only be used by
838  /// the SelectionDAG class.
839  void MorphNodeTo(unsigned Opc) {
840    NodeType = Opc;
841    ValueList = 0;
842    NumValues = 0;
843
844    // Clear the operands list, updating used nodes to remove this from their
845    // use list.
846    for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
847      I->Val->removeUser(this);
848    delete [] OperandList;
849    OperandList = 0;
850    NumOperands = 0;
851  }
852
853  void setValueTypes(MVT::ValueType VT) {
854    assert(NumValues == 0 && "Should not have values yet!");
855    ValueList = getValueTypeList(VT);
856    NumValues = 1;
857  }
858  void setValueTypes(MVT::ValueType *List, unsigned NumVal) {
859    assert(NumValues == 0 && "Should not have values yet!");
860    ValueList = List;
861    NumValues = NumVal;
862  }
863
864  void setOperands(SDOperand Op0) {
865    assert(NumOperands == 0 && "Should not have operands yet!");
866    OperandList = new SDOperand[1];
867    OperandList[0] = Op0;
868    NumOperands = 1;
869    Op0.Val->Uses.push_back(this);
870  }
871  void setOperands(SDOperand Op0, SDOperand Op1) {
872    assert(NumOperands == 0 && "Should not have operands yet!");
873    OperandList = new SDOperand[2];
874    OperandList[0] = Op0;
875    OperandList[1] = Op1;
876    NumOperands = 2;
877    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
878  }
879  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2) {
880    assert(NumOperands == 0 && "Should not have operands yet!");
881    OperandList = new SDOperand[3];
882    OperandList[0] = Op0;
883    OperandList[1] = Op1;
884    OperandList[2] = Op2;
885    NumOperands = 3;
886    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
887    Op2.Val->Uses.push_back(this);
888  }
889  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
890    assert(NumOperands == 0 && "Should not have operands yet!");
891    OperandList = new SDOperand[4];
892    OperandList[0] = Op0;
893    OperandList[1] = Op1;
894    OperandList[2] = Op2;
895    OperandList[3] = Op3;
896    NumOperands = 4;
897    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
898    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
899  }
900  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
901                   SDOperand Op4) {
902    assert(NumOperands == 0 && "Should not have operands yet!");
903    OperandList = new SDOperand[5];
904    OperandList[0] = Op0;
905    OperandList[1] = Op1;
906    OperandList[2] = Op2;
907    OperandList[3] = Op3;
908    OperandList[4] = Op4;
909    NumOperands = 5;
910    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
911    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
912    Op4.Val->Uses.push_back(this);
913  }
914  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
915                   SDOperand Op4, SDOperand Op5) {
916    assert(NumOperands == 0 && "Should not have operands yet!");
917    OperandList = new SDOperand[6];
918    OperandList[0] = Op0;
919    OperandList[1] = Op1;
920    OperandList[2] = Op2;
921    OperandList[3] = Op3;
922    OperandList[4] = Op4;
923    OperandList[5] = Op5;
924    NumOperands = 6;
925    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
926    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
927    Op4.Val->Uses.push_back(this); Op5.Val->Uses.push_back(this);
928  }
929  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
930                   SDOperand Op4, SDOperand Op5, SDOperand Op6) {
931    assert(NumOperands == 0 && "Should not have operands yet!");
932    OperandList = new SDOperand[7];
933    OperandList[0] = Op0;
934    OperandList[1] = Op1;
935    OperandList[2] = Op2;
936    OperandList[3] = Op3;
937    OperandList[4] = Op4;
938    OperandList[5] = Op5;
939    OperandList[6] = Op6;
940    NumOperands = 7;
941    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
942    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
943    Op4.Val->Uses.push_back(this); Op5.Val->Uses.push_back(this);
944    Op6.Val->Uses.push_back(this);
945  }
946  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
947                   SDOperand Op4, SDOperand Op5, SDOperand Op6, SDOperand Op7) {
948    assert(NumOperands == 0 && "Should not have operands yet!");
949    OperandList = new SDOperand[8];
950    OperandList[0] = Op0;
951    OperandList[1] = Op1;
952    OperandList[2] = Op2;
953    OperandList[3] = Op3;
954    OperandList[4] = Op4;
955    OperandList[5] = Op5;
956    OperandList[6] = Op6;
957    OperandList[7] = Op7;
958    NumOperands = 8;
959    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
960    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
961    Op4.Val->Uses.push_back(this); Op5.Val->Uses.push_back(this);
962    Op6.Val->Uses.push_back(this); Op7.Val->Uses.push_back(this);
963  }
964
965  void addUser(SDNode *User) {
966    Uses.push_back(User);
967  }
968  void removeUser(SDNode *User) {
969    // Remove this user from the operand's use list.
970    for (unsigned i = Uses.size(); ; --i) {
971      assert(i != 0 && "Didn't find user!");
972      if (Uses[i-1] == User) {
973        Uses[i-1] = Uses.back();
974        Uses.pop_back();
975        return;
976      }
977    }
978  }
979};
980
981
982// Define inline functions from the SDOperand class.
983
984inline unsigned SDOperand::getOpcode() const {
985  return Val->getOpcode();
986}
987inline unsigned SDOperand::getNodeDepth() const {
988  return Val->getNodeDepth();
989}
990inline MVT::ValueType SDOperand::getValueType() const {
991  return Val->getValueType(ResNo);
992}
993inline unsigned SDOperand::getNumOperands() const {
994  return Val->getNumOperands();
995}
996inline const SDOperand &SDOperand::getOperand(unsigned i) const {
997  return Val->getOperand(i);
998}
999inline bool SDOperand::isTargetOpcode() const {
1000  return Val->isTargetOpcode();
1001}
1002inline unsigned SDOperand::getTargetOpcode() const {
1003  return Val->getTargetOpcode();
1004}
1005inline bool SDOperand::hasOneUse() const {
1006  return Val->hasNUsesOfValue(1, ResNo);
1007}
1008
1009/// HandleSDNode - This class is used to form a handle around another node that
1010/// is persistant and is updated across invocations of replaceAllUsesWith on its
1011/// operand.  This node should be directly created by end-users and not added to
1012/// the AllNodes list.
1013class HandleSDNode : public SDNode {
1014public:
1015  HandleSDNode(SDOperand X) : SDNode(ISD::HANDLENODE, X) {}
1016  ~HandleSDNode() {
1017    MorphNodeTo(ISD::HANDLENODE);  // Drops operand uses.
1018  }
1019
1020  SDOperand getValue() const { return getOperand(0); }
1021};
1022
1023class StringSDNode : public SDNode {
1024  std::string Value;
1025protected:
1026  friend class SelectionDAG;
1027  StringSDNode(const std::string &val)
1028    : SDNode(ISD::STRING, MVT::Other), Value(val) {
1029  }
1030public:
1031  const std::string &getValue() const { return Value; }
1032  static bool classof(const StringSDNode *) { return true; }
1033  static bool classof(const SDNode *N) {
1034    return N->getOpcode() == ISD::STRING;
1035  }
1036};
1037
1038class ConstantSDNode : public SDNode {
1039  uint64_t Value;
1040protected:
1041  friend class SelectionDAG;
1042  ConstantSDNode(bool isTarget, uint64_t val, MVT::ValueType VT)
1043    : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, VT), Value(val) {
1044  }
1045public:
1046
1047  uint64_t getValue() const { return Value; }
1048
1049  int64_t getSignExtended() const {
1050    unsigned Bits = MVT::getSizeInBits(getValueType(0));
1051    return ((int64_t)Value << (64-Bits)) >> (64-Bits);
1052  }
1053
1054  bool isNullValue() const { return Value == 0; }
1055  bool isAllOnesValue() const {
1056    int NumBits = MVT::getSizeInBits(getValueType(0));
1057    if (NumBits == 64) return Value+1 == 0;
1058    return Value == (1ULL << NumBits)-1;
1059  }
1060
1061  static bool classof(const ConstantSDNode *) { return true; }
1062  static bool classof(const SDNode *N) {
1063    return N->getOpcode() == ISD::Constant ||
1064           N->getOpcode() == ISD::TargetConstant;
1065  }
1066};
1067
1068class ConstantFPSDNode : public SDNode {
1069  double Value;
1070protected:
1071  friend class SelectionDAG;
1072  ConstantFPSDNode(bool isTarget, double val, MVT::ValueType VT)
1073    : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, VT),
1074      Value(val) {
1075  }
1076public:
1077
1078  double getValue() const { return Value; }
1079
1080  /// isExactlyValue - We don't rely on operator== working on double values, as
1081  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1082  /// As such, this method can be used to do an exact bit-for-bit comparison of
1083  /// two floating point values.
1084  bool isExactlyValue(double V) const;
1085
1086  static bool classof(const ConstantFPSDNode *) { return true; }
1087  static bool classof(const SDNode *N) {
1088    return N->getOpcode() == ISD::ConstantFP ||
1089           N->getOpcode() == ISD::TargetConstantFP;
1090  }
1091};
1092
1093class GlobalAddressSDNode : public SDNode {
1094  GlobalValue *TheGlobal;
1095  int Offset;
1096protected:
1097  friend class SelectionDAG;
1098  GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT::ValueType VT,
1099                      int o=0)
1100    : SDNode(isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress, VT),
1101      Offset(o) {
1102    TheGlobal = const_cast<GlobalValue*>(GA);
1103  }
1104public:
1105
1106  GlobalValue *getGlobal() const { return TheGlobal; }
1107  int getOffset() const { return Offset; }
1108
1109  static bool classof(const GlobalAddressSDNode *) { return true; }
1110  static bool classof(const SDNode *N) {
1111    return N->getOpcode() == ISD::GlobalAddress ||
1112           N->getOpcode() == ISD::TargetGlobalAddress;
1113  }
1114};
1115
1116
1117class FrameIndexSDNode : public SDNode {
1118  int FI;
1119protected:
1120  friend class SelectionDAG;
1121  FrameIndexSDNode(int fi, MVT::ValueType VT, bool isTarg)
1122    : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, VT), FI(fi) {}
1123public:
1124
1125  int getIndex() const { return FI; }
1126
1127  static bool classof(const FrameIndexSDNode *) { return true; }
1128  static bool classof(const SDNode *N) {
1129    return N->getOpcode() == ISD::FrameIndex ||
1130           N->getOpcode() == ISD::TargetFrameIndex;
1131  }
1132};
1133
1134class ConstantPoolSDNode : public SDNode {
1135  Constant *C;
1136  int Offset;
1137  unsigned Alignment;
1138protected:
1139  friend class SelectionDAG;
1140  ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT,
1141                     int o=0)
1142    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, VT),
1143      C(c), Offset(o), Alignment(0) {}
1144  ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT, int o,
1145                     unsigned Align)
1146    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, VT),
1147      C(c), Offset(o), Alignment(Align) {}
1148public:
1149
1150  Constant *get() const { return C; }
1151  int getOffset() const { return Offset; }
1152
1153  // Return the alignment of this constant pool object, which is either 0 (for
1154  // default alignment) or log2 of the desired value.
1155  unsigned getAlignment() const { return Alignment; }
1156
1157  static bool classof(const ConstantPoolSDNode *) { return true; }
1158  static bool classof(const SDNode *N) {
1159    return N->getOpcode() == ISD::ConstantPool ||
1160           N->getOpcode() == ISD::TargetConstantPool;
1161  }
1162};
1163
1164class BasicBlockSDNode : public SDNode {
1165  MachineBasicBlock *MBB;
1166protected:
1167  friend class SelectionDAG;
1168  BasicBlockSDNode(MachineBasicBlock *mbb)
1169    : SDNode(ISD::BasicBlock, MVT::Other), MBB(mbb) {}
1170public:
1171
1172  MachineBasicBlock *getBasicBlock() const { return MBB; }
1173
1174  static bool classof(const BasicBlockSDNode *) { return true; }
1175  static bool classof(const SDNode *N) {
1176    return N->getOpcode() == ISD::BasicBlock;
1177  }
1178};
1179
1180class SrcValueSDNode : public SDNode {
1181  const Value *V;
1182  int offset;
1183protected:
1184  friend class SelectionDAG;
1185  SrcValueSDNode(const Value* v, int o)
1186    : SDNode(ISD::SRCVALUE, MVT::Other), V(v), offset(o) {}
1187
1188public:
1189  const Value *getValue() const { return V; }
1190  int getOffset() const { return offset; }
1191
1192  static bool classof(const SrcValueSDNode *) { return true; }
1193  static bool classof(const SDNode *N) {
1194    return N->getOpcode() == ISD::SRCVALUE;
1195  }
1196};
1197
1198
1199class RegisterSDNode : public SDNode {
1200  unsigned Reg;
1201protected:
1202  friend class SelectionDAG;
1203  RegisterSDNode(unsigned reg, MVT::ValueType VT)
1204    : SDNode(ISD::Register, VT), Reg(reg) {}
1205public:
1206
1207  unsigned getReg() const { return Reg; }
1208
1209  static bool classof(const RegisterSDNode *) { return true; }
1210  static bool classof(const SDNode *N) {
1211    return N->getOpcode() == ISD::Register;
1212  }
1213};
1214
1215class ExternalSymbolSDNode : public SDNode {
1216  const char *Symbol;
1217protected:
1218  friend class SelectionDAG;
1219  ExternalSymbolSDNode(bool isTarget, const char *Sym, MVT::ValueType VT)
1220    : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, VT),
1221      Symbol(Sym) {
1222    }
1223public:
1224
1225  const char *getSymbol() const { return Symbol; }
1226
1227  static bool classof(const ExternalSymbolSDNode *) { return true; }
1228  static bool classof(const SDNode *N) {
1229    return N->getOpcode() == ISD::ExternalSymbol ||
1230           N->getOpcode() == ISD::TargetExternalSymbol;
1231  }
1232};
1233
1234class CondCodeSDNode : public SDNode {
1235  ISD::CondCode Condition;
1236protected:
1237  friend class SelectionDAG;
1238  CondCodeSDNode(ISD::CondCode Cond)
1239    : SDNode(ISD::CONDCODE, MVT::Other), Condition(Cond) {
1240  }
1241public:
1242
1243  ISD::CondCode get() const { return Condition; }
1244
1245  static bool classof(const CondCodeSDNode *) { return true; }
1246  static bool classof(const SDNode *N) {
1247    return N->getOpcode() == ISD::CONDCODE;
1248  }
1249};
1250
1251/// VTSDNode - This class is used to represent MVT::ValueType's, which are used
1252/// to parameterize some operations.
1253class VTSDNode : public SDNode {
1254  MVT::ValueType ValueType;
1255protected:
1256  friend class SelectionDAG;
1257  VTSDNode(MVT::ValueType VT)
1258    : SDNode(ISD::VALUETYPE, MVT::Other), ValueType(VT) {}
1259public:
1260
1261  MVT::ValueType getVT() const { return ValueType; }
1262
1263  static bool classof(const VTSDNode *) { return true; }
1264  static bool classof(const SDNode *N) {
1265    return N->getOpcode() == ISD::VALUETYPE;
1266  }
1267};
1268
1269
1270class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
1271  SDNode *Node;
1272  unsigned Operand;
1273
1274  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
1275public:
1276  bool operator==(const SDNodeIterator& x) const {
1277    return Operand == x.Operand;
1278  }
1279  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
1280
1281  const SDNodeIterator &operator=(const SDNodeIterator &I) {
1282    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
1283    Operand = I.Operand;
1284    return *this;
1285  }
1286
1287  pointer operator*() const {
1288    return Node->getOperand(Operand).Val;
1289  }
1290  pointer operator->() const { return operator*(); }
1291
1292  SDNodeIterator& operator++() {                // Preincrement
1293    ++Operand;
1294    return *this;
1295  }
1296  SDNodeIterator operator++(int) { // Postincrement
1297    SDNodeIterator tmp = *this; ++*this; return tmp;
1298  }
1299
1300  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
1301  static SDNodeIterator end  (SDNode *N) {
1302    return SDNodeIterator(N, N->getNumOperands());
1303  }
1304
1305  unsigned getOperand() const { return Operand; }
1306  const SDNode *getNode() const { return Node; }
1307};
1308
1309template <> struct GraphTraits<SDNode*> {
1310  typedef SDNode NodeType;
1311  typedef SDNodeIterator ChildIteratorType;
1312  static inline NodeType *getEntryNode(SDNode *N) { return N; }
1313  static inline ChildIteratorType child_begin(NodeType *N) {
1314    return SDNodeIterator::begin(N);
1315  }
1316  static inline ChildIteratorType child_end(NodeType *N) {
1317    return SDNodeIterator::end(N);
1318  }
1319};
1320
1321template<>
1322struct ilist_traits<SDNode> {
1323  static SDNode *getPrev(const SDNode *N) { return N->Prev; }
1324  static SDNode *getNext(const SDNode *N) { return N->Next; }
1325
1326  static void setPrev(SDNode *N, SDNode *Prev) { N->Prev = Prev; }
1327  static void setNext(SDNode *N, SDNode *Next) { N->Next = Next; }
1328
1329  static SDNode *createSentinel() {
1330    return new SDNode(ISD::EntryToken, MVT::Other);
1331  }
1332  static void destroySentinel(SDNode *N) { delete N; }
1333  //static SDNode *createNode(const SDNode &V) { return new SDNode(V); }
1334
1335
1336  void addNodeToList(SDNode *NTy) {}
1337  void removeNodeFromList(SDNode *NTy) {}
1338  void transferNodesFromList(iplist<SDNode, ilist_traits> &L2,
1339                             const ilist_iterator<SDNode> &X,
1340                             const ilist_iterator<SDNode> &Y) {}
1341};
1342
1343} // end llvm namespace
1344
1345#endif
1346