SelectionDAGNodes.h revision ea7b527aa56ad0fe547d3d99b21e845a49a031cb
1//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SDNode class and derived classes, which are used to
11// represent the nodes and operations present in a SelectionDAG.  These nodes
12// and operations are machine code level operations, with some similarities to
13// the GCC RTL representation.
14//
15// Clients should include the SelectionDAG.h file instead of this file directly.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20#define LLVM_CODEGEN_SELECTIONDAGNODES_H
21
22#include "llvm/Value.h"
23#include "llvm/Constants.h"
24#include "llvm/ADT/FoldingSet.h"
25#include "llvm/ADT/GraphTraits.h"
26#include "llvm/ADT/iterator.h"
27#include "llvm/ADT/ilist_node.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/CodeGen/ValueTypes.h"
30#include "llvm/CodeGen/MachineMemOperand.h"
31#include "llvm/Support/Allocator.h"
32#include "llvm/Support/RecyclingAllocator.h"
33#include "llvm/Support/DataTypes.h"
34#include <cassert>
35
36namespace llvm {
37
38class SelectionDAG;
39class GlobalValue;
40class MachineBasicBlock;
41class MachineConstantPoolValue;
42class SDNode;
43class CompileUnitDesc;
44template <typename T> struct DenseMapInfo;
45template <typename T> struct simplify_type;
46template <typename T> struct ilist_traits;
47
48/// SDVTList - This represents a list of ValueType's that has been intern'd by
49/// a SelectionDAG.  Instances of this simple value class are returned by
50/// SelectionDAG::getVTList(...).
51///
52struct SDVTList {
53  const MVT *VTs;
54  unsigned short NumVTs;
55};
56
57/// ISD namespace - This namespace contains an enum which represents all of the
58/// SelectionDAG node types and value types.
59///
60/// If you add new elements here you should increase OpActionsCapacity in
61/// TargetLowering.h by the number of new elements.
62namespace ISD {
63
64  //===--------------------------------------------------------------------===//
65  /// ISD::NodeType enum - This enum defines all of the operators valid in a
66  /// SelectionDAG.
67  ///
68  enum NodeType {
69    // DELETED_NODE - This is an illegal flag value that is used to catch
70    // errors.  This opcode is not a legal opcode for any node.
71    DELETED_NODE,
72
73    // EntryToken - This is the marker used to indicate the start of the region.
74    EntryToken,
75
76    // TokenFactor - This node takes multiple tokens as input and produces a
77    // single token result.  This is used to represent the fact that the operand
78    // operators are independent of each other.
79    TokenFactor,
80
81    // AssertSext, AssertZext - These nodes record if a register contains a
82    // value that has already been zero or sign extended from a narrower type.
83    // These nodes take two operands.  The first is the node that has already
84    // been extended, and the second is a value type node indicating the width
85    // of the extension
86    AssertSext, AssertZext,
87
88    // Various leaf nodes.
89    BasicBlock, VALUETYPE, ARG_FLAGS, CONDCODE, Register,
90    Constant, ConstantFP,
91    GlobalAddress, GlobalTLSAddress, FrameIndex,
92    JumpTable, ConstantPool, ExternalSymbol,
93
94    // The address of the GOT
95    GLOBAL_OFFSET_TABLE,
96
97    // FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
98    // llvm.returnaddress on the DAG.  These nodes take one operand, the index
99    // of the frame or return address to return.  An index of zero corresponds
100    // to the current function's frame or return address, an index of one to the
101    // parent's frame or return address, and so on.
102    FRAMEADDR, RETURNADDR,
103
104    // FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
105    // first (possible) on-stack argument. This is needed for correct stack
106    // adjustment during unwind.
107    FRAME_TO_ARGS_OFFSET,
108
109    // RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the
110    // address of the exception block on entry to an landing pad block.
111    EXCEPTIONADDR,
112
113    // RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents
114    // the selection index of the exception thrown.
115    EHSELECTION,
116
117    // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
118    // 'eh_return' gcc dwarf builtin, which is used to return from
119    // exception. The general meaning is: adjust stack by OFFSET and pass
120    // execution to HANDLER. Many platform-related details also :)
121    EH_RETURN,
122
123    // TargetConstant* - Like Constant*, but the DAG does not do any folding or
124    // simplification of the constant.
125    TargetConstant,
126    TargetConstantFP,
127
128    // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
129    // anything else with this node, and this is valid in the target-specific
130    // dag, turning into a GlobalAddress operand.
131    TargetGlobalAddress,
132    TargetGlobalTLSAddress,
133    TargetFrameIndex,
134    TargetJumpTable,
135    TargetConstantPool,
136    TargetExternalSymbol,
137
138    /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
139    /// This node represents a target intrinsic function with no side effects.
140    /// The first operand is the ID number of the intrinsic from the
141    /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
142    /// node has returns the result of the intrinsic.
143    INTRINSIC_WO_CHAIN,
144
145    /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
146    /// This node represents a target intrinsic function with side effects that
147    /// returns a result.  The first operand is a chain pointer.  The second is
148    /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
149    /// operands to the intrinsic follow.  The node has two results, the result
150    /// of the intrinsic and an output chain.
151    INTRINSIC_W_CHAIN,
152
153    /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
154    /// This node represents a target intrinsic function with side effects that
155    /// does not return a result.  The first operand is a chain pointer.  The
156    /// second is the ID number of the intrinsic from the llvm::Intrinsic
157    /// namespace.  The operands to the intrinsic follow.
158    INTRINSIC_VOID,
159
160    // CopyToReg - This node has three operands: a chain, a register number to
161    // set to this value, and a value.
162    CopyToReg,
163
164    // CopyFromReg - This node indicates that the input value is a virtual or
165    // physical register that is defined outside of the scope of this
166    // SelectionDAG.  The register is available from the RegisterSDNode object.
167    CopyFromReg,
168
169    // UNDEF - An undefined node
170    UNDEF,
171
172    /// FORMAL_ARGUMENTS(CHAIN, CC#, ISVARARG, FLAG0, ..., FLAGn) - This node
173    /// represents the formal arguments for a function.  CC# is a Constant value
174    /// indicating the calling convention of the function, and ISVARARG is a
175    /// flag that indicates whether the function is varargs or not. This node
176    /// has one result value for each incoming argument, plus one for the output
177    /// chain. It must be custom legalized. See description of CALL node for
178    /// FLAG argument contents explanation.
179    ///
180    FORMAL_ARGUMENTS,
181
182    /// RV1, RV2...RVn, CHAIN = CALL(CHAIN, CALLEE,
183    ///                              ARG0, FLAG0, ARG1, FLAG1, ... ARGn, FLAGn)
184    /// This node represents a fully general function call, before the legalizer
185    /// runs.  This has one result value for each argument / flag pair, plus
186    /// a chain result. It must be custom legalized. Flag argument indicates
187    /// misc. argument attributes. Currently:
188    /// Bit 0 - signness
189    /// Bit 1 - 'inreg' attribute
190    /// Bit 2 - 'sret' attribute
191    /// Bit 4 - 'byval' attribute
192    /// Bit 5 - 'nest' attribute
193    /// Bit 6-9 - alignment of byval structures
194    /// Bit 10-26 - size of byval structures
195    /// Bits 31:27 - argument ABI alignment in the first argument piece and
196    /// alignment '1' in other argument pieces.
197    ///
198    /// CALL nodes use the CallSDNode subclass of SDNode, which
199    /// additionally carries information about the calling convention,
200    /// whether the call is varargs, and if it's marked as a tail call.
201    ///
202    CALL,
203
204    // EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
205    // a Constant, which is required to be operand #1) half of the integer or
206    // float value specified as operand #0.  This is only for use before
207    // legalization, for values that will be broken into multiple registers.
208    EXTRACT_ELEMENT,
209
210    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
211    // two values of the same integer value type, this produces a value twice as
212    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
213    BUILD_PAIR,
214
215    // MERGE_VALUES - This node takes multiple discrete operands and returns
216    // them all as its individual results.  This nodes has exactly the same
217    // number of inputs and outputs, and is only valid before legalization.
218    // This node is useful for some pieces of the code generator that want to
219    // think about a single node with multiple results, not multiple nodes.
220    MERGE_VALUES,
221
222    // Simple integer binary arithmetic operators.
223    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
224
225    // SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
226    // a signed/unsigned value of type i[2*N], and return the full value as
227    // two results, each of type iN.
228    SMUL_LOHI, UMUL_LOHI,
229
230    // SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
231    // remainder result.
232    SDIVREM, UDIVREM,
233
234    // CARRY_FALSE - This node is used when folding other nodes,
235    // like ADDC/SUBC, which indicate the carry result is always false.
236    CARRY_FALSE,
237
238    // Carry-setting nodes for multiple precision addition and subtraction.
239    // These nodes take two operands of the same value type, and produce two
240    // results.  The first result is the normal add or sub result, the second
241    // result is the carry flag result.
242    ADDC, SUBC,
243
244    // Carry-using nodes for multiple precision addition and subtraction.  These
245    // nodes take three operands: The first two are the normal lhs and rhs to
246    // the add or sub, and the third is the input carry flag.  These nodes
247    // produce two results; the normal result of the add or sub, and the output
248    // carry flag.  These nodes both read and write a carry flag to allow them
249    // to them to be chained together for add and sub of arbitrarily large
250    // values.
251    ADDE, SUBE,
252
253    // Overflow-aware nodes for arithmetic operations. These nodes take two
254    // operands: the normal lhs and rhs to the add. They produce two results:
255    // the normal result of the add, and a flag indicating whether an overflow
256    // occured. These nodes are generated from the llvm.[su]add.with.overflow
257    // intrinsics. They are lowered by target-dependent code.
258    SADDO, UADDO,
259
260    // Simple binary floating point operators.
261    FADD, FSUB, FMUL, FDIV, FREM,
262
263    // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
264    // DAG node does not require that X and Y have the same type, just that they
265    // are both floating point.  X and the result must have the same type.
266    // FCOPYSIGN(f32, f64) is allowed.
267    FCOPYSIGN,
268
269    // INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
270    // value as an integer 0/1 value.
271    FGETSIGN,
272
273    /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector
274    /// with the specified, possibly variable, elements.  The number of elements
275    /// is required to be a power of two.
276    BUILD_VECTOR,
277
278    /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
279    /// at IDX replaced with VAL.  If the type of VAL is larger than the vector
280    /// element type then VAL is truncated before replacement.
281    INSERT_VECTOR_ELT,
282
283    /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
284    /// identified by the (potentially variable) element number IDX.
285    EXTRACT_VECTOR_ELT,
286
287    /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
288    /// vector type with the same length and element type, this produces a
289    /// concatenated vector result value, with length equal to the sum of the
290    /// lengths of the input vectors.
291    CONCAT_VECTORS,
292
293    /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
294    /// vector value) starting with the (potentially variable) element number
295    /// IDX, which must be a multiple of the result vector length.
296    EXTRACT_SUBVECTOR,
297
298    /// VECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC) - Returns a vector, of the same
299    /// type as VEC1/VEC2.  SHUFFLEVEC is a BUILD_VECTOR of constant int values
300    /// (maybe of an illegal datatype) or undef that indicate which value each
301    /// result element will get.  The elements of VEC1/VEC2 are enumerated in
302    /// order.  This is quite similar to the Altivec 'vperm' instruction, except
303    /// that the indices must be constants and are in terms of the element size
304    /// of VEC1/VEC2, not in terms of bytes.
305    VECTOR_SHUFFLE,
306
307    /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
308    /// scalar value into element 0 of the resultant vector type.  The top
309    /// elements 1 to N-1 of the N-element vector are undefined.
310    SCALAR_TO_VECTOR,
311
312    // EXTRACT_SUBREG - This node is used to extract a sub-register value.
313    // This node takes a superreg and a constant sub-register index as operands.
314    // Note sub-register indices must be increasing. That is, if the
315    // sub-register index of a 8-bit sub-register is N, then the index for a
316    // 16-bit sub-register must be at least N+1.
317    EXTRACT_SUBREG,
318
319    // INSERT_SUBREG - This node is used to insert a sub-register value.
320    // This node takes a superreg, a subreg value, and a constant sub-register
321    // index as operands.
322    INSERT_SUBREG,
323
324    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
325    // an unsigned/signed value of type i[2*N], then return the top part.
326    MULHU, MULHS,
327
328    // Bitwise operators - logical and, logical or, logical xor, shift left,
329    // shift right algebraic (shift in sign bits), shift right logical (shift in
330    // zeroes), rotate left, rotate right, and byteswap.
331    AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
332
333    // Counting operators
334    CTTZ, CTLZ, CTPOP,
335
336    // Select(COND, TRUEVAL, FALSEVAL).  If the type of the boolean COND is not
337    // i1 then the high bits must conform to getSetCCResultContents.
338    SELECT,
339
340    // Select with condition operator - This selects between a true value and
341    // a false value (ops #2 and #3) based on the boolean result of comparing
342    // the lhs and rhs (ops #0 and #1) of a conditional expression with the
343    // condition code in op #4, a CondCodeSDNode.
344    SELECT_CC,
345
346    // SetCC operator - This evaluates to a true value iff the condition is
347    // true.  If the result value type is not i1 then the high bits conform
348    // to getSetCCResultContents.  The operands to this are the left and right
349    // operands to compare (ops #0, and #1) and the condition code to compare
350    // them with (op #2) as a CondCodeSDNode.
351    SETCC,
352
353    // Vector SetCC operator - This evaluates to a vector of integer elements
354    // with the high bit in each element set to true if the comparison is true
355    // and false if the comparison is false.  All other bits in each element
356    // are undefined.  The operands to this are the left and right operands
357    // to compare (ops #0, and #1) and the condition code to compare them with
358    // (op #2) as a CondCodeSDNode.
359    VSETCC,
360
361    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
362    // integer shift operations, just like ADD/SUB_PARTS.  The operation
363    // ordering is:
364    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
365    SHL_PARTS, SRA_PARTS, SRL_PARTS,
366
367    // Conversion operators.  These are all single input single output
368    // operations.  For all of these, the result type must be strictly
369    // wider or narrower (depending on the operation) than the source
370    // type.
371
372    // SIGN_EXTEND - Used for integer types, replicating the sign bit
373    // into new bits.
374    SIGN_EXTEND,
375
376    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
377    ZERO_EXTEND,
378
379    // ANY_EXTEND - Used for integer types.  The high bits are undefined.
380    ANY_EXTEND,
381
382    // TRUNCATE - Completely drop the high bits.
383    TRUNCATE,
384
385    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
386    // depends on the first letter) to floating point.
387    SINT_TO_FP,
388    UINT_TO_FP,
389
390    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
391    // sign extend a small value in a large integer register (e.g. sign
392    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
393    // with the 7th bit).  The size of the smaller type is indicated by the 1th
394    // operand, a ValueType node.
395    SIGN_EXTEND_INREG,
396
397    /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
398    /// integer.
399    FP_TO_SINT,
400    FP_TO_UINT,
401
402    /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
403    /// down to the precision of the destination VT.  TRUNC is a flag, which is
404    /// always an integer that is zero or one.  If TRUNC is 0, this is a
405    /// normal rounding, if it is 1, this FP_ROUND is known to not change the
406    /// value of Y.
407    ///
408    /// The TRUNC = 1 case is used in cases where we know that the value will
409    /// not be modified by the node, because Y is not using any of the extra
410    /// precision of source type.  This allows certain transformations like
411    /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
412    /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
413    FP_ROUND,
414
415    // FLT_ROUNDS_ - Returns current rounding mode:
416    // -1 Undefined
417    //  0 Round to 0
418    //  1 Round to nearest
419    //  2 Round to +inf
420    //  3 Round to -inf
421    FLT_ROUNDS_,
422
423    /// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and
424    /// rounds it to a floating point value.  It then promotes it and returns it
425    /// in a register of the same size.  This operation effectively just
426    /// discards excess precision.  The type to round down to is specified by
427    /// the VT operand, a VTSDNode.
428    FP_ROUND_INREG,
429
430    /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
431    FP_EXTEND,
432
433    // BIT_CONVERT - Theis operator converts between integer and FP values, as
434    // if one was stored to memory as integer and the other was loaded from the
435    // same address (or equivalently for vector format conversions, etc).  The
436    // source and result are required to have the same bit size (e.g.
437    // f32 <-> i32).  This can also be used for int-to-int or fp-to-fp
438    // conversions, but that is a noop, deleted by getNode().
439    BIT_CONVERT,
440
441    // CONVERT_RNDSAT - This operator is used to support various conversions
442    // between various types (float, signed, unsigned and vectors of those
443    // types) with rounding and saturation. NOTE: Avoid using this operator as
444    // most target don't support it and the operator might be removed in the
445    // future. It takes the following arguments:
446    //   0) value
447    //   1) dest type (type to convert to)
448    //   2) src type (type to convert from)
449    //   3) rounding imm
450    //   4) saturation imm
451    //   5) ISD::CvtCode indicating the type of conversion to do
452    CONVERT_RNDSAT,
453
454    // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
455    // FLOG, FLOG2, FLOG10, FEXP, FEXP2,
456    // FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR - Perform various unary floating
457    // point operations. These are inspired by libm.
458    FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
459    FLOG, FLOG2, FLOG10, FEXP, FEXP2,
460    FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR,
461
462    // LOAD and STORE have token chains as their first operand, then the same
463    // operands as an LLVM load/store instruction, then an offset node that
464    // is added / subtracted from the base pointer to form the address (for
465    // indexed memory ops).
466    LOAD, STORE,
467
468    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
469    // to a specified boundary.  This node always has two return values: a new
470    // stack pointer value and a chain. The first operand is the token chain,
471    // the second is the number of bytes to allocate, and the third is the
472    // alignment boundary.  The size is guaranteed to be a multiple of the stack
473    // alignment, and the alignment is guaranteed to be bigger than the stack
474    // alignment (if required) or 0 to get standard stack alignment.
475    DYNAMIC_STACKALLOC,
476
477    // Control flow instructions.  These all have token chains.
478
479    // BR - Unconditional branch.  The first operand is the chain
480    // operand, the second is the MBB to branch to.
481    BR,
482
483    // BRIND - Indirect branch.  The first operand is the chain, the second
484    // is the value to branch to, which must be of the same type as the target's
485    // pointer type.
486    BRIND,
487
488    // BR_JT - Jumptable branch. The first operand is the chain, the second
489    // is the jumptable index, the last one is the jumptable entry index.
490    BR_JT,
491
492    // BRCOND - Conditional branch.  The first operand is the chain, the
493    // second is the condition, the third is the block to branch to if the
494    // condition is true.  If the type of the condition is not i1, then the
495    // high bits must conform to getSetCCResultContents.
496    BRCOND,
497
498    // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
499    // that the condition is represented as condition code, and two nodes to
500    // compare, rather than as a combined SetCC node.  The operands in order are
501    // chain, cc, lhs, rhs, block to branch to if condition is true.
502    BR_CC,
503
504    // RET - Return from function.  The first operand is the chain,
505    // and any subsequent operands are pairs of return value and return value
506    // attributes (see CALL for description of attributes) for the function.
507    // This operation can have variable number of operands.
508    RET,
509
510    // INLINEASM - Represents an inline asm block.  This node always has two
511    // return values: a chain and a flag result.  The inputs are as follows:
512    //   Operand #0   : Input chain.
513    //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
514    //   Operand #2n+2: A RegisterNode.
515    //   Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
516    //   Operand #last: Optional, an incoming flag.
517    INLINEASM,
518
519    // DBG_LABEL, EH_LABEL - Represents a label in mid basic block used to track
520    // locations needed for debug and exception handling tables.  These nodes
521    // take a chain as input and return a chain.
522    DBG_LABEL,
523    EH_LABEL,
524
525    // DECLARE - Represents a llvm.dbg.declare intrinsic. It's used to track
526    // local variable declarations for debugging information. First operand is
527    // a chain, while the next two operands are first two arguments (address
528    // and variable) of a llvm.dbg.declare instruction.
529    DECLARE,
530
531    // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
532    // value, the same type as the pointer type for the system, and an output
533    // chain.
534    STACKSAVE,
535
536    // STACKRESTORE has two operands, an input chain and a pointer to restore to
537    // it returns an output chain.
538    STACKRESTORE,
539
540    // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
541    // a call sequence, and carry arbitrary information that target might want
542    // to know.  The first operand is a chain, the rest are specified by the
543    // target and not touched by the DAG optimizers.
544    // CALLSEQ_START..CALLSEQ_END pairs may not be nested.
545    CALLSEQ_START,  // Beginning of a call sequence
546    CALLSEQ_END,    // End of a call sequence
547
548    // VAARG - VAARG has three operands: an input chain, a pointer, and a
549    // SRCVALUE.  It returns a pair of values: the vaarg value and a new chain.
550    VAARG,
551
552    // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
553    // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
554    // source.
555    VACOPY,
556
557    // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
558    // pointer, and a SRCVALUE.
559    VAEND, VASTART,
560
561    // SRCVALUE - This is a node type that holds a Value* that is used to
562    // make reference to a value in the LLVM IR.
563    SRCVALUE,
564
565    // MEMOPERAND - This is a node that contains a MachineMemOperand which
566    // records information about a memory reference. This is used to make
567    // AliasAnalysis queries from the backend.
568    MEMOPERAND,
569
570    // PCMARKER - This corresponds to the pcmarker intrinsic.
571    PCMARKER,
572
573    // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
574    // The only operand is a chain and a value and a chain are produced.  The
575    // value is the contents of the architecture specific cycle counter like
576    // register (or other high accuracy low latency clock source)
577    READCYCLECOUNTER,
578
579    // HANDLENODE node - Used as a handle for various purposes.
580    HANDLENODE,
581
582    // DBG_STOPPOINT - This node is used to represent a source location for
583    // debug info.  It takes token chain as input, and carries a line number,
584    // column number, and a pointer to a CompileUnitDesc object identifying
585    // the containing compilation unit.  It produces a token chain as output.
586    DBG_STOPPOINT,
587
588    // DEBUG_LOC - This node is used to represent source line information
589    // embedded in the code.  It takes a token chain as input, then a line
590    // number, then a column then a file id (provided by MachineModuleInfo.) It
591    // produces a token chain as output.
592    DEBUG_LOC,
593
594    // TRAMPOLINE - This corresponds to the init_trampoline intrinsic.
595    // It takes as input a token chain, the pointer to the trampoline,
596    // the pointer to the nested function, the pointer to pass for the
597    // 'nest' parameter, a SRCVALUE for the trampoline and another for
598    // the nested function (allowing targets to access the original
599    // Function*).  It produces the result of the intrinsic and a token
600    // chain as output.
601    TRAMPOLINE,
602
603    // TRAP - Trapping instruction
604    TRAP,
605
606    // PREFETCH - This corresponds to a prefetch intrinsic. It takes chains are
607    // their first operand. The other operands are the address to prefetch,
608    // read / write specifier, and locality specifier.
609    PREFETCH,
610
611    // OUTCHAIN = MEMBARRIER(INCHAIN, load-load, load-store, store-load,
612    //                       store-store, device)
613    // This corresponds to the memory.barrier intrinsic.
614    // it takes an input chain, 4 operands to specify the type of barrier, an
615    // operand specifying if the barrier applies to device and uncached memory
616    // and produces an output chain.
617    MEMBARRIER,
618
619    // Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
620    // this corresponds to the atomic.lcs intrinsic.
621    // cmp is compared to *ptr, and if equal, swap is stored in *ptr.
622    // the return is always the original value in *ptr
623    ATOMIC_CMP_SWAP_8,
624    ATOMIC_CMP_SWAP_16,
625    ATOMIC_CMP_SWAP_32,
626    ATOMIC_CMP_SWAP_64,
627
628    // Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
629    // this corresponds to the atomic.swap intrinsic.
630    // amt is stored to *ptr atomically.
631    // the return is always the original value in *ptr
632    ATOMIC_SWAP_8,
633    ATOMIC_SWAP_16,
634    ATOMIC_SWAP_32,
635    ATOMIC_SWAP_64,
636
637    // Val, OUTCHAIN = ATOMIC_L[OpName]S(INCHAIN, ptr, amt)
638    // this corresponds to the atomic.[OpName] intrinsic.
639    // op(*ptr, amt) is stored to *ptr atomically.
640    // the return is always the original value in *ptr
641    ATOMIC_LOAD_ADD_8,
642    ATOMIC_LOAD_SUB_8,
643    ATOMIC_LOAD_AND_8,
644    ATOMIC_LOAD_OR_8,
645    ATOMIC_LOAD_XOR_8,
646    ATOMIC_LOAD_NAND_8,
647    ATOMIC_LOAD_MIN_8,
648    ATOMIC_LOAD_MAX_8,
649    ATOMIC_LOAD_UMIN_8,
650    ATOMIC_LOAD_UMAX_8,
651    ATOMIC_LOAD_ADD_16,
652    ATOMIC_LOAD_SUB_16,
653    ATOMIC_LOAD_AND_16,
654    ATOMIC_LOAD_OR_16,
655    ATOMIC_LOAD_XOR_16,
656    ATOMIC_LOAD_NAND_16,
657    ATOMIC_LOAD_MIN_16,
658    ATOMIC_LOAD_MAX_16,
659    ATOMIC_LOAD_UMIN_16,
660    ATOMIC_LOAD_UMAX_16,
661    ATOMIC_LOAD_ADD_32,
662    ATOMIC_LOAD_SUB_32,
663    ATOMIC_LOAD_AND_32,
664    ATOMIC_LOAD_OR_32,
665    ATOMIC_LOAD_XOR_32,
666    ATOMIC_LOAD_NAND_32,
667    ATOMIC_LOAD_MIN_32,
668    ATOMIC_LOAD_MAX_32,
669    ATOMIC_LOAD_UMIN_32,
670    ATOMIC_LOAD_UMAX_32,
671    ATOMIC_LOAD_ADD_64,
672    ATOMIC_LOAD_SUB_64,
673    ATOMIC_LOAD_AND_64,
674    ATOMIC_LOAD_OR_64,
675    ATOMIC_LOAD_XOR_64,
676    ATOMIC_LOAD_NAND_64,
677    ATOMIC_LOAD_MIN_64,
678    ATOMIC_LOAD_MAX_64,
679    ATOMIC_LOAD_UMIN_64,
680    ATOMIC_LOAD_UMAX_64,
681
682    // BUILTIN_OP_END - This must be the last enum value in this list.
683    BUILTIN_OP_END
684  };
685
686  /// Node predicates
687
688  /// isBuildVectorAllOnes - Return true if the specified node is a
689  /// BUILD_VECTOR where all of the elements are ~0 or undef.
690  bool isBuildVectorAllOnes(const SDNode *N);
691
692  /// isBuildVectorAllZeros - Return true if the specified node is a
693  /// BUILD_VECTOR where all of the elements are 0 or undef.
694  bool isBuildVectorAllZeros(const SDNode *N);
695
696  /// isScalarToVector - Return true if the specified node is a
697  /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
698  /// element is not an undef.
699  bool isScalarToVector(const SDNode *N);
700
701  /// isDebugLabel - Return true if the specified node represents a debug
702  /// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
703  bool isDebugLabel(const SDNode *N);
704
705  //===--------------------------------------------------------------------===//
706  /// MemIndexedMode enum - This enum defines the load / store indexed
707  /// addressing modes.
708  ///
709  /// UNINDEXED    "Normal" load / store. The effective address is already
710  ///              computed and is available in the base pointer. The offset
711  ///              operand is always undefined. In addition to producing a
712  ///              chain, an unindexed load produces one value (result of the
713  ///              load); an unindexed store does not produce a value.
714  ///
715  /// PRE_INC      Similar to the unindexed mode where the effective address is
716  /// PRE_DEC      the value of the base pointer add / subtract the offset.
717  ///              It considers the computation as being folded into the load /
718  ///              store operation (i.e. the load / store does the address
719  ///              computation as well as performing the memory transaction).
720  ///              The base operand is always undefined. In addition to
721  ///              producing a chain, pre-indexed load produces two values
722  ///              (result of the load and the result of the address
723  ///              computation); a pre-indexed store produces one value (result
724  ///              of the address computation).
725  ///
726  /// POST_INC     The effective address is the value of the base pointer. The
727  /// POST_DEC     value of the offset operand is then added to / subtracted
728  ///              from the base after memory transaction. In addition to
729  ///              producing a chain, post-indexed load produces two values
730  ///              (the result of the load and the result of the base +/- offset
731  ///              computation); a post-indexed store produces one value (the
732  ///              the result of the base +/- offset computation).
733  ///
734  enum MemIndexedMode {
735    UNINDEXED = 0,
736    PRE_INC,
737    PRE_DEC,
738    POST_INC,
739    POST_DEC,
740    LAST_INDEXED_MODE
741  };
742
743  //===--------------------------------------------------------------------===//
744  /// LoadExtType enum - This enum defines the three variants of LOADEXT
745  /// (load with extension).
746  ///
747  /// SEXTLOAD loads the integer operand and sign extends it to a larger
748  ///          integer result type.
749  /// ZEXTLOAD loads the integer operand and zero extends it to a larger
750  ///          integer result type.
751  /// EXTLOAD  is used for three things: floating point extending loads,
752  ///          integer extending loads [the top bits are undefined], and vector
753  ///          extending loads [load into low elt].
754  ///
755  enum LoadExtType {
756    NON_EXTLOAD = 0,
757    EXTLOAD,
758    SEXTLOAD,
759    ZEXTLOAD,
760    LAST_LOADEXT_TYPE
761  };
762
763  //===--------------------------------------------------------------------===//
764  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
765  /// below work out, when considering SETFALSE (something that never exists
766  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
767  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
768  /// to.  If the "N" column is 1, the result of the comparison is undefined if
769  /// the input is a NAN.
770  ///
771  /// All of these (except for the 'always folded ops') should be handled for
772  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
773  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
774  ///
775  /// Note that these are laid out in a specific order to allow bit-twiddling
776  /// to transform conditions.
777  enum CondCode {
778    // Opcode          N U L G E       Intuitive operation
779    SETFALSE,      //    0 0 0 0       Always false (always folded)
780    SETOEQ,        //    0 0 0 1       True if ordered and equal
781    SETOGT,        //    0 0 1 0       True if ordered and greater than
782    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
783    SETOLT,        //    0 1 0 0       True if ordered and less than
784    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
785    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
786    SETO,          //    0 1 1 1       True if ordered (no nans)
787    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
788    SETUEQ,        //    1 0 0 1       True if unordered or equal
789    SETUGT,        //    1 0 1 0       True if unordered or greater than
790    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
791    SETULT,        //    1 1 0 0       True if unordered or less than
792    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
793    SETUNE,        //    1 1 1 0       True if unordered or not equal
794    SETTRUE,       //    1 1 1 1       Always true (always folded)
795    // Don't care operations: undefined if the input is a nan.
796    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
797    SETEQ,         //  1 X 0 0 1       True if equal
798    SETGT,         //  1 X 0 1 0       True if greater than
799    SETGE,         //  1 X 0 1 1       True if greater than or equal
800    SETLT,         //  1 X 1 0 0       True if less than
801    SETLE,         //  1 X 1 0 1       True if less than or equal
802    SETNE,         //  1 X 1 1 0       True if not equal
803    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
804
805    SETCC_INVALID       // Marker value.
806  };
807
808  /// isSignedIntSetCC - Return true if this is a setcc instruction that
809  /// performs a signed comparison when used with integer operands.
810  inline bool isSignedIntSetCC(CondCode Code) {
811    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
812  }
813
814  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
815  /// performs an unsigned comparison when used with integer operands.
816  inline bool isUnsignedIntSetCC(CondCode Code) {
817    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
818  }
819
820  /// isTrueWhenEqual - Return true if the specified condition returns true if
821  /// the two operands to the condition are equal.  Note that if one of the two
822  /// operands is a NaN, this value is meaningless.
823  inline bool isTrueWhenEqual(CondCode Cond) {
824    return ((int)Cond & 1) != 0;
825  }
826
827  /// getUnorderedFlavor - This function returns 0 if the condition is always
828  /// false if an operand is a NaN, 1 if the condition is always true if the
829  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
830  /// NaN.
831  inline unsigned getUnorderedFlavor(CondCode Cond) {
832    return ((int)Cond >> 3) & 3;
833  }
834
835  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
836  /// 'op' is a valid SetCC operation.
837  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
838
839  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
840  /// when given the operation for (X op Y).
841  CondCode getSetCCSwappedOperands(CondCode Operation);
842
843  /// getSetCCOrOperation - Return the result of a logical OR between different
844  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
845  /// function returns SETCC_INVALID if it is not possible to represent the
846  /// resultant comparison.
847  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
848
849  /// getSetCCAndOperation - Return the result of a logical AND between
850  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
851  /// function returns SETCC_INVALID if it is not possible to represent the
852  /// resultant comparison.
853  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
854
855  //===--------------------------------------------------------------------===//
856  /// CvtCode enum - This enum defines the various converts CONVERT_RNDSAT
857  /// supports.
858  enum CvtCode {
859    CVT_FF,     // Float from Float
860    CVT_FS,     // Float from Signed
861    CVT_FU,     // Float from Unsigned
862    CVT_SF,     // Signed from Float
863    CVT_UF,     // Unsigned from Float
864    CVT_SS,     // Signed from Signed
865    CVT_SU,     // Signed from Unsigned
866    CVT_US,     // Unsigned from Signed
867    CVT_UU,     // Unsigned from Unsigned
868    CVT_INVALID // Marker - Invalid opcode
869  };
870}  // end llvm::ISD namespace
871
872
873//===----------------------------------------------------------------------===//
874/// SDValue - Unlike LLVM values, Selection DAG nodes may return multiple
875/// values as the result of a computation.  Many nodes return multiple values,
876/// from loads (which define a token and a return value) to ADDC (which returns
877/// a result and a carry value), to calls (which may return an arbitrary number
878/// of values).
879///
880/// As such, each use of a SelectionDAG computation must indicate the node that
881/// computes it as well as which return value to use from that node.  This pair
882/// of information is represented with the SDValue value type.
883///
884class SDValue {
885  SDNode *Node;       // The node defining the value we are using.
886  unsigned ResNo;     // Which return value of the node we are using.
887public:
888  SDValue() : Node(0), ResNo(0) {}
889  SDValue(SDNode *node, unsigned resno) : Node(node), ResNo(resno) {}
890
891  /// get the index which selects a specific result in the SDNode
892  unsigned getResNo() const { return ResNo; }
893
894  /// get the SDNode which holds the desired result
895  SDNode *getNode() const { return Node; }
896
897  /// set the SDNode
898  void setNode(SDNode *N) { Node = N; }
899
900  bool operator==(const SDValue &O) const {
901    return Node == O.Node && ResNo == O.ResNo;
902  }
903  bool operator!=(const SDValue &O) const {
904    return !operator==(O);
905  }
906  bool operator<(const SDValue &O) const {
907    return Node < O.Node || (Node == O.Node && ResNo < O.ResNo);
908  }
909
910  SDValue getValue(unsigned R) const {
911    return SDValue(Node, R);
912  }
913
914  // isOperandOf - Return true if this node is an operand of N.
915  bool isOperandOf(SDNode *N) const;
916
917  /// getValueType - Return the ValueType of the referenced return value.
918  ///
919  inline MVT getValueType() const;
920
921  /// getValueSizeInBits - Returns the size of the value in bits.
922  ///
923  unsigned getValueSizeInBits() const {
924    return getValueType().getSizeInBits();
925  }
926
927  // Forwarding methods - These forward to the corresponding methods in SDNode.
928  inline unsigned getOpcode() const;
929  inline unsigned getNumOperands() const;
930  inline const SDValue &getOperand(unsigned i) const;
931  inline uint64_t getConstantOperandVal(unsigned i) const;
932  inline bool isTargetOpcode() const;
933  inline bool isMachineOpcode() const;
934  inline unsigned getMachineOpcode() const;
935
936
937  /// reachesChainWithoutSideEffects - Return true if this operand (which must
938  /// be a chain) reaches the specified operand without crossing any
939  /// side-effecting instructions.  In practice, this looks through token
940  /// factors and non-volatile loads.  In order to remain efficient, this only
941  /// looks a couple of nodes in, it does not do an exhaustive search.
942  bool reachesChainWithoutSideEffects(SDValue Dest,
943                                      unsigned Depth = 2) const;
944
945  /// use_empty - Return true if there are no nodes using value ResNo
946  /// of Node.
947  ///
948  inline bool use_empty() const;
949
950  /// hasOneUse - Return true if there is exactly one node using value
951  /// ResNo of Node.
952  ///
953  inline bool hasOneUse() const;
954};
955
956
957template<> struct DenseMapInfo<SDValue> {
958  static inline SDValue getEmptyKey() {
959    return SDValue((SDNode*)-1, -1U);
960  }
961  static inline SDValue getTombstoneKey() {
962    return SDValue((SDNode*)-1, 0);
963  }
964  static unsigned getHashValue(const SDValue &Val) {
965    return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
966            (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
967  }
968  static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
969    return LHS == RHS;
970  }
971  static bool isPod() { return true; }
972};
973
974/// simplify_type specializations - Allow casting operators to work directly on
975/// SDValues as if they were SDNode*'s.
976template<> struct simplify_type<SDValue> {
977  typedef SDNode* SimpleType;
978  static SimpleType getSimplifiedValue(const SDValue &Val) {
979    return static_cast<SimpleType>(Val.getNode());
980  }
981};
982template<> struct simplify_type<const SDValue> {
983  typedef SDNode* SimpleType;
984  static SimpleType getSimplifiedValue(const SDValue &Val) {
985    return static_cast<SimpleType>(Val.getNode());
986  }
987};
988
989/// SDUse - Represents a use of the SDNode referred by
990/// the SDValue.
991class SDUse {
992  SDValue Operand;
993  /// User - Parent node of this operand.
994  SDNode    *User;
995  /// Prev, next - Pointers to the uses list of the SDNode referred by
996  /// this operand.
997  SDUse **Prev, *Next;
998public:
999  friend class SDNode;
1000  SDUse(): Operand(), User(NULL), Prev(NULL), Next(NULL) {}
1001
1002  SDUse(SDNode *val, unsigned resno) :
1003    Operand(val,resno), User(NULL), Prev(NULL), Next(NULL) {}
1004
1005  SDUse& operator= (const SDValue& Op) {
1006      Operand = Op;
1007      Next = NULL;
1008      Prev = NULL;
1009      return *this;
1010  }
1011
1012  SDUse& operator= (const SDUse& Op) {
1013      Operand = Op;
1014      Next = NULL;
1015      Prev = NULL;
1016      return *this;
1017  }
1018
1019  SDUse *getNext() { return Next; }
1020
1021  SDNode *getUser() { return User; }
1022
1023  void setUser(SDNode *p) { User = p; }
1024
1025  operator SDValue() const { return Operand; }
1026
1027  const SDValue& getSDValue() const { return Operand; }
1028
1029  SDValue &getSDValue() { return Operand; }
1030  SDNode *getVal() { return Operand.getNode(); }
1031  SDNode *getVal() const { return Operand.getNode(); } // FIXME: const correct?
1032
1033  bool operator==(const SDValue &O) const {
1034    return Operand == O;
1035  }
1036
1037  bool operator!=(const SDValue &O) const {
1038    return !(Operand == O);
1039  }
1040
1041  bool operator<(const SDValue &O) const {
1042    return Operand < O;
1043  }
1044
1045protected:
1046  void addToList(SDUse **List) {
1047    Next = *List;
1048    if (Next) Next->Prev = &Next;
1049    Prev = List;
1050    *List = this;
1051  }
1052
1053  void removeFromList() {
1054    *Prev = Next;
1055    if (Next) Next->Prev = Prev;
1056  }
1057};
1058
1059
1060/// simplify_type specializations - Allow casting operators to work directly on
1061/// SDValues as if they were SDNode*'s.
1062template<> struct simplify_type<SDUse> {
1063  typedef SDNode* SimpleType;
1064  static SimpleType getSimplifiedValue(const SDUse &Val) {
1065    return static_cast<SimpleType>(Val.getVal());
1066  }
1067};
1068template<> struct simplify_type<const SDUse> {
1069  typedef SDNode* SimpleType;
1070  static SimpleType getSimplifiedValue(const SDUse &Val) {
1071    return static_cast<SimpleType>(Val.getVal());
1072  }
1073};
1074
1075
1076/// SDOperandPtr - A helper SDValue pointer class, that can handle
1077/// arrays of SDUse and arrays of SDValue objects. This is required
1078/// in many places inside the SelectionDAG.
1079///
1080class SDOperandPtr {
1081  const SDValue *ptr; // The pointer to the SDValue object
1082  int object_size;      // The size of the object containg the SDValue
1083public:
1084  SDOperandPtr() : ptr(0), object_size(0) {}
1085
1086  SDOperandPtr(SDUse * use_ptr) {
1087    ptr = &use_ptr->getSDValue();
1088    object_size = (int)sizeof(SDUse);
1089  }
1090
1091  SDOperandPtr(const SDValue * op_ptr) {
1092    ptr = op_ptr;
1093    object_size = (int)sizeof(SDValue);
1094  }
1095
1096  const SDValue operator *() { return *ptr; }
1097  const SDValue *operator ->() { return ptr; }
1098  SDOperandPtr operator ++ () {
1099    ptr = (SDValue*)((char *)ptr + object_size);
1100    return *this;
1101  }
1102
1103  SDOperandPtr operator ++ (int) {
1104    SDOperandPtr tmp = *this;
1105    ptr = (SDValue*)((char *)ptr + object_size);
1106    return tmp;
1107  }
1108
1109  SDValue operator[] (int idx) const {
1110    return *(SDValue*)((char*) ptr + object_size * idx);
1111  }
1112};
1113
1114/// SDNode - Represents one node in the SelectionDAG.
1115///
1116class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
1117private:
1118  /// NodeType - The operation that this node performs.
1119  ///
1120  short NodeType;
1121
1122  /// OperandsNeedDelete - This is true if OperandList was new[]'d.  If true,
1123  /// then they will be delete[]'d when the node is destroyed.
1124  unsigned short OperandsNeedDelete : 1;
1125
1126protected:
1127  /// SubclassData - This member is defined by this class, but is not used for
1128  /// anything.  Subclasses can use it to hold whatever state they find useful.
1129  /// This field is initialized to zero by the ctor.
1130  unsigned short SubclassData : 15;
1131
1132private:
1133  /// NodeId - Unique id per SDNode in the DAG.
1134  int NodeId;
1135
1136  /// OperandList - The values that are used by this operation.
1137  ///
1138  SDUse *OperandList;
1139
1140  /// ValueList - The types of the values this node defines.  SDNode's may
1141  /// define multiple values simultaneously.
1142  const MVT *ValueList;
1143
1144  /// NumOperands/NumValues - The number of entries in the Operand/Value list.
1145  unsigned short NumOperands, NumValues;
1146
1147  /// Uses - List of uses for this SDNode.
1148  SDUse *Uses;
1149
1150  /// addUse - add SDUse to the list of uses.
1151  void addUse(SDUse &U) { U.addToList(&Uses); }
1152
1153  // Out-of-line virtual method to give class a home.
1154  virtual void ANCHOR();
1155public:
1156  virtual ~SDNode() {
1157    assert(NumOperands == 0 && "Operand list not cleared before deletion");
1158    NodeType = ISD::DELETED_NODE;
1159  }
1160
1161  //===--------------------------------------------------------------------===//
1162  //  Accessors
1163  //
1164
1165  /// getOpcode - Return the SelectionDAG opcode value for this node. For
1166  /// pre-isel nodes (those for which isMachineOpcode returns false), these
1167  /// are the opcode values in the ISD and <target>ISD namespaces. For
1168  /// post-isel opcodes, see getMachineOpcode.
1169  unsigned getOpcode()  const { return (unsigned short)NodeType; }
1170
1171  /// isTargetOpcode - Test if this node has a target-specific opcode (in the
1172  /// <target>ISD namespace).
1173  bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
1174
1175  /// isMachineOpcode - Test if this node has a post-isel opcode, directly
1176  /// corresponding to a MachineInstr opcode.
1177  bool isMachineOpcode() const { return NodeType < 0; }
1178
1179  /// getMachineOpcode - This may only be called if isMachineOpcode returns
1180  /// true. It returns the MachineInstr opcode value that the node's opcode
1181  /// corresponds to.
1182  unsigned getMachineOpcode() const {
1183    assert(isMachineOpcode() && "Not a MachineInstr opcode!");
1184    return ~NodeType;
1185  }
1186
1187  /// use_empty - Return true if there are no uses of this node.
1188  ///
1189  bool use_empty() const { return Uses == NULL; }
1190
1191  /// hasOneUse - Return true if there is exactly one use of this node.
1192  ///
1193  bool hasOneUse() const {
1194    return !use_empty() && next(use_begin()) == use_end();
1195  }
1196
1197  /// use_size - Return the number of uses of this node. This method takes
1198  /// time proportional to the number of uses.
1199  ///
1200  size_t use_size() const { return std::distance(use_begin(), use_end()); }
1201
1202  /// getNodeId - Return the unique node id.
1203  ///
1204  int getNodeId() const { return NodeId; }
1205
1206  /// setNodeId - Set unique node id.
1207  void setNodeId(int Id) { NodeId = Id; }
1208
1209  /// use_iterator - This class provides iterator support for SDUse
1210  /// operands that use a specific SDNode.
1211  class use_iterator
1212    : public forward_iterator<SDUse, ptrdiff_t> {
1213    SDUse *Op;
1214    explicit use_iterator(SDUse *op) : Op(op) {
1215    }
1216    friend class SDNode;
1217  public:
1218    typedef forward_iterator<SDUse, ptrdiff_t>::reference reference;
1219    typedef forward_iterator<SDUse, ptrdiff_t>::pointer pointer;
1220
1221    use_iterator(const use_iterator &I) : Op(I.Op) {}
1222    use_iterator() : Op(0) {}
1223
1224    bool operator==(const use_iterator &x) const {
1225      return Op == x.Op;
1226    }
1227    bool operator!=(const use_iterator &x) const {
1228      return !operator==(x);
1229    }
1230
1231    /// atEnd - return true if this iterator is at the end of uses list.
1232    bool atEnd() const { return Op == 0; }
1233
1234    // Iterator traversal: forward iteration only.
1235    use_iterator &operator++() {          // Preincrement
1236      assert(Op && "Cannot increment end iterator!");
1237      Op = Op->getNext();
1238      return *this;
1239    }
1240
1241    use_iterator operator++(int) {        // Postincrement
1242      use_iterator tmp = *this; ++*this; return tmp;
1243    }
1244
1245    /// Retrieve a pointer to the current user node.
1246    SDNode *operator*() const {
1247      assert(Op && "Cannot dereference end iterator!");
1248      return Op->getUser();
1249    }
1250
1251    SDNode *operator->() const { return operator*(); }
1252
1253    SDUse &getUse() const { return *Op; }
1254
1255    /// getOperandNo - Retrive the operand # of this use in its user.
1256    ///
1257    unsigned getOperandNo() const {
1258      assert(Op && "Cannot dereference end iterator!");
1259      return (unsigned)(Op - Op->getUser()->OperandList);
1260    }
1261  };
1262
1263  /// use_begin/use_end - Provide iteration support to walk over all uses
1264  /// of an SDNode.
1265
1266  use_iterator use_begin() const {
1267    return use_iterator(Uses);
1268  }
1269
1270  static use_iterator use_end() { return use_iterator(0); }
1271
1272
1273  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
1274  /// indicated value.  This method ignores uses of other values defined by this
1275  /// operation.
1276  bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
1277
1278  /// hasAnyUseOfValue - Return true if there are any use of the indicated
1279  /// value. This method ignores uses of other values defined by this operation.
1280  bool hasAnyUseOfValue(unsigned Value) const;
1281
1282  /// isOnlyUserOf - Return true if this node is the only use of N.
1283  ///
1284  bool isOnlyUserOf(SDNode *N) const;
1285
1286  /// isOperandOf - Return true if this node is an operand of N.
1287  ///
1288  bool isOperandOf(SDNode *N) const;
1289
1290  /// isPredecessorOf - Return true if this node is a predecessor of N. This
1291  /// node is either an operand of N or it can be reached by recursively
1292  /// traversing up the operands.
1293  /// NOTE: this is an expensive method. Use it carefully.
1294  bool isPredecessorOf(SDNode *N) const;
1295
1296  /// getNumOperands - Return the number of values used by this operation.
1297  ///
1298  unsigned getNumOperands() const { return NumOperands; }
1299
1300  /// getConstantOperandVal - Helper method returns the integer value of a
1301  /// ConstantSDNode operand.
1302  uint64_t getConstantOperandVal(unsigned Num) const;
1303
1304  const SDValue &getOperand(unsigned Num) const {
1305    assert(Num < NumOperands && "Invalid child # of SDNode!");
1306    return OperandList[Num].getSDValue();
1307  }
1308
1309  typedef SDUse* op_iterator;
1310  op_iterator op_begin() const { return OperandList; }
1311  op_iterator op_end() const { return OperandList+NumOperands; }
1312
1313
1314  SDVTList getVTList() const {
1315    SDVTList X = { ValueList, NumValues };
1316    return X;
1317  };
1318
1319  /// getFlaggedNode - If this node has a flag operand, return the node
1320  /// to which the flag operand points. Otherwise return NULL.
1321  SDNode *getFlaggedNode() const {
1322    if (getNumOperands() != 0 &&
1323        getOperand(getNumOperands()-1).getValueType() == MVT::Flag)
1324      return getOperand(getNumOperands()-1).getNode();
1325    return 0;
1326  }
1327
1328  /// getNumValues - Return the number of values defined/returned by this
1329  /// operator.
1330  ///
1331  unsigned getNumValues() const { return NumValues; }
1332
1333  /// getValueType - Return the type of a specified result.
1334  ///
1335  MVT getValueType(unsigned ResNo) const {
1336    assert(ResNo < NumValues && "Illegal result number!");
1337    return ValueList[ResNo];
1338  }
1339
1340  /// getValueSizeInBits - Returns MVT::getSizeInBits(getValueType(ResNo)).
1341  ///
1342  unsigned getValueSizeInBits(unsigned ResNo) const {
1343    return getValueType(ResNo).getSizeInBits();
1344  }
1345
1346  typedef const MVT* value_iterator;
1347  value_iterator value_begin() const { return ValueList; }
1348  value_iterator value_end() const { return ValueList+NumValues; }
1349
1350  /// getOperationName - Return the opcode of this operation for printing.
1351  ///
1352  std::string getOperationName(const SelectionDAG *G = 0) const;
1353  static const char* getIndexedModeName(ISD::MemIndexedMode AM);
1354  void print(raw_ostream &OS, const SelectionDAG *G = 0) const;
1355  void dump() const;
1356  void dump(const SelectionDAG *G) const;
1357
1358  static bool classof(const SDNode *) { return true; }
1359
1360  /// Profile - Gather unique data for the node.
1361  ///
1362  void Profile(FoldingSetNodeID &ID) const;
1363
1364protected:
1365  friend class SelectionDAG;
1366  friend struct ilist_traits<SDNode>;
1367
1368  /// getValueTypeList - Return a pointer to the specified value type.
1369  ///
1370  static const MVT *getValueTypeList(MVT VT);
1371  static SDVTList getSDVTList(MVT VT) {
1372    SDVTList Ret = { getValueTypeList(VT), 1 };
1373    return Ret;
1374  }
1375
1376  SDNode(unsigned Opc, SDVTList VTs, const SDValue *Ops, unsigned NumOps)
1377    : NodeType(Opc), OperandsNeedDelete(true), SubclassData(0),
1378      NodeId(-1), Uses(NULL) {
1379    NumOperands = NumOps;
1380    OperandList = NumOps ? new SDUse[NumOperands] : 0;
1381
1382    for (unsigned i = 0; i != NumOps; ++i) {
1383      OperandList[i] = Ops[i];
1384      OperandList[i].setUser(this);
1385      Ops[i].getNode()->addUse(OperandList[i]);
1386    }
1387
1388    ValueList = VTs.VTs;
1389    NumValues = VTs.NumVTs;
1390  }
1391
1392  SDNode(unsigned Opc, SDVTList VTs, const SDUse *Ops, unsigned NumOps)
1393    : NodeType(Opc), OperandsNeedDelete(true), SubclassData(0),
1394      NodeId(-1), Uses(NULL) {
1395    OperandsNeedDelete = true;
1396    NumOperands = NumOps;
1397    OperandList = NumOps ? new SDUse[NumOperands] : 0;
1398
1399    for (unsigned i = 0; i != NumOps; ++i) {
1400      OperandList[i] = Ops[i];
1401      OperandList[i].setUser(this);
1402      Ops[i].getVal()->addUse(OperandList[i]);
1403    }
1404
1405    ValueList = VTs.VTs;
1406    NumValues = VTs.NumVTs;
1407  }
1408
1409  /// This constructor adds no operands itself; operands can be
1410  /// set later with InitOperands.
1411  SDNode(unsigned Opc, SDVTList VTs)
1412    : NodeType(Opc), OperandsNeedDelete(false), SubclassData(0),
1413      NodeId(-1), Uses(NULL) {
1414    NumOperands = 0;
1415    OperandList = 0;
1416    ValueList = VTs.VTs;
1417    NumValues = VTs.NumVTs;
1418  }
1419
1420  /// InitOperands - Initialize the operands list of this node with the
1421  /// specified values, which are part of the node (thus they don't need to be
1422  /// copied in or allocated).
1423  void InitOperands(SDUse *Ops, unsigned NumOps) {
1424    assert(OperandList == 0 && "Operands already set!");
1425    NumOperands = NumOps;
1426    OperandList = Ops;
1427    Uses = NULL;
1428
1429    for (unsigned i = 0; i != NumOps; ++i) {
1430      OperandList[i].setUser(this);
1431      Ops[i].getVal()->addUse(OperandList[i]);
1432    }
1433  }
1434
1435  /// DropOperands - Release the operands and set this node to have
1436  /// zero operands.
1437  void DropOperands();
1438
1439  void addUser(unsigned i, SDNode *User) {
1440    assert(User->OperandList[i].getUser() && "Node without parent");
1441    addUse(User->OperandList[i]);
1442  }
1443
1444  void removeUser(unsigned i, SDNode *User) {
1445    assert(User->OperandList[i].getUser() && "Node without parent");
1446    SDUse &Op = User->OperandList[i];
1447    Op.removeFromList();
1448  }
1449};
1450
1451
1452// Define inline functions from the SDValue class.
1453
1454inline unsigned SDValue::getOpcode() const {
1455  return Node->getOpcode();
1456}
1457inline MVT SDValue::getValueType() const {
1458  return Node->getValueType(ResNo);
1459}
1460inline unsigned SDValue::getNumOperands() const {
1461  return Node->getNumOperands();
1462}
1463inline const SDValue &SDValue::getOperand(unsigned i) const {
1464  return Node->getOperand(i);
1465}
1466inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
1467  return Node->getConstantOperandVal(i);
1468}
1469inline bool SDValue::isTargetOpcode() const {
1470  return Node->isTargetOpcode();
1471}
1472inline bool SDValue::isMachineOpcode() const {
1473  return Node->isMachineOpcode();
1474}
1475inline unsigned SDValue::getMachineOpcode() const {
1476  return Node->getMachineOpcode();
1477}
1478inline bool SDValue::use_empty() const {
1479  return !Node->hasAnyUseOfValue(ResNo);
1480}
1481inline bool SDValue::hasOneUse() const {
1482  return Node->hasNUsesOfValue(1, ResNo);
1483}
1484
1485/// UnarySDNode - This class is used for single-operand SDNodes.  This is solely
1486/// to allow co-allocation of node operands with the node itself.
1487class UnarySDNode : public SDNode {
1488  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1489  SDUse Op;
1490public:
1491  UnarySDNode(unsigned Opc, SDVTList VTs, SDValue X)
1492    : SDNode(Opc, VTs) {
1493    Op = X;
1494    InitOperands(&Op, 1);
1495  }
1496};
1497
1498/// BinarySDNode - This class is used for two-operand SDNodes.  This is solely
1499/// to allow co-allocation of node operands with the node itself.
1500class BinarySDNode : public SDNode {
1501  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1502  SDUse Ops[2];
1503public:
1504  BinarySDNode(unsigned Opc, SDVTList VTs, SDValue X, SDValue Y)
1505    : SDNode(Opc, VTs) {
1506    Ops[0] = X;
1507    Ops[1] = Y;
1508    InitOperands(Ops, 2);
1509  }
1510};
1511
1512/// TernarySDNode - This class is used for three-operand SDNodes. This is solely
1513/// to allow co-allocation of node operands with the node itself.
1514class TernarySDNode : public SDNode {
1515  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1516  SDUse Ops[3];
1517public:
1518  TernarySDNode(unsigned Opc, SDVTList VTs, SDValue X, SDValue Y,
1519                SDValue Z)
1520    : SDNode(Opc, VTs) {
1521    Ops[0] = X;
1522    Ops[1] = Y;
1523    Ops[2] = Z;
1524    InitOperands(Ops, 3);
1525  }
1526};
1527
1528
1529/// HandleSDNode - This class is used to form a handle around another node that
1530/// is persistant and is updated across invocations of replaceAllUsesWith on its
1531/// operand.  This node should be directly created by end-users and not added to
1532/// the AllNodes list.
1533class HandleSDNode : public SDNode {
1534  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1535  SDUse Op;
1536public:
1537  // FIXME: Remove the "noinline" attribute once <rdar://problem/5852746> is
1538  // fixed.
1539#ifdef __GNUC__
1540  explicit __attribute__((__noinline__)) HandleSDNode(SDValue X)
1541#else
1542  explicit HandleSDNode(SDValue X)
1543#endif
1544    : SDNode(ISD::HANDLENODE, getSDVTList(MVT::Other)) {
1545    Op = X;
1546    InitOperands(&Op, 1);
1547  }
1548  ~HandleSDNode();
1549  const SDValue &getValue() const { return Op.getSDValue(); }
1550};
1551
1552/// Abstact virtual class for operations for memory operations
1553class MemSDNode : public SDNode {
1554  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1555
1556private:
1557  // MemoryVT - VT of in-memory value.
1558  MVT MemoryVT;
1559
1560  //! SrcValue - Memory location for alias analysis.
1561  const Value *SrcValue;
1562
1563  //! SVOffset - Memory location offset. Note that base is defined in MemSDNode
1564  int SVOffset;
1565
1566  /// Flags - the low bit indicates whether this is a volatile reference;
1567  /// the remainder is a log2 encoding of the alignment in bytes.
1568  unsigned Flags;
1569
1570public:
1571  MemSDNode(unsigned Opc, SDVTList VTs, MVT MemoryVT,
1572            const Value *srcValue, int SVOff,
1573            unsigned alignment, bool isvolatile);
1574
1575  MemSDNode(unsigned Opc, SDVTList VTs, const SDValue *Ops, unsigned NumOps,
1576            MVT MemoryVT, const Value *srcValue, int SVOff,
1577            unsigned alignment, bool isvolatile);
1578
1579  /// Returns alignment and volatility of the memory access
1580  unsigned getAlignment() const { return (1u << (Flags >> 1)) >> 1; }
1581  bool isVolatile() const { return Flags & 1; }
1582
1583  /// Returns the SrcValue and offset that describes the location of the access
1584  const Value *getSrcValue() const { return SrcValue; }
1585  int getSrcValueOffset() const { return SVOffset; }
1586
1587  /// getMemoryVT - Return the type of the in-memory value.
1588  MVT getMemoryVT() const { return MemoryVT; }
1589
1590  /// getMemOperand - Return a MachineMemOperand object describing the memory
1591  /// reference performed by operation.
1592  MachineMemOperand getMemOperand() const;
1593
1594  const SDValue &getChain() const { return getOperand(0); }
1595  const SDValue &getBasePtr() const {
1596    return getOperand(getOpcode() == ISD::STORE ? 2 : 1);
1597  }
1598
1599  /// getRawFlags - Represent the flags as a bunch of bits.
1600  ///
1601  unsigned getRawFlags() const { return Flags; }
1602
1603  // Methods to support isa and dyn_cast
1604  static bool classof(const MemSDNode *) { return true; }
1605  static bool classof(const SDNode *N) {
1606    // For some targets, we lower some target intrinsics to a MemIntrinsicNode
1607    // with either an intrinsic or a target opcode.
1608    return N->getOpcode() == ISD::LOAD                ||
1609           N->getOpcode() == ISD::STORE               ||
1610           N->getOpcode() == ISD::ATOMIC_CMP_SWAP_8   ||
1611           N->getOpcode() == ISD::ATOMIC_SWAP_8       ||
1612           N->getOpcode() == ISD::ATOMIC_LOAD_ADD_8   ||
1613           N->getOpcode() == ISD::ATOMIC_LOAD_SUB_8   ||
1614           N->getOpcode() == ISD::ATOMIC_LOAD_AND_8   ||
1615           N->getOpcode() == ISD::ATOMIC_LOAD_OR_8    ||
1616           N->getOpcode() == ISD::ATOMIC_LOAD_XOR_8   ||
1617           N->getOpcode() == ISD::ATOMIC_LOAD_NAND_8  ||
1618           N->getOpcode() == ISD::ATOMIC_LOAD_MIN_8   ||
1619           N->getOpcode() == ISD::ATOMIC_LOAD_MAX_8   ||
1620           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN_8  ||
1621           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX_8  ||
1622
1623           N->getOpcode() == ISD::ATOMIC_CMP_SWAP_16  ||
1624           N->getOpcode() == ISD::ATOMIC_SWAP_16      ||
1625           N->getOpcode() == ISD::ATOMIC_LOAD_ADD_16  ||
1626           N->getOpcode() == ISD::ATOMIC_LOAD_SUB_16  ||
1627           N->getOpcode() == ISD::ATOMIC_LOAD_AND_16  ||
1628           N->getOpcode() == ISD::ATOMIC_LOAD_OR_16   ||
1629           N->getOpcode() == ISD::ATOMIC_LOAD_XOR_16  ||
1630           N->getOpcode() == ISD::ATOMIC_LOAD_NAND_16 ||
1631           N->getOpcode() == ISD::ATOMIC_LOAD_MIN_16  ||
1632           N->getOpcode() == ISD::ATOMIC_LOAD_MAX_16  ||
1633           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN_16 ||
1634           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX_16 ||
1635
1636           N->getOpcode() == ISD::ATOMIC_CMP_SWAP_32  ||
1637           N->getOpcode() == ISD::ATOMIC_SWAP_32      ||
1638           N->getOpcode() == ISD::ATOMIC_LOAD_ADD_32  ||
1639           N->getOpcode() == ISD::ATOMIC_LOAD_SUB_32  ||
1640           N->getOpcode() == ISD::ATOMIC_LOAD_AND_32  ||
1641           N->getOpcode() == ISD::ATOMIC_LOAD_OR_32   ||
1642           N->getOpcode() == ISD::ATOMIC_LOAD_XOR_32  ||
1643           N->getOpcode() == ISD::ATOMIC_LOAD_NAND_32 ||
1644           N->getOpcode() == ISD::ATOMIC_LOAD_MIN_32  ||
1645           N->getOpcode() == ISD::ATOMIC_LOAD_MAX_32  ||
1646           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN_32 ||
1647           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX_32 ||
1648
1649           N->getOpcode() == ISD::ATOMIC_CMP_SWAP_64  ||
1650           N->getOpcode() == ISD::ATOMIC_SWAP_64      ||
1651           N->getOpcode() == ISD::ATOMIC_LOAD_ADD_64  ||
1652           N->getOpcode() == ISD::ATOMIC_LOAD_SUB_64  ||
1653           N->getOpcode() == ISD::ATOMIC_LOAD_AND_64  ||
1654           N->getOpcode() == ISD::ATOMIC_LOAD_OR_64   ||
1655           N->getOpcode() == ISD::ATOMIC_LOAD_XOR_64  ||
1656           N->getOpcode() == ISD::ATOMIC_LOAD_NAND_64 ||
1657           N->getOpcode() == ISD::ATOMIC_LOAD_MIN_64  ||
1658           N->getOpcode() == ISD::ATOMIC_LOAD_MAX_64  ||
1659           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN_64 ||
1660           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX_64 ||
1661
1662           N->getOpcode() == ISD::INTRINSIC_W_CHAIN   ||
1663           N->getOpcode() == ISD::INTRINSIC_VOID      ||
1664           N->isTargetOpcode();
1665  }
1666};
1667
1668/// AtomicSDNode - A SDNode reprenting atomic operations.
1669///
1670class AtomicSDNode : public MemSDNode {
1671  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1672  SDUse Ops[4];
1673
1674 public:
1675  // Opc:   opcode for atomic
1676  // VTL:    value type list
1677  // Chain:  memory chain for operaand
1678  // Ptr:    address to update as a SDValue
1679  // Cmp:    compare value
1680  // Swp:    swap value
1681  // SrcVal: address to update as a Value (used for MemOperand)
1682  // Align:  alignment of memory
1683  AtomicSDNode(unsigned Opc, SDVTList VTL, SDValue Chain, SDValue Ptr,
1684               SDValue Cmp, SDValue Swp, const Value* SrcVal,
1685               unsigned Align=0)
1686    : MemSDNode(Opc, VTL, Cmp.getValueType(), SrcVal, /*SVOffset=*/0,
1687                Align, /*isVolatile=*/true) {
1688    Ops[0] = Chain;
1689    Ops[1] = Ptr;
1690    Ops[2] = Cmp;
1691    Ops[3] = Swp;
1692    InitOperands(Ops, 4);
1693  }
1694  AtomicSDNode(unsigned Opc, SDVTList VTL, SDValue Chain, SDValue Ptr,
1695               SDValue Val, const Value* SrcVal, unsigned Align=0)
1696    : MemSDNode(Opc, VTL, Val.getValueType(), SrcVal, /*SVOffset=*/0,
1697                Align, /*isVolatile=*/true) {
1698    Ops[0] = Chain;
1699    Ops[1] = Ptr;
1700    Ops[2] = Val;
1701    InitOperands(Ops, 3);
1702  }
1703
1704  const SDValue &getBasePtr() const { return getOperand(1); }
1705  const SDValue &getVal() const { return getOperand(2); }
1706
1707  bool isCompareAndSwap() const {
1708    unsigned Op = getOpcode();
1709    return Op == ISD::ATOMIC_CMP_SWAP_8 ||
1710           Op == ISD::ATOMIC_CMP_SWAP_16 ||
1711           Op == ISD::ATOMIC_CMP_SWAP_32 ||
1712           Op == ISD::ATOMIC_CMP_SWAP_64;
1713  }
1714
1715  // Methods to support isa and dyn_cast
1716  static bool classof(const AtomicSDNode *) { return true; }
1717  static bool classof(const SDNode *N) {
1718    return N->getOpcode() == ISD::ATOMIC_CMP_SWAP_8   ||
1719           N->getOpcode() == ISD::ATOMIC_SWAP_8       ||
1720           N->getOpcode() == ISD::ATOMIC_LOAD_ADD_8   ||
1721           N->getOpcode() == ISD::ATOMIC_LOAD_SUB_8   ||
1722           N->getOpcode() == ISD::ATOMIC_LOAD_AND_8   ||
1723           N->getOpcode() == ISD::ATOMIC_LOAD_OR_8    ||
1724           N->getOpcode() == ISD::ATOMIC_LOAD_XOR_8   ||
1725           N->getOpcode() == ISD::ATOMIC_LOAD_NAND_8  ||
1726           N->getOpcode() == ISD::ATOMIC_LOAD_MIN_8   ||
1727           N->getOpcode() == ISD::ATOMIC_LOAD_MAX_8   ||
1728           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN_8  ||
1729           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX_8  ||
1730           N->getOpcode() == ISD::ATOMIC_CMP_SWAP_16  ||
1731           N->getOpcode() == ISD::ATOMIC_SWAP_16      ||
1732           N->getOpcode() == ISD::ATOMIC_LOAD_ADD_16  ||
1733           N->getOpcode() == ISD::ATOMIC_LOAD_SUB_16  ||
1734           N->getOpcode() == ISD::ATOMIC_LOAD_AND_16  ||
1735           N->getOpcode() == ISD::ATOMIC_LOAD_OR_16   ||
1736           N->getOpcode() == ISD::ATOMIC_LOAD_XOR_16  ||
1737           N->getOpcode() == ISD::ATOMIC_LOAD_NAND_16 ||
1738           N->getOpcode() == ISD::ATOMIC_LOAD_MIN_16  ||
1739           N->getOpcode() == ISD::ATOMIC_LOAD_MAX_16  ||
1740           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN_16 ||
1741           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX_16 ||
1742           N->getOpcode() == ISD::ATOMIC_CMP_SWAP_32  ||
1743           N->getOpcode() == ISD::ATOMIC_SWAP_32      ||
1744           N->getOpcode() == ISD::ATOMIC_LOAD_ADD_32  ||
1745           N->getOpcode() == ISD::ATOMIC_LOAD_SUB_32  ||
1746           N->getOpcode() == ISD::ATOMIC_LOAD_AND_32  ||
1747           N->getOpcode() == ISD::ATOMIC_LOAD_OR_32   ||
1748           N->getOpcode() == ISD::ATOMIC_LOAD_XOR_32  ||
1749           N->getOpcode() == ISD::ATOMIC_LOAD_NAND_32 ||
1750           N->getOpcode() == ISD::ATOMIC_LOAD_MIN_32  ||
1751           N->getOpcode() == ISD::ATOMIC_LOAD_MAX_32  ||
1752           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN_32 ||
1753           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX_32 ||
1754           N->getOpcode() == ISD::ATOMIC_CMP_SWAP_64  ||
1755           N->getOpcode() == ISD::ATOMIC_SWAP_64      ||
1756           N->getOpcode() == ISD::ATOMIC_LOAD_ADD_64  ||
1757           N->getOpcode() == ISD::ATOMIC_LOAD_SUB_64  ||
1758           N->getOpcode() == ISD::ATOMIC_LOAD_AND_64  ||
1759           N->getOpcode() == ISD::ATOMIC_LOAD_OR_64   ||
1760           N->getOpcode() == ISD::ATOMIC_LOAD_XOR_64  ||
1761           N->getOpcode() == ISD::ATOMIC_LOAD_NAND_64 ||
1762           N->getOpcode() == ISD::ATOMIC_LOAD_MIN_64  ||
1763           N->getOpcode() == ISD::ATOMIC_LOAD_MAX_64  ||
1764           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN_64 ||
1765           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX_64;
1766  }
1767};
1768
1769/// MemIntrinsicSDNode - This SDNode is used for target intrinsic that touches
1770/// memory and need an associated memory operand.
1771///
1772class MemIntrinsicSDNode : public MemSDNode {
1773  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1774  bool ReadMem;  // Intrinsic reads memory
1775  bool WriteMem; // Intrinsic writes memory
1776public:
1777  MemIntrinsicSDNode(unsigned Opc, SDVTList VTs,
1778                     const SDValue *Ops, unsigned NumOps,
1779                     MVT MemoryVT, const Value *srcValue, int SVO,
1780                     unsigned Align, bool Vol, bool ReadMem, bool WriteMem)
1781    : MemSDNode(Opc, VTs, Ops, NumOps, MemoryVT, srcValue, SVO, Align, Vol),
1782      ReadMem(ReadMem), WriteMem(WriteMem) {
1783  }
1784
1785  bool readMem() const { return ReadMem; }
1786  bool writeMem() const { return WriteMem; }
1787
1788  // Methods to support isa and dyn_cast
1789  static bool classof(const MemIntrinsicSDNode *) { return true; }
1790  static bool classof(const SDNode *N) {
1791    // We lower some target intrinsics to their target opcode
1792    // early a node with a target opcode can be of this class
1793    return N->getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1794           N->getOpcode() == ISD::INTRINSIC_VOID ||
1795           N->isTargetOpcode();
1796  }
1797};
1798
1799class ConstantSDNode : public SDNode {
1800  const ConstantInt *Value;
1801  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1802protected:
1803  friend class SelectionDAG;
1804  ConstantSDNode(bool isTarget, const ConstantInt *val, MVT VT)
1805    : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, getSDVTList(VT)),
1806      Value(val) {
1807  }
1808public:
1809
1810  const ConstantInt *getConstantIntValue() const { return Value; }
1811  const APInt &getAPIntValue() const { return Value->getValue(); }
1812  uint64_t getZExtValue() const { return Value->getZExtValue(); }
1813  int64_t getSExtValue() const { return Value->getSExtValue(); }
1814
1815  bool isNullValue() const { return Value->isNullValue(); }
1816  bool isAllOnesValue() const { return Value->isAllOnesValue(); }
1817
1818  static bool classof(const ConstantSDNode *) { return true; }
1819  static bool classof(const SDNode *N) {
1820    return N->getOpcode() == ISD::Constant ||
1821           N->getOpcode() == ISD::TargetConstant;
1822  }
1823};
1824
1825class ConstantFPSDNode : public SDNode {
1826  const ConstantFP *Value;
1827  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1828protected:
1829  friend class SelectionDAG;
1830  ConstantFPSDNode(bool isTarget, const ConstantFP *val, MVT VT)
1831    : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP,
1832             getSDVTList(VT)), Value(val) {
1833  }
1834public:
1835
1836  const APFloat& getValueAPF() const { return Value->getValueAPF(); }
1837  const ConstantFP *getConstantFPValue() const { return Value; }
1838
1839  /// isExactlyValue - We don't rely on operator== working on double values, as
1840  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1841  /// As such, this method can be used to do an exact bit-for-bit comparison of
1842  /// two floating point values.
1843
1844  /// We leave the version with the double argument here because it's just so
1845  /// convenient to write "2.0" and the like.  Without this function we'd
1846  /// have to duplicate its logic everywhere it's called.
1847  bool isExactlyValue(double V) const {
1848    bool ignored;
1849    // convert is not supported on this type
1850    if (&Value->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
1851      return false;
1852    APFloat Tmp(V);
1853    Tmp.convert(Value->getValueAPF().getSemantics(),
1854                APFloat::rmNearestTiesToEven, &ignored);
1855    return isExactlyValue(Tmp);
1856  }
1857  bool isExactlyValue(const APFloat& V) const;
1858
1859  bool isValueValidForType(MVT VT, const APFloat& Val);
1860
1861  static bool classof(const ConstantFPSDNode *) { return true; }
1862  static bool classof(const SDNode *N) {
1863    return N->getOpcode() == ISD::ConstantFP ||
1864           N->getOpcode() == ISD::TargetConstantFP;
1865  }
1866};
1867
1868class GlobalAddressSDNode : public SDNode {
1869  GlobalValue *TheGlobal;
1870  int64_t Offset;
1871  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1872protected:
1873  friend class SelectionDAG;
1874  GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT VT,
1875                      int64_t o = 0);
1876public:
1877
1878  GlobalValue *getGlobal() const { return TheGlobal; }
1879  int64_t getOffset() const { return Offset; }
1880
1881  static bool classof(const GlobalAddressSDNode *) { return true; }
1882  static bool classof(const SDNode *N) {
1883    return N->getOpcode() == ISD::GlobalAddress ||
1884           N->getOpcode() == ISD::TargetGlobalAddress ||
1885           N->getOpcode() == ISD::GlobalTLSAddress ||
1886           N->getOpcode() == ISD::TargetGlobalTLSAddress;
1887  }
1888};
1889
1890class FrameIndexSDNode : public SDNode {
1891  int FI;
1892  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1893protected:
1894  friend class SelectionDAG;
1895  FrameIndexSDNode(int fi, MVT VT, bool isTarg)
1896    : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, getSDVTList(VT)),
1897      FI(fi) {
1898  }
1899public:
1900
1901  int getIndex() const { return FI; }
1902
1903  static bool classof(const FrameIndexSDNode *) { return true; }
1904  static bool classof(const SDNode *N) {
1905    return N->getOpcode() == ISD::FrameIndex ||
1906           N->getOpcode() == ISD::TargetFrameIndex;
1907  }
1908};
1909
1910class JumpTableSDNode : public SDNode {
1911  int JTI;
1912  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1913protected:
1914  friend class SelectionDAG;
1915  JumpTableSDNode(int jti, MVT VT, bool isTarg)
1916    : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable, getSDVTList(VT)),
1917      JTI(jti) {
1918  }
1919public:
1920
1921  int getIndex() const { return JTI; }
1922
1923  static bool classof(const JumpTableSDNode *) { return true; }
1924  static bool classof(const SDNode *N) {
1925    return N->getOpcode() == ISD::JumpTable ||
1926           N->getOpcode() == ISD::TargetJumpTable;
1927  }
1928};
1929
1930class ConstantPoolSDNode : public SDNode {
1931  union {
1932    Constant *ConstVal;
1933    MachineConstantPoolValue *MachineCPVal;
1934  } Val;
1935  int Offset;  // It's a MachineConstantPoolValue if top bit is set.
1936  unsigned Alignment;
1937  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1938protected:
1939  friend class SelectionDAG;
1940  ConstantPoolSDNode(bool isTarget, Constant *c, MVT VT, int o=0)
1941    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1942             getSDVTList(VT)), Offset(o), Alignment(0) {
1943    assert((int)Offset >= 0 && "Offset is too large");
1944    Val.ConstVal = c;
1945  }
1946  ConstantPoolSDNode(bool isTarget, Constant *c, MVT VT, int o, unsigned Align)
1947    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1948             getSDVTList(VT)), Offset(o), Alignment(Align) {
1949    assert((int)Offset >= 0 && "Offset is too large");
1950    Val.ConstVal = c;
1951  }
1952  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1953                     MVT VT, int o=0)
1954    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1955             getSDVTList(VT)), Offset(o), Alignment(0) {
1956    assert((int)Offset >= 0 && "Offset is too large");
1957    Val.MachineCPVal = v;
1958    Offset |= 1 << (sizeof(unsigned)*8-1);
1959  }
1960  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1961                     MVT VT, int o, unsigned Align)
1962    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1963             getSDVTList(VT)), Offset(o), Alignment(Align) {
1964    assert((int)Offset >= 0 && "Offset is too large");
1965    Val.MachineCPVal = v;
1966    Offset |= 1 << (sizeof(unsigned)*8-1);
1967  }
1968public:
1969
1970  bool isMachineConstantPoolEntry() const {
1971    return (int)Offset < 0;
1972  }
1973
1974  Constant *getConstVal() const {
1975    assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
1976    return Val.ConstVal;
1977  }
1978
1979  MachineConstantPoolValue *getMachineCPVal() const {
1980    assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
1981    return Val.MachineCPVal;
1982  }
1983
1984  int getOffset() const {
1985    return Offset & ~(1 << (sizeof(unsigned)*8-1));
1986  }
1987
1988  // Return the alignment of this constant pool object, which is either 0 (for
1989  // default alignment) or log2 of the desired value.
1990  unsigned getAlignment() const { return Alignment; }
1991
1992  const Type *getType() const;
1993
1994  static bool classof(const ConstantPoolSDNode *) { return true; }
1995  static bool classof(const SDNode *N) {
1996    return N->getOpcode() == ISD::ConstantPool ||
1997           N->getOpcode() == ISD::TargetConstantPool;
1998  }
1999};
2000
2001class BasicBlockSDNode : public SDNode {
2002  MachineBasicBlock *MBB;
2003  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2004protected:
2005  friend class SelectionDAG;
2006  explicit BasicBlockSDNode(MachineBasicBlock *mbb)
2007    : SDNode(ISD::BasicBlock, getSDVTList(MVT::Other)), MBB(mbb) {
2008  }
2009public:
2010
2011  MachineBasicBlock *getBasicBlock() const { return MBB; }
2012
2013  static bool classof(const BasicBlockSDNode *) { return true; }
2014  static bool classof(const SDNode *N) {
2015    return N->getOpcode() == ISD::BasicBlock;
2016  }
2017};
2018
2019/// SrcValueSDNode - An SDNode that holds an arbitrary LLVM IR Value. This is
2020/// used when the SelectionDAG needs to make a simple reference to something
2021/// in the LLVM IR representation.
2022///
2023/// Note that this is not used for carrying alias information; that is done
2024/// with MemOperandSDNode, which includes a Value which is required to be a
2025/// pointer, and several other fields specific to memory references.
2026///
2027class SrcValueSDNode : public SDNode {
2028  const Value *V;
2029  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2030protected:
2031  friend class SelectionDAG;
2032  /// Create a SrcValue for a general value.
2033  explicit SrcValueSDNode(const Value *v)
2034    : SDNode(ISD::SRCVALUE, getSDVTList(MVT::Other)), V(v) {}
2035
2036public:
2037  /// getValue - return the contained Value.
2038  const Value *getValue() const { return V; }
2039
2040  static bool classof(const SrcValueSDNode *) { return true; }
2041  static bool classof(const SDNode *N) {
2042    return N->getOpcode() == ISD::SRCVALUE;
2043  }
2044};
2045
2046
2047/// MemOperandSDNode - An SDNode that holds a MachineMemOperand. This is
2048/// used to represent a reference to memory after ISD::LOAD
2049/// and ISD::STORE have been lowered.
2050///
2051class MemOperandSDNode : public SDNode {
2052  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2053protected:
2054  friend class SelectionDAG;
2055  /// Create a MachineMemOperand node
2056  explicit MemOperandSDNode(const MachineMemOperand &mo)
2057    : SDNode(ISD::MEMOPERAND, getSDVTList(MVT::Other)), MO(mo) {}
2058
2059public:
2060  /// MO - The contained MachineMemOperand.
2061  const MachineMemOperand MO;
2062
2063  static bool classof(const MemOperandSDNode *) { return true; }
2064  static bool classof(const SDNode *N) {
2065    return N->getOpcode() == ISD::MEMOPERAND;
2066  }
2067};
2068
2069
2070class RegisterSDNode : public SDNode {
2071  unsigned Reg;
2072  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2073protected:
2074  friend class SelectionDAG;
2075  RegisterSDNode(unsigned reg, MVT VT)
2076    : SDNode(ISD::Register, getSDVTList(VT)), Reg(reg) {
2077  }
2078public:
2079
2080  unsigned getReg() const { return Reg; }
2081
2082  static bool classof(const RegisterSDNode *) { return true; }
2083  static bool classof(const SDNode *N) {
2084    return N->getOpcode() == ISD::Register;
2085  }
2086};
2087
2088class DbgStopPointSDNode : public SDNode {
2089  SDUse Chain;
2090  unsigned Line;
2091  unsigned Column;
2092  const CompileUnitDesc *CU;
2093  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2094protected:
2095  friend class SelectionDAG;
2096  DbgStopPointSDNode(SDValue ch, unsigned l, unsigned c,
2097                     const CompileUnitDesc *cu)
2098    : SDNode(ISD::DBG_STOPPOINT, getSDVTList(MVT::Other)),
2099      Line(l), Column(c), CU(cu) {
2100    Chain = ch;
2101    InitOperands(&Chain, 1);
2102  }
2103public:
2104  unsigned getLine() const { return Line; }
2105  unsigned getColumn() const { return Column; }
2106  const CompileUnitDesc *getCompileUnit() const { return CU; }
2107
2108  static bool classof(const DbgStopPointSDNode *) { return true; }
2109  static bool classof(const SDNode *N) {
2110    return N->getOpcode() == ISD::DBG_STOPPOINT;
2111  }
2112};
2113
2114class LabelSDNode : public SDNode {
2115  SDUse Chain;
2116  unsigned LabelID;
2117  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2118protected:
2119  friend class SelectionDAG;
2120  LabelSDNode(unsigned NodeTy, SDValue ch, unsigned id)
2121    : SDNode(NodeTy, getSDVTList(MVT::Other)), LabelID(id) {
2122    Chain = ch;
2123    InitOperands(&Chain, 1);
2124  }
2125public:
2126  unsigned getLabelID() const { return LabelID; }
2127
2128  static bool classof(const LabelSDNode *) { return true; }
2129  static bool classof(const SDNode *N) {
2130    return N->getOpcode() == ISD::DBG_LABEL ||
2131           N->getOpcode() == ISD::EH_LABEL;
2132  }
2133};
2134
2135class ExternalSymbolSDNode : public SDNode {
2136  const char *Symbol;
2137  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2138protected:
2139  friend class SelectionDAG;
2140  ExternalSymbolSDNode(bool isTarget, const char *Sym, MVT VT)
2141    : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
2142             getSDVTList(VT)), Symbol(Sym) {
2143  }
2144public:
2145
2146  const char *getSymbol() const { return Symbol; }
2147
2148  static bool classof(const ExternalSymbolSDNode *) { return true; }
2149  static bool classof(const SDNode *N) {
2150    return N->getOpcode() == ISD::ExternalSymbol ||
2151           N->getOpcode() == ISD::TargetExternalSymbol;
2152  }
2153};
2154
2155class CondCodeSDNode : public SDNode {
2156  ISD::CondCode Condition;
2157  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2158protected:
2159  friend class SelectionDAG;
2160  explicit CondCodeSDNode(ISD::CondCode Cond)
2161    : SDNode(ISD::CONDCODE, getSDVTList(MVT::Other)), Condition(Cond) {
2162  }
2163public:
2164
2165  ISD::CondCode get() const { return Condition; }
2166
2167  static bool classof(const CondCodeSDNode *) { return true; }
2168  static bool classof(const SDNode *N) {
2169    return N->getOpcode() == ISD::CONDCODE;
2170  }
2171};
2172
2173/// CvtRndSatSDNode - NOTE: avoid using this node as this may disappear in the
2174/// future and most targets don't support it.
2175class CvtRndSatSDNode : public SDNode {
2176  ISD::CvtCode CvtCode;
2177  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2178protected:
2179  friend class SelectionDAG;
2180  explicit CvtRndSatSDNode(MVT VT, const SDValue *Ops, unsigned NumOps,
2181                           ISD::CvtCode Code)
2182    : SDNode(ISD::CONVERT_RNDSAT, getSDVTList(VT), Ops, NumOps), CvtCode(Code) {
2183    assert(NumOps == 5 && "wrong number of operations");
2184  }
2185public:
2186  ISD::CvtCode getCvtCode() const { return CvtCode; }
2187
2188  static bool classof(const CvtRndSatSDNode *) { return true; }
2189  static bool classof(const SDNode *N) {
2190    return N->getOpcode() == ISD::CONVERT_RNDSAT;
2191  }
2192};
2193
2194namespace ISD {
2195  struct ArgFlagsTy {
2196  private:
2197    static const uint64_t NoFlagSet      = 0ULL;
2198    static const uint64_t ZExt           = 1ULL<<0;  ///< Zero extended
2199    static const uint64_t ZExtOffs       = 0;
2200    static const uint64_t SExt           = 1ULL<<1;  ///< Sign extended
2201    static const uint64_t SExtOffs       = 1;
2202    static const uint64_t InReg          = 1ULL<<2;  ///< Passed in register
2203    static const uint64_t InRegOffs      = 2;
2204    static const uint64_t SRet           = 1ULL<<3;  ///< Hidden struct-ret ptr
2205    static const uint64_t SRetOffs       = 3;
2206    static const uint64_t ByVal          = 1ULL<<4;  ///< Struct passed by value
2207    static const uint64_t ByValOffs      = 4;
2208    static const uint64_t Nest           = 1ULL<<5;  ///< Nested fn static chain
2209    static const uint64_t NestOffs       = 5;
2210    static const uint64_t ByValAlign     = 0xFULL << 6; //< Struct alignment
2211    static const uint64_t ByValAlignOffs = 6;
2212    static const uint64_t Split          = 1ULL << 10;
2213    static const uint64_t SplitOffs      = 10;
2214    static const uint64_t OrigAlign      = 0x1FULL<<27;
2215    static const uint64_t OrigAlignOffs  = 27;
2216    static const uint64_t ByValSize      = 0xffffffffULL << 32; //< Struct size
2217    static const uint64_t ByValSizeOffs  = 32;
2218
2219    static const uint64_t One            = 1ULL; //< 1 of this type, for shifts
2220
2221    uint64_t Flags;
2222  public:
2223    ArgFlagsTy() : Flags(0) { }
2224
2225    bool isZExt()   const { return Flags & ZExt; }
2226    void setZExt()  { Flags |= One << ZExtOffs; }
2227
2228    bool isSExt()   const { return Flags & SExt; }
2229    void setSExt()  { Flags |= One << SExtOffs; }
2230
2231    bool isInReg()  const { return Flags & InReg; }
2232    void setInReg() { Flags |= One << InRegOffs; }
2233
2234    bool isSRet()   const { return Flags & SRet; }
2235    void setSRet()  { Flags |= One << SRetOffs; }
2236
2237    bool isByVal()  const { return Flags & ByVal; }
2238    void setByVal() { Flags |= One << ByValOffs; }
2239
2240    bool isNest()   const { return Flags & Nest; }
2241    void setNest()  { Flags |= One << NestOffs; }
2242
2243    unsigned getByValAlign() const {
2244      return (unsigned)
2245        ((One << ((Flags & ByValAlign) >> ByValAlignOffs)) / 2);
2246    }
2247    void setByValAlign(unsigned A) {
2248      Flags = (Flags & ~ByValAlign) |
2249        (uint64_t(Log2_32(A) + 1) << ByValAlignOffs);
2250    }
2251
2252    bool isSplit()   const { return Flags & Split; }
2253    void setSplit()  { Flags |= One << SplitOffs; }
2254
2255    unsigned getOrigAlign() const {
2256      return (unsigned)
2257        ((One << ((Flags & OrigAlign) >> OrigAlignOffs)) / 2);
2258    }
2259    void setOrigAlign(unsigned A) {
2260      Flags = (Flags & ~OrigAlign) |
2261        (uint64_t(Log2_32(A) + 1) << OrigAlignOffs);
2262    }
2263
2264    unsigned getByValSize() const {
2265      return (unsigned)((Flags & ByValSize) >> ByValSizeOffs);
2266    }
2267    void setByValSize(unsigned S) {
2268      Flags = (Flags & ~ByValSize) | (uint64_t(S) << ByValSizeOffs);
2269    }
2270
2271    /// getArgFlagsString - Returns the flags as a string, eg: "zext align:4".
2272    std::string getArgFlagsString();
2273
2274    /// getRawBits - Represent the flags as a bunch of bits.
2275    uint64_t getRawBits() const { return Flags; }
2276  };
2277}
2278
2279/// ARG_FLAGSSDNode - Leaf node holding parameter flags.
2280class ARG_FLAGSSDNode : public SDNode {
2281  ISD::ArgFlagsTy TheFlags;
2282  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2283protected:
2284  friend class SelectionDAG;
2285  explicit ARG_FLAGSSDNode(ISD::ArgFlagsTy Flags)
2286    : SDNode(ISD::ARG_FLAGS, getSDVTList(MVT::Other)), TheFlags(Flags) {
2287  }
2288public:
2289  ISD::ArgFlagsTy getArgFlags() const { return TheFlags; }
2290
2291  static bool classof(const ARG_FLAGSSDNode *) { return true; }
2292  static bool classof(const SDNode *N) {
2293    return N->getOpcode() == ISD::ARG_FLAGS;
2294  }
2295};
2296
2297/// CallSDNode - Node for calls -- ISD::CALL.
2298class CallSDNode : public SDNode {
2299  unsigned CallingConv;
2300  bool IsVarArg;
2301  bool IsTailCall;
2302  // We might eventually want a full-blown Attributes for the result; that
2303  // will expand the size of the representation.  At the moment we only
2304  // need Inreg.
2305  bool Inreg;
2306  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2307protected:
2308  friend class SelectionDAG;
2309  CallSDNode(unsigned cc, bool isvararg, bool istailcall, bool isinreg,
2310             SDVTList VTs, const SDValue *Operands, unsigned numOperands)
2311    : SDNode(ISD::CALL, VTs, Operands, numOperands),
2312      CallingConv(cc), IsVarArg(isvararg), IsTailCall(istailcall),
2313      Inreg(isinreg) {}
2314public:
2315  unsigned getCallingConv() const { return CallingConv; }
2316  unsigned isVarArg() const { return IsVarArg; }
2317  unsigned isTailCall() const { return IsTailCall; }
2318  unsigned isInreg() const { return Inreg; }
2319
2320  /// Set this call to not be marked as a tail call. Normally setter
2321  /// methods in SDNodes are unsafe because it breaks the CSE map,
2322  /// but we don't include the tail call flag for calls so it's ok
2323  /// in this case.
2324  void setNotTailCall() { IsTailCall = false; }
2325
2326  SDValue getChain() const { return getOperand(0); }
2327  SDValue getCallee() const { return getOperand(1); }
2328
2329  unsigned getNumArgs() const { return (getNumOperands() - 2) / 2; }
2330  SDValue getArg(unsigned i) const { return getOperand(2+2*i); }
2331  SDValue getArgFlagsVal(unsigned i) const {
2332    return getOperand(3+2*i);
2333  }
2334  ISD::ArgFlagsTy getArgFlags(unsigned i) const {
2335    return cast<ARG_FLAGSSDNode>(getArgFlagsVal(i).getNode())->getArgFlags();
2336  }
2337
2338  unsigned getNumRetVals() const { return getNumValues() - 1; }
2339  MVT getRetValType(unsigned i) const { return getValueType(i); }
2340
2341  static bool classof(const CallSDNode *) { return true; }
2342  static bool classof(const SDNode *N) {
2343    return N->getOpcode() == ISD::CALL;
2344  }
2345};
2346
2347/// VTSDNode - This class is used to represent MVT's, which are used
2348/// to parameterize some operations.
2349class VTSDNode : public SDNode {
2350  MVT ValueType;
2351  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2352protected:
2353  friend class SelectionDAG;
2354  explicit VTSDNode(MVT VT)
2355    : SDNode(ISD::VALUETYPE, getSDVTList(MVT::Other)), ValueType(VT) {
2356  }
2357public:
2358
2359  MVT getVT() const { return ValueType; }
2360
2361  static bool classof(const VTSDNode *) { return true; }
2362  static bool classof(const SDNode *N) {
2363    return N->getOpcode() == ISD::VALUETYPE;
2364  }
2365};
2366
2367/// LSBaseSDNode - Base class for LoadSDNode and StoreSDNode
2368///
2369class LSBaseSDNode : public MemSDNode {
2370protected:
2371  //! Operand array for load and store
2372  /*!
2373    \note Moving this array to the base class captures more
2374    common functionality shared between LoadSDNode and
2375    StoreSDNode
2376   */
2377  SDUse Ops[4];
2378public:
2379  LSBaseSDNode(ISD::NodeType NodeTy, SDValue *Operands, unsigned numOperands,
2380               SDVTList VTs, ISD::MemIndexedMode AM, MVT VT,
2381               const Value *SV, int SVO, unsigned Align, bool Vol)
2382    : MemSDNode(NodeTy, VTs, VT, SV, SVO, Align, Vol) {
2383    SubclassData = AM;
2384    for (unsigned i = 0; i != numOperands; ++i)
2385      Ops[i] = Operands[i];
2386    InitOperands(Ops, numOperands);
2387    assert(Align != 0 && "Loads and stores should have non-zero aligment");
2388    assert((getOffset().getOpcode() == ISD::UNDEF || isIndexed()) &&
2389           "Only indexed loads and stores have a non-undef offset operand");
2390  }
2391
2392  const SDValue &getOffset() const {
2393    return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
2394  }
2395
2396  /// getAddressingMode - Return the addressing mode for this load or store:
2397  /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2398  ISD::MemIndexedMode getAddressingMode() const {
2399    return ISD::MemIndexedMode(SubclassData & 7);
2400  }
2401
2402  /// isIndexed - Return true if this is a pre/post inc/dec load/store.
2403  bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2404
2405  /// isUnindexed - Return true if this is NOT a pre/post inc/dec load/store.
2406  bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2407
2408  static bool classof(const LSBaseSDNode *) { return true; }
2409  static bool classof(const SDNode *N) {
2410    return N->getOpcode() == ISD::LOAD ||
2411           N->getOpcode() == ISD::STORE;
2412  }
2413};
2414
2415/// LoadSDNode - This class is used to represent ISD::LOAD nodes.
2416///
2417class LoadSDNode : public LSBaseSDNode {
2418  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2419protected:
2420  friend class SelectionDAG;
2421  LoadSDNode(SDValue *ChainPtrOff, SDVTList VTs,
2422             ISD::MemIndexedMode AM, ISD::LoadExtType ETy, MVT LVT,
2423             const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
2424    : LSBaseSDNode(ISD::LOAD, ChainPtrOff, 3,
2425                   VTs, AM, LVT, SV, O, Align, Vol) {
2426    SubclassData |= (unsigned short)ETy << 3;
2427  }
2428public:
2429
2430  /// getExtensionType - Return whether this is a plain node,
2431  /// or one of the varieties of value-extending loads.
2432  ISD::LoadExtType getExtensionType() const {
2433    return ISD::LoadExtType((SubclassData >> 3) & 3);
2434  }
2435
2436  const SDValue &getBasePtr() const { return getOperand(1); }
2437  const SDValue &getOffset() const { return getOperand(2); }
2438
2439  static bool classof(const LoadSDNode *) { return true; }
2440  static bool classof(const SDNode *N) {
2441    return N->getOpcode() == ISD::LOAD;
2442  }
2443};
2444
2445/// StoreSDNode - This class is used to represent ISD::STORE nodes.
2446///
2447class StoreSDNode : public LSBaseSDNode {
2448  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2449protected:
2450  friend class SelectionDAG;
2451  StoreSDNode(SDValue *ChainValuePtrOff, SDVTList VTs,
2452              ISD::MemIndexedMode AM, bool isTrunc, MVT SVT,
2453              const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
2454    : LSBaseSDNode(ISD::STORE, ChainValuePtrOff, 4,
2455                   VTs, AM, SVT, SV, O, Align, Vol) {
2456    SubclassData |= (unsigned short)isTrunc << 3;
2457  }
2458public:
2459
2460  /// isTruncatingStore - Return true if the op does a truncation before store.
2461  /// For integers this is the same as doing a TRUNCATE and storing the result.
2462  /// For floats, it is the same as doing an FP_ROUND and storing the result.
2463  bool isTruncatingStore() const { return (SubclassData >> 3) & 1; }
2464
2465  const SDValue &getValue() const { return getOperand(1); }
2466  const SDValue &getBasePtr() const { return getOperand(2); }
2467  const SDValue &getOffset() const { return getOperand(3); }
2468
2469  static bool classof(const StoreSDNode *) { return true; }
2470  static bool classof(const SDNode *N) {
2471    return N->getOpcode() == ISD::STORE;
2472  }
2473};
2474
2475
2476class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
2477  SDNode *Node;
2478  unsigned Operand;
2479
2480  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
2481public:
2482  bool operator==(const SDNodeIterator& x) const {
2483    return Operand == x.Operand;
2484  }
2485  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
2486
2487  const SDNodeIterator &operator=(const SDNodeIterator &I) {
2488    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
2489    Operand = I.Operand;
2490    return *this;
2491  }
2492
2493  pointer operator*() const {
2494    return Node->getOperand(Operand).getNode();
2495  }
2496  pointer operator->() const { return operator*(); }
2497
2498  SDNodeIterator& operator++() {                // Preincrement
2499    ++Operand;
2500    return *this;
2501  }
2502  SDNodeIterator operator++(int) { // Postincrement
2503    SDNodeIterator tmp = *this; ++*this; return tmp;
2504  }
2505
2506  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
2507  static SDNodeIterator end  (SDNode *N) {
2508    return SDNodeIterator(N, N->getNumOperands());
2509  }
2510
2511  unsigned getOperand() const { return Operand; }
2512  const SDNode *getNode() const { return Node; }
2513};
2514
2515template <> struct GraphTraits<SDNode*> {
2516  typedef SDNode NodeType;
2517  typedef SDNodeIterator ChildIteratorType;
2518  static inline NodeType *getEntryNode(SDNode *N) { return N; }
2519  static inline ChildIteratorType child_begin(NodeType *N) {
2520    return SDNodeIterator::begin(N);
2521  }
2522  static inline ChildIteratorType child_end(NodeType *N) {
2523    return SDNodeIterator::end(N);
2524  }
2525};
2526
2527/// LargestSDNode - The largest SDNode class.
2528///
2529typedef LoadSDNode LargestSDNode;
2530
2531/// MostAlignedSDNode - The SDNode class with the greatest alignment
2532/// requirement.
2533///
2534typedef ARG_FLAGSSDNode MostAlignedSDNode;
2535
2536namespace ISD {
2537  /// isNormalLoad - Returns true if the specified node is a non-extending
2538  /// and unindexed load.
2539  inline bool isNormalLoad(const SDNode *N) {
2540    const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
2541    return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
2542      Ld->getAddressingMode() == ISD::UNINDEXED;
2543  }
2544
2545  /// isNON_EXTLoad - Returns true if the specified node is a non-extending
2546  /// load.
2547  inline bool isNON_EXTLoad(const SDNode *N) {
2548    return isa<LoadSDNode>(N) &&
2549      cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
2550  }
2551
2552  /// isEXTLoad - Returns true if the specified node is a EXTLOAD.
2553  ///
2554  inline bool isEXTLoad(const SDNode *N) {
2555    return isa<LoadSDNode>(N) &&
2556      cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
2557  }
2558
2559  /// isSEXTLoad - Returns true if the specified node is a SEXTLOAD.
2560  ///
2561  inline bool isSEXTLoad(const SDNode *N) {
2562    return isa<LoadSDNode>(N) &&
2563      cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
2564  }
2565
2566  /// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD.
2567  ///
2568  inline bool isZEXTLoad(const SDNode *N) {
2569    return isa<LoadSDNode>(N) &&
2570      cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
2571  }
2572
2573  /// isUNINDEXEDLoad - Returns true if the specified node is an unindexed load.
2574  ///
2575  inline bool isUNINDEXEDLoad(const SDNode *N) {
2576    return isa<LoadSDNode>(N) &&
2577      cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2578  }
2579
2580  /// isNormalStore - Returns true if the specified node is a non-truncating
2581  /// and unindexed store.
2582  inline bool isNormalStore(const SDNode *N) {
2583    const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
2584    return St && !St->isTruncatingStore() &&
2585      St->getAddressingMode() == ISD::UNINDEXED;
2586  }
2587
2588  /// isNON_TRUNCStore - Returns true if the specified node is a non-truncating
2589  /// store.
2590  inline bool isNON_TRUNCStore(const SDNode *N) {
2591    return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore();
2592  }
2593
2594  /// isTRUNCStore - Returns true if the specified node is a truncating
2595  /// store.
2596  inline bool isTRUNCStore(const SDNode *N) {
2597    return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore();
2598  }
2599
2600  /// isUNINDEXEDStore - Returns true if the specified node is an
2601  /// unindexed store.
2602  inline bool isUNINDEXEDStore(const SDNode *N) {
2603    return isa<StoreSDNode>(N) &&
2604      cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2605  }
2606}
2607
2608
2609} // end llvm namespace
2610
2611#endif
2612