SelectionDAGNodes.h revision eda6dfd5e46f2475eb1a9d79750bdd6be6b7e94a
1//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SDNode class and derived classes, which are used to
11// represent the nodes and operations present in a SelectionDAG.  These nodes
12// and operations are machine code level operations, with some similarities to
13// the GCC RTL representation.
14//
15// Clients should include the SelectionDAG.h file instead of this file directly.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20#define LLVM_CODEGEN_SELECTIONDAGNODES_H
21
22#include "llvm/CodeGen/ValueTypes.h"
23#include "llvm/Value.h"
24#include "llvm/ADT/GraphTraits.h"
25#include "llvm/ADT/iterator"
26#include "llvm/Support/DataTypes.h"
27#include <cassert>
28#include <vector>
29
30namespace llvm {
31
32class SelectionDAG;
33class GlobalValue;
34class MachineBasicBlock;
35class SDNode;
36template <typename T> struct simplify_type;
37template <typename T> struct ilist_traits;
38template<typename NodeTy, typename Traits> class iplist;
39template<typename NodeTy> class ilist_iterator;
40
41/// ISD namespace - This namespace contains an enum which represents all of the
42/// SelectionDAG node types and value types.
43///
44namespace ISD {
45  //===--------------------------------------------------------------------===//
46  /// ISD::NodeType enum - This enum defines all of the operators valid in a
47  /// SelectionDAG.
48  ///
49  enum NodeType {
50    // EntryToken - This is the marker used to indicate the start of the region.
51    EntryToken,
52
53    // Token factor - This node takes multiple tokens as input and produces a
54    // single token result.  This is used to represent the fact that the operand
55    // operators are independent of each other.
56    TokenFactor,
57
58    // AssertSext, AssertZext - These nodes record if a register contains a
59    // value that has already been zero or sign extended from a narrower type.
60    // These nodes take two operands.  The first is the node that has already
61    // been extended, and the second is a value type node indicating the width
62    // of the extension
63    AssertSext, AssertZext,
64
65    // Various leaf nodes.
66    STRING, BasicBlock, VALUETYPE, CONDCODE, Register,
67    Constant, ConstantFP,
68    GlobalAddress, FrameIndex, ConstantPool, ExternalSymbol,
69
70    // TargetConstant* - Like Constant*, but the DAG does not do any folding or
71    // simplification of the constant.
72    TargetConstant,
73    TargetConstantFP,
74
75    // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
76    // anything else with this node, and this is valid in the target-specific
77    // dag, turning into a GlobalAddress operand.
78    TargetGlobalAddress,
79    TargetFrameIndex,
80    TargetConstantPool,
81    TargetExternalSymbol,
82
83    /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
84    /// This node represents a target intrinsic function with no side effects.
85    /// The first operand is the ID number of the intrinsic from the
86    /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
87    /// node has returns the result of the intrinsic.
88    INTRINSIC_WO_CHAIN,
89
90    /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
91    /// This node represents a target intrinsic function with side effects that
92    /// returns a result.  The first operand is a chain pointer.  The second is
93    /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
94    /// operands to the intrinsic follow.  The node has two results, the result
95    /// of the intrinsic and an output chain.
96    INTRINSIC_W_CHAIN,
97
98    /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
99    /// This node represents a target intrinsic function with side effects that
100    /// does not return a result.  The first operand is a chain pointer.  The
101    /// second is the ID number of the intrinsic from the llvm::Intrinsic
102    /// namespace.  The operands to the intrinsic follow.
103    INTRINSIC_VOID,
104
105    // CopyToReg - This node has three operands: a chain, a register number to
106    // set to this value, and a value.
107    CopyToReg,
108
109    // CopyFromReg - This node indicates that the input value is a virtual or
110    // physical register that is defined outside of the scope of this
111    // SelectionDAG.  The register is available from the RegSDNode object.
112    CopyFromReg,
113
114    // UNDEF - An undefined node
115    UNDEF,
116
117    // EXTRACT_ELEMENT - This is used to get the first or second (determined by
118    // a Constant, which is required to be operand #1), element of the aggregate
119    // value specified as operand #0.  This is only for use before legalization,
120    // for values that will be broken into multiple registers.
121    EXTRACT_ELEMENT,
122
123    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
124    // two values of the same integer value type, this produces a value twice as
125    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
126    BUILD_PAIR,
127
128    // MERGE_VALUES - This node takes multiple discrete operands and returns
129    // them all as its individual results.  This nodes has exactly the same
130    // number of inputs and outputs, and is only valid before legalization.
131    // This node is useful for some pieces of the code generator that want to
132    // think about a single node with multiple results, not multiple nodes.
133    MERGE_VALUES,
134
135    // Simple integer binary arithmetic operators.
136    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
137
138    // Carry-setting nodes for multiple precision addition and subtraction.
139    // These nodes take two operands of the same value type, and produce two
140    // results.  The first result is the normal add or sub result, the second
141    // result is the carry flag result.
142    ADDC, SUBC,
143
144    // Carry-using nodes for multiple precision addition and subtraction.  These
145    // nodes take three operands: The first two are the normal lhs and rhs to
146    // the add or sub, and the third is the input carry flag.  These nodes
147    // produce two results; the normal result of the add or sub, and the output
148    // carry flag.  These nodes both read and write a carry flag to allow them
149    // to them to be chained together for add and sub of arbitrarily large
150    // values.
151    ADDE, SUBE,
152
153    // Simple binary floating point operators.
154    FADD, FSUB, FMUL, FDIV, FREM,
155
156    // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
157    // DAG node does not require that X and Y have the same type, just that they
158    // are both floating point.  X and the result must have the same type.
159    // FCOPYSIGN(f32, f64) is allowed.
160    FCOPYSIGN,
161
162    /// VBUILD_VECTOR(ELT1, ELT2, ELT3, ELT4,...,  COUNT,TYPE) - Return a vector
163    /// with the specified, possibly variable, elements.  The number of elements
164    /// is required to be a power of two.
165    VBUILD_VECTOR,
166
167    /// BUILD_VECTOR(ELT1, ELT2, ELT3, ELT4,...) - Return a vector
168    /// with the specified, possibly variable, elements.  The number of elements
169    /// is required to be a power of two.
170    BUILD_VECTOR,
171
172    /// VINSERT_VECTOR_ELT(VECTOR, VAL, IDX,  COUNT,TYPE) - Given a vector
173    /// VECTOR, an element ELEMENT, and a (potentially variable) index IDX,
174    /// return an vector with the specified element of VECTOR replaced with VAL.
175    /// COUNT and TYPE specify the type of vector, as is standard for V* nodes.
176    VINSERT_VECTOR_ELT,
177
178    /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR (a legal packed
179    /// type) with the element at IDX replaced with VAL.
180    INSERT_VECTOR_ELT,
181
182    /// VEXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
183    /// (an MVT::Vector value) identified by the (potentially variable) element
184    /// number IDX.
185    VEXTRACT_VECTOR_ELT,
186
187    /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
188    /// (a legal packed type vector) identified by the (potentially variable)
189    /// element number IDX.
190    EXTRACT_VECTOR_ELT,
191
192    /// VVECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC, COUNT,TYPE) - Returns a vector,
193    /// of the same type as VEC1/VEC2.  SHUFFLEVEC is a VBUILD_VECTOR of
194    /// constant int values that indicate which value each result element will
195    /// get.  The elements of VEC1/VEC2 are enumerated in order.  This is quite
196    /// similar to the Altivec 'vperm' instruction, except that the indices must
197    /// be constants and are in terms of the element size of VEC1/VEC2, not in
198    /// terms of bytes.
199    VVECTOR_SHUFFLE,
200
201    /// VECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC) - Returns a vector, of the same
202    /// type as VEC1/VEC2.  SHUFFLEVEC is a BUILD_VECTOR of constant int values
203    /// (regardless of whether its datatype is legal or not) that indicate
204    /// which value each result element will get.  The elements of VEC1/VEC2 are
205    /// enumerated in order.  This is quite similar to the Altivec 'vperm'
206    /// instruction, except that the indices must be constants and are in terms
207    /// of the element size of VEC1/VEC2, not in terms of bytes.
208    VECTOR_SHUFFLE,
209
210    /// X = VBIT_CONVERT(Y)  and X = VBIT_CONVERT(Y, COUNT,TYPE) - This node
211    /// represents a conversion from or to an ISD::Vector type.
212    ///
213    /// This is lowered to a BIT_CONVERT of the appropriate input/output types.
214    /// The input and output are required to have the same size and at least one
215    /// is required to be a vector (if neither is a vector, just use
216    /// BIT_CONVERT).
217    ///
218    /// If the result is a vector, this takes three operands (like any other
219    /// vector producer) which indicate the size and type of the vector result.
220    /// Otherwise it takes one input.
221    VBIT_CONVERT,
222
223    /// BINOP(LHS, RHS,  COUNT,TYPE)
224    /// Simple abstract vector operators.  Unlike the integer and floating point
225    /// binary operators, these nodes also take two additional operands:
226    /// a constant element count, and a value type node indicating the type of
227    /// the elements.  The order is count, type, op0, op1.  All vector opcodes,
228    /// including VLOAD and VConstant must currently have count and type as
229    /// their last two operands.
230    VADD, VSUB, VMUL, VSDIV, VUDIV,
231    VAND, VOR, VXOR,
232
233    /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
234    /// scalar value into the low element of the resultant vector type.  The top
235    /// elements of the vector are undefined.
236    SCALAR_TO_VECTOR,
237
238    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
239    // an unsigned/signed value of type i[2*n], then return the top part.
240    MULHU, MULHS,
241
242    // Bitwise operators - logical and, logical or, logical xor, shift left,
243    // shift right algebraic (shift in sign bits), shift right logical (shift in
244    // zeroes), rotate left, rotate right, and byteswap.
245    AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
246
247    // Counting operators
248    CTTZ, CTLZ, CTPOP,
249
250    // Select(COND, TRUEVAL, FALSEVAL)
251    SELECT,
252
253    // Select with condition operator - This selects between a true value and
254    // a false value (ops #2 and #3) based on the boolean result of comparing
255    // the lhs and rhs (ops #0 and #1) of a conditional expression with the
256    // condition code in op #4, a CondCodeSDNode.
257    SELECT_CC,
258
259    // SetCC operator - This evaluates to a boolean (i1) true value if the
260    // condition is true.  The operands to this are the left and right operands
261    // to compare (ops #0, and #1) and the condition code to compare them with
262    // (op #2) as a CondCodeSDNode.
263    SETCC,
264
265    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
266    // integer shift operations, just like ADD/SUB_PARTS.  The operation
267    // ordering is:
268    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
269    SHL_PARTS, SRA_PARTS, SRL_PARTS,
270
271    // Conversion operators.  These are all single input single output
272    // operations.  For all of these, the result type must be strictly
273    // wider or narrower (depending on the operation) than the source
274    // type.
275
276    // SIGN_EXTEND - Used for integer types, replicating the sign bit
277    // into new bits.
278    SIGN_EXTEND,
279
280    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
281    ZERO_EXTEND,
282
283    // ANY_EXTEND - Used for integer types.  The high bits are undefined.
284    ANY_EXTEND,
285
286    // TRUNCATE - Completely drop the high bits.
287    TRUNCATE,
288
289    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
290    // depends on the first letter) to floating point.
291    SINT_TO_FP,
292    UINT_TO_FP,
293
294    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
295    // sign extend a small value in a large integer register (e.g. sign
296    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
297    // with the 7th bit).  The size of the smaller type is indicated by the 1th
298    // operand, a ValueType node.
299    SIGN_EXTEND_INREG,
300
301    // FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
302    // integer.
303    FP_TO_SINT,
304    FP_TO_UINT,
305
306    // FP_ROUND - Perform a rounding operation from the current
307    // precision down to the specified precision (currently always 64->32).
308    FP_ROUND,
309
310    // FP_ROUND_INREG - This operator takes a floating point register, and
311    // rounds it to a floating point value.  It then promotes it and returns it
312    // in a register of the same size.  This operation effectively just discards
313    // excess precision.  The type to round down to is specified by the 1th
314    // operation, a VTSDNode (currently always 64->32->64).
315    FP_ROUND_INREG,
316
317    // FP_EXTEND - Extend a smaller FP type into a larger FP type.
318    FP_EXTEND,
319
320    // BIT_CONVERT - Theis operator converts between integer and FP values, as
321    // if one was stored to memory as integer and the other was loaded from the
322    // same address (or equivalently for vector format conversions, etc).  The
323    // source and result are required to have the same bit size (e.g.
324    // f32 <-> i32).  This can also be used for int-to-int or fp-to-fp
325    // conversions, but that is a noop, deleted by getNode().
326    BIT_CONVERT,
327
328    // FNEG, FABS, FSQRT, FSIN, FCOS - Perform unary floating point negation,
329    // absolute value, square root, sine and cosine operations.
330    FNEG, FABS, FSQRT, FSIN, FCOS,
331
332    // Other operators.  LOAD and STORE have token chains as their first
333    // operand, then the same operands as an LLVM load/store instruction, then a
334    // SRCVALUE node that provides alias analysis information.
335    LOAD, STORE,
336
337    // Abstract vector version of LOAD.  VLOAD has a constant element count as
338    // the first operand, followed by a value type node indicating the type of
339    // the elements, a token chain, a pointer operand, and a SRCVALUE node.
340    VLOAD,
341
342    // EXTLOAD, SEXTLOAD, ZEXTLOAD - These three operators all load a value from
343    // memory and extend them to a larger value (e.g. load a byte into a word
344    // register).  All three of these have four operands, a token chain, a
345    // pointer to load from, a SRCVALUE for alias analysis, and a VALUETYPE node
346    // indicating the type to load.
347    //
348    // SEXTLOAD loads the integer operand and sign extends it to a larger
349    //          integer result type.
350    // ZEXTLOAD loads the integer operand and zero extends it to a larger
351    //          integer result type.
352    // EXTLOAD  is used for three things: floating point extending loads,
353    //          integer extending loads [the top bits are undefined], and vector
354    //          extending loads [load into low elt].
355    EXTLOAD, SEXTLOAD, ZEXTLOAD,
356
357    // TRUNCSTORE - This operators truncates (for integer) or rounds (for FP) a
358    // value and stores it to memory in one operation.  This can be used for
359    // either integer or floating point operands.  The first four operands of
360    // this are the same as a standard store.  The fifth is the ValueType to
361    // store it as (which will be smaller than the source value).
362    TRUNCSTORE,
363
364    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
365    // to a specified boundary.  The first operand is the token chain, the
366    // second is the number of bytes to allocate, and the third is the alignment
367    // boundary.  The size is guaranteed to be a multiple of the stack
368    // alignment, and the alignment is guaranteed to be bigger than the stack
369    // alignment (if required) or 0 to get standard stack alignment.
370    DYNAMIC_STACKALLOC,
371
372    // Control flow instructions.  These all have token chains.
373
374    // BR - Unconditional branch.  The first operand is the chain
375    // operand, the second is the MBB to branch to.
376    BR,
377
378    // BRCOND - Conditional branch.  The first operand is the chain,
379    // the second is the condition, the third is the block to branch
380    // to if the condition is true.
381    BRCOND,
382
383    // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
384    // that the condition is represented as condition code, and two nodes to
385    // compare, rather than as a combined SetCC node.  The operands in order are
386    // chain, cc, lhs, rhs, block to branch to if condition is true.
387    BR_CC,
388
389    // RET - Return from function.  The first operand is the chain,
390    // and any subsequent operands are the return values for the
391    // function.  This operation can have variable number of operands.
392    RET,
393
394    // INLINEASM - Represents an inline asm block.  This node always has two
395    // return values: a chain and a flag result.  The inputs are as follows:
396    //   Operand #0   : Input chain.
397    //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
398    //   Operand #2n+2: A RegisterNode.
399    //   Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
400    //   Operand #last: Optional, an incoming flag.
401    INLINEASM,
402
403    // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
404    // value, the same type as the pointer type for the system, and an output
405    // chain.
406    STACKSAVE,
407
408    // STACKRESTORE has two operands, an input chain and a pointer to restore to
409    // it returns an output chain.
410    STACKRESTORE,
411
412    // MEMSET/MEMCPY/MEMMOVE - The first operand is the chain, and the rest
413    // correspond to the operands of the LLVM intrinsic functions.  The only
414    // result is a token chain.  The alignment argument is guaranteed to be a
415    // Constant node.
416    MEMSET,
417    MEMMOVE,
418    MEMCPY,
419
420    // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
421    // a call sequence, and carry arbitrary information that target might want
422    // to know.  The first operand is a chain, the rest are specified by the
423    // target and not touched by the DAG optimizers.
424    CALLSEQ_START,  // Beginning of a call sequence
425    CALLSEQ_END,    // End of a call sequence
426
427    // VAARG - VAARG has three operands: an input chain, a pointer, and a
428    // SRCVALUE.  It returns a pair of values: the vaarg value and a new chain.
429    VAARG,
430
431    // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
432    // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
433    // source.
434    VACOPY,
435
436    // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
437    // pointer, and a SRCVALUE.
438    VAEND, VASTART,
439
440    // SRCVALUE - This corresponds to a Value*, and is used to associate memory
441    // locations with their value.  This allows one use alias analysis
442    // information in the backend.
443    SRCVALUE,
444
445    // PCMARKER - This corresponds to the pcmarker intrinsic.
446    PCMARKER,
447
448    // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
449    // The only operand is a chain and a value and a chain are produced.  The
450    // value is the contents of the architecture specific cycle counter like
451    // register (or other high accuracy low latency clock source)
452    READCYCLECOUNTER,
453
454    // HANDLENODE node - Used as a handle for various purposes.
455    HANDLENODE,
456
457    // LOCATION - This node is used to represent a source location for debug
458    // info.  It takes token chain as input, then a line number, then a column
459    // number, then a filename, then a working dir.  It produces a token chain
460    // as output.
461    LOCATION,
462
463    // DEBUG_LOC - This node is used to represent source line information
464    // embedded in the code.  It takes a token chain as input, then a line
465    // number, then a column then a file id (provided by MachineDebugInfo.) It
466    // produces a token chain as output.
467    DEBUG_LOC,
468
469    // DEBUG_LABEL - This node is used to mark a location in the code where a
470    // label should be generated for use by the debug information.  It takes a
471    // token chain as input and then a unique id (provided by MachineDebugInfo.)
472    // It produces a token chain as output.
473    DEBUG_LABEL,
474
475    // BUILTIN_OP_END - This must be the last enum value in this list.
476    BUILTIN_OP_END
477  };
478
479  /// Node predicates
480
481  /// isBuildVectorAllOnes - Return true if the specified node is a
482  /// BUILD_VECTOR where all of the elements are ~0 or undef.
483  bool isBuildVectorAllOnes(const SDNode *N);
484
485  /// isBuildVectorAllZeros - Return true if the specified node is a
486  /// BUILD_VECTOR where all of the elements are 0 or undef.
487  bool isBuildVectorAllZeros(const SDNode *N);
488
489  //===--------------------------------------------------------------------===//
490  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
491  /// below work out, when considering SETFALSE (something that never exists
492  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
493  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
494  /// to.  If the "N" column is 1, the result of the comparison is undefined if
495  /// the input is a NAN.
496  ///
497  /// All of these (except for the 'always folded ops') should be handled for
498  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
499  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
500  ///
501  /// Note that these are laid out in a specific order to allow bit-twiddling
502  /// to transform conditions.
503  enum CondCode {
504    // Opcode          N U L G E       Intuitive operation
505    SETFALSE,      //    0 0 0 0       Always false (always folded)
506    SETOEQ,        //    0 0 0 1       True if ordered and equal
507    SETOGT,        //    0 0 1 0       True if ordered and greater than
508    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
509    SETOLT,        //    0 1 0 0       True if ordered and less than
510    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
511    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
512    SETO,          //    0 1 1 1       True if ordered (no nans)
513    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
514    SETUEQ,        //    1 0 0 1       True if unordered or equal
515    SETUGT,        //    1 0 1 0       True if unordered or greater than
516    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
517    SETULT,        //    1 1 0 0       True if unordered or less than
518    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
519    SETUNE,        //    1 1 1 0       True if unordered or not equal
520    SETTRUE,       //    1 1 1 1       Always true (always folded)
521    // Don't care operations: undefined if the input is a nan.
522    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
523    SETEQ,         //  1 X 0 0 1       True if equal
524    SETGT,         //  1 X 0 1 0       True if greater than
525    SETGE,         //  1 X 0 1 1       True if greater than or equal
526    SETLT,         //  1 X 1 0 0       True if less than
527    SETLE,         //  1 X 1 0 1       True if less than or equal
528    SETNE,         //  1 X 1 1 0       True if not equal
529    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
530
531    SETCC_INVALID       // Marker value.
532  };
533
534  /// isSignedIntSetCC - Return true if this is a setcc instruction that
535  /// performs a signed comparison when used with integer operands.
536  inline bool isSignedIntSetCC(CondCode Code) {
537    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
538  }
539
540  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
541  /// performs an unsigned comparison when used with integer operands.
542  inline bool isUnsignedIntSetCC(CondCode Code) {
543    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
544  }
545
546  /// isTrueWhenEqual - Return true if the specified condition returns true if
547  /// the two operands to the condition are equal.  Note that if one of the two
548  /// operands is a NaN, this value is meaningless.
549  inline bool isTrueWhenEqual(CondCode Cond) {
550    return ((int)Cond & 1) != 0;
551  }
552
553  /// getUnorderedFlavor - This function returns 0 if the condition is always
554  /// false if an operand is a NaN, 1 if the condition is always true if the
555  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
556  /// NaN.
557  inline unsigned getUnorderedFlavor(CondCode Cond) {
558    return ((int)Cond >> 3) & 3;
559  }
560
561  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
562  /// 'op' is a valid SetCC operation.
563  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
564
565  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
566  /// when given the operation for (X op Y).
567  CondCode getSetCCSwappedOperands(CondCode Operation);
568
569  /// getSetCCOrOperation - Return the result of a logical OR between different
570  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
571  /// function returns SETCC_INVALID if it is not possible to represent the
572  /// resultant comparison.
573  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
574
575  /// getSetCCAndOperation - Return the result of a logical AND between
576  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
577  /// function returns SETCC_INVALID if it is not possible to represent the
578  /// resultant comparison.
579  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
580}  // end llvm::ISD namespace
581
582
583//===----------------------------------------------------------------------===//
584/// SDOperand - Unlike LLVM values, Selection DAG nodes may return multiple
585/// values as the result of a computation.  Many nodes return multiple values,
586/// from loads (which define a token and a return value) to ADDC (which returns
587/// a result and a carry value), to calls (which may return an arbitrary number
588/// of values).
589///
590/// As such, each use of a SelectionDAG computation must indicate the node that
591/// computes it as well as which return value to use from that node.  This pair
592/// of information is represented with the SDOperand value type.
593///
594class SDOperand {
595public:
596  SDNode *Val;        // The node defining the value we are using.
597  unsigned ResNo;     // Which return value of the node we are using.
598
599  SDOperand() : Val(0) {}
600  SDOperand(SDNode *val, unsigned resno) : Val(val), ResNo(resno) {}
601
602  bool operator==(const SDOperand &O) const {
603    return Val == O.Val && ResNo == O.ResNo;
604  }
605  bool operator!=(const SDOperand &O) const {
606    return !operator==(O);
607  }
608  bool operator<(const SDOperand &O) const {
609    return Val < O.Val || (Val == O.Val && ResNo < O.ResNo);
610  }
611
612  SDOperand getValue(unsigned R) const {
613    return SDOperand(Val, R);
614  }
615
616  // isOperand - Return true if this node is an operand of N.
617  bool isOperand(SDNode *N) const;
618
619  /// getValueType - Return the ValueType of the referenced return value.
620  ///
621  inline MVT::ValueType getValueType() const;
622
623  // Forwarding methods - These forward to the corresponding methods in SDNode.
624  inline unsigned getOpcode() const;
625  inline unsigned getNodeDepth() const;
626  inline unsigned getNumOperands() const;
627  inline const SDOperand &getOperand(unsigned i) const;
628  inline bool isTargetOpcode() const;
629  inline unsigned getTargetOpcode() const;
630
631  /// hasOneUse - Return true if there is exactly one operation using this
632  /// result value of the defining operator.
633  inline bool hasOneUse() const;
634};
635
636
637/// simplify_type specializations - Allow casting operators to work directly on
638/// SDOperands as if they were SDNode*'s.
639template<> struct simplify_type<SDOperand> {
640  typedef SDNode* SimpleType;
641  static SimpleType getSimplifiedValue(const SDOperand &Val) {
642    return static_cast<SimpleType>(Val.Val);
643  }
644};
645template<> struct simplify_type<const SDOperand> {
646  typedef SDNode* SimpleType;
647  static SimpleType getSimplifiedValue(const SDOperand &Val) {
648    return static_cast<SimpleType>(Val.Val);
649  }
650};
651
652
653/// SDNode - Represents one node in the SelectionDAG.
654///
655class SDNode {
656  /// NodeType - The operation that this node performs.
657  ///
658  unsigned short NodeType;
659
660  /// NodeDepth - Node depth is defined as MAX(Node depth of children)+1.  This
661  /// means that leaves have a depth of 1, things that use only leaves have a
662  /// depth of 2, etc.
663  unsigned short NodeDepth;
664
665  /// OperandList - The values that are used by this operation.
666  ///
667  SDOperand *OperandList;
668
669  /// ValueList - The types of the values this node defines.  SDNode's may
670  /// define multiple values simultaneously.
671  MVT::ValueType *ValueList;
672
673  /// NumOperands/NumValues - The number of entries in the Operand/Value list.
674  unsigned short NumOperands, NumValues;
675
676  /// Prev/Next pointers - These pointers form the linked list of of the
677  /// AllNodes list in the current DAG.
678  SDNode *Prev, *Next;
679  friend struct ilist_traits<SDNode>;
680
681  /// Uses - These are all of the SDNode's that use a value produced by this
682  /// node.
683  std::vector<SDNode*> Uses;
684public:
685  virtual ~SDNode() {
686    assert(NumOperands == 0 && "Operand list not cleared before deletion");
687  }
688
689  //===--------------------------------------------------------------------===//
690  //  Accessors
691  //
692  unsigned getOpcode()  const { return NodeType; }
693  bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
694  unsigned getTargetOpcode() const {
695    assert(isTargetOpcode() && "Not a target opcode!");
696    return NodeType - ISD::BUILTIN_OP_END;
697  }
698
699  size_t use_size() const { return Uses.size(); }
700  bool use_empty() const { return Uses.empty(); }
701  bool hasOneUse() const { return Uses.size() == 1; }
702
703  /// getNodeDepth - Return the distance from this node to the leaves in the
704  /// graph.  The leaves have a depth of 1.
705  unsigned getNodeDepth() const { return NodeDepth; }
706
707  typedef std::vector<SDNode*>::const_iterator use_iterator;
708  use_iterator use_begin() const { return Uses.begin(); }
709  use_iterator use_end() const { return Uses.end(); }
710
711  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
712  /// indicated value.  This method ignores uses of other values defined by this
713  /// operation.
714  bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
715
716  // isOnlyUse - Return true if this node is the only use of N.
717  bool isOnlyUse(SDNode *N) const;
718
719  // isOperand - Return true if this node is an operand of N.
720  bool isOperand(SDNode *N) const;
721
722  /// getNumOperands - Return the number of values used by this operation.
723  ///
724  unsigned getNumOperands() const { return NumOperands; }
725
726  const SDOperand &getOperand(unsigned Num) const {
727    assert(Num < NumOperands && "Invalid child # of SDNode!");
728    return OperandList[Num];
729  }
730  typedef const SDOperand* op_iterator;
731  op_iterator op_begin() const { return OperandList; }
732  op_iterator op_end() const { return OperandList+NumOperands; }
733
734
735  /// getNumValues - Return the number of values defined/returned by this
736  /// operator.
737  ///
738  unsigned getNumValues() const { return NumValues; }
739
740  /// getValueType - Return the type of a specified result.
741  ///
742  MVT::ValueType getValueType(unsigned ResNo) const {
743    assert(ResNo < NumValues && "Illegal result number!");
744    return ValueList[ResNo];
745  }
746
747  typedef const MVT::ValueType* value_iterator;
748  value_iterator value_begin() const { return ValueList; }
749  value_iterator value_end() const { return ValueList+NumValues; }
750
751  /// getOperationName - Return the opcode of this operation for printing.
752  ///
753  const char* getOperationName(const SelectionDAG *G = 0) const;
754  void dump() const;
755  void dump(const SelectionDAG *G) const;
756
757  static bool classof(const SDNode *) { return true; }
758
759protected:
760  friend class SelectionDAG;
761
762  /// getValueTypeList - Return a pointer to the specified value type.
763  ///
764  static MVT::ValueType *getValueTypeList(MVT::ValueType VT);
765
766  SDNode(unsigned NT, MVT::ValueType VT) : NodeType(NT), NodeDepth(1) {
767    OperandList = 0; NumOperands = 0;
768    ValueList = getValueTypeList(VT);
769    NumValues = 1;
770    Prev = 0; Next = 0;
771  }
772  SDNode(unsigned NT, SDOperand Op)
773    : NodeType(NT), NodeDepth(Op.Val->getNodeDepth()+1) {
774    OperandList = new SDOperand[1];
775    OperandList[0] = Op;
776    NumOperands = 1;
777    Op.Val->Uses.push_back(this);
778    ValueList = 0;
779    NumValues = 0;
780    Prev = 0; Next = 0;
781  }
782  SDNode(unsigned NT, SDOperand N1, SDOperand N2)
783    : NodeType(NT) {
784    if (N1.Val->getNodeDepth() > N2.Val->getNodeDepth())
785      NodeDepth = N1.Val->getNodeDepth()+1;
786    else
787      NodeDepth = N2.Val->getNodeDepth()+1;
788    OperandList = new SDOperand[2];
789    OperandList[0] = N1;
790    OperandList[1] = N2;
791    NumOperands = 2;
792    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
793    ValueList = 0;
794    NumValues = 0;
795    Prev = 0; Next = 0;
796  }
797  SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3)
798    : NodeType(NT) {
799    unsigned ND = N1.Val->getNodeDepth();
800    if (ND < N2.Val->getNodeDepth())
801      ND = N2.Val->getNodeDepth();
802    if (ND < N3.Val->getNodeDepth())
803      ND = N3.Val->getNodeDepth();
804    NodeDepth = ND+1;
805
806    OperandList = new SDOperand[3];
807    OperandList[0] = N1;
808    OperandList[1] = N2;
809    OperandList[2] = N3;
810    NumOperands = 3;
811
812    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
813    N3.Val->Uses.push_back(this);
814    ValueList = 0;
815    NumValues = 0;
816    Prev = 0; Next = 0;
817  }
818  SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3, SDOperand N4)
819    : NodeType(NT) {
820    unsigned ND = N1.Val->getNodeDepth();
821    if (ND < N2.Val->getNodeDepth())
822      ND = N2.Val->getNodeDepth();
823    if (ND < N3.Val->getNodeDepth())
824      ND = N3.Val->getNodeDepth();
825    if (ND < N4.Val->getNodeDepth())
826      ND = N4.Val->getNodeDepth();
827    NodeDepth = ND+1;
828
829    OperandList = new SDOperand[4];
830    OperandList[0] = N1;
831    OperandList[1] = N2;
832    OperandList[2] = N3;
833    OperandList[3] = N4;
834    NumOperands = 4;
835
836    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
837    N3.Val->Uses.push_back(this); N4.Val->Uses.push_back(this);
838    ValueList = 0;
839    NumValues = 0;
840    Prev = 0; Next = 0;
841  }
842  SDNode(unsigned Opc, const std::vector<SDOperand> &Nodes) : NodeType(Opc) {
843    NumOperands = Nodes.size();
844    OperandList = new SDOperand[NumOperands];
845
846    unsigned ND = 0;
847    for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
848      OperandList[i] = Nodes[i];
849      SDNode *N = OperandList[i].Val;
850      N->Uses.push_back(this);
851      if (ND < N->getNodeDepth()) ND = N->getNodeDepth();
852    }
853    NodeDepth = ND+1;
854    ValueList = 0;
855    NumValues = 0;
856    Prev = 0; Next = 0;
857  }
858
859  /// MorphNodeTo - This clears the return value and operands list, and sets the
860  /// opcode of the node to the specified value.  This should only be used by
861  /// the SelectionDAG class.
862  void MorphNodeTo(unsigned Opc) {
863    NodeType = Opc;
864    ValueList = 0;
865    NumValues = 0;
866
867    // Clear the operands list, updating used nodes to remove this from their
868    // use list.
869    for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
870      I->Val->removeUser(this);
871    delete [] OperandList;
872    OperandList = 0;
873    NumOperands = 0;
874  }
875
876  void setValueTypes(MVT::ValueType VT) {
877    assert(NumValues == 0 && "Should not have values yet!");
878    ValueList = getValueTypeList(VT);
879    NumValues = 1;
880  }
881  void setValueTypes(MVT::ValueType *List, unsigned NumVal) {
882    assert(NumValues == 0 && "Should not have values yet!");
883    ValueList = List;
884    NumValues = NumVal;
885  }
886
887  void setOperands(SDOperand Op0) {
888    assert(NumOperands == 0 && "Should not have operands yet!");
889    OperandList = new SDOperand[1];
890    OperandList[0] = Op0;
891    NumOperands = 1;
892    Op0.Val->Uses.push_back(this);
893  }
894  void setOperands(SDOperand Op0, SDOperand Op1) {
895    assert(NumOperands == 0 && "Should not have operands yet!");
896    OperandList = new SDOperand[2];
897    OperandList[0] = Op0;
898    OperandList[1] = Op1;
899    NumOperands = 2;
900    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
901  }
902  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2) {
903    assert(NumOperands == 0 && "Should not have operands yet!");
904    OperandList = new SDOperand[3];
905    OperandList[0] = Op0;
906    OperandList[1] = Op1;
907    OperandList[2] = Op2;
908    NumOperands = 3;
909    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
910    Op2.Val->Uses.push_back(this);
911  }
912  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
913    assert(NumOperands == 0 && "Should not have operands yet!");
914    OperandList = new SDOperand[4];
915    OperandList[0] = Op0;
916    OperandList[1] = Op1;
917    OperandList[2] = Op2;
918    OperandList[3] = Op3;
919    NumOperands = 4;
920    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
921    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
922  }
923  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
924                   SDOperand Op4) {
925    assert(NumOperands == 0 && "Should not have operands yet!");
926    OperandList = new SDOperand[5];
927    OperandList[0] = Op0;
928    OperandList[1] = Op1;
929    OperandList[2] = Op2;
930    OperandList[3] = Op3;
931    OperandList[4] = Op4;
932    NumOperands = 5;
933    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
934    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
935    Op4.Val->Uses.push_back(this);
936  }
937  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
938                   SDOperand Op4, SDOperand Op5) {
939    assert(NumOperands == 0 && "Should not have operands yet!");
940    OperandList = new SDOperand[6];
941    OperandList[0] = Op0;
942    OperandList[1] = Op1;
943    OperandList[2] = Op2;
944    OperandList[3] = Op3;
945    OperandList[4] = Op4;
946    OperandList[5] = Op5;
947    NumOperands = 6;
948    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
949    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
950    Op4.Val->Uses.push_back(this); Op5.Val->Uses.push_back(this);
951  }
952  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
953                   SDOperand Op4, SDOperand Op5, SDOperand Op6) {
954    assert(NumOperands == 0 && "Should not have operands yet!");
955    OperandList = new SDOperand[7];
956    OperandList[0] = Op0;
957    OperandList[1] = Op1;
958    OperandList[2] = Op2;
959    OperandList[3] = Op3;
960    OperandList[4] = Op4;
961    OperandList[5] = Op5;
962    OperandList[6] = Op6;
963    NumOperands = 7;
964    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
965    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
966    Op4.Val->Uses.push_back(this); Op5.Val->Uses.push_back(this);
967    Op6.Val->Uses.push_back(this);
968  }
969  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
970                   SDOperand Op4, SDOperand Op5, SDOperand Op6, SDOperand Op7) {
971    assert(NumOperands == 0 && "Should not have operands yet!");
972    OperandList = new SDOperand[8];
973    OperandList[0] = Op0;
974    OperandList[1] = Op1;
975    OperandList[2] = Op2;
976    OperandList[3] = Op3;
977    OperandList[4] = Op4;
978    OperandList[5] = Op5;
979    OperandList[6] = Op6;
980    OperandList[7] = Op7;
981    NumOperands = 8;
982    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
983    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
984    Op4.Val->Uses.push_back(this); Op5.Val->Uses.push_back(this);
985    Op6.Val->Uses.push_back(this); Op7.Val->Uses.push_back(this);
986  }
987
988  void addUser(SDNode *User) {
989    Uses.push_back(User);
990  }
991  void removeUser(SDNode *User) {
992    // Remove this user from the operand's use list.
993    for (unsigned i = Uses.size(); ; --i) {
994      assert(i != 0 && "Didn't find user!");
995      if (Uses[i-1] == User) {
996        Uses[i-1] = Uses.back();
997        Uses.pop_back();
998        return;
999      }
1000    }
1001  }
1002};
1003
1004
1005// Define inline functions from the SDOperand class.
1006
1007inline unsigned SDOperand::getOpcode() const {
1008  return Val->getOpcode();
1009}
1010inline unsigned SDOperand::getNodeDepth() const {
1011  return Val->getNodeDepth();
1012}
1013inline MVT::ValueType SDOperand::getValueType() const {
1014  return Val->getValueType(ResNo);
1015}
1016inline unsigned SDOperand::getNumOperands() const {
1017  return Val->getNumOperands();
1018}
1019inline const SDOperand &SDOperand::getOperand(unsigned i) const {
1020  return Val->getOperand(i);
1021}
1022inline bool SDOperand::isTargetOpcode() const {
1023  return Val->isTargetOpcode();
1024}
1025inline unsigned SDOperand::getTargetOpcode() const {
1026  return Val->getTargetOpcode();
1027}
1028inline bool SDOperand::hasOneUse() const {
1029  return Val->hasNUsesOfValue(1, ResNo);
1030}
1031
1032/// HandleSDNode - This class is used to form a handle around another node that
1033/// is persistant and is updated across invocations of replaceAllUsesWith on its
1034/// operand.  This node should be directly created by end-users and not added to
1035/// the AllNodes list.
1036class HandleSDNode : public SDNode {
1037public:
1038  HandleSDNode(SDOperand X) : SDNode(ISD::HANDLENODE, X) {}
1039  ~HandleSDNode() {
1040    MorphNodeTo(ISD::HANDLENODE);  // Drops operand uses.
1041  }
1042
1043  SDOperand getValue() const { return getOperand(0); }
1044};
1045
1046class StringSDNode : public SDNode {
1047  std::string Value;
1048protected:
1049  friend class SelectionDAG;
1050  StringSDNode(const std::string &val)
1051    : SDNode(ISD::STRING, MVT::Other), Value(val) {
1052  }
1053public:
1054  const std::string &getValue() const { return Value; }
1055  static bool classof(const StringSDNode *) { return true; }
1056  static bool classof(const SDNode *N) {
1057    return N->getOpcode() == ISD::STRING;
1058  }
1059};
1060
1061class ConstantSDNode : public SDNode {
1062  uint64_t Value;
1063protected:
1064  friend class SelectionDAG;
1065  ConstantSDNode(bool isTarget, uint64_t val, MVT::ValueType VT)
1066    : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, VT), Value(val) {
1067  }
1068public:
1069
1070  uint64_t getValue() const { return Value; }
1071
1072  int64_t getSignExtended() const {
1073    unsigned Bits = MVT::getSizeInBits(getValueType(0));
1074    return ((int64_t)Value << (64-Bits)) >> (64-Bits);
1075  }
1076
1077  bool isNullValue() const { return Value == 0; }
1078  bool isAllOnesValue() const {
1079    int NumBits = MVT::getSizeInBits(getValueType(0));
1080    if (NumBits == 64) return Value+1 == 0;
1081    return Value == (1ULL << NumBits)-1;
1082  }
1083
1084  static bool classof(const ConstantSDNode *) { return true; }
1085  static bool classof(const SDNode *N) {
1086    return N->getOpcode() == ISD::Constant ||
1087           N->getOpcode() == ISD::TargetConstant;
1088  }
1089};
1090
1091class ConstantFPSDNode : public SDNode {
1092  double Value;
1093protected:
1094  friend class SelectionDAG;
1095  ConstantFPSDNode(bool isTarget, double val, MVT::ValueType VT)
1096    : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, VT),
1097      Value(val) {
1098  }
1099public:
1100
1101  double getValue() const { return Value; }
1102
1103  /// isExactlyValue - We don't rely on operator== working on double values, as
1104  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1105  /// As such, this method can be used to do an exact bit-for-bit comparison of
1106  /// two floating point values.
1107  bool isExactlyValue(double V) const;
1108
1109  static bool classof(const ConstantFPSDNode *) { return true; }
1110  static bool classof(const SDNode *N) {
1111    return N->getOpcode() == ISD::ConstantFP ||
1112           N->getOpcode() == ISD::TargetConstantFP;
1113  }
1114};
1115
1116class GlobalAddressSDNode : public SDNode {
1117  GlobalValue *TheGlobal;
1118  int Offset;
1119protected:
1120  friend class SelectionDAG;
1121  GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT::ValueType VT,
1122                      int o=0)
1123    : SDNode(isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress, VT),
1124      Offset(o) {
1125    TheGlobal = const_cast<GlobalValue*>(GA);
1126  }
1127public:
1128
1129  GlobalValue *getGlobal() const { return TheGlobal; }
1130  int getOffset() const { return Offset; }
1131
1132  static bool classof(const GlobalAddressSDNode *) { return true; }
1133  static bool classof(const SDNode *N) {
1134    return N->getOpcode() == ISD::GlobalAddress ||
1135           N->getOpcode() == ISD::TargetGlobalAddress;
1136  }
1137};
1138
1139
1140class FrameIndexSDNode : public SDNode {
1141  int FI;
1142protected:
1143  friend class SelectionDAG;
1144  FrameIndexSDNode(int fi, MVT::ValueType VT, bool isTarg)
1145    : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, VT), FI(fi) {}
1146public:
1147
1148  int getIndex() const { return FI; }
1149
1150  static bool classof(const FrameIndexSDNode *) { return true; }
1151  static bool classof(const SDNode *N) {
1152    return N->getOpcode() == ISD::FrameIndex ||
1153           N->getOpcode() == ISD::TargetFrameIndex;
1154  }
1155};
1156
1157class ConstantPoolSDNode : public SDNode {
1158  Constant *C;
1159  int Offset;
1160  unsigned Alignment;
1161protected:
1162  friend class SelectionDAG;
1163  ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT,
1164                     int o=0)
1165    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, VT),
1166      C(c), Offset(o), Alignment(0) {}
1167  ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT, int o,
1168                     unsigned Align)
1169    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, VT),
1170      C(c), Offset(o), Alignment(Align) {}
1171public:
1172
1173  Constant *get() const { return C; }
1174  int getOffset() const { return Offset; }
1175
1176  // Return the alignment of this constant pool object, which is either 0 (for
1177  // default alignment) or log2 of the desired value.
1178  unsigned getAlignment() const { return Alignment; }
1179
1180  static bool classof(const ConstantPoolSDNode *) { return true; }
1181  static bool classof(const SDNode *N) {
1182    return N->getOpcode() == ISD::ConstantPool ||
1183           N->getOpcode() == ISD::TargetConstantPool;
1184  }
1185};
1186
1187class BasicBlockSDNode : public SDNode {
1188  MachineBasicBlock *MBB;
1189protected:
1190  friend class SelectionDAG;
1191  BasicBlockSDNode(MachineBasicBlock *mbb)
1192    : SDNode(ISD::BasicBlock, MVT::Other), MBB(mbb) {}
1193public:
1194
1195  MachineBasicBlock *getBasicBlock() const { return MBB; }
1196
1197  static bool classof(const BasicBlockSDNode *) { return true; }
1198  static bool classof(const SDNode *N) {
1199    return N->getOpcode() == ISD::BasicBlock;
1200  }
1201};
1202
1203class SrcValueSDNode : public SDNode {
1204  const Value *V;
1205  int offset;
1206protected:
1207  friend class SelectionDAG;
1208  SrcValueSDNode(const Value* v, int o)
1209    : SDNode(ISD::SRCVALUE, MVT::Other), V(v), offset(o) {}
1210
1211public:
1212  const Value *getValue() const { return V; }
1213  int getOffset() const { return offset; }
1214
1215  static bool classof(const SrcValueSDNode *) { return true; }
1216  static bool classof(const SDNode *N) {
1217    return N->getOpcode() == ISD::SRCVALUE;
1218  }
1219};
1220
1221
1222class RegisterSDNode : public SDNode {
1223  unsigned Reg;
1224protected:
1225  friend class SelectionDAG;
1226  RegisterSDNode(unsigned reg, MVT::ValueType VT)
1227    : SDNode(ISD::Register, VT), Reg(reg) {}
1228public:
1229
1230  unsigned getReg() const { return Reg; }
1231
1232  static bool classof(const RegisterSDNode *) { return true; }
1233  static bool classof(const SDNode *N) {
1234    return N->getOpcode() == ISD::Register;
1235  }
1236};
1237
1238class ExternalSymbolSDNode : public SDNode {
1239  const char *Symbol;
1240protected:
1241  friend class SelectionDAG;
1242  ExternalSymbolSDNode(bool isTarget, const char *Sym, MVT::ValueType VT)
1243    : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, VT),
1244      Symbol(Sym) {
1245    }
1246public:
1247
1248  const char *getSymbol() const { return Symbol; }
1249
1250  static bool classof(const ExternalSymbolSDNode *) { return true; }
1251  static bool classof(const SDNode *N) {
1252    return N->getOpcode() == ISD::ExternalSymbol ||
1253           N->getOpcode() == ISD::TargetExternalSymbol;
1254  }
1255};
1256
1257class CondCodeSDNode : public SDNode {
1258  ISD::CondCode Condition;
1259protected:
1260  friend class SelectionDAG;
1261  CondCodeSDNode(ISD::CondCode Cond)
1262    : SDNode(ISD::CONDCODE, MVT::Other), Condition(Cond) {
1263  }
1264public:
1265
1266  ISD::CondCode get() const { return Condition; }
1267
1268  static bool classof(const CondCodeSDNode *) { return true; }
1269  static bool classof(const SDNode *N) {
1270    return N->getOpcode() == ISD::CONDCODE;
1271  }
1272};
1273
1274/// VTSDNode - This class is used to represent MVT::ValueType's, which are used
1275/// to parameterize some operations.
1276class VTSDNode : public SDNode {
1277  MVT::ValueType ValueType;
1278protected:
1279  friend class SelectionDAG;
1280  VTSDNode(MVT::ValueType VT)
1281    : SDNode(ISD::VALUETYPE, MVT::Other), ValueType(VT) {}
1282public:
1283
1284  MVT::ValueType getVT() const { return ValueType; }
1285
1286  static bool classof(const VTSDNode *) { return true; }
1287  static bool classof(const SDNode *N) {
1288    return N->getOpcode() == ISD::VALUETYPE;
1289  }
1290};
1291
1292
1293class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
1294  SDNode *Node;
1295  unsigned Operand;
1296
1297  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
1298public:
1299  bool operator==(const SDNodeIterator& x) const {
1300    return Operand == x.Operand;
1301  }
1302  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
1303
1304  const SDNodeIterator &operator=(const SDNodeIterator &I) {
1305    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
1306    Operand = I.Operand;
1307    return *this;
1308  }
1309
1310  pointer operator*() const {
1311    return Node->getOperand(Operand).Val;
1312  }
1313  pointer operator->() const { return operator*(); }
1314
1315  SDNodeIterator& operator++() {                // Preincrement
1316    ++Operand;
1317    return *this;
1318  }
1319  SDNodeIterator operator++(int) { // Postincrement
1320    SDNodeIterator tmp = *this; ++*this; return tmp;
1321  }
1322
1323  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
1324  static SDNodeIterator end  (SDNode *N) {
1325    return SDNodeIterator(N, N->getNumOperands());
1326  }
1327
1328  unsigned getOperand() const { return Operand; }
1329  const SDNode *getNode() const { return Node; }
1330};
1331
1332template <> struct GraphTraits<SDNode*> {
1333  typedef SDNode NodeType;
1334  typedef SDNodeIterator ChildIteratorType;
1335  static inline NodeType *getEntryNode(SDNode *N) { return N; }
1336  static inline ChildIteratorType child_begin(NodeType *N) {
1337    return SDNodeIterator::begin(N);
1338  }
1339  static inline ChildIteratorType child_end(NodeType *N) {
1340    return SDNodeIterator::end(N);
1341  }
1342};
1343
1344template<>
1345struct ilist_traits<SDNode> {
1346  static SDNode *getPrev(const SDNode *N) { return N->Prev; }
1347  static SDNode *getNext(const SDNode *N) { return N->Next; }
1348
1349  static void setPrev(SDNode *N, SDNode *Prev) { N->Prev = Prev; }
1350  static void setNext(SDNode *N, SDNode *Next) { N->Next = Next; }
1351
1352  static SDNode *createSentinel() {
1353    return new SDNode(ISD::EntryToken, MVT::Other);
1354  }
1355  static void destroySentinel(SDNode *N) { delete N; }
1356  //static SDNode *createNode(const SDNode &V) { return new SDNode(V); }
1357
1358
1359  void addNodeToList(SDNode *NTy) {}
1360  void removeNodeFromList(SDNode *NTy) {}
1361  void transferNodesFromList(iplist<SDNode, ilist_traits> &L2,
1362                             const ilist_iterator<SDNode> &X,
1363                             const ilist_iterator<SDNode> &Y) {}
1364};
1365
1366} // end llvm namespace
1367
1368#endif
1369