ScalarEvolution.cpp revision 17ead4ff4baceb2c5503f233d0288d363ae44165
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
19//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression.  These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
30//
31// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
35// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42//  Chains of recurrences -- a method to expedite the evaluation
43//  of closed-form functions
44//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46//  On computational properties of chains of recurrences
47//  Eugene V. Zima
48//
49//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50//  Robert A. van Engelen
51//
52//  Efficient Symbolic Analysis for Optimizing Compilers
53//  Robert A. van Engelen
54//
55//  Using the chains of recurrences algebra for data dependence testing and
56//  induction variable substitution
57//  MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
61#define DEBUG_TYPE "scalar-evolution"
62#include "llvm/Analysis/ScalarEvolutionExpressions.h"
63#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
65#include "llvm/GlobalVariable.h"
66#include "llvm/GlobalAlias.h"
67#include "llvm/Instructions.h"
68#include "llvm/LLVMContext.h"
69#include "llvm/Operator.h"
70#include "llvm/Analysis/ConstantFolding.h"
71#include "llvm/Analysis/Dominators.h"
72#include "llvm/Analysis/InstructionSimplify.h"
73#include "llvm/Analysis/LoopInfo.h"
74#include "llvm/Analysis/ValueTracking.h"
75#include "llvm/Assembly/Writer.h"
76#include "llvm/Target/TargetData.h"
77#include "llvm/Support/CommandLine.h"
78#include "llvm/Support/ConstantRange.h"
79#include "llvm/Support/Debug.h"
80#include "llvm/Support/ErrorHandling.h"
81#include "llvm/Support/GetElementPtrTypeIterator.h"
82#include "llvm/Support/InstIterator.h"
83#include "llvm/Support/MathExtras.h"
84#include "llvm/Support/raw_ostream.h"
85#include "llvm/ADT/Statistic.h"
86#include "llvm/ADT/STLExtras.h"
87#include "llvm/ADT/SmallPtrSet.h"
88#include <algorithm>
89using namespace llvm;
90
91STATISTIC(NumArrayLenItCounts,
92          "Number of trip counts computed with array length");
93STATISTIC(NumTripCountsComputed,
94          "Number of loops with predictable loop counts");
95STATISTIC(NumTripCountsNotComputed,
96          "Number of loops without predictable loop counts");
97STATISTIC(NumBruteForceTripCountsComputed,
98          "Number of loops with trip counts computed by force");
99
100static cl::opt<unsigned>
101MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
102                        cl::desc("Maximum number of iterations SCEV will "
103                                 "symbolically execute a constant "
104                                 "derived loop"),
105                        cl::init(100));
106
107INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
108                "Scalar Evolution Analysis", false, true)
109INITIALIZE_PASS_DEPENDENCY(LoopInfo)
110INITIALIZE_PASS_DEPENDENCY(DominatorTree)
111INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
112                "Scalar Evolution Analysis", false, true)
113char ScalarEvolution::ID = 0;
114
115//===----------------------------------------------------------------------===//
116//                           SCEV class definitions
117//===----------------------------------------------------------------------===//
118
119//===----------------------------------------------------------------------===//
120// Implementation of the SCEV class.
121//
122
123SCEV::~SCEV() {}
124
125void SCEV::dump() const {
126  print(dbgs());
127  dbgs() << '\n';
128}
129
130bool SCEV::isZero() const {
131  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
132    return SC->getValue()->isZero();
133  return false;
134}
135
136bool SCEV::isOne() const {
137  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
138    return SC->getValue()->isOne();
139  return false;
140}
141
142bool SCEV::isAllOnesValue() const {
143  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
144    return SC->getValue()->isAllOnesValue();
145  return false;
146}
147
148SCEVCouldNotCompute::SCEVCouldNotCompute() :
149  SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
150
151const Type *SCEVCouldNotCompute::getType() const {
152  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
153  return 0;
154}
155
156bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
157  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
158  return false;
159}
160
161void SCEVCouldNotCompute::print(raw_ostream &OS) const {
162  OS << "***COULDNOTCOMPUTE***";
163}
164
165bool SCEVCouldNotCompute::classof(const SCEV *S) {
166  return S->getSCEVType() == scCouldNotCompute;
167}
168
169const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
170  FoldingSetNodeID ID;
171  ID.AddInteger(scConstant);
172  ID.AddPointer(V);
173  void *IP = 0;
174  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
175  SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
176  UniqueSCEVs.InsertNode(S, IP);
177  return S;
178}
179
180const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
181  return getConstant(ConstantInt::get(getContext(), Val));
182}
183
184const SCEV *
185ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
186  const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
187  return getConstant(ConstantInt::get(ITy, V, isSigned));
188}
189
190const Type *SCEVConstant::getType() const { return V->getType(); }
191
192void SCEVConstant::print(raw_ostream &OS) const {
193  WriteAsOperand(OS, V, false);
194}
195
196SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
197                           unsigned SCEVTy, const SCEV *op, const Type *ty)
198  : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
199
200bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
201  return Op->dominates(BB, DT);
202}
203
204bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
205  return Op->properlyDominates(BB, DT);
206}
207
208SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
209                                   const SCEV *op, const Type *ty)
210  : SCEVCastExpr(ID, scTruncate, op, ty) {
211  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
212         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
213         "Cannot truncate non-integer value!");
214}
215
216void SCEVTruncateExpr::print(raw_ostream &OS) const {
217  OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
218}
219
220SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
221                                       const SCEV *op, const Type *ty)
222  : SCEVCastExpr(ID, scZeroExtend, op, ty) {
223  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
224         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
225         "Cannot zero extend non-integer value!");
226}
227
228void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
229  OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
230}
231
232SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
233                                       const SCEV *op, const Type *ty)
234  : SCEVCastExpr(ID, scSignExtend, op, ty) {
235  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
236         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
237         "Cannot sign extend non-integer value!");
238}
239
240void SCEVSignExtendExpr::print(raw_ostream &OS) const {
241  OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
242}
243
244void SCEVCommutativeExpr::print(raw_ostream &OS) const {
245  const char *OpStr = getOperationStr();
246  OS << "(";
247  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
248    OS << **I;
249    if (llvm::next(I) != E)
250      OS << OpStr;
251  }
252  OS << ")";
253}
254
255bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
256  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
257    if (!(*I)->dominates(BB, DT))
258      return false;
259  return true;
260}
261
262bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
263  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
264    if (!(*I)->properlyDominates(BB, DT))
265      return false;
266  return true;
267}
268
269bool SCEVNAryExpr::hasOperand(const SCEV *O) const {
270  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
271    const SCEV *S = *I;
272    if (O == S || S->hasOperand(O))
273      return true;
274  }
275  return false;
276}
277
278bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
279  return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
280}
281
282bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
283  return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
284}
285
286void SCEVUDivExpr::print(raw_ostream &OS) const {
287  OS << "(" << *LHS << " /u " << *RHS << ")";
288}
289
290const Type *SCEVUDivExpr::getType() const {
291  // In most cases the types of LHS and RHS will be the same, but in some
292  // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
293  // depend on the type for correctness, but handling types carefully can
294  // avoid extra casts in the SCEVExpander. The LHS is more likely to be
295  // a pointer type than the RHS, so use the RHS' type here.
296  return RHS->getType();
297}
298
299bool
300SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
301  return DT->dominates(L->getHeader(), BB) &&
302         SCEVNAryExpr::dominates(BB, DT);
303}
304
305bool
306SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
307  // This uses a "dominates" query instead of "properly dominates" query because
308  // the instruction which produces the addrec's value is a PHI, and a PHI
309  // effectively properly dominates its entire containing block.
310  return DT->dominates(L->getHeader(), BB) &&
311         SCEVNAryExpr::properlyDominates(BB, DT);
312}
313
314void SCEVAddRecExpr::print(raw_ostream &OS) const {
315  OS << "{" << *Operands[0];
316  for (unsigned i = 1, e = NumOperands; i != e; ++i)
317    OS << ",+," << *Operands[i];
318  OS << "}<";
319  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
320  OS << ">";
321}
322
323void SCEVUnknown::deleted() {
324  // Clear this SCEVUnknown from various maps.
325  SE->ValuesAtScopes.erase(this);
326  SE->UnsignedRanges.erase(this);
327  SE->SignedRanges.erase(this);
328
329  // Remove this SCEVUnknown from the uniquing map.
330  SE->UniqueSCEVs.RemoveNode(this);
331
332  // Release the value.
333  setValPtr(0);
334}
335
336void SCEVUnknown::allUsesReplacedWith(Value *New) {
337  // Clear this SCEVUnknown from various maps.
338  SE->ValuesAtScopes.erase(this);
339  SE->UnsignedRanges.erase(this);
340  SE->SignedRanges.erase(this);
341
342  // Remove this SCEVUnknown from the uniquing map.
343  SE->UniqueSCEVs.RemoveNode(this);
344
345  // Update this SCEVUnknown to point to the new value. This is needed
346  // because there may still be outstanding SCEVs which still point to
347  // this SCEVUnknown.
348  setValPtr(New);
349}
350
351bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
352  if (Instruction *I = dyn_cast<Instruction>(getValue()))
353    return DT->dominates(I->getParent(), BB);
354  return true;
355}
356
357bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
358  if (Instruction *I = dyn_cast<Instruction>(getValue()))
359    return DT->properlyDominates(I->getParent(), BB);
360  return true;
361}
362
363const Type *SCEVUnknown::getType() const {
364  return getValue()->getType();
365}
366
367bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
368  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
369    if (VCE->getOpcode() == Instruction::PtrToInt)
370      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
371        if (CE->getOpcode() == Instruction::GetElementPtr &&
372            CE->getOperand(0)->isNullValue() &&
373            CE->getNumOperands() == 2)
374          if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
375            if (CI->isOne()) {
376              AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
377                                 ->getElementType();
378              return true;
379            }
380
381  return false;
382}
383
384bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
385  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
386    if (VCE->getOpcode() == Instruction::PtrToInt)
387      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
388        if (CE->getOpcode() == Instruction::GetElementPtr &&
389            CE->getOperand(0)->isNullValue()) {
390          const Type *Ty =
391            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
392          if (const StructType *STy = dyn_cast<StructType>(Ty))
393            if (!STy->isPacked() &&
394                CE->getNumOperands() == 3 &&
395                CE->getOperand(1)->isNullValue()) {
396              if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
397                if (CI->isOne() &&
398                    STy->getNumElements() == 2 &&
399                    STy->getElementType(0)->isIntegerTy(1)) {
400                  AllocTy = STy->getElementType(1);
401                  return true;
402                }
403            }
404        }
405
406  return false;
407}
408
409bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
410  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
411    if (VCE->getOpcode() == Instruction::PtrToInt)
412      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
413        if (CE->getOpcode() == Instruction::GetElementPtr &&
414            CE->getNumOperands() == 3 &&
415            CE->getOperand(0)->isNullValue() &&
416            CE->getOperand(1)->isNullValue()) {
417          const Type *Ty =
418            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
419          // Ignore vector types here so that ScalarEvolutionExpander doesn't
420          // emit getelementptrs that index into vectors.
421          if (Ty->isStructTy() || Ty->isArrayTy()) {
422            CTy = Ty;
423            FieldNo = CE->getOperand(2);
424            return true;
425          }
426        }
427
428  return false;
429}
430
431void SCEVUnknown::print(raw_ostream &OS) const {
432  const Type *AllocTy;
433  if (isSizeOf(AllocTy)) {
434    OS << "sizeof(" << *AllocTy << ")";
435    return;
436  }
437  if (isAlignOf(AllocTy)) {
438    OS << "alignof(" << *AllocTy << ")";
439    return;
440  }
441
442  const Type *CTy;
443  Constant *FieldNo;
444  if (isOffsetOf(CTy, FieldNo)) {
445    OS << "offsetof(" << *CTy << ", ";
446    WriteAsOperand(OS, FieldNo, false);
447    OS << ")";
448    return;
449  }
450
451  // Otherwise just print it normally.
452  WriteAsOperand(OS, getValue(), false);
453}
454
455//===----------------------------------------------------------------------===//
456//                               SCEV Utilities
457//===----------------------------------------------------------------------===//
458
459namespace {
460  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
461  /// than the complexity of the RHS.  This comparator is used to canonicalize
462  /// expressions.
463  class SCEVComplexityCompare {
464    const LoopInfo *const LI;
465  public:
466    explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
467
468    // Return true or false if LHS is less than, or at least RHS, respectively.
469    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
470      return compare(LHS, RHS) < 0;
471    }
472
473    // Return negative, zero, or positive, if LHS is less than, equal to, or
474    // greater than RHS, respectively. A three-way result allows recursive
475    // comparisons to be more efficient.
476    int compare(const SCEV *LHS, const SCEV *RHS) const {
477      // Fast-path: SCEVs are uniqued so we can do a quick equality check.
478      if (LHS == RHS)
479        return 0;
480
481      // Primarily, sort the SCEVs by their getSCEVType().
482      unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
483      if (LType != RType)
484        return (int)LType - (int)RType;
485
486      // Aside from the getSCEVType() ordering, the particular ordering
487      // isn't very important except that it's beneficial to be consistent,
488      // so that (a + b) and (b + a) don't end up as different expressions.
489      switch (LType) {
490      case scUnknown: {
491        const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
492        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
493
494        // Sort SCEVUnknown values with some loose heuristics. TODO: This is
495        // not as complete as it could be.
496        const Value *LV = LU->getValue(), *RV = RU->getValue();
497
498        // Order pointer values after integer values. This helps SCEVExpander
499        // form GEPs.
500        bool LIsPointer = LV->getType()->isPointerTy(),
501             RIsPointer = RV->getType()->isPointerTy();
502        if (LIsPointer != RIsPointer)
503          return (int)LIsPointer - (int)RIsPointer;
504
505        // Compare getValueID values.
506        unsigned LID = LV->getValueID(),
507                 RID = RV->getValueID();
508        if (LID != RID)
509          return (int)LID - (int)RID;
510
511        // Sort arguments by their position.
512        if (const Argument *LA = dyn_cast<Argument>(LV)) {
513          const Argument *RA = cast<Argument>(RV);
514          unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
515          return (int)LArgNo - (int)RArgNo;
516        }
517
518        // For instructions, compare their loop depth, and their operand
519        // count.  This is pretty loose.
520        if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
521          const Instruction *RInst = cast<Instruction>(RV);
522
523          // Compare loop depths.
524          const BasicBlock *LParent = LInst->getParent(),
525                           *RParent = RInst->getParent();
526          if (LParent != RParent) {
527            unsigned LDepth = LI->getLoopDepth(LParent),
528                     RDepth = LI->getLoopDepth(RParent);
529            if (LDepth != RDepth)
530              return (int)LDepth - (int)RDepth;
531          }
532
533          // Compare the number of operands.
534          unsigned LNumOps = LInst->getNumOperands(),
535                   RNumOps = RInst->getNumOperands();
536          return (int)LNumOps - (int)RNumOps;
537        }
538
539        return 0;
540      }
541
542      case scConstant: {
543        const SCEVConstant *LC = cast<SCEVConstant>(LHS);
544        const SCEVConstant *RC = cast<SCEVConstant>(RHS);
545
546        // Compare constant values.
547        const APInt &LA = LC->getValue()->getValue();
548        const APInt &RA = RC->getValue()->getValue();
549        unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
550        if (LBitWidth != RBitWidth)
551          return (int)LBitWidth - (int)RBitWidth;
552        return LA.ult(RA) ? -1 : 1;
553      }
554
555      case scAddRecExpr: {
556        const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
557        const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
558
559        // Compare addrec loop depths.
560        const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
561        if (LLoop != RLoop) {
562          unsigned LDepth = LLoop->getLoopDepth(),
563                   RDepth = RLoop->getLoopDepth();
564          if (LDepth != RDepth)
565            return (int)LDepth - (int)RDepth;
566        }
567
568        // Addrec complexity grows with operand count.
569        unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
570        if (LNumOps != RNumOps)
571          return (int)LNumOps - (int)RNumOps;
572
573        // Lexicographically compare.
574        for (unsigned i = 0; i != LNumOps; ++i) {
575          long X = compare(LA->getOperand(i), RA->getOperand(i));
576          if (X != 0)
577            return X;
578        }
579
580        return 0;
581      }
582
583      case scAddExpr:
584      case scMulExpr:
585      case scSMaxExpr:
586      case scUMaxExpr: {
587        const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
588        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
589
590        // Lexicographically compare n-ary expressions.
591        unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
592        for (unsigned i = 0; i != LNumOps; ++i) {
593          if (i >= RNumOps)
594            return 1;
595          long X = compare(LC->getOperand(i), RC->getOperand(i));
596          if (X != 0)
597            return X;
598        }
599        return (int)LNumOps - (int)RNumOps;
600      }
601
602      case scUDivExpr: {
603        const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
604        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
605
606        // Lexicographically compare udiv expressions.
607        long X = compare(LC->getLHS(), RC->getLHS());
608        if (X != 0)
609          return X;
610        return compare(LC->getRHS(), RC->getRHS());
611      }
612
613      case scTruncate:
614      case scZeroExtend:
615      case scSignExtend: {
616        const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
617        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
618
619        // Compare cast expressions by operand.
620        return compare(LC->getOperand(), RC->getOperand());
621      }
622
623      default:
624        break;
625      }
626
627      llvm_unreachable("Unknown SCEV kind!");
628      return 0;
629    }
630  };
631}
632
633/// GroupByComplexity - Given a list of SCEV objects, order them by their
634/// complexity, and group objects of the same complexity together by value.
635/// When this routine is finished, we know that any duplicates in the vector are
636/// consecutive and that complexity is monotonically increasing.
637///
638/// Note that we go take special precautions to ensure that we get deterministic
639/// results from this routine.  In other words, we don't want the results of
640/// this to depend on where the addresses of various SCEV objects happened to
641/// land in memory.
642///
643static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
644                              LoopInfo *LI) {
645  if (Ops.size() < 2) return;  // Noop
646  if (Ops.size() == 2) {
647    // This is the common case, which also happens to be trivially simple.
648    // Special case it.
649    const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
650    if (SCEVComplexityCompare(LI)(RHS, LHS))
651      std::swap(LHS, RHS);
652    return;
653  }
654
655  // Do the rough sort by complexity.
656  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
657
658  // Now that we are sorted by complexity, group elements of the same
659  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
660  // be extremely short in practice.  Note that we take this approach because we
661  // do not want to depend on the addresses of the objects we are grouping.
662  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
663    const SCEV *S = Ops[i];
664    unsigned Complexity = S->getSCEVType();
665
666    // If there are any objects of the same complexity and same value as this
667    // one, group them.
668    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
669      if (Ops[j] == S) { // Found a duplicate.
670        // Move it to immediately after i'th element.
671        std::swap(Ops[i+1], Ops[j]);
672        ++i;   // no need to rescan it.
673        if (i == e-2) return;  // Done!
674      }
675    }
676  }
677}
678
679
680
681//===----------------------------------------------------------------------===//
682//                      Simple SCEV method implementations
683//===----------------------------------------------------------------------===//
684
685/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
686/// Assume, K > 0.
687static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
688                                       ScalarEvolution &SE,
689                                       const Type* ResultTy) {
690  // Handle the simplest case efficiently.
691  if (K == 1)
692    return SE.getTruncateOrZeroExtend(It, ResultTy);
693
694  // We are using the following formula for BC(It, K):
695  //
696  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
697  //
698  // Suppose, W is the bitwidth of the return value.  We must be prepared for
699  // overflow.  Hence, we must assure that the result of our computation is
700  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
701  // safe in modular arithmetic.
702  //
703  // However, this code doesn't use exactly that formula; the formula it uses
704  // is something like the following, where T is the number of factors of 2 in
705  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
706  // exponentiation:
707  //
708  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
709  //
710  // This formula is trivially equivalent to the previous formula.  However,
711  // this formula can be implemented much more efficiently.  The trick is that
712  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
713  // arithmetic.  To do exact division in modular arithmetic, all we have
714  // to do is multiply by the inverse.  Therefore, this step can be done at
715  // width W.
716  //
717  // The next issue is how to safely do the division by 2^T.  The way this
718  // is done is by doing the multiplication step at a width of at least W + T
719  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
720  // when we perform the division by 2^T (which is equivalent to a right shift
721  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
722  // truncated out after the division by 2^T.
723  //
724  // In comparison to just directly using the first formula, this technique
725  // is much more efficient; using the first formula requires W * K bits,
726  // but this formula less than W + K bits. Also, the first formula requires
727  // a division step, whereas this formula only requires multiplies and shifts.
728  //
729  // It doesn't matter whether the subtraction step is done in the calculation
730  // width or the input iteration count's width; if the subtraction overflows,
731  // the result must be zero anyway.  We prefer here to do it in the width of
732  // the induction variable because it helps a lot for certain cases; CodeGen
733  // isn't smart enough to ignore the overflow, which leads to much less
734  // efficient code if the width of the subtraction is wider than the native
735  // register width.
736  //
737  // (It's possible to not widen at all by pulling out factors of 2 before
738  // the multiplication; for example, K=2 can be calculated as
739  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
740  // extra arithmetic, so it's not an obvious win, and it gets
741  // much more complicated for K > 3.)
742
743  // Protection from insane SCEVs; this bound is conservative,
744  // but it probably doesn't matter.
745  if (K > 1000)
746    return SE.getCouldNotCompute();
747
748  unsigned W = SE.getTypeSizeInBits(ResultTy);
749
750  // Calculate K! / 2^T and T; we divide out the factors of two before
751  // multiplying for calculating K! / 2^T to avoid overflow.
752  // Other overflow doesn't matter because we only care about the bottom
753  // W bits of the result.
754  APInt OddFactorial(W, 1);
755  unsigned T = 1;
756  for (unsigned i = 3; i <= K; ++i) {
757    APInt Mult(W, i);
758    unsigned TwoFactors = Mult.countTrailingZeros();
759    T += TwoFactors;
760    Mult = Mult.lshr(TwoFactors);
761    OddFactorial *= Mult;
762  }
763
764  // We need at least W + T bits for the multiplication step
765  unsigned CalculationBits = W + T;
766
767  // Calculate 2^T, at width T+W.
768  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
769
770  // Calculate the multiplicative inverse of K! / 2^T;
771  // this multiplication factor will perform the exact division by
772  // K! / 2^T.
773  APInt Mod = APInt::getSignedMinValue(W+1);
774  APInt MultiplyFactor = OddFactorial.zext(W+1);
775  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
776  MultiplyFactor = MultiplyFactor.trunc(W);
777
778  // Calculate the product, at width T+W
779  const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
780                                                      CalculationBits);
781  const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
782  for (unsigned i = 1; i != K; ++i) {
783    const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
784    Dividend = SE.getMulExpr(Dividend,
785                             SE.getTruncateOrZeroExtend(S, CalculationTy));
786  }
787
788  // Divide by 2^T
789  const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
790
791  // Truncate the result, and divide by K! / 2^T.
792
793  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
794                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
795}
796
797/// evaluateAtIteration - Return the value of this chain of recurrences at
798/// the specified iteration number.  We can evaluate this recurrence by
799/// multiplying each element in the chain by the binomial coefficient
800/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
801///
802///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
803///
804/// where BC(It, k) stands for binomial coefficient.
805///
806const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
807                                                ScalarEvolution &SE) const {
808  const SCEV *Result = getStart();
809  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
810    // The computation is correct in the face of overflow provided that the
811    // multiplication is performed _after_ the evaluation of the binomial
812    // coefficient.
813    const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
814    if (isa<SCEVCouldNotCompute>(Coeff))
815      return Coeff;
816
817    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
818  }
819  return Result;
820}
821
822//===----------------------------------------------------------------------===//
823//                    SCEV Expression folder implementations
824//===----------------------------------------------------------------------===//
825
826const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
827                                             const Type *Ty) {
828  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
829         "This is not a truncating conversion!");
830  assert(isSCEVable(Ty) &&
831         "This is not a conversion to a SCEVable type!");
832  Ty = getEffectiveSCEVType(Ty);
833
834  FoldingSetNodeID ID;
835  ID.AddInteger(scTruncate);
836  ID.AddPointer(Op);
837  ID.AddPointer(Ty);
838  void *IP = 0;
839  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
840
841  // Fold if the operand is constant.
842  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
843    return getConstant(
844      cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
845                                               getEffectiveSCEVType(Ty))));
846
847  // trunc(trunc(x)) --> trunc(x)
848  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
849    return getTruncateExpr(ST->getOperand(), Ty);
850
851  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
852  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
853    return getTruncateOrSignExtend(SS->getOperand(), Ty);
854
855  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
856  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
857    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
858
859  // If the input value is a chrec scev, truncate the chrec's operands.
860  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
861    SmallVector<const SCEV *, 4> Operands;
862    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
863      Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
864    return getAddRecExpr(Operands, AddRec->getLoop());
865  }
866
867  // As a special case, fold trunc(undef) to undef. We don't want to
868  // know too much about SCEVUnknowns, but this special case is handy
869  // and harmless.
870  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
871    if (isa<UndefValue>(U->getValue()))
872      return getSCEV(UndefValue::get(Ty));
873
874  // The cast wasn't folded; create an explicit cast node. We can reuse
875  // the existing insert position since if we get here, we won't have
876  // made any changes which would invalidate it.
877  SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
878                                                 Op, Ty);
879  UniqueSCEVs.InsertNode(S, IP);
880  return S;
881}
882
883const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
884                                               const Type *Ty) {
885  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
886         "This is not an extending conversion!");
887  assert(isSCEVable(Ty) &&
888         "This is not a conversion to a SCEVable type!");
889  Ty = getEffectiveSCEVType(Ty);
890
891  // Fold if the operand is constant.
892  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
893    return getConstant(
894      cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
895                                              getEffectiveSCEVType(Ty))));
896
897  // zext(zext(x)) --> zext(x)
898  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
899    return getZeroExtendExpr(SZ->getOperand(), Ty);
900
901  // Before doing any expensive analysis, check to see if we've already
902  // computed a SCEV for this Op and Ty.
903  FoldingSetNodeID ID;
904  ID.AddInteger(scZeroExtend);
905  ID.AddPointer(Op);
906  ID.AddPointer(Ty);
907  void *IP = 0;
908  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
909
910  // If the input value is a chrec scev, and we can prove that the value
911  // did not overflow the old, smaller, value, we can zero extend all of the
912  // operands (often constants).  This allows analysis of something like
913  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
914  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
915    if (AR->isAffine()) {
916      const SCEV *Start = AR->getStart();
917      const SCEV *Step = AR->getStepRecurrence(*this);
918      unsigned BitWidth = getTypeSizeInBits(AR->getType());
919      const Loop *L = AR->getLoop();
920
921      // If we have special knowledge that this addrec won't overflow,
922      // we don't need to do any further analysis.
923      if (AR->hasNoUnsignedWrap())
924        return getAddRecExpr(getZeroExtendExpr(Start, Ty),
925                             getZeroExtendExpr(Step, Ty),
926                             L);
927
928      // Check whether the backedge-taken count is SCEVCouldNotCompute.
929      // Note that this serves two purposes: It filters out loops that are
930      // simply not analyzable, and it covers the case where this code is
931      // being called from within backedge-taken count analysis, such that
932      // attempting to ask for the backedge-taken count would likely result
933      // in infinite recursion. In the later case, the analysis code will
934      // cope with a conservative value, and it will take care to purge
935      // that value once it has finished.
936      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
937      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
938        // Manually compute the final value for AR, checking for
939        // overflow.
940
941        // Check whether the backedge-taken count can be losslessly casted to
942        // the addrec's type. The count is always unsigned.
943        const SCEV *CastedMaxBECount =
944          getTruncateOrZeroExtend(MaxBECount, Start->getType());
945        const SCEV *RecastedMaxBECount =
946          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
947        if (MaxBECount == RecastedMaxBECount) {
948          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
949          // Check whether Start+Step*MaxBECount has no unsigned overflow.
950          const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
951          const SCEV *Add = getAddExpr(Start, ZMul);
952          const SCEV *OperandExtendedAdd =
953            getAddExpr(getZeroExtendExpr(Start, WideTy),
954                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
955                                  getZeroExtendExpr(Step, WideTy)));
956          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
957            // Return the expression with the addrec on the outside.
958            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
959                                 getZeroExtendExpr(Step, Ty),
960                                 L);
961
962          // Similar to above, only this time treat the step value as signed.
963          // This covers loops that count down.
964          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
965          Add = getAddExpr(Start, SMul);
966          OperandExtendedAdd =
967            getAddExpr(getZeroExtendExpr(Start, WideTy),
968                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
969                                  getSignExtendExpr(Step, WideTy)));
970          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
971            // Return the expression with the addrec on the outside.
972            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
973                                 getSignExtendExpr(Step, Ty),
974                                 L);
975        }
976
977        // If the backedge is guarded by a comparison with the pre-inc value
978        // the addrec is safe. Also, if the entry is guarded by a comparison
979        // with the start value and the backedge is guarded by a comparison
980        // with the post-inc value, the addrec is safe.
981        if (isKnownPositive(Step)) {
982          const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
983                                      getUnsignedRange(Step).getUnsignedMax());
984          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
985              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
986               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
987                                           AR->getPostIncExpr(*this), N)))
988            // Return the expression with the addrec on the outside.
989            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
990                                 getZeroExtendExpr(Step, Ty),
991                                 L);
992        } else if (isKnownNegative(Step)) {
993          const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
994                                      getSignedRange(Step).getSignedMin());
995          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
996              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
997               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
998                                           AR->getPostIncExpr(*this), N)))
999            // Return the expression with the addrec on the outside.
1000            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1001                                 getSignExtendExpr(Step, Ty),
1002                                 L);
1003        }
1004      }
1005    }
1006
1007  // The cast wasn't folded; create an explicit cast node.
1008  // Recompute the insert position, as it may have been invalidated.
1009  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1010  SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1011                                                   Op, Ty);
1012  UniqueSCEVs.InsertNode(S, IP);
1013  return S;
1014}
1015
1016const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1017                                               const Type *Ty) {
1018  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1019         "This is not an extending conversion!");
1020  assert(isSCEVable(Ty) &&
1021         "This is not a conversion to a SCEVable type!");
1022  Ty = getEffectiveSCEVType(Ty);
1023
1024  // Fold if the operand is constant.
1025  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1026    return getConstant(
1027      cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1028                                              getEffectiveSCEVType(Ty))));
1029
1030  // sext(sext(x)) --> sext(x)
1031  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1032    return getSignExtendExpr(SS->getOperand(), Ty);
1033
1034  // Before doing any expensive analysis, check to see if we've already
1035  // computed a SCEV for this Op and Ty.
1036  FoldingSetNodeID ID;
1037  ID.AddInteger(scSignExtend);
1038  ID.AddPointer(Op);
1039  ID.AddPointer(Ty);
1040  void *IP = 0;
1041  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1042
1043  // If the input value is a chrec scev, and we can prove that the value
1044  // did not overflow the old, smaller, value, we can sign extend all of the
1045  // operands (often constants).  This allows analysis of something like
1046  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1047  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1048    if (AR->isAffine()) {
1049      const SCEV *Start = AR->getStart();
1050      const SCEV *Step = AR->getStepRecurrence(*this);
1051      unsigned BitWidth = getTypeSizeInBits(AR->getType());
1052      const Loop *L = AR->getLoop();
1053
1054      // If we have special knowledge that this addrec won't overflow,
1055      // we don't need to do any further analysis.
1056      if (AR->hasNoSignedWrap())
1057        return getAddRecExpr(getSignExtendExpr(Start, Ty),
1058                             getSignExtendExpr(Step, Ty),
1059                             L);
1060
1061      // Check whether the backedge-taken count is SCEVCouldNotCompute.
1062      // Note that this serves two purposes: It filters out loops that are
1063      // simply not analyzable, and it covers the case where this code is
1064      // being called from within backedge-taken count analysis, such that
1065      // attempting to ask for the backedge-taken count would likely result
1066      // in infinite recursion. In the later case, the analysis code will
1067      // cope with a conservative value, and it will take care to purge
1068      // that value once it has finished.
1069      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1070      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1071        // Manually compute the final value for AR, checking for
1072        // overflow.
1073
1074        // Check whether the backedge-taken count can be losslessly casted to
1075        // the addrec's type. The count is always unsigned.
1076        const SCEV *CastedMaxBECount =
1077          getTruncateOrZeroExtend(MaxBECount, Start->getType());
1078        const SCEV *RecastedMaxBECount =
1079          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1080        if (MaxBECount == RecastedMaxBECount) {
1081          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1082          // Check whether Start+Step*MaxBECount has no signed overflow.
1083          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1084          const SCEV *Add = getAddExpr(Start, SMul);
1085          const SCEV *OperandExtendedAdd =
1086            getAddExpr(getSignExtendExpr(Start, WideTy),
1087                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1088                                  getSignExtendExpr(Step, WideTy)));
1089          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
1090            // Return the expression with the addrec on the outside.
1091            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1092                                 getSignExtendExpr(Step, Ty),
1093                                 L);
1094
1095          // Similar to above, only this time treat the step value as unsigned.
1096          // This covers loops that count up with an unsigned step.
1097          const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
1098          Add = getAddExpr(Start, UMul);
1099          OperandExtendedAdd =
1100            getAddExpr(getSignExtendExpr(Start, WideTy),
1101                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1102                                  getZeroExtendExpr(Step, WideTy)));
1103          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
1104            // Return the expression with the addrec on the outside.
1105            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1106                                 getZeroExtendExpr(Step, Ty),
1107                                 L);
1108        }
1109
1110        // If the backedge is guarded by a comparison with the pre-inc value
1111        // the addrec is safe. Also, if the entry is guarded by a comparison
1112        // with the start value and the backedge is guarded by a comparison
1113        // with the post-inc value, the addrec is safe.
1114        if (isKnownPositive(Step)) {
1115          const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1116                                      getSignedRange(Step).getSignedMax());
1117          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
1118              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
1119               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1120                                           AR->getPostIncExpr(*this), N)))
1121            // Return the expression with the addrec on the outside.
1122            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1123                                 getSignExtendExpr(Step, Ty),
1124                                 L);
1125        } else if (isKnownNegative(Step)) {
1126          const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1127                                      getSignedRange(Step).getSignedMin());
1128          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
1129              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
1130               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1131                                           AR->getPostIncExpr(*this), N)))
1132            // Return the expression with the addrec on the outside.
1133            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1134                                 getSignExtendExpr(Step, Ty),
1135                                 L);
1136        }
1137      }
1138    }
1139
1140  // The cast wasn't folded; create an explicit cast node.
1141  // Recompute the insert position, as it may have been invalidated.
1142  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1143  SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1144                                                   Op, Ty);
1145  UniqueSCEVs.InsertNode(S, IP);
1146  return S;
1147}
1148
1149/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1150/// unspecified bits out to the given type.
1151///
1152const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1153                                              const Type *Ty) {
1154  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1155         "This is not an extending conversion!");
1156  assert(isSCEVable(Ty) &&
1157         "This is not a conversion to a SCEVable type!");
1158  Ty = getEffectiveSCEVType(Ty);
1159
1160  // Sign-extend negative constants.
1161  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1162    if (SC->getValue()->getValue().isNegative())
1163      return getSignExtendExpr(Op, Ty);
1164
1165  // Peel off a truncate cast.
1166  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1167    const SCEV *NewOp = T->getOperand();
1168    if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1169      return getAnyExtendExpr(NewOp, Ty);
1170    return getTruncateOrNoop(NewOp, Ty);
1171  }
1172
1173  // Next try a zext cast. If the cast is folded, use it.
1174  const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1175  if (!isa<SCEVZeroExtendExpr>(ZExt))
1176    return ZExt;
1177
1178  // Next try a sext cast. If the cast is folded, use it.
1179  const SCEV *SExt = getSignExtendExpr(Op, Ty);
1180  if (!isa<SCEVSignExtendExpr>(SExt))
1181    return SExt;
1182
1183  // Force the cast to be folded into the operands of an addrec.
1184  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1185    SmallVector<const SCEV *, 4> Ops;
1186    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1187         I != E; ++I)
1188      Ops.push_back(getAnyExtendExpr(*I, Ty));
1189    return getAddRecExpr(Ops, AR->getLoop());
1190  }
1191
1192  // As a special case, fold anyext(undef) to undef. We don't want to
1193  // know too much about SCEVUnknowns, but this special case is handy
1194  // and harmless.
1195  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1196    if (isa<UndefValue>(U->getValue()))
1197      return getSCEV(UndefValue::get(Ty));
1198
1199  // If the expression is obviously signed, use the sext cast value.
1200  if (isa<SCEVSMaxExpr>(Op))
1201    return SExt;
1202
1203  // Absent any other information, use the zext cast value.
1204  return ZExt;
1205}
1206
1207/// CollectAddOperandsWithScales - Process the given Ops list, which is
1208/// a list of operands to be added under the given scale, update the given
1209/// map. This is a helper function for getAddRecExpr. As an example of
1210/// what it does, given a sequence of operands that would form an add
1211/// expression like this:
1212///
1213///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1214///
1215/// where A and B are constants, update the map with these values:
1216///
1217///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1218///
1219/// and add 13 + A*B*29 to AccumulatedConstant.
1220/// This will allow getAddRecExpr to produce this:
1221///
1222///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1223///
1224/// This form often exposes folding opportunities that are hidden in
1225/// the original operand list.
1226///
1227/// Return true iff it appears that any interesting folding opportunities
1228/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1229/// the common case where no interesting opportunities are present, and
1230/// is also used as a check to avoid infinite recursion.
1231///
1232static bool
1233CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1234                             SmallVector<const SCEV *, 8> &NewOps,
1235                             APInt &AccumulatedConstant,
1236                             const SCEV *const *Ops, size_t NumOperands,
1237                             const APInt &Scale,
1238                             ScalarEvolution &SE) {
1239  bool Interesting = false;
1240
1241  // Iterate over the add operands. They are sorted, with constants first.
1242  unsigned i = 0;
1243  while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1244    ++i;
1245    // Pull a buried constant out to the outside.
1246    if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1247      Interesting = true;
1248    AccumulatedConstant += Scale * C->getValue()->getValue();
1249  }
1250
1251  // Next comes everything else. We're especially interested in multiplies
1252  // here, but they're in the middle, so just visit the rest with one loop.
1253  for (; i != NumOperands; ++i) {
1254    const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1255    if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1256      APInt NewScale =
1257        Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1258      if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1259        // A multiplication of a constant with another add; recurse.
1260        const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1261        Interesting |=
1262          CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1263                                       Add->op_begin(), Add->getNumOperands(),
1264                                       NewScale, SE);
1265      } else {
1266        // A multiplication of a constant with some other value. Update
1267        // the map.
1268        SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1269        const SCEV *Key = SE.getMulExpr(MulOps);
1270        std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1271          M.insert(std::make_pair(Key, NewScale));
1272        if (Pair.second) {
1273          NewOps.push_back(Pair.first->first);
1274        } else {
1275          Pair.first->second += NewScale;
1276          // The map already had an entry for this value, which may indicate
1277          // a folding opportunity.
1278          Interesting = true;
1279        }
1280      }
1281    } else {
1282      // An ordinary operand. Update the map.
1283      std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1284        M.insert(std::make_pair(Ops[i], Scale));
1285      if (Pair.second) {
1286        NewOps.push_back(Pair.first->first);
1287      } else {
1288        Pair.first->second += Scale;
1289        // The map already had an entry for this value, which may indicate
1290        // a folding opportunity.
1291        Interesting = true;
1292      }
1293    }
1294  }
1295
1296  return Interesting;
1297}
1298
1299namespace {
1300  struct APIntCompare {
1301    bool operator()(const APInt &LHS, const APInt &RHS) const {
1302      return LHS.ult(RHS);
1303    }
1304  };
1305}
1306
1307/// getAddExpr - Get a canonical add expression, or something simpler if
1308/// possible.
1309const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1310                                        bool HasNUW, bool HasNSW) {
1311  assert(!Ops.empty() && "Cannot get empty add!");
1312  if (Ops.size() == 1) return Ops[0];
1313#ifndef NDEBUG
1314  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1315  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1316    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1317           "SCEVAddExpr operand types don't match!");
1318#endif
1319
1320  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1321  if (!HasNUW && HasNSW) {
1322    bool All = true;
1323    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1324         E = Ops.end(); I != E; ++I)
1325      if (!isKnownNonNegative(*I)) {
1326        All = false;
1327        break;
1328      }
1329    if (All) HasNUW = true;
1330  }
1331
1332  // Sort by complexity, this groups all similar expression types together.
1333  GroupByComplexity(Ops, LI);
1334
1335  // If there are any constants, fold them together.
1336  unsigned Idx = 0;
1337  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1338    ++Idx;
1339    assert(Idx < Ops.size());
1340    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1341      // We found two constants, fold them together!
1342      Ops[0] = getConstant(LHSC->getValue()->getValue() +
1343                           RHSC->getValue()->getValue());
1344      if (Ops.size() == 2) return Ops[0];
1345      Ops.erase(Ops.begin()+1);  // Erase the folded element
1346      LHSC = cast<SCEVConstant>(Ops[0]);
1347    }
1348
1349    // If we are left with a constant zero being added, strip it off.
1350    if (LHSC->getValue()->isZero()) {
1351      Ops.erase(Ops.begin());
1352      --Idx;
1353    }
1354
1355    if (Ops.size() == 1) return Ops[0];
1356  }
1357
1358  // Okay, check to see if the same value occurs in the operand list more than
1359  // once.  If so, merge them together into an multiply expression.  Since we
1360  // sorted the list, these values are required to be adjacent.
1361  const Type *Ty = Ops[0]->getType();
1362  bool FoundMatch = false;
1363  for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
1364    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
1365      // Scan ahead to count how many equal operands there are.
1366      unsigned Count = 2;
1367      while (i+Count != e && Ops[i+Count] == Ops[i])
1368        ++Count;
1369      // Merge the values into a multiply.
1370      const SCEV *Scale = getConstant(Ty, Count);
1371      const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1372      if (Ops.size() == Count)
1373        return Mul;
1374      Ops[i] = Mul;
1375      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
1376      --i; e -= Count - 1;
1377      FoundMatch = true;
1378    }
1379  if (FoundMatch)
1380    return getAddExpr(Ops, HasNUW, HasNSW);
1381
1382  // Check for truncates. If all the operands are truncated from the same
1383  // type, see if factoring out the truncate would permit the result to be
1384  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1385  // if the contents of the resulting outer trunc fold to something simple.
1386  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1387    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1388    const Type *DstType = Trunc->getType();
1389    const Type *SrcType = Trunc->getOperand()->getType();
1390    SmallVector<const SCEV *, 8> LargeOps;
1391    bool Ok = true;
1392    // Check all the operands to see if they can be represented in the
1393    // source type of the truncate.
1394    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1395      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1396        if (T->getOperand()->getType() != SrcType) {
1397          Ok = false;
1398          break;
1399        }
1400        LargeOps.push_back(T->getOperand());
1401      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1402        LargeOps.push_back(getAnyExtendExpr(C, SrcType));
1403      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1404        SmallVector<const SCEV *, 8> LargeMulOps;
1405        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1406          if (const SCEVTruncateExpr *T =
1407                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1408            if (T->getOperand()->getType() != SrcType) {
1409              Ok = false;
1410              break;
1411            }
1412            LargeMulOps.push_back(T->getOperand());
1413          } else if (const SCEVConstant *C =
1414                       dyn_cast<SCEVConstant>(M->getOperand(j))) {
1415            LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
1416          } else {
1417            Ok = false;
1418            break;
1419          }
1420        }
1421        if (Ok)
1422          LargeOps.push_back(getMulExpr(LargeMulOps));
1423      } else {
1424        Ok = false;
1425        break;
1426      }
1427    }
1428    if (Ok) {
1429      // Evaluate the expression in the larger type.
1430      const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
1431      // If it folds to something simple, use it. Otherwise, don't.
1432      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1433        return getTruncateExpr(Fold, DstType);
1434    }
1435  }
1436
1437  // Skip past any other cast SCEVs.
1438  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1439    ++Idx;
1440
1441  // If there are add operands they would be next.
1442  if (Idx < Ops.size()) {
1443    bool DeletedAdd = false;
1444    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1445      // If we have an add, expand the add operands onto the end of the operands
1446      // list.
1447      Ops.erase(Ops.begin()+Idx);
1448      Ops.append(Add->op_begin(), Add->op_end());
1449      DeletedAdd = true;
1450    }
1451
1452    // If we deleted at least one add, we added operands to the end of the list,
1453    // and they are not necessarily sorted.  Recurse to resort and resimplify
1454    // any operands we just acquired.
1455    if (DeletedAdd)
1456      return getAddExpr(Ops);
1457  }
1458
1459  // Skip over the add expression until we get to a multiply.
1460  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1461    ++Idx;
1462
1463  // Check to see if there are any folding opportunities present with
1464  // operands multiplied by constant values.
1465  if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1466    uint64_t BitWidth = getTypeSizeInBits(Ty);
1467    DenseMap<const SCEV *, APInt> M;
1468    SmallVector<const SCEV *, 8> NewOps;
1469    APInt AccumulatedConstant(BitWidth, 0);
1470    if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1471                                     Ops.data(), Ops.size(),
1472                                     APInt(BitWidth, 1), *this)) {
1473      // Some interesting folding opportunity is present, so its worthwhile to
1474      // re-generate the operands list. Group the operands by constant scale,
1475      // to avoid multiplying by the same constant scale multiple times.
1476      std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1477      for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
1478           E = NewOps.end(); I != E; ++I)
1479        MulOpLists[M.find(*I)->second].push_back(*I);
1480      // Re-generate the operands list.
1481      Ops.clear();
1482      if (AccumulatedConstant != 0)
1483        Ops.push_back(getConstant(AccumulatedConstant));
1484      for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1485           I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1486        if (I->first != 0)
1487          Ops.push_back(getMulExpr(getConstant(I->first),
1488                                   getAddExpr(I->second)));
1489      if (Ops.empty())
1490        return getConstant(Ty, 0);
1491      if (Ops.size() == 1)
1492        return Ops[0];
1493      return getAddExpr(Ops);
1494    }
1495  }
1496
1497  // If we are adding something to a multiply expression, make sure the
1498  // something is not already an operand of the multiply.  If so, merge it into
1499  // the multiply.
1500  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1501    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1502    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1503      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1504      if (isa<SCEVConstant>(MulOpSCEV))
1505        continue;
1506      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1507        if (MulOpSCEV == Ops[AddOp]) {
1508          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1509          const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1510          if (Mul->getNumOperands() != 2) {
1511            // If the multiply has more than two operands, we must get the
1512            // Y*Z term.
1513            SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1514                                                Mul->op_begin()+MulOp);
1515            MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1516            InnerMul = getMulExpr(MulOps);
1517          }
1518          const SCEV *One = getConstant(Ty, 1);
1519          const SCEV *AddOne = getAddExpr(One, InnerMul);
1520          const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
1521          if (Ops.size() == 2) return OuterMul;
1522          if (AddOp < Idx) {
1523            Ops.erase(Ops.begin()+AddOp);
1524            Ops.erase(Ops.begin()+Idx-1);
1525          } else {
1526            Ops.erase(Ops.begin()+Idx);
1527            Ops.erase(Ops.begin()+AddOp-1);
1528          }
1529          Ops.push_back(OuterMul);
1530          return getAddExpr(Ops);
1531        }
1532
1533      // Check this multiply against other multiplies being added together.
1534      for (unsigned OtherMulIdx = Idx+1;
1535           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1536           ++OtherMulIdx) {
1537        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1538        // If MulOp occurs in OtherMul, we can fold the two multiplies
1539        // together.
1540        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1541             OMulOp != e; ++OMulOp)
1542          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1543            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1544            const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
1545            if (Mul->getNumOperands() != 2) {
1546              SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1547                                                  Mul->op_begin()+MulOp);
1548              MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1549              InnerMul1 = getMulExpr(MulOps);
1550            }
1551            const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1552            if (OtherMul->getNumOperands() != 2) {
1553              SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1554                                                  OtherMul->op_begin()+OMulOp);
1555              MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
1556              InnerMul2 = getMulExpr(MulOps);
1557            }
1558            const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1559            const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1560            if (Ops.size() == 2) return OuterMul;
1561            Ops.erase(Ops.begin()+Idx);
1562            Ops.erase(Ops.begin()+OtherMulIdx-1);
1563            Ops.push_back(OuterMul);
1564            return getAddExpr(Ops);
1565          }
1566      }
1567    }
1568  }
1569
1570  // If there are any add recurrences in the operands list, see if any other
1571  // added values are loop invariant.  If so, we can fold them into the
1572  // recurrence.
1573  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1574    ++Idx;
1575
1576  // Scan over all recurrences, trying to fold loop invariants into them.
1577  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1578    // Scan all of the other operands to this add and add them to the vector if
1579    // they are loop invariant w.r.t. the recurrence.
1580    SmallVector<const SCEV *, 8> LIOps;
1581    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1582    const Loop *AddRecLoop = AddRec->getLoop();
1583    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1584      if (isLoopInvariant(Ops[i], AddRecLoop)) {
1585        LIOps.push_back(Ops[i]);
1586        Ops.erase(Ops.begin()+i);
1587        --i; --e;
1588      }
1589
1590    // If we found some loop invariants, fold them into the recurrence.
1591    if (!LIOps.empty()) {
1592      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1593      LIOps.push_back(AddRec->getStart());
1594
1595      SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1596                                             AddRec->op_end());
1597      AddRecOps[0] = getAddExpr(LIOps);
1598
1599      // Build the new addrec. Propagate the NUW and NSW flags if both the
1600      // outer add and the inner addrec are guaranteed to have no overflow.
1601      const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop,
1602                                         HasNUW && AddRec->hasNoUnsignedWrap(),
1603                                         HasNSW && AddRec->hasNoSignedWrap());
1604
1605      // If all of the other operands were loop invariant, we are done.
1606      if (Ops.size() == 1) return NewRec;
1607
1608      // Otherwise, add the folded AddRec by the non-liv parts.
1609      for (unsigned i = 0;; ++i)
1610        if (Ops[i] == AddRec) {
1611          Ops[i] = NewRec;
1612          break;
1613        }
1614      return getAddExpr(Ops);
1615    }
1616
1617    // Okay, if there weren't any loop invariants to be folded, check to see if
1618    // there are multiple AddRec's with the same loop induction variable being
1619    // added together.  If so, we can fold them.
1620    for (unsigned OtherIdx = Idx+1;
1621         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1622         ++OtherIdx)
1623      if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1624        // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
1625        SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1626                                               AddRec->op_end());
1627        for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1628             ++OtherIdx)
1629          if (const SCEVAddRecExpr *OtherAddRec =
1630                dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1631            if (OtherAddRec->getLoop() == AddRecLoop) {
1632              for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1633                   i != e; ++i) {
1634                if (i >= AddRecOps.size()) {
1635                  AddRecOps.append(OtherAddRec->op_begin()+i,
1636                                   OtherAddRec->op_end());
1637                  break;
1638                }
1639                AddRecOps[i] = getAddExpr(AddRecOps[i],
1640                                          OtherAddRec->getOperand(i));
1641              }
1642              Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1643            }
1644        Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop);
1645        return getAddExpr(Ops);
1646      }
1647
1648    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1649    // next one.
1650  }
1651
1652  // Okay, it looks like we really DO need an add expr.  Check to see if we
1653  // already have one, otherwise create a new one.
1654  FoldingSetNodeID ID;
1655  ID.AddInteger(scAddExpr);
1656  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1657    ID.AddPointer(Ops[i]);
1658  void *IP = 0;
1659  SCEVAddExpr *S =
1660    static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1661  if (!S) {
1662    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1663    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1664    S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1665                                        O, Ops.size());
1666    UniqueSCEVs.InsertNode(S, IP);
1667  }
1668  if (HasNUW) S->setHasNoUnsignedWrap(true);
1669  if (HasNSW) S->setHasNoSignedWrap(true);
1670  return S;
1671}
1672
1673/// getMulExpr - Get a canonical multiply expression, or something simpler if
1674/// possible.
1675const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1676                                        bool HasNUW, bool HasNSW) {
1677  assert(!Ops.empty() && "Cannot get empty mul!");
1678  if (Ops.size() == 1) return Ops[0];
1679#ifndef NDEBUG
1680  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1681  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1682    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1683           "SCEVMulExpr operand types don't match!");
1684#endif
1685
1686  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1687  if (!HasNUW && HasNSW) {
1688    bool All = true;
1689    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1690         E = Ops.end(); I != E; ++I)
1691      if (!isKnownNonNegative(*I)) {
1692        All = false;
1693        break;
1694      }
1695    if (All) HasNUW = true;
1696  }
1697
1698  // Sort by complexity, this groups all similar expression types together.
1699  GroupByComplexity(Ops, LI);
1700
1701  // If there are any constants, fold them together.
1702  unsigned Idx = 0;
1703  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1704
1705    // C1*(C2+V) -> C1*C2 + C1*V
1706    if (Ops.size() == 2)
1707      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1708        if (Add->getNumOperands() == 2 &&
1709            isa<SCEVConstant>(Add->getOperand(0)))
1710          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1711                            getMulExpr(LHSC, Add->getOperand(1)));
1712
1713    ++Idx;
1714    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1715      // We found two constants, fold them together!
1716      ConstantInt *Fold = ConstantInt::get(getContext(),
1717                                           LHSC->getValue()->getValue() *
1718                                           RHSC->getValue()->getValue());
1719      Ops[0] = getConstant(Fold);
1720      Ops.erase(Ops.begin()+1);  // Erase the folded element
1721      if (Ops.size() == 1) return Ops[0];
1722      LHSC = cast<SCEVConstant>(Ops[0]);
1723    }
1724
1725    // If we are left with a constant one being multiplied, strip it off.
1726    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1727      Ops.erase(Ops.begin());
1728      --Idx;
1729    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1730      // If we have a multiply of zero, it will always be zero.
1731      return Ops[0];
1732    } else if (Ops[0]->isAllOnesValue()) {
1733      // If we have a mul by -1 of an add, try distributing the -1 among the
1734      // add operands.
1735      if (Ops.size() == 2)
1736        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1737          SmallVector<const SCEV *, 4> NewOps;
1738          bool AnyFolded = false;
1739          for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1740               I != E; ++I) {
1741            const SCEV *Mul = getMulExpr(Ops[0], *I);
1742            if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1743            NewOps.push_back(Mul);
1744          }
1745          if (AnyFolded)
1746            return getAddExpr(NewOps);
1747        }
1748    }
1749
1750    if (Ops.size() == 1)
1751      return Ops[0];
1752  }
1753
1754  // Skip over the add expression until we get to a multiply.
1755  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1756    ++Idx;
1757
1758  // If there are mul operands inline them all into this expression.
1759  if (Idx < Ops.size()) {
1760    bool DeletedMul = false;
1761    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1762      // If we have an mul, expand the mul operands onto the end of the operands
1763      // list.
1764      Ops.erase(Ops.begin()+Idx);
1765      Ops.append(Mul->op_begin(), Mul->op_end());
1766      DeletedMul = true;
1767    }
1768
1769    // If we deleted at least one mul, we added operands to the end of the list,
1770    // and they are not necessarily sorted.  Recurse to resort and resimplify
1771    // any operands we just acquired.
1772    if (DeletedMul)
1773      return getMulExpr(Ops);
1774  }
1775
1776  // If there are any add recurrences in the operands list, see if any other
1777  // added values are loop invariant.  If so, we can fold them into the
1778  // recurrence.
1779  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1780    ++Idx;
1781
1782  // Scan over all recurrences, trying to fold loop invariants into them.
1783  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1784    // Scan all of the other operands to this mul and add them to the vector if
1785    // they are loop invariant w.r.t. the recurrence.
1786    SmallVector<const SCEV *, 8> LIOps;
1787    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1788    const Loop *AddRecLoop = AddRec->getLoop();
1789    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1790      if (isLoopInvariant(Ops[i], AddRecLoop)) {
1791        LIOps.push_back(Ops[i]);
1792        Ops.erase(Ops.begin()+i);
1793        --i; --e;
1794      }
1795
1796    // If we found some loop invariants, fold them into the recurrence.
1797    if (!LIOps.empty()) {
1798      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1799      SmallVector<const SCEV *, 4> NewOps;
1800      NewOps.reserve(AddRec->getNumOperands());
1801      const SCEV *Scale = getMulExpr(LIOps);
1802      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1803        NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1804
1805      // Build the new addrec. Propagate the NUW and NSW flags if both the
1806      // outer mul and the inner addrec are guaranteed to have no overflow.
1807      const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop,
1808                                         HasNUW && AddRec->hasNoUnsignedWrap(),
1809                                         HasNSW && AddRec->hasNoSignedWrap());
1810
1811      // If all of the other operands were loop invariant, we are done.
1812      if (Ops.size() == 1) return NewRec;
1813
1814      // Otherwise, multiply the folded AddRec by the non-liv parts.
1815      for (unsigned i = 0;; ++i)
1816        if (Ops[i] == AddRec) {
1817          Ops[i] = NewRec;
1818          break;
1819        }
1820      return getMulExpr(Ops);
1821    }
1822
1823    // Okay, if there weren't any loop invariants to be folded, check to see if
1824    // there are multiple AddRec's with the same loop induction variable being
1825    // multiplied together.  If so, we can fold them.
1826    for (unsigned OtherIdx = Idx+1;
1827         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1828         ++OtherIdx)
1829      if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1830        // F * G, where F = {A,+,B}<L> and G = {C,+,D}<L>  -->
1831        // {A*C,+,F*D + G*B + B*D}<L>
1832        for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1833             ++OtherIdx)
1834          if (const SCEVAddRecExpr *OtherAddRec =
1835                dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1836            if (OtherAddRec->getLoop() == AddRecLoop) {
1837              const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1838              const SCEV *NewStart = getMulExpr(F->getStart(), G->getStart());
1839              const SCEV *B = F->getStepRecurrence(*this);
1840              const SCEV *D = G->getStepRecurrence(*this);
1841              const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1842                                               getMulExpr(G, B),
1843                                               getMulExpr(B, D));
1844              const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1845                                                    F->getLoop());
1846              if (Ops.size() == 2) return NewAddRec;
1847              Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
1848              Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1849            }
1850        return getMulExpr(Ops);
1851      }
1852
1853    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1854    // next one.
1855  }
1856
1857  // Okay, it looks like we really DO need an mul expr.  Check to see if we
1858  // already have one, otherwise create a new one.
1859  FoldingSetNodeID ID;
1860  ID.AddInteger(scMulExpr);
1861  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1862    ID.AddPointer(Ops[i]);
1863  void *IP = 0;
1864  SCEVMulExpr *S =
1865    static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1866  if (!S) {
1867    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1868    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1869    S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1870                                        O, Ops.size());
1871    UniqueSCEVs.InsertNode(S, IP);
1872  }
1873  if (HasNUW) S->setHasNoUnsignedWrap(true);
1874  if (HasNSW) S->setHasNoSignedWrap(true);
1875  return S;
1876}
1877
1878/// getUDivExpr - Get a canonical unsigned division expression, or something
1879/// simpler if possible.
1880const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1881                                         const SCEV *RHS) {
1882  assert(getEffectiveSCEVType(LHS->getType()) ==
1883         getEffectiveSCEVType(RHS->getType()) &&
1884         "SCEVUDivExpr operand types don't match!");
1885
1886  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1887    if (RHSC->getValue()->equalsInt(1))
1888      return LHS;                               // X udiv 1 --> x
1889    // If the denominator is zero, the result of the udiv is undefined. Don't
1890    // try to analyze it, because the resolution chosen here may differ from
1891    // the resolution chosen in other parts of the compiler.
1892    if (!RHSC->getValue()->isZero()) {
1893      // Determine if the division can be folded into the operands of
1894      // its operands.
1895      // TODO: Generalize this to non-constants by using known-bits information.
1896      const Type *Ty = LHS->getType();
1897      unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1898      unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
1899      // For non-power-of-two values, effectively round the value up to the
1900      // nearest power of two.
1901      if (!RHSC->getValue()->getValue().isPowerOf2())
1902        ++MaxShiftAmt;
1903      const IntegerType *ExtTy =
1904        IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1905      // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1906      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1907        if (const SCEVConstant *Step =
1908              dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1909          if (!Step->getValue()->getValue()
1910                .urem(RHSC->getValue()->getValue()) &&
1911              getZeroExtendExpr(AR, ExtTy) ==
1912              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1913                            getZeroExtendExpr(Step, ExtTy),
1914                            AR->getLoop())) {
1915            SmallVector<const SCEV *, 4> Operands;
1916            for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1917              Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1918            return getAddRecExpr(Operands, AR->getLoop());
1919          }
1920      // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1921      if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1922        SmallVector<const SCEV *, 4> Operands;
1923        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1924          Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1925        if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1926          // Find an operand that's safely divisible.
1927          for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1928            const SCEV *Op = M->getOperand(i);
1929            const SCEV *Div = getUDivExpr(Op, RHSC);
1930            if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1931              Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1932                                                      M->op_end());
1933              Operands[i] = Div;
1934              return getMulExpr(Operands);
1935            }
1936          }
1937      }
1938      // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1939      if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1940        SmallVector<const SCEV *, 4> Operands;
1941        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1942          Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1943        if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1944          Operands.clear();
1945          for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1946            const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
1947            if (isa<SCEVUDivExpr>(Op) ||
1948                getMulExpr(Op, RHS) != A->getOperand(i))
1949              break;
1950            Operands.push_back(Op);
1951          }
1952          if (Operands.size() == A->getNumOperands())
1953            return getAddExpr(Operands);
1954        }
1955      }
1956
1957      // Fold if both operands are constant.
1958      if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1959        Constant *LHSCV = LHSC->getValue();
1960        Constant *RHSCV = RHSC->getValue();
1961        return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1962                                                                   RHSCV)));
1963      }
1964    }
1965  }
1966
1967  FoldingSetNodeID ID;
1968  ID.AddInteger(scUDivExpr);
1969  ID.AddPointer(LHS);
1970  ID.AddPointer(RHS);
1971  void *IP = 0;
1972  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1973  SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
1974                                             LHS, RHS);
1975  UniqueSCEVs.InsertNode(S, IP);
1976  return S;
1977}
1978
1979
1980/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1981/// Simplify the expression as much as possible.
1982const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
1983                                           const SCEV *Step, const Loop *L,
1984                                           bool HasNUW, bool HasNSW) {
1985  SmallVector<const SCEV *, 4> Operands;
1986  Operands.push_back(Start);
1987  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1988    if (StepChrec->getLoop() == L) {
1989      Operands.append(StepChrec->op_begin(), StepChrec->op_end());
1990      return getAddRecExpr(Operands, L);
1991    }
1992
1993  Operands.push_back(Step);
1994  return getAddRecExpr(Operands, L, HasNUW, HasNSW);
1995}
1996
1997/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1998/// Simplify the expression as much as possible.
1999const SCEV *
2000ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2001                               const Loop *L,
2002                               bool HasNUW, bool HasNSW) {
2003  if (Operands.size() == 1) return Operands[0];
2004#ifndef NDEBUG
2005  const Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2006  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2007    assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2008           "SCEVAddRecExpr operand types don't match!");
2009  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2010    assert(isLoopInvariant(Operands[i], L) &&
2011           "SCEVAddRecExpr operand is not loop-invariant!");
2012#endif
2013
2014  if (Operands.back()->isZero()) {
2015    Operands.pop_back();
2016    return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0}  -->  X
2017  }
2018
2019  // It's tempting to want to call getMaxBackedgeTakenCount count here and
2020  // use that information to infer NUW and NSW flags. However, computing a
2021  // BE count requires calling getAddRecExpr, so we may not yet have a
2022  // meaningful BE count at this point (and if we don't, we'd be stuck
2023  // with a SCEVCouldNotCompute as the cached BE count).
2024
2025  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
2026  if (!HasNUW && HasNSW) {
2027    bool All = true;
2028    for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2029         E = Operands.end(); I != E; ++I)
2030      if (!isKnownNonNegative(*I)) {
2031        All = false;
2032        break;
2033      }
2034    if (All) HasNUW = true;
2035  }
2036
2037  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2038  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2039    const Loop *NestedLoop = NestedAR->getLoop();
2040    if (L->contains(NestedLoop) ?
2041        (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
2042        (!NestedLoop->contains(L) &&
2043         DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
2044      SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2045                                                  NestedAR->op_end());
2046      Operands[0] = NestedAR->getStart();
2047      // AddRecs require their operands be loop-invariant with respect to their
2048      // loops. Don't perform this transformation if it would break this
2049      // requirement.
2050      bool AllInvariant = true;
2051      for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2052        if (!isLoopInvariant(Operands[i], L)) {
2053          AllInvariant = false;
2054          break;
2055        }
2056      if (AllInvariant) {
2057        NestedOperands[0] = getAddRecExpr(Operands, L);
2058        AllInvariant = true;
2059        for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2060          if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
2061            AllInvariant = false;
2062            break;
2063          }
2064        if (AllInvariant)
2065          // Ok, both add recurrences are valid after the transformation.
2066          return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
2067      }
2068      // Reset Operands to its original state.
2069      Operands[0] = NestedAR;
2070    }
2071  }
2072
2073  // Okay, it looks like we really DO need an addrec expr.  Check to see if we
2074  // already have one, otherwise create a new one.
2075  FoldingSetNodeID ID;
2076  ID.AddInteger(scAddRecExpr);
2077  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2078    ID.AddPointer(Operands[i]);
2079  ID.AddPointer(L);
2080  void *IP = 0;
2081  SCEVAddRecExpr *S =
2082    static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2083  if (!S) {
2084    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2085    std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2086    S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2087                                           O, Operands.size(), L);
2088    UniqueSCEVs.InsertNode(S, IP);
2089  }
2090  if (HasNUW) S->setHasNoUnsignedWrap(true);
2091  if (HasNSW) S->setHasNoSignedWrap(true);
2092  return S;
2093}
2094
2095const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2096                                         const SCEV *RHS) {
2097  SmallVector<const SCEV *, 2> Ops;
2098  Ops.push_back(LHS);
2099  Ops.push_back(RHS);
2100  return getSMaxExpr(Ops);
2101}
2102
2103const SCEV *
2104ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2105  assert(!Ops.empty() && "Cannot get empty smax!");
2106  if (Ops.size() == 1) return Ops[0];
2107#ifndef NDEBUG
2108  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2109  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2110    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2111           "SCEVSMaxExpr operand types don't match!");
2112#endif
2113
2114  // Sort by complexity, this groups all similar expression types together.
2115  GroupByComplexity(Ops, LI);
2116
2117  // If there are any constants, fold them together.
2118  unsigned Idx = 0;
2119  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2120    ++Idx;
2121    assert(Idx < Ops.size());
2122    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2123      // We found two constants, fold them together!
2124      ConstantInt *Fold = ConstantInt::get(getContext(),
2125                              APIntOps::smax(LHSC->getValue()->getValue(),
2126                                             RHSC->getValue()->getValue()));
2127      Ops[0] = getConstant(Fold);
2128      Ops.erase(Ops.begin()+1);  // Erase the folded element
2129      if (Ops.size() == 1) return Ops[0];
2130      LHSC = cast<SCEVConstant>(Ops[0]);
2131    }
2132
2133    // If we are left with a constant minimum-int, strip it off.
2134    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2135      Ops.erase(Ops.begin());
2136      --Idx;
2137    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2138      // If we have an smax with a constant maximum-int, it will always be
2139      // maximum-int.
2140      return Ops[0];
2141    }
2142
2143    if (Ops.size() == 1) return Ops[0];
2144  }
2145
2146  // Find the first SMax
2147  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2148    ++Idx;
2149
2150  // Check to see if one of the operands is an SMax. If so, expand its operands
2151  // onto our operand list, and recurse to simplify.
2152  if (Idx < Ops.size()) {
2153    bool DeletedSMax = false;
2154    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
2155      Ops.erase(Ops.begin()+Idx);
2156      Ops.append(SMax->op_begin(), SMax->op_end());
2157      DeletedSMax = true;
2158    }
2159
2160    if (DeletedSMax)
2161      return getSMaxExpr(Ops);
2162  }
2163
2164  // Okay, check to see if the same value occurs in the operand list twice.  If
2165  // so, delete one.  Since we sorted the list, these values are required to
2166  // be adjacent.
2167  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2168    //  X smax Y smax Y  -->  X smax Y
2169    //  X smax Y         -->  X, if X is always greater than Y
2170    if (Ops[i] == Ops[i+1] ||
2171        isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2172      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2173      --i; --e;
2174    } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
2175      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2176      --i; --e;
2177    }
2178
2179  if (Ops.size() == 1) return Ops[0];
2180
2181  assert(!Ops.empty() && "Reduced smax down to nothing!");
2182
2183  // Okay, it looks like we really DO need an smax expr.  Check to see if we
2184  // already have one, otherwise create a new one.
2185  FoldingSetNodeID ID;
2186  ID.AddInteger(scSMaxExpr);
2187  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2188    ID.AddPointer(Ops[i]);
2189  void *IP = 0;
2190  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2191  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2192  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2193  SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2194                                             O, Ops.size());
2195  UniqueSCEVs.InsertNode(S, IP);
2196  return S;
2197}
2198
2199const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2200                                         const SCEV *RHS) {
2201  SmallVector<const SCEV *, 2> Ops;
2202  Ops.push_back(LHS);
2203  Ops.push_back(RHS);
2204  return getUMaxExpr(Ops);
2205}
2206
2207const SCEV *
2208ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2209  assert(!Ops.empty() && "Cannot get empty umax!");
2210  if (Ops.size() == 1) return Ops[0];
2211#ifndef NDEBUG
2212  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2213  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2214    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2215           "SCEVUMaxExpr operand types don't match!");
2216#endif
2217
2218  // Sort by complexity, this groups all similar expression types together.
2219  GroupByComplexity(Ops, LI);
2220
2221  // If there are any constants, fold them together.
2222  unsigned Idx = 0;
2223  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2224    ++Idx;
2225    assert(Idx < Ops.size());
2226    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2227      // We found two constants, fold them together!
2228      ConstantInt *Fold = ConstantInt::get(getContext(),
2229                              APIntOps::umax(LHSC->getValue()->getValue(),
2230                                             RHSC->getValue()->getValue()));
2231      Ops[0] = getConstant(Fold);
2232      Ops.erase(Ops.begin()+1);  // Erase the folded element
2233      if (Ops.size() == 1) return Ops[0];
2234      LHSC = cast<SCEVConstant>(Ops[0]);
2235    }
2236
2237    // If we are left with a constant minimum-int, strip it off.
2238    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2239      Ops.erase(Ops.begin());
2240      --Idx;
2241    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2242      // If we have an umax with a constant maximum-int, it will always be
2243      // maximum-int.
2244      return Ops[0];
2245    }
2246
2247    if (Ops.size() == 1) return Ops[0];
2248  }
2249
2250  // Find the first UMax
2251  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2252    ++Idx;
2253
2254  // Check to see if one of the operands is a UMax. If so, expand its operands
2255  // onto our operand list, and recurse to simplify.
2256  if (Idx < Ops.size()) {
2257    bool DeletedUMax = false;
2258    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
2259      Ops.erase(Ops.begin()+Idx);
2260      Ops.append(UMax->op_begin(), UMax->op_end());
2261      DeletedUMax = true;
2262    }
2263
2264    if (DeletedUMax)
2265      return getUMaxExpr(Ops);
2266  }
2267
2268  // Okay, check to see if the same value occurs in the operand list twice.  If
2269  // so, delete one.  Since we sorted the list, these values are required to
2270  // be adjacent.
2271  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2272    //  X umax Y umax Y  -->  X umax Y
2273    //  X umax Y         -->  X, if X is always greater than Y
2274    if (Ops[i] == Ops[i+1] ||
2275        isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2276      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2277      --i; --e;
2278    } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
2279      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2280      --i; --e;
2281    }
2282
2283  if (Ops.size() == 1) return Ops[0];
2284
2285  assert(!Ops.empty() && "Reduced umax down to nothing!");
2286
2287  // Okay, it looks like we really DO need a umax expr.  Check to see if we
2288  // already have one, otherwise create a new one.
2289  FoldingSetNodeID ID;
2290  ID.AddInteger(scUMaxExpr);
2291  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2292    ID.AddPointer(Ops[i]);
2293  void *IP = 0;
2294  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2295  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2296  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2297  SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2298                                             O, Ops.size());
2299  UniqueSCEVs.InsertNode(S, IP);
2300  return S;
2301}
2302
2303const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2304                                         const SCEV *RHS) {
2305  // ~smax(~x, ~y) == smin(x, y).
2306  return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2307}
2308
2309const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2310                                         const SCEV *RHS) {
2311  // ~umax(~x, ~y) == umin(x, y)
2312  return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2313}
2314
2315const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
2316  // If we have TargetData, we can bypass creating a target-independent
2317  // constant expression and then folding it back into a ConstantInt.
2318  // This is just a compile-time optimization.
2319  if (TD)
2320    return getConstant(TD->getIntPtrType(getContext()),
2321                       TD->getTypeAllocSize(AllocTy));
2322
2323  Constant *C = ConstantExpr::getSizeOf(AllocTy);
2324  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2325    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2326      C = Folded;
2327  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2328  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2329}
2330
2331const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2332  Constant *C = ConstantExpr::getAlignOf(AllocTy);
2333  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2334    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2335      C = Folded;
2336  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2337  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2338}
2339
2340const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2341                                             unsigned FieldNo) {
2342  // If we have TargetData, we can bypass creating a target-independent
2343  // constant expression and then folding it back into a ConstantInt.
2344  // This is just a compile-time optimization.
2345  if (TD)
2346    return getConstant(TD->getIntPtrType(getContext()),
2347                       TD->getStructLayout(STy)->getElementOffset(FieldNo));
2348
2349  Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2350  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2351    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2352      C = Folded;
2353  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2354  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2355}
2356
2357const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2358                                             Constant *FieldNo) {
2359  Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
2360  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2361    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2362      C = Folded;
2363  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
2364  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2365}
2366
2367const SCEV *ScalarEvolution::getUnknown(Value *V) {
2368  // Don't attempt to do anything other than create a SCEVUnknown object
2369  // here.  createSCEV only calls getUnknown after checking for all other
2370  // interesting possibilities, and any other code that calls getUnknown
2371  // is doing so in order to hide a value from SCEV canonicalization.
2372
2373  FoldingSetNodeID ID;
2374  ID.AddInteger(scUnknown);
2375  ID.AddPointer(V);
2376  void *IP = 0;
2377  if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2378    assert(cast<SCEVUnknown>(S)->getValue() == V &&
2379           "Stale SCEVUnknown in uniquing map!");
2380    return S;
2381  }
2382  SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2383                                            FirstUnknown);
2384  FirstUnknown = cast<SCEVUnknown>(S);
2385  UniqueSCEVs.InsertNode(S, IP);
2386  return S;
2387}
2388
2389//===----------------------------------------------------------------------===//
2390//            Basic SCEV Analysis and PHI Idiom Recognition Code
2391//
2392
2393/// isSCEVable - Test if values of the given type are analyzable within
2394/// the SCEV framework. This primarily includes integer types, and it
2395/// can optionally include pointer types if the ScalarEvolution class
2396/// has access to target-specific information.
2397bool ScalarEvolution::isSCEVable(const Type *Ty) const {
2398  // Integers and pointers are always SCEVable.
2399  return Ty->isIntegerTy() || Ty->isPointerTy();
2400}
2401
2402/// getTypeSizeInBits - Return the size in bits of the specified type,
2403/// for which isSCEVable must return true.
2404uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
2405  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2406
2407  // If we have a TargetData, use it!
2408  if (TD)
2409    return TD->getTypeSizeInBits(Ty);
2410
2411  // Integer types have fixed sizes.
2412  if (Ty->isIntegerTy())
2413    return Ty->getPrimitiveSizeInBits();
2414
2415  // The only other support type is pointer. Without TargetData, conservatively
2416  // assume pointers are 64-bit.
2417  assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
2418  return 64;
2419}
2420
2421/// getEffectiveSCEVType - Return a type with the same bitwidth as
2422/// the given type and which represents how SCEV will treat the given
2423/// type, for which isSCEVable must return true. For pointer types,
2424/// this is the pointer-sized integer type.
2425const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
2426  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2427
2428  if (Ty->isIntegerTy())
2429    return Ty;
2430
2431  // The only other support type is pointer.
2432  assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
2433  if (TD) return TD->getIntPtrType(getContext());
2434
2435  // Without TargetData, conservatively assume pointers are 64-bit.
2436  return Type::getInt64Ty(getContext());
2437}
2438
2439const SCEV *ScalarEvolution::getCouldNotCompute() {
2440  return &CouldNotCompute;
2441}
2442
2443/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2444/// expression and create a new one.
2445const SCEV *ScalarEvolution::getSCEV(Value *V) {
2446  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
2447
2448  ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2449  if (I != ValueExprMap.end()) return I->second;
2450  const SCEV *S = createSCEV(V);
2451
2452  // The process of creating a SCEV for V may have caused other SCEVs
2453  // to have been created, so it's necessary to insert the new entry
2454  // from scratch, rather than trying to remember the insert position
2455  // above.
2456  ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
2457  return S;
2458}
2459
2460/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2461///
2462const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
2463  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2464    return getConstant(
2465               cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
2466
2467  const Type *Ty = V->getType();
2468  Ty = getEffectiveSCEVType(Ty);
2469  return getMulExpr(V,
2470                  getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
2471}
2472
2473/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2474const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
2475  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2476    return getConstant(
2477                cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
2478
2479  const Type *Ty = V->getType();
2480  Ty = getEffectiveSCEVType(Ty);
2481  const SCEV *AllOnes =
2482                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
2483  return getMinusSCEV(AllOnes, V);
2484}
2485
2486/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2487///
2488const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2489                                          const SCEV *RHS) {
2490  // Fast path: X - X --> 0.
2491  if (LHS == RHS)
2492    return getConstant(LHS->getType(), 0);
2493
2494  // X - Y --> X + -Y
2495  return getAddExpr(LHS, getNegativeSCEV(RHS));
2496}
2497
2498/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2499/// input value to the specified type.  If the type must be extended, it is zero
2500/// extended.
2501const SCEV *
2502ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
2503                                         const Type *Ty) {
2504  const Type *SrcTy = V->getType();
2505  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2506         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2507         "Cannot truncate or zero extend with non-integer arguments!");
2508  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2509    return V;  // No conversion
2510  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2511    return getTruncateExpr(V, Ty);
2512  return getZeroExtendExpr(V, Ty);
2513}
2514
2515/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2516/// input value to the specified type.  If the type must be extended, it is sign
2517/// extended.
2518const SCEV *
2519ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
2520                                         const Type *Ty) {
2521  const Type *SrcTy = V->getType();
2522  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2523         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2524         "Cannot truncate or zero extend with non-integer arguments!");
2525  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2526    return V;  // No conversion
2527  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2528    return getTruncateExpr(V, Ty);
2529  return getSignExtendExpr(V, Ty);
2530}
2531
2532/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2533/// input value to the specified type.  If the type must be extended, it is zero
2534/// extended.  The conversion must not be narrowing.
2535const SCEV *
2536ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
2537  const Type *SrcTy = V->getType();
2538  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2539         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2540         "Cannot noop or zero extend with non-integer arguments!");
2541  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2542         "getNoopOrZeroExtend cannot truncate!");
2543  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2544    return V;  // No conversion
2545  return getZeroExtendExpr(V, Ty);
2546}
2547
2548/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2549/// input value to the specified type.  If the type must be extended, it is sign
2550/// extended.  The conversion must not be narrowing.
2551const SCEV *
2552ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
2553  const Type *SrcTy = V->getType();
2554  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2555         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2556         "Cannot noop or sign extend with non-integer arguments!");
2557  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2558         "getNoopOrSignExtend cannot truncate!");
2559  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2560    return V;  // No conversion
2561  return getSignExtendExpr(V, Ty);
2562}
2563
2564/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2565/// the input value to the specified type. If the type must be extended,
2566/// it is extended with unspecified bits. The conversion must not be
2567/// narrowing.
2568const SCEV *
2569ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
2570  const Type *SrcTy = V->getType();
2571  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2572         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2573         "Cannot noop or any extend with non-integer arguments!");
2574  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2575         "getNoopOrAnyExtend cannot truncate!");
2576  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2577    return V;  // No conversion
2578  return getAnyExtendExpr(V, Ty);
2579}
2580
2581/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2582/// input value to the specified type.  The conversion must not be widening.
2583const SCEV *
2584ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
2585  const Type *SrcTy = V->getType();
2586  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2587         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2588         "Cannot truncate or noop with non-integer arguments!");
2589  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2590         "getTruncateOrNoop cannot extend!");
2591  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2592    return V;  // No conversion
2593  return getTruncateExpr(V, Ty);
2594}
2595
2596/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2597/// the types using zero-extension, and then perform a umax operation
2598/// with them.
2599const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2600                                                        const SCEV *RHS) {
2601  const SCEV *PromotedLHS = LHS;
2602  const SCEV *PromotedRHS = RHS;
2603
2604  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2605    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2606  else
2607    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2608
2609  return getUMaxExpr(PromotedLHS, PromotedRHS);
2610}
2611
2612/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2613/// the types using zero-extension, and then perform a umin operation
2614/// with them.
2615const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2616                                                        const SCEV *RHS) {
2617  const SCEV *PromotedLHS = LHS;
2618  const SCEV *PromotedRHS = RHS;
2619
2620  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2621    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2622  else
2623    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2624
2625  return getUMinExpr(PromotedLHS, PromotedRHS);
2626}
2627
2628/// PushDefUseChildren - Push users of the given Instruction
2629/// onto the given Worklist.
2630static void
2631PushDefUseChildren(Instruction *I,
2632                   SmallVectorImpl<Instruction *> &Worklist) {
2633  // Push the def-use children onto the Worklist stack.
2634  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2635       UI != UE; ++UI)
2636    Worklist.push_back(cast<Instruction>(*UI));
2637}
2638
2639/// ForgetSymbolicValue - This looks up computed SCEV values for all
2640/// instructions that depend on the given instruction and removes them from
2641/// the ValueExprMapType map if they reference SymName. This is used during PHI
2642/// resolution.
2643void
2644ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
2645  SmallVector<Instruction *, 16> Worklist;
2646  PushDefUseChildren(PN, Worklist);
2647
2648  SmallPtrSet<Instruction *, 8> Visited;
2649  Visited.insert(PN);
2650  while (!Worklist.empty()) {
2651    Instruction *I = Worklist.pop_back_val();
2652    if (!Visited.insert(I)) continue;
2653
2654    ValueExprMapType::iterator It =
2655      ValueExprMap.find(static_cast<Value *>(I));
2656    if (It != ValueExprMap.end()) {
2657      const SCEV *Old = It->second;
2658
2659      // Short-circuit the def-use traversal if the symbolic name
2660      // ceases to appear in expressions.
2661      if (Old != SymName && !Old->hasOperand(SymName))
2662        continue;
2663
2664      // SCEVUnknown for a PHI either means that it has an unrecognized
2665      // structure, it's a PHI that's in the progress of being computed
2666      // by createNodeForPHI, or it's a single-value PHI. In the first case,
2667      // additional loop trip count information isn't going to change anything.
2668      // In the second case, createNodeForPHI will perform the necessary
2669      // updates on its own when it gets to that point. In the third, we do
2670      // want to forget the SCEVUnknown.
2671      if (!isa<PHINode>(I) ||
2672          !isa<SCEVUnknown>(Old) ||
2673          (I != PN && Old == SymName)) {
2674        ValuesAtScopes.erase(Old);
2675        UnsignedRanges.erase(Old);
2676        SignedRanges.erase(Old);
2677        ValueExprMap.erase(It);
2678      }
2679    }
2680
2681    PushDefUseChildren(I, Worklist);
2682  }
2683}
2684
2685/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
2686/// a loop header, making it a potential recurrence, or it doesn't.
2687///
2688const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
2689  if (const Loop *L = LI->getLoopFor(PN->getParent()))
2690    if (L->getHeader() == PN->getParent()) {
2691      // The loop may have multiple entrances or multiple exits; we can analyze
2692      // this phi as an addrec if it has a unique entry value and a unique
2693      // backedge value.
2694      Value *BEValueV = 0, *StartValueV = 0;
2695      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2696        Value *V = PN->getIncomingValue(i);
2697        if (L->contains(PN->getIncomingBlock(i))) {
2698          if (!BEValueV) {
2699            BEValueV = V;
2700          } else if (BEValueV != V) {
2701            BEValueV = 0;
2702            break;
2703          }
2704        } else if (!StartValueV) {
2705          StartValueV = V;
2706        } else if (StartValueV != V) {
2707          StartValueV = 0;
2708          break;
2709        }
2710      }
2711      if (BEValueV && StartValueV) {
2712        // While we are analyzing this PHI node, handle its value symbolically.
2713        const SCEV *SymbolicName = getUnknown(PN);
2714        assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
2715               "PHI node already processed?");
2716        ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
2717
2718        // Using this symbolic name for the PHI, analyze the value coming around
2719        // the back-edge.
2720        const SCEV *BEValue = getSCEV(BEValueV);
2721
2722        // NOTE: If BEValue is loop invariant, we know that the PHI node just
2723        // has a special value for the first iteration of the loop.
2724
2725        // If the value coming around the backedge is an add with the symbolic
2726        // value we just inserted, then we found a simple induction variable!
2727        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
2728          // If there is a single occurrence of the symbolic value, replace it
2729          // with a recurrence.
2730          unsigned FoundIndex = Add->getNumOperands();
2731          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2732            if (Add->getOperand(i) == SymbolicName)
2733              if (FoundIndex == e) {
2734                FoundIndex = i;
2735                break;
2736              }
2737
2738          if (FoundIndex != Add->getNumOperands()) {
2739            // Create an add with everything but the specified operand.
2740            SmallVector<const SCEV *, 8> Ops;
2741            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2742              if (i != FoundIndex)
2743                Ops.push_back(Add->getOperand(i));
2744            const SCEV *Accum = getAddExpr(Ops);
2745
2746            // This is not a valid addrec if the step amount is varying each
2747            // loop iteration, but is not itself an addrec in this loop.
2748            if (isLoopInvariant(Accum, L) ||
2749                (isa<SCEVAddRecExpr>(Accum) &&
2750                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
2751              bool HasNUW = false;
2752              bool HasNSW = false;
2753
2754              // If the increment doesn't overflow, then neither the addrec nor
2755              // the post-increment will overflow.
2756              if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2757                if (OBO->hasNoUnsignedWrap())
2758                  HasNUW = true;
2759                if (OBO->hasNoSignedWrap())
2760                  HasNSW = true;
2761              }
2762
2763              const SCEV *StartVal = getSCEV(StartValueV);
2764              const SCEV *PHISCEV =
2765                getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
2766
2767              // Since the no-wrap flags are on the increment, they apply to the
2768              // post-incremented value as well.
2769              if (isLoopInvariant(Accum, L))
2770                (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2771                                    Accum, L, HasNUW, HasNSW);
2772
2773              // Okay, for the entire analysis of this edge we assumed the PHI
2774              // to be symbolic.  We now need to go back and purge all of the
2775              // entries for the scalars that use the symbolic expression.
2776              ForgetSymbolicName(PN, SymbolicName);
2777              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
2778              return PHISCEV;
2779            }
2780          }
2781        } else if (const SCEVAddRecExpr *AddRec =
2782                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
2783          // Otherwise, this could be a loop like this:
2784          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
2785          // In this case, j = {1,+,1}  and BEValue is j.
2786          // Because the other in-value of i (0) fits the evolution of BEValue
2787          // i really is an addrec evolution.
2788          if (AddRec->getLoop() == L && AddRec->isAffine()) {
2789            const SCEV *StartVal = getSCEV(StartValueV);
2790
2791            // If StartVal = j.start - j.stride, we can use StartVal as the
2792            // initial step of the addrec evolution.
2793            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
2794                                         AddRec->getOperand(1))) {
2795              const SCEV *PHISCEV =
2796                 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
2797
2798              // Okay, for the entire analysis of this edge we assumed the PHI
2799              // to be symbolic.  We now need to go back and purge all of the
2800              // entries for the scalars that use the symbolic expression.
2801              ForgetSymbolicName(PN, SymbolicName);
2802              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
2803              return PHISCEV;
2804            }
2805          }
2806        }
2807      }
2808    }
2809
2810  // If the PHI has a single incoming value, follow that value, unless the
2811  // PHI's incoming blocks are in a different loop, in which case doing so
2812  // risks breaking LCSSA form. Instcombine would normally zap these, but
2813  // it doesn't have DominatorTree information, so it may miss cases.
2814  if (Value *V = SimplifyInstruction(PN, TD, DT)) {
2815    Instruction *I = dyn_cast<Instruction>(V);
2816    // Only instructions are problematic for preserving LCSSA form.
2817    if (!I)
2818      return getSCEV(V);
2819
2820    // If the instruction is not defined in a loop, then it can be used freely.
2821    Loop *ILoop = LI->getLoopFor(I->getParent());
2822    if (!ILoop)
2823      return getSCEV(I);
2824
2825    // If the instruction is defined in the same loop as the phi node, or in a
2826    // loop that contains the phi node loop as an inner loop, then using it as
2827    // a replacement for the phi node will not break LCSSA form.
2828    Loop *PNLoop = LI->getLoopFor(PN->getParent());
2829    if (ILoop->contains(PNLoop))
2830      return getSCEV(I);
2831  }
2832
2833  // If it's not a loop phi, we can't handle it yet.
2834  return getUnknown(PN);
2835}
2836
2837/// createNodeForGEP - Expand GEP instructions into add and multiply
2838/// operations. This allows them to be analyzed by regular SCEV code.
2839///
2840const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
2841
2842  // Don't blindly transfer the inbounds flag from the GEP instruction to the
2843  // Add expression, because the Instruction may be guarded by control flow
2844  // and the no-overflow bits may not be valid for the expression in any
2845  // context.
2846
2847  const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
2848  Value *Base = GEP->getOperand(0);
2849  // Don't attempt to analyze GEPs over unsized objects.
2850  if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2851    return getUnknown(GEP);
2852  const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
2853  gep_type_iterator GTI = gep_type_begin(GEP);
2854  for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
2855                                      E = GEP->op_end();
2856       I != E; ++I) {
2857    Value *Index = *I;
2858    // Compute the (potentially symbolic) offset in bytes for this index.
2859    if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2860      // For a struct, add the member offset.
2861      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2862      const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
2863
2864      // Add the field offset to the running total offset.
2865      TotalOffset = getAddExpr(TotalOffset, FieldOffset);
2866    } else {
2867      // For an array, add the element offset, explicitly scaled.
2868      const SCEV *ElementSize = getSizeOfExpr(*GTI);
2869      const SCEV *IndexS = getSCEV(Index);
2870      // Getelementptr indices are signed.
2871      IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
2872
2873      // Multiply the index by the element size to compute the element offset.
2874      const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize);
2875
2876      // Add the element offset to the running total offset.
2877      TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2878    }
2879  }
2880
2881  // Get the SCEV for the GEP base.
2882  const SCEV *BaseS = getSCEV(Base);
2883
2884  // Add the total offset from all the GEP indices to the base.
2885  return getAddExpr(BaseS, TotalOffset);
2886}
2887
2888/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2889/// guaranteed to end in (at every loop iteration).  It is, at the same time,
2890/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
2891/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
2892uint32_t
2893ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
2894  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2895    return C->getValue()->getValue().countTrailingZeros();
2896
2897  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
2898    return std::min(GetMinTrailingZeros(T->getOperand()),
2899                    (uint32_t)getTypeSizeInBits(T->getType()));
2900
2901  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
2902    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2903    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2904             getTypeSizeInBits(E->getType()) : OpRes;
2905  }
2906
2907  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
2908    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2909    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2910             getTypeSizeInBits(E->getType()) : OpRes;
2911  }
2912
2913  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
2914    // The result is the min of all operands results.
2915    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2916    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2917      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2918    return MinOpRes;
2919  }
2920
2921  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
2922    // The result is the sum of all operands results.
2923    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2924    uint32_t BitWidth = getTypeSizeInBits(M->getType());
2925    for (unsigned i = 1, e = M->getNumOperands();
2926         SumOpRes != BitWidth && i != e; ++i)
2927      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
2928                          BitWidth);
2929    return SumOpRes;
2930  }
2931
2932  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
2933    // The result is the min of all operands results.
2934    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2935    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2936      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2937    return MinOpRes;
2938  }
2939
2940  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
2941    // The result is the min of all operands results.
2942    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2943    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2944      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2945    return MinOpRes;
2946  }
2947
2948  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
2949    // The result is the min of all operands results.
2950    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2951    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2952      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2953    return MinOpRes;
2954  }
2955
2956  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2957    // For a SCEVUnknown, ask ValueTracking.
2958    unsigned BitWidth = getTypeSizeInBits(U->getType());
2959    APInt Mask = APInt::getAllOnesValue(BitWidth);
2960    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2961    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2962    return Zeros.countTrailingOnes();
2963  }
2964
2965  // SCEVUDivExpr
2966  return 0;
2967}
2968
2969/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2970///
2971ConstantRange
2972ScalarEvolution::getUnsignedRange(const SCEV *S) {
2973  // See if we've computed this range already.
2974  DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
2975  if (I != UnsignedRanges.end())
2976    return I->second;
2977
2978  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2979    return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
2980
2981  unsigned BitWidth = getTypeSizeInBits(S->getType());
2982  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
2983
2984  // If the value has known zeros, the maximum unsigned value will have those
2985  // known zeros as well.
2986  uint32_t TZ = GetMinTrailingZeros(S);
2987  if (TZ != 0)
2988    ConservativeResult =
2989      ConstantRange(APInt::getMinValue(BitWidth),
2990                    APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
2991
2992  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2993    ConstantRange X = getUnsignedRange(Add->getOperand(0));
2994    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2995      X = X.add(getUnsignedRange(Add->getOperand(i)));
2996    return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
2997  }
2998
2999  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3000    ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3001    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3002      X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
3003    return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
3004  }
3005
3006  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3007    ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3008    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3009      X = X.smax(getUnsignedRange(SMax->getOperand(i)));
3010    return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
3011  }
3012
3013  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3014    ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3015    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3016      X = X.umax(getUnsignedRange(UMax->getOperand(i)));
3017    return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
3018  }
3019
3020  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3021    ConstantRange X = getUnsignedRange(UDiv->getLHS());
3022    ConstantRange Y = getUnsignedRange(UDiv->getRHS());
3023    return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
3024  }
3025
3026  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3027    ConstantRange X = getUnsignedRange(ZExt->getOperand());
3028    return setUnsignedRange(ZExt,
3029      ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3030  }
3031
3032  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3033    ConstantRange X = getUnsignedRange(SExt->getOperand());
3034    return setUnsignedRange(SExt,
3035      ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3036  }
3037
3038  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3039    ConstantRange X = getUnsignedRange(Trunc->getOperand());
3040    return setUnsignedRange(Trunc,
3041      ConservativeResult.intersectWith(X.truncate(BitWidth)));
3042  }
3043
3044  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3045    // If there's no unsigned wrap, the value will never be less than its
3046    // initial value.
3047    if (AddRec->hasNoUnsignedWrap())
3048      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
3049        if (!C->getValue()->isZero())
3050          ConservativeResult =
3051            ConservativeResult.intersectWith(
3052              ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
3053
3054    // TODO: non-affine addrec
3055    if (AddRec->isAffine()) {
3056      const Type *Ty = AddRec->getType();
3057      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3058      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3059          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3060        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3061
3062        const SCEV *Start = AddRec->getStart();
3063        const SCEV *Step = AddRec->getStepRecurrence(*this);
3064
3065        ConstantRange StartRange = getUnsignedRange(Start);
3066        ConstantRange StepRange = getSignedRange(Step);
3067        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3068        ConstantRange EndRange =
3069          StartRange.add(MaxBECountRange.multiply(StepRange));
3070
3071        // Check for overflow. This must be done with ConstantRange arithmetic
3072        // because we could be called from within the ScalarEvolution overflow
3073        // checking code.
3074        ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3075        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3076        ConstantRange ExtMaxBECountRange =
3077          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3078        ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3079        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3080            ExtEndRange)
3081          return setUnsignedRange(AddRec, ConservativeResult);
3082
3083        APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3084                                   EndRange.getUnsignedMin());
3085        APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3086                                   EndRange.getUnsignedMax());
3087        if (Min.isMinValue() && Max.isMaxValue())
3088          return setUnsignedRange(AddRec, ConservativeResult);
3089        return setUnsignedRange(AddRec,
3090          ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3091      }
3092    }
3093
3094    return setUnsignedRange(AddRec, ConservativeResult);
3095  }
3096
3097  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3098    // For a SCEVUnknown, ask ValueTracking.
3099    APInt Mask = APInt::getAllOnesValue(BitWidth);
3100    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3101    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
3102    if (Ones == ~Zeros + 1)
3103      return setUnsignedRange(U, ConservativeResult);
3104    return setUnsignedRange(U,
3105      ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
3106  }
3107
3108  return setUnsignedRange(S, ConservativeResult);
3109}
3110
3111/// getSignedRange - Determine the signed range for a particular SCEV.
3112///
3113ConstantRange
3114ScalarEvolution::getSignedRange(const SCEV *S) {
3115  DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3116  if (I != SignedRanges.end())
3117    return I->second;
3118
3119  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3120    return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
3121
3122  unsigned BitWidth = getTypeSizeInBits(S->getType());
3123  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3124
3125  // If the value has known zeros, the maximum signed value will have those
3126  // known zeros as well.
3127  uint32_t TZ = GetMinTrailingZeros(S);
3128  if (TZ != 0)
3129    ConservativeResult =
3130      ConstantRange(APInt::getSignedMinValue(BitWidth),
3131                    APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3132
3133  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3134    ConstantRange X = getSignedRange(Add->getOperand(0));
3135    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3136      X = X.add(getSignedRange(Add->getOperand(i)));
3137    return setSignedRange(Add, ConservativeResult.intersectWith(X));
3138  }
3139
3140  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3141    ConstantRange X = getSignedRange(Mul->getOperand(0));
3142    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3143      X = X.multiply(getSignedRange(Mul->getOperand(i)));
3144    return setSignedRange(Mul, ConservativeResult.intersectWith(X));
3145  }
3146
3147  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3148    ConstantRange X = getSignedRange(SMax->getOperand(0));
3149    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3150      X = X.smax(getSignedRange(SMax->getOperand(i)));
3151    return setSignedRange(SMax, ConservativeResult.intersectWith(X));
3152  }
3153
3154  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3155    ConstantRange X = getSignedRange(UMax->getOperand(0));
3156    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3157      X = X.umax(getSignedRange(UMax->getOperand(i)));
3158    return setSignedRange(UMax, ConservativeResult.intersectWith(X));
3159  }
3160
3161  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3162    ConstantRange X = getSignedRange(UDiv->getLHS());
3163    ConstantRange Y = getSignedRange(UDiv->getRHS());
3164    return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
3165  }
3166
3167  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3168    ConstantRange X = getSignedRange(ZExt->getOperand());
3169    return setSignedRange(ZExt,
3170      ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3171  }
3172
3173  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3174    ConstantRange X = getSignedRange(SExt->getOperand());
3175    return setSignedRange(SExt,
3176      ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3177  }
3178
3179  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3180    ConstantRange X = getSignedRange(Trunc->getOperand());
3181    return setSignedRange(Trunc,
3182      ConservativeResult.intersectWith(X.truncate(BitWidth)));
3183  }
3184
3185  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3186    // If there's no signed wrap, and all the operands have the same sign or
3187    // zero, the value won't ever change sign.
3188    if (AddRec->hasNoSignedWrap()) {
3189      bool AllNonNeg = true;
3190      bool AllNonPos = true;
3191      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3192        if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3193        if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3194      }
3195      if (AllNonNeg)
3196        ConservativeResult = ConservativeResult.intersectWith(
3197          ConstantRange(APInt(BitWidth, 0),
3198                        APInt::getSignedMinValue(BitWidth)));
3199      else if (AllNonPos)
3200        ConservativeResult = ConservativeResult.intersectWith(
3201          ConstantRange(APInt::getSignedMinValue(BitWidth),
3202                        APInt(BitWidth, 1)));
3203    }
3204
3205    // TODO: non-affine addrec
3206    if (AddRec->isAffine()) {
3207      const Type *Ty = AddRec->getType();
3208      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3209      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3210          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3211        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3212
3213        const SCEV *Start = AddRec->getStart();
3214        const SCEV *Step = AddRec->getStepRecurrence(*this);
3215
3216        ConstantRange StartRange = getSignedRange(Start);
3217        ConstantRange StepRange = getSignedRange(Step);
3218        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3219        ConstantRange EndRange =
3220          StartRange.add(MaxBECountRange.multiply(StepRange));
3221
3222        // Check for overflow. This must be done with ConstantRange arithmetic
3223        // because we could be called from within the ScalarEvolution overflow
3224        // checking code.
3225        ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3226        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3227        ConstantRange ExtMaxBECountRange =
3228          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3229        ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3230        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3231            ExtEndRange)
3232          return setSignedRange(AddRec, ConservativeResult);
3233
3234        APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3235                                   EndRange.getSignedMin());
3236        APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3237                                   EndRange.getSignedMax());
3238        if (Min.isMinSignedValue() && Max.isMaxSignedValue())
3239          return setSignedRange(AddRec, ConservativeResult);
3240        return setSignedRange(AddRec,
3241          ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3242      }
3243    }
3244
3245    return setSignedRange(AddRec, ConservativeResult);
3246  }
3247
3248  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3249    // For a SCEVUnknown, ask ValueTracking.
3250    if (!U->getValue()->getType()->isIntegerTy() && !TD)
3251      return setSignedRange(U, ConservativeResult);
3252    unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3253    if (NS == 1)
3254      return setSignedRange(U, ConservativeResult);
3255    return setSignedRange(U, ConservativeResult.intersectWith(
3256      ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
3257                    APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
3258  }
3259
3260  return setSignedRange(S, ConservativeResult);
3261}
3262
3263/// createSCEV - We know that there is no SCEV for the specified value.
3264/// Analyze the expression.
3265///
3266const SCEV *ScalarEvolution::createSCEV(Value *V) {
3267  if (!isSCEVable(V->getType()))
3268    return getUnknown(V);
3269
3270  unsigned Opcode = Instruction::UserOp1;
3271  if (Instruction *I = dyn_cast<Instruction>(V)) {
3272    Opcode = I->getOpcode();
3273
3274    // Don't attempt to analyze instructions in blocks that aren't
3275    // reachable. Such instructions don't matter, and they aren't required
3276    // to obey basic rules for definitions dominating uses which this
3277    // analysis depends on.
3278    if (!DT->isReachableFromEntry(I->getParent()))
3279      return getUnknown(V);
3280  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
3281    Opcode = CE->getOpcode();
3282  else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3283    return getConstant(CI);
3284  else if (isa<ConstantPointerNull>(V))
3285    return getConstant(V->getType(), 0);
3286  else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3287    return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
3288  else
3289    return getUnknown(V);
3290
3291  Operator *U = cast<Operator>(V);
3292  switch (Opcode) {
3293  case Instruction::Add: {
3294    // The simple thing to do would be to just call getSCEV on both operands
3295    // and call getAddExpr with the result. However if we're looking at a
3296    // bunch of things all added together, this can be quite inefficient,
3297    // because it leads to N-1 getAddExpr calls for N ultimate operands.
3298    // Instead, gather up all the operands and make a single getAddExpr call.
3299    // LLVM IR canonical form means we need only traverse the left operands.
3300    SmallVector<const SCEV *, 4> AddOps;
3301    AddOps.push_back(getSCEV(U->getOperand(1)));
3302    for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3303      unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3304      if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3305        break;
3306      U = cast<Operator>(Op);
3307      const SCEV *Op1 = getSCEV(U->getOperand(1));
3308      if (Opcode == Instruction::Sub)
3309        AddOps.push_back(getNegativeSCEV(Op1));
3310      else
3311        AddOps.push_back(Op1);
3312    }
3313    AddOps.push_back(getSCEV(U->getOperand(0)));
3314    return getAddExpr(AddOps);
3315  }
3316  case Instruction::Mul: {
3317    // See the Add code above.
3318    SmallVector<const SCEV *, 4> MulOps;
3319    MulOps.push_back(getSCEV(U->getOperand(1)));
3320    for (Value *Op = U->getOperand(0);
3321         Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3322         Op = U->getOperand(0)) {
3323      U = cast<Operator>(Op);
3324      MulOps.push_back(getSCEV(U->getOperand(1)));
3325    }
3326    MulOps.push_back(getSCEV(U->getOperand(0)));
3327    return getMulExpr(MulOps);
3328  }
3329  case Instruction::UDiv:
3330    return getUDivExpr(getSCEV(U->getOperand(0)),
3331                       getSCEV(U->getOperand(1)));
3332  case Instruction::Sub:
3333    return getMinusSCEV(getSCEV(U->getOperand(0)),
3334                        getSCEV(U->getOperand(1)));
3335  case Instruction::And:
3336    // For an expression like x&255 that merely masks off the high bits,
3337    // use zext(trunc(x)) as the SCEV expression.
3338    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3339      if (CI->isNullValue())
3340        return getSCEV(U->getOperand(1));
3341      if (CI->isAllOnesValue())
3342        return getSCEV(U->getOperand(0));
3343      const APInt &A = CI->getValue();
3344
3345      // Instcombine's ShrinkDemandedConstant may strip bits out of
3346      // constants, obscuring what would otherwise be a low-bits mask.
3347      // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3348      // knew about to reconstruct a low-bits mask value.
3349      unsigned LZ = A.countLeadingZeros();
3350      unsigned BitWidth = A.getBitWidth();
3351      APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3352      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3353      ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3354
3355      APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3356
3357      if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
3358        return
3359          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
3360                                IntegerType::get(getContext(), BitWidth - LZ)),
3361                            U->getType());
3362    }
3363    break;
3364
3365  case Instruction::Or:
3366    // If the RHS of the Or is a constant, we may have something like:
3367    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
3368    // optimizations will transparently handle this case.
3369    //
3370    // In order for this transformation to be safe, the LHS must be of the
3371    // form X*(2^n) and the Or constant must be less than 2^n.
3372    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3373      const SCEV *LHS = getSCEV(U->getOperand(0));
3374      const APInt &CIVal = CI->getValue();
3375      if (GetMinTrailingZeros(LHS) >=
3376          (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3377        // Build a plain add SCEV.
3378        const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3379        // If the LHS of the add was an addrec and it has no-wrap flags,
3380        // transfer the no-wrap flags, since an or won't introduce a wrap.
3381        if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3382          const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3383          if (OldAR->hasNoUnsignedWrap())
3384            const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3385          if (OldAR->hasNoSignedWrap())
3386            const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3387        }
3388        return S;
3389      }
3390    }
3391    break;
3392  case Instruction::Xor:
3393    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3394      // If the RHS of the xor is a signbit, then this is just an add.
3395      // Instcombine turns add of signbit into xor as a strength reduction step.
3396      if (CI->getValue().isSignBit())
3397        return getAddExpr(getSCEV(U->getOperand(0)),
3398                          getSCEV(U->getOperand(1)));
3399
3400      // If the RHS of xor is -1, then this is a not operation.
3401      if (CI->isAllOnesValue())
3402        return getNotSCEV(getSCEV(U->getOperand(0)));
3403
3404      // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3405      // This is a variant of the check for xor with -1, and it handles
3406      // the case where instcombine has trimmed non-demanded bits out
3407      // of an xor with -1.
3408      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3409        if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3410          if (BO->getOpcode() == Instruction::And &&
3411              LCI->getValue() == CI->getValue())
3412            if (const SCEVZeroExtendExpr *Z =
3413                  dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
3414              const Type *UTy = U->getType();
3415              const SCEV *Z0 = Z->getOperand();
3416              const Type *Z0Ty = Z0->getType();
3417              unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3418
3419              // If C is a low-bits mask, the zero extend is serving to
3420              // mask off the high bits. Complement the operand and
3421              // re-apply the zext.
3422              if (APIntOps::isMask(Z0TySize, CI->getValue()))
3423                return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3424
3425              // If C is a single bit, it may be in the sign-bit position
3426              // before the zero-extend. In this case, represent the xor
3427              // using an add, which is equivalent, and re-apply the zext.
3428              APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3429              if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3430                  Trunc.isSignBit())
3431                return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3432                                         UTy);
3433            }
3434    }
3435    break;
3436
3437  case Instruction::Shl:
3438    // Turn shift left of a constant amount into a multiply.
3439    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3440      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3441
3442      // If the shift count is not less than the bitwidth, the result of
3443      // the shift is undefined. Don't try to analyze it, because the
3444      // resolution chosen here may differ from the resolution chosen in
3445      // other parts of the compiler.
3446      if (SA->getValue().uge(BitWidth))
3447        break;
3448
3449      Constant *X = ConstantInt::get(getContext(),
3450        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3451      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3452    }
3453    break;
3454
3455  case Instruction::LShr:
3456    // Turn logical shift right of a constant into a unsigned divide.
3457    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3458      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3459
3460      // If the shift count is not less than the bitwidth, the result of
3461      // the shift is undefined. Don't try to analyze it, because the
3462      // resolution chosen here may differ from the resolution chosen in
3463      // other parts of the compiler.
3464      if (SA->getValue().uge(BitWidth))
3465        break;
3466
3467      Constant *X = ConstantInt::get(getContext(),
3468        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3469      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3470    }
3471    break;
3472
3473  case Instruction::AShr:
3474    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3475    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
3476      if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
3477        if (L->getOpcode() == Instruction::Shl &&
3478            L->getOperand(1) == U->getOperand(1)) {
3479          uint64_t BitWidth = getTypeSizeInBits(U->getType());
3480
3481          // If the shift count is not less than the bitwidth, the result of
3482          // the shift is undefined. Don't try to analyze it, because the
3483          // resolution chosen here may differ from the resolution chosen in
3484          // other parts of the compiler.
3485          if (CI->getValue().uge(BitWidth))
3486            break;
3487
3488          uint64_t Amt = BitWidth - CI->getZExtValue();
3489          if (Amt == BitWidth)
3490            return getSCEV(L->getOperand(0));       // shift by zero --> noop
3491          return
3492            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
3493                                              IntegerType::get(getContext(),
3494                                                               Amt)),
3495                              U->getType());
3496        }
3497    break;
3498
3499  case Instruction::Trunc:
3500    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
3501
3502  case Instruction::ZExt:
3503    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3504
3505  case Instruction::SExt:
3506    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3507
3508  case Instruction::BitCast:
3509    // BitCasts are no-op casts so we just eliminate the cast.
3510    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
3511      return getSCEV(U->getOperand(0));
3512    break;
3513
3514  // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3515  // lead to pointer expressions which cannot safely be expanded to GEPs,
3516  // because ScalarEvolution doesn't respect the GEP aliasing rules when
3517  // simplifying integer expressions.
3518
3519  case Instruction::GetElementPtr:
3520    return createNodeForGEP(cast<GEPOperator>(U));
3521
3522  case Instruction::PHI:
3523    return createNodeForPHI(cast<PHINode>(U));
3524
3525  case Instruction::Select:
3526    // This could be a smax or umax that was lowered earlier.
3527    // Try to recover it.
3528    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3529      Value *LHS = ICI->getOperand(0);
3530      Value *RHS = ICI->getOperand(1);
3531      switch (ICI->getPredicate()) {
3532      case ICmpInst::ICMP_SLT:
3533      case ICmpInst::ICMP_SLE:
3534        std::swap(LHS, RHS);
3535        // fall through
3536      case ICmpInst::ICMP_SGT:
3537      case ICmpInst::ICMP_SGE:
3538        // a >s b ? a+x : b+x  ->  smax(a, b)+x
3539        // a >s b ? b+x : a+x  ->  smin(a, b)+x
3540        if (LHS->getType() == U->getType()) {
3541          const SCEV *LS = getSCEV(LHS);
3542          const SCEV *RS = getSCEV(RHS);
3543          const SCEV *LA = getSCEV(U->getOperand(1));
3544          const SCEV *RA = getSCEV(U->getOperand(2));
3545          const SCEV *LDiff = getMinusSCEV(LA, LS);
3546          const SCEV *RDiff = getMinusSCEV(RA, RS);
3547          if (LDiff == RDiff)
3548            return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3549          LDiff = getMinusSCEV(LA, RS);
3550          RDiff = getMinusSCEV(RA, LS);
3551          if (LDiff == RDiff)
3552            return getAddExpr(getSMinExpr(LS, RS), LDiff);
3553        }
3554        break;
3555      case ICmpInst::ICMP_ULT:
3556      case ICmpInst::ICMP_ULE:
3557        std::swap(LHS, RHS);
3558        // fall through
3559      case ICmpInst::ICMP_UGT:
3560      case ICmpInst::ICMP_UGE:
3561        // a >u b ? a+x : b+x  ->  umax(a, b)+x
3562        // a >u b ? b+x : a+x  ->  umin(a, b)+x
3563        if (LHS->getType() == U->getType()) {
3564          const SCEV *LS = getSCEV(LHS);
3565          const SCEV *RS = getSCEV(RHS);
3566          const SCEV *LA = getSCEV(U->getOperand(1));
3567          const SCEV *RA = getSCEV(U->getOperand(2));
3568          const SCEV *LDiff = getMinusSCEV(LA, LS);
3569          const SCEV *RDiff = getMinusSCEV(RA, RS);
3570          if (LDiff == RDiff)
3571            return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3572          LDiff = getMinusSCEV(LA, RS);
3573          RDiff = getMinusSCEV(RA, LS);
3574          if (LDiff == RDiff)
3575            return getAddExpr(getUMinExpr(LS, RS), LDiff);
3576        }
3577        break;
3578      case ICmpInst::ICMP_NE:
3579        // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
3580        if (LHS->getType() == U->getType() &&
3581            isa<ConstantInt>(RHS) &&
3582            cast<ConstantInt>(RHS)->isZero()) {
3583          const SCEV *One = getConstant(LHS->getType(), 1);
3584          const SCEV *LS = getSCEV(LHS);
3585          const SCEV *LA = getSCEV(U->getOperand(1));
3586          const SCEV *RA = getSCEV(U->getOperand(2));
3587          const SCEV *LDiff = getMinusSCEV(LA, LS);
3588          const SCEV *RDiff = getMinusSCEV(RA, One);
3589          if (LDiff == RDiff)
3590            return getAddExpr(getUMaxExpr(One, LS), LDiff);
3591        }
3592        break;
3593      case ICmpInst::ICMP_EQ:
3594        // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
3595        if (LHS->getType() == U->getType() &&
3596            isa<ConstantInt>(RHS) &&
3597            cast<ConstantInt>(RHS)->isZero()) {
3598          const SCEV *One = getConstant(LHS->getType(), 1);
3599          const SCEV *LS = getSCEV(LHS);
3600          const SCEV *LA = getSCEV(U->getOperand(1));
3601          const SCEV *RA = getSCEV(U->getOperand(2));
3602          const SCEV *LDiff = getMinusSCEV(LA, One);
3603          const SCEV *RDiff = getMinusSCEV(RA, LS);
3604          if (LDiff == RDiff)
3605            return getAddExpr(getUMaxExpr(One, LS), LDiff);
3606        }
3607        break;
3608      default:
3609        break;
3610      }
3611    }
3612
3613  default: // We cannot analyze this expression.
3614    break;
3615  }
3616
3617  return getUnknown(V);
3618}
3619
3620
3621
3622//===----------------------------------------------------------------------===//
3623//                   Iteration Count Computation Code
3624//
3625
3626/// getBackedgeTakenCount - If the specified loop has a predictable
3627/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3628/// object. The backedge-taken count is the number of times the loop header
3629/// will be branched to from within the loop. This is one less than the
3630/// trip count of the loop, since it doesn't count the first iteration,
3631/// when the header is branched to from outside the loop.
3632///
3633/// Note that it is not valid to call this method on a loop without a
3634/// loop-invariant backedge-taken count (see
3635/// hasLoopInvariantBackedgeTakenCount).
3636///
3637const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
3638  return getBackedgeTakenInfo(L).Exact;
3639}
3640
3641/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3642/// return the least SCEV value that is known never to be less than the
3643/// actual backedge taken count.
3644const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
3645  return getBackedgeTakenInfo(L).Max;
3646}
3647
3648/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3649/// onto the given Worklist.
3650static void
3651PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3652  BasicBlock *Header = L->getHeader();
3653
3654  // Push all Loop-header PHIs onto the Worklist stack.
3655  for (BasicBlock::iterator I = Header->begin();
3656       PHINode *PN = dyn_cast<PHINode>(I); ++I)
3657    Worklist.push_back(PN);
3658}
3659
3660const ScalarEvolution::BackedgeTakenInfo &
3661ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
3662  // Initially insert a CouldNotCompute for this loop. If the insertion
3663  // succeeds, proceed to actually compute a backedge-taken count and
3664  // update the value. The temporary CouldNotCompute value tells SCEV
3665  // code elsewhere that it shouldn't attempt to request a new
3666  // backedge-taken count, which could result in infinite recursion.
3667  std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
3668    BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3669  if (Pair.second) {
3670    BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3671    if (BECount.Exact != getCouldNotCompute()) {
3672      assert(isLoopInvariant(BECount.Exact, L) &&
3673             isLoopInvariant(BECount.Max, L) &&
3674             "Computed backedge-taken count isn't loop invariant for loop!");
3675      ++NumTripCountsComputed;
3676
3677      // Update the value in the map.
3678      Pair.first->second = BECount;
3679    } else {
3680      if (BECount.Max != getCouldNotCompute())
3681        // Update the value in the map.
3682        Pair.first->second = BECount;
3683      if (isa<PHINode>(L->getHeader()->begin()))
3684        // Only count loops that have phi nodes as not being computable.
3685        ++NumTripCountsNotComputed;
3686    }
3687
3688    // Now that we know more about the trip count for this loop, forget any
3689    // existing SCEV values for PHI nodes in this loop since they are only
3690    // conservative estimates made without the benefit of trip count
3691    // information. This is similar to the code in forgetLoop, except that
3692    // it handles SCEVUnknown PHI nodes specially.
3693    if (BECount.hasAnyInfo()) {
3694      SmallVector<Instruction *, 16> Worklist;
3695      PushLoopPHIs(L, Worklist);
3696
3697      SmallPtrSet<Instruction *, 8> Visited;
3698      while (!Worklist.empty()) {
3699        Instruction *I = Worklist.pop_back_val();
3700        if (!Visited.insert(I)) continue;
3701
3702        ValueExprMapType::iterator It =
3703          ValueExprMap.find(static_cast<Value *>(I));
3704        if (It != ValueExprMap.end()) {
3705          const SCEV *Old = It->second;
3706
3707          // SCEVUnknown for a PHI either means that it has an unrecognized
3708          // structure, or it's a PHI that's in the progress of being computed
3709          // by createNodeForPHI.  In the former case, additional loop trip
3710          // count information isn't going to change anything. In the later
3711          // case, createNodeForPHI will perform the necessary updates on its
3712          // own when it gets to that point.
3713          if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
3714            ValuesAtScopes.erase(Old);
3715            UnsignedRanges.erase(Old);
3716            SignedRanges.erase(Old);
3717            ValueExprMap.erase(It);
3718          }
3719          if (PHINode *PN = dyn_cast<PHINode>(I))
3720            ConstantEvolutionLoopExitValue.erase(PN);
3721        }
3722
3723        PushDefUseChildren(I, Worklist);
3724      }
3725    }
3726  }
3727  return Pair.first->second;
3728}
3729
3730/// forgetLoop - This method should be called by the client when it has
3731/// changed a loop in a way that may effect ScalarEvolution's ability to
3732/// compute a trip count, or if the loop is deleted.
3733void ScalarEvolution::forgetLoop(const Loop *L) {
3734  // Drop any stored trip count value.
3735  BackedgeTakenCounts.erase(L);
3736
3737  // Drop information about expressions based on loop-header PHIs.
3738  SmallVector<Instruction *, 16> Worklist;
3739  PushLoopPHIs(L, Worklist);
3740
3741  SmallPtrSet<Instruction *, 8> Visited;
3742  while (!Worklist.empty()) {
3743    Instruction *I = Worklist.pop_back_val();
3744    if (!Visited.insert(I)) continue;
3745
3746    ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3747    if (It != ValueExprMap.end()) {
3748      const SCEV *Old = It->second;
3749      ValuesAtScopes.erase(Old);
3750      UnsignedRanges.erase(Old);
3751      SignedRanges.erase(Old);
3752      ValueExprMap.erase(It);
3753      if (PHINode *PN = dyn_cast<PHINode>(I))
3754        ConstantEvolutionLoopExitValue.erase(PN);
3755    }
3756
3757    PushDefUseChildren(I, Worklist);
3758  }
3759
3760  // Forget all contained loops too, to avoid dangling entries in the
3761  // ValuesAtScopes map.
3762  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3763    forgetLoop(*I);
3764}
3765
3766/// forgetValue - This method should be called by the client when it has
3767/// changed a value in a way that may effect its value, or which may
3768/// disconnect it from a def-use chain linking it to a loop.
3769void ScalarEvolution::forgetValue(Value *V) {
3770  Instruction *I = dyn_cast<Instruction>(V);
3771  if (!I) return;
3772
3773  // Drop information about expressions based on loop-header PHIs.
3774  SmallVector<Instruction *, 16> Worklist;
3775  Worklist.push_back(I);
3776
3777  SmallPtrSet<Instruction *, 8> Visited;
3778  while (!Worklist.empty()) {
3779    I = Worklist.pop_back_val();
3780    if (!Visited.insert(I)) continue;
3781
3782    ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3783    if (It != ValueExprMap.end()) {
3784      const SCEV *Old = It->second;
3785      ValuesAtScopes.erase(Old);
3786      UnsignedRanges.erase(Old);
3787      SignedRanges.erase(Old);
3788      ValueExprMap.erase(It);
3789      if (PHINode *PN = dyn_cast<PHINode>(I))
3790        ConstantEvolutionLoopExitValue.erase(PN);
3791    }
3792
3793    PushDefUseChildren(I, Worklist);
3794  }
3795}
3796
3797/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3798/// of the specified loop will execute.
3799ScalarEvolution::BackedgeTakenInfo
3800ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
3801  SmallVector<BasicBlock *, 8> ExitingBlocks;
3802  L->getExitingBlocks(ExitingBlocks);
3803
3804  // Examine all exits and pick the most conservative values.
3805  const SCEV *BECount = getCouldNotCompute();
3806  const SCEV *MaxBECount = getCouldNotCompute();
3807  bool CouldNotComputeBECount = false;
3808  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3809    BackedgeTakenInfo NewBTI =
3810      ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
3811
3812    if (NewBTI.Exact == getCouldNotCompute()) {
3813      // We couldn't compute an exact value for this exit, so
3814      // we won't be able to compute an exact value for the loop.
3815      CouldNotComputeBECount = true;
3816      BECount = getCouldNotCompute();
3817    } else if (!CouldNotComputeBECount) {
3818      if (BECount == getCouldNotCompute())
3819        BECount = NewBTI.Exact;
3820      else
3821        BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
3822    }
3823    if (MaxBECount == getCouldNotCompute())
3824      MaxBECount = NewBTI.Max;
3825    else if (NewBTI.Max != getCouldNotCompute())
3826      MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
3827  }
3828
3829  return BackedgeTakenInfo(BECount, MaxBECount);
3830}
3831
3832/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3833/// of the specified loop will execute if it exits via the specified block.
3834ScalarEvolution::BackedgeTakenInfo
3835ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3836                                                   BasicBlock *ExitingBlock) {
3837
3838  // Okay, we've chosen an exiting block.  See what condition causes us to
3839  // exit at this block.
3840  //
3841  // FIXME: we should be able to handle switch instructions (with a single exit)
3842  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
3843  if (ExitBr == 0) return getCouldNotCompute();
3844  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
3845
3846  // At this point, we know we have a conditional branch that determines whether
3847  // the loop is exited.  However, we don't know if the branch is executed each
3848  // time through the loop.  If not, then the execution count of the branch will
3849  // not be equal to the trip count of the loop.
3850  //
3851  // Currently we check for this by checking to see if the Exit branch goes to
3852  // the loop header.  If so, we know it will always execute the same number of
3853  // times as the loop.  We also handle the case where the exit block *is* the
3854  // loop header.  This is common for un-rotated loops.
3855  //
3856  // If both of those tests fail, walk up the unique predecessor chain to the
3857  // header, stopping if there is an edge that doesn't exit the loop. If the
3858  // header is reached, the execution count of the branch will be equal to the
3859  // trip count of the loop.
3860  //
3861  //  More extensive analysis could be done to handle more cases here.
3862  //
3863  if (ExitBr->getSuccessor(0) != L->getHeader() &&
3864      ExitBr->getSuccessor(1) != L->getHeader() &&
3865      ExitBr->getParent() != L->getHeader()) {
3866    // The simple checks failed, try climbing the unique predecessor chain
3867    // up to the header.
3868    bool Ok = false;
3869    for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3870      BasicBlock *Pred = BB->getUniquePredecessor();
3871      if (!Pred)
3872        return getCouldNotCompute();
3873      TerminatorInst *PredTerm = Pred->getTerminator();
3874      for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3875        BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3876        if (PredSucc == BB)
3877          continue;
3878        // If the predecessor has a successor that isn't BB and isn't
3879        // outside the loop, assume the worst.
3880        if (L->contains(PredSucc))
3881          return getCouldNotCompute();
3882      }
3883      if (Pred == L->getHeader()) {
3884        Ok = true;
3885        break;
3886      }
3887      BB = Pred;
3888    }
3889    if (!Ok)
3890      return getCouldNotCompute();
3891  }
3892
3893  // Proceed to the next level to examine the exit condition expression.
3894  return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3895                                               ExitBr->getSuccessor(0),
3896                                               ExitBr->getSuccessor(1));
3897}
3898
3899/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3900/// backedge of the specified loop will execute if its exit condition
3901/// were a conditional branch of ExitCond, TBB, and FBB.
3902ScalarEvolution::BackedgeTakenInfo
3903ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3904                                                       Value *ExitCond,
3905                                                       BasicBlock *TBB,
3906                                                       BasicBlock *FBB) {
3907  // Check if the controlling expression for this loop is an And or Or.
3908  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3909    if (BO->getOpcode() == Instruction::And) {
3910      // Recurse on the operands of the and.
3911      BackedgeTakenInfo BTI0 =
3912        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3913      BackedgeTakenInfo BTI1 =
3914        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3915      const SCEV *BECount = getCouldNotCompute();
3916      const SCEV *MaxBECount = getCouldNotCompute();
3917      if (L->contains(TBB)) {
3918        // Both conditions must be true for the loop to continue executing.
3919        // Choose the less conservative count.
3920        if (BTI0.Exact == getCouldNotCompute() ||
3921            BTI1.Exact == getCouldNotCompute())
3922          BECount = getCouldNotCompute();
3923        else
3924          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3925        if (BTI0.Max == getCouldNotCompute())
3926          MaxBECount = BTI1.Max;
3927        else if (BTI1.Max == getCouldNotCompute())
3928          MaxBECount = BTI0.Max;
3929        else
3930          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3931      } else {
3932        // Both conditions must be true at the same time for the loop to exit.
3933        // For now, be conservative.
3934        assert(L->contains(FBB) && "Loop block has no successor in loop!");
3935        if (BTI0.Max == BTI1.Max)
3936          MaxBECount = BTI0.Max;
3937        if (BTI0.Exact == BTI1.Exact)
3938          BECount = BTI0.Exact;
3939      }
3940
3941      return BackedgeTakenInfo(BECount, MaxBECount);
3942    }
3943    if (BO->getOpcode() == Instruction::Or) {
3944      // Recurse on the operands of the or.
3945      BackedgeTakenInfo BTI0 =
3946        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3947      BackedgeTakenInfo BTI1 =
3948        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3949      const SCEV *BECount = getCouldNotCompute();
3950      const SCEV *MaxBECount = getCouldNotCompute();
3951      if (L->contains(FBB)) {
3952        // Both conditions must be false for the loop to continue executing.
3953        // Choose the less conservative count.
3954        if (BTI0.Exact == getCouldNotCompute() ||
3955            BTI1.Exact == getCouldNotCompute())
3956          BECount = getCouldNotCompute();
3957        else
3958          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3959        if (BTI0.Max == getCouldNotCompute())
3960          MaxBECount = BTI1.Max;
3961        else if (BTI1.Max == getCouldNotCompute())
3962          MaxBECount = BTI0.Max;
3963        else
3964          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3965      } else {
3966        // Both conditions must be false at the same time for the loop to exit.
3967        // For now, be conservative.
3968        assert(L->contains(TBB) && "Loop block has no successor in loop!");
3969        if (BTI0.Max == BTI1.Max)
3970          MaxBECount = BTI0.Max;
3971        if (BTI0.Exact == BTI1.Exact)
3972          BECount = BTI0.Exact;
3973      }
3974
3975      return BackedgeTakenInfo(BECount, MaxBECount);
3976    }
3977  }
3978
3979  // With an icmp, it may be feasible to compute an exact backedge-taken count.
3980  // Proceed to the next level to examine the icmp.
3981  if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3982    return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
3983
3984  // Check for a constant condition. These are normally stripped out by
3985  // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
3986  // preserve the CFG and is temporarily leaving constant conditions
3987  // in place.
3988  if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
3989    if (L->contains(FBB) == !CI->getZExtValue())
3990      // The backedge is always taken.
3991      return getCouldNotCompute();
3992    else
3993      // The backedge is never taken.
3994      return getConstant(CI->getType(), 0);
3995  }
3996
3997  // If it's not an integer or pointer comparison then compute it the hard way.
3998  return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3999}
4000
4001/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
4002/// backedge of the specified loop will execute if its exit condition
4003/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4004ScalarEvolution::BackedgeTakenInfo
4005ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
4006                                                           ICmpInst *ExitCond,
4007                                                           BasicBlock *TBB,
4008                                                           BasicBlock *FBB) {
4009
4010  // If the condition was exit on true, convert the condition to exit on false
4011  ICmpInst::Predicate Cond;
4012  if (!L->contains(FBB))
4013    Cond = ExitCond->getPredicate();
4014  else
4015    Cond = ExitCond->getInversePredicate();
4016
4017  // Handle common loops like: for (X = "string"; *X; ++X)
4018  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4019    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
4020      BackedgeTakenInfo ItCnt =
4021        ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
4022      if (ItCnt.hasAnyInfo())
4023        return ItCnt;
4024    }
4025
4026  const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4027  const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
4028
4029  // Try to evaluate any dependencies out of the loop.
4030  LHS = getSCEVAtScope(LHS, L);
4031  RHS = getSCEVAtScope(RHS, L);
4032
4033  // At this point, we would like to compute how many iterations of the
4034  // loop the predicate will return true for these inputs.
4035  if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
4036    // If there is a loop-invariant, force it into the RHS.
4037    std::swap(LHS, RHS);
4038    Cond = ICmpInst::getSwappedPredicate(Cond);
4039  }
4040
4041  // Simplify the operands before analyzing them.
4042  (void)SimplifyICmpOperands(Cond, LHS, RHS);
4043
4044  // If we have a comparison of a chrec against a constant, try to use value
4045  // ranges to answer this query.
4046  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4047    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
4048      if (AddRec->getLoop() == L) {
4049        // Form the constant range.
4050        ConstantRange CompRange(
4051            ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
4052
4053        const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
4054        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
4055      }
4056
4057  switch (Cond) {
4058  case ICmpInst::ICMP_NE: {                     // while (X != Y)
4059    // Convert to: while (X-Y != 0)
4060    BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L);
4061    if (BTI.hasAnyInfo()) return BTI;
4062    break;
4063  }
4064  case ICmpInst::ICMP_EQ: {                     // while (X == Y)
4065    // Convert to: while (X-Y == 0)
4066    BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4067    if (BTI.hasAnyInfo()) return BTI;
4068    break;
4069  }
4070  case ICmpInst::ICMP_SLT: {
4071    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
4072    if (BTI.hasAnyInfo()) return BTI;
4073    break;
4074  }
4075  case ICmpInst::ICMP_SGT: {
4076    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4077                                             getNotSCEV(RHS), L, true);
4078    if (BTI.hasAnyInfo()) return BTI;
4079    break;
4080  }
4081  case ICmpInst::ICMP_ULT: {
4082    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
4083    if (BTI.hasAnyInfo()) return BTI;
4084    break;
4085  }
4086  case ICmpInst::ICMP_UGT: {
4087    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4088                                             getNotSCEV(RHS), L, false);
4089    if (BTI.hasAnyInfo()) return BTI;
4090    break;
4091  }
4092  default:
4093#if 0
4094    dbgs() << "ComputeBackedgeTakenCount ";
4095    if (ExitCond->getOperand(0)->getType()->isUnsigned())
4096      dbgs() << "[unsigned] ";
4097    dbgs() << *LHS << "   "
4098         << Instruction::getOpcodeName(Instruction::ICmp)
4099         << "   " << *RHS << "\n";
4100#endif
4101    break;
4102  }
4103  return
4104    ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
4105}
4106
4107static ConstantInt *
4108EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4109                                ScalarEvolution &SE) {
4110  const SCEV *InVal = SE.getConstant(C);
4111  const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
4112  assert(isa<SCEVConstant>(Val) &&
4113         "Evaluation of SCEV at constant didn't fold correctly?");
4114  return cast<SCEVConstant>(Val)->getValue();
4115}
4116
4117/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4118/// and a GEP expression (missing the pointer index) indexing into it, return
4119/// the addressed element of the initializer or null if the index expression is
4120/// invalid.
4121static Constant *
4122GetAddressedElementFromGlobal(GlobalVariable *GV,
4123                              const std::vector<ConstantInt*> &Indices) {
4124  Constant *Init = GV->getInitializer();
4125  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
4126    uint64_t Idx = Indices[i]->getZExtValue();
4127    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4128      assert(Idx < CS->getNumOperands() && "Bad struct index!");
4129      Init = cast<Constant>(CS->getOperand(Idx));
4130    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4131      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
4132      Init = cast<Constant>(CA->getOperand(Idx));
4133    } else if (isa<ConstantAggregateZero>(Init)) {
4134      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
4135        assert(Idx < STy->getNumElements() && "Bad struct index!");
4136        Init = Constant::getNullValue(STy->getElementType(Idx));
4137      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4138        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
4139        Init = Constant::getNullValue(ATy->getElementType());
4140      } else {
4141        llvm_unreachable("Unknown constant aggregate type!");
4142      }
4143      return 0;
4144    } else {
4145      return 0; // Unknown initializer type
4146    }
4147  }
4148  return Init;
4149}
4150
4151/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4152/// 'icmp op load X, cst', try to see if we can compute the backedge
4153/// execution count.
4154ScalarEvolution::BackedgeTakenInfo
4155ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4156                                                LoadInst *LI,
4157                                                Constant *RHS,
4158                                                const Loop *L,
4159                                                ICmpInst::Predicate predicate) {
4160  if (LI->isVolatile()) return getCouldNotCompute();
4161
4162  // Check to see if the loaded pointer is a getelementptr of a global.
4163  // TODO: Use SCEV instead of manually grubbing with GEPs.
4164  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
4165  if (!GEP) return getCouldNotCompute();
4166
4167  // Make sure that it is really a constant global we are gepping, with an
4168  // initializer, and make sure the first IDX is really 0.
4169  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
4170  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
4171      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4172      !cast<Constant>(GEP->getOperand(1))->isNullValue())
4173    return getCouldNotCompute();
4174
4175  // Okay, we allow one non-constant index into the GEP instruction.
4176  Value *VarIdx = 0;
4177  std::vector<ConstantInt*> Indexes;
4178  unsigned VarIdxNum = 0;
4179  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4180    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4181      Indexes.push_back(CI);
4182    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
4183      if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
4184      VarIdx = GEP->getOperand(i);
4185      VarIdxNum = i-2;
4186      Indexes.push_back(0);
4187    }
4188
4189  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4190  // Check to see if X is a loop variant variable value now.
4191  const SCEV *Idx = getSCEV(VarIdx);
4192  Idx = getSCEVAtScope(Idx, L);
4193
4194  // We can only recognize very limited forms of loop index expressions, in
4195  // particular, only affine AddRec's like {C1,+,C2}.
4196  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
4197  if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
4198      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4199      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
4200    return getCouldNotCompute();
4201
4202  unsigned MaxSteps = MaxBruteForceIterations;
4203  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
4204    ConstantInt *ItCst = ConstantInt::get(
4205                           cast<IntegerType>(IdxExpr->getType()), IterationNum);
4206    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
4207
4208    // Form the GEP offset.
4209    Indexes[VarIdxNum] = Val;
4210
4211    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
4212    if (Result == 0) break;  // Cannot compute!
4213
4214    // Evaluate the condition for this iteration.
4215    Result = ConstantExpr::getICmp(predicate, Result, RHS);
4216    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
4217    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
4218#if 0
4219      dbgs() << "\n***\n*** Computed loop count " << *ItCst
4220             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4221             << "***\n";
4222#endif
4223      ++NumArrayLenItCounts;
4224      return getConstant(ItCst);   // Found terminating iteration!
4225    }
4226  }
4227  return getCouldNotCompute();
4228}
4229
4230
4231/// CanConstantFold - Return true if we can constant fold an instruction of the
4232/// specified type, assuming that all operands were constants.
4233static bool CanConstantFold(const Instruction *I) {
4234  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
4235      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4236    return true;
4237
4238  if (const CallInst *CI = dyn_cast<CallInst>(I))
4239    if (const Function *F = CI->getCalledFunction())
4240      return canConstantFoldCallTo(F);
4241  return false;
4242}
4243
4244/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4245/// in the loop that V is derived from.  We allow arbitrary operations along the
4246/// way, but the operands of an operation must either be constants or a value
4247/// derived from a constant PHI.  If this expression does not fit with these
4248/// constraints, return null.
4249static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4250  // If this is not an instruction, or if this is an instruction outside of the
4251  // loop, it can't be derived from a loop PHI.
4252  Instruction *I = dyn_cast<Instruction>(V);
4253  if (I == 0 || !L->contains(I)) return 0;
4254
4255  if (PHINode *PN = dyn_cast<PHINode>(I)) {
4256    if (L->getHeader() == I->getParent())
4257      return PN;
4258    else
4259      // We don't currently keep track of the control flow needed to evaluate
4260      // PHIs, so we cannot handle PHIs inside of loops.
4261      return 0;
4262  }
4263
4264  // If we won't be able to constant fold this expression even if the operands
4265  // are constants, return early.
4266  if (!CanConstantFold(I)) return 0;
4267
4268  // Otherwise, we can evaluate this instruction if all of its operands are
4269  // constant or derived from a PHI node themselves.
4270  PHINode *PHI = 0;
4271  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
4272    if (!isa<Constant>(I->getOperand(Op))) {
4273      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4274      if (P == 0) return 0;  // Not evolving from PHI
4275      if (PHI == 0)
4276        PHI = P;
4277      else if (PHI != P)
4278        return 0;  // Evolving from multiple different PHIs.
4279    }
4280
4281  // This is a expression evolving from a constant PHI!
4282  return PHI;
4283}
4284
4285/// EvaluateExpression - Given an expression that passes the
4286/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4287/// in the loop has the value PHIVal.  If we can't fold this expression for some
4288/// reason, return null.
4289static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4290                                    const TargetData *TD) {
4291  if (isa<PHINode>(V)) return PHIVal;
4292  if (Constant *C = dyn_cast<Constant>(V)) return C;
4293  Instruction *I = cast<Instruction>(V);
4294
4295  std::vector<Constant*> Operands(I->getNumOperands());
4296
4297  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4298    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
4299    if (Operands[i] == 0) return 0;
4300  }
4301
4302  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4303    return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
4304                                           Operands[1], TD);
4305  return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4306                                  &Operands[0], Operands.size(), TD);
4307}
4308
4309/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4310/// in the header of its containing loop, we know the loop executes a
4311/// constant number of times, and the PHI node is just a recurrence
4312/// involving constants, fold it.
4313Constant *
4314ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
4315                                                   const APInt &BEs,
4316                                                   const Loop *L) {
4317  std::map<PHINode*, Constant*>::const_iterator I =
4318    ConstantEvolutionLoopExitValue.find(PN);
4319  if (I != ConstantEvolutionLoopExitValue.end())
4320    return I->second;
4321
4322  if (BEs.ugt(MaxBruteForceIterations))
4323    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
4324
4325  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4326
4327  // Since the loop is canonicalized, the PHI node must have two entries.  One
4328  // entry must be a constant (coming in from outside of the loop), and the
4329  // second must be derived from the same PHI.
4330  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4331  Constant *StartCST =
4332    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4333  if (StartCST == 0)
4334    return RetVal = 0;  // Must be a constant.
4335
4336  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4337  if (getConstantEvolvingPHI(BEValue, L) != PN &&
4338      !isa<Constant>(BEValue))
4339    return RetVal = 0;  // Not derived from same PHI.
4340
4341  // Execute the loop symbolically to determine the exit value.
4342  if (BEs.getActiveBits() >= 32)
4343    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
4344
4345  unsigned NumIterations = BEs.getZExtValue(); // must be in range
4346  unsigned IterationNum = 0;
4347  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4348    if (IterationNum == NumIterations)
4349      return RetVal = PHIVal;  // Got exit value!
4350
4351    // Compute the value of the PHI node for the next iteration.
4352    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4353    if (NextPHI == PHIVal)
4354      return RetVal = NextPHI;  // Stopped evolving!
4355    if (NextPHI == 0)
4356      return 0;        // Couldn't evaluate!
4357    PHIVal = NextPHI;
4358  }
4359}
4360
4361/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
4362/// constant number of times (the condition evolves only from constants),
4363/// try to evaluate a few iterations of the loop until we get the exit
4364/// condition gets a value of ExitWhen (true or false).  If we cannot
4365/// evaluate the trip count of the loop, return getCouldNotCompute().
4366const SCEV *
4367ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4368                                                       Value *Cond,
4369                                                       bool ExitWhen) {
4370  PHINode *PN = getConstantEvolvingPHI(Cond, L);
4371  if (PN == 0) return getCouldNotCompute();
4372
4373  // If the loop is canonicalized, the PHI will have exactly two entries.
4374  // That's the only form we support here.
4375  if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4376
4377  // One entry must be a constant (coming in from outside of the loop), and the
4378  // second must be derived from the same PHI.
4379  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4380  Constant *StartCST =
4381    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4382  if (StartCST == 0) return getCouldNotCompute();  // Must be a constant.
4383
4384  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4385  if (getConstantEvolvingPHI(BEValue, L) != PN &&
4386      !isa<Constant>(BEValue))
4387    return getCouldNotCompute();  // Not derived from same PHI.
4388
4389  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
4390  // the loop symbolically to determine when the condition gets a value of
4391  // "ExitWhen".
4392  unsigned IterationNum = 0;
4393  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
4394  for (Constant *PHIVal = StartCST;
4395       IterationNum != MaxIterations; ++IterationNum) {
4396    ConstantInt *CondVal =
4397      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
4398
4399    // Couldn't symbolically evaluate.
4400    if (!CondVal) return getCouldNotCompute();
4401
4402    if (CondVal->getValue() == uint64_t(ExitWhen)) {
4403      ++NumBruteForceTripCountsComputed;
4404      return getConstant(Type::getInt32Ty(getContext()), IterationNum);
4405    }
4406
4407    // Compute the value of the PHI node for the next iteration.
4408    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4409    if (NextPHI == 0 || NextPHI == PHIVal)
4410      return getCouldNotCompute();// Couldn't evaluate or not making progress...
4411    PHIVal = NextPHI;
4412  }
4413
4414  // Too many iterations were needed to evaluate.
4415  return getCouldNotCompute();
4416}
4417
4418/// getSCEVAtScope - Return a SCEV expression for the specified value
4419/// at the specified scope in the program.  The L value specifies a loop
4420/// nest to evaluate the expression at, where null is the top-level or a
4421/// specified loop is immediately inside of the loop.
4422///
4423/// This method can be used to compute the exit value for a variable defined
4424/// in a loop by querying what the value will hold in the parent loop.
4425///
4426/// In the case that a relevant loop exit value cannot be computed, the
4427/// original value V is returned.
4428const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
4429  // Check to see if we've folded this expression at this loop before.
4430  std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4431  std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4432    Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4433  if (!Pair.second)
4434    return Pair.first->second ? Pair.first->second : V;
4435
4436  // Otherwise compute it.
4437  const SCEV *C = computeSCEVAtScope(V, L);
4438  ValuesAtScopes[V][L] = C;
4439  return C;
4440}
4441
4442const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
4443  if (isa<SCEVConstant>(V)) return V;
4444
4445  // If this instruction is evolved from a constant-evolving PHI, compute the
4446  // exit value from the loop without using SCEVs.
4447  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
4448    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
4449      const Loop *LI = (*this->LI)[I->getParent()];
4450      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
4451        if (PHINode *PN = dyn_cast<PHINode>(I))
4452          if (PN->getParent() == LI->getHeader()) {
4453            // Okay, there is no closed form solution for the PHI node.  Check
4454            // to see if the loop that contains it has a known backedge-taken
4455            // count.  If so, we may be able to force computation of the exit
4456            // value.
4457            const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
4458            if (const SCEVConstant *BTCC =
4459                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
4460              // Okay, we know how many times the containing loop executes.  If
4461              // this is a constant evolving PHI node, get the final value at
4462              // the specified iteration number.
4463              Constant *RV = getConstantEvolutionLoopExitValue(PN,
4464                                                   BTCC->getValue()->getValue(),
4465                                                               LI);
4466              if (RV) return getSCEV(RV);
4467            }
4468          }
4469
4470      // Okay, this is an expression that we cannot symbolically evaluate
4471      // into a SCEV.  Check to see if it's possible to symbolically evaluate
4472      // the arguments into constants, and if so, try to constant propagate the
4473      // result.  This is particularly useful for computing loop exit values.
4474      if (CanConstantFold(I)) {
4475        SmallVector<Constant *, 4> Operands;
4476        bool MadeImprovement = false;
4477        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4478          Value *Op = I->getOperand(i);
4479          if (Constant *C = dyn_cast<Constant>(Op)) {
4480            Operands.push_back(C);
4481            continue;
4482          }
4483
4484          // If any of the operands is non-constant and if they are
4485          // non-integer and non-pointer, don't even try to analyze them
4486          // with scev techniques.
4487          if (!isSCEVable(Op->getType()))
4488            return V;
4489
4490          const SCEV *OrigV = getSCEV(Op);
4491          const SCEV *OpV = getSCEVAtScope(OrigV, L);
4492          MadeImprovement |= OrigV != OpV;
4493
4494          Constant *C = 0;
4495          if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4496            C = SC->getValue();
4497          if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4498            C = dyn_cast<Constant>(SU->getValue());
4499          if (!C) return V;
4500          if (C->getType() != Op->getType())
4501            C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4502                                                              Op->getType(),
4503                                                              false),
4504                                      C, Op->getType());
4505          Operands.push_back(C);
4506        }
4507
4508        // Check to see if getSCEVAtScope actually made an improvement.
4509        if (MadeImprovement) {
4510          Constant *C = 0;
4511          if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4512            C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4513                                                Operands[0], Operands[1], TD);
4514          else
4515            C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4516                                         &Operands[0], Operands.size(), TD);
4517          if (!C) return V;
4518          return getSCEV(C);
4519        }
4520      }
4521    }
4522
4523    // This is some other type of SCEVUnknown, just return it.
4524    return V;
4525  }
4526
4527  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
4528    // Avoid performing the look-up in the common case where the specified
4529    // expression has no loop-variant portions.
4530    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
4531      const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4532      if (OpAtScope != Comm->getOperand(i)) {
4533        // Okay, at least one of these operands is loop variant but might be
4534        // foldable.  Build a new instance of the folded commutative expression.
4535        SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4536                                            Comm->op_begin()+i);
4537        NewOps.push_back(OpAtScope);
4538
4539        for (++i; i != e; ++i) {
4540          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4541          NewOps.push_back(OpAtScope);
4542        }
4543        if (isa<SCEVAddExpr>(Comm))
4544          return getAddExpr(NewOps);
4545        if (isa<SCEVMulExpr>(Comm))
4546          return getMulExpr(NewOps);
4547        if (isa<SCEVSMaxExpr>(Comm))
4548          return getSMaxExpr(NewOps);
4549        if (isa<SCEVUMaxExpr>(Comm))
4550          return getUMaxExpr(NewOps);
4551        llvm_unreachable("Unknown commutative SCEV type!");
4552      }
4553    }
4554    // If we got here, all operands are loop invariant.
4555    return Comm;
4556  }
4557
4558  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
4559    const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4560    const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
4561    if (LHS == Div->getLHS() && RHS == Div->getRHS())
4562      return Div;   // must be loop invariant
4563    return getUDivExpr(LHS, RHS);
4564  }
4565
4566  // If this is a loop recurrence for a loop that does not contain L, then we
4567  // are dealing with the final value computed by the loop.
4568  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4569    // First, attempt to evaluate each operand.
4570    // Avoid performing the look-up in the common case where the specified
4571    // expression has no loop-variant portions.
4572    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4573      const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4574      if (OpAtScope == AddRec->getOperand(i))
4575        continue;
4576
4577      // Okay, at least one of these operands is loop variant but might be
4578      // foldable.  Build a new instance of the folded commutative expression.
4579      SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4580                                          AddRec->op_begin()+i);
4581      NewOps.push_back(OpAtScope);
4582      for (++i; i != e; ++i)
4583        NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4584
4585      AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop()));
4586      break;
4587    }
4588
4589    // If the scope is outside the addrec's loop, evaluate it by using the
4590    // loop exit value of the addrec.
4591    if (!AddRec->getLoop()->contains(L)) {
4592      // To evaluate this recurrence, we need to know how many times the AddRec
4593      // loop iterates.  Compute this now.
4594      const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
4595      if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
4596
4597      // Then, evaluate the AddRec.
4598      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
4599    }
4600
4601    return AddRec;
4602  }
4603
4604  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
4605    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4606    if (Op == Cast->getOperand())
4607      return Cast;  // must be loop invariant
4608    return getZeroExtendExpr(Op, Cast->getType());
4609  }
4610
4611  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
4612    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4613    if (Op == Cast->getOperand())
4614      return Cast;  // must be loop invariant
4615    return getSignExtendExpr(Op, Cast->getType());
4616  }
4617
4618  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
4619    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4620    if (Op == Cast->getOperand())
4621      return Cast;  // must be loop invariant
4622    return getTruncateExpr(Op, Cast->getType());
4623  }
4624
4625  llvm_unreachable("Unknown SCEV type!");
4626  return 0;
4627}
4628
4629/// getSCEVAtScope - This is a convenience function which does
4630/// getSCEVAtScope(getSCEV(V), L).
4631const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
4632  return getSCEVAtScope(getSCEV(V), L);
4633}
4634
4635/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4636/// following equation:
4637///
4638///     A * X = B (mod N)
4639///
4640/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4641/// A and B isn't important.
4642///
4643/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
4644static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
4645                                               ScalarEvolution &SE) {
4646  uint32_t BW = A.getBitWidth();
4647  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4648  assert(A != 0 && "A must be non-zero.");
4649
4650  // 1. D = gcd(A, N)
4651  //
4652  // The gcd of A and N may have only one prime factor: 2. The number of
4653  // trailing zeros in A is its multiplicity
4654  uint32_t Mult2 = A.countTrailingZeros();
4655  // D = 2^Mult2
4656
4657  // 2. Check if B is divisible by D.
4658  //
4659  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4660  // is not less than multiplicity of this prime factor for D.
4661  if (B.countTrailingZeros() < Mult2)
4662    return SE.getCouldNotCompute();
4663
4664  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4665  // modulo (N / D).
4666  //
4667  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
4668  // bit width during computations.
4669  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
4670  APInt Mod(BW + 1, 0);
4671  Mod.set(BW - Mult2);  // Mod = N / D
4672  APInt I = AD.multiplicativeInverse(Mod);
4673
4674  // 4. Compute the minimum unsigned root of the equation:
4675  // I * (B / D) mod (N / D)
4676  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4677
4678  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4679  // bits.
4680  return SE.getConstant(Result.trunc(BW));
4681}
4682
4683/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4684/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
4685/// might be the same) or two SCEVCouldNotCompute objects.
4686///
4687static std::pair<const SCEV *,const SCEV *>
4688SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
4689  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
4690  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4691  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4692  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
4693
4694  // We currently can only solve this if the coefficients are constants.
4695  if (!LC || !MC || !NC) {
4696    const SCEV *CNC = SE.getCouldNotCompute();
4697    return std::make_pair(CNC, CNC);
4698  }
4699
4700  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
4701  const APInt &L = LC->getValue()->getValue();
4702  const APInt &M = MC->getValue()->getValue();
4703  const APInt &N = NC->getValue()->getValue();
4704  APInt Two(BitWidth, 2);
4705  APInt Four(BitWidth, 4);
4706
4707  {
4708    using namespace APIntOps;
4709    const APInt& C = L;
4710    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4711    // The B coefficient is M-N/2
4712    APInt B(M);
4713    B -= sdiv(N,Two);
4714
4715    // The A coefficient is N/2
4716    APInt A(N.sdiv(Two));
4717
4718    // Compute the B^2-4ac term.
4719    APInt SqrtTerm(B);
4720    SqrtTerm *= B;
4721    SqrtTerm -= Four * (A * C);
4722
4723    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4724    // integer value or else APInt::sqrt() will assert.
4725    APInt SqrtVal(SqrtTerm.sqrt());
4726
4727    // Compute the two solutions for the quadratic formula.
4728    // The divisions must be performed as signed divisions.
4729    APInt NegB(-B);
4730    APInt TwoA( A << 1 );
4731    if (TwoA.isMinValue()) {
4732      const SCEV *CNC = SE.getCouldNotCompute();
4733      return std::make_pair(CNC, CNC);
4734    }
4735
4736    LLVMContext &Context = SE.getContext();
4737
4738    ConstantInt *Solution1 =
4739      ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
4740    ConstantInt *Solution2 =
4741      ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
4742
4743    return std::make_pair(SE.getConstant(Solution1),
4744                          SE.getConstant(Solution2));
4745    } // end APIntOps namespace
4746}
4747
4748/// HowFarToZero - Return the number of times a backedge comparing the specified
4749/// value to zero will execute.  If not computable, return CouldNotCompute.
4750ScalarEvolution::BackedgeTakenInfo
4751ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
4752  // If the value is a constant
4753  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4754    // If the value is already zero, the branch will execute zero times.
4755    if (C->getValue()->isZero()) return C;
4756    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4757  }
4758
4759  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
4760  if (!AddRec || AddRec->getLoop() != L)
4761    return getCouldNotCompute();
4762
4763  if (AddRec->isAffine()) {
4764    // If this is an affine expression, the execution count of this branch is
4765    // the minimum unsigned root of the following equation:
4766    //
4767    //     Start + Step*N = 0 (mod 2^BW)
4768    //
4769    // equivalent to:
4770    //
4771    //             Step*N = -Start (mod 2^BW)
4772    //
4773    // where BW is the common bit width of Start and Step.
4774
4775    // Get the initial value for the loop.
4776    const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4777                                       L->getParentLoop());
4778    const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4779                                      L->getParentLoop());
4780
4781    if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
4782      // For now we handle only constant steps.
4783
4784      // First, handle unitary steps.
4785      if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so:
4786        return getNegativeSCEV(Start);          //   N = -Start (as unsigned)
4787      if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so:
4788        return Start;                           //    N = Start (as unsigned)
4789
4790      // Then, try to solve the above equation provided that Start is constant.
4791      if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
4792        return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
4793                                            -StartC->getValue()->getValue(),
4794                                            *this);
4795    }
4796  } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
4797    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4798    // the quadratic equation to solve it.
4799    std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
4800                                                                    *this);
4801    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4802    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
4803    if (R1) {
4804#if 0
4805      dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
4806             << "  sol#2: " << *R2 << "\n";
4807#endif
4808      // Pick the smallest positive root value.
4809      if (ConstantInt *CB =
4810          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
4811                                   R1->getValue(), R2->getValue()))) {
4812        if (CB->getZExtValue() == false)
4813          std::swap(R1, R2);   // R1 is the minimum root now.
4814
4815        // We can only use this value if the chrec ends up with an exact zero
4816        // value at this index.  When solving for "X*X != 5", for example, we
4817        // should not accept a root of 2.
4818        const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
4819        if (Val->isZero())
4820          return R1;  // We found a quadratic root!
4821      }
4822    }
4823  }
4824
4825  return getCouldNotCompute();
4826}
4827
4828/// HowFarToNonZero - Return the number of times a backedge checking the
4829/// specified value for nonzero will execute.  If not computable, return
4830/// CouldNotCompute
4831ScalarEvolution::BackedgeTakenInfo
4832ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
4833  // Loops that look like: while (X == 0) are very strange indeed.  We don't
4834  // handle them yet except for the trivial case.  This could be expanded in the
4835  // future as needed.
4836
4837  // If the value is a constant, check to see if it is known to be non-zero
4838  // already.  If so, the backedge will execute zero times.
4839  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4840    if (!C->getValue()->isNullValue())
4841      return getConstant(C->getType(), 0);
4842    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4843  }
4844
4845  // We could implement others, but I really doubt anyone writes loops like
4846  // this, and if they did, they would already be constant folded.
4847  return getCouldNotCompute();
4848}
4849
4850/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4851/// (which may not be an immediate predecessor) which has exactly one
4852/// successor from which BB is reachable, or null if no such block is
4853/// found.
4854///
4855std::pair<BasicBlock *, BasicBlock *>
4856ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
4857  // If the block has a unique predecessor, then there is no path from the
4858  // predecessor to the block that does not go through the direct edge
4859  // from the predecessor to the block.
4860  if (BasicBlock *Pred = BB->getSinglePredecessor())
4861    return std::make_pair(Pred, BB);
4862
4863  // A loop's header is defined to be a block that dominates the loop.
4864  // If the header has a unique predecessor outside the loop, it must be
4865  // a block that has exactly one successor that can reach the loop.
4866  if (Loop *L = LI->getLoopFor(BB))
4867    return std::make_pair(L->getLoopPredecessor(), L->getHeader());
4868
4869  return std::pair<BasicBlock *, BasicBlock *>();
4870}
4871
4872/// HasSameValue - SCEV structural equivalence is usually sufficient for
4873/// testing whether two expressions are equal, however for the purposes of
4874/// looking for a condition guarding a loop, it can be useful to be a little
4875/// more general, since a front-end may have replicated the controlling
4876/// expression.
4877///
4878static bool HasSameValue(const SCEV *A, const SCEV *B) {
4879  // Quick check to see if they are the same SCEV.
4880  if (A == B) return true;
4881
4882  // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4883  // two different instructions with the same value. Check for this case.
4884  if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4885    if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4886      if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4887        if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
4888          if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
4889            return true;
4890
4891  // Otherwise assume they may have a different value.
4892  return false;
4893}
4894
4895/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
4896/// predicate Pred. Return true iff any changes were made.
4897///
4898bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
4899                                           const SCEV *&LHS, const SCEV *&RHS) {
4900  bool Changed = false;
4901
4902  // Canonicalize a constant to the right side.
4903  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
4904    // Check for both operands constant.
4905    if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
4906      if (ConstantExpr::getICmp(Pred,
4907                                LHSC->getValue(),
4908                                RHSC->getValue())->isNullValue())
4909        goto trivially_false;
4910      else
4911        goto trivially_true;
4912    }
4913    // Otherwise swap the operands to put the constant on the right.
4914    std::swap(LHS, RHS);
4915    Pred = ICmpInst::getSwappedPredicate(Pred);
4916    Changed = true;
4917  }
4918
4919  // If we're comparing an addrec with a value which is loop-invariant in the
4920  // addrec's loop, put the addrec on the left. Also make a dominance check,
4921  // as both operands could be addrecs loop-invariant in each other's loop.
4922  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
4923    const Loop *L = AR->getLoop();
4924    if (isLoopInvariant(LHS, L) && LHS->properlyDominates(L->getHeader(), DT)) {
4925      std::swap(LHS, RHS);
4926      Pred = ICmpInst::getSwappedPredicate(Pred);
4927      Changed = true;
4928    }
4929  }
4930
4931  // If there's a constant operand, canonicalize comparisons with boundary
4932  // cases, and canonicalize *-or-equal comparisons to regular comparisons.
4933  if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4934    const APInt &RA = RC->getValue()->getValue();
4935    switch (Pred) {
4936    default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4937    case ICmpInst::ICMP_EQ:
4938    case ICmpInst::ICMP_NE:
4939      break;
4940    case ICmpInst::ICMP_UGE:
4941      if ((RA - 1).isMinValue()) {
4942        Pred = ICmpInst::ICMP_NE;
4943        RHS = getConstant(RA - 1);
4944        Changed = true;
4945        break;
4946      }
4947      if (RA.isMaxValue()) {
4948        Pred = ICmpInst::ICMP_EQ;
4949        Changed = true;
4950        break;
4951      }
4952      if (RA.isMinValue()) goto trivially_true;
4953
4954      Pred = ICmpInst::ICMP_UGT;
4955      RHS = getConstant(RA - 1);
4956      Changed = true;
4957      break;
4958    case ICmpInst::ICMP_ULE:
4959      if ((RA + 1).isMaxValue()) {
4960        Pred = ICmpInst::ICMP_NE;
4961        RHS = getConstant(RA + 1);
4962        Changed = true;
4963        break;
4964      }
4965      if (RA.isMinValue()) {
4966        Pred = ICmpInst::ICMP_EQ;
4967        Changed = true;
4968        break;
4969      }
4970      if (RA.isMaxValue()) goto trivially_true;
4971
4972      Pred = ICmpInst::ICMP_ULT;
4973      RHS = getConstant(RA + 1);
4974      Changed = true;
4975      break;
4976    case ICmpInst::ICMP_SGE:
4977      if ((RA - 1).isMinSignedValue()) {
4978        Pred = ICmpInst::ICMP_NE;
4979        RHS = getConstant(RA - 1);
4980        Changed = true;
4981        break;
4982      }
4983      if (RA.isMaxSignedValue()) {
4984        Pred = ICmpInst::ICMP_EQ;
4985        Changed = true;
4986        break;
4987      }
4988      if (RA.isMinSignedValue()) goto trivially_true;
4989
4990      Pred = ICmpInst::ICMP_SGT;
4991      RHS = getConstant(RA - 1);
4992      Changed = true;
4993      break;
4994    case ICmpInst::ICMP_SLE:
4995      if ((RA + 1).isMaxSignedValue()) {
4996        Pred = ICmpInst::ICMP_NE;
4997        RHS = getConstant(RA + 1);
4998        Changed = true;
4999        break;
5000      }
5001      if (RA.isMinSignedValue()) {
5002        Pred = ICmpInst::ICMP_EQ;
5003        Changed = true;
5004        break;
5005      }
5006      if (RA.isMaxSignedValue()) goto trivially_true;
5007
5008      Pred = ICmpInst::ICMP_SLT;
5009      RHS = getConstant(RA + 1);
5010      Changed = true;
5011      break;
5012    case ICmpInst::ICMP_UGT:
5013      if (RA.isMinValue()) {
5014        Pred = ICmpInst::ICMP_NE;
5015        Changed = true;
5016        break;
5017      }
5018      if ((RA + 1).isMaxValue()) {
5019        Pred = ICmpInst::ICMP_EQ;
5020        RHS = getConstant(RA + 1);
5021        Changed = true;
5022        break;
5023      }
5024      if (RA.isMaxValue()) goto trivially_false;
5025      break;
5026    case ICmpInst::ICMP_ULT:
5027      if (RA.isMaxValue()) {
5028        Pred = ICmpInst::ICMP_NE;
5029        Changed = true;
5030        break;
5031      }
5032      if ((RA - 1).isMinValue()) {
5033        Pred = ICmpInst::ICMP_EQ;
5034        RHS = getConstant(RA - 1);
5035        Changed = true;
5036        break;
5037      }
5038      if (RA.isMinValue()) goto trivially_false;
5039      break;
5040    case ICmpInst::ICMP_SGT:
5041      if (RA.isMinSignedValue()) {
5042        Pred = ICmpInst::ICMP_NE;
5043        Changed = true;
5044        break;
5045      }
5046      if ((RA + 1).isMaxSignedValue()) {
5047        Pred = ICmpInst::ICMP_EQ;
5048        RHS = getConstant(RA + 1);
5049        Changed = true;
5050        break;
5051      }
5052      if (RA.isMaxSignedValue()) goto trivially_false;
5053      break;
5054    case ICmpInst::ICMP_SLT:
5055      if (RA.isMaxSignedValue()) {
5056        Pred = ICmpInst::ICMP_NE;
5057        Changed = true;
5058        break;
5059      }
5060      if ((RA - 1).isMinSignedValue()) {
5061       Pred = ICmpInst::ICMP_EQ;
5062       RHS = getConstant(RA - 1);
5063        Changed = true;
5064       break;
5065      }
5066      if (RA.isMinSignedValue()) goto trivially_false;
5067      break;
5068    }
5069  }
5070
5071  // Check for obvious equality.
5072  if (HasSameValue(LHS, RHS)) {
5073    if (ICmpInst::isTrueWhenEqual(Pred))
5074      goto trivially_true;
5075    if (ICmpInst::isFalseWhenEqual(Pred))
5076      goto trivially_false;
5077  }
5078
5079  // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5080  // adding or subtracting 1 from one of the operands.
5081  switch (Pred) {
5082  case ICmpInst::ICMP_SLE:
5083    if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5084      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5085                       /*HasNUW=*/false, /*HasNSW=*/true);
5086      Pred = ICmpInst::ICMP_SLT;
5087      Changed = true;
5088    } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
5089      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5090                       /*HasNUW=*/false, /*HasNSW=*/true);
5091      Pred = ICmpInst::ICMP_SLT;
5092      Changed = true;
5093    }
5094    break;
5095  case ICmpInst::ICMP_SGE:
5096    if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
5097      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5098                       /*HasNUW=*/false, /*HasNSW=*/true);
5099      Pred = ICmpInst::ICMP_SGT;
5100      Changed = true;
5101    } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5102      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5103                       /*HasNUW=*/false, /*HasNSW=*/true);
5104      Pred = ICmpInst::ICMP_SGT;
5105      Changed = true;
5106    }
5107    break;
5108  case ICmpInst::ICMP_ULE:
5109    if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
5110      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5111                       /*HasNUW=*/true, /*HasNSW=*/false);
5112      Pred = ICmpInst::ICMP_ULT;
5113      Changed = true;
5114    } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
5115      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5116                       /*HasNUW=*/true, /*HasNSW=*/false);
5117      Pred = ICmpInst::ICMP_ULT;
5118      Changed = true;
5119    }
5120    break;
5121  case ICmpInst::ICMP_UGE:
5122    if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
5123      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5124                       /*HasNUW=*/true, /*HasNSW=*/false);
5125      Pred = ICmpInst::ICMP_UGT;
5126      Changed = true;
5127    } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
5128      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5129                       /*HasNUW=*/true, /*HasNSW=*/false);
5130      Pred = ICmpInst::ICMP_UGT;
5131      Changed = true;
5132    }
5133    break;
5134  default:
5135    break;
5136  }
5137
5138  // TODO: More simplifications are possible here.
5139
5140  return Changed;
5141
5142trivially_true:
5143  // Return 0 == 0.
5144  LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5145  Pred = ICmpInst::ICMP_EQ;
5146  return true;
5147
5148trivially_false:
5149  // Return 0 != 0.
5150  LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5151  Pred = ICmpInst::ICMP_NE;
5152  return true;
5153}
5154
5155bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5156  return getSignedRange(S).getSignedMax().isNegative();
5157}
5158
5159bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5160  return getSignedRange(S).getSignedMin().isStrictlyPositive();
5161}
5162
5163bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5164  return !getSignedRange(S).getSignedMin().isNegative();
5165}
5166
5167bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5168  return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5169}
5170
5171bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5172  return isKnownNegative(S) || isKnownPositive(S);
5173}
5174
5175bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5176                                       const SCEV *LHS, const SCEV *RHS) {
5177  // Canonicalize the inputs first.
5178  (void)SimplifyICmpOperands(Pred, LHS, RHS);
5179
5180  // If LHS or RHS is an addrec, check to see if the condition is true in
5181  // every iteration of the loop.
5182  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5183    if (isLoopEntryGuardedByCond(
5184          AR->getLoop(), Pred, AR->getStart(), RHS) &&
5185        isLoopBackedgeGuardedByCond(
5186          AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
5187      return true;
5188  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5189    if (isLoopEntryGuardedByCond(
5190          AR->getLoop(), Pred, LHS, AR->getStart()) &&
5191        isLoopBackedgeGuardedByCond(
5192          AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
5193      return true;
5194
5195  // Otherwise see what can be done with known constant ranges.
5196  return isKnownPredicateWithRanges(Pred, LHS, RHS);
5197}
5198
5199bool
5200ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5201                                            const SCEV *LHS, const SCEV *RHS) {
5202  if (HasSameValue(LHS, RHS))
5203    return ICmpInst::isTrueWhenEqual(Pred);
5204
5205  // This code is split out from isKnownPredicate because it is called from
5206  // within isLoopEntryGuardedByCond.
5207  switch (Pred) {
5208  default:
5209    llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5210    break;
5211  case ICmpInst::ICMP_SGT:
5212    Pred = ICmpInst::ICMP_SLT;
5213    std::swap(LHS, RHS);
5214  case ICmpInst::ICMP_SLT: {
5215    ConstantRange LHSRange = getSignedRange(LHS);
5216    ConstantRange RHSRange = getSignedRange(RHS);
5217    if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5218      return true;
5219    if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5220      return false;
5221    break;
5222  }
5223  case ICmpInst::ICMP_SGE:
5224    Pred = ICmpInst::ICMP_SLE;
5225    std::swap(LHS, RHS);
5226  case ICmpInst::ICMP_SLE: {
5227    ConstantRange LHSRange = getSignedRange(LHS);
5228    ConstantRange RHSRange = getSignedRange(RHS);
5229    if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5230      return true;
5231    if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5232      return false;
5233    break;
5234  }
5235  case ICmpInst::ICMP_UGT:
5236    Pred = ICmpInst::ICMP_ULT;
5237    std::swap(LHS, RHS);
5238  case ICmpInst::ICMP_ULT: {
5239    ConstantRange LHSRange = getUnsignedRange(LHS);
5240    ConstantRange RHSRange = getUnsignedRange(RHS);
5241    if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5242      return true;
5243    if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5244      return false;
5245    break;
5246  }
5247  case ICmpInst::ICMP_UGE:
5248    Pred = ICmpInst::ICMP_ULE;
5249    std::swap(LHS, RHS);
5250  case ICmpInst::ICMP_ULE: {
5251    ConstantRange LHSRange = getUnsignedRange(LHS);
5252    ConstantRange RHSRange = getUnsignedRange(RHS);
5253    if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5254      return true;
5255    if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5256      return false;
5257    break;
5258  }
5259  case ICmpInst::ICMP_NE: {
5260    if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5261      return true;
5262    if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5263      return true;
5264
5265    const SCEV *Diff = getMinusSCEV(LHS, RHS);
5266    if (isKnownNonZero(Diff))
5267      return true;
5268    break;
5269  }
5270  case ICmpInst::ICMP_EQ:
5271    // The check at the top of the function catches the case where
5272    // the values are known to be equal.
5273    break;
5274  }
5275  return false;
5276}
5277
5278/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5279/// protected by a conditional between LHS and RHS.  This is used to
5280/// to eliminate casts.
5281bool
5282ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5283                                             ICmpInst::Predicate Pred,
5284                                             const SCEV *LHS, const SCEV *RHS) {
5285  // Interpret a null as meaning no loop, where there is obviously no guard
5286  // (interprocedural conditions notwithstanding).
5287  if (!L) return true;
5288
5289  BasicBlock *Latch = L->getLoopLatch();
5290  if (!Latch)
5291    return false;
5292
5293  BranchInst *LoopContinuePredicate =
5294    dyn_cast<BranchInst>(Latch->getTerminator());
5295  if (!LoopContinuePredicate ||
5296      LoopContinuePredicate->isUnconditional())
5297    return false;
5298
5299  return isImpliedCond(Pred, LHS, RHS,
5300                       LoopContinuePredicate->getCondition(),
5301                       LoopContinuePredicate->getSuccessor(0) != L->getHeader());
5302}
5303
5304/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
5305/// by a conditional between LHS and RHS.  This is used to help avoid max
5306/// expressions in loop trip counts, and to eliminate casts.
5307bool
5308ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5309                                          ICmpInst::Predicate Pred,
5310                                          const SCEV *LHS, const SCEV *RHS) {
5311  // Interpret a null as meaning no loop, where there is obviously no guard
5312  // (interprocedural conditions notwithstanding).
5313  if (!L) return false;
5314
5315  // Starting at the loop predecessor, climb up the predecessor chain, as long
5316  // as there are predecessors that can be found that have unique successors
5317  // leading to the original header.
5318  for (std::pair<BasicBlock *, BasicBlock *>
5319         Pair(L->getLoopPredecessor(), L->getHeader());
5320       Pair.first;
5321       Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
5322
5323    BranchInst *LoopEntryPredicate =
5324      dyn_cast<BranchInst>(Pair.first->getTerminator());
5325    if (!LoopEntryPredicate ||
5326        LoopEntryPredicate->isUnconditional())
5327      continue;
5328
5329    if (isImpliedCond(Pred, LHS, RHS,
5330                      LoopEntryPredicate->getCondition(),
5331                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
5332      return true;
5333  }
5334
5335  return false;
5336}
5337
5338/// isImpliedCond - Test whether the condition described by Pred, LHS,
5339/// and RHS is true whenever the given Cond value evaluates to true.
5340bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
5341                                    const SCEV *LHS, const SCEV *RHS,
5342                                    Value *FoundCondValue,
5343                                    bool Inverse) {
5344  // Recursively handle And and Or conditions.
5345  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
5346    if (BO->getOpcode() == Instruction::And) {
5347      if (!Inverse)
5348        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5349               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
5350    } else if (BO->getOpcode() == Instruction::Or) {
5351      if (Inverse)
5352        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5353               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
5354    }
5355  }
5356
5357  ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
5358  if (!ICI) return false;
5359
5360  // Bail if the ICmp's operands' types are wider than the needed type
5361  // before attempting to call getSCEV on them. This avoids infinite
5362  // recursion, since the analysis of widening casts can require loop
5363  // exit condition information for overflow checking, which would
5364  // lead back here.
5365  if (getTypeSizeInBits(LHS->getType()) <
5366      getTypeSizeInBits(ICI->getOperand(0)->getType()))
5367    return false;
5368
5369  // Now that we found a conditional branch that dominates the loop, check to
5370  // see if it is the comparison we are looking for.
5371  ICmpInst::Predicate FoundPred;
5372  if (Inverse)
5373    FoundPred = ICI->getInversePredicate();
5374  else
5375    FoundPred = ICI->getPredicate();
5376
5377  const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5378  const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
5379
5380  // Balance the types. The case where FoundLHS' type is wider than
5381  // LHS' type is checked for above.
5382  if (getTypeSizeInBits(LHS->getType()) >
5383      getTypeSizeInBits(FoundLHS->getType())) {
5384    if (CmpInst::isSigned(Pred)) {
5385      FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5386      FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5387    } else {
5388      FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5389      FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5390    }
5391  }
5392
5393  // Canonicalize the query to match the way instcombine will have
5394  // canonicalized the comparison.
5395  if (SimplifyICmpOperands(Pred, LHS, RHS))
5396    if (LHS == RHS)
5397      return CmpInst::isTrueWhenEqual(Pred);
5398  if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5399    if (FoundLHS == FoundRHS)
5400      return CmpInst::isFalseWhenEqual(Pred);
5401
5402  // Check to see if we can make the LHS or RHS match.
5403  if (LHS == FoundRHS || RHS == FoundLHS) {
5404    if (isa<SCEVConstant>(RHS)) {
5405      std::swap(FoundLHS, FoundRHS);
5406      FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5407    } else {
5408      std::swap(LHS, RHS);
5409      Pred = ICmpInst::getSwappedPredicate(Pred);
5410    }
5411  }
5412
5413  // Check whether the found predicate is the same as the desired predicate.
5414  if (FoundPred == Pred)
5415    return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5416
5417  // Check whether swapping the found predicate makes it the same as the
5418  // desired predicate.
5419  if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5420    if (isa<SCEVConstant>(RHS))
5421      return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5422    else
5423      return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5424                                   RHS, LHS, FoundLHS, FoundRHS);
5425  }
5426
5427  // Check whether the actual condition is beyond sufficient.
5428  if (FoundPred == ICmpInst::ICMP_EQ)
5429    if (ICmpInst::isTrueWhenEqual(Pred))
5430      if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5431        return true;
5432  if (Pred == ICmpInst::ICMP_NE)
5433    if (!ICmpInst::isTrueWhenEqual(FoundPred))
5434      if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5435        return true;
5436
5437  // Otherwise assume the worst.
5438  return false;
5439}
5440
5441/// isImpliedCondOperands - Test whether the condition described by Pred,
5442/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
5443/// and FoundRHS is true.
5444bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5445                                            const SCEV *LHS, const SCEV *RHS,
5446                                            const SCEV *FoundLHS,
5447                                            const SCEV *FoundRHS) {
5448  return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5449                                     FoundLHS, FoundRHS) ||
5450         // ~x < ~y --> x > y
5451         isImpliedCondOperandsHelper(Pred, LHS, RHS,
5452                                     getNotSCEV(FoundRHS),
5453                                     getNotSCEV(FoundLHS));
5454}
5455
5456/// isImpliedCondOperandsHelper - Test whether the condition described by
5457/// Pred, LHS, and RHS is true whenever the condition described by Pred,
5458/// FoundLHS, and FoundRHS is true.
5459bool
5460ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5461                                             const SCEV *LHS, const SCEV *RHS,
5462                                             const SCEV *FoundLHS,
5463                                             const SCEV *FoundRHS) {
5464  switch (Pred) {
5465  default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5466  case ICmpInst::ICMP_EQ:
5467  case ICmpInst::ICMP_NE:
5468    if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5469      return true;
5470    break;
5471  case ICmpInst::ICMP_SLT:
5472  case ICmpInst::ICMP_SLE:
5473    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5474        isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
5475      return true;
5476    break;
5477  case ICmpInst::ICMP_SGT:
5478  case ICmpInst::ICMP_SGE:
5479    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5480        isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
5481      return true;
5482    break;
5483  case ICmpInst::ICMP_ULT:
5484  case ICmpInst::ICMP_ULE:
5485    if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5486        isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
5487      return true;
5488    break;
5489  case ICmpInst::ICMP_UGT:
5490  case ICmpInst::ICMP_UGE:
5491    if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5492        isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
5493      return true;
5494    break;
5495  }
5496
5497  return false;
5498}
5499
5500/// getBECount - Subtract the end and start values and divide by the step,
5501/// rounding up, to get the number of times the backedge is executed. Return
5502/// CouldNotCompute if an intermediate computation overflows.
5503const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
5504                                        const SCEV *End,
5505                                        const SCEV *Step,
5506                                        bool NoWrap) {
5507  assert(!isKnownNegative(Step) &&
5508         "This code doesn't handle negative strides yet!");
5509
5510  const Type *Ty = Start->getType();
5511  const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
5512  const SCEV *Diff = getMinusSCEV(End, Start);
5513  const SCEV *RoundUp = getAddExpr(Step, NegOne);
5514
5515  // Add an adjustment to the difference between End and Start so that
5516  // the division will effectively round up.
5517  const SCEV *Add = getAddExpr(Diff, RoundUp);
5518
5519  if (!NoWrap) {
5520    // Check Add for unsigned overflow.
5521    // TODO: More sophisticated things could be done here.
5522    const Type *WideTy = IntegerType::get(getContext(),
5523                                          getTypeSizeInBits(Ty) + 1);
5524    const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5525    const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5526    const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5527    if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5528      return getCouldNotCompute();
5529  }
5530
5531  return getUDivExpr(Add, Step);
5532}
5533
5534/// HowManyLessThans - Return the number of times a backedge containing the
5535/// specified less-than comparison will execute.  If not computable, return
5536/// CouldNotCompute.
5537ScalarEvolution::BackedgeTakenInfo
5538ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5539                                  const Loop *L, bool isSigned) {
5540  // Only handle:  "ADDREC < LoopInvariant".
5541  if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
5542
5543  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
5544  if (!AddRec || AddRec->getLoop() != L)
5545    return getCouldNotCompute();
5546
5547  // Check to see if we have a flag which makes analysis easy.
5548  bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5549                           AddRec->hasNoUnsignedWrap();
5550
5551  if (AddRec->isAffine()) {
5552    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
5553    const SCEV *Step = AddRec->getStepRecurrence(*this);
5554
5555    if (Step->isZero())
5556      return getCouldNotCompute();
5557    if (Step->isOne()) {
5558      // With unit stride, the iteration never steps past the limit value.
5559    } else if (isKnownPositive(Step)) {
5560      // Test whether a positive iteration can step past the limit
5561      // value and past the maximum value for its type in a single step.
5562      // Note that it's not sufficient to check NoWrap here, because even
5563      // though the value after a wrap is undefined, it's not undefined
5564      // behavior, so if wrap does occur, the loop could either terminate or
5565      // loop infinitely, but in either case, the loop is guaranteed to
5566      // iterate at least until the iteration where the wrapping occurs.
5567      const SCEV *One = getConstant(Step->getType(), 1);
5568      if (isSigned) {
5569        APInt Max = APInt::getSignedMaxValue(BitWidth);
5570        if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5571              .slt(getSignedRange(RHS).getSignedMax()))
5572          return getCouldNotCompute();
5573      } else {
5574        APInt Max = APInt::getMaxValue(BitWidth);
5575        if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5576              .ult(getUnsignedRange(RHS).getUnsignedMax()))
5577          return getCouldNotCompute();
5578      }
5579    } else
5580      // TODO: Handle negative strides here and below.
5581      return getCouldNotCompute();
5582
5583    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5584    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
5585    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
5586    // treat m-n as signed nor unsigned due to overflow possibility.
5587
5588    // First, we get the value of the LHS in the first iteration: n
5589    const SCEV *Start = AddRec->getOperand(0);
5590
5591    // Determine the minimum constant start value.
5592    const SCEV *MinStart = getConstant(isSigned ?
5593      getSignedRange(Start).getSignedMin() :
5594      getUnsignedRange(Start).getUnsignedMin());
5595
5596    // If we know that the condition is true in order to enter the loop,
5597    // then we know that it will run exactly (m-n)/s times. Otherwise, we
5598    // only know that it will execute (max(m,n)-n)/s times. In both cases,
5599    // the division must round up.
5600    const SCEV *End = RHS;
5601    if (!isLoopEntryGuardedByCond(L,
5602                                  isSigned ? ICmpInst::ICMP_SLT :
5603                                             ICmpInst::ICMP_ULT,
5604                                  getMinusSCEV(Start, Step), RHS))
5605      End = isSigned ? getSMaxExpr(RHS, Start)
5606                     : getUMaxExpr(RHS, Start);
5607
5608    // Determine the maximum constant end value.
5609    const SCEV *MaxEnd = getConstant(isSigned ?
5610      getSignedRange(End).getSignedMax() :
5611      getUnsignedRange(End).getUnsignedMax());
5612
5613    // If MaxEnd is within a step of the maximum integer value in its type,
5614    // adjust it down to the minimum value which would produce the same effect.
5615    // This allows the subsequent ceiling division of (N+(step-1))/step to
5616    // compute the correct value.
5617    const SCEV *StepMinusOne = getMinusSCEV(Step,
5618                                            getConstant(Step->getType(), 1));
5619    MaxEnd = isSigned ?
5620      getSMinExpr(MaxEnd,
5621                  getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5622                               StepMinusOne)) :
5623      getUMinExpr(MaxEnd,
5624                  getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5625                               StepMinusOne));
5626
5627    // Finally, we subtract these two values and divide, rounding up, to get
5628    // the number of times the backedge is executed.
5629    const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
5630
5631    // The maximum backedge count is similar, except using the minimum start
5632    // value and the maximum end value.
5633    const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
5634
5635    return BackedgeTakenInfo(BECount, MaxBECount);
5636  }
5637
5638  return getCouldNotCompute();
5639}
5640
5641/// getNumIterationsInRange - Return the number of iterations of this loop that
5642/// produce values in the specified constant range.  Another way of looking at
5643/// this is that it returns the first iteration number where the value is not in
5644/// the condition, thus computing the exit count. If the iteration count can't
5645/// be computed, an instance of SCEVCouldNotCompute is returned.
5646const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
5647                                                    ScalarEvolution &SE) const {
5648  if (Range.isFullSet())  // Infinite loop.
5649    return SE.getCouldNotCompute();
5650
5651  // If the start is a non-zero constant, shift the range to simplify things.
5652  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
5653    if (!SC->getValue()->isZero()) {
5654      SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
5655      Operands[0] = SE.getConstant(SC->getType(), 0);
5656      const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
5657      if (const SCEVAddRecExpr *ShiftedAddRec =
5658            dyn_cast<SCEVAddRecExpr>(Shifted))
5659        return ShiftedAddRec->getNumIterationsInRange(
5660                           Range.subtract(SC->getValue()->getValue()), SE);
5661      // This is strange and shouldn't happen.
5662      return SE.getCouldNotCompute();
5663    }
5664
5665  // The only time we can solve this is when we have all constant indices.
5666  // Otherwise, we cannot determine the overflow conditions.
5667  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5668    if (!isa<SCEVConstant>(getOperand(i)))
5669      return SE.getCouldNotCompute();
5670
5671
5672  // Okay at this point we know that all elements of the chrec are constants and
5673  // that the start element is zero.
5674
5675  // First check to see if the range contains zero.  If not, the first
5676  // iteration exits.
5677  unsigned BitWidth = SE.getTypeSizeInBits(getType());
5678  if (!Range.contains(APInt(BitWidth, 0)))
5679    return SE.getConstant(getType(), 0);
5680
5681  if (isAffine()) {
5682    // If this is an affine expression then we have this situation:
5683    //   Solve {0,+,A} in Range  ===  Ax in Range
5684
5685    // We know that zero is in the range.  If A is positive then we know that
5686    // the upper value of the range must be the first possible exit value.
5687    // If A is negative then the lower of the range is the last possible loop
5688    // value.  Also note that we already checked for a full range.
5689    APInt One(BitWidth,1);
5690    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5691    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
5692
5693    // The exit value should be (End+A)/A.
5694    APInt ExitVal = (End + A).udiv(A);
5695    ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
5696
5697    // Evaluate at the exit value.  If we really did fall out of the valid
5698    // range, then we computed our trip count, otherwise wrap around or other
5699    // things must have happened.
5700    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
5701    if (Range.contains(Val->getValue()))
5702      return SE.getCouldNotCompute();  // Something strange happened
5703
5704    // Ensure that the previous value is in the range.  This is a sanity check.
5705    assert(Range.contains(
5706           EvaluateConstantChrecAtConstant(this,
5707           ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
5708           "Linear scev computation is off in a bad way!");
5709    return SE.getConstant(ExitValue);
5710  } else if (isQuadratic()) {
5711    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5712    // quadratic equation to solve it.  To do this, we must frame our problem in
5713    // terms of figuring out when zero is crossed, instead of when
5714    // Range.getUpper() is crossed.
5715    SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
5716    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
5717    const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
5718
5719    // Next, solve the constructed addrec
5720    std::pair<const SCEV *,const SCEV *> Roots =
5721      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
5722    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5723    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
5724    if (R1) {
5725      // Pick the smallest positive root value.
5726      if (ConstantInt *CB =
5727          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
5728                         R1->getValue(), R2->getValue()))) {
5729        if (CB->getZExtValue() == false)
5730          std::swap(R1, R2);   // R1 is the minimum root now.
5731
5732        // Make sure the root is not off by one.  The returned iteration should
5733        // not be in the range, but the previous one should be.  When solving
5734        // for "X*X < 5", for example, we should not return a root of 2.
5735        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
5736                                                             R1->getValue(),
5737                                                             SE);
5738        if (Range.contains(R1Val->getValue())) {
5739          // The next iteration must be out of the range...
5740          ConstantInt *NextVal =
5741                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
5742
5743          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5744          if (!Range.contains(R1Val->getValue()))
5745            return SE.getConstant(NextVal);
5746          return SE.getCouldNotCompute();  // Something strange happened
5747        }
5748
5749        // If R1 was not in the range, then it is a good return value.  Make
5750        // sure that R1-1 WAS in the range though, just in case.
5751        ConstantInt *NextVal =
5752               ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
5753        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5754        if (Range.contains(R1Val->getValue()))
5755          return R1;
5756        return SE.getCouldNotCompute();  // Something strange happened
5757      }
5758    }
5759  }
5760
5761  return SE.getCouldNotCompute();
5762}
5763
5764
5765
5766//===----------------------------------------------------------------------===//
5767//                   SCEVCallbackVH Class Implementation
5768//===----------------------------------------------------------------------===//
5769
5770void ScalarEvolution::SCEVCallbackVH::deleted() {
5771  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5772  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5773    SE->ConstantEvolutionLoopExitValue.erase(PN);
5774  SE->ValueExprMap.erase(getValPtr());
5775  // this now dangles!
5776}
5777
5778void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
5779  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5780
5781  // Forget all the expressions associated with users of the old value,
5782  // so that future queries will recompute the expressions using the new
5783  // value.
5784  Value *Old = getValPtr();
5785  SmallVector<User *, 16> Worklist;
5786  SmallPtrSet<User *, 8> Visited;
5787  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5788       UI != UE; ++UI)
5789    Worklist.push_back(*UI);
5790  while (!Worklist.empty()) {
5791    User *U = Worklist.pop_back_val();
5792    // Deleting the Old value will cause this to dangle. Postpone
5793    // that until everything else is done.
5794    if (U == Old)
5795      continue;
5796    if (!Visited.insert(U))
5797      continue;
5798    if (PHINode *PN = dyn_cast<PHINode>(U))
5799      SE->ConstantEvolutionLoopExitValue.erase(PN);
5800    SE->ValueExprMap.erase(U);
5801    for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5802         UI != UE; ++UI)
5803      Worklist.push_back(*UI);
5804  }
5805  // Delete the Old value.
5806  if (PHINode *PN = dyn_cast<PHINode>(Old))
5807    SE->ConstantEvolutionLoopExitValue.erase(PN);
5808  SE->ValueExprMap.erase(Old);
5809  // this now dangles!
5810}
5811
5812ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
5813  : CallbackVH(V), SE(se) {}
5814
5815//===----------------------------------------------------------------------===//
5816//                   ScalarEvolution Class Implementation
5817//===----------------------------------------------------------------------===//
5818
5819ScalarEvolution::ScalarEvolution()
5820  : FunctionPass(ID), FirstUnknown(0) {
5821  initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
5822}
5823
5824bool ScalarEvolution::runOnFunction(Function &F) {
5825  this->F = &F;
5826  LI = &getAnalysis<LoopInfo>();
5827  TD = getAnalysisIfAvailable<TargetData>();
5828  DT = &getAnalysis<DominatorTree>();
5829  return false;
5830}
5831
5832void ScalarEvolution::releaseMemory() {
5833  // Iterate through all the SCEVUnknown instances and call their
5834  // destructors, so that they release their references to their values.
5835  for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
5836    U->~SCEVUnknown();
5837  FirstUnknown = 0;
5838
5839  ValueExprMap.clear();
5840  BackedgeTakenCounts.clear();
5841  ConstantEvolutionLoopExitValue.clear();
5842  ValuesAtScopes.clear();
5843  UnsignedRanges.clear();
5844  SignedRanges.clear();
5845  UniqueSCEVs.clear();
5846  SCEVAllocator.Reset();
5847}
5848
5849void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5850  AU.setPreservesAll();
5851  AU.addRequiredTransitive<LoopInfo>();
5852  AU.addRequiredTransitive<DominatorTree>();
5853}
5854
5855bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
5856  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
5857}
5858
5859static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
5860                          const Loop *L) {
5861  // Print all inner loops first
5862  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5863    PrintLoopInfo(OS, SE, *I);
5864
5865  OS << "Loop ";
5866  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5867  OS << ": ";
5868
5869  SmallVector<BasicBlock *, 8> ExitBlocks;
5870  L->getExitBlocks(ExitBlocks);
5871  if (ExitBlocks.size() != 1)
5872    OS << "<multiple exits> ";
5873
5874  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5875    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
5876  } else {
5877    OS << "Unpredictable backedge-taken count. ";
5878  }
5879
5880  OS << "\n"
5881        "Loop ";
5882  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5883  OS << ": ";
5884
5885  if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5886    OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5887  } else {
5888    OS << "Unpredictable max backedge-taken count. ";
5889  }
5890
5891  OS << "\n";
5892}
5893
5894void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
5895  // ScalarEvolution's implementation of the print method is to print
5896  // out SCEV values of all instructions that are interesting. Doing
5897  // this potentially causes it to create new SCEV objects though,
5898  // which technically conflicts with the const qualifier. This isn't
5899  // observable from outside the class though, so casting away the
5900  // const isn't dangerous.
5901  ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
5902
5903  OS << "Classifying expressions for: ";
5904  WriteAsOperand(OS, F, /*PrintType=*/false);
5905  OS << "\n";
5906  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
5907    if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
5908      OS << *I << '\n';
5909      OS << "  -->  ";
5910      const SCEV *SV = SE.getSCEV(&*I);
5911      SV->print(OS);
5912
5913      const Loop *L = LI->getLoopFor((*I).getParent());
5914
5915      const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
5916      if (AtUse != SV) {
5917        OS << "  -->  ";
5918        AtUse->print(OS);
5919      }
5920
5921      if (L) {
5922        OS << "\t\t" "Exits: ";
5923        const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
5924        if (!SE.isLoopInvariant(ExitValue, L)) {
5925          OS << "<<Unknown>>";
5926        } else {
5927          OS << *ExitValue;
5928        }
5929      }
5930
5931      OS << "\n";
5932    }
5933
5934  OS << "Determining loop execution counts for: ";
5935  WriteAsOperand(OS, F, /*PrintType=*/false);
5936  OS << "\n";
5937  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5938    PrintLoopInfo(OS, &SE, *I);
5939}
5940
5941bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
5942  switch (S->getSCEVType()) {
5943  case scConstant:
5944    return true;
5945  case scTruncate:
5946  case scZeroExtend:
5947  case scSignExtend:
5948    return isLoopInvariant(cast<SCEVCastExpr>(S)->getOperand(), L);
5949  case scAddRecExpr: {
5950    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
5951
5952    // Add recurrences are never invariant in the function-body (null loop).
5953    if (!L)
5954      return false;
5955
5956    // This recurrence is variant w.r.t. L if L contains AR's loop.
5957    if (L->contains(AR->getLoop()))
5958      return false;
5959
5960    // This recurrence is invariant w.r.t. L if AR's loop contains L.
5961    if (AR->getLoop()->contains(L))
5962      return true;
5963
5964    // This recurrence is variant w.r.t. L if any of its operands
5965    // are variant.
5966    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
5967         I != E; ++I)
5968      if (!isLoopInvariant(*I, L))
5969        return false;
5970
5971    // Otherwise it's loop-invariant.
5972    return true;
5973  }
5974  case scAddExpr:
5975  case scMulExpr:
5976  case scUMaxExpr:
5977  case scSMaxExpr: {
5978    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
5979    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
5980         I != E; ++I)
5981      if (!isLoopInvariant(*I, L))
5982        return false;
5983    return true;
5984  }
5985  case scUDivExpr: {
5986    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
5987    return isLoopInvariant(UDiv->getLHS(), L) &&
5988           isLoopInvariant(UDiv->getRHS(), L);
5989  }
5990  case scUnknown:
5991    // All non-instruction values are loop invariant.  All instructions are loop
5992    // invariant if they are not contained in the specified loop.
5993    // Instructions are never considered invariant in the function body
5994    // (null loop) because they are defined within the "loop".
5995    if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
5996      return L && !L->contains(I);
5997    return true;
5998  case scCouldNotCompute:
5999    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6000    return false;
6001  default: break;
6002  }
6003  llvm_unreachable("Unknown SCEV kind!");
6004  return false;
6005}
6006
6007bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6008  switch (S->getSCEVType()) {
6009  case scConstant:
6010    return false;
6011  case scTruncate:
6012  case scZeroExtend:
6013  case scSignExtend:
6014    return hasComputableLoopEvolution(cast<SCEVCastExpr>(S)->getOperand(), L);
6015  case scAddRecExpr:
6016    return cast<SCEVAddRecExpr>(S)->getLoop() == L;
6017  case scAddExpr:
6018  case scMulExpr:
6019  case scUMaxExpr:
6020  case scSMaxExpr: {
6021    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6022    bool HasVarying = false;
6023    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6024         I != E; ++I) {
6025      const SCEV *Op = *I;
6026      if (!isLoopInvariant(Op, L)) {
6027        if (hasComputableLoopEvolution(Op, L))
6028          HasVarying = true;
6029        else
6030          return false;
6031      }
6032    }
6033    return HasVarying;
6034  }
6035  case scUDivExpr: {
6036    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6037    bool HasVarying = false;
6038    if (!isLoopInvariant(UDiv->getLHS(), L)) {
6039      if (hasComputableLoopEvolution(UDiv->getLHS(), L))
6040        HasVarying = true;
6041      else
6042        return false;
6043    }
6044    if (!isLoopInvariant(UDiv->getRHS(), L)) {
6045      if (hasComputableLoopEvolution(UDiv->getRHS(), L))
6046        HasVarying = true;
6047      else
6048        return false;
6049    }
6050    return HasVarying;
6051  }
6052  case scUnknown:
6053    return false;
6054  case scCouldNotCompute:
6055    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6056    return false;
6057  default: break;
6058  }
6059  llvm_unreachable("Unknown SCEV kind!");
6060  return false;
6061}
6062