SelectionDAGNodes.h revision d429bcd4ac734540ebbc15a0ee37d154ae1daf73
1//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SDNode class and derived classes, which are used to
11// represent the nodes and operations present in a SelectionDAG.  These nodes
12// and operations are machine code level operations, with some similarities to
13// the GCC RTL representation.
14//
15// Clients should include the SelectionDAG.h file instead of this file directly.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20#define LLVM_CODEGEN_SELECTIONDAGNODES_H
21
22#include "llvm/Value.h"
23#include "llvm/ADT/FoldingSet.h"
24#include "llvm/ADT/GraphTraits.h"
25#include "llvm/ADT/iterator"
26#include "llvm/CodeGen/ValueTypes.h"
27#include "llvm/Support/DataTypes.h"
28#include <cassert>
29
30namespace llvm {
31
32class SelectionDAG;
33class GlobalValue;
34class MachineBasicBlock;
35class MachineConstantPoolValue;
36class SDNode;
37template <typename T> struct simplify_type;
38template <typename T> struct ilist_traits;
39template<typename NodeTy, typename Traits> class iplist;
40template<typename NodeTy> class ilist_iterator;
41
42/// SDVTList - This represents a list of ValueType's that has been intern'd by
43/// a SelectionDAG.  Instances of this simple value class are returned by
44/// SelectionDAG::getVTList(...).
45///
46struct SDVTList {
47  const MVT::ValueType *VTs;
48  unsigned short NumVTs;
49};
50
51
52/// ISD namespace - This namespace contains an enum which represents all of the
53/// SelectionDAG node types and value types.
54///
55namespace ISD {
56  //===--------------------------------------------------------------------===//
57  /// ISD::NodeType enum - This enum defines all of the operators valid in a
58  /// SelectionDAG.
59  ///
60  enum NodeType {
61    // DELETED_NODE - This is an illegal flag value that is used to catch
62    // errors.  This opcode is not a legal opcode for any node.
63    DELETED_NODE,
64
65    // EntryToken - This is the marker used to indicate the start of the region.
66    EntryToken,
67
68    // Token factor - This node takes multiple tokens as input and produces a
69    // single token result.  This is used to represent the fact that the operand
70    // operators are independent of each other.
71    TokenFactor,
72
73    // AssertSext, AssertZext - These nodes record if a register contains a
74    // value that has already been zero or sign extended from a narrower type.
75    // These nodes take two operands.  The first is the node that has already
76    // been extended, and the second is a value type node indicating the width
77    // of the extension
78    AssertSext, AssertZext,
79
80    // Various leaf nodes.
81    STRING, BasicBlock, VALUETYPE, CONDCODE, Register,
82    Constant, ConstantFP,
83    GlobalAddress, FrameIndex, JumpTable, ConstantPool, ExternalSymbol,
84
85    // The address of the GOT
86    GLOBAL_OFFSET_TABLE,
87
88    // FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
89    // llvm.returnaddress on the DAG.  These nodes take one operand, the index
90    // of the frame or return address to return.  An index of zero corresponds
91    // to the current function's frame or return address, an index of one to the
92    // parent's frame or return address, and so on.
93    FRAMEADDR, RETURNADDR,
94
95    // TargetConstant* - Like Constant*, but the DAG does not do any folding or
96    // simplification of the constant.
97    TargetConstant,
98    TargetConstantFP,
99
100    // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
101    // anything else with this node, and this is valid in the target-specific
102    // dag, turning into a GlobalAddress operand.
103    TargetGlobalAddress,
104    TargetFrameIndex,
105    TargetJumpTable,
106    TargetConstantPool,
107    TargetExternalSymbol,
108
109    /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
110    /// This node represents a target intrinsic function with no side effects.
111    /// The first operand is the ID number of the intrinsic from the
112    /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
113    /// node has returns the result of the intrinsic.
114    INTRINSIC_WO_CHAIN,
115
116    /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
117    /// This node represents a target intrinsic function with side effects that
118    /// returns a result.  The first operand is a chain pointer.  The second is
119    /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
120    /// operands to the intrinsic follow.  The node has two results, the result
121    /// of the intrinsic and an output chain.
122    INTRINSIC_W_CHAIN,
123
124    /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
125    /// This node represents a target intrinsic function with side effects that
126    /// does not return a result.  The first operand is a chain pointer.  The
127    /// second is the ID number of the intrinsic from the llvm::Intrinsic
128    /// namespace.  The operands to the intrinsic follow.
129    INTRINSIC_VOID,
130
131    // CopyToReg - This node has three operands: a chain, a register number to
132    // set to this value, and a value.
133    CopyToReg,
134
135    // CopyFromReg - This node indicates that the input value is a virtual or
136    // physical register that is defined outside of the scope of this
137    // SelectionDAG.  The register is available from the RegSDNode object.
138    CopyFromReg,
139
140    // UNDEF - An undefined node
141    UNDEF,
142
143    /// FORMAL_ARGUMENTS(CHAIN, CC#, ISVARARG, FLAG0, ..., FLAGn) - This node
144    /// represents the formal arguments for a function.  CC# is a Constant value
145    /// indicating the calling convention of the function, and ISVARARG is a
146    /// flag that indicates whether the function is varargs or not. This node
147    /// has one result value for each incoming argument, plus one for the output
148    /// chain. It must be custom legalized. See description of CALL node for
149    /// FLAG argument contents explanation.
150    ///
151    FORMAL_ARGUMENTS,
152
153    /// RV1, RV2...RVn, CHAIN = CALL(CHAIN, CC#, ISVARARG, ISTAILCALL, CALLEE,
154    ///                              ARG0, FLAG0, ARG1, FLAG1, ... ARGn, FLAGn)
155    /// This node represents a fully general function call, before the legalizer
156    /// runs.  This has one result value for each argument / flag pair, plus
157    /// a chain result. It must be custom legalized. Flag argument indicates
158    /// misc. argument attributes. Currently:
159    /// Bit 0 - signness
160    /// Bit 1 - 'inreg' attribute
161    /// Bit 2 - 'sret' attribute
162    CALL,
163
164    // EXTRACT_ELEMENT - This is used to get the first or second (determined by
165    // a Constant, which is required to be operand #1), element of the aggregate
166    // value specified as operand #0.  This is only for use before legalization,
167    // for values that will be broken into multiple registers.
168    EXTRACT_ELEMENT,
169
170    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
171    // two values of the same integer value type, this produces a value twice as
172    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
173    BUILD_PAIR,
174
175    // MERGE_VALUES - This node takes multiple discrete operands and returns
176    // them all as its individual results.  This nodes has exactly the same
177    // number of inputs and outputs, and is only valid before legalization.
178    // This node is useful for some pieces of the code generator that want to
179    // think about a single node with multiple results, not multiple nodes.
180    MERGE_VALUES,
181
182    // Simple integer binary arithmetic operators.
183    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
184
185    // Carry-setting nodes for multiple precision addition and subtraction.
186    // These nodes take two operands of the same value type, and produce two
187    // results.  The first result is the normal add or sub result, the second
188    // result is the carry flag result.
189    ADDC, SUBC,
190
191    // Carry-using nodes for multiple precision addition and subtraction.  These
192    // nodes take three operands: The first two are the normal lhs and rhs to
193    // the add or sub, and the third is the input carry flag.  These nodes
194    // produce two results; the normal result of the add or sub, and the output
195    // carry flag.  These nodes both read and write a carry flag to allow them
196    // to them to be chained together for add and sub of arbitrarily large
197    // values.
198    ADDE, SUBE,
199
200    // Simple binary floating point operators.
201    FADD, FSUB, FMUL, FDIV, FREM,
202
203    // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
204    // DAG node does not require that X and Y have the same type, just that they
205    // are both floating point.  X and the result must have the same type.
206    // FCOPYSIGN(f32, f64) is allowed.
207    FCOPYSIGN,
208
209    /// VBUILD_VECTOR(ELT1, ELT2, ELT3, ELT4,...,  COUNT,TYPE) - Return a vector
210    /// with the specified, possibly variable, elements.  The number of elements
211    /// is required to be a power of two.
212    VBUILD_VECTOR,
213
214    /// BUILD_VECTOR(ELT1, ELT2, ELT3, ELT4,...) - Return a vector
215    /// with the specified, possibly variable, elements.  The number of elements
216    /// is required to be a power of two.
217    BUILD_VECTOR,
218
219    /// VINSERT_VECTOR_ELT(VECTOR, VAL, IDX,  COUNT,TYPE) - Given a vector
220    /// VECTOR, an element ELEMENT, and a (potentially variable) index IDX,
221    /// return an vector with the specified element of VECTOR replaced with VAL.
222    /// COUNT and TYPE specify the type of vector, as is standard for V* nodes.
223    VINSERT_VECTOR_ELT,
224
225    /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR (a legal packed
226    /// type) with the element at IDX replaced with VAL.
227    INSERT_VECTOR_ELT,
228
229    /// VEXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
230    /// (an MVT::Vector value) identified by the (potentially variable) element
231    /// number IDX.
232    VEXTRACT_VECTOR_ELT,
233
234    /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
235    /// (a legal packed type vector) identified by the (potentially variable)
236    /// element number IDX.
237    EXTRACT_VECTOR_ELT,
238
239    /// VVECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC, COUNT,TYPE) - Returns a vector,
240    /// of the same type as VEC1/VEC2.  SHUFFLEVEC is a VBUILD_VECTOR of
241    /// constant int values that indicate which value each result element will
242    /// get.  The elements of VEC1/VEC2 are enumerated in order.  This is quite
243    /// similar to the Altivec 'vperm' instruction, except that the indices must
244    /// be constants and are in terms of the element size of VEC1/VEC2, not in
245    /// terms of bytes.
246    VVECTOR_SHUFFLE,
247
248    /// VECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC) - Returns a vector, of the same
249    /// type as VEC1/VEC2.  SHUFFLEVEC is a BUILD_VECTOR of constant int values
250    /// (regardless of whether its datatype is legal or not) that indicate
251    /// which value each result element will get.  The elements of VEC1/VEC2 are
252    /// enumerated in order.  This is quite similar to the Altivec 'vperm'
253    /// instruction, except that the indices must be constants and are in terms
254    /// of the element size of VEC1/VEC2, not in terms of bytes.
255    VECTOR_SHUFFLE,
256
257    /// X = VBIT_CONVERT(Y)  and X = VBIT_CONVERT(Y, COUNT,TYPE) - This node
258    /// represents a conversion from or to an ISD::Vector type.
259    ///
260    /// This is lowered to a BIT_CONVERT of the appropriate input/output types.
261    /// The input and output are required to have the same size and at least one
262    /// is required to be a vector (if neither is a vector, just use
263    /// BIT_CONVERT).
264    ///
265    /// If the result is a vector, this takes three operands (like any other
266    /// vector producer) which indicate the size and type of the vector result.
267    /// Otherwise it takes one input.
268    VBIT_CONVERT,
269
270    /// BINOP(LHS, RHS,  COUNT,TYPE)
271    /// Simple abstract vector operators.  Unlike the integer and floating point
272    /// binary operators, these nodes also take two additional operands:
273    /// a constant element count, and a value type node indicating the type of
274    /// the elements.  The order is count, type, op0, op1.  All vector opcodes,
275    /// including VLOAD and VConstant must currently have count and type as
276    /// their last two operands.
277    VADD, VSUB, VMUL, VSDIV, VUDIV,
278    VAND, VOR, VXOR,
279
280    /// VSELECT(COND,LHS,RHS,  COUNT,TYPE) - Select for MVT::Vector values.
281    /// COND is a boolean value.  This node return LHS if COND is true, RHS if
282    /// COND is false.
283    VSELECT,
284
285    /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
286    /// scalar value into the low element of the resultant vector type.  The top
287    /// elements of the vector are undefined.
288    SCALAR_TO_VECTOR,
289
290    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
291    // an unsigned/signed value of type i[2*n], then return the top part.
292    MULHU, MULHS,
293
294    // Bitwise operators - logical and, logical or, logical xor, shift left,
295    // shift right algebraic (shift in sign bits), shift right logical (shift in
296    // zeroes), rotate left, rotate right, and byteswap.
297    AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
298
299    // Counting operators
300    CTTZ, CTLZ, CTPOP,
301
302    // Select(COND, TRUEVAL, FALSEVAL)
303    SELECT,
304
305    // Select with condition operator - This selects between a true value and
306    // a false value (ops #2 and #3) based on the boolean result of comparing
307    // the lhs and rhs (ops #0 and #1) of a conditional expression with the
308    // condition code in op #4, a CondCodeSDNode.
309    SELECT_CC,
310
311    // SetCC operator - This evaluates to a boolean (i1) true value if the
312    // condition is true.  The operands to this are the left and right operands
313    // to compare (ops #0, and #1) and the condition code to compare them with
314    // (op #2) as a CondCodeSDNode.
315    SETCC,
316
317    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
318    // integer shift operations, just like ADD/SUB_PARTS.  The operation
319    // ordering is:
320    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
321    SHL_PARTS, SRA_PARTS, SRL_PARTS,
322
323    // Conversion operators.  These are all single input single output
324    // operations.  For all of these, the result type must be strictly
325    // wider or narrower (depending on the operation) than the source
326    // type.
327
328    // SIGN_EXTEND - Used for integer types, replicating the sign bit
329    // into new bits.
330    SIGN_EXTEND,
331
332    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
333    ZERO_EXTEND,
334
335    // ANY_EXTEND - Used for integer types.  The high bits are undefined.
336    ANY_EXTEND,
337
338    // TRUNCATE - Completely drop the high bits.
339    TRUNCATE,
340
341    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
342    // depends on the first letter) to floating point.
343    SINT_TO_FP,
344    UINT_TO_FP,
345
346    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
347    // sign extend a small value in a large integer register (e.g. sign
348    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
349    // with the 7th bit).  The size of the smaller type is indicated by the 1th
350    // operand, a ValueType node.
351    SIGN_EXTEND_INREG,
352
353    // FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
354    // integer.
355    FP_TO_SINT,
356    FP_TO_UINT,
357
358    // FP_ROUND - Perform a rounding operation from the current
359    // precision down to the specified precision (currently always 64->32).
360    FP_ROUND,
361
362    // FP_ROUND_INREG - This operator takes a floating point register, and
363    // rounds it to a floating point value.  It then promotes it and returns it
364    // in a register of the same size.  This operation effectively just discards
365    // excess precision.  The type to round down to is specified by the 1th
366    // operation, a VTSDNode (currently always 64->32->64).
367    FP_ROUND_INREG,
368
369    // FP_EXTEND - Extend a smaller FP type into a larger FP type.
370    FP_EXTEND,
371
372    // BIT_CONVERT - Theis operator converts between integer and FP values, as
373    // if one was stored to memory as integer and the other was loaded from the
374    // same address (or equivalently for vector format conversions, etc).  The
375    // source and result are required to have the same bit size (e.g.
376    // f32 <-> i32).  This can also be used for int-to-int or fp-to-fp
377    // conversions, but that is a noop, deleted by getNode().
378    BIT_CONVERT,
379
380    // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI - Perform unary floating point
381    // negation, absolute value, square root, sine and cosine, and powi
382    // operations.
383    FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI,
384
385    // LOAD and STORE have token chains as their first operand, then the same
386    // operands as an LLVM load/store instruction, then an offset node that
387    // is added / subtracted from the base pointer to form the address (for
388    // indexed memory ops).
389    LOAD, STORE,
390
391    // Abstract vector version of LOAD.  VLOAD has a constant element count as
392    // the first operand, followed by a value type node indicating the type of
393    // the elements, a token chain, a pointer operand, and a SRCVALUE node.
394    VLOAD,
395
396    // TRUNCSTORE - This operators truncates (for integer) or rounds (for FP) a
397    // value and stores it to memory in one operation.  This can be used for
398    // either integer or floating point operands.  The first four operands of
399    // this are the same as a standard store.  The fifth is the ValueType to
400    // store it as (which will be smaller than the source value).
401    TRUNCSTORE,
402
403    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
404    // to a specified boundary.  The first operand is the token chain, the
405    // second is the number of bytes to allocate, and the third is the alignment
406    // boundary.  The size is guaranteed to be a multiple of the stack
407    // alignment, and the alignment is guaranteed to be bigger than the stack
408    // alignment (if required) or 0 to get standard stack alignment.
409    DYNAMIC_STACKALLOC,
410
411    // Control flow instructions.  These all have token chains.
412
413    // BR - Unconditional branch.  The first operand is the chain
414    // operand, the second is the MBB to branch to.
415    BR,
416
417    // BRIND - Indirect branch.  The first operand is the chain, the second
418    // is the value to branch to, which must be of the same type as the target's
419    // pointer type.
420    BRIND,
421
422    // BR_JT - Jumptable branch. The first operand is the chain, the second
423    // is the jumptable index, the last one is the jumptable entry index.
424    BR_JT,
425
426    // BRCOND - Conditional branch.  The first operand is the chain,
427    // the second is the condition, the third is the block to branch
428    // to if the condition is true.
429    BRCOND,
430
431    // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
432    // that the condition is represented as condition code, and two nodes to
433    // compare, rather than as a combined SetCC node.  The operands in order are
434    // chain, cc, lhs, rhs, block to branch to if condition is true.
435    BR_CC,
436
437    // RET - Return from function.  The first operand is the chain,
438    // and any subsequent operands are pairs of return value and return value
439    // signness for the function.  This operation can have variable number of
440    // operands.
441    RET,
442
443    // INLINEASM - Represents an inline asm block.  This node always has two
444    // return values: a chain and a flag result.  The inputs are as follows:
445    //   Operand #0   : Input chain.
446    //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
447    //   Operand #2n+2: A RegisterNode.
448    //   Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
449    //   Operand #last: Optional, an incoming flag.
450    INLINEASM,
451
452    // LABEL - Represents a label in mid basic block used to track
453    // locations needed for debug and exception handling tables.  This node
454    // returns a chain.
455    //   Operand #0 : input chain.
456    //   Operand #1 : module unique number use to identify the label.
457    LABEL,
458
459    // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
460    // value, the same type as the pointer type for the system, and an output
461    // chain.
462    STACKSAVE,
463
464    // STACKRESTORE has two operands, an input chain and a pointer to restore to
465    // it returns an output chain.
466    STACKRESTORE,
467
468    // MEMSET/MEMCPY/MEMMOVE - The first operand is the chain, and the rest
469    // correspond to the operands of the LLVM intrinsic functions.  The only
470    // result is a token chain.  The alignment argument is guaranteed to be a
471    // Constant node.
472    MEMSET,
473    MEMMOVE,
474    MEMCPY,
475
476    // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
477    // a call sequence, and carry arbitrary information that target might want
478    // to know.  The first operand is a chain, the rest are specified by the
479    // target and not touched by the DAG optimizers.
480    CALLSEQ_START,  // Beginning of a call sequence
481    CALLSEQ_END,    // End of a call sequence
482
483    // VAARG - VAARG has three operands: an input chain, a pointer, and a
484    // SRCVALUE.  It returns a pair of values: the vaarg value and a new chain.
485    VAARG,
486
487    // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
488    // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
489    // source.
490    VACOPY,
491
492    // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
493    // pointer, and a SRCVALUE.
494    VAEND, VASTART,
495
496    // SRCVALUE - This corresponds to a Value*, and is used to associate memory
497    // locations with their value.  This allows one use alias analysis
498    // information in the backend.
499    SRCVALUE,
500
501    // PCMARKER - This corresponds to the pcmarker intrinsic.
502    PCMARKER,
503
504    // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
505    // The only operand is a chain and a value and a chain are produced.  The
506    // value is the contents of the architecture specific cycle counter like
507    // register (or other high accuracy low latency clock source)
508    READCYCLECOUNTER,
509
510    // HANDLENODE node - Used as a handle for various purposes.
511    HANDLENODE,
512
513    // LOCATION - This node is used to represent a source location for debug
514    // info.  It takes token chain as input, then a line number, then a column
515    // number, then a filename, then a working dir.  It produces a token chain
516    // as output.
517    LOCATION,
518
519    // DEBUG_LOC - This node is used to represent source line information
520    // embedded in the code.  It takes a token chain as input, then a line
521    // number, then a column then a file id (provided by MachineModuleInfo.) It
522    // produces a token chain as output.
523    DEBUG_LOC,
524
525    // BUILTIN_OP_END - This must be the last enum value in this list.
526    BUILTIN_OP_END
527  };
528
529  /// Node predicates
530
531  /// isBuildVectorAllOnes - Return true if the specified node is a
532  /// BUILD_VECTOR where all of the elements are ~0 or undef.
533  bool isBuildVectorAllOnes(const SDNode *N);
534
535  /// isBuildVectorAllZeros - Return true if the specified node is a
536  /// BUILD_VECTOR where all of the elements are 0 or undef.
537  bool isBuildVectorAllZeros(const SDNode *N);
538
539  //===--------------------------------------------------------------------===//
540  /// MemIndexedMode enum - This enum defines the load / store indexed
541  /// addressing modes.
542  ///
543  /// UNINDEXED    "Normal" load / store. The effective address is already
544  ///              computed and is available in the base pointer. The offset
545  ///              operand is always undefined. In addition to producing a
546  ///              chain, an unindexed load produces one value (result of the
547  ///              load); an unindexed store does not produces a value.
548  ///
549  /// PRE_INC      Similar to the unindexed mode where the effective address is
550  /// PRE_DEC      the value of the base pointer add / subtract the offset.
551  ///              It considers the computation as being folded into the load /
552  ///              store operation (i.e. the load / store does the address
553  ///              computation as well as performing the memory transaction).
554  ///              The base operand is always undefined. In addition to
555  ///              producing a chain, pre-indexed load produces two values
556  ///              (result of the load and the result of the address
557  ///              computation); a pre-indexed store produces one value (result
558  ///              of the address computation).
559  ///
560  /// POST_INC     The effective address is the value of the base pointer. The
561  /// POST_DEC     value of the offset operand is then added to / subtracted
562  ///              from the base after memory transaction. In addition to
563  ///              producing a chain, post-indexed load produces two values
564  ///              (the result of the load and the result of the base +/- offset
565  ///              computation); a post-indexed store produces one value (the
566  ///              the result of the base +/- offset computation).
567  ///
568  enum MemIndexedMode {
569    UNINDEXED = 0,
570    PRE_INC,
571    PRE_DEC,
572    POST_INC,
573    POST_DEC,
574    LAST_INDEXED_MODE
575  };
576
577  //===--------------------------------------------------------------------===//
578  /// LoadExtType enum - This enum defines the three variants of LOADEXT
579  /// (load with extension).
580  ///
581  /// SEXTLOAD loads the integer operand and sign extends it to a larger
582  ///          integer result type.
583  /// ZEXTLOAD loads the integer operand and zero extends it to a larger
584  ///          integer result type.
585  /// EXTLOAD  is used for three things: floating point extending loads,
586  ///          integer extending loads [the top bits are undefined], and vector
587  ///          extending loads [load into low elt].
588  ///
589  enum LoadExtType {
590    NON_EXTLOAD = 0,
591    EXTLOAD,
592    SEXTLOAD,
593    ZEXTLOAD,
594    LAST_LOADX_TYPE
595  };
596
597  //===--------------------------------------------------------------------===//
598  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
599  /// below work out, when considering SETFALSE (something that never exists
600  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
601  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
602  /// to.  If the "N" column is 1, the result of the comparison is undefined if
603  /// the input is a NAN.
604  ///
605  /// All of these (except for the 'always folded ops') should be handled for
606  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
607  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
608  ///
609  /// Note that these are laid out in a specific order to allow bit-twiddling
610  /// to transform conditions.
611  enum CondCode {
612    // Opcode          N U L G E       Intuitive operation
613    SETFALSE,      //    0 0 0 0       Always false (always folded)
614    SETOEQ,        //    0 0 0 1       True if ordered and equal
615    SETOGT,        //    0 0 1 0       True if ordered and greater than
616    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
617    SETOLT,        //    0 1 0 0       True if ordered and less than
618    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
619    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
620    SETO,          //    0 1 1 1       True if ordered (no nans)
621    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
622    SETUEQ,        //    1 0 0 1       True if unordered or equal
623    SETUGT,        //    1 0 1 0       True if unordered or greater than
624    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
625    SETULT,        //    1 1 0 0       True if unordered or less than
626    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
627    SETUNE,        //    1 1 1 0       True if unordered or not equal
628    SETTRUE,       //    1 1 1 1       Always true (always folded)
629    // Don't care operations: undefined if the input is a nan.
630    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
631    SETEQ,         //  1 X 0 0 1       True if equal
632    SETGT,         //  1 X 0 1 0       True if greater than
633    SETGE,         //  1 X 0 1 1       True if greater than or equal
634    SETLT,         //  1 X 1 0 0       True if less than
635    SETLE,         //  1 X 1 0 1       True if less than or equal
636    SETNE,         //  1 X 1 1 0       True if not equal
637    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
638
639    SETCC_INVALID       // Marker value.
640  };
641
642  /// isSignedIntSetCC - Return true if this is a setcc instruction that
643  /// performs a signed comparison when used with integer operands.
644  inline bool isSignedIntSetCC(CondCode Code) {
645    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
646  }
647
648  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
649  /// performs an unsigned comparison when used with integer operands.
650  inline bool isUnsignedIntSetCC(CondCode Code) {
651    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
652  }
653
654  /// isTrueWhenEqual - Return true if the specified condition returns true if
655  /// the two operands to the condition are equal.  Note that if one of the two
656  /// operands is a NaN, this value is meaningless.
657  inline bool isTrueWhenEqual(CondCode Cond) {
658    return ((int)Cond & 1) != 0;
659  }
660
661  /// getUnorderedFlavor - This function returns 0 if the condition is always
662  /// false if an operand is a NaN, 1 if the condition is always true if the
663  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
664  /// NaN.
665  inline unsigned getUnorderedFlavor(CondCode Cond) {
666    return ((int)Cond >> 3) & 3;
667  }
668
669  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
670  /// 'op' is a valid SetCC operation.
671  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
672
673  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
674  /// when given the operation for (X op Y).
675  CondCode getSetCCSwappedOperands(CondCode Operation);
676
677  /// getSetCCOrOperation - Return the result of a logical OR between different
678  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
679  /// function returns SETCC_INVALID if it is not possible to represent the
680  /// resultant comparison.
681  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
682
683  /// getSetCCAndOperation - Return the result of a logical AND between
684  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
685  /// function returns SETCC_INVALID if it is not possible to represent the
686  /// resultant comparison.
687  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
688}  // end llvm::ISD namespace
689
690
691//===----------------------------------------------------------------------===//
692/// SDOperand - Unlike LLVM values, Selection DAG nodes may return multiple
693/// values as the result of a computation.  Many nodes return multiple values,
694/// from loads (which define a token and a return value) to ADDC (which returns
695/// a result and a carry value), to calls (which may return an arbitrary number
696/// of values).
697///
698/// As such, each use of a SelectionDAG computation must indicate the node that
699/// computes it as well as which return value to use from that node.  This pair
700/// of information is represented with the SDOperand value type.
701///
702class SDOperand {
703public:
704  SDNode *Val;        // The node defining the value we are using.
705  unsigned ResNo;     // Which return value of the node we are using.
706
707  SDOperand() : Val(0), ResNo(0) {}
708  SDOperand(SDNode *val, unsigned resno) : Val(val), ResNo(resno) {}
709
710  bool operator==(const SDOperand &O) const {
711    return Val == O.Val && ResNo == O.ResNo;
712  }
713  bool operator!=(const SDOperand &O) const {
714    return !operator==(O);
715  }
716  bool operator<(const SDOperand &O) const {
717    return Val < O.Val || (Val == O.Val && ResNo < O.ResNo);
718  }
719
720  SDOperand getValue(unsigned R) const {
721    return SDOperand(Val, R);
722  }
723
724  // isOperand - Return true if this node is an operand of N.
725  bool isOperand(SDNode *N) const;
726
727  /// getValueType - Return the ValueType of the referenced return value.
728  ///
729  inline MVT::ValueType getValueType() const;
730
731  // Forwarding methods - These forward to the corresponding methods in SDNode.
732  inline unsigned getOpcode() const;
733  inline unsigned getNumOperands() const;
734  inline const SDOperand &getOperand(unsigned i) const;
735  inline uint64_t getConstantOperandVal(unsigned i) const;
736  inline bool isTargetOpcode() const;
737  inline unsigned getTargetOpcode() const;
738
739  /// hasOneUse - Return true if there is exactly one operation using this
740  /// result value of the defining operator.
741  inline bool hasOneUse() const;
742};
743
744
745/// simplify_type specializations - Allow casting operators to work directly on
746/// SDOperands as if they were SDNode*'s.
747template<> struct simplify_type<SDOperand> {
748  typedef SDNode* SimpleType;
749  static SimpleType getSimplifiedValue(const SDOperand &Val) {
750    return static_cast<SimpleType>(Val.Val);
751  }
752};
753template<> struct simplify_type<const SDOperand> {
754  typedef SDNode* SimpleType;
755  static SimpleType getSimplifiedValue(const SDOperand &Val) {
756    return static_cast<SimpleType>(Val.Val);
757  }
758};
759
760
761/// SDNode - Represents one node in the SelectionDAG.
762///
763class SDNode : public FoldingSetNode {
764  /// NodeType - The operation that this node performs.
765  ///
766  unsigned short NodeType;
767
768  /// NodeId - Unique id per SDNode in the DAG.
769  int NodeId;
770
771  /// OperandList - The values that are used by this operation.
772  ///
773  SDOperand *OperandList;
774
775  /// ValueList - The types of the values this node defines.  SDNode's may
776  /// define multiple values simultaneously.
777  const MVT::ValueType *ValueList;
778
779  /// NumOperands/NumValues - The number of entries in the Operand/Value list.
780  unsigned short NumOperands, NumValues;
781
782  /// Prev/Next pointers - These pointers form the linked list of of the
783  /// AllNodes list in the current DAG.
784  SDNode *Prev, *Next;
785  friend struct ilist_traits<SDNode>;
786
787  /// Uses - These are all of the SDNode's that use a value produced by this
788  /// node.
789  SmallVector<SDNode*,3> Uses;
790
791  // Out-of-line virtual method to give class a home.
792  virtual void ANCHOR();
793public:
794  virtual ~SDNode() {
795    assert(NumOperands == 0 && "Operand list not cleared before deletion");
796    NodeType = ISD::DELETED_NODE;
797  }
798
799  //===--------------------------------------------------------------------===//
800  //  Accessors
801  //
802  unsigned getOpcode()  const { return NodeType; }
803  bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
804  unsigned getTargetOpcode() const {
805    assert(isTargetOpcode() && "Not a target opcode!");
806    return NodeType - ISD::BUILTIN_OP_END;
807  }
808
809  size_t use_size() const { return Uses.size(); }
810  bool use_empty() const { return Uses.empty(); }
811  bool hasOneUse() const { return Uses.size() == 1; }
812
813  /// getNodeId - Return the unique node id.
814  ///
815  int getNodeId() const { return NodeId; }
816
817  typedef SmallVector<SDNode*,3>::const_iterator use_iterator;
818  use_iterator use_begin() const { return Uses.begin(); }
819  use_iterator use_end() const { return Uses.end(); }
820
821  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
822  /// indicated value.  This method ignores uses of other values defined by this
823  /// operation.
824  bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
825
826  /// isOnlyUse - Return true if this node is the only use of N.
827  ///
828  bool isOnlyUse(SDNode *N) const;
829
830  /// isOperand - Return true if this node is an operand of N.
831  ///
832  bool isOperand(SDNode *N) const;
833
834  /// isPredecessor - Return true if this node is a predecessor of N. This node
835  /// is either an operand of N or it can be reached by recursively traversing
836  /// up the operands.
837  /// NOTE: this is an expensive method. Use it carefully.
838  bool isPredecessor(SDNode *N) const;
839
840  /// getNumOperands - Return the number of values used by this operation.
841  ///
842  unsigned getNumOperands() const { return NumOperands; }
843
844  /// getConstantOperandVal - Helper method returns the integer value of a
845  /// ConstantSDNode operand.
846  uint64_t getConstantOperandVal(unsigned Num) const;
847
848  const SDOperand &getOperand(unsigned Num) const {
849    assert(Num < NumOperands && "Invalid child # of SDNode!");
850    return OperandList[Num];
851  }
852
853  typedef const SDOperand* op_iterator;
854  op_iterator op_begin() const { return OperandList; }
855  op_iterator op_end() const { return OperandList+NumOperands; }
856
857
858  SDVTList getVTList() const {
859    SDVTList X = { ValueList, NumValues };
860    return X;
861  };
862
863  /// getNumValues - Return the number of values defined/returned by this
864  /// operator.
865  ///
866  unsigned getNumValues() const { return NumValues; }
867
868  /// getValueType - Return the type of a specified result.
869  ///
870  MVT::ValueType getValueType(unsigned ResNo) const {
871    assert(ResNo < NumValues && "Illegal result number!");
872    return ValueList[ResNo];
873  }
874
875  typedef const MVT::ValueType* value_iterator;
876  value_iterator value_begin() const { return ValueList; }
877  value_iterator value_end() const { return ValueList+NumValues; }
878
879  /// getOperationName - Return the opcode of this operation for printing.
880  ///
881  const char* getOperationName(const SelectionDAG *G = 0) const;
882  static const char* getIndexedModeName(ISD::MemIndexedMode AM);
883  void dump() const;
884  void dump(const SelectionDAG *G) const;
885
886  static bool classof(const SDNode *) { return true; }
887
888  /// Profile - Gather unique data for the node.
889  ///
890  void Profile(FoldingSetNodeID &ID);
891
892protected:
893  friend class SelectionDAG;
894
895  /// getValueTypeList - Return a pointer to the specified value type.
896  ///
897  static MVT::ValueType *getValueTypeList(MVT::ValueType VT);
898
899  SDNode(unsigned NT, MVT::ValueType VT) : NodeType(NT), NodeId(-1) {
900    OperandList = 0; NumOperands = 0;
901    ValueList = getValueTypeList(VT);
902    NumValues = 1;
903    Prev = 0; Next = 0;
904  }
905  SDNode(unsigned NT, SDOperand Op)
906    : NodeType(NT), NodeId(-1) {
907    OperandList = new SDOperand[1];
908    OperandList[0] = Op;
909    NumOperands = 1;
910    Op.Val->Uses.push_back(this);
911    ValueList = 0;
912    NumValues = 0;
913    Prev = 0; Next = 0;
914  }
915  SDNode(unsigned NT, SDOperand N1, SDOperand N2)
916    : NodeType(NT), NodeId(-1) {
917    OperandList = new SDOperand[2];
918    OperandList[0] = N1;
919    OperandList[1] = N2;
920    NumOperands = 2;
921    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
922    ValueList = 0;
923    NumValues = 0;
924    Prev = 0; Next = 0;
925  }
926  SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3)
927    : NodeType(NT), NodeId(-1) {
928    OperandList = new SDOperand[3];
929    OperandList[0] = N1;
930    OperandList[1] = N2;
931    OperandList[2] = N3;
932    NumOperands = 3;
933
934    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
935    N3.Val->Uses.push_back(this);
936    ValueList = 0;
937    NumValues = 0;
938    Prev = 0; Next = 0;
939  }
940  SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3, SDOperand N4)
941    : NodeType(NT), NodeId(-1) {
942    OperandList = new SDOperand[4];
943    OperandList[0] = N1;
944    OperandList[1] = N2;
945    OperandList[2] = N3;
946    OperandList[3] = N4;
947    NumOperands = 4;
948
949    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
950    N3.Val->Uses.push_back(this); N4.Val->Uses.push_back(this);
951    ValueList = 0;
952    NumValues = 0;
953    Prev = 0; Next = 0;
954  }
955  SDNode(unsigned Opc, const SDOperand *Ops, unsigned NumOps)
956    : NodeType(Opc), NodeId(-1) {
957    NumOperands = NumOps;
958    OperandList = new SDOperand[NumOperands];
959
960    for (unsigned i = 0, e = NumOps; i != e; ++i) {
961      OperandList[i] = Ops[i];
962      SDNode *N = OperandList[i].Val;
963      N->Uses.push_back(this);
964    }
965    ValueList = 0;
966    NumValues = 0;
967    Prev = 0; Next = 0;
968  }
969
970  /// MorphNodeTo - This frees the operands of the current node, resets the
971  /// opcode, types, and operands to the specified value.  This should only be
972  /// used by the SelectionDAG class.
973  void MorphNodeTo(unsigned Opc, SDVTList L,
974                   const SDOperand *Ops, unsigned NumOps);
975
976  void setValueTypes(SDVTList L) {
977    assert(NumValues == 0 && "Should not have values yet!");
978    ValueList = L.VTs;
979    NumValues = L.NumVTs;
980  }
981
982  void addUser(SDNode *User) {
983    Uses.push_back(User);
984  }
985  void removeUser(SDNode *User) {
986    // Remove this user from the operand's use list.
987    for (unsigned i = Uses.size(); ; --i) {
988      assert(i != 0 && "Didn't find user!");
989      if (Uses[i-1] == User) {
990        Uses[i-1] = Uses.back();
991        Uses.pop_back();
992        return;
993      }
994    }
995  }
996
997  void setNodeId(int Id) {
998    NodeId = Id;
999  }
1000};
1001
1002
1003// Define inline functions from the SDOperand class.
1004
1005inline unsigned SDOperand::getOpcode() const {
1006  return Val->getOpcode();
1007}
1008inline MVT::ValueType SDOperand::getValueType() const {
1009  return Val->getValueType(ResNo);
1010}
1011inline unsigned SDOperand::getNumOperands() const {
1012  return Val->getNumOperands();
1013}
1014inline const SDOperand &SDOperand::getOperand(unsigned i) const {
1015  return Val->getOperand(i);
1016}
1017inline uint64_t SDOperand::getConstantOperandVal(unsigned i) const {
1018  return Val->getConstantOperandVal(i);
1019}
1020inline bool SDOperand::isTargetOpcode() const {
1021  return Val->isTargetOpcode();
1022}
1023inline unsigned SDOperand::getTargetOpcode() const {
1024  return Val->getTargetOpcode();
1025}
1026inline bool SDOperand::hasOneUse() const {
1027  return Val->hasNUsesOfValue(1, ResNo);
1028}
1029
1030/// HandleSDNode - This class is used to form a handle around another node that
1031/// is persistant and is updated across invocations of replaceAllUsesWith on its
1032/// operand.  This node should be directly created by end-users and not added to
1033/// the AllNodes list.
1034class HandleSDNode : public SDNode {
1035  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1036public:
1037  HandleSDNode(SDOperand X) : SDNode(ISD::HANDLENODE, X) {}
1038  ~HandleSDNode();
1039  SDOperand getValue() const { return getOperand(0); }
1040};
1041
1042class StringSDNode : public SDNode {
1043  std::string Value;
1044  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1045protected:
1046  friend class SelectionDAG;
1047  StringSDNode(const std::string &val)
1048    : SDNode(ISD::STRING, MVT::Other), Value(val) {
1049  }
1050public:
1051  const std::string &getValue() const { return Value; }
1052  static bool classof(const StringSDNode *) { return true; }
1053  static bool classof(const SDNode *N) {
1054    return N->getOpcode() == ISD::STRING;
1055  }
1056};
1057
1058class ConstantSDNode : public SDNode {
1059  uint64_t Value;
1060  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1061protected:
1062  friend class SelectionDAG;
1063  ConstantSDNode(bool isTarget, uint64_t val, MVT::ValueType VT)
1064    : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, VT), Value(val) {
1065  }
1066public:
1067
1068  uint64_t getValue() const { return Value; }
1069
1070  int64_t getSignExtended() const {
1071    unsigned Bits = MVT::getSizeInBits(getValueType(0));
1072    return ((int64_t)Value << (64-Bits)) >> (64-Bits);
1073  }
1074
1075  bool isNullValue() const { return Value == 0; }
1076  bool isAllOnesValue() const {
1077    return Value == MVT::getIntVTBitMask(getValueType(0));
1078  }
1079
1080  static bool classof(const ConstantSDNode *) { return true; }
1081  static bool classof(const SDNode *N) {
1082    return N->getOpcode() == ISD::Constant ||
1083           N->getOpcode() == ISD::TargetConstant;
1084  }
1085};
1086
1087class ConstantFPSDNode : public SDNode {
1088  double Value;
1089  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1090protected:
1091  friend class SelectionDAG;
1092  ConstantFPSDNode(bool isTarget, double val, MVT::ValueType VT)
1093    : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, VT),
1094      Value(val) {
1095  }
1096public:
1097
1098  double getValue() const { return Value; }
1099
1100  /// isExactlyValue - We don't rely on operator== working on double values, as
1101  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1102  /// As such, this method can be used to do an exact bit-for-bit comparison of
1103  /// two floating point values.
1104  bool isExactlyValue(double V) const;
1105
1106  static bool classof(const ConstantFPSDNode *) { return true; }
1107  static bool classof(const SDNode *N) {
1108    return N->getOpcode() == ISD::ConstantFP ||
1109           N->getOpcode() == ISD::TargetConstantFP;
1110  }
1111};
1112
1113class GlobalAddressSDNode : public SDNode {
1114  GlobalValue *TheGlobal;
1115  int Offset;
1116  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1117protected:
1118  friend class SelectionDAG;
1119  GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT::ValueType VT,
1120                      int o=0)
1121    : SDNode(isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress, VT),
1122      Offset(o) {
1123    TheGlobal = const_cast<GlobalValue*>(GA);
1124  }
1125public:
1126
1127  GlobalValue *getGlobal() const { return TheGlobal; }
1128  int getOffset() const { return Offset; }
1129
1130  static bool classof(const GlobalAddressSDNode *) { return true; }
1131  static bool classof(const SDNode *N) {
1132    return N->getOpcode() == ISD::GlobalAddress ||
1133           N->getOpcode() == ISD::TargetGlobalAddress;
1134  }
1135};
1136
1137
1138class FrameIndexSDNode : public SDNode {
1139  int FI;
1140  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1141protected:
1142  friend class SelectionDAG;
1143  FrameIndexSDNode(int fi, MVT::ValueType VT, bool isTarg)
1144    : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, VT), FI(fi) {}
1145public:
1146
1147  int getIndex() const { return FI; }
1148
1149  static bool classof(const FrameIndexSDNode *) { return true; }
1150  static bool classof(const SDNode *N) {
1151    return N->getOpcode() == ISD::FrameIndex ||
1152           N->getOpcode() == ISD::TargetFrameIndex;
1153  }
1154};
1155
1156class JumpTableSDNode : public SDNode {
1157  int JTI;
1158  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1159protected:
1160  friend class SelectionDAG;
1161  JumpTableSDNode(int jti, MVT::ValueType VT, bool isTarg)
1162    : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable, VT),
1163    JTI(jti) {}
1164public:
1165
1166    int getIndex() const { return JTI; }
1167
1168  static bool classof(const JumpTableSDNode *) { return true; }
1169  static bool classof(const SDNode *N) {
1170    return N->getOpcode() == ISD::JumpTable ||
1171           N->getOpcode() == ISD::TargetJumpTable;
1172  }
1173};
1174
1175class ConstantPoolSDNode : public SDNode {
1176  union {
1177    Constant *ConstVal;
1178    MachineConstantPoolValue *MachineCPVal;
1179  } Val;
1180  int Offset;  // It's a MachineConstantPoolValue if top bit is set.
1181  unsigned Alignment;
1182  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1183protected:
1184  friend class SelectionDAG;
1185  ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT,
1186                     int o=0)
1187    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, VT),
1188      Offset(o), Alignment(0) {
1189    assert((int)Offset >= 0 && "Offset is too large");
1190    Val.ConstVal = c;
1191  }
1192  ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT, int o,
1193                     unsigned Align)
1194    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, VT),
1195      Offset(o), Alignment(Align) {
1196    assert((int)Offset >= 0 && "Offset is too large");
1197    Val.ConstVal = c;
1198  }
1199  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1200                     MVT::ValueType VT, int o=0)
1201    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, VT),
1202      Offset(o), Alignment(0) {
1203    assert((int)Offset >= 0 && "Offset is too large");
1204    Val.MachineCPVal = v;
1205    Offset |= 1 << (sizeof(unsigned)*8-1);
1206  }
1207  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1208                     MVT::ValueType VT, int o, unsigned Align)
1209    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, VT),
1210      Offset(o), Alignment(Align) {
1211    assert((int)Offset >= 0 && "Offset is too large");
1212    Val.MachineCPVal = v;
1213    Offset |= 1 << (sizeof(unsigned)*8-1);
1214  }
1215public:
1216
1217  bool isMachineConstantPoolEntry() const {
1218    return (int)Offset < 0;
1219  }
1220
1221  Constant *getConstVal() const {
1222    assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
1223    return Val.ConstVal;
1224  }
1225
1226  MachineConstantPoolValue *getMachineCPVal() const {
1227    assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
1228    return Val.MachineCPVal;
1229  }
1230
1231  int getOffset() const {
1232    return Offset & ~(1 << (sizeof(unsigned)*8-1));
1233  }
1234
1235  // Return the alignment of this constant pool object, which is either 0 (for
1236  // default alignment) or log2 of the desired value.
1237  unsigned getAlignment() const { return Alignment; }
1238
1239  const Type *getType() const;
1240
1241  static bool classof(const ConstantPoolSDNode *) { return true; }
1242  static bool classof(const SDNode *N) {
1243    return N->getOpcode() == ISD::ConstantPool ||
1244           N->getOpcode() == ISD::TargetConstantPool;
1245  }
1246};
1247
1248class BasicBlockSDNode : public SDNode {
1249  MachineBasicBlock *MBB;
1250  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1251protected:
1252  friend class SelectionDAG;
1253  BasicBlockSDNode(MachineBasicBlock *mbb)
1254    : SDNode(ISD::BasicBlock, MVT::Other), MBB(mbb) {}
1255public:
1256
1257  MachineBasicBlock *getBasicBlock() const { return MBB; }
1258
1259  static bool classof(const BasicBlockSDNode *) { return true; }
1260  static bool classof(const SDNode *N) {
1261    return N->getOpcode() == ISD::BasicBlock;
1262  }
1263};
1264
1265class SrcValueSDNode : public SDNode {
1266  const Value *V;
1267  int offset;
1268  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1269protected:
1270  friend class SelectionDAG;
1271  SrcValueSDNode(const Value* v, int o)
1272    : SDNode(ISD::SRCVALUE, MVT::Other), V(v), offset(o) {}
1273
1274public:
1275  const Value *getValue() const { return V; }
1276  int getOffset() const { return offset; }
1277
1278  static bool classof(const SrcValueSDNode *) { return true; }
1279  static bool classof(const SDNode *N) {
1280    return N->getOpcode() == ISD::SRCVALUE;
1281  }
1282};
1283
1284
1285class RegisterSDNode : public SDNode {
1286  unsigned Reg;
1287  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1288protected:
1289  friend class SelectionDAG;
1290  RegisterSDNode(unsigned reg, MVT::ValueType VT)
1291    : SDNode(ISD::Register, VT), Reg(reg) {}
1292public:
1293
1294  unsigned getReg() const { return Reg; }
1295
1296  static bool classof(const RegisterSDNode *) { return true; }
1297  static bool classof(const SDNode *N) {
1298    return N->getOpcode() == ISD::Register;
1299  }
1300};
1301
1302class ExternalSymbolSDNode : public SDNode {
1303  const char *Symbol;
1304  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1305protected:
1306  friend class SelectionDAG;
1307  ExternalSymbolSDNode(bool isTarget, const char *Sym, MVT::ValueType VT)
1308    : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, VT),
1309      Symbol(Sym) {
1310    }
1311public:
1312
1313  const char *getSymbol() const { return Symbol; }
1314
1315  static bool classof(const ExternalSymbolSDNode *) { return true; }
1316  static bool classof(const SDNode *N) {
1317    return N->getOpcode() == ISD::ExternalSymbol ||
1318           N->getOpcode() == ISD::TargetExternalSymbol;
1319  }
1320};
1321
1322class CondCodeSDNode : public SDNode {
1323  ISD::CondCode Condition;
1324  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1325protected:
1326  friend class SelectionDAG;
1327  CondCodeSDNode(ISD::CondCode Cond)
1328    : SDNode(ISD::CONDCODE, MVT::Other), Condition(Cond) {
1329  }
1330public:
1331
1332  ISD::CondCode get() const { return Condition; }
1333
1334  static bool classof(const CondCodeSDNode *) { return true; }
1335  static bool classof(const SDNode *N) {
1336    return N->getOpcode() == ISD::CONDCODE;
1337  }
1338};
1339
1340/// VTSDNode - This class is used to represent MVT::ValueType's, which are used
1341/// to parameterize some operations.
1342class VTSDNode : public SDNode {
1343  MVT::ValueType ValueType;
1344  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1345protected:
1346  friend class SelectionDAG;
1347  VTSDNode(MVT::ValueType VT)
1348    : SDNode(ISD::VALUETYPE, MVT::Other), ValueType(VT) {}
1349public:
1350
1351  MVT::ValueType getVT() const { return ValueType; }
1352
1353  static bool classof(const VTSDNode *) { return true; }
1354  static bool classof(const SDNode *N) {
1355    return N->getOpcode() == ISD::VALUETYPE;
1356  }
1357};
1358
1359/// LoadSDNode - This class is used to represent ISD::LOAD nodes.
1360///
1361class LoadSDNode : public SDNode {
1362  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1363
1364  // AddrMode - unindexed, pre-indexed, post-indexed.
1365  ISD::MemIndexedMode AddrMode;
1366
1367  // ExtType - non-ext, anyext, sext, zext.
1368  ISD::LoadExtType ExtType;
1369
1370  // LoadedVT - VT of loaded value before extension.
1371  MVT::ValueType LoadedVT;
1372
1373  // SrcValue - Memory location for alias analysis.
1374  const Value *SrcValue;
1375
1376  // SVOffset - Memory location offset.
1377  int SVOffset;
1378
1379  // Alignment - Alignment of memory location in bytes.
1380  unsigned Alignment;
1381
1382  // IsVolatile - True if the load is volatile.
1383  bool IsVolatile;
1384protected:
1385  friend class SelectionDAG;
1386  LoadSDNode(SDOperand Chain, SDOperand Ptr, SDOperand Off,
1387             ISD::MemIndexedMode AM, ISD::LoadExtType ETy, MVT::ValueType LVT,
1388             const Value *SV, int O=0, unsigned Align=1, bool Vol=false)
1389    : SDNode(ISD::LOAD, Chain, Ptr, Off),
1390      AddrMode(AM), ExtType(ETy), LoadedVT(LVT), SrcValue(SV), SVOffset(O),
1391      Alignment(Align), IsVolatile(Vol) {
1392    assert((Off.getOpcode() == ISD::UNDEF || AddrMode != ISD::UNINDEXED) &&
1393           "Only indexed load has a non-undef offset operand");
1394  }
1395public:
1396
1397  const SDOperand getChain() const { return getOperand(0); }
1398  const SDOperand getBasePtr() const { return getOperand(1); }
1399  const SDOperand getOffset() const { return getOperand(2); }
1400  ISD::MemIndexedMode getAddressingMode() const { return AddrMode; }
1401  ISD::LoadExtType getExtensionType() const { return ExtType; }
1402  MVT::ValueType getLoadedVT() const { return LoadedVT; }
1403  const Value *getSrcValue() const { return SrcValue; }
1404  int getSrcValueOffset() const { return SVOffset; }
1405  unsigned getAlignment() const { return Alignment; }
1406  bool isVolatile() const { return IsVolatile; }
1407
1408  static bool classof(const LoadSDNode *) { return true; }
1409  static bool classof(const SDNode *N) {
1410    return N->getOpcode() == ISD::LOAD;
1411  }
1412};
1413
1414/// StoreSDNode - This class is used to represent ISD::STORE nodes.
1415///
1416class StoreSDNode : public SDNode {
1417  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1418
1419  // AddrMode - unindexed, pre-indexed, post-indexed.
1420  ISD::MemIndexedMode AddrMode;
1421
1422  // IsTruncStore - True is the op does a truncation before store.
1423  bool IsTruncStore;
1424
1425  // StoredVT - VT of the value after truncation.
1426  MVT::ValueType StoredVT;
1427
1428  // SrcValue - Memory location for alias analysis.
1429  const Value *SrcValue;
1430
1431  // SVOffset - Memory location offset.
1432  int SVOffset;
1433
1434  // Alignment - Alignment of memory location in bytes.
1435  unsigned Alignment;
1436
1437  // IsVolatile - True if the store is volatile.
1438  bool IsVolatile;
1439protected:
1440  friend class SelectionDAG;
1441  StoreSDNode(SDOperand Chain, SDOperand Value, SDOperand Ptr, SDOperand Off,
1442              ISD::MemIndexedMode AM, bool isTrunc, MVT::ValueType SVT,
1443              const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
1444    : SDNode(ISD::STORE, Chain, Value, Ptr, Off),
1445      AddrMode(AM), IsTruncStore(isTrunc), StoredVT(SVT), SrcValue(SV),
1446      SVOffset(O), Alignment(Align), IsVolatile(Vol) {
1447    assert((Off.getOpcode() == ISD::UNDEF || AddrMode != ISD::UNINDEXED) &&
1448           "Only indexed store has a non-undef offset operand");
1449  }
1450public:
1451
1452  const SDOperand getChain() const { return getOperand(0); }
1453  const SDOperand getValue() const { return getOperand(1); }
1454  const SDOperand getBasePtr() const { return getOperand(2); }
1455  const SDOperand getOffset() const { return getOperand(3); }
1456  ISD::MemIndexedMode getAddressingMode() const { return AddrMode; }
1457  bool isTruncatingStore() const { return IsTruncStore; }
1458  MVT::ValueType getStoredVT() const { return StoredVT; }
1459  const Value *getSrcValue() const { return SrcValue; }
1460  int getSrcValueOffset() const { return SVOffset; }
1461  unsigned getAlignment() const { return Alignment; }
1462  bool isVolatile() const { return IsVolatile; }
1463
1464  static bool classof(const StoreSDNode *) { return true; }
1465  static bool classof(const SDNode *N) {
1466    return N->getOpcode() == ISD::STORE;
1467  }
1468};
1469
1470
1471class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
1472  SDNode *Node;
1473  unsigned Operand;
1474
1475  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
1476public:
1477  bool operator==(const SDNodeIterator& x) const {
1478    return Operand == x.Operand;
1479  }
1480  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
1481
1482  const SDNodeIterator &operator=(const SDNodeIterator &I) {
1483    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
1484    Operand = I.Operand;
1485    return *this;
1486  }
1487
1488  pointer operator*() const {
1489    return Node->getOperand(Operand).Val;
1490  }
1491  pointer operator->() const { return operator*(); }
1492
1493  SDNodeIterator& operator++() {                // Preincrement
1494    ++Operand;
1495    return *this;
1496  }
1497  SDNodeIterator operator++(int) { // Postincrement
1498    SDNodeIterator tmp = *this; ++*this; return tmp;
1499  }
1500
1501  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
1502  static SDNodeIterator end  (SDNode *N) {
1503    return SDNodeIterator(N, N->getNumOperands());
1504  }
1505
1506  unsigned getOperand() const { return Operand; }
1507  const SDNode *getNode() const { return Node; }
1508};
1509
1510template <> struct GraphTraits<SDNode*> {
1511  typedef SDNode NodeType;
1512  typedef SDNodeIterator ChildIteratorType;
1513  static inline NodeType *getEntryNode(SDNode *N) { return N; }
1514  static inline ChildIteratorType child_begin(NodeType *N) {
1515    return SDNodeIterator::begin(N);
1516  }
1517  static inline ChildIteratorType child_end(NodeType *N) {
1518    return SDNodeIterator::end(N);
1519  }
1520};
1521
1522template<>
1523struct ilist_traits<SDNode> {
1524  static SDNode *getPrev(const SDNode *N) { return N->Prev; }
1525  static SDNode *getNext(const SDNode *N) { return N->Next; }
1526
1527  static void setPrev(SDNode *N, SDNode *Prev) { N->Prev = Prev; }
1528  static void setNext(SDNode *N, SDNode *Next) { N->Next = Next; }
1529
1530  static SDNode *createSentinel() {
1531    return new SDNode(ISD::EntryToken, MVT::Other);
1532  }
1533  static void destroySentinel(SDNode *N) { delete N; }
1534  //static SDNode *createNode(const SDNode &V) { return new SDNode(V); }
1535
1536
1537  void addNodeToList(SDNode *NTy) {}
1538  void removeNodeFromList(SDNode *NTy) {}
1539  void transferNodesFromList(iplist<SDNode, ilist_traits> &L2,
1540                             const ilist_iterator<SDNode> &X,
1541                             const ilist_iterator<SDNode> &Y) {}
1542};
1543
1544namespace ISD {
1545  /// isNON_EXTLoad - Returns true if the specified node is a non-extending
1546  /// load.
1547  inline bool isNON_EXTLoad(const SDNode *N) {
1548    return N->getOpcode() == ISD::LOAD &&
1549      cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
1550  }
1551
1552  /// isEXTLoad - Returns true if the specified node is a EXTLOAD.
1553  ///
1554  inline bool isEXTLoad(const SDNode *N) {
1555    return N->getOpcode() == ISD::LOAD &&
1556      cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
1557  }
1558
1559  /// isSEXTLoad - Returns true if the specified node is a SEXTLOAD.
1560  ///
1561  inline bool isSEXTLoad(const SDNode *N) {
1562    return N->getOpcode() == ISD::LOAD &&
1563      cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
1564  }
1565
1566  /// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD.
1567  ///
1568  inline bool isZEXTLoad(const SDNode *N) {
1569    return N->getOpcode() == ISD::LOAD &&
1570      cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
1571  }
1572
1573  /// isNON_TRUNCStore - Returns true if the specified node is a non-truncating
1574  /// store.
1575  inline bool isNON_TRUNCStore(const SDNode *N) {
1576    return N->getOpcode() == ISD::STORE &&
1577      !cast<StoreSDNode>(N)->isTruncatingStore();
1578  }
1579
1580  /// isTRUNCStore - Returns true if the specified node is a truncating
1581  /// store.
1582  inline bool isTRUNCStore(const SDNode *N) {
1583    return N->getOpcode() == ISD::STORE &&
1584      cast<StoreSDNode>(N)->isTruncatingStore();
1585  }
1586}
1587
1588
1589} // end llvm namespace
1590
1591#endif
1592