SelectionDAGNodes.h revision b625f2f8960de32bc973092aaee8ac62863006fe
1//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SDNode class and derived classes, which are used to
11// represent the nodes and operations present in a SelectionDAG.  These nodes
12// and operations are machine code level operations, with some similarities to
13// the GCC RTL representation.
14//
15// Clients should include the SelectionDAG.h file instead of this file directly.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20#define LLVM_CODEGEN_SELECTIONDAGNODES_H
21
22#include "llvm/Value.h"
23#include "llvm/ADT/FoldingSet.h"
24#include "llvm/ADT/GraphTraits.h"
25#include "llvm/ADT/iterator"
26#include "llvm/ADT/APFloat.h"
27#include "llvm/CodeGen/ValueTypes.h"
28#include "llvm/Support/DataTypes.h"
29#include <cassert>
30
31namespace llvm {
32
33class SelectionDAG;
34class GlobalValue;
35class MachineBasicBlock;
36class MachineConstantPoolValue;
37class SDNode;
38template <typename T> struct DenseMapInfo;
39template <typename T> struct simplify_type;
40template <typename T> struct ilist_traits;
41template<typename NodeTy, typename Traits> class iplist;
42template<typename NodeTy> class ilist_iterator;
43
44/// SDVTList - This represents a list of ValueType's that has been intern'd by
45/// a SelectionDAG.  Instances of this simple value class are returned by
46/// SelectionDAG::getVTList(...).
47///
48struct SDVTList {
49  const MVT::ValueType *VTs;
50  unsigned short NumVTs;
51};
52
53/// ISD namespace - This namespace contains an enum which represents all of the
54/// SelectionDAG node types and value types.
55///
56namespace ISD {
57  namespace ParamFlags {
58  enum Flags {
59    NoFlagSet         = 0,
60    ZExt              = 1<<0,  ///< Parameter should be zero extended
61    ZExtOffs          = 0,
62    SExt              = 1<<1,  ///< Parameter should be sign extended
63    SExtOffs          = 1,
64    InReg             = 1<<2,  ///< Parameter should be passed in register
65    InRegOffs         = 2,
66    StructReturn      = 1<<3,  ///< Hidden struct-return pointer
67    StructReturnOffs  = 3,
68    ByVal             = 1<<4,  ///< Struct passed by value
69    ByValOffs         = 4,
70    Nest              = 1<<5,  ///< Parameter is nested function static chain
71    NestOffs          = 5,
72    ByValAlign        = 0xF << 6, //< The alignment of the struct
73    ByValAlignOffs    = 6,
74    ByValSize         = 0x1ffff << 10, //< The size of the struct
75    ByValSizeOffs     = 10,
76    OrigAlignment     = 0x1F<<27,
77    OrigAlignmentOffs = 27
78  };
79  }
80
81  //===--------------------------------------------------------------------===//
82  /// ISD::NodeType enum - This enum defines all of the operators valid in a
83  /// SelectionDAG.
84  ///
85  enum NodeType {
86    // DELETED_NODE - This is an illegal flag value that is used to catch
87    // errors.  This opcode is not a legal opcode for any node.
88    DELETED_NODE,
89
90    // EntryToken - This is the marker used to indicate the start of the region.
91    EntryToken,
92
93    // Token factor - This node takes multiple tokens as input and produces a
94    // single token result.  This is used to represent the fact that the operand
95    // operators are independent of each other.
96    TokenFactor,
97
98    // AssertSext, AssertZext - These nodes record if a register contains a
99    // value that has already been zero or sign extended from a narrower type.
100    // These nodes take two operands.  The first is the node that has already
101    // been extended, and the second is a value type node indicating the width
102    // of the extension
103    AssertSext, AssertZext,
104
105    // Various leaf nodes.
106    STRING, BasicBlock, VALUETYPE, CONDCODE, Register,
107    Constant, ConstantFP,
108    GlobalAddress, GlobalTLSAddress, FrameIndex,
109    JumpTable, ConstantPool, ExternalSymbol,
110
111    // The address of the GOT
112    GLOBAL_OFFSET_TABLE,
113
114    // FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
115    // llvm.returnaddress on the DAG.  These nodes take one operand, the index
116    // of the frame or return address to return.  An index of zero corresponds
117    // to the current function's frame or return address, an index of one to the
118    // parent's frame or return address, and so on.
119    FRAMEADDR, RETURNADDR,
120
121    // FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
122    // first (possible) on-stack argument. This is needed for correct stack
123    // adjustment during unwind.
124    FRAME_TO_ARGS_OFFSET,
125
126    // RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the
127    // address of the exception block on entry to an landing pad block.
128    EXCEPTIONADDR,
129
130    // RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents
131    // the selection index of the exception thrown.
132    EHSELECTION,
133
134    // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
135    // 'eh_return' gcc dwarf builtin, which is used to return from
136    // exception. The general meaning is: adjust stack by OFFSET and pass
137    // execution to HANDLER. Many platform-related details also :)
138    EH_RETURN,
139
140    // TargetConstant* - Like Constant*, but the DAG does not do any folding or
141    // simplification of the constant.
142    TargetConstant,
143    TargetConstantFP,
144
145    // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
146    // anything else with this node, and this is valid in the target-specific
147    // dag, turning into a GlobalAddress operand.
148    TargetGlobalAddress,
149    TargetGlobalTLSAddress,
150    TargetFrameIndex,
151    TargetJumpTable,
152    TargetConstantPool,
153    TargetExternalSymbol,
154
155    /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
156    /// This node represents a target intrinsic function with no side effects.
157    /// The first operand is the ID number of the intrinsic from the
158    /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
159    /// node has returns the result of the intrinsic.
160    INTRINSIC_WO_CHAIN,
161
162    /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
163    /// This node represents a target intrinsic function with side effects that
164    /// returns a result.  The first operand is a chain pointer.  The second is
165    /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
166    /// operands to the intrinsic follow.  The node has two results, the result
167    /// of the intrinsic and an output chain.
168    INTRINSIC_W_CHAIN,
169
170    /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
171    /// This node represents a target intrinsic function with side effects that
172    /// does not return a result.  The first operand is a chain pointer.  The
173    /// second is the ID number of the intrinsic from the llvm::Intrinsic
174    /// namespace.  The operands to the intrinsic follow.
175    INTRINSIC_VOID,
176
177    // CopyToReg - This node has three operands: a chain, a register number to
178    // set to this value, and a value.
179    CopyToReg,
180
181    // CopyFromReg - This node indicates that the input value is a virtual or
182    // physical register that is defined outside of the scope of this
183    // SelectionDAG.  The register is available from the RegisterSDNode object.
184    CopyFromReg,
185
186    // UNDEF - An undefined node
187    UNDEF,
188
189    /// FORMAL_ARGUMENTS(CHAIN, CC#, ISVARARG, FLAG0, ..., FLAGn) - This node
190    /// represents the formal arguments for a function.  CC# is a Constant value
191    /// indicating the calling convention of the function, and ISVARARG is a
192    /// flag that indicates whether the function is varargs or not. This node
193    /// has one result value for each incoming argument, plus one for the output
194    /// chain. It must be custom legalized. See description of CALL node for
195    /// FLAG argument contents explanation.
196    ///
197    FORMAL_ARGUMENTS,
198
199    /// RV1, RV2...RVn, CHAIN = CALL(CHAIN, CC#, ISVARARG, ISTAILCALL, CALLEE,
200    ///                              ARG0, FLAG0, ARG1, FLAG1, ... ARGn, FLAGn)
201    /// This node represents a fully general function call, before the legalizer
202    /// runs.  This has one result value for each argument / flag pair, plus
203    /// a chain result. It must be custom legalized. Flag argument indicates
204    /// misc. argument attributes. Currently:
205    /// Bit 0 - signness
206    /// Bit 1 - 'inreg' attribute
207    /// Bit 2 - 'sret' attribute
208    /// Bit 4 - 'byval' attribute
209    /// Bit 5 - 'nest' attribute
210    /// Bit 6-9 - alignment of byval structures
211    /// Bit 10-26 - size of byval structures
212    /// Bits 31:27 - argument ABI alignment in the first argument piece and
213    /// alignment '1' in other argument pieces.
214    CALL,
215
216    // EXTRACT_ELEMENT - This is used to get the first or second (determined by
217    // a Constant, which is required to be operand #1), element of the aggregate
218    // value specified as operand #0.  This is only for use before legalization,
219    // for values that will be broken into multiple registers.
220    EXTRACT_ELEMENT,
221
222    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
223    // two values of the same integer value type, this produces a value twice as
224    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
225    BUILD_PAIR,
226
227    // MERGE_VALUES - This node takes multiple discrete operands and returns
228    // them all as its individual results.  This nodes has exactly the same
229    // number of inputs and outputs, and is only valid before legalization.
230    // This node is useful for some pieces of the code generator that want to
231    // think about a single node with multiple results, not multiple nodes.
232    MERGE_VALUES,
233
234    // Simple integer binary arithmetic operators.
235    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
236
237    // SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
238    // a signed/unsigned value of type i[2*N], and return the full value as
239    // two results, each of type iN.
240    SMUL_LOHI, UMUL_LOHI,
241
242    // SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
243    // remainder result.
244    SDIVREM, UDIVREM,
245
246    // CARRY_FALSE - This node is used when folding other nodes,
247    // like ADDC/SUBC, which indicate the carry result is always false.
248    CARRY_FALSE,
249
250    // Carry-setting nodes for multiple precision addition and subtraction.
251    // These nodes take two operands of the same value type, and produce two
252    // results.  The first result is the normal add or sub result, the second
253    // result is the carry flag result.
254    ADDC, SUBC,
255
256    // Carry-using nodes for multiple precision addition and subtraction.  These
257    // nodes take three operands: The first two are the normal lhs and rhs to
258    // the add or sub, and the third is the input carry flag.  These nodes
259    // produce two results; the normal result of the add or sub, and the output
260    // carry flag.  These nodes both read and write a carry flag to allow them
261    // to them to be chained together for add and sub of arbitrarily large
262    // values.
263    ADDE, SUBE,
264
265    // Simple binary floating point operators.
266    FADD, FSUB, FMUL, FDIV, FREM,
267
268    // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
269    // DAG node does not require that X and Y have the same type, just that they
270    // are both floating point.  X and the result must have the same type.
271    // FCOPYSIGN(f32, f64) is allowed.
272    FCOPYSIGN,
273
274    // INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
275    // value as an integer 0/1 value.
276    FGETSIGN,
277
278    /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector
279    /// with the specified, possibly variable, elements.  The number of elements
280    /// is required to be a power of two.
281    BUILD_VECTOR,
282
283    /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
284    /// at IDX replaced with VAL.
285    INSERT_VECTOR_ELT,
286
287    /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
288    /// identified by the (potentially variable) element number IDX.
289    EXTRACT_VECTOR_ELT,
290
291    /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
292    /// vector type with the same length and element type, this produces a
293    /// concatenated vector result value, with length equal to the sum of the
294    /// lengths of the input vectors.
295    CONCAT_VECTORS,
296
297    /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
298    /// vector value) starting with the (potentially variable) element number
299    /// IDX, which must be a multiple of the result vector length.
300    EXTRACT_SUBVECTOR,
301
302    /// VECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC) - Returns a vector, of the same
303    /// type as VEC1/VEC2.  SHUFFLEVEC is a BUILD_VECTOR of constant int values
304    /// (regardless of whether its datatype is legal or not) that indicate
305    /// which value each result element will get.  The elements of VEC1/VEC2 are
306    /// enumerated in order.  This is quite similar to the Altivec 'vperm'
307    /// instruction, except that the indices must be constants and are in terms
308    /// of the element size of VEC1/VEC2, not in terms of bytes.
309    VECTOR_SHUFFLE,
310
311    /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
312    /// scalar value into element 0 of the resultant vector type.  The top
313    /// elements 1 to N-1 of the N-element vector are undefined.
314    SCALAR_TO_VECTOR,
315
316    // EXTRACT_SUBREG - This node is used to extract a sub-register value.
317    // This node takes a superreg and a constant sub-register index as operands.
318    EXTRACT_SUBREG,
319
320    // INSERT_SUBREG - This node is used to insert a sub-register value.
321    // This node takes a superreg, a subreg value, and a constant sub-register
322    // index as operands.
323    INSERT_SUBREG,
324
325    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
326    // an unsigned/signed value of type i[2*N], then return the top part.
327    MULHU, MULHS,
328
329    // Bitwise operators - logical and, logical or, logical xor, shift left,
330    // shift right algebraic (shift in sign bits), shift right logical (shift in
331    // zeroes), rotate left, rotate right, and byteswap.
332    AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
333
334    // Counting operators
335    CTTZ, CTLZ, CTPOP,
336
337    // Select(COND, TRUEVAL, FALSEVAL)
338    SELECT,
339
340    // Select with condition operator - This selects between a true value and
341    // a false value (ops #2 and #3) based on the boolean result of comparing
342    // the lhs and rhs (ops #0 and #1) of a conditional expression with the
343    // condition code in op #4, a CondCodeSDNode.
344    SELECT_CC,
345
346    // SetCC operator - This evaluates to a boolean (i1) true value if the
347    // condition is true.  The operands to this are the left and right operands
348    // to compare (ops #0, and #1) and the condition code to compare them with
349    // (op #2) as a CondCodeSDNode.
350    SETCC,
351
352    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
353    // integer shift operations, just like ADD/SUB_PARTS.  The operation
354    // ordering is:
355    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
356    SHL_PARTS, SRA_PARTS, SRL_PARTS,
357
358    // Conversion operators.  These are all single input single output
359    // operations.  For all of these, the result type must be strictly
360    // wider or narrower (depending on the operation) than the source
361    // type.
362
363    // SIGN_EXTEND - Used for integer types, replicating the sign bit
364    // into new bits.
365    SIGN_EXTEND,
366
367    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
368    ZERO_EXTEND,
369
370    // ANY_EXTEND - Used for integer types.  The high bits are undefined.
371    ANY_EXTEND,
372
373    // TRUNCATE - Completely drop the high bits.
374    TRUNCATE,
375
376    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
377    // depends on the first letter) to floating point.
378    SINT_TO_FP,
379    UINT_TO_FP,
380
381    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
382    // sign extend a small value in a large integer register (e.g. sign
383    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
384    // with the 7th bit).  The size of the smaller type is indicated by the 1th
385    // operand, a ValueType node.
386    SIGN_EXTEND_INREG,
387
388    /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
389    /// integer.
390    FP_TO_SINT,
391    FP_TO_UINT,
392
393    /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
394    /// down to the precision of the destination VT.  TRUNC is a flag, which is
395    /// always an integer that is zero or one.  If TRUNC is 0, this is a
396    /// normal rounding, if it is 1, this FP_ROUND is known to not change the
397    /// value of Y.
398    ///
399    /// The TRUNC = 1 case is used in cases where we know that the value will
400    /// not be modified by the node, because Y is not using any of the extra
401    /// precision of source type.  This allows certain transformations like
402    /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
403    /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
404    FP_ROUND,
405
406    // FLT_ROUNDS - Returns current rounding mode:
407    // -1 Undefined
408    //  0 Round to 0
409    //  1 Round to nearest
410    //  2 Round to +inf
411    //  3 Round to -inf
412    FLT_ROUNDS,
413
414    /// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and
415    /// rounds it to a floating point value.  It then promotes it and returns it
416    /// in a register of the same size.  This operation effectively just
417    /// discards excess precision.  The type to round down to is specified by
418    /// the VT operand, a VTSDNode.
419    FP_ROUND_INREG,
420
421    /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
422    FP_EXTEND,
423
424    // BIT_CONVERT - Theis operator converts between integer and FP values, as
425    // if one was stored to memory as integer and the other was loaded from the
426    // same address (or equivalently for vector format conversions, etc).  The
427    // source and result are required to have the same bit size (e.g.
428    // f32 <-> i32).  This can also be used for int-to-int or fp-to-fp
429    // conversions, but that is a noop, deleted by getNode().
430    BIT_CONVERT,
431
432    // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW - Perform unary floating point
433    // negation, absolute value, square root, sine and cosine, powi, and pow
434    // operations.
435    FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
436
437    // LOAD and STORE have token chains as their first operand, then the same
438    // operands as an LLVM load/store instruction, then an offset node that
439    // is added / subtracted from the base pointer to form the address (for
440    // indexed memory ops).
441    LOAD, STORE,
442
443    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
444    // to a specified boundary.  This node always has two return values: a new
445    // stack pointer value and a chain. The first operand is the token chain,
446    // the second is the number of bytes to allocate, and the third is the
447    // alignment boundary.  The size is guaranteed to be a multiple of the stack
448    // alignment, and the alignment is guaranteed to be bigger than the stack
449    // alignment (if required) or 0 to get standard stack alignment.
450    DYNAMIC_STACKALLOC,
451
452    // Control flow instructions.  These all have token chains.
453
454    // BR - Unconditional branch.  The first operand is the chain
455    // operand, the second is the MBB to branch to.
456    BR,
457
458    // BRIND - Indirect branch.  The first operand is the chain, the second
459    // is the value to branch to, which must be of the same type as the target's
460    // pointer type.
461    BRIND,
462
463    // BR_JT - Jumptable branch. The first operand is the chain, the second
464    // is the jumptable index, the last one is the jumptable entry index.
465    BR_JT,
466
467    // BRCOND - Conditional branch.  The first operand is the chain,
468    // the second is the condition, the third is the block to branch
469    // to if the condition is true.
470    BRCOND,
471
472    // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
473    // that the condition is represented as condition code, and two nodes to
474    // compare, rather than as a combined SetCC node.  The operands in order are
475    // chain, cc, lhs, rhs, block to branch to if condition is true.
476    BR_CC,
477
478    // RET - Return from function.  The first operand is the chain,
479    // and any subsequent operands are pairs of return value and return value
480    // signness for the function.  This operation can have variable number of
481    // operands.
482    RET,
483
484    // INLINEASM - Represents an inline asm block.  This node always has two
485    // return values: a chain and a flag result.  The inputs are as follows:
486    //   Operand #0   : Input chain.
487    //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
488    //   Operand #2n+2: A RegisterNode.
489    //   Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
490    //   Operand #last: Optional, an incoming flag.
491    INLINEASM,
492
493    // LABEL - Represents a label in mid basic block used to track
494    // locations needed for debug and exception handling tables.  This node
495    // returns a chain.
496    //   Operand #0 : input chain.
497    //   Operand #1 : module unique number use to identify the label.
498    LABEL,
499
500    // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
501    // value, the same type as the pointer type for the system, and an output
502    // chain.
503    STACKSAVE,
504
505    // STACKRESTORE has two operands, an input chain and a pointer to restore to
506    // it returns an output chain.
507    STACKRESTORE,
508
509    // MEMSET/MEMCPY/MEMMOVE - The first operand is the chain. The following
510    // correspond to the operands of the LLVM intrinsic functions and the last
511    // one is AlwaysInline.  The only result is a token chain.  The alignment
512    // argument is guaranteed to be a Constant node.
513    MEMSET,
514    MEMMOVE,
515    MEMCPY,
516
517    // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
518    // a call sequence, and carry arbitrary information that target might want
519    // to know.  The first operand is a chain, the rest are specified by the
520    // target and not touched by the DAG optimizers.
521    CALLSEQ_START,  // Beginning of a call sequence
522    CALLSEQ_END,    // End of a call sequence
523
524    // VAARG - VAARG has three operands: an input chain, a pointer, and a
525    // SRCVALUE.  It returns a pair of values: the vaarg value and a new chain.
526    VAARG,
527
528    // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
529    // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
530    // source.
531    VACOPY,
532
533    // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
534    // pointer, and a SRCVALUE.
535    VAEND, VASTART,
536
537    // SRCVALUE - This corresponds to a Value*, and is used to associate memory
538    // locations with their value.  This allows one use alias analysis
539    // information in the backend.
540    SRCVALUE,
541
542    // PCMARKER - This corresponds to the pcmarker intrinsic.
543    PCMARKER,
544
545    // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
546    // The only operand is a chain and a value and a chain are produced.  The
547    // value is the contents of the architecture specific cycle counter like
548    // register (or other high accuracy low latency clock source)
549    READCYCLECOUNTER,
550
551    // HANDLENODE node - Used as a handle for various purposes.
552    HANDLENODE,
553
554    // LOCATION - This node is used to represent a source location for debug
555    // info.  It takes token chain as input, then a line number, then a column
556    // number, then a filename, then a working dir.  It produces a token chain
557    // as output.
558    LOCATION,
559
560    // DEBUG_LOC - This node is used to represent source line information
561    // embedded in the code.  It takes a token chain as input, then a line
562    // number, then a column then a file id (provided by MachineModuleInfo.) It
563    // produces a token chain as output.
564    DEBUG_LOC,
565
566    // TRAMPOLINE - This corresponds to the init_trampoline intrinsic.
567    // It takes as input a token chain, the pointer to the trampoline,
568    // the pointer to the nested function, the pointer to pass for the
569    // 'nest' parameter, a SRCVALUE for the trampoline and another for
570    // the nested function (allowing targets to access the original
571    // Function*).  It produces the result of the intrinsic and a token
572    // chain as output.
573    TRAMPOLINE,
574
575    // TRAP - Trapping instruction
576    TRAP,
577
578    // BUILTIN_OP_END - This must be the last enum value in this list.
579    BUILTIN_OP_END
580  };
581
582  /// Node predicates
583
584  /// isBuildVectorAllOnes - Return true if the specified node is a
585  /// BUILD_VECTOR where all of the elements are ~0 or undef.
586  bool isBuildVectorAllOnes(const SDNode *N);
587
588  /// isBuildVectorAllZeros - Return true if the specified node is a
589  /// BUILD_VECTOR where all of the elements are 0 or undef.
590  bool isBuildVectorAllZeros(const SDNode *N);
591
592  //===--------------------------------------------------------------------===//
593  /// MemIndexedMode enum - This enum defines the load / store indexed
594  /// addressing modes.
595  ///
596  /// UNINDEXED    "Normal" load / store. The effective address is already
597  ///              computed and is available in the base pointer. The offset
598  ///              operand is always undefined. In addition to producing a
599  ///              chain, an unindexed load produces one value (result of the
600  ///              load); an unindexed store does not produces a value.
601  ///
602  /// PRE_INC      Similar to the unindexed mode where the effective address is
603  /// PRE_DEC      the value of the base pointer add / subtract the offset.
604  ///              It considers the computation as being folded into the load /
605  ///              store operation (i.e. the load / store does the address
606  ///              computation as well as performing the memory transaction).
607  ///              The base operand is always undefined. In addition to
608  ///              producing a chain, pre-indexed load produces two values
609  ///              (result of the load and the result of the address
610  ///              computation); a pre-indexed store produces one value (result
611  ///              of the address computation).
612  ///
613  /// POST_INC     The effective address is the value of the base pointer. The
614  /// POST_DEC     value of the offset operand is then added to / subtracted
615  ///              from the base after memory transaction. In addition to
616  ///              producing a chain, post-indexed load produces two values
617  ///              (the result of the load and the result of the base +/- offset
618  ///              computation); a post-indexed store produces one value (the
619  ///              the result of the base +/- offset computation).
620  ///
621  enum MemIndexedMode {
622    UNINDEXED = 0,
623    PRE_INC,
624    PRE_DEC,
625    POST_INC,
626    POST_DEC,
627    LAST_INDEXED_MODE
628  };
629
630  //===--------------------------------------------------------------------===//
631  /// LoadExtType enum - This enum defines the three variants of LOADEXT
632  /// (load with extension).
633  ///
634  /// SEXTLOAD loads the integer operand and sign extends it to a larger
635  ///          integer result type.
636  /// ZEXTLOAD loads the integer operand and zero extends it to a larger
637  ///          integer result type.
638  /// EXTLOAD  is used for three things: floating point extending loads,
639  ///          integer extending loads [the top bits are undefined], and vector
640  ///          extending loads [load into low elt].
641  ///
642  enum LoadExtType {
643    NON_EXTLOAD = 0,
644    EXTLOAD,
645    SEXTLOAD,
646    ZEXTLOAD,
647    LAST_LOADX_TYPE
648  };
649
650  //===--------------------------------------------------------------------===//
651  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
652  /// below work out, when considering SETFALSE (something that never exists
653  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
654  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
655  /// to.  If the "N" column is 1, the result of the comparison is undefined if
656  /// the input is a NAN.
657  ///
658  /// All of these (except for the 'always folded ops') should be handled for
659  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
660  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
661  ///
662  /// Note that these are laid out in a specific order to allow bit-twiddling
663  /// to transform conditions.
664  enum CondCode {
665    // Opcode          N U L G E       Intuitive operation
666    SETFALSE,      //    0 0 0 0       Always false (always folded)
667    SETOEQ,        //    0 0 0 1       True if ordered and equal
668    SETOGT,        //    0 0 1 0       True if ordered and greater than
669    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
670    SETOLT,        //    0 1 0 0       True if ordered and less than
671    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
672    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
673    SETO,          //    0 1 1 1       True if ordered (no nans)
674    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
675    SETUEQ,        //    1 0 0 1       True if unordered or equal
676    SETUGT,        //    1 0 1 0       True if unordered or greater than
677    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
678    SETULT,        //    1 1 0 0       True if unordered or less than
679    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
680    SETUNE,        //    1 1 1 0       True if unordered or not equal
681    SETTRUE,       //    1 1 1 1       Always true (always folded)
682    // Don't care operations: undefined if the input is a nan.
683    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
684    SETEQ,         //  1 X 0 0 1       True if equal
685    SETGT,         //  1 X 0 1 0       True if greater than
686    SETGE,         //  1 X 0 1 1       True if greater than or equal
687    SETLT,         //  1 X 1 0 0       True if less than
688    SETLE,         //  1 X 1 0 1       True if less than or equal
689    SETNE,         //  1 X 1 1 0       True if not equal
690    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
691
692    SETCC_INVALID       // Marker value.
693  };
694
695  /// isSignedIntSetCC - Return true if this is a setcc instruction that
696  /// performs a signed comparison when used with integer operands.
697  inline bool isSignedIntSetCC(CondCode Code) {
698    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
699  }
700
701  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
702  /// performs an unsigned comparison when used with integer operands.
703  inline bool isUnsignedIntSetCC(CondCode Code) {
704    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
705  }
706
707  /// isTrueWhenEqual - Return true if the specified condition returns true if
708  /// the two operands to the condition are equal.  Note that if one of the two
709  /// operands is a NaN, this value is meaningless.
710  inline bool isTrueWhenEqual(CondCode Cond) {
711    return ((int)Cond & 1) != 0;
712  }
713
714  /// getUnorderedFlavor - This function returns 0 if the condition is always
715  /// false if an operand is a NaN, 1 if the condition is always true if the
716  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
717  /// NaN.
718  inline unsigned getUnorderedFlavor(CondCode Cond) {
719    return ((int)Cond >> 3) & 3;
720  }
721
722  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
723  /// 'op' is a valid SetCC operation.
724  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
725
726  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
727  /// when given the operation for (X op Y).
728  CondCode getSetCCSwappedOperands(CondCode Operation);
729
730  /// getSetCCOrOperation - Return the result of a logical OR between different
731  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
732  /// function returns SETCC_INVALID if it is not possible to represent the
733  /// resultant comparison.
734  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
735
736  /// getSetCCAndOperation - Return the result of a logical AND between
737  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
738  /// function returns SETCC_INVALID if it is not possible to represent the
739  /// resultant comparison.
740  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
741}  // end llvm::ISD namespace
742
743
744//===----------------------------------------------------------------------===//
745/// SDOperand - Unlike LLVM values, Selection DAG nodes may return multiple
746/// values as the result of a computation.  Many nodes return multiple values,
747/// from loads (which define a token and a return value) to ADDC (which returns
748/// a result and a carry value), to calls (which may return an arbitrary number
749/// of values).
750///
751/// As such, each use of a SelectionDAG computation must indicate the node that
752/// computes it as well as which return value to use from that node.  This pair
753/// of information is represented with the SDOperand value type.
754///
755class SDOperand {
756public:
757  SDNode *Val;        // The node defining the value we are using.
758  unsigned ResNo;     // Which return value of the node we are using.
759
760  SDOperand() : Val(0), ResNo(0) {}
761  SDOperand(SDNode *val, unsigned resno) : Val(val), ResNo(resno) {}
762
763  bool operator==(const SDOperand &O) const {
764    return Val == O.Val && ResNo == O.ResNo;
765  }
766  bool operator!=(const SDOperand &O) const {
767    return !operator==(O);
768  }
769  bool operator<(const SDOperand &O) const {
770    return Val < O.Val || (Val == O.Val && ResNo < O.ResNo);
771  }
772
773  SDOperand getValue(unsigned R) const {
774    return SDOperand(Val, R);
775  }
776
777  // isOperand - Return true if this node is an operand of N.
778  bool isOperand(SDNode *N) const;
779
780  /// getValueType - Return the ValueType of the referenced return value.
781  ///
782  inline MVT::ValueType getValueType() const;
783
784  // Forwarding methods - These forward to the corresponding methods in SDNode.
785  inline unsigned getOpcode() const;
786  inline unsigned getNumOperands() const;
787  inline const SDOperand &getOperand(unsigned i) const;
788  inline uint64_t getConstantOperandVal(unsigned i) const;
789  inline bool isTargetOpcode() const;
790  inline unsigned getTargetOpcode() const;
791
792
793  /// reachesChainWithoutSideEffects - Return true if this operand (which must
794  /// be a chain) reaches the specified operand without crossing any
795  /// side-effecting instructions.  In practice, this looks through token
796  /// factors and non-volatile loads.  In order to remain efficient, this only
797  /// looks a couple of nodes in, it does not do an exhaustive search.
798  bool reachesChainWithoutSideEffects(SDOperand Dest, unsigned Depth = 2) const;
799
800  /// hasOneUse - Return true if there is exactly one operation using this
801  /// result value of the defining operator.
802  inline bool hasOneUse() const;
803
804  /// use_empty - Return true if there are no operations using this
805  /// result value of the defining operator.
806  inline bool use_empty() const;
807};
808
809
810template<> struct DenseMapInfo<SDOperand> {
811  static inline SDOperand getEmptyKey() { return SDOperand((SDNode*)-1, -1U); }
812  static inline SDOperand getTombstoneKey() { return SDOperand((SDNode*)-1, 0);}
813  static unsigned getHashValue(const SDOperand &Val) {
814    return (unsigned)((uintptr_t)Val.Val >> 4) ^
815           (unsigned)((uintptr_t)Val.Val >> 9) + Val.ResNo;
816  }
817  static bool isEqual(const SDOperand &LHS, const SDOperand &RHS) {
818    return LHS == RHS;
819  }
820  static bool isPod() { return true; }
821};
822
823/// simplify_type specializations - Allow casting operators to work directly on
824/// SDOperands as if they were SDNode*'s.
825template<> struct simplify_type<SDOperand> {
826  typedef SDNode* SimpleType;
827  static SimpleType getSimplifiedValue(const SDOperand &Val) {
828    return static_cast<SimpleType>(Val.Val);
829  }
830};
831template<> struct simplify_type<const SDOperand> {
832  typedef SDNode* SimpleType;
833  static SimpleType getSimplifiedValue(const SDOperand &Val) {
834    return static_cast<SimpleType>(Val.Val);
835  }
836};
837
838
839/// SDNode - Represents one node in the SelectionDAG.
840///
841class SDNode : public FoldingSetNode {
842  /// NodeType - The operation that this node performs.
843  ///
844  unsigned short NodeType;
845
846  /// OperandsNeedDelete - This is true if OperandList was new[]'d.  If true,
847  /// then they will be delete[]'d when the node is destroyed.
848  bool OperandsNeedDelete : 1;
849
850  /// NodeId - Unique id per SDNode in the DAG.
851  int NodeId;
852
853  /// OperandList - The values that are used by this operation.
854  ///
855  SDOperand *OperandList;
856
857  /// ValueList - The types of the values this node defines.  SDNode's may
858  /// define multiple values simultaneously.
859  const MVT::ValueType *ValueList;
860
861  /// NumOperands/NumValues - The number of entries in the Operand/Value list.
862  unsigned short NumOperands, NumValues;
863
864  /// Prev/Next pointers - These pointers form the linked list of of the
865  /// AllNodes list in the current DAG.
866  SDNode *Prev, *Next;
867  friend struct ilist_traits<SDNode>;
868
869  /// Uses - These are all of the SDNode's that use a value produced by this
870  /// node.
871  SmallVector<SDNode*,3> Uses;
872
873  // Out-of-line virtual method to give class a home.
874  virtual void ANCHOR();
875public:
876  virtual ~SDNode() {
877    assert(NumOperands == 0 && "Operand list not cleared before deletion");
878    NodeType = ISD::DELETED_NODE;
879  }
880
881  //===--------------------------------------------------------------------===//
882  //  Accessors
883  //
884  unsigned getOpcode()  const { return NodeType; }
885  bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
886  unsigned getTargetOpcode() const {
887    assert(isTargetOpcode() && "Not a target opcode!");
888    return NodeType - ISD::BUILTIN_OP_END;
889  }
890
891  size_t use_size() const { return Uses.size(); }
892  bool use_empty() const { return Uses.empty(); }
893  bool hasOneUse() const { return Uses.size() == 1; }
894
895  /// getNodeId - Return the unique node id.
896  ///
897  int getNodeId() const { return NodeId; }
898
899  /// setNodeId - Set unique node id.
900  void setNodeId(int Id) { NodeId = Id; }
901
902  typedef SmallVector<SDNode*,3>::const_iterator use_iterator;
903  use_iterator use_begin() const { return Uses.begin(); }
904  use_iterator use_end() const { return Uses.end(); }
905
906  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
907  /// indicated value.  This method ignores uses of other values defined by this
908  /// operation.
909  bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
910
911  /// hasAnyUseOfValue - Return true if there are any use of the indicated
912  /// value. This method ignores uses of other values defined by this operation.
913  bool hasAnyUseOfValue(unsigned Value) const;
914
915  /// isOnlyUse - Return true if this node is the only use of N.
916  ///
917  bool isOnlyUse(SDNode *N) const;
918
919  /// isOperand - Return true if this node is an operand of N.
920  ///
921  bool isOperand(SDNode *N) const;
922
923  /// isPredecessor - Return true if this node is a predecessor of N. This node
924  /// is either an operand of N or it can be reached by recursively traversing
925  /// up the operands.
926  /// NOTE: this is an expensive method. Use it carefully.
927  bool isPredecessor(SDNode *N) const;
928
929  /// getNumOperands - Return the number of values used by this operation.
930  ///
931  unsigned getNumOperands() const { return NumOperands; }
932
933  /// getConstantOperandVal - Helper method returns the integer value of a
934  /// ConstantSDNode operand.
935  uint64_t getConstantOperandVal(unsigned Num) const;
936
937  const SDOperand &getOperand(unsigned Num) const {
938    assert(Num < NumOperands && "Invalid child # of SDNode!");
939    return OperandList[Num];
940  }
941
942  typedef const SDOperand* op_iterator;
943  op_iterator op_begin() const { return OperandList; }
944  op_iterator op_end() const { return OperandList+NumOperands; }
945
946
947  SDVTList getVTList() const {
948    SDVTList X = { ValueList, NumValues };
949    return X;
950  };
951
952  /// getNumValues - Return the number of values defined/returned by this
953  /// operator.
954  ///
955  unsigned getNumValues() const { return NumValues; }
956
957  /// getValueType - Return the type of a specified result.
958  ///
959  MVT::ValueType getValueType(unsigned ResNo) const {
960    assert(ResNo < NumValues && "Illegal result number!");
961    return ValueList[ResNo];
962  }
963
964  typedef const MVT::ValueType* value_iterator;
965  value_iterator value_begin() const { return ValueList; }
966  value_iterator value_end() const { return ValueList+NumValues; }
967
968  /// getOperationName - Return the opcode of this operation for printing.
969  ///
970  std::string getOperationName(const SelectionDAG *G = 0) const;
971  static const char* getIndexedModeName(ISD::MemIndexedMode AM);
972  void dump() const;
973  void dump(const SelectionDAG *G) const;
974
975  static bool classof(const SDNode *) { return true; }
976
977  /// Profile - Gather unique data for the node.
978  ///
979  void Profile(FoldingSetNodeID &ID);
980
981protected:
982  friend class SelectionDAG;
983
984  /// getValueTypeList - Return a pointer to the specified value type.
985  ///
986  static MVT::ValueType *getValueTypeList(MVT::ValueType VT);
987  static SDVTList getSDVTList(MVT::ValueType VT) {
988    SDVTList Ret = { getValueTypeList(VT), 1 };
989    return Ret;
990  }
991
992  SDNode(unsigned Opc, SDVTList VTs, const SDOperand *Ops, unsigned NumOps)
993    : NodeType(Opc), NodeId(-1) {
994    OperandsNeedDelete = true;
995    NumOperands = NumOps;
996    OperandList = NumOps ? new SDOperand[NumOperands] : 0;
997
998    for (unsigned i = 0; i != NumOps; ++i) {
999      OperandList[i] = Ops[i];
1000      Ops[i].Val->Uses.push_back(this);
1001    }
1002
1003    ValueList = VTs.VTs;
1004    NumValues = VTs.NumVTs;
1005    Prev = 0; Next = 0;
1006  }
1007  SDNode(unsigned Opc, SDVTList VTs) : NodeType(Opc), NodeId(-1) {
1008    OperandsNeedDelete = false;  // Operands set with InitOperands.
1009    NumOperands = 0;
1010    OperandList = 0;
1011
1012    ValueList = VTs.VTs;
1013    NumValues = VTs.NumVTs;
1014    Prev = 0; Next = 0;
1015  }
1016
1017  /// InitOperands - Initialize the operands list of this node with the
1018  /// specified values, which are part of the node (thus they don't need to be
1019  /// copied in or allocated).
1020  void InitOperands(SDOperand *Ops, unsigned NumOps) {
1021    assert(OperandList == 0 && "Operands already set!");
1022    NumOperands = NumOps;
1023    OperandList = Ops;
1024
1025    for (unsigned i = 0; i != NumOps; ++i)
1026      Ops[i].Val->Uses.push_back(this);
1027  }
1028
1029  /// MorphNodeTo - This frees the operands of the current node, resets the
1030  /// opcode, types, and operands to the specified value.  This should only be
1031  /// used by the SelectionDAG class.
1032  void MorphNodeTo(unsigned Opc, SDVTList L,
1033                   const SDOperand *Ops, unsigned NumOps);
1034
1035  void addUser(SDNode *User) {
1036    Uses.push_back(User);
1037  }
1038  void removeUser(SDNode *User) {
1039    // Remove this user from the operand's use list.
1040    for (unsigned i = Uses.size(); ; --i) {
1041      assert(i != 0 && "Didn't find user!");
1042      if (Uses[i-1] == User) {
1043        Uses[i-1] = Uses.back();
1044        Uses.pop_back();
1045        return;
1046      }
1047    }
1048  }
1049};
1050
1051
1052// Define inline functions from the SDOperand class.
1053
1054inline unsigned SDOperand::getOpcode() const {
1055  return Val->getOpcode();
1056}
1057inline MVT::ValueType SDOperand::getValueType() const {
1058  return Val->getValueType(ResNo);
1059}
1060inline unsigned SDOperand::getNumOperands() const {
1061  return Val->getNumOperands();
1062}
1063inline const SDOperand &SDOperand::getOperand(unsigned i) const {
1064  return Val->getOperand(i);
1065}
1066inline uint64_t SDOperand::getConstantOperandVal(unsigned i) const {
1067  return Val->getConstantOperandVal(i);
1068}
1069inline bool SDOperand::isTargetOpcode() const {
1070  return Val->isTargetOpcode();
1071}
1072inline unsigned SDOperand::getTargetOpcode() const {
1073  return Val->getTargetOpcode();
1074}
1075inline bool SDOperand::hasOneUse() const {
1076  return Val->hasNUsesOfValue(1, ResNo);
1077}
1078inline bool SDOperand::use_empty() const {
1079  return !Val->hasAnyUseOfValue(ResNo);
1080}
1081
1082/// UnarySDNode - This class is used for single-operand SDNodes.  This is solely
1083/// to allow co-allocation of node operands with the node itself.
1084class UnarySDNode : public SDNode {
1085  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1086  SDOperand Op;
1087public:
1088  UnarySDNode(unsigned Opc, SDVTList VTs, SDOperand X)
1089    : SDNode(Opc, VTs), Op(X) {
1090    InitOperands(&Op, 1);
1091  }
1092};
1093
1094/// BinarySDNode - This class is used for two-operand SDNodes.  This is solely
1095/// to allow co-allocation of node operands with the node itself.
1096class BinarySDNode : public SDNode {
1097  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1098  SDOperand Ops[2];
1099public:
1100  BinarySDNode(unsigned Opc, SDVTList VTs, SDOperand X, SDOperand Y)
1101    : SDNode(Opc, VTs) {
1102    Ops[0] = X;
1103    Ops[1] = Y;
1104    InitOperands(Ops, 2);
1105  }
1106};
1107
1108/// TernarySDNode - This class is used for three-operand SDNodes. This is solely
1109/// to allow co-allocation of node operands with the node itself.
1110class TernarySDNode : public SDNode {
1111  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1112  SDOperand Ops[3];
1113public:
1114  TernarySDNode(unsigned Opc, SDVTList VTs, SDOperand X, SDOperand Y,
1115                SDOperand Z)
1116    : SDNode(Opc, VTs) {
1117    Ops[0] = X;
1118    Ops[1] = Y;
1119    Ops[2] = Z;
1120    InitOperands(Ops, 3);
1121  }
1122};
1123
1124
1125/// HandleSDNode - This class is used to form a handle around another node that
1126/// is persistant and is updated across invocations of replaceAllUsesWith on its
1127/// operand.  This node should be directly created by end-users and not added to
1128/// the AllNodes list.
1129class HandleSDNode : public SDNode {
1130  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1131  SDOperand Op;
1132public:
1133  explicit HandleSDNode(SDOperand X)
1134    : SDNode(ISD::HANDLENODE, getSDVTList(MVT::Other)), Op(X) {
1135    InitOperands(&Op, 1);
1136  }
1137  ~HandleSDNode();
1138  SDOperand getValue() const { return Op; }
1139};
1140
1141class StringSDNode : public SDNode {
1142  std::string Value;
1143  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1144protected:
1145  friend class SelectionDAG;
1146  explicit StringSDNode(const std::string &val)
1147    : SDNode(ISD::STRING, getSDVTList(MVT::Other)), Value(val) {
1148  }
1149public:
1150  const std::string &getValue() const { return Value; }
1151  static bool classof(const StringSDNode *) { return true; }
1152  static bool classof(const SDNode *N) {
1153    return N->getOpcode() == ISD::STRING;
1154  }
1155};
1156
1157class ConstantSDNode : public SDNode {
1158  uint64_t Value;
1159  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1160protected:
1161  friend class SelectionDAG;
1162  ConstantSDNode(bool isTarget, uint64_t val, MVT::ValueType VT)
1163    : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, getSDVTList(VT)),
1164      Value(val) {
1165  }
1166public:
1167
1168  uint64_t getValue() const { return Value; }
1169
1170  int64_t getSignExtended() const {
1171    unsigned Bits = MVT::getSizeInBits(getValueType(0));
1172    return ((int64_t)Value << (64-Bits)) >> (64-Bits);
1173  }
1174
1175  bool isNullValue() const { return Value == 0; }
1176  bool isAllOnesValue() const {
1177    return Value == MVT::getIntVTBitMask(getValueType(0));
1178  }
1179
1180  static bool classof(const ConstantSDNode *) { return true; }
1181  static bool classof(const SDNode *N) {
1182    return N->getOpcode() == ISD::Constant ||
1183           N->getOpcode() == ISD::TargetConstant;
1184  }
1185};
1186
1187class ConstantFPSDNode : public SDNode {
1188  APFloat Value;
1189  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1190  // Longterm plan: replace all uses of getValue with getValueAPF, remove
1191  // getValue, rename getValueAPF to getValue.
1192protected:
1193  friend class SelectionDAG;
1194  ConstantFPSDNode(bool isTarget, const APFloat& val, MVT::ValueType VT)
1195    : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP,
1196             getSDVTList(VT)), Value(val) {
1197  }
1198public:
1199
1200  const APFloat& getValueAPF() const { return Value; }
1201
1202  /// isExactlyValue - We don't rely on operator== working on double values, as
1203  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1204  /// As such, this method can be used to do an exact bit-for-bit comparison of
1205  /// two floating point values.
1206
1207  /// We leave the version with the double argument here because it's just so
1208  /// convenient to write "2.0" and the like.  Without this function we'd
1209  /// have to duplicate its logic everywhere it's called.
1210  bool isExactlyValue(double V) const {
1211    APFloat Tmp(V);
1212    Tmp.convert(Value.getSemantics(), APFloat::rmNearestTiesToEven);
1213    return isExactlyValue(Tmp);
1214  }
1215  bool isExactlyValue(const APFloat& V) const;
1216
1217  bool isValueValidForType(MVT::ValueType VT, const APFloat& Val);
1218
1219  static bool classof(const ConstantFPSDNode *) { return true; }
1220  static bool classof(const SDNode *N) {
1221    return N->getOpcode() == ISD::ConstantFP ||
1222           N->getOpcode() == ISD::TargetConstantFP;
1223  }
1224};
1225
1226class GlobalAddressSDNode : public SDNode {
1227  GlobalValue *TheGlobal;
1228  int Offset;
1229  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1230protected:
1231  friend class SelectionDAG;
1232  GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT::ValueType VT,
1233                      int o = 0);
1234public:
1235
1236  GlobalValue *getGlobal() const { return TheGlobal; }
1237  int getOffset() const { return Offset; }
1238
1239  static bool classof(const GlobalAddressSDNode *) { return true; }
1240  static bool classof(const SDNode *N) {
1241    return N->getOpcode() == ISD::GlobalAddress ||
1242           N->getOpcode() == ISD::TargetGlobalAddress ||
1243           N->getOpcode() == ISD::GlobalTLSAddress ||
1244           N->getOpcode() == ISD::TargetGlobalTLSAddress;
1245  }
1246};
1247
1248class FrameIndexSDNode : public SDNode {
1249  int FI;
1250  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1251protected:
1252  friend class SelectionDAG;
1253  FrameIndexSDNode(int fi, MVT::ValueType VT, bool isTarg)
1254    : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, getSDVTList(VT)),
1255      FI(fi) {
1256  }
1257public:
1258
1259  int getIndex() const { return FI; }
1260
1261  static bool classof(const FrameIndexSDNode *) { return true; }
1262  static bool classof(const SDNode *N) {
1263    return N->getOpcode() == ISD::FrameIndex ||
1264           N->getOpcode() == ISD::TargetFrameIndex;
1265  }
1266};
1267
1268class JumpTableSDNode : public SDNode {
1269  int JTI;
1270  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1271protected:
1272  friend class SelectionDAG;
1273  JumpTableSDNode(int jti, MVT::ValueType VT, bool isTarg)
1274    : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable, getSDVTList(VT)),
1275      JTI(jti) {
1276  }
1277public:
1278
1279    int getIndex() const { return JTI; }
1280
1281  static bool classof(const JumpTableSDNode *) { return true; }
1282  static bool classof(const SDNode *N) {
1283    return N->getOpcode() == ISD::JumpTable ||
1284           N->getOpcode() == ISD::TargetJumpTable;
1285  }
1286};
1287
1288class ConstantPoolSDNode : public SDNode {
1289  union {
1290    Constant *ConstVal;
1291    MachineConstantPoolValue *MachineCPVal;
1292  } Val;
1293  int Offset;  // It's a MachineConstantPoolValue if top bit is set.
1294  unsigned Alignment;
1295  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1296protected:
1297  friend class SelectionDAG;
1298  ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT,
1299                     int o=0)
1300    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1301             getSDVTList(VT)), Offset(o), Alignment(0) {
1302    assert((int)Offset >= 0 && "Offset is too large");
1303    Val.ConstVal = c;
1304  }
1305  ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT, int o,
1306                     unsigned Align)
1307    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1308             getSDVTList(VT)), Offset(o), Alignment(Align) {
1309    assert((int)Offset >= 0 && "Offset is too large");
1310    Val.ConstVal = c;
1311  }
1312  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1313                     MVT::ValueType VT, int o=0)
1314    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1315             getSDVTList(VT)), Offset(o), Alignment(0) {
1316    assert((int)Offset >= 0 && "Offset is too large");
1317    Val.MachineCPVal = v;
1318    Offset |= 1 << (sizeof(unsigned)*8-1);
1319  }
1320  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1321                     MVT::ValueType VT, int o, unsigned Align)
1322    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1323             getSDVTList(VT)), Offset(o), Alignment(Align) {
1324    assert((int)Offset >= 0 && "Offset is too large");
1325    Val.MachineCPVal = v;
1326    Offset |= 1 << (sizeof(unsigned)*8-1);
1327  }
1328public:
1329
1330  bool isMachineConstantPoolEntry() const {
1331    return (int)Offset < 0;
1332  }
1333
1334  Constant *getConstVal() const {
1335    assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
1336    return Val.ConstVal;
1337  }
1338
1339  MachineConstantPoolValue *getMachineCPVal() const {
1340    assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
1341    return Val.MachineCPVal;
1342  }
1343
1344  int getOffset() const {
1345    return Offset & ~(1 << (sizeof(unsigned)*8-1));
1346  }
1347
1348  // Return the alignment of this constant pool object, which is either 0 (for
1349  // default alignment) or log2 of the desired value.
1350  unsigned getAlignment() const { return Alignment; }
1351
1352  const Type *getType() const;
1353
1354  static bool classof(const ConstantPoolSDNode *) { return true; }
1355  static bool classof(const SDNode *N) {
1356    return N->getOpcode() == ISD::ConstantPool ||
1357           N->getOpcode() == ISD::TargetConstantPool;
1358  }
1359};
1360
1361class BasicBlockSDNode : public SDNode {
1362  MachineBasicBlock *MBB;
1363  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1364protected:
1365  friend class SelectionDAG;
1366  explicit BasicBlockSDNode(MachineBasicBlock *mbb)
1367    : SDNode(ISD::BasicBlock, getSDVTList(MVT::Other)), MBB(mbb) {
1368  }
1369public:
1370
1371  MachineBasicBlock *getBasicBlock() const { return MBB; }
1372
1373  static bool classof(const BasicBlockSDNode *) { return true; }
1374  static bool classof(const SDNode *N) {
1375    return N->getOpcode() == ISD::BasicBlock;
1376  }
1377};
1378
1379class SrcValueSDNode : public SDNode {
1380  const Value *V;
1381  int offset;
1382  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1383protected:
1384  friend class SelectionDAG;
1385  SrcValueSDNode(const Value* v, int o)
1386    : SDNode(ISD::SRCVALUE, getSDVTList(MVT::Other)), V(v), offset(o) {
1387  }
1388
1389public:
1390  const Value *getValue() const { return V; }
1391  int getOffset() const { return offset; }
1392
1393  static bool classof(const SrcValueSDNode *) { return true; }
1394  static bool classof(const SDNode *N) {
1395    return N->getOpcode() == ISD::SRCVALUE;
1396  }
1397};
1398
1399
1400class RegisterSDNode : public SDNode {
1401  unsigned Reg;
1402  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1403protected:
1404  friend class SelectionDAG;
1405  RegisterSDNode(unsigned reg, MVT::ValueType VT)
1406    : SDNode(ISD::Register, getSDVTList(VT)), Reg(reg) {
1407  }
1408public:
1409
1410  unsigned getReg() const { return Reg; }
1411
1412  static bool classof(const RegisterSDNode *) { return true; }
1413  static bool classof(const SDNode *N) {
1414    return N->getOpcode() == ISD::Register;
1415  }
1416};
1417
1418class ExternalSymbolSDNode : public SDNode {
1419  const char *Symbol;
1420  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1421protected:
1422  friend class SelectionDAG;
1423  ExternalSymbolSDNode(bool isTarget, const char *Sym, MVT::ValueType VT)
1424    : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
1425             getSDVTList(VT)), Symbol(Sym) {
1426  }
1427public:
1428
1429  const char *getSymbol() const { return Symbol; }
1430
1431  static bool classof(const ExternalSymbolSDNode *) { return true; }
1432  static bool classof(const SDNode *N) {
1433    return N->getOpcode() == ISD::ExternalSymbol ||
1434           N->getOpcode() == ISD::TargetExternalSymbol;
1435  }
1436};
1437
1438class CondCodeSDNode : public SDNode {
1439  ISD::CondCode Condition;
1440  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1441protected:
1442  friend class SelectionDAG;
1443  explicit CondCodeSDNode(ISD::CondCode Cond)
1444    : SDNode(ISD::CONDCODE, getSDVTList(MVT::Other)), Condition(Cond) {
1445  }
1446public:
1447
1448  ISD::CondCode get() const { return Condition; }
1449
1450  static bool classof(const CondCodeSDNode *) { return true; }
1451  static bool classof(const SDNode *N) {
1452    return N->getOpcode() == ISD::CONDCODE;
1453  }
1454};
1455
1456/// VTSDNode - This class is used to represent MVT::ValueType's, which are used
1457/// to parameterize some operations.
1458class VTSDNode : public SDNode {
1459  MVT::ValueType ValueType;
1460  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1461protected:
1462  friend class SelectionDAG;
1463  explicit VTSDNode(MVT::ValueType VT)
1464    : SDNode(ISD::VALUETYPE, getSDVTList(MVT::Other)), ValueType(VT) {
1465  }
1466public:
1467
1468  MVT::ValueType getVT() const { return ValueType; }
1469
1470  static bool classof(const VTSDNode *) { return true; }
1471  static bool classof(const SDNode *N) {
1472    return N->getOpcode() == ISD::VALUETYPE;
1473  }
1474};
1475
1476/// LSBaseSDNode - Base class for LoadSDNode and StoreSDNode
1477///
1478class LSBaseSDNode : public SDNode {
1479private:
1480  // AddrMode - unindexed, pre-indexed, post-indexed.
1481  ISD::MemIndexedMode AddrMode;
1482
1483  // MemoryVT - VT of in-memory value.
1484  MVT::ValueType MemoryVT;
1485
1486  //! SrcValue - Memory location for alias analysis.
1487  const Value *SrcValue;
1488
1489  //! SVOffset - Memory location offset.
1490  int SVOffset;
1491
1492  //! Alignment - Alignment of memory location in bytes.
1493  unsigned Alignment;
1494
1495  //! IsVolatile - True if the store is volatile.
1496  bool IsVolatile;
1497protected:
1498  //! Operand array for load and store
1499  /*!
1500    \note Moving this array to the base class captures more
1501    common functionality shared between LoadSDNode and
1502    StoreSDNode
1503   */
1504  SDOperand Ops[4];
1505public:
1506  LSBaseSDNode(ISD::NodeType NodeTy, SDOperand *Operands, unsigned NumOperands,
1507               SDVTList VTs, ISD::MemIndexedMode AM, MVT::ValueType VT,
1508               const Value *SV, int SVO, unsigned Align, bool Vol)
1509    : SDNode(NodeTy, VTs),
1510      AddrMode(AM), MemoryVT(VT),
1511      SrcValue(SV), SVOffset(SVO), Alignment(Align), IsVolatile(Vol)
1512  {
1513    for (unsigned i = 0; i != NumOperands; ++i)
1514      Ops[i] = Operands[i];
1515    InitOperands(Ops, NumOperands);
1516    assert(Align != 0 && "Loads and stores should have non-zero aligment");
1517    assert((getOffset().getOpcode() == ISD::UNDEF || isIndexed()) &&
1518           "Only indexed loads and stores have a non-undef offset operand");
1519  }
1520
1521  const SDOperand getChain() const {
1522    return getOperand(0);
1523  }
1524  const SDOperand getBasePtr() const {
1525    return getOperand(getOpcode() == ISD::LOAD ? 1 : 2);
1526  }
1527  const SDOperand getOffset() const {
1528    return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
1529  }
1530  const SDOperand getValue() const {
1531    assert(getOpcode() == ISD::STORE);
1532    return getOperand(1);
1533  }
1534
1535  const Value *getSrcValue() const { return SrcValue; }
1536  int getSrcValueOffset() const { return SVOffset; }
1537  unsigned getAlignment() const { return Alignment; }
1538  MVT::ValueType getMemoryVT() const { return MemoryVT; }
1539  bool isVolatile() const { return IsVolatile; }
1540
1541  ISD::MemIndexedMode getAddressingMode() const { return AddrMode; }
1542
1543  /// isIndexed - Return true if this is a pre/post inc/dec load/store.
1544  bool isIndexed() const { return AddrMode != ISD::UNINDEXED; }
1545
1546  /// isUnindexed - Return true if this is NOT a pre/post inc/dec load/store.
1547  bool isUnindexed() const { return AddrMode == ISD::UNINDEXED; }
1548
1549  static bool classof(const LSBaseSDNode *N) { return true; }
1550  static bool classof(const SDNode *N) {
1551    return N->getOpcode() == ISD::LOAD ||
1552           N->getOpcode() == ISD::STORE;
1553  }
1554};
1555
1556/// LoadSDNode - This class is used to represent ISD::LOAD nodes.
1557///
1558class LoadSDNode : public LSBaseSDNode {
1559  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1560
1561  // ExtType - non-ext, anyext, sext, zext.
1562  ISD::LoadExtType ExtType;
1563
1564protected:
1565  friend class SelectionDAG;
1566  LoadSDNode(SDOperand *ChainPtrOff, SDVTList VTs,
1567             ISD::MemIndexedMode AM, ISD::LoadExtType ETy, MVT::ValueType LVT,
1568             const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
1569    : LSBaseSDNode(ISD::LOAD, ChainPtrOff, 3,
1570                   VTs, AM, LVT, SV, O, Align, Vol),
1571      ExtType(ETy) { }
1572public:
1573
1574  ISD::LoadExtType getExtensionType() const { return ExtType; }
1575
1576  static bool classof(const LoadSDNode *) { return true; }
1577  static bool classof(const SDNode *N) {
1578    return N->getOpcode() == ISD::LOAD;
1579  }
1580};
1581
1582/// StoreSDNode - This class is used to represent ISD::STORE nodes.
1583///
1584class StoreSDNode : public LSBaseSDNode {
1585  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1586
1587  // IsTruncStore - True if the op does a truncation before store.
1588  bool IsTruncStore;
1589protected:
1590  friend class SelectionDAG;
1591  StoreSDNode(SDOperand *ChainValuePtrOff, SDVTList VTs,
1592              ISD::MemIndexedMode AM, bool isTrunc, MVT::ValueType SVT,
1593              const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
1594    : LSBaseSDNode(ISD::STORE, ChainValuePtrOff, 4,
1595                   VTs, AM, SVT, SV, O, Align, Vol),
1596      IsTruncStore(isTrunc) { }
1597public:
1598
1599  bool isTruncatingStore() const { return IsTruncStore; }
1600
1601  static bool classof(const StoreSDNode *) { return true; }
1602  static bool classof(const SDNode *N) {
1603    return N->getOpcode() == ISD::STORE;
1604  }
1605};
1606
1607
1608class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
1609  SDNode *Node;
1610  unsigned Operand;
1611
1612  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
1613public:
1614  bool operator==(const SDNodeIterator& x) const {
1615    return Operand == x.Operand;
1616  }
1617  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
1618
1619  const SDNodeIterator &operator=(const SDNodeIterator &I) {
1620    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
1621    Operand = I.Operand;
1622    return *this;
1623  }
1624
1625  pointer operator*() const {
1626    return Node->getOperand(Operand).Val;
1627  }
1628  pointer operator->() const { return operator*(); }
1629
1630  SDNodeIterator& operator++() {                // Preincrement
1631    ++Operand;
1632    return *this;
1633  }
1634  SDNodeIterator operator++(int) { // Postincrement
1635    SDNodeIterator tmp = *this; ++*this; return tmp;
1636  }
1637
1638  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
1639  static SDNodeIterator end  (SDNode *N) {
1640    return SDNodeIterator(N, N->getNumOperands());
1641  }
1642
1643  unsigned getOperand() const { return Operand; }
1644  const SDNode *getNode() const { return Node; }
1645};
1646
1647template <> struct GraphTraits<SDNode*> {
1648  typedef SDNode NodeType;
1649  typedef SDNodeIterator ChildIteratorType;
1650  static inline NodeType *getEntryNode(SDNode *N) { return N; }
1651  static inline ChildIteratorType child_begin(NodeType *N) {
1652    return SDNodeIterator::begin(N);
1653  }
1654  static inline ChildIteratorType child_end(NodeType *N) {
1655    return SDNodeIterator::end(N);
1656  }
1657};
1658
1659template<>
1660struct ilist_traits<SDNode> {
1661  static SDNode *getPrev(const SDNode *N) { return N->Prev; }
1662  static SDNode *getNext(const SDNode *N) { return N->Next; }
1663
1664  static void setPrev(SDNode *N, SDNode *Prev) { N->Prev = Prev; }
1665  static void setNext(SDNode *N, SDNode *Next) { N->Next = Next; }
1666
1667  static SDNode *createSentinel() {
1668    return new SDNode(ISD::EntryToken, SDNode::getSDVTList(MVT::Other));
1669  }
1670  static void destroySentinel(SDNode *N) { delete N; }
1671  //static SDNode *createNode(const SDNode &V) { return new SDNode(V); }
1672
1673
1674  void addNodeToList(SDNode *NTy) {}
1675  void removeNodeFromList(SDNode *NTy) {}
1676  void transferNodesFromList(iplist<SDNode, ilist_traits> &L2,
1677                             const ilist_iterator<SDNode> &X,
1678                             const ilist_iterator<SDNode> &Y) {}
1679};
1680
1681namespace ISD {
1682  /// isNormalLoad - Returns true if the specified node is a non-extending
1683  /// and unindexed load.
1684  inline bool isNormalLoad(const SDNode *N) {
1685    if (N->getOpcode() != ISD::LOAD)
1686      return false;
1687    const LoadSDNode *Ld = cast<LoadSDNode>(N);
1688    return Ld->getExtensionType() == ISD::NON_EXTLOAD &&
1689      Ld->getAddressingMode() == ISD::UNINDEXED;
1690  }
1691
1692  /// isNON_EXTLoad - Returns true if the specified node is a non-extending
1693  /// load.
1694  inline bool isNON_EXTLoad(const SDNode *N) {
1695    return N->getOpcode() == ISD::LOAD &&
1696      cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
1697  }
1698
1699  /// isEXTLoad - Returns true if the specified node is a EXTLOAD.
1700  ///
1701  inline bool isEXTLoad(const SDNode *N) {
1702    return N->getOpcode() == ISD::LOAD &&
1703      cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
1704  }
1705
1706  /// isSEXTLoad - Returns true if the specified node is a SEXTLOAD.
1707  ///
1708  inline bool isSEXTLoad(const SDNode *N) {
1709    return N->getOpcode() == ISD::LOAD &&
1710      cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
1711  }
1712
1713  /// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD.
1714  ///
1715  inline bool isZEXTLoad(const SDNode *N) {
1716    return N->getOpcode() == ISD::LOAD &&
1717      cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
1718  }
1719
1720  /// isUNINDEXEDLoad - Returns true if the specified node is a unindexed load.
1721  ///
1722  inline bool isUNINDEXEDLoad(const SDNode *N) {
1723    return N->getOpcode() == ISD::LOAD &&
1724      cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
1725  }
1726
1727  /// isNON_TRUNCStore - Returns true if the specified node is a non-truncating
1728  /// store.
1729  inline bool isNON_TRUNCStore(const SDNode *N) {
1730    return N->getOpcode() == ISD::STORE &&
1731      !cast<StoreSDNode>(N)->isTruncatingStore();
1732  }
1733
1734  /// isTRUNCStore - Returns true if the specified node is a truncating
1735  /// store.
1736  inline bool isTRUNCStore(const SDNode *N) {
1737    return N->getOpcode() == ISD::STORE &&
1738      cast<StoreSDNode>(N)->isTruncatingStore();
1739  }
1740}
1741
1742
1743} // end llvm namespace
1744
1745#endif
1746