SelectionDAGNodes.h revision c1c7bd610a1647d8e7eaeb4cc38ca1a85ae5e271
1//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SDNode class and derived classes, which are used to
11// represent the nodes and operations present in a SelectionDAG.  These nodes
12// and operations are machine code level operations, with some similarities to
13// the GCC RTL representation.
14//
15// Clients should include the SelectionDAG.h file instead of this file directly.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20#define LLVM_CODEGEN_SELECTIONDAGNODES_H
21
22#include "llvm/Value.h"
23#include "llvm/ADT/FoldingSet.h"
24#include "llvm/ADT/GraphTraits.h"
25#include "llvm/ADT/iterator"
26#include "llvm/ADT/APFloat.h"
27#include "llvm/ADT/APInt.h"
28#include "llvm/CodeGen/ValueTypes.h"
29#include "llvm/CodeGen/MemOperand.h"
30#include "llvm/Support/DataTypes.h"
31#include <cassert>
32
33namespace llvm {
34
35class SelectionDAG;
36class GlobalValue;
37class MachineBasicBlock;
38class MachineConstantPoolValue;
39class SDNode;
40template <typename T> struct DenseMapInfo;
41template <typename T> struct simplify_type;
42template <typename T> struct ilist_traits;
43template<typename NodeTy, typename Traits> class iplist;
44template<typename NodeTy> class ilist_iterator;
45
46/// SDVTList - This represents a list of ValueType's that has been intern'd by
47/// a SelectionDAG.  Instances of this simple value class are returned by
48/// SelectionDAG::getVTList(...).
49///
50struct SDVTList {
51  const MVT::ValueType *VTs;
52  unsigned short NumVTs;
53};
54
55/// ISD namespace - This namespace contains an enum which represents all of the
56/// SelectionDAG node types and value types.
57///
58namespace ISD {
59  namespace ParamFlags {
60  enum Flags {
61    NoFlagSet         = 0,
62    ZExt              = 1<<0,  ///< Parameter should be zero extended
63    ZExtOffs          = 0,
64    SExt              = 1<<1,  ///< Parameter should be sign extended
65    SExtOffs          = 1,
66    InReg             = 1<<2,  ///< Parameter should be passed in register
67    InRegOffs         = 2,
68    StructReturn      = 1<<3,  ///< Hidden struct-return pointer
69    StructReturnOffs  = 3,
70    ByVal             = 1<<4,  ///< Struct passed by value
71    ByValOffs         = 4,
72    Nest              = 1<<5,  ///< Parameter is nested function static chain
73    NestOffs          = 5,
74    ByValAlign        = 0xF << 6, //< The alignment of the struct
75    ByValAlignOffs    = 6,
76    ByValSize         = 0x1ffff << 10, //< The size of the struct
77    ByValSizeOffs     = 10,
78    OrigAlignment     = 0x1F<<27,
79    OrigAlignmentOffs = 27
80  };
81  }
82
83  //===--------------------------------------------------------------------===//
84  /// ISD::NodeType enum - This enum defines all of the operators valid in a
85  /// SelectionDAG.
86  ///
87  enum NodeType {
88    // DELETED_NODE - This is an illegal flag value that is used to catch
89    // errors.  This opcode is not a legal opcode for any node.
90    DELETED_NODE,
91
92    // EntryToken - This is the marker used to indicate the start of the region.
93    EntryToken,
94
95    // Token factor - This node takes multiple tokens as input and produces a
96    // single token result.  This is used to represent the fact that the operand
97    // operators are independent of each other.
98    TokenFactor,
99
100    // AssertSext, AssertZext - These nodes record if a register contains a
101    // value that has already been zero or sign extended from a narrower type.
102    // These nodes take two operands.  The first is the node that has already
103    // been extended, and the second is a value type node indicating the width
104    // of the extension
105    AssertSext, AssertZext,
106
107    // Various leaf nodes.
108    STRING, BasicBlock, VALUETYPE, CONDCODE, Register,
109    Constant, ConstantFP,
110    GlobalAddress, GlobalTLSAddress, FrameIndex,
111    JumpTable, ConstantPool, ExternalSymbol,
112
113    // The address of the GOT
114    GLOBAL_OFFSET_TABLE,
115
116    // FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
117    // llvm.returnaddress on the DAG.  These nodes take one operand, the index
118    // of the frame or return address to return.  An index of zero corresponds
119    // to the current function's frame or return address, an index of one to the
120    // parent's frame or return address, and so on.
121    FRAMEADDR, RETURNADDR,
122
123    // FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
124    // first (possible) on-stack argument. This is needed for correct stack
125    // adjustment during unwind.
126    FRAME_TO_ARGS_OFFSET,
127
128    // RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the
129    // address of the exception block on entry to an landing pad block.
130    EXCEPTIONADDR,
131
132    // RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents
133    // the selection index of the exception thrown.
134    EHSELECTION,
135
136    // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
137    // 'eh_return' gcc dwarf builtin, which is used to return from
138    // exception. The general meaning is: adjust stack by OFFSET and pass
139    // execution to HANDLER. Many platform-related details also :)
140    EH_RETURN,
141
142    // TargetConstant* - Like Constant*, but the DAG does not do any folding or
143    // simplification of the constant.
144    TargetConstant,
145    TargetConstantFP,
146
147    // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
148    // anything else with this node, and this is valid in the target-specific
149    // dag, turning into a GlobalAddress operand.
150    TargetGlobalAddress,
151    TargetGlobalTLSAddress,
152    TargetFrameIndex,
153    TargetJumpTable,
154    TargetConstantPool,
155    TargetExternalSymbol,
156
157    /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
158    /// This node represents a target intrinsic function with no side effects.
159    /// The first operand is the ID number of the intrinsic from the
160    /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
161    /// node has returns the result of the intrinsic.
162    INTRINSIC_WO_CHAIN,
163
164    /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
165    /// This node represents a target intrinsic function with side effects that
166    /// returns a result.  The first operand is a chain pointer.  The second is
167    /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
168    /// operands to the intrinsic follow.  The node has two results, the result
169    /// of the intrinsic and an output chain.
170    INTRINSIC_W_CHAIN,
171
172    /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
173    /// This node represents a target intrinsic function with side effects that
174    /// does not return a result.  The first operand is a chain pointer.  The
175    /// second is the ID number of the intrinsic from the llvm::Intrinsic
176    /// namespace.  The operands to the intrinsic follow.
177    INTRINSIC_VOID,
178
179    // CopyToReg - This node has three operands: a chain, a register number to
180    // set to this value, and a value.
181    CopyToReg,
182
183    // CopyFromReg - This node indicates that the input value is a virtual or
184    // physical register that is defined outside of the scope of this
185    // SelectionDAG.  The register is available from the RegisterSDNode object.
186    CopyFromReg,
187
188    // UNDEF - An undefined node
189    UNDEF,
190
191    /// FORMAL_ARGUMENTS(CHAIN, CC#, ISVARARG, FLAG0, ..., FLAGn) - This node
192    /// represents the formal arguments for a function.  CC# is a Constant value
193    /// indicating the calling convention of the function, and ISVARARG is a
194    /// flag that indicates whether the function is varargs or not. This node
195    /// has one result value for each incoming argument, plus one for the output
196    /// chain. It must be custom legalized. See description of CALL node for
197    /// FLAG argument contents explanation.
198    ///
199    FORMAL_ARGUMENTS,
200
201    /// RV1, RV2...RVn, CHAIN = CALL(CHAIN, CC#, ISVARARG, ISTAILCALL, CALLEE,
202    ///                              ARG0, FLAG0, ARG1, FLAG1, ... ARGn, FLAGn)
203    /// This node represents a fully general function call, before the legalizer
204    /// runs.  This has one result value for each argument / flag pair, plus
205    /// a chain result. It must be custom legalized. Flag argument indicates
206    /// misc. argument attributes. Currently:
207    /// Bit 0 - signness
208    /// Bit 1 - 'inreg' attribute
209    /// Bit 2 - 'sret' attribute
210    /// Bit 4 - 'byval' attribute
211    /// Bit 5 - 'nest' attribute
212    /// Bit 6-9 - alignment of byval structures
213    /// Bit 10-26 - size of byval structures
214    /// Bits 31:27 - argument ABI alignment in the first argument piece and
215    /// alignment '1' in other argument pieces.
216    CALL,
217
218    // EXTRACT_ELEMENT - This is used to get the first or second (determined by
219    // a Constant, which is required to be operand #1), element of the aggregate
220    // value specified as operand #0.  This is only for use before legalization,
221    // for values that will be broken into multiple registers.
222    EXTRACT_ELEMENT,
223
224    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
225    // two values of the same integer value type, this produces a value twice as
226    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
227    BUILD_PAIR,
228
229    // MERGE_VALUES - This node takes multiple discrete operands and returns
230    // them all as its individual results.  This nodes has exactly the same
231    // number of inputs and outputs, and is only valid before legalization.
232    // This node is useful for some pieces of the code generator that want to
233    // think about a single node with multiple results, not multiple nodes.
234    MERGE_VALUES,
235
236    // Simple integer binary arithmetic operators.
237    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
238
239    // SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
240    // a signed/unsigned value of type i[2*N], and return the full value as
241    // two results, each of type iN.
242    SMUL_LOHI, UMUL_LOHI,
243
244    // SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
245    // remainder result.
246    SDIVREM, UDIVREM,
247
248    // CARRY_FALSE - This node is used when folding other nodes,
249    // like ADDC/SUBC, which indicate the carry result is always false.
250    CARRY_FALSE,
251
252    // Carry-setting nodes for multiple precision addition and subtraction.
253    // These nodes take two operands of the same value type, and produce two
254    // results.  The first result is the normal add or sub result, the second
255    // result is the carry flag result.
256    ADDC, SUBC,
257
258    // Carry-using nodes for multiple precision addition and subtraction.  These
259    // nodes take three operands: The first two are the normal lhs and rhs to
260    // the add or sub, and the third is the input carry flag.  These nodes
261    // produce two results; the normal result of the add or sub, and the output
262    // carry flag.  These nodes both read and write a carry flag to allow them
263    // to them to be chained together for add and sub of arbitrarily large
264    // values.
265    ADDE, SUBE,
266
267    // Simple binary floating point operators.
268    FADD, FSUB, FMUL, FDIV, FREM,
269
270    // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
271    // DAG node does not require that X and Y have the same type, just that they
272    // are both floating point.  X and the result must have the same type.
273    // FCOPYSIGN(f32, f64) is allowed.
274    FCOPYSIGN,
275
276    // INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
277    // value as an integer 0/1 value.
278    FGETSIGN,
279
280    /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector
281    /// with the specified, possibly variable, elements.  The number of elements
282    /// is required to be a power of two.
283    BUILD_VECTOR,
284
285    /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
286    /// at IDX replaced with VAL.
287    INSERT_VECTOR_ELT,
288
289    /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
290    /// identified by the (potentially variable) element number IDX.
291    EXTRACT_VECTOR_ELT,
292
293    /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
294    /// vector type with the same length and element type, this produces a
295    /// concatenated vector result value, with length equal to the sum of the
296    /// lengths of the input vectors.
297    CONCAT_VECTORS,
298
299    /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
300    /// vector value) starting with the (potentially variable) element number
301    /// IDX, which must be a multiple of the result vector length.
302    EXTRACT_SUBVECTOR,
303
304    /// VECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC) - Returns a vector, of the same
305    /// type as VEC1/VEC2.  SHUFFLEVEC is a BUILD_VECTOR of constant int values
306    /// (regardless of whether its datatype is legal or not) that indicate
307    /// which value each result element will get.  The elements of VEC1/VEC2 are
308    /// enumerated in order.  This is quite similar to the Altivec 'vperm'
309    /// instruction, except that the indices must be constants and are in terms
310    /// of the element size of VEC1/VEC2, not in terms of bytes.
311    VECTOR_SHUFFLE,
312
313    /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
314    /// scalar value into element 0 of the resultant vector type.  The top
315    /// elements 1 to N-1 of the N-element vector are undefined.
316    SCALAR_TO_VECTOR,
317
318    // EXTRACT_SUBREG - This node is used to extract a sub-register value.
319    // This node takes a superreg and a constant sub-register index as operands.
320    EXTRACT_SUBREG,
321
322    // INSERT_SUBREG - This node is used to insert a sub-register value.
323    // This node takes a superreg, a subreg value, and a constant sub-register
324    // index as operands.
325    INSERT_SUBREG,
326
327    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
328    // an unsigned/signed value of type i[2*N], then return the top part.
329    MULHU, MULHS,
330
331    // Bitwise operators - logical and, logical or, logical xor, shift left,
332    // shift right algebraic (shift in sign bits), shift right logical (shift in
333    // zeroes), rotate left, rotate right, and byteswap.
334    AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
335
336    // Counting operators
337    CTTZ, CTLZ, CTPOP,
338
339    // Select(COND, TRUEVAL, FALSEVAL)
340    SELECT,
341
342    // Select with condition operator - This selects between a true value and
343    // a false value (ops #2 and #3) based on the boolean result of comparing
344    // the lhs and rhs (ops #0 and #1) of a conditional expression with the
345    // condition code in op #4, a CondCodeSDNode.
346    SELECT_CC,
347
348    // SetCC operator - This evaluates to a boolean (i1) true value if the
349    // condition is true.  The operands to this are the left and right operands
350    // to compare (ops #0, and #1) and the condition code to compare them with
351    // (op #2) as a CondCodeSDNode.
352    SETCC,
353
354    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
355    // integer shift operations, just like ADD/SUB_PARTS.  The operation
356    // ordering is:
357    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
358    SHL_PARTS, SRA_PARTS, SRL_PARTS,
359
360    // Conversion operators.  These are all single input single output
361    // operations.  For all of these, the result type must be strictly
362    // wider or narrower (depending on the operation) than the source
363    // type.
364
365    // SIGN_EXTEND - Used for integer types, replicating the sign bit
366    // into new bits.
367    SIGN_EXTEND,
368
369    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
370    ZERO_EXTEND,
371
372    // ANY_EXTEND - Used for integer types.  The high bits are undefined.
373    ANY_EXTEND,
374
375    // TRUNCATE - Completely drop the high bits.
376    TRUNCATE,
377
378    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
379    // depends on the first letter) to floating point.
380    SINT_TO_FP,
381    UINT_TO_FP,
382
383    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
384    // sign extend a small value in a large integer register (e.g. sign
385    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
386    // with the 7th bit).  The size of the smaller type is indicated by the 1th
387    // operand, a ValueType node.
388    SIGN_EXTEND_INREG,
389
390    /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
391    /// integer.
392    FP_TO_SINT,
393    FP_TO_UINT,
394
395    /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
396    /// down to the precision of the destination VT.  TRUNC is a flag, which is
397    /// always an integer that is zero or one.  If TRUNC is 0, this is a
398    /// normal rounding, if it is 1, this FP_ROUND is known to not change the
399    /// value of Y.
400    ///
401    /// The TRUNC = 1 case is used in cases where we know that the value will
402    /// not be modified by the node, because Y is not using any of the extra
403    /// precision of source type.  This allows certain transformations like
404    /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
405    /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
406    FP_ROUND,
407
408    // FLT_ROUNDS_ - Returns current rounding mode:
409    // -1 Undefined
410    //  0 Round to 0
411    //  1 Round to nearest
412    //  2 Round to +inf
413    //  3 Round to -inf
414    FLT_ROUNDS_,
415
416    /// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and
417    /// rounds it to a floating point value.  It then promotes it and returns it
418    /// in a register of the same size.  This operation effectively just
419    /// discards excess precision.  The type to round down to is specified by
420    /// the VT operand, a VTSDNode.
421    FP_ROUND_INREG,
422
423    /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
424    FP_EXTEND,
425
426    // BIT_CONVERT - Theis operator converts between integer and FP values, as
427    // if one was stored to memory as integer and the other was loaded from the
428    // same address (or equivalently for vector format conversions, etc).  The
429    // source and result are required to have the same bit size (e.g.
430    // f32 <-> i32).  This can also be used for int-to-int or fp-to-fp
431    // conversions, but that is a noop, deleted by getNode().
432    BIT_CONVERT,
433
434    // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW - Perform unary floating point
435    // negation, absolute value, square root, sine and cosine, powi, and pow
436    // operations.
437    FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
438
439    // LOAD and STORE have token chains as their first operand, then the same
440    // operands as an LLVM load/store instruction, then an offset node that
441    // is added / subtracted from the base pointer to form the address (for
442    // indexed memory ops).
443    LOAD, STORE,
444
445    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
446    // to a specified boundary.  This node always has two return values: a new
447    // stack pointer value and a chain. The first operand is the token chain,
448    // the second is the number of bytes to allocate, and the third is the
449    // alignment boundary.  The size is guaranteed to be a multiple of the stack
450    // alignment, and the alignment is guaranteed to be bigger than the stack
451    // alignment (if required) or 0 to get standard stack alignment.
452    DYNAMIC_STACKALLOC,
453
454    // Control flow instructions.  These all have token chains.
455
456    // BR - Unconditional branch.  The first operand is the chain
457    // operand, the second is the MBB to branch to.
458    BR,
459
460    // BRIND - Indirect branch.  The first operand is the chain, the second
461    // is the value to branch to, which must be of the same type as the target's
462    // pointer type.
463    BRIND,
464
465    // BR_JT - Jumptable branch. The first operand is the chain, the second
466    // is the jumptable index, the last one is the jumptable entry index.
467    BR_JT,
468
469    // BRCOND - Conditional branch.  The first operand is the chain,
470    // the second is the condition, the third is the block to branch
471    // to if the condition is true.
472    BRCOND,
473
474    // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
475    // that the condition is represented as condition code, and two nodes to
476    // compare, rather than as a combined SetCC node.  The operands in order are
477    // chain, cc, lhs, rhs, block to branch to if condition is true.
478    BR_CC,
479
480    // RET - Return from function.  The first operand is the chain,
481    // and any subsequent operands are pairs of return value and return value
482    // signness for the function.  This operation can have variable number of
483    // operands.
484    RET,
485
486    // INLINEASM - Represents an inline asm block.  This node always has two
487    // return values: a chain and a flag result.  The inputs are as follows:
488    //   Operand #0   : Input chain.
489    //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
490    //   Operand #2n+2: A RegisterNode.
491    //   Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
492    //   Operand #last: Optional, an incoming flag.
493    INLINEASM,
494
495    // LABEL - Represents a label in mid basic block used to track
496    // locations needed for debug and exception handling tables.  This node
497    // returns a chain.
498    //   Operand #0 : input chain.
499    //   Operand #1 : module unique number use to identify the label.
500    //   Operand #2 : 0 indicates a debug label (e.g. stoppoint), 1 indicates
501    //                a EH label, 2 indicates unknown label type.
502    LABEL,
503
504    // DECLARE - Represents a llvm.dbg.declare intrinsic. It's used to track
505    // local variable declarations for debugging information. First operand is
506    // a chain, while the next two operands are first two arguments (address
507    // and variable) of a llvm.dbg.declare instruction.
508    DECLARE,
509
510    // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
511    // value, the same type as the pointer type for the system, and an output
512    // chain.
513    STACKSAVE,
514
515    // STACKRESTORE has two operands, an input chain and a pointer to restore to
516    // it returns an output chain.
517    STACKRESTORE,
518
519    // MEMSET/MEMCPY/MEMMOVE - The first operand is the chain. The following
520    // correspond to the operands of the LLVM intrinsic functions and the last
521    // one is AlwaysInline.  The only result is a token chain.  The alignment
522    // argument is guaranteed to be a Constant node.
523    MEMSET,
524    MEMMOVE,
525    MEMCPY,
526
527    // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
528    // a call sequence, and carry arbitrary information that target might want
529    // to know.  The first operand is a chain, the rest are specified by the
530    // target and not touched by the DAG optimizers.
531    CALLSEQ_START,  // Beginning of a call sequence
532    CALLSEQ_END,    // End of a call sequence
533
534    // VAARG - VAARG has three operands: an input chain, a pointer, and a
535    // SRCVALUE.  It returns a pair of values: the vaarg value and a new chain.
536    VAARG,
537
538    // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
539    // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
540    // source.
541    VACOPY,
542
543    // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
544    // pointer, and a SRCVALUE.
545    VAEND, VASTART,
546
547    // SRCVALUE - This is a node type that holds a Value* that is used to
548    // make reference to a value in the LLVM IR.
549    SRCVALUE,
550
551    // MEMOPERAND - This is a node that contains a MemOperand which records
552    // information about a memory reference. This is used to make AliasAnalysis
553    // queries from the backend.
554    MEMOPERAND,
555
556    // PCMARKER - This corresponds to the pcmarker intrinsic.
557    PCMARKER,
558
559    // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
560    // The only operand is a chain and a value and a chain are produced.  The
561    // value is the contents of the architecture specific cycle counter like
562    // register (or other high accuracy low latency clock source)
563    READCYCLECOUNTER,
564
565    // HANDLENODE node - Used as a handle for various purposes.
566    HANDLENODE,
567
568    // LOCATION - This node is used to represent a source location for debug
569    // info.  It takes token chain as input, then a line number, then a column
570    // number, then a filename, then a working dir.  It produces a token chain
571    // as output.
572    LOCATION,
573
574    // DEBUG_LOC - This node is used to represent source line information
575    // embedded in the code.  It takes a token chain as input, then a line
576    // number, then a column then a file id (provided by MachineModuleInfo.) It
577    // produces a token chain as output.
578    DEBUG_LOC,
579
580    // TRAMPOLINE - This corresponds to the init_trampoline intrinsic.
581    // It takes as input a token chain, the pointer to the trampoline,
582    // the pointer to the nested function, the pointer to pass for the
583    // 'nest' parameter, a SRCVALUE for the trampoline and another for
584    // the nested function (allowing targets to access the original
585    // Function*).  It produces the result of the intrinsic and a token
586    // chain as output.
587    TRAMPOLINE,
588
589    // TRAP - Trapping instruction
590    TRAP,
591
592    // OUTCHAIN = MEMBARRIER(INCHAIN, load-load, load-store, store-load,
593    //                       store-store, device)
594    // This corresponds to the memory.barrier intrinsic.
595    // it takes an input chain, 4 operands to specify the type of barrier, an
596    // operand specifying if the barrier applies to device and uncached memory
597    // and produces an output chain.
598    MEMBARRIER,
599
600    // Val, OUTCHAIN = ATOMIC_LCS(INCHAIN, ptr, cmp, swap)
601    // this corresponds to the atomic.lcs intrinsic.
602    // cmp is compared to *ptr, and if equal, swap is stored in *ptr.
603    // the return is always the original value in *ptr
604    ATOMIC_LCS,
605
606    // Val, OUTCHAIN = ATOMIC_LAS(INCHAIN, ptr, amt)
607    // this corresponds to the atomic.las intrinsic.
608    // *ptr + amt is stored to *ptr atomically.
609    // the return is always the original value in *ptr
610    ATOMIC_LAS,
611
612    // Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
613    // this corresponds to the atomic.swap intrinsic.
614    // amt is stored to *ptr atomically.
615    // the return is always the original value in *ptr
616    ATOMIC_SWAP,
617
618    // BUILTIN_OP_END - This must be the last enum value in this list.
619    BUILTIN_OP_END
620  };
621
622  /// Node predicates
623
624  /// isBuildVectorAllOnes - Return true if the specified node is a
625  /// BUILD_VECTOR where all of the elements are ~0 or undef.
626  bool isBuildVectorAllOnes(const SDNode *N);
627
628  /// isBuildVectorAllZeros - Return true if the specified node is a
629  /// BUILD_VECTOR where all of the elements are 0 or undef.
630  bool isBuildVectorAllZeros(const SDNode *N);
631
632  /// isScalarToVector - Return true if the specified node is a
633  /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
634  /// element is not an undef.
635  bool isScalarToVector(const SDNode *N);
636
637  /// isDebugLabel - Return true if the specified node represents a debug
638  /// label (i.e. ISD::LABEL or TargetInstrInfo::LABEL node and third operand
639  /// is 0).
640  bool isDebugLabel(const SDNode *N);
641
642  //===--------------------------------------------------------------------===//
643  /// MemIndexedMode enum - This enum defines the load / store indexed
644  /// addressing modes.
645  ///
646  /// UNINDEXED    "Normal" load / store. The effective address is already
647  ///              computed and is available in the base pointer. The offset
648  ///              operand is always undefined. In addition to producing a
649  ///              chain, an unindexed load produces one value (result of the
650  ///              load); an unindexed store does not produces a value.
651  ///
652  /// PRE_INC      Similar to the unindexed mode where the effective address is
653  /// PRE_DEC      the value of the base pointer add / subtract the offset.
654  ///              It considers the computation as being folded into the load /
655  ///              store operation (i.e. the load / store does the address
656  ///              computation as well as performing the memory transaction).
657  ///              The base operand is always undefined. In addition to
658  ///              producing a chain, pre-indexed load produces two values
659  ///              (result of the load and the result of the address
660  ///              computation); a pre-indexed store produces one value (result
661  ///              of the address computation).
662  ///
663  /// POST_INC     The effective address is the value of the base pointer. The
664  /// POST_DEC     value of the offset operand is then added to / subtracted
665  ///              from the base after memory transaction. In addition to
666  ///              producing a chain, post-indexed load produces two values
667  ///              (the result of the load and the result of the base +/- offset
668  ///              computation); a post-indexed store produces one value (the
669  ///              the result of the base +/- offset computation).
670  ///
671  enum MemIndexedMode {
672    UNINDEXED = 0,
673    PRE_INC,
674    PRE_DEC,
675    POST_INC,
676    POST_DEC,
677    LAST_INDEXED_MODE
678  };
679
680  //===--------------------------------------------------------------------===//
681  /// LoadExtType enum - This enum defines the three variants of LOADEXT
682  /// (load with extension).
683  ///
684  /// SEXTLOAD loads the integer operand and sign extends it to a larger
685  ///          integer result type.
686  /// ZEXTLOAD loads the integer operand and zero extends it to a larger
687  ///          integer result type.
688  /// EXTLOAD  is used for three things: floating point extending loads,
689  ///          integer extending loads [the top bits are undefined], and vector
690  ///          extending loads [load into low elt].
691  ///
692  enum LoadExtType {
693    NON_EXTLOAD = 0,
694    EXTLOAD,
695    SEXTLOAD,
696    ZEXTLOAD,
697    LAST_LOADX_TYPE
698  };
699
700  //===--------------------------------------------------------------------===//
701  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
702  /// below work out, when considering SETFALSE (something that never exists
703  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
704  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
705  /// to.  If the "N" column is 1, the result of the comparison is undefined if
706  /// the input is a NAN.
707  ///
708  /// All of these (except for the 'always folded ops') should be handled for
709  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
710  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
711  ///
712  /// Note that these are laid out in a specific order to allow bit-twiddling
713  /// to transform conditions.
714  enum CondCode {
715    // Opcode          N U L G E       Intuitive operation
716    SETFALSE,      //    0 0 0 0       Always false (always folded)
717    SETOEQ,        //    0 0 0 1       True if ordered and equal
718    SETOGT,        //    0 0 1 0       True if ordered and greater than
719    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
720    SETOLT,        //    0 1 0 0       True if ordered and less than
721    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
722    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
723    SETO,          //    0 1 1 1       True if ordered (no nans)
724    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
725    SETUEQ,        //    1 0 0 1       True if unordered or equal
726    SETUGT,        //    1 0 1 0       True if unordered or greater than
727    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
728    SETULT,        //    1 1 0 0       True if unordered or less than
729    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
730    SETUNE,        //    1 1 1 0       True if unordered or not equal
731    SETTRUE,       //    1 1 1 1       Always true (always folded)
732    // Don't care operations: undefined if the input is a nan.
733    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
734    SETEQ,         //  1 X 0 0 1       True if equal
735    SETGT,         //  1 X 0 1 0       True if greater than
736    SETGE,         //  1 X 0 1 1       True if greater than or equal
737    SETLT,         //  1 X 1 0 0       True if less than
738    SETLE,         //  1 X 1 0 1       True if less than or equal
739    SETNE,         //  1 X 1 1 0       True if not equal
740    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
741
742    SETCC_INVALID       // Marker value.
743  };
744
745  /// isSignedIntSetCC - Return true if this is a setcc instruction that
746  /// performs a signed comparison when used with integer operands.
747  inline bool isSignedIntSetCC(CondCode Code) {
748    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
749  }
750
751  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
752  /// performs an unsigned comparison when used with integer operands.
753  inline bool isUnsignedIntSetCC(CondCode Code) {
754    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
755  }
756
757  /// isTrueWhenEqual - Return true if the specified condition returns true if
758  /// the two operands to the condition are equal.  Note that if one of the two
759  /// operands is a NaN, this value is meaningless.
760  inline bool isTrueWhenEqual(CondCode Cond) {
761    return ((int)Cond & 1) != 0;
762  }
763
764  /// getUnorderedFlavor - This function returns 0 if the condition is always
765  /// false if an operand is a NaN, 1 if the condition is always true if the
766  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
767  /// NaN.
768  inline unsigned getUnorderedFlavor(CondCode Cond) {
769    return ((int)Cond >> 3) & 3;
770  }
771
772  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
773  /// 'op' is a valid SetCC operation.
774  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
775
776  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
777  /// when given the operation for (X op Y).
778  CondCode getSetCCSwappedOperands(CondCode Operation);
779
780  /// getSetCCOrOperation - Return the result of a logical OR between different
781  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
782  /// function returns SETCC_INVALID if it is not possible to represent the
783  /// resultant comparison.
784  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
785
786  /// getSetCCAndOperation - Return the result of a logical AND between
787  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
788  /// function returns SETCC_INVALID if it is not possible to represent the
789  /// resultant comparison.
790  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
791}  // end llvm::ISD namespace
792
793
794//===----------------------------------------------------------------------===//
795/// SDOperand - Unlike LLVM values, Selection DAG nodes may return multiple
796/// values as the result of a computation.  Many nodes return multiple values,
797/// from loads (which define a token and a return value) to ADDC (which returns
798/// a result and a carry value), to calls (which may return an arbitrary number
799/// of values).
800///
801/// As such, each use of a SelectionDAG computation must indicate the node that
802/// computes it as well as which return value to use from that node.  This pair
803/// of information is represented with the SDOperand value type.
804///
805class SDOperand {
806public:
807  SDNode *Val;        // The node defining the value we are using.
808  unsigned ResNo;     // Which return value of the node we are using.
809
810  SDOperand() : Val(0), ResNo(0) {}
811  SDOperand(SDNode *val, unsigned resno) : Val(val), ResNo(resno) {}
812
813  bool operator==(const SDOperand &O) const {
814    return Val == O.Val && ResNo == O.ResNo;
815  }
816  bool operator!=(const SDOperand &O) const {
817    return !operator==(O);
818  }
819  bool operator<(const SDOperand &O) const {
820    return Val < O.Val || (Val == O.Val && ResNo < O.ResNo);
821  }
822
823  SDOperand getValue(unsigned R) const {
824    return SDOperand(Val, R);
825  }
826
827  // isOperand - Return true if this node is an operand of N.
828  bool isOperand(SDNode *N) const;
829
830  /// getValueType - Return the ValueType of the referenced return value.
831  ///
832  inline MVT::ValueType getValueType() const;
833
834  // Forwarding methods - These forward to the corresponding methods in SDNode.
835  inline unsigned getOpcode() const;
836  inline unsigned getNumOperands() const;
837  inline const SDOperand &getOperand(unsigned i) const;
838  inline uint64_t getConstantOperandVal(unsigned i) const;
839  inline bool isTargetOpcode() const;
840  inline unsigned getTargetOpcode() const;
841
842
843  /// reachesChainWithoutSideEffects - Return true if this operand (which must
844  /// be a chain) reaches the specified operand without crossing any
845  /// side-effecting instructions.  In practice, this looks through token
846  /// factors and non-volatile loads.  In order to remain efficient, this only
847  /// looks a couple of nodes in, it does not do an exhaustive search.
848  bool reachesChainWithoutSideEffects(SDOperand Dest, unsigned Depth = 2) const;
849
850  /// hasOneUse - Return true if there is exactly one operation using this
851  /// result value of the defining operator.
852  inline bool hasOneUse() const;
853
854  /// use_empty - Return true if there are no operations using this
855  /// result value of the defining operator.
856  inline bool use_empty() const;
857};
858
859
860template<> struct DenseMapInfo<SDOperand> {
861  static inline SDOperand getEmptyKey() { return SDOperand((SDNode*)-1, -1U); }
862  static inline SDOperand getTombstoneKey() { return SDOperand((SDNode*)-1, 0);}
863  static unsigned getHashValue(const SDOperand &Val) {
864    return ((unsigned)((uintptr_t)Val.Val >> 4) ^
865            (unsigned)((uintptr_t)Val.Val >> 9)) + Val.ResNo;
866  }
867  static bool isEqual(const SDOperand &LHS, const SDOperand &RHS) {
868    return LHS == RHS;
869  }
870  static bool isPod() { return true; }
871};
872
873/// simplify_type specializations - Allow casting operators to work directly on
874/// SDOperands as if they were SDNode*'s.
875template<> struct simplify_type<SDOperand> {
876  typedef SDNode* SimpleType;
877  static SimpleType getSimplifiedValue(const SDOperand &Val) {
878    return static_cast<SimpleType>(Val.Val);
879  }
880};
881template<> struct simplify_type<const SDOperand> {
882  typedef SDNode* SimpleType;
883  static SimpleType getSimplifiedValue(const SDOperand &Val) {
884    return static_cast<SimpleType>(Val.Val);
885  }
886};
887
888
889/// SDNode - Represents one node in the SelectionDAG.
890///
891class SDNode : public FoldingSetNode {
892  /// NodeType - The operation that this node performs.
893  ///
894  unsigned short NodeType;
895
896  /// OperandsNeedDelete - This is true if OperandList was new[]'d.  If true,
897  /// then they will be delete[]'d when the node is destroyed.
898  bool OperandsNeedDelete : 1;
899
900  /// NodeId - Unique id per SDNode in the DAG.
901  int NodeId;
902
903  /// OperandList - The values that are used by this operation.
904  ///
905  SDOperand *OperandList;
906
907  /// ValueList - The types of the values this node defines.  SDNode's may
908  /// define multiple values simultaneously.
909  const MVT::ValueType *ValueList;
910
911  /// NumOperands/NumValues - The number of entries in the Operand/Value list.
912  unsigned short NumOperands, NumValues;
913
914  /// Prev/Next pointers - These pointers form the linked list of of the
915  /// AllNodes list in the current DAG.
916  SDNode *Prev, *Next;
917  friend struct ilist_traits<SDNode>;
918
919  /// Uses - These are all of the SDNode's that use a value produced by this
920  /// node.
921  SmallVector<SDNode*,3> Uses;
922
923  // Out-of-line virtual method to give class a home.
924  virtual void ANCHOR();
925public:
926  virtual ~SDNode() {
927    assert(NumOperands == 0 && "Operand list not cleared before deletion");
928    NodeType = ISD::DELETED_NODE;
929  }
930
931  //===--------------------------------------------------------------------===//
932  //  Accessors
933  //
934  unsigned getOpcode()  const { return NodeType; }
935  bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
936  unsigned getTargetOpcode() const {
937    assert(isTargetOpcode() && "Not a target opcode!");
938    return NodeType - ISD::BUILTIN_OP_END;
939  }
940
941  size_t use_size() const { return Uses.size(); }
942  bool use_empty() const { return Uses.empty(); }
943  bool hasOneUse() const { return Uses.size() == 1; }
944
945  /// getNodeId - Return the unique node id.
946  ///
947  int getNodeId() const { return NodeId; }
948
949  /// setNodeId - Set unique node id.
950  void setNodeId(int Id) { NodeId = Id; }
951
952  typedef SmallVector<SDNode*,3>::const_iterator use_iterator;
953  use_iterator use_begin() const { return Uses.begin(); }
954  use_iterator use_end() const { return Uses.end(); }
955
956  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
957  /// indicated value.  This method ignores uses of other values defined by this
958  /// operation.
959  bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
960
961  /// hasAnyUseOfValue - Return true if there are any use of the indicated
962  /// value. This method ignores uses of other values defined by this operation.
963  bool hasAnyUseOfValue(unsigned Value) const;
964
965  /// isOnlyUse - Return true if this node is the only use of N.
966  ///
967  bool isOnlyUse(SDNode *N) const;
968
969  /// isOperand - Return true if this node is an operand of N.
970  ///
971  bool isOperand(SDNode *N) const;
972
973  /// isPredecessor - Return true if this node is a predecessor of N. This node
974  /// is either an operand of N or it can be reached by recursively traversing
975  /// up the operands.
976  /// NOTE: this is an expensive method. Use it carefully.
977  bool isPredecessor(SDNode *N) const;
978
979  /// getNumOperands - Return the number of values used by this operation.
980  ///
981  unsigned getNumOperands() const { return NumOperands; }
982
983  /// getConstantOperandVal - Helper method returns the integer value of a
984  /// ConstantSDNode operand.
985  uint64_t getConstantOperandVal(unsigned Num) const;
986
987  const SDOperand &getOperand(unsigned Num) const {
988    assert(Num < NumOperands && "Invalid child # of SDNode!");
989    return OperandList[Num];
990  }
991
992  typedef const SDOperand* op_iterator;
993  op_iterator op_begin() const { return OperandList; }
994  op_iterator op_end() const { return OperandList+NumOperands; }
995
996
997  SDVTList getVTList() const {
998    SDVTList X = { ValueList, NumValues };
999    return X;
1000  };
1001
1002  /// getNumValues - Return the number of values defined/returned by this
1003  /// operator.
1004  ///
1005  unsigned getNumValues() const { return NumValues; }
1006
1007  /// getValueType - Return the type of a specified result.
1008  ///
1009  MVT::ValueType getValueType(unsigned ResNo) const {
1010    assert(ResNo < NumValues && "Illegal result number!");
1011    return ValueList[ResNo];
1012  }
1013
1014  typedef const MVT::ValueType* value_iterator;
1015  value_iterator value_begin() const { return ValueList; }
1016  value_iterator value_end() const { return ValueList+NumValues; }
1017
1018  /// getOperationName - Return the opcode of this operation for printing.
1019  ///
1020  std::string getOperationName(const SelectionDAG *G = 0) const;
1021  static const char* getIndexedModeName(ISD::MemIndexedMode AM);
1022  void dump() const;
1023  void dump(const SelectionDAG *G) const;
1024
1025  static bool classof(const SDNode *) { return true; }
1026
1027  /// Profile - Gather unique data for the node.
1028  ///
1029  void Profile(FoldingSetNodeID &ID);
1030
1031protected:
1032  friend class SelectionDAG;
1033
1034  /// getValueTypeList - Return a pointer to the specified value type.
1035  ///
1036  static const MVT::ValueType *getValueTypeList(MVT::ValueType VT);
1037  static SDVTList getSDVTList(MVT::ValueType VT) {
1038    SDVTList Ret = { getValueTypeList(VT), 1 };
1039    return Ret;
1040  }
1041
1042  SDNode(unsigned Opc, SDVTList VTs, const SDOperand *Ops, unsigned NumOps)
1043    : NodeType(Opc), NodeId(-1) {
1044    OperandsNeedDelete = true;
1045    NumOperands = NumOps;
1046    OperandList = NumOps ? new SDOperand[NumOperands] : 0;
1047
1048    for (unsigned i = 0; i != NumOps; ++i) {
1049      OperandList[i] = Ops[i];
1050      Ops[i].Val->Uses.push_back(this);
1051    }
1052
1053    ValueList = VTs.VTs;
1054    NumValues = VTs.NumVTs;
1055    Prev = 0; Next = 0;
1056  }
1057  SDNode(unsigned Opc, SDVTList VTs) : NodeType(Opc), NodeId(-1) {
1058    OperandsNeedDelete = false;  // Operands set with InitOperands.
1059    NumOperands = 0;
1060    OperandList = 0;
1061
1062    ValueList = VTs.VTs;
1063    NumValues = VTs.NumVTs;
1064    Prev = 0; Next = 0;
1065  }
1066
1067  /// InitOperands - Initialize the operands list of this node with the
1068  /// specified values, which are part of the node (thus they don't need to be
1069  /// copied in or allocated).
1070  void InitOperands(SDOperand *Ops, unsigned NumOps) {
1071    assert(OperandList == 0 && "Operands already set!");
1072    NumOperands = NumOps;
1073    OperandList = Ops;
1074
1075    for (unsigned i = 0; i != NumOps; ++i)
1076      Ops[i].Val->Uses.push_back(this);
1077  }
1078
1079  /// MorphNodeTo - This frees the operands of the current node, resets the
1080  /// opcode, types, and operands to the specified value.  This should only be
1081  /// used by the SelectionDAG class.
1082  void MorphNodeTo(unsigned Opc, SDVTList L,
1083                   const SDOperand *Ops, unsigned NumOps);
1084
1085  void addUser(SDNode *User) {
1086    Uses.push_back(User);
1087  }
1088  void removeUser(SDNode *User) {
1089    // Remove this user from the operand's use list.
1090    for (unsigned i = Uses.size(); ; --i) {
1091      assert(i != 0 && "Didn't find user!");
1092      if (Uses[i-1] == User) {
1093        Uses[i-1] = Uses.back();
1094        Uses.pop_back();
1095        return;
1096      }
1097    }
1098  }
1099};
1100
1101
1102// Define inline functions from the SDOperand class.
1103
1104inline unsigned SDOperand::getOpcode() const {
1105  return Val->getOpcode();
1106}
1107inline MVT::ValueType SDOperand::getValueType() const {
1108  return Val->getValueType(ResNo);
1109}
1110inline unsigned SDOperand::getNumOperands() const {
1111  return Val->getNumOperands();
1112}
1113inline const SDOperand &SDOperand::getOperand(unsigned i) const {
1114  return Val->getOperand(i);
1115}
1116inline uint64_t SDOperand::getConstantOperandVal(unsigned i) const {
1117  return Val->getConstantOperandVal(i);
1118}
1119inline bool SDOperand::isTargetOpcode() const {
1120  return Val->isTargetOpcode();
1121}
1122inline unsigned SDOperand::getTargetOpcode() const {
1123  return Val->getTargetOpcode();
1124}
1125inline bool SDOperand::hasOneUse() const {
1126  return Val->hasNUsesOfValue(1, ResNo);
1127}
1128inline bool SDOperand::use_empty() const {
1129  return !Val->hasAnyUseOfValue(ResNo);
1130}
1131
1132/// UnarySDNode - This class is used for single-operand SDNodes.  This is solely
1133/// to allow co-allocation of node operands with the node itself.
1134class UnarySDNode : public SDNode {
1135  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1136  SDOperand Op;
1137public:
1138  UnarySDNode(unsigned Opc, SDVTList VTs, SDOperand X)
1139    : SDNode(Opc, VTs), Op(X) {
1140    InitOperands(&Op, 1);
1141  }
1142};
1143
1144/// BinarySDNode - This class is used for two-operand SDNodes.  This is solely
1145/// to allow co-allocation of node operands with the node itself.
1146class BinarySDNode : public SDNode {
1147  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1148  SDOperand Ops[2];
1149public:
1150  BinarySDNode(unsigned Opc, SDVTList VTs, SDOperand X, SDOperand Y)
1151    : SDNode(Opc, VTs) {
1152    Ops[0] = X;
1153    Ops[1] = Y;
1154    InitOperands(Ops, 2);
1155  }
1156};
1157
1158/// TernarySDNode - This class is used for three-operand SDNodes. This is solely
1159/// to allow co-allocation of node operands with the node itself.
1160class TernarySDNode : public SDNode {
1161  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1162  SDOperand Ops[3];
1163public:
1164  TernarySDNode(unsigned Opc, SDVTList VTs, SDOperand X, SDOperand Y,
1165                SDOperand Z)
1166    : SDNode(Opc, VTs) {
1167    Ops[0] = X;
1168    Ops[1] = Y;
1169    Ops[2] = Z;
1170    InitOperands(Ops, 3);
1171  }
1172};
1173
1174
1175/// HandleSDNode - This class is used to form a handle around another node that
1176/// is persistant and is updated across invocations of replaceAllUsesWith on its
1177/// operand.  This node should be directly created by end-users and not added to
1178/// the AllNodes list.
1179class HandleSDNode : public SDNode {
1180  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1181  SDOperand Op;
1182public:
1183  explicit HandleSDNode(SDOperand X)
1184    : SDNode(ISD::HANDLENODE, getSDVTList(MVT::Other)), Op(X) {
1185    InitOperands(&Op, 1);
1186  }
1187  ~HandleSDNode();
1188  SDOperand getValue() const { return Op; }
1189};
1190
1191class AtomicSDNode : public SDNode {
1192  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1193  SDOperand Ops[4];
1194  MVT::ValueType OrigVT;
1195public:
1196  AtomicSDNode(unsigned Opc, SDVTList VTL, SDOperand Chain, SDOperand Ptr,
1197               SDOperand Cmp, SDOperand Swp, MVT::ValueType VT)
1198    : SDNode(Opc, VTL) {
1199    Ops[0] = Chain;
1200    Ops[1] = Ptr;
1201    Ops[2] = Swp;
1202    Ops[3] = Cmp;
1203    InitOperands(Ops, 4);
1204    OrigVT=VT;
1205  }
1206  AtomicSDNode(unsigned Opc, SDVTList VTL, SDOperand Chain, SDOperand Ptr,
1207               SDOperand Val, MVT::ValueType VT)
1208    : SDNode(Opc, VTL) {
1209    Ops[0] = Chain;
1210    Ops[1] = Ptr;
1211    Ops[2] = Val;
1212    InitOperands(Ops, 3);
1213    OrigVT=VT;
1214  }
1215  MVT::ValueType getVT() const { return OrigVT; }
1216  bool isCompareAndSwap() const { return getOpcode() == ISD::ATOMIC_LCS; }
1217};
1218
1219class StringSDNode : public SDNode {
1220  std::string Value;
1221  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1222protected:
1223  friend class SelectionDAG;
1224  explicit StringSDNode(const std::string &val)
1225    : SDNode(ISD::STRING, getSDVTList(MVT::Other)), Value(val) {
1226  }
1227public:
1228  const std::string &getValue() const { return Value; }
1229  static bool classof(const StringSDNode *) { return true; }
1230  static bool classof(const SDNode *N) {
1231    return N->getOpcode() == ISD::STRING;
1232  }
1233};
1234
1235class ConstantSDNode : public SDNode {
1236  APInt Value;
1237  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1238protected:
1239  friend class SelectionDAG;
1240  ConstantSDNode(bool isTarget, const APInt &val, MVT::ValueType VT)
1241    : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, getSDVTList(VT)),
1242      Value(val) {
1243  }
1244public:
1245
1246  const APInt &getAPIntValue() const { return Value; }
1247  uint64_t getValue() const { return Value.getZExtValue(); }
1248
1249  int64_t getSignExtended() const {
1250    unsigned Bits = MVT::getSizeInBits(getValueType(0));
1251    return ((int64_t)Value.getZExtValue() << (64-Bits)) >> (64-Bits);
1252  }
1253
1254  bool isNullValue() const { return Value == 0; }
1255  bool isAllOnesValue() const {
1256    return Value == MVT::getIntVTBitMask(getValueType(0));
1257  }
1258
1259  static bool classof(const ConstantSDNode *) { return true; }
1260  static bool classof(const SDNode *N) {
1261    return N->getOpcode() == ISD::Constant ||
1262           N->getOpcode() == ISD::TargetConstant;
1263  }
1264};
1265
1266class ConstantFPSDNode : public SDNode {
1267  APFloat Value;
1268  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1269protected:
1270  friend class SelectionDAG;
1271  ConstantFPSDNode(bool isTarget, const APFloat& val, MVT::ValueType VT)
1272    : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP,
1273             getSDVTList(VT)), Value(val) {
1274  }
1275public:
1276
1277  const APFloat& getValueAPF() const { return Value; }
1278
1279  /// isExactlyValue - We don't rely on operator== working on double values, as
1280  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1281  /// As such, this method can be used to do an exact bit-for-bit comparison of
1282  /// two floating point values.
1283
1284  /// We leave the version with the double argument here because it's just so
1285  /// convenient to write "2.0" and the like.  Without this function we'd
1286  /// have to duplicate its logic everywhere it's called.
1287  bool isExactlyValue(double V) const {
1288    APFloat Tmp(V);
1289    Tmp.convert(Value.getSemantics(), APFloat::rmNearestTiesToEven);
1290    return isExactlyValue(Tmp);
1291  }
1292  bool isExactlyValue(const APFloat& V) const;
1293
1294  bool isValueValidForType(MVT::ValueType VT, const APFloat& Val);
1295
1296  static bool classof(const ConstantFPSDNode *) { return true; }
1297  static bool classof(const SDNode *N) {
1298    return N->getOpcode() == ISD::ConstantFP ||
1299           N->getOpcode() == ISD::TargetConstantFP;
1300  }
1301};
1302
1303class GlobalAddressSDNode : public SDNode {
1304  GlobalValue *TheGlobal;
1305  int Offset;
1306  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1307protected:
1308  friend class SelectionDAG;
1309  GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT::ValueType VT,
1310                      int o = 0);
1311public:
1312
1313  GlobalValue *getGlobal() const { return TheGlobal; }
1314  int getOffset() const { return Offset; }
1315
1316  static bool classof(const GlobalAddressSDNode *) { return true; }
1317  static bool classof(const SDNode *N) {
1318    return N->getOpcode() == ISD::GlobalAddress ||
1319           N->getOpcode() == ISD::TargetGlobalAddress ||
1320           N->getOpcode() == ISD::GlobalTLSAddress ||
1321           N->getOpcode() == ISD::TargetGlobalTLSAddress;
1322  }
1323};
1324
1325class FrameIndexSDNode : public SDNode {
1326  int FI;
1327  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1328protected:
1329  friend class SelectionDAG;
1330  FrameIndexSDNode(int fi, MVT::ValueType VT, bool isTarg)
1331    : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, getSDVTList(VT)),
1332      FI(fi) {
1333  }
1334public:
1335
1336  int getIndex() const { return FI; }
1337
1338  static bool classof(const FrameIndexSDNode *) { return true; }
1339  static bool classof(const SDNode *N) {
1340    return N->getOpcode() == ISD::FrameIndex ||
1341           N->getOpcode() == ISD::TargetFrameIndex;
1342  }
1343};
1344
1345class JumpTableSDNode : public SDNode {
1346  int JTI;
1347  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1348protected:
1349  friend class SelectionDAG;
1350  JumpTableSDNode(int jti, MVT::ValueType VT, bool isTarg)
1351    : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable, getSDVTList(VT)),
1352      JTI(jti) {
1353  }
1354public:
1355
1356    int getIndex() const { return JTI; }
1357
1358  static bool classof(const JumpTableSDNode *) { return true; }
1359  static bool classof(const SDNode *N) {
1360    return N->getOpcode() == ISD::JumpTable ||
1361           N->getOpcode() == ISD::TargetJumpTable;
1362  }
1363};
1364
1365class ConstantPoolSDNode : public SDNode {
1366  union {
1367    Constant *ConstVal;
1368    MachineConstantPoolValue *MachineCPVal;
1369  } Val;
1370  int Offset;  // It's a MachineConstantPoolValue if top bit is set.
1371  unsigned Alignment;
1372  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1373protected:
1374  friend class SelectionDAG;
1375  ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT,
1376                     int o=0)
1377    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1378             getSDVTList(VT)), Offset(o), Alignment(0) {
1379    assert((int)Offset >= 0 && "Offset is too large");
1380    Val.ConstVal = c;
1381  }
1382  ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT, int o,
1383                     unsigned Align)
1384    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1385             getSDVTList(VT)), Offset(o), Alignment(Align) {
1386    assert((int)Offset >= 0 && "Offset is too large");
1387    Val.ConstVal = c;
1388  }
1389  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1390                     MVT::ValueType VT, int o=0)
1391    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1392             getSDVTList(VT)), Offset(o), Alignment(0) {
1393    assert((int)Offset >= 0 && "Offset is too large");
1394    Val.MachineCPVal = v;
1395    Offset |= 1 << (sizeof(unsigned)*8-1);
1396  }
1397  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1398                     MVT::ValueType VT, int o, unsigned Align)
1399    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1400             getSDVTList(VT)), Offset(o), Alignment(Align) {
1401    assert((int)Offset >= 0 && "Offset is too large");
1402    Val.MachineCPVal = v;
1403    Offset |= 1 << (sizeof(unsigned)*8-1);
1404  }
1405public:
1406
1407  bool isMachineConstantPoolEntry() const {
1408    return (int)Offset < 0;
1409  }
1410
1411  Constant *getConstVal() const {
1412    assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
1413    return Val.ConstVal;
1414  }
1415
1416  MachineConstantPoolValue *getMachineCPVal() const {
1417    assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
1418    return Val.MachineCPVal;
1419  }
1420
1421  int getOffset() const {
1422    return Offset & ~(1 << (sizeof(unsigned)*8-1));
1423  }
1424
1425  // Return the alignment of this constant pool object, which is either 0 (for
1426  // default alignment) or log2 of the desired value.
1427  unsigned getAlignment() const { return Alignment; }
1428
1429  const Type *getType() const;
1430
1431  static bool classof(const ConstantPoolSDNode *) { return true; }
1432  static bool classof(const SDNode *N) {
1433    return N->getOpcode() == ISD::ConstantPool ||
1434           N->getOpcode() == ISD::TargetConstantPool;
1435  }
1436};
1437
1438class BasicBlockSDNode : public SDNode {
1439  MachineBasicBlock *MBB;
1440  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1441protected:
1442  friend class SelectionDAG;
1443  explicit BasicBlockSDNode(MachineBasicBlock *mbb)
1444    : SDNode(ISD::BasicBlock, getSDVTList(MVT::Other)), MBB(mbb) {
1445  }
1446public:
1447
1448  MachineBasicBlock *getBasicBlock() const { return MBB; }
1449
1450  static bool classof(const BasicBlockSDNode *) { return true; }
1451  static bool classof(const SDNode *N) {
1452    return N->getOpcode() == ISD::BasicBlock;
1453  }
1454};
1455
1456/// SrcValueSDNode - An SDNode that holds an arbitrary LLVM IR Value. This is
1457/// used when the SelectionDAG needs to make a simple reference to something
1458/// in the LLVM IR representation.
1459///
1460/// Note that this is not used for carrying alias information; that is done
1461/// with MemOperandSDNode, which includes a Value which is required to be a
1462/// pointer, and several other fields specific to memory references.
1463///
1464class SrcValueSDNode : public SDNode {
1465  const Value *V;
1466  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1467protected:
1468  friend class SelectionDAG;
1469  /// Create a SrcValue for a general value.
1470  explicit SrcValueSDNode(const Value *v)
1471    : SDNode(ISD::SRCVALUE, getSDVTList(MVT::Other)), V(v) {}
1472
1473public:
1474  /// getValue - return the contained Value.
1475  const Value *getValue() const { return V; }
1476
1477  static bool classof(const SrcValueSDNode *) { return true; }
1478  static bool classof(const SDNode *N) {
1479    return N->getOpcode() == ISD::SRCVALUE;
1480  }
1481};
1482
1483
1484/// MemOperandSDNode - An SDNode that holds a MemOperand. This is
1485/// used to represent a reference to memory after ISD::LOAD
1486/// and ISD::STORE have been lowered.
1487///
1488class MemOperandSDNode : public SDNode {
1489  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1490protected:
1491  friend class SelectionDAG;
1492  /// Create a MemOperand node
1493  explicit MemOperandSDNode(const MemOperand &mo)
1494    : SDNode(ISD::MEMOPERAND, getSDVTList(MVT::Other)), MO(mo) {}
1495
1496public:
1497  /// MO - The contained MemOperand.
1498  const MemOperand MO;
1499
1500  static bool classof(const MemOperandSDNode *) { return true; }
1501  static bool classof(const SDNode *N) {
1502    return N->getOpcode() == ISD::MEMOPERAND;
1503  }
1504};
1505
1506
1507class RegisterSDNode : public SDNode {
1508  unsigned Reg;
1509  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1510protected:
1511  friend class SelectionDAG;
1512  RegisterSDNode(unsigned reg, MVT::ValueType VT)
1513    : SDNode(ISD::Register, getSDVTList(VT)), Reg(reg) {
1514  }
1515public:
1516
1517  unsigned getReg() const { return Reg; }
1518
1519  static bool classof(const RegisterSDNode *) { return true; }
1520  static bool classof(const SDNode *N) {
1521    return N->getOpcode() == ISD::Register;
1522  }
1523};
1524
1525class ExternalSymbolSDNode : public SDNode {
1526  const char *Symbol;
1527  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1528protected:
1529  friend class SelectionDAG;
1530  ExternalSymbolSDNode(bool isTarget, const char *Sym, MVT::ValueType VT)
1531    : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
1532             getSDVTList(VT)), Symbol(Sym) {
1533  }
1534public:
1535
1536  const char *getSymbol() const { return Symbol; }
1537
1538  static bool classof(const ExternalSymbolSDNode *) { return true; }
1539  static bool classof(const SDNode *N) {
1540    return N->getOpcode() == ISD::ExternalSymbol ||
1541           N->getOpcode() == ISD::TargetExternalSymbol;
1542  }
1543};
1544
1545class CondCodeSDNode : public SDNode {
1546  ISD::CondCode Condition;
1547  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1548protected:
1549  friend class SelectionDAG;
1550  explicit CondCodeSDNode(ISD::CondCode Cond)
1551    : SDNode(ISD::CONDCODE, getSDVTList(MVT::Other)), Condition(Cond) {
1552  }
1553public:
1554
1555  ISD::CondCode get() const { return Condition; }
1556
1557  static bool classof(const CondCodeSDNode *) { return true; }
1558  static bool classof(const SDNode *N) {
1559    return N->getOpcode() == ISD::CONDCODE;
1560  }
1561};
1562
1563/// VTSDNode - This class is used to represent MVT::ValueType's, which are used
1564/// to parameterize some operations.
1565class VTSDNode : public SDNode {
1566  MVT::ValueType ValueType;
1567  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1568protected:
1569  friend class SelectionDAG;
1570  explicit VTSDNode(MVT::ValueType VT)
1571    : SDNode(ISD::VALUETYPE, getSDVTList(MVT::Other)), ValueType(VT) {
1572  }
1573public:
1574
1575  MVT::ValueType getVT() const { return ValueType; }
1576
1577  static bool classof(const VTSDNode *) { return true; }
1578  static bool classof(const SDNode *N) {
1579    return N->getOpcode() == ISD::VALUETYPE;
1580  }
1581};
1582
1583/// LSBaseSDNode - Base class for LoadSDNode and StoreSDNode
1584///
1585class LSBaseSDNode : public SDNode {
1586private:
1587  // AddrMode - unindexed, pre-indexed, post-indexed.
1588  ISD::MemIndexedMode AddrMode;
1589
1590  // MemoryVT - VT of in-memory value.
1591  MVT::ValueType MemoryVT;
1592
1593  //! SrcValue - Memory location for alias analysis.
1594  const Value *SrcValue;
1595
1596  //! SVOffset - Memory location offset.
1597  int SVOffset;
1598
1599  //! Alignment - Alignment of memory location in bytes.
1600  unsigned Alignment;
1601
1602  //! IsVolatile - True if the store is volatile.
1603  bool IsVolatile;
1604protected:
1605  //! Operand array for load and store
1606  /*!
1607    \note Moving this array to the base class captures more
1608    common functionality shared between LoadSDNode and
1609    StoreSDNode
1610   */
1611  SDOperand Ops[4];
1612public:
1613  LSBaseSDNode(ISD::NodeType NodeTy, SDOperand *Operands, unsigned NumOperands,
1614               SDVTList VTs, ISD::MemIndexedMode AM, MVT::ValueType VT,
1615               const Value *SV, int SVO, unsigned Align, bool Vol)
1616    : SDNode(NodeTy, VTs),
1617      AddrMode(AM), MemoryVT(VT),
1618      SrcValue(SV), SVOffset(SVO), Alignment(Align), IsVolatile(Vol)
1619  {
1620    for (unsigned i = 0; i != NumOperands; ++i)
1621      Ops[i] = Operands[i];
1622    InitOperands(Ops, NumOperands);
1623    assert(Align != 0 && "Loads and stores should have non-zero aligment");
1624    assert((getOffset().getOpcode() == ISD::UNDEF || isIndexed()) &&
1625           "Only indexed loads and stores have a non-undef offset operand");
1626  }
1627
1628  const SDOperand getChain() const {
1629    return getOperand(0);
1630  }
1631  const SDOperand getBasePtr() const {
1632    return getOperand(getOpcode() == ISD::LOAD ? 1 : 2);
1633  }
1634  const SDOperand getOffset() const {
1635    return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
1636  }
1637  const SDOperand getValue() const {
1638    assert(getOpcode() == ISD::STORE);
1639    return getOperand(1);
1640  }
1641
1642  const Value *getSrcValue() const { return SrcValue; }
1643  int getSrcValueOffset() const { return SVOffset; }
1644  unsigned getAlignment() const { return Alignment; }
1645  MVT::ValueType getMemoryVT() const { return MemoryVT; }
1646  bool isVolatile() const { return IsVolatile; }
1647
1648  ISD::MemIndexedMode getAddressingMode() const { return AddrMode; }
1649
1650  /// isIndexed - Return true if this is a pre/post inc/dec load/store.
1651  bool isIndexed() const { return AddrMode != ISD::UNINDEXED; }
1652
1653  /// isUnindexed - Return true if this is NOT a pre/post inc/dec load/store.
1654  bool isUnindexed() const { return AddrMode == ISD::UNINDEXED; }
1655
1656  /// getMemOperand - Return a MemOperand object describing the memory
1657  /// reference performed by this load or store.
1658  MemOperand getMemOperand() const;
1659
1660  static bool classof(const LSBaseSDNode *N) { return true; }
1661  static bool classof(const SDNode *N) {
1662    return N->getOpcode() == ISD::LOAD ||
1663           N->getOpcode() == ISD::STORE;
1664  }
1665};
1666
1667/// LoadSDNode - This class is used to represent ISD::LOAD nodes.
1668///
1669class LoadSDNode : public LSBaseSDNode {
1670  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1671
1672  // ExtType - non-ext, anyext, sext, zext.
1673  ISD::LoadExtType ExtType;
1674
1675protected:
1676  friend class SelectionDAG;
1677  LoadSDNode(SDOperand *ChainPtrOff, SDVTList VTs,
1678             ISD::MemIndexedMode AM, ISD::LoadExtType ETy, MVT::ValueType LVT,
1679             const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
1680    : LSBaseSDNode(ISD::LOAD, ChainPtrOff, 3,
1681                   VTs, AM, LVT, SV, O, Align, Vol),
1682      ExtType(ETy) { }
1683public:
1684
1685  ISD::LoadExtType getExtensionType() const { return ExtType; }
1686
1687  static bool classof(const LoadSDNode *) { return true; }
1688  static bool classof(const SDNode *N) {
1689    return N->getOpcode() == ISD::LOAD;
1690  }
1691};
1692
1693/// StoreSDNode - This class is used to represent ISD::STORE nodes.
1694///
1695class StoreSDNode : public LSBaseSDNode {
1696  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1697
1698  // IsTruncStore - True if the op does a truncation before store.
1699  bool IsTruncStore;
1700protected:
1701  friend class SelectionDAG;
1702  StoreSDNode(SDOperand *ChainValuePtrOff, SDVTList VTs,
1703              ISD::MemIndexedMode AM, bool isTrunc, MVT::ValueType SVT,
1704              const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
1705    : LSBaseSDNode(ISD::STORE, ChainValuePtrOff, 4,
1706                   VTs, AM, SVT, SV, O, Align, Vol),
1707      IsTruncStore(isTrunc) { }
1708public:
1709
1710  bool isTruncatingStore() const { return IsTruncStore; }
1711
1712  static bool classof(const StoreSDNode *) { return true; }
1713  static bool classof(const SDNode *N) {
1714    return N->getOpcode() == ISD::STORE;
1715  }
1716};
1717
1718
1719class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
1720  SDNode *Node;
1721  unsigned Operand;
1722
1723  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
1724public:
1725  bool operator==(const SDNodeIterator& x) const {
1726    return Operand == x.Operand;
1727  }
1728  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
1729
1730  const SDNodeIterator &operator=(const SDNodeIterator &I) {
1731    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
1732    Operand = I.Operand;
1733    return *this;
1734  }
1735
1736  pointer operator*() const {
1737    return Node->getOperand(Operand).Val;
1738  }
1739  pointer operator->() const { return operator*(); }
1740
1741  SDNodeIterator& operator++() {                // Preincrement
1742    ++Operand;
1743    return *this;
1744  }
1745  SDNodeIterator operator++(int) { // Postincrement
1746    SDNodeIterator tmp = *this; ++*this; return tmp;
1747  }
1748
1749  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
1750  static SDNodeIterator end  (SDNode *N) {
1751    return SDNodeIterator(N, N->getNumOperands());
1752  }
1753
1754  unsigned getOperand() const { return Operand; }
1755  const SDNode *getNode() const { return Node; }
1756};
1757
1758template <> struct GraphTraits<SDNode*> {
1759  typedef SDNode NodeType;
1760  typedef SDNodeIterator ChildIteratorType;
1761  static inline NodeType *getEntryNode(SDNode *N) { return N; }
1762  static inline ChildIteratorType child_begin(NodeType *N) {
1763    return SDNodeIterator::begin(N);
1764  }
1765  static inline ChildIteratorType child_end(NodeType *N) {
1766    return SDNodeIterator::end(N);
1767  }
1768};
1769
1770template<>
1771struct ilist_traits<SDNode> {
1772  static SDNode *getPrev(const SDNode *N) { return N->Prev; }
1773  static SDNode *getNext(const SDNode *N) { return N->Next; }
1774
1775  static void setPrev(SDNode *N, SDNode *Prev) { N->Prev = Prev; }
1776  static void setNext(SDNode *N, SDNode *Next) { N->Next = Next; }
1777
1778  static SDNode *createSentinel() {
1779    return new SDNode(ISD::EntryToken, SDNode::getSDVTList(MVT::Other));
1780  }
1781  static void destroySentinel(SDNode *N) { delete N; }
1782  //static SDNode *createNode(const SDNode &V) { return new SDNode(V); }
1783
1784
1785  void addNodeToList(SDNode *NTy) {}
1786  void removeNodeFromList(SDNode *NTy) {}
1787  void transferNodesFromList(iplist<SDNode, ilist_traits> &L2,
1788                             const ilist_iterator<SDNode> &X,
1789                             const ilist_iterator<SDNode> &Y) {}
1790};
1791
1792namespace ISD {
1793  /// isNormalLoad - Returns true if the specified node is a non-extending
1794  /// and unindexed load.
1795  inline bool isNormalLoad(const SDNode *N) {
1796    if (N->getOpcode() != ISD::LOAD)
1797      return false;
1798    const LoadSDNode *Ld = cast<LoadSDNode>(N);
1799    return Ld->getExtensionType() == ISD::NON_EXTLOAD &&
1800      Ld->getAddressingMode() == ISD::UNINDEXED;
1801  }
1802
1803  /// isNON_EXTLoad - Returns true if the specified node is a non-extending
1804  /// load.
1805  inline bool isNON_EXTLoad(const SDNode *N) {
1806    return N->getOpcode() == ISD::LOAD &&
1807      cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
1808  }
1809
1810  /// isEXTLoad - Returns true if the specified node is a EXTLOAD.
1811  ///
1812  inline bool isEXTLoad(const SDNode *N) {
1813    return N->getOpcode() == ISD::LOAD &&
1814      cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
1815  }
1816
1817  /// isSEXTLoad - Returns true if the specified node is a SEXTLOAD.
1818  ///
1819  inline bool isSEXTLoad(const SDNode *N) {
1820    return N->getOpcode() == ISD::LOAD &&
1821      cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
1822  }
1823
1824  /// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD.
1825  ///
1826  inline bool isZEXTLoad(const SDNode *N) {
1827    return N->getOpcode() == ISD::LOAD &&
1828      cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
1829  }
1830
1831  /// isUNINDEXEDLoad - Returns true if the specified node is a unindexed load.
1832  ///
1833  inline bool isUNINDEXEDLoad(const SDNode *N) {
1834    return N->getOpcode() == ISD::LOAD &&
1835      cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
1836  }
1837
1838  /// isNON_TRUNCStore - Returns true if the specified node is a non-truncating
1839  /// store.
1840  inline bool isNON_TRUNCStore(const SDNode *N) {
1841    return N->getOpcode() == ISD::STORE &&
1842      !cast<StoreSDNode>(N)->isTruncatingStore();
1843  }
1844
1845  /// isTRUNCStore - Returns true if the specified node is a truncating
1846  /// store.
1847  inline bool isTRUNCStore(const SDNode *N) {
1848    return N->getOpcode() == ISD::STORE &&
1849      cast<StoreSDNode>(N)->isTruncatingStore();
1850  }
1851}
1852
1853
1854} // end llvm namespace
1855
1856#endif
1857