ScalarEvolution.cpp revision 26125c65b926fa02c9aa9f62ae462e533fd6d883
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
19//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression.  These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
30//
31// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
35// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42//  Chains of recurrences -- a method to expedite the evaluation
43//  of closed-form functions
44//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46//  On computational properties of chains of recurrences
47//  Eugene V. Zima
48//
49//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50//  Robert A. van Engelen
51//
52//  Efficient Symbolic Analysis for Optimizing Compilers
53//  Robert A. van Engelen
54//
55//  Using the chains of recurrences algebra for data dependence testing and
56//  induction variable substitution
57//  MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
61#define DEBUG_TYPE "scalar-evolution"
62#include "llvm/Analysis/ScalarEvolutionExpressions.h"
63#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
65#include "llvm/GlobalVariable.h"
66#include "llvm/GlobalAlias.h"
67#include "llvm/Instructions.h"
68#include "llvm/LLVMContext.h"
69#include "llvm/Operator.h"
70#include "llvm/Analysis/ConstantFolding.h"
71#include "llvm/Analysis/Dominators.h"
72#include "llvm/Analysis/LoopInfo.h"
73#include "llvm/Analysis/ValueTracking.h"
74#include "llvm/Assembly/Writer.h"
75#include "llvm/Target/TargetData.h"
76#include "llvm/Support/CommandLine.h"
77#include "llvm/Support/ConstantRange.h"
78#include "llvm/Support/Debug.h"
79#include "llvm/Support/ErrorHandling.h"
80#include "llvm/Support/GetElementPtrTypeIterator.h"
81#include "llvm/Support/InstIterator.h"
82#include "llvm/Support/MathExtras.h"
83#include "llvm/Support/raw_ostream.h"
84#include "llvm/ADT/Statistic.h"
85#include "llvm/ADT/STLExtras.h"
86#include "llvm/ADT/SmallPtrSet.h"
87#include <algorithm>
88using namespace llvm;
89
90STATISTIC(NumArrayLenItCounts,
91          "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93          "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95          "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97          "Number of loops with trip counts computed by force");
98
99static cl::opt<unsigned>
100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101                        cl::desc("Maximum number of iterations SCEV will "
102                                 "symbolically execute a constant "
103                                 "derived loop"),
104                        cl::init(100));
105
106INITIALIZE_PASS(ScalarEvolution, "scalar-evolution",
107                "Scalar Evolution Analysis", false, true);
108char ScalarEvolution::ID = 0;
109
110//===----------------------------------------------------------------------===//
111//                           SCEV class definitions
112//===----------------------------------------------------------------------===//
113
114//===----------------------------------------------------------------------===//
115// Implementation of the SCEV class.
116//
117
118SCEV::~SCEV() {}
119
120void SCEV::dump() const {
121  print(dbgs());
122  dbgs() << '\n';
123}
124
125bool SCEV::isZero() const {
126  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
127    return SC->getValue()->isZero();
128  return false;
129}
130
131bool SCEV::isOne() const {
132  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
133    return SC->getValue()->isOne();
134  return false;
135}
136
137bool SCEV::isAllOnesValue() const {
138  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
139    return SC->getValue()->isAllOnesValue();
140  return false;
141}
142
143SCEVCouldNotCompute::SCEVCouldNotCompute() :
144  SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
145
146bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
147  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
148  return false;
149}
150
151const Type *SCEVCouldNotCompute::getType() const {
152  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
153  return 0;
154}
155
156bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
157  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
158  return false;
159}
160
161bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
162  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
163  return false;
164}
165
166void SCEVCouldNotCompute::print(raw_ostream &OS) const {
167  OS << "***COULDNOTCOMPUTE***";
168}
169
170bool SCEVCouldNotCompute::classof(const SCEV *S) {
171  return S->getSCEVType() == scCouldNotCompute;
172}
173
174const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
175  FoldingSetNodeID ID;
176  ID.AddInteger(scConstant);
177  ID.AddPointer(V);
178  void *IP = 0;
179  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
180  SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
181  UniqueSCEVs.InsertNode(S, IP);
182  return S;
183}
184
185const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
186  return getConstant(ConstantInt::get(getContext(), Val));
187}
188
189const SCEV *
190ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
191  const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
192  return getConstant(ConstantInt::get(ITy, V, isSigned));
193}
194
195const Type *SCEVConstant::getType() const { return V->getType(); }
196
197void SCEVConstant::print(raw_ostream &OS) const {
198  WriteAsOperand(OS, V, false);
199}
200
201SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
202                           unsigned SCEVTy, const SCEV *op, const Type *ty)
203  : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
204
205bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
206  return Op->dominates(BB, DT);
207}
208
209bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
210  return Op->properlyDominates(BB, DT);
211}
212
213SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
214                                   const SCEV *op, const Type *ty)
215  : SCEVCastExpr(ID, scTruncate, op, ty) {
216  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
217         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
218         "Cannot truncate non-integer value!");
219}
220
221void SCEVTruncateExpr::print(raw_ostream &OS) const {
222  OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
223}
224
225SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
226                                       const SCEV *op, const Type *ty)
227  : SCEVCastExpr(ID, scZeroExtend, op, ty) {
228  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
229         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
230         "Cannot zero extend non-integer value!");
231}
232
233void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
234  OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
235}
236
237SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
238                                       const SCEV *op, const Type *ty)
239  : SCEVCastExpr(ID, scSignExtend, op, ty) {
240  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
241         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
242         "Cannot sign extend non-integer value!");
243}
244
245void SCEVSignExtendExpr::print(raw_ostream &OS) const {
246  OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
247}
248
249void SCEVCommutativeExpr::print(raw_ostream &OS) const {
250  const char *OpStr = getOperationStr();
251  OS << "(";
252  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
253    OS << **I;
254    if (llvm::next(I) != E)
255      OS << OpStr;
256  }
257  OS << ")";
258}
259
260bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
261  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
262    if (!(*I)->dominates(BB, DT))
263      return false;
264  return true;
265}
266
267bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
268  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
269    if (!(*I)->properlyDominates(BB, DT))
270      return false;
271  return true;
272}
273
274bool SCEVNAryExpr::isLoopInvariant(const Loop *L) const {
275  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
276    if (!(*I)->isLoopInvariant(L))
277      return false;
278  return true;
279}
280
281// hasComputableLoopEvolution - N-ary expressions have computable loop
282// evolutions iff they have at least one operand that varies with the loop,
283// but that all varying operands are computable.
284bool SCEVNAryExpr::hasComputableLoopEvolution(const Loop *L) const {
285  bool HasVarying = false;
286  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
287    const SCEV *S = *I;
288    if (!S->isLoopInvariant(L)) {
289      if (S->hasComputableLoopEvolution(L))
290        HasVarying = true;
291      else
292        return false;
293    }
294  }
295  return HasVarying;
296}
297
298bool SCEVNAryExpr::hasOperand(const SCEV *O) const {
299  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
300    const SCEV *S = *I;
301    if (O == S || S->hasOperand(O))
302      return true;
303  }
304  return false;
305}
306
307bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
308  return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
309}
310
311bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
312  return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
313}
314
315void SCEVUDivExpr::print(raw_ostream &OS) const {
316  OS << "(" << *LHS << " /u " << *RHS << ")";
317}
318
319const Type *SCEVUDivExpr::getType() const {
320  // In most cases the types of LHS and RHS will be the same, but in some
321  // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
322  // depend on the type for correctness, but handling types carefully can
323  // avoid extra casts in the SCEVExpander. The LHS is more likely to be
324  // a pointer type than the RHS, so use the RHS' type here.
325  return RHS->getType();
326}
327
328bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
329  // Add recurrences are never invariant in the function-body (null loop).
330  if (!QueryLoop)
331    return false;
332
333  // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
334  if (QueryLoop->contains(L))
335    return false;
336
337  // This recurrence is invariant w.r.t. QueryLoop if L contains QueryLoop.
338  if (L->contains(QueryLoop))
339    return true;
340
341  // This recurrence is variant w.r.t. QueryLoop if any of its operands
342  // are variant.
343  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
344    if (!(*I)->isLoopInvariant(QueryLoop))
345      return false;
346
347  // Otherwise it's loop-invariant.
348  return true;
349}
350
351bool
352SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
353  return DT->dominates(L->getHeader(), BB) &&
354         SCEVNAryExpr::dominates(BB, DT);
355}
356
357bool
358SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
359  // This uses a "dominates" query instead of "properly dominates" query because
360  // the instruction which produces the addrec's value is a PHI, and a PHI
361  // effectively properly dominates its entire containing block.
362  return DT->dominates(L->getHeader(), BB) &&
363         SCEVNAryExpr::properlyDominates(BB, DT);
364}
365
366void SCEVAddRecExpr::print(raw_ostream &OS) const {
367  OS << "{" << *Operands[0];
368  for (unsigned i = 1, e = NumOperands; i != e; ++i)
369    OS << ",+," << *Operands[i];
370  OS << "}<";
371  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
372  OS << ">";
373}
374
375void SCEVUnknown::deleted() {
376  // Clear this SCEVUnknown from ValuesAtScopes.
377  SE->ValuesAtScopes.erase(this);
378
379  // Remove this SCEVUnknown from the uniquing map.
380  SE->UniqueSCEVs.RemoveNode(this);
381
382  // Release the value.
383  setValPtr(0);
384}
385
386void SCEVUnknown::allUsesReplacedWith(Value *New) {
387  // Clear this SCEVUnknown from ValuesAtScopes.
388  SE->ValuesAtScopes.erase(this);
389
390  // Remove this SCEVUnknown from the uniquing map.
391  SE->UniqueSCEVs.RemoveNode(this);
392
393  // Update this SCEVUnknown to point to the new value. This is needed
394  // because there may still be outstanding SCEVs which still point to
395  // this SCEVUnknown.
396  setValPtr(New);
397}
398
399bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
400  // All non-instruction values are loop invariant.  All instructions are loop
401  // invariant if they are not contained in the specified loop.
402  // Instructions are never considered invariant in the function body
403  // (null loop) because they are defined within the "loop".
404  if (Instruction *I = dyn_cast<Instruction>(getValue()))
405    return L && !L->contains(I);
406  return true;
407}
408
409bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
410  if (Instruction *I = dyn_cast<Instruction>(getValue()))
411    return DT->dominates(I->getParent(), BB);
412  return true;
413}
414
415bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
416  if (Instruction *I = dyn_cast<Instruction>(getValue()))
417    return DT->properlyDominates(I->getParent(), BB);
418  return true;
419}
420
421const Type *SCEVUnknown::getType() const {
422  return getValue()->getType();
423}
424
425bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
426  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
427    if (VCE->getOpcode() == Instruction::PtrToInt)
428      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
429        if (CE->getOpcode() == Instruction::GetElementPtr &&
430            CE->getOperand(0)->isNullValue() &&
431            CE->getNumOperands() == 2)
432          if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
433            if (CI->isOne()) {
434              AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
435                                 ->getElementType();
436              return true;
437            }
438
439  return false;
440}
441
442bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
443  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
444    if (VCE->getOpcode() == Instruction::PtrToInt)
445      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
446        if (CE->getOpcode() == Instruction::GetElementPtr &&
447            CE->getOperand(0)->isNullValue()) {
448          const Type *Ty =
449            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
450          if (const StructType *STy = dyn_cast<StructType>(Ty))
451            if (!STy->isPacked() &&
452                CE->getNumOperands() == 3 &&
453                CE->getOperand(1)->isNullValue()) {
454              if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
455                if (CI->isOne() &&
456                    STy->getNumElements() == 2 &&
457                    STy->getElementType(0)->isIntegerTy(1)) {
458                  AllocTy = STy->getElementType(1);
459                  return true;
460                }
461            }
462        }
463
464  return false;
465}
466
467bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
468  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
469    if (VCE->getOpcode() == Instruction::PtrToInt)
470      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
471        if (CE->getOpcode() == Instruction::GetElementPtr &&
472            CE->getNumOperands() == 3 &&
473            CE->getOperand(0)->isNullValue() &&
474            CE->getOperand(1)->isNullValue()) {
475          const Type *Ty =
476            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
477          // Ignore vector types here so that ScalarEvolutionExpander doesn't
478          // emit getelementptrs that index into vectors.
479          if (Ty->isStructTy() || Ty->isArrayTy()) {
480            CTy = Ty;
481            FieldNo = CE->getOperand(2);
482            return true;
483          }
484        }
485
486  return false;
487}
488
489void SCEVUnknown::print(raw_ostream &OS) const {
490  const Type *AllocTy;
491  if (isSizeOf(AllocTy)) {
492    OS << "sizeof(" << *AllocTy << ")";
493    return;
494  }
495  if (isAlignOf(AllocTy)) {
496    OS << "alignof(" << *AllocTy << ")";
497    return;
498  }
499
500  const Type *CTy;
501  Constant *FieldNo;
502  if (isOffsetOf(CTy, FieldNo)) {
503    OS << "offsetof(" << *CTy << ", ";
504    WriteAsOperand(OS, FieldNo, false);
505    OS << ")";
506    return;
507  }
508
509  // Otherwise just print it normally.
510  WriteAsOperand(OS, getValue(), false);
511}
512
513//===----------------------------------------------------------------------===//
514//                               SCEV Utilities
515//===----------------------------------------------------------------------===//
516
517namespace {
518  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
519  /// than the complexity of the RHS.  This comparator is used to canonicalize
520  /// expressions.
521  class SCEVComplexityCompare {
522    const LoopInfo *const LI;
523  public:
524    explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
525
526    // Return true or false if LHS is less than, or at least RHS, respectively.
527    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
528      return compare(LHS, RHS) < 0;
529    }
530
531    // Return negative, zero, or positive, if LHS is less than, equal to, or
532    // greater than RHS, respectively. A three-way result allows recursive
533    // comparisons to be more efficient.
534    int compare(const SCEV *LHS, const SCEV *RHS) const {
535      // Fast-path: SCEVs are uniqued so we can do a quick equality check.
536      if (LHS == RHS)
537        return 0;
538
539      // Primarily, sort the SCEVs by their getSCEVType().
540      unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
541      if (LType != RType)
542        return (int)LType - (int)RType;
543
544      // Aside from the getSCEVType() ordering, the particular ordering
545      // isn't very important except that it's beneficial to be consistent,
546      // so that (a + b) and (b + a) don't end up as different expressions.
547      switch (LType) {
548      case scUnknown: {
549        const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
550        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
551
552        // Sort SCEVUnknown values with some loose heuristics. TODO: This is
553        // not as complete as it could be.
554        const Value *LV = LU->getValue(), *RV = RU->getValue();
555
556        // Order pointer values after integer values. This helps SCEVExpander
557        // form GEPs.
558        bool LIsPointer = LV->getType()->isPointerTy(),
559             RIsPointer = RV->getType()->isPointerTy();
560        if (LIsPointer != RIsPointer)
561          return (int)LIsPointer - (int)RIsPointer;
562
563        // Compare getValueID values.
564        unsigned LID = LV->getValueID(),
565                 RID = RV->getValueID();
566        if (LID != RID)
567          return (int)LID - (int)RID;
568
569        // Sort arguments by their position.
570        if (const Argument *LA = dyn_cast<Argument>(LV)) {
571          const Argument *RA = cast<Argument>(RV);
572          unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
573          return (int)LArgNo - (int)RArgNo;
574        }
575
576        // For instructions, compare their loop depth, and their operand
577        // count.  This is pretty loose.
578        if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
579          const Instruction *RInst = cast<Instruction>(RV);
580
581          // Compare loop depths.
582          const BasicBlock *LParent = LInst->getParent(),
583                           *RParent = RInst->getParent();
584          if (LParent != RParent) {
585            unsigned LDepth = LI->getLoopDepth(LParent),
586                     RDepth = LI->getLoopDepth(RParent);
587            if (LDepth != RDepth)
588              return (int)LDepth - (int)RDepth;
589          }
590
591          // Compare the number of operands.
592          unsigned LNumOps = LInst->getNumOperands(),
593                   RNumOps = RInst->getNumOperands();
594          return (int)LNumOps - (int)RNumOps;
595        }
596
597        return 0;
598      }
599
600      case scConstant: {
601        const SCEVConstant *LC = cast<SCEVConstant>(LHS);
602        const SCEVConstant *RC = cast<SCEVConstant>(RHS);
603
604        // Compare constant values.
605        const APInt &LA = LC->getValue()->getValue();
606        const APInt &RA = RC->getValue()->getValue();
607        unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
608        if (LBitWidth != RBitWidth)
609          return (int)LBitWidth - (int)RBitWidth;
610        return LA.ult(RA) ? -1 : 1;
611      }
612
613      case scAddRecExpr: {
614        const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
615        const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
616
617        // Compare addrec loop depths.
618        const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
619        if (LLoop != RLoop) {
620          unsigned LDepth = LLoop->getLoopDepth(),
621                   RDepth = RLoop->getLoopDepth();
622          if (LDepth != RDepth)
623            return (int)LDepth - (int)RDepth;
624        }
625
626        // Addrec complexity grows with operand count.
627        unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
628        if (LNumOps != RNumOps)
629          return (int)LNumOps - (int)RNumOps;
630
631        // Lexicographically compare.
632        for (unsigned i = 0; i != LNumOps; ++i) {
633          long X = compare(LA->getOperand(i), RA->getOperand(i));
634          if (X != 0)
635            return X;
636        }
637
638        return 0;
639      }
640
641      case scAddExpr:
642      case scMulExpr:
643      case scSMaxExpr:
644      case scUMaxExpr: {
645        const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
646        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
647
648        // Lexicographically compare n-ary expressions.
649        unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
650        for (unsigned i = 0; i != LNumOps; ++i) {
651          if (i >= RNumOps)
652            return 1;
653          long X = compare(LC->getOperand(i), RC->getOperand(i));
654          if (X != 0)
655            return X;
656        }
657        return (int)LNumOps - (int)RNumOps;
658      }
659
660      case scUDivExpr: {
661        const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
662        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
663
664        // Lexicographically compare udiv expressions.
665        long X = compare(LC->getLHS(), RC->getLHS());
666        if (X != 0)
667          return X;
668        return compare(LC->getRHS(), RC->getRHS());
669      }
670
671      case scTruncate:
672      case scZeroExtend:
673      case scSignExtend: {
674        const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
675        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
676
677        // Compare cast expressions by operand.
678        return compare(LC->getOperand(), RC->getOperand());
679      }
680
681      default:
682        break;
683      }
684
685      llvm_unreachable("Unknown SCEV kind!");
686      return 0;
687    }
688  };
689}
690
691/// GroupByComplexity - Given a list of SCEV objects, order them by their
692/// complexity, and group objects of the same complexity together by value.
693/// When this routine is finished, we know that any duplicates in the vector are
694/// consecutive and that complexity is monotonically increasing.
695///
696/// Note that we go take special precautions to ensure that we get deterministic
697/// results from this routine.  In other words, we don't want the results of
698/// this to depend on where the addresses of various SCEV objects happened to
699/// land in memory.
700///
701static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
702                              LoopInfo *LI) {
703  if (Ops.size() < 2) return;  // Noop
704  if (Ops.size() == 2) {
705    // This is the common case, which also happens to be trivially simple.
706    // Special case it.
707    const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
708    if (SCEVComplexityCompare(LI)(RHS, LHS))
709      std::swap(LHS, RHS);
710    return;
711  }
712
713  // Do the rough sort by complexity.
714  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
715
716  // Now that we are sorted by complexity, group elements of the same
717  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
718  // be extremely short in practice.  Note that we take this approach because we
719  // do not want to depend on the addresses of the objects we are grouping.
720  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
721    const SCEV *S = Ops[i];
722    unsigned Complexity = S->getSCEVType();
723
724    // If there are any objects of the same complexity and same value as this
725    // one, group them.
726    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
727      if (Ops[j] == S) { // Found a duplicate.
728        // Move it to immediately after i'th element.
729        std::swap(Ops[i+1], Ops[j]);
730        ++i;   // no need to rescan it.
731        if (i == e-2) return;  // Done!
732      }
733    }
734  }
735}
736
737
738
739//===----------------------------------------------------------------------===//
740//                      Simple SCEV method implementations
741//===----------------------------------------------------------------------===//
742
743/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
744/// Assume, K > 0.
745static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
746                                       ScalarEvolution &SE,
747                                       const Type* ResultTy) {
748  // Handle the simplest case efficiently.
749  if (K == 1)
750    return SE.getTruncateOrZeroExtend(It, ResultTy);
751
752  // We are using the following formula for BC(It, K):
753  //
754  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
755  //
756  // Suppose, W is the bitwidth of the return value.  We must be prepared for
757  // overflow.  Hence, we must assure that the result of our computation is
758  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
759  // safe in modular arithmetic.
760  //
761  // However, this code doesn't use exactly that formula; the formula it uses
762  // is something like the following, where T is the number of factors of 2 in
763  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
764  // exponentiation:
765  //
766  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
767  //
768  // This formula is trivially equivalent to the previous formula.  However,
769  // this formula can be implemented much more efficiently.  The trick is that
770  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
771  // arithmetic.  To do exact division in modular arithmetic, all we have
772  // to do is multiply by the inverse.  Therefore, this step can be done at
773  // width W.
774  //
775  // The next issue is how to safely do the division by 2^T.  The way this
776  // is done is by doing the multiplication step at a width of at least W + T
777  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
778  // when we perform the division by 2^T (which is equivalent to a right shift
779  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
780  // truncated out after the division by 2^T.
781  //
782  // In comparison to just directly using the first formula, this technique
783  // is much more efficient; using the first formula requires W * K bits,
784  // but this formula less than W + K bits. Also, the first formula requires
785  // a division step, whereas this formula only requires multiplies and shifts.
786  //
787  // It doesn't matter whether the subtraction step is done in the calculation
788  // width or the input iteration count's width; if the subtraction overflows,
789  // the result must be zero anyway.  We prefer here to do it in the width of
790  // the induction variable because it helps a lot for certain cases; CodeGen
791  // isn't smart enough to ignore the overflow, which leads to much less
792  // efficient code if the width of the subtraction is wider than the native
793  // register width.
794  //
795  // (It's possible to not widen at all by pulling out factors of 2 before
796  // the multiplication; for example, K=2 can be calculated as
797  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
798  // extra arithmetic, so it's not an obvious win, and it gets
799  // much more complicated for K > 3.)
800
801  // Protection from insane SCEVs; this bound is conservative,
802  // but it probably doesn't matter.
803  if (K > 1000)
804    return SE.getCouldNotCompute();
805
806  unsigned W = SE.getTypeSizeInBits(ResultTy);
807
808  // Calculate K! / 2^T and T; we divide out the factors of two before
809  // multiplying for calculating K! / 2^T to avoid overflow.
810  // Other overflow doesn't matter because we only care about the bottom
811  // W bits of the result.
812  APInt OddFactorial(W, 1);
813  unsigned T = 1;
814  for (unsigned i = 3; i <= K; ++i) {
815    APInt Mult(W, i);
816    unsigned TwoFactors = Mult.countTrailingZeros();
817    T += TwoFactors;
818    Mult = Mult.lshr(TwoFactors);
819    OddFactorial *= Mult;
820  }
821
822  // We need at least W + T bits for the multiplication step
823  unsigned CalculationBits = W + T;
824
825  // Calculate 2^T, at width T+W.
826  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
827
828  // Calculate the multiplicative inverse of K! / 2^T;
829  // this multiplication factor will perform the exact division by
830  // K! / 2^T.
831  APInt Mod = APInt::getSignedMinValue(W+1);
832  APInt MultiplyFactor = OddFactorial.zext(W+1);
833  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
834  MultiplyFactor = MultiplyFactor.trunc(W);
835
836  // Calculate the product, at width T+W
837  const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
838                                                      CalculationBits);
839  const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
840  for (unsigned i = 1; i != K; ++i) {
841    const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
842    Dividend = SE.getMulExpr(Dividend,
843                             SE.getTruncateOrZeroExtend(S, CalculationTy));
844  }
845
846  // Divide by 2^T
847  const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
848
849  // Truncate the result, and divide by K! / 2^T.
850
851  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
852                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
853}
854
855/// evaluateAtIteration - Return the value of this chain of recurrences at
856/// the specified iteration number.  We can evaluate this recurrence by
857/// multiplying each element in the chain by the binomial coefficient
858/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
859///
860///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
861///
862/// where BC(It, k) stands for binomial coefficient.
863///
864const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
865                                                ScalarEvolution &SE) const {
866  const SCEV *Result = getStart();
867  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
868    // The computation is correct in the face of overflow provided that the
869    // multiplication is performed _after_ the evaluation of the binomial
870    // coefficient.
871    const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
872    if (isa<SCEVCouldNotCompute>(Coeff))
873      return Coeff;
874
875    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
876  }
877  return Result;
878}
879
880//===----------------------------------------------------------------------===//
881//                    SCEV Expression folder implementations
882//===----------------------------------------------------------------------===//
883
884const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
885                                             const Type *Ty) {
886  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
887         "This is not a truncating conversion!");
888  assert(isSCEVable(Ty) &&
889         "This is not a conversion to a SCEVable type!");
890  Ty = getEffectiveSCEVType(Ty);
891
892  FoldingSetNodeID ID;
893  ID.AddInteger(scTruncate);
894  ID.AddPointer(Op);
895  ID.AddPointer(Ty);
896  void *IP = 0;
897  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
898
899  // Fold if the operand is constant.
900  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
901    return getConstant(
902      cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
903                                               getEffectiveSCEVType(Ty))));
904
905  // trunc(trunc(x)) --> trunc(x)
906  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
907    return getTruncateExpr(ST->getOperand(), Ty);
908
909  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
910  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
911    return getTruncateOrSignExtend(SS->getOperand(), Ty);
912
913  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
914  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
915    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
916
917  // If the input value is a chrec scev, truncate the chrec's operands.
918  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
919    SmallVector<const SCEV *, 4> Operands;
920    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
921      Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
922    return getAddRecExpr(Operands, AddRec->getLoop());
923  }
924
925  // As a special case, fold trunc(undef) to undef. We don't want to
926  // know too much about SCEVUnknowns, but this special case is handy
927  // and harmless.
928  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
929    if (isa<UndefValue>(U->getValue()))
930      return getSCEV(UndefValue::get(Ty));
931
932  // The cast wasn't folded; create an explicit cast node. We can reuse
933  // the existing insert position since if we get here, we won't have
934  // made any changes which would invalidate it.
935  SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
936                                                 Op, Ty);
937  UniqueSCEVs.InsertNode(S, IP);
938  return S;
939}
940
941const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
942                                               const Type *Ty) {
943  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
944         "This is not an extending conversion!");
945  assert(isSCEVable(Ty) &&
946         "This is not a conversion to a SCEVable type!");
947  Ty = getEffectiveSCEVType(Ty);
948
949  // Fold if the operand is constant.
950  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
951    return getConstant(
952      cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
953                                              getEffectiveSCEVType(Ty))));
954
955  // zext(zext(x)) --> zext(x)
956  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
957    return getZeroExtendExpr(SZ->getOperand(), Ty);
958
959  // Before doing any expensive analysis, check to see if we've already
960  // computed a SCEV for this Op and Ty.
961  FoldingSetNodeID ID;
962  ID.AddInteger(scZeroExtend);
963  ID.AddPointer(Op);
964  ID.AddPointer(Ty);
965  void *IP = 0;
966  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
967
968  // If the input value is a chrec scev, and we can prove that the value
969  // did not overflow the old, smaller, value, we can zero extend all of the
970  // operands (often constants).  This allows analysis of something like
971  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
972  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
973    if (AR->isAffine()) {
974      const SCEV *Start = AR->getStart();
975      const SCEV *Step = AR->getStepRecurrence(*this);
976      unsigned BitWidth = getTypeSizeInBits(AR->getType());
977      const Loop *L = AR->getLoop();
978
979      // If we have special knowledge that this addrec won't overflow,
980      // we don't need to do any further analysis.
981      if (AR->hasNoUnsignedWrap())
982        return getAddRecExpr(getZeroExtendExpr(Start, Ty),
983                             getZeroExtendExpr(Step, Ty),
984                             L);
985
986      // Check whether the backedge-taken count is SCEVCouldNotCompute.
987      // Note that this serves two purposes: It filters out loops that are
988      // simply not analyzable, and it covers the case where this code is
989      // being called from within backedge-taken count analysis, such that
990      // attempting to ask for the backedge-taken count would likely result
991      // in infinite recursion. In the later case, the analysis code will
992      // cope with a conservative value, and it will take care to purge
993      // that value once it has finished.
994      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
995      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
996        // Manually compute the final value for AR, checking for
997        // overflow.
998
999        // Check whether the backedge-taken count can be losslessly casted to
1000        // the addrec's type. The count is always unsigned.
1001        const SCEV *CastedMaxBECount =
1002          getTruncateOrZeroExtend(MaxBECount, Start->getType());
1003        const SCEV *RecastedMaxBECount =
1004          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1005        if (MaxBECount == RecastedMaxBECount) {
1006          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1007          // Check whether Start+Step*MaxBECount has no unsigned overflow.
1008          const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
1009          const SCEV *Add = getAddExpr(Start, ZMul);
1010          const SCEV *OperandExtendedAdd =
1011            getAddExpr(getZeroExtendExpr(Start, WideTy),
1012                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1013                                  getZeroExtendExpr(Step, WideTy)));
1014          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
1015            // Return the expression with the addrec on the outside.
1016            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1017                                 getZeroExtendExpr(Step, Ty),
1018                                 L);
1019
1020          // Similar to above, only this time treat the step value as signed.
1021          // This covers loops that count down.
1022          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1023          Add = getAddExpr(Start, SMul);
1024          OperandExtendedAdd =
1025            getAddExpr(getZeroExtendExpr(Start, WideTy),
1026                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1027                                  getSignExtendExpr(Step, WideTy)));
1028          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
1029            // Return the expression with the addrec on the outside.
1030            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1031                                 getSignExtendExpr(Step, Ty),
1032                                 L);
1033        }
1034
1035        // If the backedge is guarded by a comparison with the pre-inc value
1036        // the addrec is safe. Also, if the entry is guarded by a comparison
1037        // with the start value and the backedge is guarded by a comparison
1038        // with the post-inc value, the addrec is safe.
1039        if (isKnownPositive(Step)) {
1040          const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1041                                      getUnsignedRange(Step).getUnsignedMax());
1042          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1043              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1044               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1045                                           AR->getPostIncExpr(*this), N)))
1046            // Return the expression with the addrec on the outside.
1047            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1048                                 getZeroExtendExpr(Step, Ty),
1049                                 L);
1050        } else if (isKnownNegative(Step)) {
1051          const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1052                                      getSignedRange(Step).getSignedMin());
1053          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1054              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1055               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1056                                           AR->getPostIncExpr(*this), N)))
1057            // Return the expression with the addrec on the outside.
1058            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1059                                 getSignExtendExpr(Step, Ty),
1060                                 L);
1061        }
1062      }
1063    }
1064
1065  // The cast wasn't folded; create an explicit cast node.
1066  // Recompute the insert position, as it may have been invalidated.
1067  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1068  SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1069                                                   Op, Ty);
1070  UniqueSCEVs.InsertNode(S, IP);
1071  return S;
1072}
1073
1074const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1075                                               const Type *Ty) {
1076  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1077         "This is not an extending conversion!");
1078  assert(isSCEVable(Ty) &&
1079         "This is not a conversion to a SCEVable type!");
1080  Ty = getEffectiveSCEVType(Ty);
1081
1082  // Fold if the operand is constant.
1083  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1084    return getConstant(
1085      cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1086                                              getEffectiveSCEVType(Ty))));
1087
1088  // sext(sext(x)) --> sext(x)
1089  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1090    return getSignExtendExpr(SS->getOperand(), Ty);
1091
1092  // Before doing any expensive analysis, check to see if we've already
1093  // computed a SCEV for this Op and Ty.
1094  FoldingSetNodeID ID;
1095  ID.AddInteger(scSignExtend);
1096  ID.AddPointer(Op);
1097  ID.AddPointer(Ty);
1098  void *IP = 0;
1099  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1100
1101  // If the input value is a chrec scev, and we can prove that the value
1102  // did not overflow the old, smaller, value, we can sign extend all of the
1103  // operands (often constants).  This allows analysis of something like
1104  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1105  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1106    if (AR->isAffine()) {
1107      const SCEV *Start = AR->getStart();
1108      const SCEV *Step = AR->getStepRecurrence(*this);
1109      unsigned BitWidth = getTypeSizeInBits(AR->getType());
1110      const Loop *L = AR->getLoop();
1111
1112      // If we have special knowledge that this addrec won't overflow,
1113      // we don't need to do any further analysis.
1114      if (AR->hasNoSignedWrap())
1115        return getAddRecExpr(getSignExtendExpr(Start, Ty),
1116                             getSignExtendExpr(Step, Ty),
1117                             L);
1118
1119      // Check whether the backedge-taken count is SCEVCouldNotCompute.
1120      // Note that this serves two purposes: It filters out loops that are
1121      // simply not analyzable, and it covers the case where this code is
1122      // being called from within backedge-taken count analysis, such that
1123      // attempting to ask for the backedge-taken count would likely result
1124      // in infinite recursion. In the later case, the analysis code will
1125      // cope with a conservative value, and it will take care to purge
1126      // that value once it has finished.
1127      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1128      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1129        // Manually compute the final value for AR, checking for
1130        // overflow.
1131
1132        // Check whether the backedge-taken count can be losslessly casted to
1133        // the addrec's type. The count is always unsigned.
1134        const SCEV *CastedMaxBECount =
1135          getTruncateOrZeroExtend(MaxBECount, Start->getType());
1136        const SCEV *RecastedMaxBECount =
1137          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1138        if (MaxBECount == RecastedMaxBECount) {
1139          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1140          // Check whether Start+Step*MaxBECount has no signed overflow.
1141          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1142          const SCEV *Add = getAddExpr(Start, SMul);
1143          const SCEV *OperandExtendedAdd =
1144            getAddExpr(getSignExtendExpr(Start, WideTy),
1145                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1146                                  getSignExtendExpr(Step, WideTy)));
1147          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
1148            // Return the expression with the addrec on the outside.
1149            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1150                                 getSignExtendExpr(Step, Ty),
1151                                 L);
1152
1153          // Similar to above, only this time treat the step value as unsigned.
1154          // This covers loops that count up with an unsigned step.
1155          const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
1156          Add = getAddExpr(Start, UMul);
1157          OperandExtendedAdd =
1158            getAddExpr(getSignExtendExpr(Start, WideTy),
1159                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1160                                  getZeroExtendExpr(Step, WideTy)));
1161          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
1162            // Return the expression with the addrec on the outside.
1163            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1164                                 getZeroExtendExpr(Step, Ty),
1165                                 L);
1166        }
1167
1168        // If the backedge is guarded by a comparison with the pre-inc value
1169        // the addrec is safe. Also, if the entry is guarded by a comparison
1170        // with the start value and the backedge is guarded by a comparison
1171        // with the post-inc value, the addrec is safe.
1172        if (isKnownPositive(Step)) {
1173          const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1174                                      getSignedRange(Step).getSignedMax());
1175          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
1176              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
1177               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1178                                           AR->getPostIncExpr(*this), N)))
1179            // Return the expression with the addrec on the outside.
1180            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1181                                 getSignExtendExpr(Step, Ty),
1182                                 L);
1183        } else if (isKnownNegative(Step)) {
1184          const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1185                                      getSignedRange(Step).getSignedMin());
1186          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
1187              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
1188               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1189                                           AR->getPostIncExpr(*this), N)))
1190            // Return the expression with the addrec on the outside.
1191            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1192                                 getSignExtendExpr(Step, Ty),
1193                                 L);
1194        }
1195      }
1196    }
1197
1198  // The cast wasn't folded; create an explicit cast node.
1199  // Recompute the insert position, as it may have been invalidated.
1200  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1201  SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1202                                                   Op, Ty);
1203  UniqueSCEVs.InsertNode(S, IP);
1204  return S;
1205}
1206
1207/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1208/// unspecified bits out to the given type.
1209///
1210const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1211                                              const Type *Ty) {
1212  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1213         "This is not an extending conversion!");
1214  assert(isSCEVable(Ty) &&
1215         "This is not a conversion to a SCEVable type!");
1216  Ty = getEffectiveSCEVType(Ty);
1217
1218  // Sign-extend negative constants.
1219  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1220    if (SC->getValue()->getValue().isNegative())
1221      return getSignExtendExpr(Op, Ty);
1222
1223  // Peel off a truncate cast.
1224  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1225    const SCEV *NewOp = T->getOperand();
1226    if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1227      return getAnyExtendExpr(NewOp, Ty);
1228    return getTruncateOrNoop(NewOp, Ty);
1229  }
1230
1231  // Next try a zext cast. If the cast is folded, use it.
1232  const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1233  if (!isa<SCEVZeroExtendExpr>(ZExt))
1234    return ZExt;
1235
1236  // Next try a sext cast. If the cast is folded, use it.
1237  const SCEV *SExt = getSignExtendExpr(Op, Ty);
1238  if (!isa<SCEVSignExtendExpr>(SExt))
1239    return SExt;
1240
1241  // Force the cast to be folded into the operands of an addrec.
1242  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1243    SmallVector<const SCEV *, 4> Ops;
1244    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1245         I != E; ++I)
1246      Ops.push_back(getAnyExtendExpr(*I, Ty));
1247    return getAddRecExpr(Ops, AR->getLoop());
1248  }
1249
1250  // As a special case, fold anyext(undef) to undef. We don't want to
1251  // know too much about SCEVUnknowns, but this special case is handy
1252  // and harmless.
1253  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1254    if (isa<UndefValue>(U->getValue()))
1255      return getSCEV(UndefValue::get(Ty));
1256
1257  // If the expression is obviously signed, use the sext cast value.
1258  if (isa<SCEVSMaxExpr>(Op))
1259    return SExt;
1260
1261  // Absent any other information, use the zext cast value.
1262  return ZExt;
1263}
1264
1265/// CollectAddOperandsWithScales - Process the given Ops list, which is
1266/// a list of operands to be added under the given scale, update the given
1267/// map. This is a helper function for getAddRecExpr. As an example of
1268/// what it does, given a sequence of operands that would form an add
1269/// expression like this:
1270///
1271///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1272///
1273/// where A and B are constants, update the map with these values:
1274///
1275///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1276///
1277/// and add 13 + A*B*29 to AccumulatedConstant.
1278/// This will allow getAddRecExpr to produce this:
1279///
1280///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1281///
1282/// This form often exposes folding opportunities that are hidden in
1283/// the original operand list.
1284///
1285/// Return true iff it appears that any interesting folding opportunities
1286/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1287/// the common case where no interesting opportunities are present, and
1288/// is also used as a check to avoid infinite recursion.
1289///
1290static bool
1291CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1292                             SmallVector<const SCEV *, 8> &NewOps,
1293                             APInt &AccumulatedConstant,
1294                             const SCEV *const *Ops, size_t NumOperands,
1295                             const APInt &Scale,
1296                             ScalarEvolution &SE) {
1297  bool Interesting = false;
1298
1299  // Iterate over the add operands. They are sorted, with constants first.
1300  unsigned i = 0;
1301  while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1302    ++i;
1303    // Pull a buried constant out to the outside.
1304    if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1305      Interesting = true;
1306    AccumulatedConstant += Scale * C->getValue()->getValue();
1307  }
1308
1309  // Next comes everything else. We're especially interested in multiplies
1310  // here, but they're in the middle, so just visit the rest with one loop.
1311  for (; i != NumOperands; ++i) {
1312    const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1313    if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1314      APInt NewScale =
1315        Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1316      if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1317        // A multiplication of a constant with another add; recurse.
1318        const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1319        Interesting |=
1320          CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1321                                       Add->op_begin(), Add->getNumOperands(),
1322                                       NewScale, SE);
1323      } else {
1324        // A multiplication of a constant with some other value. Update
1325        // the map.
1326        SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1327        const SCEV *Key = SE.getMulExpr(MulOps);
1328        std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1329          M.insert(std::make_pair(Key, NewScale));
1330        if (Pair.second) {
1331          NewOps.push_back(Pair.first->first);
1332        } else {
1333          Pair.first->second += NewScale;
1334          // The map already had an entry for this value, which may indicate
1335          // a folding opportunity.
1336          Interesting = true;
1337        }
1338      }
1339    } else {
1340      // An ordinary operand. Update the map.
1341      std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1342        M.insert(std::make_pair(Ops[i], Scale));
1343      if (Pair.second) {
1344        NewOps.push_back(Pair.first->first);
1345      } else {
1346        Pair.first->second += Scale;
1347        // The map already had an entry for this value, which may indicate
1348        // a folding opportunity.
1349        Interesting = true;
1350      }
1351    }
1352  }
1353
1354  return Interesting;
1355}
1356
1357namespace {
1358  struct APIntCompare {
1359    bool operator()(const APInt &LHS, const APInt &RHS) const {
1360      return LHS.ult(RHS);
1361    }
1362  };
1363}
1364
1365/// getAddExpr - Get a canonical add expression, or something simpler if
1366/// possible.
1367const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1368                                        bool HasNUW, bool HasNSW) {
1369  assert(!Ops.empty() && "Cannot get empty add!");
1370  if (Ops.size() == 1) return Ops[0];
1371#ifndef NDEBUG
1372  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1373  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1374    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1375           "SCEVAddExpr operand types don't match!");
1376#endif
1377
1378  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1379  if (!HasNUW && HasNSW) {
1380    bool All = true;
1381    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1382         E = Ops.end(); I != E; ++I)
1383      if (!isKnownNonNegative(*I)) {
1384        All = false;
1385        break;
1386      }
1387    if (All) HasNUW = true;
1388  }
1389
1390  // Sort by complexity, this groups all similar expression types together.
1391  GroupByComplexity(Ops, LI);
1392
1393  // If there are any constants, fold them together.
1394  unsigned Idx = 0;
1395  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1396    ++Idx;
1397    assert(Idx < Ops.size());
1398    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1399      // We found two constants, fold them together!
1400      Ops[0] = getConstant(LHSC->getValue()->getValue() +
1401                           RHSC->getValue()->getValue());
1402      if (Ops.size() == 2) return Ops[0];
1403      Ops.erase(Ops.begin()+1);  // Erase the folded element
1404      LHSC = cast<SCEVConstant>(Ops[0]);
1405    }
1406
1407    // If we are left with a constant zero being added, strip it off.
1408    if (LHSC->getValue()->isZero()) {
1409      Ops.erase(Ops.begin());
1410      --Idx;
1411    }
1412
1413    if (Ops.size() == 1) return Ops[0];
1414  }
1415
1416  // Okay, check to see if the same value occurs in the operand list more than
1417  // once.  If so, merge them together into an multiply expression.  Since we
1418  // sorted the list, these values are required to be adjacent.
1419  const Type *Ty = Ops[0]->getType();
1420  bool FoundMatch = false;
1421  for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
1422    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
1423      // Scan ahead to count how many equal operands there are.
1424      unsigned Count = 2;
1425      while (i+Count != e && Ops[i+Count] == Ops[i])
1426        ++Count;
1427      // Merge the values into a multiply.
1428      const SCEV *Scale = getConstant(Ty, Count);
1429      const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1430      if (Ops.size() == Count)
1431        return Mul;
1432      Ops[i] = Mul;
1433      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
1434      --i; e -= Count - 1;
1435      FoundMatch = true;
1436    }
1437  if (FoundMatch)
1438    return getAddExpr(Ops, HasNUW, HasNSW);
1439
1440  // Check for truncates. If all the operands are truncated from the same
1441  // type, see if factoring out the truncate would permit the result to be
1442  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1443  // if the contents of the resulting outer trunc fold to something simple.
1444  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1445    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1446    const Type *DstType = Trunc->getType();
1447    const Type *SrcType = Trunc->getOperand()->getType();
1448    SmallVector<const SCEV *, 8> LargeOps;
1449    bool Ok = true;
1450    // Check all the operands to see if they can be represented in the
1451    // source type of the truncate.
1452    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1453      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1454        if (T->getOperand()->getType() != SrcType) {
1455          Ok = false;
1456          break;
1457        }
1458        LargeOps.push_back(T->getOperand());
1459      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1460        LargeOps.push_back(getAnyExtendExpr(C, SrcType));
1461      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1462        SmallVector<const SCEV *, 8> LargeMulOps;
1463        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1464          if (const SCEVTruncateExpr *T =
1465                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1466            if (T->getOperand()->getType() != SrcType) {
1467              Ok = false;
1468              break;
1469            }
1470            LargeMulOps.push_back(T->getOperand());
1471          } else if (const SCEVConstant *C =
1472                       dyn_cast<SCEVConstant>(M->getOperand(j))) {
1473            LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
1474          } else {
1475            Ok = false;
1476            break;
1477          }
1478        }
1479        if (Ok)
1480          LargeOps.push_back(getMulExpr(LargeMulOps));
1481      } else {
1482        Ok = false;
1483        break;
1484      }
1485    }
1486    if (Ok) {
1487      // Evaluate the expression in the larger type.
1488      const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
1489      // If it folds to something simple, use it. Otherwise, don't.
1490      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1491        return getTruncateExpr(Fold, DstType);
1492    }
1493  }
1494
1495  // Skip past any other cast SCEVs.
1496  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1497    ++Idx;
1498
1499  // If there are add operands they would be next.
1500  if (Idx < Ops.size()) {
1501    bool DeletedAdd = false;
1502    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1503      // If we have an add, expand the add operands onto the end of the operands
1504      // list.
1505      Ops.erase(Ops.begin()+Idx);
1506      Ops.append(Add->op_begin(), Add->op_end());
1507      DeletedAdd = true;
1508    }
1509
1510    // If we deleted at least one add, we added operands to the end of the list,
1511    // and they are not necessarily sorted.  Recurse to resort and resimplify
1512    // any operands we just acquired.
1513    if (DeletedAdd)
1514      return getAddExpr(Ops);
1515  }
1516
1517  // Skip over the add expression until we get to a multiply.
1518  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1519    ++Idx;
1520
1521  // Check to see if there are any folding opportunities present with
1522  // operands multiplied by constant values.
1523  if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1524    uint64_t BitWidth = getTypeSizeInBits(Ty);
1525    DenseMap<const SCEV *, APInt> M;
1526    SmallVector<const SCEV *, 8> NewOps;
1527    APInt AccumulatedConstant(BitWidth, 0);
1528    if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1529                                     Ops.data(), Ops.size(),
1530                                     APInt(BitWidth, 1), *this)) {
1531      // Some interesting folding opportunity is present, so its worthwhile to
1532      // re-generate the operands list. Group the operands by constant scale,
1533      // to avoid multiplying by the same constant scale multiple times.
1534      std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1535      for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
1536           E = NewOps.end(); I != E; ++I)
1537        MulOpLists[M.find(*I)->second].push_back(*I);
1538      // Re-generate the operands list.
1539      Ops.clear();
1540      if (AccumulatedConstant != 0)
1541        Ops.push_back(getConstant(AccumulatedConstant));
1542      for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1543           I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1544        if (I->first != 0)
1545          Ops.push_back(getMulExpr(getConstant(I->first),
1546                                   getAddExpr(I->second)));
1547      if (Ops.empty())
1548        return getConstant(Ty, 0);
1549      if (Ops.size() == 1)
1550        return Ops[0];
1551      return getAddExpr(Ops);
1552    }
1553  }
1554
1555  // If we are adding something to a multiply expression, make sure the
1556  // something is not already an operand of the multiply.  If so, merge it into
1557  // the multiply.
1558  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1559    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1560    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1561      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1562      if (isa<SCEVConstant>(MulOpSCEV))
1563        continue;
1564      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1565        if (MulOpSCEV == Ops[AddOp]) {
1566          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1567          const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1568          if (Mul->getNumOperands() != 2) {
1569            // If the multiply has more than two operands, we must get the
1570            // Y*Z term.
1571            SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1572                                                Mul->op_begin()+MulOp);
1573            MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1574            InnerMul = getMulExpr(MulOps);
1575          }
1576          const SCEV *One = getConstant(Ty, 1);
1577          const SCEV *AddOne = getAddExpr(One, InnerMul);
1578          const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
1579          if (Ops.size() == 2) return OuterMul;
1580          if (AddOp < Idx) {
1581            Ops.erase(Ops.begin()+AddOp);
1582            Ops.erase(Ops.begin()+Idx-1);
1583          } else {
1584            Ops.erase(Ops.begin()+Idx);
1585            Ops.erase(Ops.begin()+AddOp-1);
1586          }
1587          Ops.push_back(OuterMul);
1588          return getAddExpr(Ops);
1589        }
1590
1591      // Check this multiply against other multiplies being added together.
1592      bool AnyFold = false;
1593      for (unsigned OtherMulIdx = Idx+1;
1594           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1595           ++OtherMulIdx) {
1596        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1597        // If MulOp occurs in OtherMul, we can fold the two multiplies
1598        // together.
1599        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1600             OMulOp != e; ++OMulOp)
1601          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1602            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1603            const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
1604            if (Mul->getNumOperands() != 2) {
1605              SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1606                                                  Mul->op_begin()+MulOp);
1607              MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1608              InnerMul1 = getMulExpr(MulOps);
1609            }
1610            const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1611            if (OtherMul->getNumOperands() != 2) {
1612              SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1613                                                  OtherMul->op_begin()+OMulOp);
1614              MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
1615              InnerMul2 = getMulExpr(MulOps);
1616            }
1617            const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1618            const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1619            if (Ops.size() == 2) return OuterMul;
1620            Ops[Idx] = OuterMul;
1621            Ops.erase(Ops.begin()+OtherMulIdx);
1622            OtherMulIdx = Idx;
1623            AnyFold = true;
1624          }
1625      }
1626      if (AnyFold)
1627        return getAddExpr(Ops);
1628    }
1629  }
1630
1631  // If there are any add recurrences in the operands list, see if any other
1632  // added values are loop invariant.  If so, we can fold them into the
1633  // recurrence.
1634  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1635    ++Idx;
1636
1637  // Scan over all recurrences, trying to fold loop invariants into them.
1638  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1639    // Scan all of the other operands to this add and add them to the vector if
1640    // they are loop invariant w.r.t. the recurrence.
1641    SmallVector<const SCEV *, 8> LIOps;
1642    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1643    const Loop *AddRecLoop = AddRec->getLoop();
1644    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1645      if (Ops[i]->isLoopInvariant(AddRecLoop)) {
1646        LIOps.push_back(Ops[i]);
1647        Ops.erase(Ops.begin()+i);
1648        --i; --e;
1649      }
1650
1651    // If we found some loop invariants, fold them into the recurrence.
1652    if (!LIOps.empty()) {
1653      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1654      LIOps.push_back(AddRec->getStart());
1655
1656      SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1657                                             AddRec->op_end());
1658      AddRecOps[0] = getAddExpr(LIOps);
1659
1660      // Build the new addrec. Propagate the NUW and NSW flags if both the
1661      // outer add and the inner addrec are guaranteed to have no overflow.
1662      const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop,
1663                                         HasNUW && AddRec->hasNoUnsignedWrap(),
1664                                         HasNSW && AddRec->hasNoSignedWrap());
1665
1666      // If all of the other operands were loop invariant, we are done.
1667      if (Ops.size() == 1) return NewRec;
1668
1669      // Otherwise, add the folded AddRec by the non-liv parts.
1670      for (unsigned i = 0;; ++i)
1671        if (Ops[i] == AddRec) {
1672          Ops[i] = NewRec;
1673          break;
1674        }
1675      return getAddExpr(Ops);
1676    }
1677
1678    // Okay, if there weren't any loop invariants to be folded, check to see if
1679    // there are multiple AddRec's with the same loop induction variable being
1680    // added together.  If so, we can fold them.
1681    for (unsigned OtherIdx = Idx+1;
1682         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1683         ++OtherIdx)
1684      if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1685        // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
1686        SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1687                                               AddRec->op_end());
1688        for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1689             ++OtherIdx)
1690          if (const SCEVAddRecExpr *OtherAddRec =
1691                dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1692            if (OtherAddRec->getLoop() == AddRecLoop) {
1693              for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1694                   i != e; ++i) {
1695                if (i >= AddRecOps.size()) {
1696                  AddRecOps.append(OtherAddRec->op_begin()+i,
1697                                   OtherAddRec->op_end());
1698                  break;
1699                }
1700                AddRecOps[i] = getAddExpr(AddRecOps[i],
1701                                          OtherAddRec->getOperand(i));
1702              }
1703              Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1704            }
1705        Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop);
1706        return getAddExpr(Ops);
1707      }
1708
1709    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1710    // next one.
1711  }
1712
1713  // Okay, it looks like we really DO need an add expr.  Check to see if we
1714  // already have one, otherwise create a new one.
1715  FoldingSetNodeID ID;
1716  ID.AddInteger(scAddExpr);
1717  ID.AddInteger(Ops.size());
1718  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1719    ID.AddPointer(Ops[i]);
1720  void *IP = 0;
1721  SCEVAddExpr *S =
1722    static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1723  if (!S) {
1724    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1725    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1726    S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1727                                        O, Ops.size());
1728    UniqueSCEVs.InsertNode(S, IP);
1729  }
1730  if (HasNUW) S->setHasNoUnsignedWrap(true);
1731  if (HasNSW) S->setHasNoSignedWrap(true);
1732  return S;
1733}
1734
1735/// getMulExpr - Get a canonical multiply expression, or something simpler if
1736/// possible.
1737const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1738                                        bool HasNUW, bool HasNSW) {
1739  assert(!Ops.empty() && "Cannot get empty mul!");
1740  if (Ops.size() == 1) return Ops[0];
1741#ifndef NDEBUG
1742  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1743  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1744    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1745           "SCEVMulExpr operand types don't match!");
1746#endif
1747
1748  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1749  if (!HasNUW && HasNSW) {
1750    bool All = true;
1751    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1752         E = Ops.end(); I != E; ++I)
1753      if (!isKnownNonNegative(*I)) {
1754        All = false;
1755        break;
1756      }
1757    if (All) HasNUW = true;
1758  }
1759
1760  // Sort by complexity, this groups all similar expression types together.
1761  GroupByComplexity(Ops, LI);
1762
1763  // If there are any constants, fold them together.
1764  unsigned Idx = 0;
1765  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1766
1767    // C1*(C2+V) -> C1*C2 + C1*V
1768    if (Ops.size() == 2)
1769      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1770        if (Add->getNumOperands() == 2 &&
1771            isa<SCEVConstant>(Add->getOperand(0)))
1772          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1773                            getMulExpr(LHSC, Add->getOperand(1)));
1774
1775    ++Idx;
1776    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1777      // We found two constants, fold them together!
1778      ConstantInt *Fold = ConstantInt::get(getContext(),
1779                                           LHSC->getValue()->getValue() *
1780                                           RHSC->getValue()->getValue());
1781      Ops[0] = getConstant(Fold);
1782      Ops.erase(Ops.begin()+1);  // Erase the folded element
1783      if (Ops.size() == 1) return Ops[0];
1784      LHSC = cast<SCEVConstant>(Ops[0]);
1785    }
1786
1787    // If we are left with a constant one being multiplied, strip it off.
1788    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1789      Ops.erase(Ops.begin());
1790      --Idx;
1791    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1792      // If we have a multiply of zero, it will always be zero.
1793      return Ops[0];
1794    } else if (Ops[0]->isAllOnesValue()) {
1795      // If we have a mul by -1 of an add, try distributing the -1 among the
1796      // add operands.
1797      if (Ops.size() == 2)
1798        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1799          SmallVector<const SCEV *, 4> NewOps;
1800          bool AnyFolded = false;
1801          for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1802               I != E; ++I) {
1803            const SCEV *Mul = getMulExpr(Ops[0], *I);
1804            if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1805            NewOps.push_back(Mul);
1806          }
1807          if (AnyFolded)
1808            return getAddExpr(NewOps);
1809        }
1810    }
1811
1812    if (Ops.size() == 1)
1813      return Ops[0];
1814  }
1815
1816  // Skip over the add expression until we get to a multiply.
1817  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1818    ++Idx;
1819
1820  // If there are mul operands inline them all into this expression.
1821  if (Idx < Ops.size()) {
1822    bool DeletedMul = false;
1823    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1824      // If we have an mul, expand the mul operands onto the end of the operands
1825      // list.
1826      Ops.erase(Ops.begin()+Idx);
1827      Ops.append(Mul->op_begin(), Mul->op_end());
1828      DeletedMul = true;
1829    }
1830
1831    // If we deleted at least one mul, we added operands to the end of the list,
1832    // and they are not necessarily sorted.  Recurse to resort and resimplify
1833    // any operands we just acquired.
1834    if (DeletedMul)
1835      return getMulExpr(Ops);
1836  }
1837
1838  // If there are any add recurrences in the operands list, see if any other
1839  // added values are loop invariant.  If so, we can fold them into the
1840  // recurrence.
1841  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1842    ++Idx;
1843
1844  // Scan over all recurrences, trying to fold loop invariants into them.
1845  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1846    // Scan all of the other operands to this mul and add them to the vector if
1847    // they are loop invariant w.r.t. the recurrence.
1848    SmallVector<const SCEV *, 8> LIOps;
1849    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1850    const Loop *AddRecLoop = AddRec->getLoop();
1851    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1852      if (Ops[i]->isLoopInvariant(AddRecLoop)) {
1853        LIOps.push_back(Ops[i]);
1854        Ops.erase(Ops.begin()+i);
1855        --i; --e;
1856      }
1857
1858    // If we found some loop invariants, fold them into the recurrence.
1859    if (!LIOps.empty()) {
1860      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1861      SmallVector<const SCEV *, 4> NewOps;
1862      NewOps.reserve(AddRec->getNumOperands());
1863      const SCEV *Scale = getMulExpr(LIOps);
1864      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1865        NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1866
1867      // Build the new addrec. Propagate the NUW and NSW flags if both the
1868      // outer mul and the inner addrec are guaranteed to have no overflow.
1869      const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop,
1870                                         HasNUW && AddRec->hasNoUnsignedWrap(),
1871                                         HasNSW && AddRec->hasNoSignedWrap());
1872
1873      // If all of the other operands were loop invariant, we are done.
1874      if (Ops.size() == 1) return NewRec;
1875
1876      // Otherwise, multiply the folded AddRec by the non-liv parts.
1877      for (unsigned i = 0;; ++i)
1878        if (Ops[i] == AddRec) {
1879          Ops[i] = NewRec;
1880          break;
1881        }
1882      return getMulExpr(Ops);
1883    }
1884
1885    // Okay, if there weren't any loop invariants to be folded, check to see if
1886    // there are multiple AddRec's with the same loop induction variable being
1887    // multiplied together.  If so, we can fold them.
1888    for (unsigned OtherIdx = Idx+1;
1889         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1890      if (OtherIdx != Idx) {
1891        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1892        if (AddRecLoop == OtherAddRec->getLoop()) {
1893          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
1894          const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1895          const SCEV *NewStart = getMulExpr(F->getStart(), G->getStart());
1896          const SCEV *B = F->getStepRecurrence(*this);
1897          const SCEV *D = G->getStepRecurrence(*this);
1898          const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1899                                           getMulExpr(G, B),
1900                                           getMulExpr(B, D));
1901          const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1902                                                F->getLoop());
1903          if (Ops.size() == 2) return NewAddRec;
1904
1905          Ops.erase(Ops.begin()+Idx);
1906          Ops.erase(Ops.begin()+OtherIdx-1);
1907          Ops.push_back(NewAddRec);
1908          return getMulExpr(Ops);
1909        }
1910      }
1911
1912    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1913    // next one.
1914  }
1915
1916  // Okay, it looks like we really DO need an mul expr.  Check to see if we
1917  // already have one, otherwise create a new one.
1918  FoldingSetNodeID ID;
1919  ID.AddInteger(scMulExpr);
1920  ID.AddInteger(Ops.size());
1921  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1922    ID.AddPointer(Ops[i]);
1923  void *IP = 0;
1924  SCEVMulExpr *S =
1925    static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1926  if (!S) {
1927    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1928    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1929    S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1930                                        O, Ops.size());
1931    UniqueSCEVs.InsertNode(S, IP);
1932  }
1933  if (HasNUW) S->setHasNoUnsignedWrap(true);
1934  if (HasNSW) S->setHasNoSignedWrap(true);
1935  return S;
1936}
1937
1938/// getUDivExpr - Get a canonical unsigned division expression, or something
1939/// simpler if possible.
1940const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1941                                         const SCEV *RHS) {
1942  assert(getEffectiveSCEVType(LHS->getType()) ==
1943         getEffectiveSCEVType(RHS->getType()) &&
1944         "SCEVUDivExpr operand types don't match!");
1945
1946  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1947    if (RHSC->getValue()->equalsInt(1))
1948      return LHS;                               // X udiv 1 --> x
1949    // If the denominator is zero, the result of the udiv is undefined. Don't
1950    // try to analyze it, because the resolution chosen here may differ from
1951    // the resolution chosen in other parts of the compiler.
1952    if (!RHSC->getValue()->isZero()) {
1953      // Determine if the division can be folded into the operands of
1954      // its operands.
1955      // TODO: Generalize this to non-constants by using known-bits information.
1956      const Type *Ty = LHS->getType();
1957      unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1958      unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
1959      // For non-power-of-two values, effectively round the value up to the
1960      // nearest power of two.
1961      if (!RHSC->getValue()->getValue().isPowerOf2())
1962        ++MaxShiftAmt;
1963      const IntegerType *ExtTy =
1964        IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1965      // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1966      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1967        if (const SCEVConstant *Step =
1968              dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1969          if (!Step->getValue()->getValue()
1970                .urem(RHSC->getValue()->getValue()) &&
1971              getZeroExtendExpr(AR, ExtTy) ==
1972              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1973                            getZeroExtendExpr(Step, ExtTy),
1974                            AR->getLoop())) {
1975            SmallVector<const SCEV *, 4> Operands;
1976            for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1977              Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1978            return getAddRecExpr(Operands, AR->getLoop());
1979          }
1980      // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1981      if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1982        SmallVector<const SCEV *, 4> Operands;
1983        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1984          Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1985        if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1986          // Find an operand that's safely divisible.
1987          for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1988            const SCEV *Op = M->getOperand(i);
1989            const SCEV *Div = getUDivExpr(Op, RHSC);
1990            if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1991              Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1992                                                      M->op_end());
1993              Operands[i] = Div;
1994              return getMulExpr(Operands);
1995            }
1996          }
1997      }
1998      // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1999      if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
2000        SmallVector<const SCEV *, 4> Operands;
2001        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2002          Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2003        if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2004          Operands.clear();
2005          for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2006            const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2007            if (isa<SCEVUDivExpr>(Op) ||
2008                getMulExpr(Op, RHS) != A->getOperand(i))
2009              break;
2010            Operands.push_back(Op);
2011          }
2012          if (Operands.size() == A->getNumOperands())
2013            return getAddExpr(Operands);
2014        }
2015      }
2016
2017      // Fold if both operands are constant.
2018      if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2019        Constant *LHSCV = LHSC->getValue();
2020        Constant *RHSCV = RHSC->getValue();
2021        return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2022                                                                   RHSCV)));
2023      }
2024    }
2025  }
2026
2027  FoldingSetNodeID ID;
2028  ID.AddInteger(scUDivExpr);
2029  ID.AddPointer(LHS);
2030  ID.AddPointer(RHS);
2031  void *IP = 0;
2032  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2033  SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2034                                             LHS, RHS);
2035  UniqueSCEVs.InsertNode(S, IP);
2036  return S;
2037}
2038
2039
2040/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2041/// Simplify the expression as much as possible.
2042const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
2043                                           const SCEV *Step, const Loop *L,
2044                                           bool HasNUW, bool HasNSW) {
2045  SmallVector<const SCEV *, 4> Operands;
2046  Operands.push_back(Start);
2047  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2048    if (StepChrec->getLoop() == L) {
2049      Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2050      return getAddRecExpr(Operands, L);
2051    }
2052
2053  Operands.push_back(Step);
2054  return getAddRecExpr(Operands, L, HasNUW, HasNSW);
2055}
2056
2057/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2058/// Simplify the expression as much as possible.
2059const SCEV *
2060ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2061                               const Loop *L,
2062                               bool HasNUW, bool HasNSW) {
2063  if (Operands.size() == 1) return Operands[0];
2064#ifndef NDEBUG
2065  const Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2066  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2067    assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2068           "SCEVAddRecExpr operand types don't match!");
2069#endif
2070
2071  if (Operands.back()->isZero()) {
2072    Operands.pop_back();
2073    return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0}  -->  X
2074  }
2075
2076  // It's tempting to want to call getMaxBackedgeTakenCount count here and
2077  // use that information to infer NUW and NSW flags. However, computing a
2078  // BE count requires calling getAddRecExpr, so we may not yet have a
2079  // meaningful BE count at this point (and if we don't, we'd be stuck
2080  // with a SCEVCouldNotCompute as the cached BE count).
2081
2082  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
2083  if (!HasNUW && HasNSW) {
2084    bool All = true;
2085    for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2086         E = Operands.end(); I != E; ++I)
2087      if (!isKnownNonNegative(*I)) {
2088        All = false;
2089        break;
2090      }
2091    if (All) HasNUW = true;
2092  }
2093
2094  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2095  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2096    const Loop *NestedLoop = NestedAR->getLoop();
2097    if (L->contains(NestedLoop) ?
2098        (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
2099        (!NestedLoop->contains(L) &&
2100         DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
2101      SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2102                                                  NestedAR->op_end());
2103      Operands[0] = NestedAR->getStart();
2104      // AddRecs require their operands be loop-invariant with respect to their
2105      // loops. Don't perform this transformation if it would break this
2106      // requirement.
2107      bool AllInvariant = true;
2108      for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2109        if (!Operands[i]->isLoopInvariant(L)) {
2110          AllInvariant = false;
2111          break;
2112        }
2113      if (AllInvariant) {
2114        NestedOperands[0] = getAddRecExpr(Operands, L);
2115        AllInvariant = true;
2116        for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2117          if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
2118            AllInvariant = false;
2119            break;
2120          }
2121        if (AllInvariant)
2122          // Ok, both add recurrences are valid after the transformation.
2123          return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
2124      }
2125      // Reset Operands to its original state.
2126      Operands[0] = NestedAR;
2127    }
2128  }
2129
2130  // Okay, it looks like we really DO need an addrec expr.  Check to see if we
2131  // already have one, otherwise create a new one.
2132  FoldingSetNodeID ID;
2133  ID.AddInteger(scAddRecExpr);
2134  ID.AddInteger(Operands.size());
2135  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2136    ID.AddPointer(Operands[i]);
2137  ID.AddPointer(L);
2138  void *IP = 0;
2139  SCEVAddRecExpr *S =
2140    static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2141  if (!S) {
2142    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2143    std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2144    S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2145                                           O, Operands.size(), L);
2146    UniqueSCEVs.InsertNode(S, IP);
2147  }
2148  if (HasNUW) S->setHasNoUnsignedWrap(true);
2149  if (HasNSW) S->setHasNoSignedWrap(true);
2150  return S;
2151}
2152
2153const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2154                                         const SCEV *RHS) {
2155  SmallVector<const SCEV *, 2> Ops;
2156  Ops.push_back(LHS);
2157  Ops.push_back(RHS);
2158  return getSMaxExpr(Ops);
2159}
2160
2161const SCEV *
2162ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2163  assert(!Ops.empty() && "Cannot get empty smax!");
2164  if (Ops.size() == 1) return Ops[0];
2165#ifndef NDEBUG
2166  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2167  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2168    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2169           "SCEVSMaxExpr operand types don't match!");
2170#endif
2171
2172  // Sort by complexity, this groups all similar expression types together.
2173  GroupByComplexity(Ops, LI);
2174
2175  // If there are any constants, fold them together.
2176  unsigned Idx = 0;
2177  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2178    ++Idx;
2179    assert(Idx < Ops.size());
2180    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2181      // We found two constants, fold them together!
2182      ConstantInt *Fold = ConstantInt::get(getContext(),
2183                              APIntOps::smax(LHSC->getValue()->getValue(),
2184                                             RHSC->getValue()->getValue()));
2185      Ops[0] = getConstant(Fold);
2186      Ops.erase(Ops.begin()+1);  // Erase the folded element
2187      if (Ops.size() == 1) return Ops[0];
2188      LHSC = cast<SCEVConstant>(Ops[0]);
2189    }
2190
2191    // If we are left with a constant minimum-int, strip it off.
2192    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2193      Ops.erase(Ops.begin());
2194      --Idx;
2195    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2196      // If we have an smax with a constant maximum-int, it will always be
2197      // maximum-int.
2198      return Ops[0];
2199    }
2200
2201    if (Ops.size() == 1) return Ops[0];
2202  }
2203
2204  // Find the first SMax
2205  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2206    ++Idx;
2207
2208  // Check to see if one of the operands is an SMax. If so, expand its operands
2209  // onto our operand list, and recurse to simplify.
2210  if (Idx < Ops.size()) {
2211    bool DeletedSMax = false;
2212    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
2213      Ops.erase(Ops.begin()+Idx);
2214      Ops.append(SMax->op_begin(), SMax->op_end());
2215      DeletedSMax = true;
2216    }
2217
2218    if (DeletedSMax)
2219      return getSMaxExpr(Ops);
2220  }
2221
2222  // Okay, check to see if the same value occurs in the operand list twice.  If
2223  // so, delete one.  Since we sorted the list, these values are required to
2224  // be adjacent.
2225  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2226    //  X smax Y smax Y  -->  X smax Y
2227    //  X smax Y         -->  X, if X is always greater than Y
2228    if (Ops[i] == Ops[i+1] ||
2229        isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2230      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2231      --i; --e;
2232    } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
2233      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2234      --i; --e;
2235    }
2236
2237  if (Ops.size() == 1) return Ops[0];
2238
2239  assert(!Ops.empty() && "Reduced smax down to nothing!");
2240
2241  // Okay, it looks like we really DO need an smax expr.  Check to see if we
2242  // already have one, otherwise create a new one.
2243  FoldingSetNodeID ID;
2244  ID.AddInteger(scSMaxExpr);
2245  ID.AddInteger(Ops.size());
2246  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2247    ID.AddPointer(Ops[i]);
2248  void *IP = 0;
2249  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2250  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2251  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2252  SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2253                                             O, Ops.size());
2254  UniqueSCEVs.InsertNode(S, IP);
2255  return S;
2256}
2257
2258const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2259                                         const SCEV *RHS) {
2260  SmallVector<const SCEV *, 2> Ops;
2261  Ops.push_back(LHS);
2262  Ops.push_back(RHS);
2263  return getUMaxExpr(Ops);
2264}
2265
2266const SCEV *
2267ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2268  assert(!Ops.empty() && "Cannot get empty umax!");
2269  if (Ops.size() == 1) return Ops[0];
2270#ifndef NDEBUG
2271  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2272  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2273    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2274           "SCEVUMaxExpr operand types don't match!");
2275#endif
2276
2277  // Sort by complexity, this groups all similar expression types together.
2278  GroupByComplexity(Ops, LI);
2279
2280  // If there are any constants, fold them together.
2281  unsigned Idx = 0;
2282  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2283    ++Idx;
2284    assert(Idx < Ops.size());
2285    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2286      // We found two constants, fold them together!
2287      ConstantInt *Fold = ConstantInt::get(getContext(),
2288                              APIntOps::umax(LHSC->getValue()->getValue(),
2289                                             RHSC->getValue()->getValue()));
2290      Ops[0] = getConstant(Fold);
2291      Ops.erase(Ops.begin()+1);  // Erase the folded element
2292      if (Ops.size() == 1) return Ops[0];
2293      LHSC = cast<SCEVConstant>(Ops[0]);
2294    }
2295
2296    // If we are left with a constant minimum-int, strip it off.
2297    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2298      Ops.erase(Ops.begin());
2299      --Idx;
2300    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2301      // If we have an umax with a constant maximum-int, it will always be
2302      // maximum-int.
2303      return Ops[0];
2304    }
2305
2306    if (Ops.size() == 1) return Ops[0];
2307  }
2308
2309  // Find the first UMax
2310  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2311    ++Idx;
2312
2313  // Check to see if one of the operands is a UMax. If so, expand its operands
2314  // onto our operand list, and recurse to simplify.
2315  if (Idx < Ops.size()) {
2316    bool DeletedUMax = false;
2317    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
2318      Ops.erase(Ops.begin()+Idx);
2319      Ops.append(UMax->op_begin(), UMax->op_end());
2320      DeletedUMax = true;
2321    }
2322
2323    if (DeletedUMax)
2324      return getUMaxExpr(Ops);
2325  }
2326
2327  // Okay, check to see if the same value occurs in the operand list twice.  If
2328  // so, delete one.  Since we sorted the list, these values are required to
2329  // be adjacent.
2330  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2331    //  X umax Y umax Y  -->  X umax Y
2332    //  X umax Y         -->  X, if X is always greater than Y
2333    if (Ops[i] == Ops[i+1] ||
2334        isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2335      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2336      --i; --e;
2337    } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
2338      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2339      --i; --e;
2340    }
2341
2342  if (Ops.size() == 1) return Ops[0];
2343
2344  assert(!Ops.empty() && "Reduced umax down to nothing!");
2345
2346  // Okay, it looks like we really DO need a umax expr.  Check to see if we
2347  // already have one, otherwise create a new one.
2348  FoldingSetNodeID ID;
2349  ID.AddInteger(scUMaxExpr);
2350  ID.AddInteger(Ops.size());
2351  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2352    ID.AddPointer(Ops[i]);
2353  void *IP = 0;
2354  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2355  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2356  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2357  SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2358                                             O, Ops.size());
2359  UniqueSCEVs.InsertNode(S, IP);
2360  return S;
2361}
2362
2363const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2364                                         const SCEV *RHS) {
2365  // ~smax(~x, ~y) == smin(x, y).
2366  return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2367}
2368
2369const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2370                                         const SCEV *RHS) {
2371  // ~umax(~x, ~y) == umin(x, y)
2372  return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2373}
2374
2375const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
2376  // If we have TargetData, we can bypass creating a target-independent
2377  // constant expression and then folding it back into a ConstantInt.
2378  // This is just a compile-time optimization.
2379  if (TD)
2380    return getConstant(TD->getIntPtrType(getContext()),
2381                       TD->getTypeAllocSize(AllocTy));
2382
2383  Constant *C = ConstantExpr::getSizeOf(AllocTy);
2384  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2385    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2386      C = Folded;
2387  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2388  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2389}
2390
2391const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2392  Constant *C = ConstantExpr::getAlignOf(AllocTy);
2393  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2394    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2395      C = Folded;
2396  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2397  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2398}
2399
2400const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2401                                             unsigned FieldNo) {
2402  // If we have TargetData, we can bypass creating a target-independent
2403  // constant expression and then folding it back into a ConstantInt.
2404  // This is just a compile-time optimization.
2405  if (TD)
2406    return getConstant(TD->getIntPtrType(getContext()),
2407                       TD->getStructLayout(STy)->getElementOffset(FieldNo));
2408
2409  Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2410  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2411    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2412      C = Folded;
2413  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2414  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2415}
2416
2417const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2418                                             Constant *FieldNo) {
2419  Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
2420  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2421    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2422      C = Folded;
2423  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
2424  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2425}
2426
2427const SCEV *ScalarEvolution::getUnknown(Value *V) {
2428  // Don't attempt to do anything other than create a SCEVUnknown object
2429  // here.  createSCEV only calls getUnknown after checking for all other
2430  // interesting possibilities, and any other code that calls getUnknown
2431  // is doing so in order to hide a value from SCEV canonicalization.
2432
2433  FoldingSetNodeID ID;
2434  ID.AddInteger(scUnknown);
2435  ID.AddPointer(V);
2436  void *IP = 0;
2437  if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2438    assert(cast<SCEVUnknown>(S)->getValue() == V &&
2439           "Stale SCEVUnknown in uniquing map!");
2440    return S;
2441  }
2442  SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2443                                            FirstUnknown);
2444  FirstUnknown = cast<SCEVUnknown>(S);
2445  UniqueSCEVs.InsertNode(S, IP);
2446  return S;
2447}
2448
2449//===----------------------------------------------------------------------===//
2450//            Basic SCEV Analysis and PHI Idiom Recognition Code
2451//
2452
2453/// isSCEVable - Test if values of the given type are analyzable within
2454/// the SCEV framework. This primarily includes integer types, and it
2455/// can optionally include pointer types if the ScalarEvolution class
2456/// has access to target-specific information.
2457bool ScalarEvolution::isSCEVable(const Type *Ty) const {
2458  // Integers and pointers are always SCEVable.
2459  return Ty->isIntegerTy() || Ty->isPointerTy();
2460}
2461
2462/// getTypeSizeInBits - Return the size in bits of the specified type,
2463/// for which isSCEVable must return true.
2464uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
2465  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2466
2467  // If we have a TargetData, use it!
2468  if (TD)
2469    return TD->getTypeSizeInBits(Ty);
2470
2471  // Integer types have fixed sizes.
2472  if (Ty->isIntegerTy())
2473    return Ty->getPrimitiveSizeInBits();
2474
2475  // The only other support type is pointer. Without TargetData, conservatively
2476  // assume pointers are 64-bit.
2477  assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
2478  return 64;
2479}
2480
2481/// getEffectiveSCEVType - Return a type with the same bitwidth as
2482/// the given type and which represents how SCEV will treat the given
2483/// type, for which isSCEVable must return true. For pointer types,
2484/// this is the pointer-sized integer type.
2485const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
2486  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2487
2488  if (Ty->isIntegerTy())
2489    return Ty;
2490
2491  // The only other support type is pointer.
2492  assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
2493  if (TD) return TD->getIntPtrType(getContext());
2494
2495  // Without TargetData, conservatively assume pointers are 64-bit.
2496  return Type::getInt64Ty(getContext());
2497}
2498
2499const SCEV *ScalarEvolution::getCouldNotCompute() {
2500  return &CouldNotCompute;
2501}
2502
2503/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2504/// expression and create a new one.
2505const SCEV *ScalarEvolution::getSCEV(Value *V) {
2506  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
2507
2508  ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2509  if (I != ValueExprMap.end()) return I->second;
2510  const SCEV *S = createSCEV(V);
2511
2512  // The process of creating a SCEV for V may have caused other SCEVs
2513  // to have been created, so it's necessary to insert the new entry
2514  // from scratch, rather than trying to remember the insert position
2515  // above.
2516  ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
2517  return S;
2518}
2519
2520/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2521///
2522const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
2523  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2524    return getConstant(
2525               cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
2526
2527  const Type *Ty = V->getType();
2528  Ty = getEffectiveSCEVType(Ty);
2529  return getMulExpr(V,
2530                  getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
2531}
2532
2533/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2534const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
2535  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2536    return getConstant(
2537                cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
2538
2539  const Type *Ty = V->getType();
2540  Ty = getEffectiveSCEVType(Ty);
2541  const SCEV *AllOnes =
2542                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
2543  return getMinusSCEV(AllOnes, V);
2544}
2545
2546/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2547///
2548const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2549                                          const SCEV *RHS) {
2550  // Fast path: X - X --> 0.
2551  if (LHS == RHS)
2552    return getConstant(LHS->getType(), 0);
2553
2554  // X - Y --> X + -Y
2555  return getAddExpr(LHS, getNegativeSCEV(RHS));
2556}
2557
2558/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2559/// input value to the specified type.  If the type must be extended, it is zero
2560/// extended.
2561const SCEV *
2562ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
2563                                         const Type *Ty) {
2564  const Type *SrcTy = V->getType();
2565  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2566         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2567         "Cannot truncate or zero extend with non-integer arguments!");
2568  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2569    return V;  // No conversion
2570  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2571    return getTruncateExpr(V, Ty);
2572  return getZeroExtendExpr(V, Ty);
2573}
2574
2575/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2576/// input value to the specified type.  If the type must be extended, it is sign
2577/// extended.
2578const SCEV *
2579ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
2580                                         const Type *Ty) {
2581  const Type *SrcTy = V->getType();
2582  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2583         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2584         "Cannot truncate or zero extend with non-integer arguments!");
2585  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2586    return V;  // No conversion
2587  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2588    return getTruncateExpr(V, Ty);
2589  return getSignExtendExpr(V, Ty);
2590}
2591
2592/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2593/// input value to the specified type.  If the type must be extended, it is zero
2594/// extended.  The conversion must not be narrowing.
2595const SCEV *
2596ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
2597  const Type *SrcTy = V->getType();
2598  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2599         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2600         "Cannot noop or zero extend with non-integer arguments!");
2601  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2602         "getNoopOrZeroExtend cannot truncate!");
2603  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2604    return V;  // No conversion
2605  return getZeroExtendExpr(V, Ty);
2606}
2607
2608/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2609/// input value to the specified type.  If the type must be extended, it is sign
2610/// extended.  The conversion must not be narrowing.
2611const SCEV *
2612ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
2613  const Type *SrcTy = V->getType();
2614  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2615         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2616         "Cannot noop or sign extend with non-integer arguments!");
2617  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2618         "getNoopOrSignExtend cannot truncate!");
2619  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2620    return V;  // No conversion
2621  return getSignExtendExpr(V, Ty);
2622}
2623
2624/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2625/// the input value to the specified type. If the type must be extended,
2626/// it is extended with unspecified bits. The conversion must not be
2627/// narrowing.
2628const SCEV *
2629ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
2630  const Type *SrcTy = V->getType();
2631  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2632         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2633         "Cannot noop or any extend with non-integer arguments!");
2634  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2635         "getNoopOrAnyExtend cannot truncate!");
2636  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2637    return V;  // No conversion
2638  return getAnyExtendExpr(V, Ty);
2639}
2640
2641/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2642/// input value to the specified type.  The conversion must not be widening.
2643const SCEV *
2644ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
2645  const Type *SrcTy = V->getType();
2646  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2647         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2648         "Cannot truncate or noop with non-integer arguments!");
2649  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2650         "getTruncateOrNoop cannot extend!");
2651  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2652    return V;  // No conversion
2653  return getTruncateExpr(V, Ty);
2654}
2655
2656/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2657/// the types using zero-extension, and then perform a umax operation
2658/// with them.
2659const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2660                                                        const SCEV *RHS) {
2661  const SCEV *PromotedLHS = LHS;
2662  const SCEV *PromotedRHS = RHS;
2663
2664  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2665    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2666  else
2667    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2668
2669  return getUMaxExpr(PromotedLHS, PromotedRHS);
2670}
2671
2672/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2673/// the types using zero-extension, and then perform a umin operation
2674/// with them.
2675const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2676                                                        const SCEV *RHS) {
2677  const SCEV *PromotedLHS = LHS;
2678  const SCEV *PromotedRHS = RHS;
2679
2680  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2681    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2682  else
2683    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2684
2685  return getUMinExpr(PromotedLHS, PromotedRHS);
2686}
2687
2688/// PushDefUseChildren - Push users of the given Instruction
2689/// onto the given Worklist.
2690static void
2691PushDefUseChildren(Instruction *I,
2692                   SmallVectorImpl<Instruction *> &Worklist) {
2693  // Push the def-use children onto the Worklist stack.
2694  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2695       UI != UE; ++UI)
2696    Worklist.push_back(cast<Instruction>(*UI));
2697}
2698
2699/// ForgetSymbolicValue - This looks up computed SCEV values for all
2700/// instructions that depend on the given instruction and removes them from
2701/// the ValueExprMapType map if they reference SymName. This is used during PHI
2702/// resolution.
2703void
2704ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
2705  SmallVector<Instruction *, 16> Worklist;
2706  PushDefUseChildren(PN, Worklist);
2707
2708  SmallPtrSet<Instruction *, 8> Visited;
2709  Visited.insert(PN);
2710  while (!Worklist.empty()) {
2711    Instruction *I = Worklist.pop_back_val();
2712    if (!Visited.insert(I)) continue;
2713
2714    ValueExprMapType::iterator It =
2715      ValueExprMap.find(static_cast<Value *>(I));
2716    if (It != ValueExprMap.end()) {
2717      // Short-circuit the def-use traversal if the symbolic name
2718      // ceases to appear in expressions.
2719      if (It->second != SymName && !It->second->hasOperand(SymName))
2720        continue;
2721
2722      // SCEVUnknown for a PHI either means that it has an unrecognized
2723      // structure, it's a PHI that's in the progress of being computed
2724      // by createNodeForPHI, or it's a single-value PHI. In the first case,
2725      // additional loop trip count information isn't going to change anything.
2726      // In the second case, createNodeForPHI will perform the necessary
2727      // updates on its own when it gets to that point. In the third, we do
2728      // want to forget the SCEVUnknown.
2729      if (!isa<PHINode>(I) ||
2730          !isa<SCEVUnknown>(It->second) ||
2731          (I != PN && It->second == SymName)) {
2732        ValuesAtScopes.erase(It->second);
2733        ValueExprMap.erase(It);
2734      }
2735    }
2736
2737    PushDefUseChildren(I, Worklist);
2738  }
2739}
2740
2741/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
2742/// a loop header, making it a potential recurrence, or it doesn't.
2743///
2744const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
2745  if (const Loop *L = LI->getLoopFor(PN->getParent()))
2746    if (L->getHeader() == PN->getParent()) {
2747      // The loop may have multiple entrances or multiple exits; we can analyze
2748      // this phi as an addrec if it has a unique entry value and a unique
2749      // backedge value.
2750      Value *BEValueV = 0, *StartValueV = 0;
2751      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2752        Value *V = PN->getIncomingValue(i);
2753        if (L->contains(PN->getIncomingBlock(i))) {
2754          if (!BEValueV) {
2755            BEValueV = V;
2756          } else if (BEValueV != V) {
2757            BEValueV = 0;
2758            break;
2759          }
2760        } else if (!StartValueV) {
2761          StartValueV = V;
2762        } else if (StartValueV != V) {
2763          StartValueV = 0;
2764          break;
2765        }
2766      }
2767      if (BEValueV && StartValueV) {
2768        // While we are analyzing this PHI node, handle its value symbolically.
2769        const SCEV *SymbolicName = getUnknown(PN);
2770        assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
2771               "PHI node already processed?");
2772        ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
2773
2774        // Using this symbolic name for the PHI, analyze the value coming around
2775        // the back-edge.
2776        const SCEV *BEValue = getSCEV(BEValueV);
2777
2778        // NOTE: If BEValue is loop invariant, we know that the PHI node just
2779        // has a special value for the first iteration of the loop.
2780
2781        // If the value coming around the backedge is an add with the symbolic
2782        // value we just inserted, then we found a simple induction variable!
2783        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
2784          // If there is a single occurrence of the symbolic value, replace it
2785          // with a recurrence.
2786          unsigned FoundIndex = Add->getNumOperands();
2787          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2788            if (Add->getOperand(i) == SymbolicName)
2789              if (FoundIndex == e) {
2790                FoundIndex = i;
2791                break;
2792              }
2793
2794          if (FoundIndex != Add->getNumOperands()) {
2795            // Create an add with everything but the specified operand.
2796            SmallVector<const SCEV *, 8> Ops;
2797            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2798              if (i != FoundIndex)
2799                Ops.push_back(Add->getOperand(i));
2800            const SCEV *Accum = getAddExpr(Ops);
2801
2802            // This is not a valid addrec if the step amount is varying each
2803            // loop iteration, but is not itself an addrec in this loop.
2804            if (Accum->isLoopInvariant(L) ||
2805                (isa<SCEVAddRecExpr>(Accum) &&
2806                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
2807              bool HasNUW = false;
2808              bool HasNSW = false;
2809
2810              // If the increment doesn't overflow, then neither the addrec nor
2811              // the post-increment will overflow.
2812              if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2813                if (OBO->hasNoUnsignedWrap())
2814                  HasNUW = true;
2815                if (OBO->hasNoSignedWrap())
2816                  HasNSW = true;
2817              }
2818
2819              const SCEV *StartVal = getSCEV(StartValueV);
2820              const SCEV *PHISCEV =
2821                getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
2822
2823              // Since the no-wrap flags are on the increment, they apply to the
2824              // post-incremented value as well.
2825              if (Accum->isLoopInvariant(L))
2826                (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2827                                    Accum, L, HasNUW, HasNSW);
2828
2829              // Okay, for the entire analysis of this edge we assumed the PHI
2830              // to be symbolic.  We now need to go back and purge all of the
2831              // entries for the scalars that use the symbolic expression.
2832              ForgetSymbolicName(PN, SymbolicName);
2833              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
2834              return PHISCEV;
2835            }
2836          }
2837        } else if (const SCEVAddRecExpr *AddRec =
2838                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
2839          // Otherwise, this could be a loop like this:
2840          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
2841          // In this case, j = {1,+,1}  and BEValue is j.
2842          // Because the other in-value of i (0) fits the evolution of BEValue
2843          // i really is an addrec evolution.
2844          if (AddRec->getLoop() == L && AddRec->isAffine()) {
2845            const SCEV *StartVal = getSCEV(StartValueV);
2846
2847            // If StartVal = j.start - j.stride, we can use StartVal as the
2848            // initial step of the addrec evolution.
2849            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
2850                                         AddRec->getOperand(1))) {
2851              const SCEV *PHISCEV =
2852                 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
2853
2854              // Okay, for the entire analysis of this edge we assumed the PHI
2855              // to be symbolic.  We now need to go back and purge all of the
2856              // entries for the scalars that use the symbolic expression.
2857              ForgetSymbolicName(PN, SymbolicName);
2858              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
2859              return PHISCEV;
2860            }
2861          }
2862        }
2863      }
2864    }
2865
2866  // If the PHI has a single incoming value, follow that value, unless the
2867  // PHI's incoming blocks are in a different loop, in which case doing so
2868  // risks breaking LCSSA form. Instcombine would normally zap these, but
2869  // it doesn't have DominatorTree information, so it may miss cases.
2870  if (Value *V = PN->hasConstantValue(DT)) {
2871    bool AllSameLoop = true;
2872    Loop *PNLoop = LI->getLoopFor(PN->getParent());
2873    for (size_t i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2874      if (LI->getLoopFor(PN->getIncomingBlock(i)) != PNLoop) {
2875        AllSameLoop = false;
2876        break;
2877      }
2878    if (AllSameLoop)
2879      return getSCEV(V);
2880  }
2881
2882  // If it's not a loop phi, we can't handle it yet.
2883  return getUnknown(PN);
2884}
2885
2886/// createNodeForGEP - Expand GEP instructions into add and multiply
2887/// operations. This allows them to be analyzed by regular SCEV code.
2888///
2889const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
2890
2891  // Don't blindly transfer the inbounds flag from the GEP instruction to the
2892  // Add expression, because the Instruction may be guarded by control flow
2893  // and the no-overflow bits may not be valid for the expression in any
2894  // context.
2895
2896  const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
2897  Value *Base = GEP->getOperand(0);
2898  // Don't attempt to analyze GEPs over unsized objects.
2899  if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2900    return getUnknown(GEP);
2901  const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
2902  gep_type_iterator GTI = gep_type_begin(GEP);
2903  for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
2904                                      E = GEP->op_end();
2905       I != E; ++I) {
2906    Value *Index = *I;
2907    // Compute the (potentially symbolic) offset in bytes for this index.
2908    if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2909      // For a struct, add the member offset.
2910      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2911      const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
2912
2913      // Add the field offset to the running total offset.
2914      TotalOffset = getAddExpr(TotalOffset, FieldOffset);
2915    } else {
2916      // For an array, add the element offset, explicitly scaled.
2917      const SCEV *ElementSize = getSizeOfExpr(*GTI);
2918      const SCEV *IndexS = getSCEV(Index);
2919      // Getelementptr indices are signed.
2920      IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
2921
2922      // Multiply the index by the element size to compute the element offset.
2923      const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize);
2924
2925      // Add the element offset to the running total offset.
2926      TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2927    }
2928  }
2929
2930  // Get the SCEV for the GEP base.
2931  const SCEV *BaseS = getSCEV(Base);
2932
2933  // Add the total offset from all the GEP indices to the base.
2934  return getAddExpr(BaseS, TotalOffset);
2935}
2936
2937/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2938/// guaranteed to end in (at every loop iteration).  It is, at the same time,
2939/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
2940/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
2941uint32_t
2942ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
2943  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2944    return C->getValue()->getValue().countTrailingZeros();
2945
2946  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
2947    return std::min(GetMinTrailingZeros(T->getOperand()),
2948                    (uint32_t)getTypeSizeInBits(T->getType()));
2949
2950  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
2951    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2952    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2953             getTypeSizeInBits(E->getType()) : OpRes;
2954  }
2955
2956  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
2957    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2958    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2959             getTypeSizeInBits(E->getType()) : OpRes;
2960  }
2961
2962  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
2963    // The result is the min of all operands results.
2964    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2965    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2966      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2967    return MinOpRes;
2968  }
2969
2970  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
2971    // The result is the sum of all operands results.
2972    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2973    uint32_t BitWidth = getTypeSizeInBits(M->getType());
2974    for (unsigned i = 1, e = M->getNumOperands();
2975         SumOpRes != BitWidth && i != e; ++i)
2976      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
2977                          BitWidth);
2978    return SumOpRes;
2979  }
2980
2981  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
2982    // The result is the min of all operands results.
2983    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2984    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2985      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2986    return MinOpRes;
2987  }
2988
2989  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
2990    // The result is the min of all operands results.
2991    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2992    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2993      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2994    return MinOpRes;
2995  }
2996
2997  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
2998    // The result is the min of all operands results.
2999    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
3000    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3001      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3002    return MinOpRes;
3003  }
3004
3005  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3006    // For a SCEVUnknown, ask ValueTracking.
3007    unsigned BitWidth = getTypeSizeInBits(U->getType());
3008    APInt Mask = APInt::getAllOnesValue(BitWidth);
3009    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3010    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
3011    return Zeros.countTrailingOnes();
3012  }
3013
3014  // SCEVUDivExpr
3015  return 0;
3016}
3017
3018/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3019///
3020ConstantRange
3021ScalarEvolution::getUnsignedRange(const SCEV *S) {
3022
3023  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3024    return ConstantRange(C->getValue()->getValue());
3025
3026  unsigned BitWidth = getTypeSizeInBits(S->getType());
3027  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3028
3029  // If the value has known zeros, the maximum unsigned value will have those
3030  // known zeros as well.
3031  uint32_t TZ = GetMinTrailingZeros(S);
3032  if (TZ != 0)
3033    ConservativeResult =
3034      ConstantRange(APInt::getMinValue(BitWidth),
3035                    APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3036
3037  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3038    ConstantRange X = getUnsignedRange(Add->getOperand(0));
3039    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3040      X = X.add(getUnsignedRange(Add->getOperand(i)));
3041    return ConservativeResult.intersectWith(X);
3042  }
3043
3044  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3045    ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3046    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3047      X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
3048    return ConservativeResult.intersectWith(X);
3049  }
3050
3051  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3052    ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3053    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3054      X = X.smax(getUnsignedRange(SMax->getOperand(i)));
3055    return ConservativeResult.intersectWith(X);
3056  }
3057
3058  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3059    ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3060    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3061      X = X.umax(getUnsignedRange(UMax->getOperand(i)));
3062    return ConservativeResult.intersectWith(X);
3063  }
3064
3065  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3066    ConstantRange X = getUnsignedRange(UDiv->getLHS());
3067    ConstantRange Y = getUnsignedRange(UDiv->getRHS());
3068    return ConservativeResult.intersectWith(X.udiv(Y));
3069  }
3070
3071  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3072    ConstantRange X = getUnsignedRange(ZExt->getOperand());
3073    return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
3074  }
3075
3076  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3077    ConstantRange X = getUnsignedRange(SExt->getOperand());
3078    return ConservativeResult.intersectWith(X.signExtend(BitWidth));
3079  }
3080
3081  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3082    ConstantRange X = getUnsignedRange(Trunc->getOperand());
3083    return ConservativeResult.intersectWith(X.truncate(BitWidth));
3084  }
3085
3086  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3087    // If there's no unsigned wrap, the value will never be less than its
3088    // initial value.
3089    if (AddRec->hasNoUnsignedWrap())
3090      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
3091        if (!C->getValue()->isZero())
3092          ConservativeResult =
3093            ConservativeResult.intersectWith(
3094              ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
3095
3096    // TODO: non-affine addrec
3097    if (AddRec->isAffine()) {
3098      const Type *Ty = AddRec->getType();
3099      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3100      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3101          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3102        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3103
3104        const SCEV *Start = AddRec->getStart();
3105        const SCEV *Step = AddRec->getStepRecurrence(*this);
3106
3107        ConstantRange StartRange = getUnsignedRange(Start);
3108        ConstantRange StepRange = getSignedRange(Step);
3109        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3110        ConstantRange EndRange =
3111          StartRange.add(MaxBECountRange.multiply(StepRange));
3112
3113        // Check for overflow. This must be done with ConstantRange arithmetic
3114        // because we could be called from within the ScalarEvolution overflow
3115        // checking code.
3116        ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3117        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3118        ConstantRange ExtMaxBECountRange =
3119          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3120        ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3121        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3122            ExtEndRange)
3123          return ConservativeResult;
3124
3125        APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3126                                   EndRange.getUnsignedMin());
3127        APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3128                                   EndRange.getUnsignedMax());
3129        if (Min.isMinValue() && Max.isMaxValue())
3130          return ConservativeResult;
3131        return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
3132      }
3133    }
3134
3135    return ConservativeResult;
3136  }
3137
3138  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3139    // For a SCEVUnknown, ask ValueTracking.
3140    APInt Mask = APInt::getAllOnesValue(BitWidth);
3141    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3142    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
3143    if (Ones == ~Zeros + 1)
3144      return ConservativeResult;
3145    return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
3146  }
3147
3148  return ConservativeResult;
3149}
3150
3151/// getSignedRange - Determine the signed range for a particular SCEV.
3152///
3153ConstantRange
3154ScalarEvolution::getSignedRange(const SCEV *S) {
3155
3156  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3157    return ConstantRange(C->getValue()->getValue());
3158
3159  unsigned BitWidth = getTypeSizeInBits(S->getType());
3160  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3161
3162  // If the value has known zeros, the maximum signed value will have those
3163  // known zeros as well.
3164  uint32_t TZ = GetMinTrailingZeros(S);
3165  if (TZ != 0)
3166    ConservativeResult =
3167      ConstantRange(APInt::getSignedMinValue(BitWidth),
3168                    APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3169
3170  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3171    ConstantRange X = getSignedRange(Add->getOperand(0));
3172    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3173      X = X.add(getSignedRange(Add->getOperand(i)));
3174    return ConservativeResult.intersectWith(X);
3175  }
3176
3177  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3178    ConstantRange X = getSignedRange(Mul->getOperand(0));
3179    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3180      X = X.multiply(getSignedRange(Mul->getOperand(i)));
3181    return ConservativeResult.intersectWith(X);
3182  }
3183
3184  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3185    ConstantRange X = getSignedRange(SMax->getOperand(0));
3186    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3187      X = X.smax(getSignedRange(SMax->getOperand(i)));
3188    return ConservativeResult.intersectWith(X);
3189  }
3190
3191  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3192    ConstantRange X = getSignedRange(UMax->getOperand(0));
3193    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3194      X = X.umax(getSignedRange(UMax->getOperand(i)));
3195    return ConservativeResult.intersectWith(X);
3196  }
3197
3198  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3199    ConstantRange X = getSignedRange(UDiv->getLHS());
3200    ConstantRange Y = getSignedRange(UDiv->getRHS());
3201    return ConservativeResult.intersectWith(X.udiv(Y));
3202  }
3203
3204  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3205    ConstantRange X = getSignedRange(ZExt->getOperand());
3206    return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
3207  }
3208
3209  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3210    ConstantRange X = getSignedRange(SExt->getOperand());
3211    return ConservativeResult.intersectWith(X.signExtend(BitWidth));
3212  }
3213
3214  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3215    ConstantRange X = getSignedRange(Trunc->getOperand());
3216    return ConservativeResult.intersectWith(X.truncate(BitWidth));
3217  }
3218
3219  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3220    // If there's no signed wrap, and all the operands have the same sign or
3221    // zero, the value won't ever change sign.
3222    if (AddRec->hasNoSignedWrap()) {
3223      bool AllNonNeg = true;
3224      bool AllNonPos = true;
3225      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3226        if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3227        if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3228      }
3229      if (AllNonNeg)
3230        ConservativeResult = ConservativeResult.intersectWith(
3231          ConstantRange(APInt(BitWidth, 0),
3232                        APInt::getSignedMinValue(BitWidth)));
3233      else if (AllNonPos)
3234        ConservativeResult = ConservativeResult.intersectWith(
3235          ConstantRange(APInt::getSignedMinValue(BitWidth),
3236                        APInt(BitWidth, 1)));
3237    }
3238
3239    // TODO: non-affine addrec
3240    if (AddRec->isAffine()) {
3241      const Type *Ty = AddRec->getType();
3242      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3243      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3244          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3245        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3246
3247        const SCEV *Start = AddRec->getStart();
3248        const SCEV *Step = AddRec->getStepRecurrence(*this);
3249
3250        ConstantRange StartRange = getSignedRange(Start);
3251        ConstantRange StepRange = getSignedRange(Step);
3252        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3253        ConstantRange EndRange =
3254          StartRange.add(MaxBECountRange.multiply(StepRange));
3255
3256        // Check for overflow. This must be done with ConstantRange arithmetic
3257        // because we could be called from within the ScalarEvolution overflow
3258        // checking code.
3259        ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3260        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3261        ConstantRange ExtMaxBECountRange =
3262          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3263        ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3264        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3265            ExtEndRange)
3266          return ConservativeResult;
3267
3268        APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3269                                   EndRange.getSignedMin());
3270        APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3271                                   EndRange.getSignedMax());
3272        if (Min.isMinSignedValue() && Max.isMaxSignedValue())
3273          return ConservativeResult;
3274        return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
3275      }
3276    }
3277
3278    return ConservativeResult;
3279  }
3280
3281  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3282    // For a SCEVUnknown, ask ValueTracking.
3283    if (!U->getValue()->getType()->isIntegerTy() && !TD)
3284      return ConservativeResult;
3285    unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3286    if (NS == 1)
3287      return ConservativeResult;
3288    return ConservativeResult.intersectWith(
3289      ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
3290                    APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1));
3291  }
3292
3293  return ConservativeResult;
3294}
3295
3296/// createSCEV - We know that there is no SCEV for the specified value.
3297/// Analyze the expression.
3298///
3299const SCEV *ScalarEvolution::createSCEV(Value *V) {
3300  if (!isSCEVable(V->getType()))
3301    return getUnknown(V);
3302
3303  unsigned Opcode = Instruction::UserOp1;
3304  if (Instruction *I = dyn_cast<Instruction>(V)) {
3305    Opcode = I->getOpcode();
3306
3307    // Don't attempt to analyze instructions in blocks that aren't
3308    // reachable. Such instructions don't matter, and they aren't required
3309    // to obey basic rules for definitions dominating uses which this
3310    // analysis depends on.
3311    if (!DT->isReachableFromEntry(I->getParent()))
3312      return getUnknown(V);
3313  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
3314    Opcode = CE->getOpcode();
3315  else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3316    return getConstant(CI);
3317  else if (isa<ConstantPointerNull>(V))
3318    return getConstant(V->getType(), 0);
3319  else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3320    return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
3321  else
3322    return getUnknown(V);
3323
3324  Operator *U = cast<Operator>(V);
3325  switch (Opcode) {
3326  case Instruction::Add: {
3327    // The simple thing to do would be to just call getSCEV on both operands
3328    // and call getAddExpr with the result. However if we're looking at a
3329    // bunch of things all added together, this can be quite inefficient,
3330    // because it leads to N-1 getAddExpr calls for N ultimate operands.
3331    // Instead, gather up all the operands and make a single getAddExpr call.
3332    // LLVM IR canonical form means we need only traverse the left operands.
3333    SmallVector<const SCEV *, 4> AddOps;
3334    AddOps.push_back(getSCEV(U->getOperand(1)));
3335    for (Value *Op = U->getOperand(0);
3336         Op->getValueID() == Instruction::Add + Value::InstructionVal;
3337         Op = U->getOperand(0)) {
3338      U = cast<Operator>(Op);
3339      AddOps.push_back(getSCEV(U->getOperand(1)));
3340    }
3341    AddOps.push_back(getSCEV(U->getOperand(0)));
3342    return getAddExpr(AddOps);
3343  }
3344  case Instruction::Mul: {
3345    // See the Add code above.
3346    SmallVector<const SCEV *, 4> MulOps;
3347    MulOps.push_back(getSCEV(U->getOperand(1)));
3348    for (Value *Op = U->getOperand(0);
3349         Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3350         Op = U->getOperand(0)) {
3351      U = cast<Operator>(Op);
3352      MulOps.push_back(getSCEV(U->getOperand(1)));
3353    }
3354    MulOps.push_back(getSCEV(U->getOperand(0)));
3355    return getMulExpr(MulOps);
3356  }
3357  case Instruction::UDiv:
3358    return getUDivExpr(getSCEV(U->getOperand(0)),
3359                       getSCEV(U->getOperand(1)));
3360  case Instruction::Sub:
3361    return getMinusSCEV(getSCEV(U->getOperand(0)),
3362                        getSCEV(U->getOperand(1)));
3363  case Instruction::And:
3364    // For an expression like x&255 that merely masks off the high bits,
3365    // use zext(trunc(x)) as the SCEV expression.
3366    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3367      if (CI->isNullValue())
3368        return getSCEV(U->getOperand(1));
3369      if (CI->isAllOnesValue())
3370        return getSCEV(U->getOperand(0));
3371      const APInt &A = CI->getValue();
3372
3373      // Instcombine's ShrinkDemandedConstant may strip bits out of
3374      // constants, obscuring what would otherwise be a low-bits mask.
3375      // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3376      // knew about to reconstruct a low-bits mask value.
3377      unsigned LZ = A.countLeadingZeros();
3378      unsigned BitWidth = A.getBitWidth();
3379      APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3380      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3381      ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3382
3383      APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3384
3385      if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
3386        return
3387          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
3388                                IntegerType::get(getContext(), BitWidth - LZ)),
3389                            U->getType());
3390    }
3391    break;
3392
3393  case Instruction::Or:
3394    // If the RHS of the Or is a constant, we may have something like:
3395    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
3396    // optimizations will transparently handle this case.
3397    //
3398    // In order for this transformation to be safe, the LHS must be of the
3399    // form X*(2^n) and the Or constant must be less than 2^n.
3400    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3401      const SCEV *LHS = getSCEV(U->getOperand(0));
3402      const APInt &CIVal = CI->getValue();
3403      if (GetMinTrailingZeros(LHS) >=
3404          (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3405        // Build a plain add SCEV.
3406        const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3407        // If the LHS of the add was an addrec and it has no-wrap flags,
3408        // transfer the no-wrap flags, since an or won't introduce a wrap.
3409        if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3410          const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3411          if (OldAR->hasNoUnsignedWrap())
3412            const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3413          if (OldAR->hasNoSignedWrap())
3414            const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3415        }
3416        return S;
3417      }
3418    }
3419    break;
3420  case Instruction::Xor:
3421    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3422      // If the RHS of the xor is a signbit, then this is just an add.
3423      // Instcombine turns add of signbit into xor as a strength reduction step.
3424      if (CI->getValue().isSignBit())
3425        return getAddExpr(getSCEV(U->getOperand(0)),
3426                          getSCEV(U->getOperand(1)));
3427
3428      // If the RHS of xor is -1, then this is a not operation.
3429      if (CI->isAllOnesValue())
3430        return getNotSCEV(getSCEV(U->getOperand(0)));
3431
3432      // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3433      // This is a variant of the check for xor with -1, and it handles
3434      // the case where instcombine has trimmed non-demanded bits out
3435      // of an xor with -1.
3436      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3437        if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3438          if (BO->getOpcode() == Instruction::And &&
3439              LCI->getValue() == CI->getValue())
3440            if (const SCEVZeroExtendExpr *Z =
3441                  dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
3442              const Type *UTy = U->getType();
3443              const SCEV *Z0 = Z->getOperand();
3444              const Type *Z0Ty = Z0->getType();
3445              unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3446
3447              // If C is a low-bits mask, the zero extend is serving to
3448              // mask off the high bits. Complement the operand and
3449              // re-apply the zext.
3450              if (APIntOps::isMask(Z0TySize, CI->getValue()))
3451                return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3452
3453              // If C is a single bit, it may be in the sign-bit position
3454              // before the zero-extend. In this case, represent the xor
3455              // using an add, which is equivalent, and re-apply the zext.
3456              APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3457              if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3458                  Trunc.isSignBit())
3459                return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3460                                         UTy);
3461            }
3462    }
3463    break;
3464
3465  case Instruction::Shl:
3466    // Turn shift left of a constant amount into a multiply.
3467    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3468      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3469
3470      // If the shift count is not less than the bitwidth, the result of
3471      // the shift is undefined. Don't try to analyze it, because the
3472      // resolution chosen here may differ from the resolution chosen in
3473      // other parts of the compiler.
3474      if (SA->getValue().uge(BitWidth))
3475        break;
3476
3477      Constant *X = ConstantInt::get(getContext(),
3478        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3479      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3480    }
3481    break;
3482
3483  case Instruction::LShr:
3484    // Turn logical shift right of a constant into a unsigned divide.
3485    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3486      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3487
3488      // If the shift count is not less than the bitwidth, the result of
3489      // the shift is undefined. Don't try to analyze it, because the
3490      // resolution chosen here may differ from the resolution chosen in
3491      // other parts of the compiler.
3492      if (SA->getValue().uge(BitWidth))
3493        break;
3494
3495      Constant *X = ConstantInt::get(getContext(),
3496        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3497      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3498    }
3499    break;
3500
3501  case Instruction::AShr:
3502    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3503    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
3504      if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
3505        if (L->getOpcode() == Instruction::Shl &&
3506            L->getOperand(1) == U->getOperand(1)) {
3507          uint64_t BitWidth = getTypeSizeInBits(U->getType());
3508
3509          // If the shift count is not less than the bitwidth, the result of
3510          // the shift is undefined. Don't try to analyze it, because the
3511          // resolution chosen here may differ from the resolution chosen in
3512          // other parts of the compiler.
3513          if (CI->getValue().uge(BitWidth))
3514            break;
3515
3516          uint64_t Amt = BitWidth - CI->getZExtValue();
3517          if (Amt == BitWidth)
3518            return getSCEV(L->getOperand(0));       // shift by zero --> noop
3519          return
3520            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
3521                                              IntegerType::get(getContext(),
3522                                                               Amt)),
3523                              U->getType());
3524        }
3525    break;
3526
3527  case Instruction::Trunc:
3528    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
3529
3530  case Instruction::ZExt:
3531    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3532
3533  case Instruction::SExt:
3534    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3535
3536  case Instruction::BitCast:
3537    // BitCasts are no-op casts so we just eliminate the cast.
3538    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
3539      return getSCEV(U->getOperand(0));
3540    break;
3541
3542  // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3543  // lead to pointer expressions which cannot safely be expanded to GEPs,
3544  // because ScalarEvolution doesn't respect the GEP aliasing rules when
3545  // simplifying integer expressions.
3546
3547  case Instruction::GetElementPtr:
3548    return createNodeForGEP(cast<GEPOperator>(U));
3549
3550  case Instruction::PHI:
3551    return createNodeForPHI(cast<PHINode>(U));
3552
3553  case Instruction::Select:
3554    // This could be a smax or umax that was lowered earlier.
3555    // Try to recover it.
3556    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3557      Value *LHS = ICI->getOperand(0);
3558      Value *RHS = ICI->getOperand(1);
3559      switch (ICI->getPredicate()) {
3560      case ICmpInst::ICMP_SLT:
3561      case ICmpInst::ICMP_SLE:
3562        std::swap(LHS, RHS);
3563        // fall through
3564      case ICmpInst::ICMP_SGT:
3565      case ICmpInst::ICMP_SGE:
3566        // a >s b ? a+x : b+x  ->  smax(a, b)+x
3567        // a >s b ? b+x : a+x  ->  smin(a, b)+x
3568        if (LHS->getType() == U->getType()) {
3569          const SCEV *LS = getSCEV(LHS);
3570          const SCEV *RS = getSCEV(RHS);
3571          const SCEV *LA = getSCEV(U->getOperand(1));
3572          const SCEV *RA = getSCEV(U->getOperand(2));
3573          const SCEV *LDiff = getMinusSCEV(LA, LS);
3574          const SCEV *RDiff = getMinusSCEV(RA, RS);
3575          if (LDiff == RDiff)
3576            return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3577          LDiff = getMinusSCEV(LA, RS);
3578          RDiff = getMinusSCEV(RA, LS);
3579          if (LDiff == RDiff)
3580            return getAddExpr(getSMinExpr(LS, RS), LDiff);
3581        }
3582        break;
3583      case ICmpInst::ICMP_ULT:
3584      case ICmpInst::ICMP_ULE:
3585        std::swap(LHS, RHS);
3586        // fall through
3587      case ICmpInst::ICMP_UGT:
3588      case ICmpInst::ICMP_UGE:
3589        // a >u b ? a+x : b+x  ->  umax(a, b)+x
3590        // a >u b ? b+x : a+x  ->  umin(a, b)+x
3591        if (LHS->getType() == U->getType()) {
3592          const SCEV *LS = getSCEV(LHS);
3593          const SCEV *RS = getSCEV(RHS);
3594          const SCEV *LA = getSCEV(U->getOperand(1));
3595          const SCEV *RA = getSCEV(U->getOperand(2));
3596          const SCEV *LDiff = getMinusSCEV(LA, LS);
3597          const SCEV *RDiff = getMinusSCEV(RA, RS);
3598          if (LDiff == RDiff)
3599            return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3600          LDiff = getMinusSCEV(LA, RS);
3601          RDiff = getMinusSCEV(RA, LS);
3602          if (LDiff == RDiff)
3603            return getAddExpr(getUMinExpr(LS, RS), LDiff);
3604        }
3605        break;
3606      case ICmpInst::ICMP_NE:
3607        // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
3608        if (LHS->getType() == U->getType() &&
3609            isa<ConstantInt>(RHS) &&
3610            cast<ConstantInt>(RHS)->isZero()) {
3611          const SCEV *One = getConstant(LHS->getType(), 1);
3612          const SCEV *LS = getSCEV(LHS);
3613          const SCEV *LA = getSCEV(U->getOperand(1));
3614          const SCEV *RA = getSCEV(U->getOperand(2));
3615          const SCEV *LDiff = getMinusSCEV(LA, LS);
3616          const SCEV *RDiff = getMinusSCEV(RA, One);
3617          if (LDiff == RDiff)
3618            return getAddExpr(getUMaxExpr(One, LS), LDiff);
3619        }
3620        break;
3621      case ICmpInst::ICMP_EQ:
3622        // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
3623        if (LHS->getType() == U->getType() &&
3624            isa<ConstantInt>(RHS) &&
3625            cast<ConstantInt>(RHS)->isZero()) {
3626          const SCEV *One = getConstant(LHS->getType(), 1);
3627          const SCEV *LS = getSCEV(LHS);
3628          const SCEV *LA = getSCEV(U->getOperand(1));
3629          const SCEV *RA = getSCEV(U->getOperand(2));
3630          const SCEV *LDiff = getMinusSCEV(LA, One);
3631          const SCEV *RDiff = getMinusSCEV(RA, LS);
3632          if (LDiff == RDiff)
3633            return getAddExpr(getUMaxExpr(One, LS), LDiff);
3634        }
3635        break;
3636      default:
3637        break;
3638      }
3639    }
3640
3641  default: // We cannot analyze this expression.
3642    break;
3643  }
3644
3645  return getUnknown(V);
3646}
3647
3648
3649
3650//===----------------------------------------------------------------------===//
3651//                   Iteration Count Computation Code
3652//
3653
3654/// getBackedgeTakenCount - If the specified loop has a predictable
3655/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3656/// object. The backedge-taken count is the number of times the loop header
3657/// will be branched to from within the loop. This is one less than the
3658/// trip count of the loop, since it doesn't count the first iteration,
3659/// when the header is branched to from outside the loop.
3660///
3661/// Note that it is not valid to call this method on a loop without a
3662/// loop-invariant backedge-taken count (see
3663/// hasLoopInvariantBackedgeTakenCount).
3664///
3665const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
3666  return getBackedgeTakenInfo(L).Exact;
3667}
3668
3669/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3670/// return the least SCEV value that is known never to be less than the
3671/// actual backedge taken count.
3672const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
3673  return getBackedgeTakenInfo(L).Max;
3674}
3675
3676/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3677/// onto the given Worklist.
3678static void
3679PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3680  BasicBlock *Header = L->getHeader();
3681
3682  // Push all Loop-header PHIs onto the Worklist stack.
3683  for (BasicBlock::iterator I = Header->begin();
3684       PHINode *PN = dyn_cast<PHINode>(I); ++I)
3685    Worklist.push_back(PN);
3686}
3687
3688const ScalarEvolution::BackedgeTakenInfo &
3689ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
3690  // Initially insert a CouldNotCompute for this loop. If the insertion
3691  // succeeds, proceed to actually compute a backedge-taken count and
3692  // update the value. The temporary CouldNotCompute value tells SCEV
3693  // code elsewhere that it shouldn't attempt to request a new
3694  // backedge-taken count, which could result in infinite recursion.
3695  std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
3696    BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3697  if (Pair.second) {
3698    BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3699    if (BECount.Exact != getCouldNotCompute()) {
3700      assert(BECount.Exact->isLoopInvariant(L) &&
3701             BECount.Max->isLoopInvariant(L) &&
3702             "Computed backedge-taken count isn't loop invariant for loop!");
3703      ++NumTripCountsComputed;
3704
3705      // Update the value in the map.
3706      Pair.first->second = BECount;
3707    } else {
3708      if (BECount.Max != getCouldNotCompute())
3709        // Update the value in the map.
3710        Pair.first->second = BECount;
3711      if (isa<PHINode>(L->getHeader()->begin()))
3712        // Only count loops that have phi nodes as not being computable.
3713        ++NumTripCountsNotComputed;
3714    }
3715
3716    // Now that we know more about the trip count for this loop, forget any
3717    // existing SCEV values for PHI nodes in this loop since they are only
3718    // conservative estimates made without the benefit of trip count
3719    // information. This is similar to the code in forgetLoop, except that
3720    // it handles SCEVUnknown PHI nodes specially.
3721    if (BECount.hasAnyInfo()) {
3722      SmallVector<Instruction *, 16> Worklist;
3723      PushLoopPHIs(L, Worklist);
3724
3725      SmallPtrSet<Instruction *, 8> Visited;
3726      while (!Worklist.empty()) {
3727        Instruction *I = Worklist.pop_back_val();
3728        if (!Visited.insert(I)) continue;
3729
3730        ValueExprMapType::iterator It =
3731          ValueExprMap.find(static_cast<Value *>(I));
3732        if (It != ValueExprMap.end()) {
3733          // SCEVUnknown for a PHI either means that it has an unrecognized
3734          // structure, or it's a PHI that's in the progress of being computed
3735          // by createNodeForPHI.  In the former case, additional loop trip
3736          // count information isn't going to change anything. In the later
3737          // case, createNodeForPHI will perform the necessary updates on its
3738          // own when it gets to that point.
3739          if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
3740            ValuesAtScopes.erase(It->second);
3741            ValueExprMap.erase(It);
3742          }
3743          if (PHINode *PN = dyn_cast<PHINode>(I))
3744            ConstantEvolutionLoopExitValue.erase(PN);
3745        }
3746
3747        PushDefUseChildren(I, Worklist);
3748      }
3749    }
3750  }
3751  return Pair.first->second;
3752}
3753
3754/// forgetLoop - This method should be called by the client when it has
3755/// changed a loop in a way that may effect ScalarEvolution's ability to
3756/// compute a trip count, or if the loop is deleted.
3757void ScalarEvolution::forgetLoop(const Loop *L) {
3758  // Drop any stored trip count value.
3759  BackedgeTakenCounts.erase(L);
3760
3761  // Drop information about expressions based on loop-header PHIs.
3762  SmallVector<Instruction *, 16> Worklist;
3763  PushLoopPHIs(L, Worklist);
3764
3765  SmallPtrSet<Instruction *, 8> Visited;
3766  while (!Worklist.empty()) {
3767    Instruction *I = Worklist.pop_back_val();
3768    if (!Visited.insert(I)) continue;
3769
3770    ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3771    if (It != ValueExprMap.end()) {
3772      ValuesAtScopes.erase(It->second);
3773      ValueExprMap.erase(It);
3774      if (PHINode *PN = dyn_cast<PHINode>(I))
3775        ConstantEvolutionLoopExitValue.erase(PN);
3776    }
3777
3778    PushDefUseChildren(I, Worklist);
3779  }
3780}
3781
3782/// forgetValue - This method should be called by the client when it has
3783/// changed a value in a way that may effect its value, or which may
3784/// disconnect it from a def-use chain linking it to a loop.
3785void ScalarEvolution::forgetValue(Value *V) {
3786  Instruction *I = dyn_cast<Instruction>(V);
3787  if (!I) return;
3788
3789  // Drop information about expressions based on loop-header PHIs.
3790  SmallVector<Instruction *, 16> Worklist;
3791  Worklist.push_back(I);
3792
3793  SmallPtrSet<Instruction *, 8> Visited;
3794  while (!Worklist.empty()) {
3795    I = Worklist.pop_back_val();
3796    if (!Visited.insert(I)) continue;
3797
3798    ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3799    if (It != ValueExprMap.end()) {
3800      ValuesAtScopes.erase(It->second);
3801      ValueExprMap.erase(It);
3802      if (PHINode *PN = dyn_cast<PHINode>(I))
3803        ConstantEvolutionLoopExitValue.erase(PN);
3804    }
3805
3806    PushDefUseChildren(I, Worklist);
3807  }
3808}
3809
3810/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3811/// of the specified loop will execute.
3812ScalarEvolution::BackedgeTakenInfo
3813ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
3814  SmallVector<BasicBlock *, 8> ExitingBlocks;
3815  L->getExitingBlocks(ExitingBlocks);
3816
3817  // Examine all exits and pick the most conservative values.
3818  const SCEV *BECount = getCouldNotCompute();
3819  const SCEV *MaxBECount = getCouldNotCompute();
3820  bool CouldNotComputeBECount = false;
3821  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3822    BackedgeTakenInfo NewBTI =
3823      ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
3824
3825    if (NewBTI.Exact == getCouldNotCompute()) {
3826      // We couldn't compute an exact value for this exit, so
3827      // we won't be able to compute an exact value for the loop.
3828      CouldNotComputeBECount = true;
3829      BECount = getCouldNotCompute();
3830    } else if (!CouldNotComputeBECount) {
3831      if (BECount == getCouldNotCompute())
3832        BECount = NewBTI.Exact;
3833      else
3834        BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
3835    }
3836    if (MaxBECount == getCouldNotCompute())
3837      MaxBECount = NewBTI.Max;
3838    else if (NewBTI.Max != getCouldNotCompute())
3839      MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
3840  }
3841
3842  return BackedgeTakenInfo(BECount, MaxBECount);
3843}
3844
3845/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3846/// of the specified loop will execute if it exits via the specified block.
3847ScalarEvolution::BackedgeTakenInfo
3848ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3849                                                   BasicBlock *ExitingBlock) {
3850
3851  // Okay, we've chosen an exiting block.  See what condition causes us to
3852  // exit at this block.
3853  //
3854  // FIXME: we should be able to handle switch instructions (with a single exit)
3855  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
3856  if (ExitBr == 0) return getCouldNotCompute();
3857  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
3858
3859  // At this point, we know we have a conditional branch that determines whether
3860  // the loop is exited.  However, we don't know if the branch is executed each
3861  // time through the loop.  If not, then the execution count of the branch will
3862  // not be equal to the trip count of the loop.
3863  //
3864  // Currently we check for this by checking to see if the Exit branch goes to
3865  // the loop header.  If so, we know it will always execute the same number of
3866  // times as the loop.  We also handle the case where the exit block *is* the
3867  // loop header.  This is common for un-rotated loops.
3868  //
3869  // If both of those tests fail, walk up the unique predecessor chain to the
3870  // header, stopping if there is an edge that doesn't exit the loop. If the
3871  // header is reached, the execution count of the branch will be equal to the
3872  // trip count of the loop.
3873  //
3874  //  More extensive analysis could be done to handle more cases here.
3875  //
3876  if (ExitBr->getSuccessor(0) != L->getHeader() &&
3877      ExitBr->getSuccessor(1) != L->getHeader() &&
3878      ExitBr->getParent() != L->getHeader()) {
3879    // The simple checks failed, try climbing the unique predecessor chain
3880    // up to the header.
3881    bool Ok = false;
3882    for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3883      BasicBlock *Pred = BB->getUniquePredecessor();
3884      if (!Pred)
3885        return getCouldNotCompute();
3886      TerminatorInst *PredTerm = Pred->getTerminator();
3887      for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3888        BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3889        if (PredSucc == BB)
3890          continue;
3891        // If the predecessor has a successor that isn't BB and isn't
3892        // outside the loop, assume the worst.
3893        if (L->contains(PredSucc))
3894          return getCouldNotCompute();
3895      }
3896      if (Pred == L->getHeader()) {
3897        Ok = true;
3898        break;
3899      }
3900      BB = Pred;
3901    }
3902    if (!Ok)
3903      return getCouldNotCompute();
3904  }
3905
3906  // Proceed to the next level to examine the exit condition expression.
3907  return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3908                                               ExitBr->getSuccessor(0),
3909                                               ExitBr->getSuccessor(1));
3910}
3911
3912/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3913/// backedge of the specified loop will execute if its exit condition
3914/// were a conditional branch of ExitCond, TBB, and FBB.
3915ScalarEvolution::BackedgeTakenInfo
3916ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3917                                                       Value *ExitCond,
3918                                                       BasicBlock *TBB,
3919                                                       BasicBlock *FBB) {
3920  // Check if the controlling expression for this loop is an And or Or.
3921  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3922    if (BO->getOpcode() == Instruction::And) {
3923      // Recurse on the operands of the and.
3924      BackedgeTakenInfo BTI0 =
3925        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3926      BackedgeTakenInfo BTI1 =
3927        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3928      const SCEV *BECount = getCouldNotCompute();
3929      const SCEV *MaxBECount = getCouldNotCompute();
3930      if (L->contains(TBB)) {
3931        // Both conditions must be true for the loop to continue executing.
3932        // Choose the less conservative count.
3933        if (BTI0.Exact == getCouldNotCompute() ||
3934            BTI1.Exact == getCouldNotCompute())
3935          BECount = getCouldNotCompute();
3936        else
3937          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3938        if (BTI0.Max == getCouldNotCompute())
3939          MaxBECount = BTI1.Max;
3940        else if (BTI1.Max == getCouldNotCompute())
3941          MaxBECount = BTI0.Max;
3942        else
3943          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3944      } else {
3945        // Both conditions must be true at the same time for the loop to exit.
3946        // For now, be conservative.
3947        assert(L->contains(FBB) && "Loop block has no successor in loop!");
3948        if (BTI0.Max == BTI1.Max)
3949          MaxBECount = BTI0.Max;
3950        if (BTI0.Exact == BTI1.Exact)
3951          BECount = BTI0.Exact;
3952      }
3953
3954      return BackedgeTakenInfo(BECount, MaxBECount);
3955    }
3956    if (BO->getOpcode() == Instruction::Or) {
3957      // Recurse on the operands of the or.
3958      BackedgeTakenInfo BTI0 =
3959        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3960      BackedgeTakenInfo BTI1 =
3961        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3962      const SCEV *BECount = getCouldNotCompute();
3963      const SCEV *MaxBECount = getCouldNotCompute();
3964      if (L->contains(FBB)) {
3965        // Both conditions must be false for the loop to continue executing.
3966        // Choose the less conservative count.
3967        if (BTI0.Exact == getCouldNotCompute() ||
3968            BTI1.Exact == getCouldNotCompute())
3969          BECount = getCouldNotCompute();
3970        else
3971          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3972        if (BTI0.Max == getCouldNotCompute())
3973          MaxBECount = BTI1.Max;
3974        else if (BTI1.Max == getCouldNotCompute())
3975          MaxBECount = BTI0.Max;
3976        else
3977          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3978      } else {
3979        // Both conditions must be false at the same time for the loop to exit.
3980        // For now, be conservative.
3981        assert(L->contains(TBB) && "Loop block has no successor in loop!");
3982        if (BTI0.Max == BTI1.Max)
3983          MaxBECount = BTI0.Max;
3984        if (BTI0.Exact == BTI1.Exact)
3985          BECount = BTI0.Exact;
3986      }
3987
3988      return BackedgeTakenInfo(BECount, MaxBECount);
3989    }
3990  }
3991
3992  // With an icmp, it may be feasible to compute an exact backedge-taken count.
3993  // Proceed to the next level to examine the icmp.
3994  if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3995    return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
3996
3997  // Check for a constant condition. These are normally stripped out by
3998  // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
3999  // preserve the CFG and is temporarily leaving constant conditions
4000  // in place.
4001  if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4002    if (L->contains(FBB) == !CI->getZExtValue())
4003      // The backedge is always taken.
4004      return getCouldNotCompute();
4005    else
4006      // The backedge is never taken.
4007      return getConstant(CI->getType(), 0);
4008  }
4009
4010  // If it's not an integer or pointer comparison then compute it the hard way.
4011  return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
4012}
4013
4014/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
4015/// backedge of the specified loop will execute if its exit condition
4016/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4017ScalarEvolution::BackedgeTakenInfo
4018ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
4019                                                           ICmpInst *ExitCond,
4020                                                           BasicBlock *TBB,
4021                                                           BasicBlock *FBB) {
4022
4023  // If the condition was exit on true, convert the condition to exit on false
4024  ICmpInst::Predicate Cond;
4025  if (!L->contains(FBB))
4026    Cond = ExitCond->getPredicate();
4027  else
4028    Cond = ExitCond->getInversePredicate();
4029
4030  // Handle common loops like: for (X = "string"; *X; ++X)
4031  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4032    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
4033      BackedgeTakenInfo ItCnt =
4034        ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
4035      if (ItCnt.hasAnyInfo())
4036        return ItCnt;
4037    }
4038
4039  const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4040  const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
4041
4042  // Try to evaluate any dependencies out of the loop.
4043  LHS = getSCEVAtScope(LHS, L);
4044  RHS = getSCEVAtScope(RHS, L);
4045
4046  // At this point, we would like to compute how many iterations of the
4047  // loop the predicate will return true for these inputs.
4048  if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
4049    // If there is a loop-invariant, force it into the RHS.
4050    std::swap(LHS, RHS);
4051    Cond = ICmpInst::getSwappedPredicate(Cond);
4052  }
4053
4054  // Simplify the operands before analyzing them.
4055  (void)SimplifyICmpOperands(Cond, LHS, RHS);
4056
4057  // If we have a comparison of a chrec against a constant, try to use value
4058  // ranges to answer this query.
4059  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4060    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
4061      if (AddRec->getLoop() == L) {
4062        // Form the constant range.
4063        ConstantRange CompRange(
4064            ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
4065
4066        const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
4067        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
4068      }
4069
4070  switch (Cond) {
4071  case ICmpInst::ICMP_NE: {                     // while (X != Y)
4072    // Convert to: while (X-Y != 0)
4073    BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L);
4074    if (BTI.hasAnyInfo()) return BTI;
4075    break;
4076  }
4077  case ICmpInst::ICMP_EQ: {                     // while (X == Y)
4078    // Convert to: while (X-Y == 0)
4079    BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4080    if (BTI.hasAnyInfo()) return BTI;
4081    break;
4082  }
4083  case ICmpInst::ICMP_SLT: {
4084    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
4085    if (BTI.hasAnyInfo()) return BTI;
4086    break;
4087  }
4088  case ICmpInst::ICMP_SGT: {
4089    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4090                                             getNotSCEV(RHS), L, true);
4091    if (BTI.hasAnyInfo()) return BTI;
4092    break;
4093  }
4094  case ICmpInst::ICMP_ULT: {
4095    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
4096    if (BTI.hasAnyInfo()) return BTI;
4097    break;
4098  }
4099  case ICmpInst::ICMP_UGT: {
4100    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4101                                             getNotSCEV(RHS), L, false);
4102    if (BTI.hasAnyInfo()) return BTI;
4103    break;
4104  }
4105  default:
4106#if 0
4107    dbgs() << "ComputeBackedgeTakenCount ";
4108    if (ExitCond->getOperand(0)->getType()->isUnsigned())
4109      dbgs() << "[unsigned] ";
4110    dbgs() << *LHS << "   "
4111         << Instruction::getOpcodeName(Instruction::ICmp)
4112         << "   " << *RHS << "\n";
4113#endif
4114    break;
4115  }
4116  return
4117    ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
4118}
4119
4120static ConstantInt *
4121EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4122                                ScalarEvolution &SE) {
4123  const SCEV *InVal = SE.getConstant(C);
4124  const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
4125  assert(isa<SCEVConstant>(Val) &&
4126         "Evaluation of SCEV at constant didn't fold correctly?");
4127  return cast<SCEVConstant>(Val)->getValue();
4128}
4129
4130/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4131/// and a GEP expression (missing the pointer index) indexing into it, return
4132/// the addressed element of the initializer or null if the index expression is
4133/// invalid.
4134static Constant *
4135GetAddressedElementFromGlobal(GlobalVariable *GV,
4136                              const std::vector<ConstantInt*> &Indices) {
4137  Constant *Init = GV->getInitializer();
4138  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
4139    uint64_t Idx = Indices[i]->getZExtValue();
4140    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4141      assert(Idx < CS->getNumOperands() && "Bad struct index!");
4142      Init = cast<Constant>(CS->getOperand(Idx));
4143    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4144      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
4145      Init = cast<Constant>(CA->getOperand(Idx));
4146    } else if (isa<ConstantAggregateZero>(Init)) {
4147      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
4148        assert(Idx < STy->getNumElements() && "Bad struct index!");
4149        Init = Constant::getNullValue(STy->getElementType(Idx));
4150      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4151        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
4152        Init = Constant::getNullValue(ATy->getElementType());
4153      } else {
4154        llvm_unreachable("Unknown constant aggregate type!");
4155      }
4156      return 0;
4157    } else {
4158      return 0; // Unknown initializer type
4159    }
4160  }
4161  return Init;
4162}
4163
4164/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4165/// 'icmp op load X, cst', try to see if we can compute the backedge
4166/// execution count.
4167ScalarEvolution::BackedgeTakenInfo
4168ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4169                                                LoadInst *LI,
4170                                                Constant *RHS,
4171                                                const Loop *L,
4172                                                ICmpInst::Predicate predicate) {
4173  if (LI->isVolatile()) return getCouldNotCompute();
4174
4175  // Check to see if the loaded pointer is a getelementptr of a global.
4176  // TODO: Use SCEV instead of manually grubbing with GEPs.
4177  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
4178  if (!GEP) return getCouldNotCompute();
4179
4180  // Make sure that it is really a constant global we are gepping, with an
4181  // initializer, and make sure the first IDX is really 0.
4182  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
4183  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
4184      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4185      !cast<Constant>(GEP->getOperand(1))->isNullValue())
4186    return getCouldNotCompute();
4187
4188  // Okay, we allow one non-constant index into the GEP instruction.
4189  Value *VarIdx = 0;
4190  std::vector<ConstantInt*> Indexes;
4191  unsigned VarIdxNum = 0;
4192  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4193    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4194      Indexes.push_back(CI);
4195    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
4196      if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
4197      VarIdx = GEP->getOperand(i);
4198      VarIdxNum = i-2;
4199      Indexes.push_back(0);
4200    }
4201
4202  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4203  // Check to see if X is a loop variant variable value now.
4204  const SCEV *Idx = getSCEV(VarIdx);
4205  Idx = getSCEVAtScope(Idx, L);
4206
4207  // We can only recognize very limited forms of loop index expressions, in
4208  // particular, only affine AddRec's like {C1,+,C2}.
4209  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
4210  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
4211      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4212      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
4213    return getCouldNotCompute();
4214
4215  unsigned MaxSteps = MaxBruteForceIterations;
4216  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
4217    ConstantInt *ItCst = ConstantInt::get(
4218                           cast<IntegerType>(IdxExpr->getType()), IterationNum);
4219    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
4220
4221    // Form the GEP offset.
4222    Indexes[VarIdxNum] = Val;
4223
4224    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
4225    if (Result == 0) break;  // Cannot compute!
4226
4227    // Evaluate the condition for this iteration.
4228    Result = ConstantExpr::getICmp(predicate, Result, RHS);
4229    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
4230    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
4231#if 0
4232      dbgs() << "\n***\n*** Computed loop count " << *ItCst
4233             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4234             << "***\n";
4235#endif
4236      ++NumArrayLenItCounts;
4237      return getConstant(ItCst);   // Found terminating iteration!
4238    }
4239  }
4240  return getCouldNotCompute();
4241}
4242
4243
4244/// CanConstantFold - Return true if we can constant fold an instruction of the
4245/// specified type, assuming that all operands were constants.
4246static bool CanConstantFold(const Instruction *I) {
4247  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
4248      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4249    return true;
4250
4251  if (const CallInst *CI = dyn_cast<CallInst>(I))
4252    if (const Function *F = CI->getCalledFunction())
4253      return canConstantFoldCallTo(F);
4254  return false;
4255}
4256
4257/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4258/// in the loop that V is derived from.  We allow arbitrary operations along the
4259/// way, but the operands of an operation must either be constants or a value
4260/// derived from a constant PHI.  If this expression does not fit with these
4261/// constraints, return null.
4262static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4263  // If this is not an instruction, or if this is an instruction outside of the
4264  // loop, it can't be derived from a loop PHI.
4265  Instruction *I = dyn_cast<Instruction>(V);
4266  if (I == 0 || !L->contains(I)) return 0;
4267
4268  if (PHINode *PN = dyn_cast<PHINode>(I)) {
4269    if (L->getHeader() == I->getParent())
4270      return PN;
4271    else
4272      // We don't currently keep track of the control flow needed to evaluate
4273      // PHIs, so we cannot handle PHIs inside of loops.
4274      return 0;
4275  }
4276
4277  // If we won't be able to constant fold this expression even if the operands
4278  // are constants, return early.
4279  if (!CanConstantFold(I)) return 0;
4280
4281  // Otherwise, we can evaluate this instruction if all of its operands are
4282  // constant or derived from a PHI node themselves.
4283  PHINode *PHI = 0;
4284  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
4285    if (!isa<Constant>(I->getOperand(Op))) {
4286      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4287      if (P == 0) return 0;  // Not evolving from PHI
4288      if (PHI == 0)
4289        PHI = P;
4290      else if (PHI != P)
4291        return 0;  // Evolving from multiple different PHIs.
4292    }
4293
4294  // This is a expression evolving from a constant PHI!
4295  return PHI;
4296}
4297
4298/// EvaluateExpression - Given an expression that passes the
4299/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4300/// in the loop has the value PHIVal.  If we can't fold this expression for some
4301/// reason, return null.
4302static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4303                                    const TargetData *TD) {
4304  if (isa<PHINode>(V)) return PHIVal;
4305  if (Constant *C = dyn_cast<Constant>(V)) return C;
4306  Instruction *I = cast<Instruction>(V);
4307
4308  std::vector<Constant*> Operands(I->getNumOperands());
4309
4310  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4311    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
4312    if (Operands[i] == 0) return 0;
4313  }
4314
4315  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4316    return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
4317                                           Operands[1], TD);
4318  return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4319                                  &Operands[0], Operands.size(), TD);
4320}
4321
4322/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4323/// in the header of its containing loop, we know the loop executes a
4324/// constant number of times, and the PHI node is just a recurrence
4325/// involving constants, fold it.
4326Constant *
4327ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
4328                                                   const APInt &BEs,
4329                                                   const Loop *L) {
4330  std::map<PHINode*, Constant*>::const_iterator I =
4331    ConstantEvolutionLoopExitValue.find(PN);
4332  if (I != ConstantEvolutionLoopExitValue.end())
4333    return I->second;
4334
4335  if (BEs.ugt(MaxBruteForceIterations))
4336    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
4337
4338  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4339
4340  // Since the loop is canonicalized, the PHI node must have two entries.  One
4341  // entry must be a constant (coming in from outside of the loop), and the
4342  // second must be derived from the same PHI.
4343  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4344  Constant *StartCST =
4345    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4346  if (StartCST == 0)
4347    return RetVal = 0;  // Must be a constant.
4348
4349  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4350  if (getConstantEvolvingPHI(BEValue, L) != PN &&
4351      !isa<Constant>(BEValue))
4352    return RetVal = 0;  // Not derived from same PHI.
4353
4354  // Execute the loop symbolically to determine the exit value.
4355  if (BEs.getActiveBits() >= 32)
4356    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
4357
4358  unsigned NumIterations = BEs.getZExtValue(); // must be in range
4359  unsigned IterationNum = 0;
4360  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4361    if (IterationNum == NumIterations)
4362      return RetVal = PHIVal;  // Got exit value!
4363
4364    // Compute the value of the PHI node for the next iteration.
4365    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4366    if (NextPHI == PHIVal)
4367      return RetVal = NextPHI;  // Stopped evolving!
4368    if (NextPHI == 0)
4369      return 0;        // Couldn't evaluate!
4370    PHIVal = NextPHI;
4371  }
4372}
4373
4374/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
4375/// constant number of times (the condition evolves only from constants),
4376/// try to evaluate a few iterations of the loop until we get the exit
4377/// condition gets a value of ExitWhen (true or false).  If we cannot
4378/// evaluate the trip count of the loop, return getCouldNotCompute().
4379const SCEV *
4380ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4381                                                       Value *Cond,
4382                                                       bool ExitWhen) {
4383  PHINode *PN = getConstantEvolvingPHI(Cond, L);
4384  if (PN == 0) return getCouldNotCompute();
4385
4386  // If the loop is canonicalized, the PHI will have exactly two entries.
4387  // That's the only form we support here.
4388  if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4389
4390  // One entry must be a constant (coming in from outside of the loop), and the
4391  // second must be derived from the same PHI.
4392  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4393  Constant *StartCST =
4394    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4395  if (StartCST == 0) return getCouldNotCompute();  // Must be a constant.
4396
4397  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4398  if (getConstantEvolvingPHI(BEValue, L) != PN &&
4399      !isa<Constant>(BEValue))
4400    return getCouldNotCompute();  // Not derived from same PHI.
4401
4402  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
4403  // the loop symbolically to determine when the condition gets a value of
4404  // "ExitWhen".
4405  unsigned IterationNum = 0;
4406  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
4407  for (Constant *PHIVal = StartCST;
4408       IterationNum != MaxIterations; ++IterationNum) {
4409    ConstantInt *CondVal =
4410      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
4411
4412    // Couldn't symbolically evaluate.
4413    if (!CondVal) return getCouldNotCompute();
4414
4415    if (CondVal->getValue() == uint64_t(ExitWhen)) {
4416      ++NumBruteForceTripCountsComputed;
4417      return getConstant(Type::getInt32Ty(getContext()), IterationNum);
4418    }
4419
4420    // Compute the value of the PHI node for the next iteration.
4421    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4422    if (NextPHI == 0 || NextPHI == PHIVal)
4423      return getCouldNotCompute();// Couldn't evaluate or not making progress...
4424    PHIVal = NextPHI;
4425  }
4426
4427  // Too many iterations were needed to evaluate.
4428  return getCouldNotCompute();
4429}
4430
4431/// getSCEVAtScope - Return a SCEV expression for the specified value
4432/// at the specified scope in the program.  The L value specifies a loop
4433/// nest to evaluate the expression at, where null is the top-level or a
4434/// specified loop is immediately inside of the loop.
4435///
4436/// This method can be used to compute the exit value for a variable defined
4437/// in a loop by querying what the value will hold in the parent loop.
4438///
4439/// In the case that a relevant loop exit value cannot be computed, the
4440/// original value V is returned.
4441const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
4442  // Check to see if we've folded this expression at this loop before.
4443  std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4444  std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4445    Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4446  if (!Pair.second)
4447    return Pair.first->second ? Pair.first->second : V;
4448
4449  // Otherwise compute it.
4450  const SCEV *C = computeSCEVAtScope(V, L);
4451  ValuesAtScopes[V][L] = C;
4452  return C;
4453}
4454
4455const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
4456  if (isa<SCEVConstant>(V)) return V;
4457
4458  // If this instruction is evolved from a constant-evolving PHI, compute the
4459  // exit value from the loop without using SCEVs.
4460  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
4461    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
4462      const Loop *LI = (*this->LI)[I->getParent()];
4463      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
4464        if (PHINode *PN = dyn_cast<PHINode>(I))
4465          if (PN->getParent() == LI->getHeader()) {
4466            // Okay, there is no closed form solution for the PHI node.  Check
4467            // to see if the loop that contains it has a known backedge-taken
4468            // count.  If so, we may be able to force computation of the exit
4469            // value.
4470            const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
4471            if (const SCEVConstant *BTCC =
4472                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
4473              // Okay, we know how many times the containing loop executes.  If
4474              // this is a constant evolving PHI node, get the final value at
4475              // the specified iteration number.
4476              Constant *RV = getConstantEvolutionLoopExitValue(PN,
4477                                                   BTCC->getValue()->getValue(),
4478                                                               LI);
4479              if (RV) return getSCEV(RV);
4480            }
4481          }
4482
4483      // Okay, this is an expression that we cannot symbolically evaluate
4484      // into a SCEV.  Check to see if it's possible to symbolically evaluate
4485      // the arguments into constants, and if so, try to constant propagate the
4486      // result.  This is particularly useful for computing loop exit values.
4487      if (CanConstantFold(I)) {
4488        SmallVector<Constant *, 4> Operands;
4489        bool MadeImprovement = false;
4490        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4491          Value *Op = I->getOperand(i);
4492          if (Constant *C = dyn_cast<Constant>(Op)) {
4493            Operands.push_back(C);
4494            continue;
4495          }
4496
4497          // If any of the operands is non-constant and if they are
4498          // non-integer and non-pointer, don't even try to analyze them
4499          // with scev techniques.
4500          if (!isSCEVable(Op->getType()))
4501            return V;
4502
4503          const SCEV *OrigV = getSCEV(Op);
4504          const SCEV *OpV = getSCEVAtScope(OrigV, L);
4505          MadeImprovement |= OrigV != OpV;
4506
4507          Constant *C = 0;
4508          if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4509            C = SC->getValue();
4510          if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4511            C = dyn_cast<Constant>(SU->getValue());
4512          if (!C) return V;
4513          if (C->getType() != Op->getType())
4514            C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4515                                                              Op->getType(),
4516                                                              false),
4517                                      C, Op->getType());
4518          Operands.push_back(C);
4519        }
4520
4521        // Check to see if getSCEVAtScope actually made an improvement.
4522        if (MadeImprovement) {
4523          Constant *C = 0;
4524          if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4525            C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4526                                                Operands[0], Operands[1], TD);
4527          else
4528            C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4529                                         &Operands[0], Operands.size(), TD);
4530          if (!C) return V;
4531          return getSCEV(C);
4532        }
4533      }
4534    }
4535
4536    // This is some other type of SCEVUnknown, just return it.
4537    return V;
4538  }
4539
4540  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
4541    // Avoid performing the look-up in the common case where the specified
4542    // expression has no loop-variant portions.
4543    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
4544      const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4545      if (OpAtScope != Comm->getOperand(i)) {
4546        // Okay, at least one of these operands is loop variant but might be
4547        // foldable.  Build a new instance of the folded commutative expression.
4548        SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4549                                            Comm->op_begin()+i);
4550        NewOps.push_back(OpAtScope);
4551
4552        for (++i; i != e; ++i) {
4553          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4554          NewOps.push_back(OpAtScope);
4555        }
4556        if (isa<SCEVAddExpr>(Comm))
4557          return getAddExpr(NewOps);
4558        if (isa<SCEVMulExpr>(Comm))
4559          return getMulExpr(NewOps);
4560        if (isa<SCEVSMaxExpr>(Comm))
4561          return getSMaxExpr(NewOps);
4562        if (isa<SCEVUMaxExpr>(Comm))
4563          return getUMaxExpr(NewOps);
4564        llvm_unreachable("Unknown commutative SCEV type!");
4565      }
4566    }
4567    // If we got here, all operands are loop invariant.
4568    return Comm;
4569  }
4570
4571  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
4572    const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4573    const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
4574    if (LHS == Div->getLHS() && RHS == Div->getRHS())
4575      return Div;   // must be loop invariant
4576    return getUDivExpr(LHS, RHS);
4577  }
4578
4579  // If this is a loop recurrence for a loop that does not contain L, then we
4580  // are dealing with the final value computed by the loop.
4581  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4582    // First, attempt to evaluate each operand.
4583    // Avoid performing the look-up in the common case where the specified
4584    // expression has no loop-variant portions.
4585    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4586      const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4587      if (OpAtScope == AddRec->getOperand(i))
4588        continue;
4589
4590      // Okay, at least one of these operands is loop variant but might be
4591      // foldable.  Build a new instance of the folded commutative expression.
4592      SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4593                                          AddRec->op_begin()+i);
4594      NewOps.push_back(OpAtScope);
4595      for (++i; i != e; ++i)
4596        NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4597
4598      AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop()));
4599      break;
4600    }
4601
4602    // If the scope is outside the addrec's loop, evaluate it by using the
4603    // loop exit value of the addrec.
4604    if (!AddRec->getLoop()->contains(L)) {
4605      // To evaluate this recurrence, we need to know how many times the AddRec
4606      // loop iterates.  Compute this now.
4607      const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
4608      if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
4609
4610      // Then, evaluate the AddRec.
4611      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
4612    }
4613
4614    return AddRec;
4615  }
4616
4617  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
4618    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4619    if (Op == Cast->getOperand())
4620      return Cast;  // must be loop invariant
4621    return getZeroExtendExpr(Op, Cast->getType());
4622  }
4623
4624  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
4625    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4626    if (Op == Cast->getOperand())
4627      return Cast;  // must be loop invariant
4628    return getSignExtendExpr(Op, Cast->getType());
4629  }
4630
4631  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
4632    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4633    if (Op == Cast->getOperand())
4634      return Cast;  // must be loop invariant
4635    return getTruncateExpr(Op, Cast->getType());
4636  }
4637
4638  llvm_unreachable("Unknown SCEV type!");
4639  return 0;
4640}
4641
4642/// getSCEVAtScope - This is a convenience function which does
4643/// getSCEVAtScope(getSCEV(V), L).
4644const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
4645  return getSCEVAtScope(getSCEV(V), L);
4646}
4647
4648/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4649/// following equation:
4650///
4651///     A * X = B (mod N)
4652///
4653/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4654/// A and B isn't important.
4655///
4656/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
4657static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
4658                                               ScalarEvolution &SE) {
4659  uint32_t BW = A.getBitWidth();
4660  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4661  assert(A != 0 && "A must be non-zero.");
4662
4663  // 1. D = gcd(A, N)
4664  //
4665  // The gcd of A and N may have only one prime factor: 2. The number of
4666  // trailing zeros in A is its multiplicity
4667  uint32_t Mult2 = A.countTrailingZeros();
4668  // D = 2^Mult2
4669
4670  // 2. Check if B is divisible by D.
4671  //
4672  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4673  // is not less than multiplicity of this prime factor for D.
4674  if (B.countTrailingZeros() < Mult2)
4675    return SE.getCouldNotCompute();
4676
4677  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4678  // modulo (N / D).
4679  //
4680  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
4681  // bit width during computations.
4682  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
4683  APInt Mod(BW + 1, 0);
4684  Mod.set(BW - Mult2);  // Mod = N / D
4685  APInt I = AD.multiplicativeInverse(Mod);
4686
4687  // 4. Compute the minimum unsigned root of the equation:
4688  // I * (B / D) mod (N / D)
4689  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4690
4691  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4692  // bits.
4693  return SE.getConstant(Result.trunc(BW));
4694}
4695
4696/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4697/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
4698/// might be the same) or two SCEVCouldNotCompute objects.
4699///
4700static std::pair<const SCEV *,const SCEV *>
4701SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
4702  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
4703  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4704  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4705  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
4706
4707  // We currently can only solve this if the coefficients are constants.
4708  if (!LC || !MC || !NC) {
4709    const SCEV *CNC = SE.getCouldNotCompute();
4710    return std::make_pair(CNC, CNC);
4711  }
4712
4713  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
4714  const APInt &L = LC->getValue()->getValue();
4715  const APInt &M = MC->getValue()->getValue();
4716  const APInt &N = NC->getValue()->getValue();
4717  APInt Two(BitWidth, 2);
4718  APInt Four(BitWidth, 4);
4719
4720  {
4721    using namespace APIntOps;
4722    const APInt& C = L;
4723    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4724    // The B coefficient is M-N/2
4725    APInt B(M);
4726    B -= sdiv(N,Two);
4727
4728    // The A coefficient is N/2
4729    APInt A(N.sdiv(Two));
4730
4731    // Compute the B^2-4ac term.
4732    APInt SqrtTerm(B);
4733    SqrtTerm *= B;
4734    SqrtTerm -= Four * (A * C);
4735
4736    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4737    // integer value or else APInt::sqrt() will assert.
4738    APInt SqrtVal(SqrtTerm.sqrt());
4739
4740    // Compute the two solutions for the quadratic formula.
4741    // The divisions must be performed as signed divisions.
4742    APInt NegB(-B);
4743    APInt TwoA( A << 1 );
4744    if (TwoA.isMinValue()) {
4745      const SCEV *CNC = SE.getCouldNotCompute();
4746      return std::make_pair(CNC, CNC);
4747    }
4748
4749    LLVMContext &Context = SE.getContext();
4750
4751    ConstantInt *Solution1 =
4752      ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
4753    ConstantInt *Solution2 =
4754      ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
4755
4756    return std::make_pair(SE.getConstant(Solution1),
4757                          SE.getConstant(Solution2));
4758    } // end APIntOps namespace
4759}
4760
4761/// HowFarToZero - Return the number of times a backedge comparing the specified
4762/// value to zero will execute.  If not computable, return CouldNotCompute.
4763ScalarEvolution::BackedgeTakenInfo
4764ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
4765  // If the value is a constant
4766  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4767    // If the value is already zero, the branch will execute zero times.
4768    if (C->getValue()->isZero()) return C;
4769    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4770  }
4771
4772  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
4773  if (!AddRec || AddRec->getLoop() != L)
4774    return getCouldNotCompute();
4775
4776  if (AddRec->isAffine()) {
4777    // If this is an affine expression, the execution count of this branch is
4778    // the minimum unsigned root of the following equation:
4779    //
4780    //     Start + Step*N = 0 (mod 2^BW)
4781    //
4782    // equivalent to:
4783    //
4784    //             Step*N = -Start (mod 2^BW)
4785    //
4786    // where BW is the common bit width of Start and Step.
4787
4788    // Get the initial value for the loop.
4789    const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4790                                       L->getParentLoop());
4791    const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4792                                      L->getParentLoop());
4793
4794    if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
4795      // For now we handle only constant steps.
4796
4797      // First, handle unitary steps.
4798      if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so:
4799        return getNegativeSCEV(Start);          //   N = -Start (as unsigned)
4800      if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so:
4801        return Start;                           //    N = Start (as unsigned)
4802
4803      // Then, try to solve the above equation provided that Start is constant.
4804      if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
4805        return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
4806                                            -StartC->getValue()->getValue(),
4807                                            *this);
4808    }
4809  } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
4810    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4811    // the quadratic equation to solve it.
4812    std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
4813                                                                    *this);
4814    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4815    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
4816    if (R1) {
4817#if 0
4818      dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
4819             << "  sol#2: " << *R2 << "\n";
4820#endif
4821      // Pick the smallest positive root value.
4822      if (ConstantInt *CB =
4823          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
4824                                   R1->getValue(), R2->getValue()))) {
4825        if (CB->getZExtValue() == false)
4826          std::swap(R1, R2);   // R1 is the minimum root now.
4827
4828        // We can only use this value if the chrec ends up with an exact zero
4829        // value at this index.  When solving for "X*X != 5", for example, we
4830        // should not accept a root of 2.
4831        const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
4832        if (Val->isZero())
4833          return R1;  // We found a quadratic root!
4834      }
4835    }
4836  }
4837
4838  return getCouldNotCompute();
4839}
4840
4841/// HowFarToNonZero - Return the number of times a backedge checking the
4842/// specified value for nonzero will execute.  If not computable, return
4843/// CouldNotCompute
4844ScalarEvolution::BackedgeTakenInfo
4845ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
4846  // Loops that look like: while (X == 0) are very strange indeed.  We don't
4847  // handle them yet except for the trivial case.  This could be expanded in the
4848  // future as needed.
4849
4850  // If the value is a constant, check to see if it is known to be non-zero
4851  // already.  If so, the backedge will execute zero times.
4852  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4853    if (!C->getValue()->isNullValue())
4854      return getConstant(C->getType(), 0);
4855    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4856  }
4857
4858  // We could implement others, but I really doubt anyone writes loops like
4859  // this, and if they did, they would already be constant folded.
4860  return getCouldNotCompute();
4861}
4862
4863/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4864/// (which may not be an immediate predecessor) which has exactly one
4865/// successor from which BB is reachable, or null if no such block is
4866/// found.
4867///
4868std::pair<BasicBlock *, BasicBlock *>
4869ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
4870  // If the block has a unique predecessor, then there is no path from the
4871  // predecessor to the block that does not go through the direct edge
4872  // from the predecessor to the block.
4873  if (BasicBlock *Pred = BB->getSinglePredecessor())
4874    return std::make_pair(Pred, BB);
4875
4876  // A loop's header is defined to be a block that dominates the loop.
4877  // If the header has a unique predecessor outside the loop, it must be
4878  // a block that has exactly one successor that can reach the loop.
4879  if (Loop *L = LI->getLoopFor(BB))
4880    return std::make_pair(L->getLoopPredecessor(), L->getHeader());
4881
4882  return std::pair<BasicBlock *, BasicBlock *>();
4883}
4884
4885/// HasSameValue - SCEV structural equivalence is usually sufficient for
4886/// testing whether two expressions are equal, however for the purposes of
4887/// looking for a condition guarding a loop, it can be useful to be a little
4888/// more general, since a front-end may have replicated the controlling
4889/// expression.
4890///
4891static bool HasSameValue(const SCEV *A, const SCEV *B) {
4892  // Quick check to see if they are the same SCEV.
4893  if (A == B) return true;
4894
4895  // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4896  // two different instructions with the same value. Check for this case.
4897  if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4898    if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4899      if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4900        if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
4901          if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
4902            return true;
4903
4904  // Otherwise assume they may have a different value.
4905  return false;
4906}
4907
4908/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
4909/// predicate Pred. Return true iff any changes were made.
4910///
4911bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
4912                                           const SCEV *&LHS, const SCEV *&RHS) {
4913  bool Changed = false;
4914
4915  // Canonicalize a constant to the right side.
4916  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
4917    // Check for both operands constant.
4918    if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
4919      if (ConstantExpr::getICmp(Pred,
4920                                LHSC->getValue(),
4921                                RHSC->getValue())->isNullValue())
4922        goto trivially_false;
4923      else
4924        goto trivially_true;
4925    }
4926    // Otherwise swap the operands to put the constant on the right.
4927    std::swap(LHS, RHS);
4928    Pred = ICmpInst::getSwappedPredicate(Pred);
4929    Changed = true;
4930  }
4931
4932  // If we're comparing an addrec with a value which is loop-invariant in the
4933  // addrec's loop, put the addrec on the left. Also make a dominance check,
4934  // as both operands could be addrecs loop-invariant in each other's loop.
4935  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
4936    const Loop *L = AR->getLoop();
4937    if (LHS->isLoopInvariant(L) && LHS->properlyDominates(L->getHeader(), DT)) {
4938      std::swap(LHS, RHS);
4939      Pred = ICmpInst::getSwappedPredicate(Pred);
4940      Changed = true;
4941    }
4942  }
4943
4944  // If there's a constant operand, canonicalize comparisons with boundary
4945  // cases, and canonicalize *-or-equal comparisons to regular comparisons.
4946  if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4947    const APInt &RA = RC->getValue()->getValue();
4948    switch (Pred) {
4949    default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4950    case ICmpInst::ICMP_EQ:
4951    case ICmpInst::ICMP_NE:
4952      break;
4953    case ICmpInst::ICMP_UGE:
4954      if ((RA - 1).isMinValue()) {
4955        Pred = ICmpInst::ICMP_NE;
4956        RHS = getConstant(RA - 1);
4957        Changed = true;
4958        break;
4959      }
4960      if (RA.isMaxValue()) {
4961        Pred = ICmpInst::ICMP_EQ;
4962        Changed = true;
4963        break;
4964      }
4965      if (RA.isMinValue()) goto trivially_true;
4966
4967      Pred = ICmpInst::ICMP_UGT;
4968      RHS = getConstant(RA - 1);
4969      Changed = true;
4970      break;
4971    case ICmpInst::ICMP_ULE:
4972      if ((RA + 1).isMaxValue()) {
4973        Pred = ICmpInst::ICMP_NE;
4974        RHS = getConstant(RA + 1);
4975        Changed = true;
4976        break;
4977      }
4978      if (RA.isMinValue()) {
4979        Pred = ICmpInst::ICMP_EQ;
4980        Changed = true;
4981        break;
4982      }
4983      if (RA.isMaxValue()) goto trivially_true;
4984
4985      Pred = ICmpInst::ICMP_ULT;
4986      RHS = getConstant(RA + 1);
4987      Changed = true;
4988      break;
4989    case ICmpInst::ICMP_SGE:
4990      if ((RA - 1).isMinSignedValue()) {
4991        Pred = ICmpInst::ICMP_NE;
4992        RHS = getConstant(RA - 1);
4993        Changed = true;
4994        break;
4995      }
4996      if (RA.isMaxSignedValue()) {
4997        Pred = ICmpInst::ICMP_EQ;
4998        Changed = true;
4999        break;
5000      }
5001      if (RA.isMinSignedValue()) goto trivially_true;
5002
5003      Pred = ICmpInst::ICMP_SGT;
5004      RHS = getConstant(RA - 1);
5005      Changed = true;
5006      break;
5007    case ICmpInst::ICMP_SLE:
5008      if ((RA + 1).isMaxSignedValue()) {
5009        Pred = ICmpInst::ICMP_NE;
5010        RHS = getConstant(RA + 1);
5011        Changed = true;
5012        break;
5013      }
5014      if (RA.isMinSignedValue()) {
5015        Pred = ICmpInst::ICMP_EQ;
5016        Changed = true;
5017        break;
5018      }
5019      if (RA.isMaxSignedValue()) goto trivially_true;
5020
5021      Pred = ICmpInst::ICMP_SLT;
5022      RHS = getConstant(RA + 1);
5023      Changed = true;
5024      break;
5025    case ICmpInst::ICMP_UGT:
5026      if (RA.isMinValue()) {
5027        Pred = ICmpInst::ICMP_NE;
5028        Changed = true;
5029        break;
5030      }
5031      if ((RA + 1).isMaxValue()) {
5032        Pred = ICmpInst::ICMP_EQ;
5033        RHS = getConstant(RA + 1);
5034        Changed = true;
5035        break;
5036      }
5037      if (RA.isMaxValue()) goto trivially_false;
5038      break;
5039    case ICmpInst::ICMP_ULT:
5040      if (RA.isMaxValue()) {
5041        Pred = ICmpInst::ICMP_NE;
5042        Changed = true;
5043        break;
5044      }
5045      if ((RA - 1).isMinValue()) {
5046        Pred = ICmpInst::ICMP_EQ;
5047        RHS = getConstant(RA - 1);
5048        Changed = true;
5049        break;
5050      }
5051      if (RA.isMinValue()) goto trivially_false;
5052      break;
5053    case ICmpInst::ICMP_SGT:
5054      if (RA.isMinSignedValue()) {
5055        Pred = ICmpInst::ICMP_NE;
5056        Changed = true;
5057        break;
5058      }
5059      if ((RA + 1).isMaxSignedValue()) {
5060        Pred = ICmpInst::ICMP_EQ;
5061        RHS = getConstant(RA + 1);
5062        Changed = true;
5063        break;
5064      }
5065      if (RA.isMaxSignedValue()) goto trivially_false;
5066      break;
5067    case ICmpInst::ICMP_SLT:
5068      if (RA.isMaxSignedValue()) {
5069        Pred = ICmpInst::ICMP_NE;
5070        Changed = true;
5071        break;
5072      }
5073      if ((RA - 1).isMinSignedValue()) {
5074       Pred = ICmpInst::ICMP_EQ;
5075       RHS = getConstant(RA - 1);
5076        Changed = true;
5077       break;
5078      }
5079      if (RA.isMinSignedValue()) goto trivially_false;
5080      break;
5081    }
5082  }
5083
5084  // Check for obvious equality.
5085  if (HasSameValue(LHS, RHS)) {
5086    if (ICmpInst::isTrueWhenEqual(Pred))
5087      goto trivially_true;
5088    if (ICmpInst::isFalseWhenEqual(Pred))
5089      goto trivially_false;
5090  }
5091
5092  // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5093  // adding or subtracting 1 from one of the operands.
5094  switch (Pred) {
5095  case ICmpInst::ICMP_SLE:
5096    if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5097      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5098                       /*HasNUW=*/false, /*HasNSW=*/true);
5099      Pred = ICmpInst::ICMP_SLT;
5100      Changed = true;
5101    } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
5102      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5103                       /*HasNUW=*/false, /*HasNSW=*/true);
5104      Pred = ICmpInst::ICMP_SLT;
5105      Changed = true;
5106    }
5107    break;
5108  case ICmpInst::ICMP_SGE:
5109    if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
5110      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5111                       /*HasNUW=*/false, /*HasNSW=*/true);
5112      Pred = ICmpInst::ICMP_SGT;
5113      Changed = true;
5114    } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5115      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5116                       /*HasNUW=*/false, /*HasNSW=*/true);
5117      Pred = ICmpInst::ICMP_SGT;
5118      Changed = true;
5119    }
5120    break;
5121  case ICmpInst::ICMP_ULE:
5122    if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
5123      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5124                       /*HasNUW=*/true, /*HasNSW=*/false);
5125      Pred = ICmpInst::ICMP_ULT;
5126      Changed = true;
5127    } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
5128      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5129                       /*HasNUW=*/true, /*HasNSW=*/false);
5130      Pred = ICmpInst::ICMP_ULT;
5131      Changed = true;
5132    }
5133    break;
5134  case ICmpInst::ICMP_UGE:
5135    if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
5136      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5137                       /*HasNUW=*/true, /*HasNSW=*/false);
5138      Pred = ICmpInst::ICMP_UGT;
5139      Changed = true;
5140    } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
5141      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5142                       /*HasNUW=*/true, /*HasNSW=*/false);
5143      Pred = ICmpInst::ICMP_UGT;
5144      Changed = true;
5145    }
5146    break;
5147  default:
5148    break;
5149  }
5150
5151  // TODO: More simplifications are possible here.
5152
5153  return Changed;
5154
5155trivially_true:
5156  // Return 0 == 0.
5157  LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5158  Pred = ICmpInst::ICMP_EQ;
5159  return true;
5160
5161trivially_false:
5162  // Return 0 != 0.
5163  LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5164  Pred = ICmpInst::ICMP_NE;
5165  return true;
5166}
5167
5168bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5169  return getSignedRange(S).getSignedMax().isNegative();
5170}
5171
5172bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5173  return getSignedRange(S).getSignedMin().isStrictlyPositive();
5174}
5175
5176bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5177  return !getSignedRange(S).getSignedMin().isNegative();
5178}
5179
5180bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5181  return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5182}
5183
5184bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5185  return isKnownNegative(S) || isKnownPositive(S);
5186}
5187
5188bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5189                                       const SCEV *LHS, const SCEV *RHS) {
5190  // Canonicalize the inputs first.
5191  (void)SimplifyICmpOperands(Pred, LHS, RHS);
5192
5193  // If LHS or RHS is an addrec, check to see if the condition is true in
5194  // every iteration of the loop.
5195  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5196    if (isLoopEntryGuardedByCond(
5197          AR->getLoop(), Pred, AR->getStart(), RHS) &&
5198        isLoopBackedgeGuardedByCond(
5199          AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
5200      return true;
5201  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5202    if (isLoopEntryGuardedByCond(
5203          AR->getLoop(), Pred, LHS, AR->getStart()) &&
5204        isLoopBackedgeGuardedByCond(
5205          AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
5206      return true;
5207
5208  // Otherwise see what can be done with known constant ranges.
5209  return isKnownPredicateWithRanges(Pred, LHS, RHS);
5210}
5211
5212bool
5213ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5214                                            const SCEV *LHS, const SCEV *RHS) {
5215  if (HasSameValue(LHS, RHS))
5216    return ICmpInst::isTrueWhenEqual(Pred);
5217
5218  // This code is split out from isKnownPredicate because it is called from
5219  // within isLoopEntryGuardedByCond.
5220  switch (Pred) {
5221  default:
5222    llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5223    break;
5224  case ICmpInst::ICMP_SGT:
5225    Pred = ICmpInst::ICMP_SLT;
5226    std::swap(LHS, RHS);
5227  case ICmpInst::ICMP_SLT: {
5228    ConstantRange LHSRange = getSignedRange(LHS);
5229    ConstantRange RHSRange = getSignedRange(RHS);
5230    if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5231      return true;
5232    if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5233      return false;
5234    break;
5235  }
5236  case ICmpInst::ICMP_SGE:
5237    Pred = ICmpInst::ICMP_SLE;
5238    std::swap(LHS, RHS);
5239  case ICmpInst::ICMP_SLE: {
5240    ConstantRange LHSRange = getSignedRange(LHS);
5241    ConstantRange RHSRange = getSignedRange(RHS);
5242    if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5243      return true;
5244    if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5245      return false;
5246    break;
5247  }
5248  case ICmpInst::ICMP_UGT:
5249    Pred = ICmpInst::ICMP_ULT;
5250    std::swap(LHS, RHS);
5251  case ICmpInst::ICMP_ULT: {
5252    ConstantRange LHSRange = getUnsignedRange(LHS);
5253    ConstantRange RHSRange = getUnsignedRange(RHS);
5254    if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5255      return true;
5256    if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5257      return false;
5258    break;
5259  }
5260  case ICmpInst::ICMP_UGE:
5261    Pred = ICmpInst::ICMP_ULE;
5262    std::swap(LHS, RHS);
5263  case ICmpInst::ICMP_ULE: {
5264    ConstantRange LHSRange = getUnsignedRange(LHS);
5265    ConstantRange RHSRange = getUnsignedRange(RHS);
5266    if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5267      return true;
5268    if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5269      return false;
5270    break;
5271  }
5272  case ICmpInst::ICMP_NE: {
5273    if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5274      return true;
5275    if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5276      return true;
5277
5278    const SCEV *Diff = getMinusSCEV(LHS, RHS);
5279    if (isKnownNonZero(Diff))
5280      return true;
5281    break;
5282  }
5283  case ICmpInst::ICMP_EQ:
5284    // The check at the top of the function catches the case where
5285    // the values are known to be equal.
5286    break;
5287  }
5288  return false;
5289}
5290
5291/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5292/// protected by a conditional between LHS and RHS.  This is used to
5293/// to eliminate casts.
5294bool
5295ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5296                                             ICmpInst::Predicate Pred,
5297                                             const SCEV *LHS, const SCEV *RHS) {
5298  // Interpret a null as meaning no loop, where there is obviously no guard
5299  // (interprocedural conditions notwithstanding).
5300  if (!L) return true;
5301
5302  BasicBlock *Latch = L->getLoopLatch();
5303  if (!Latch)
5304    return false;
5305
5306  BranchInst *LoopContinuePredicate =
5307    dyn_cast<BranchInst>(Latch->getTerminator());
5308  if (!LoopContinuePredicate ||
5309      LoopContinuePredicate->isUnconditional())
5310    return false;
5311
5312  return isImpliedCond(Pred, LHS, RHS,
5313                       LoopContinuePredicate->getCondition(),
5314                       LoopContinuePredicate->getSuccessor(0) != L->getHeader());
5315}
5316
5317/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
5318/// by a conditional between LHS and RHS.  This is used to help avoid max
5319/// expressions in loop trip counts, and to eliminate casts.
5320bool
5321ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5322                                          ICmpInst::Predicate Pred,
5323                                          const SCEV *LHS, const SCEV *RHS) {
5324  // Interpret a null as meaning no loop, where there is obviously no guard
5325  // (interprocedural conditions notwithstanding).
5326  if (!L) return false;
5327
5328  // Starting at the loop predecessor, climb up the predecessor chain, as long
5329  // as there are predecessors that can be found that have unique successors
5330  // leading to the original header.
5331  for (std::pair<BasicBlock *, BasicBlock *>
5332         Pair(L->getLoopPredecessor(), L->getHeader());
5333       Pair.first;
5334       Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
5335
5336    BranchInst *LoopEntryPredicate =
5337      dyn_cast<BranchInst>(Pair.first->getTerminator());
5338    if (!LoopEntryPredicate ||
5339        LoopEntryPredicate->isUnconditional())
5340      continue;
5341
5342    if (isImpliedCond(Pred, LHS, RHS,
5343                      LoopEntryPredicate->getCondition(),
5344                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
5345      return true;
5346  }
5347
5348  return false;
5349}
5350
5351/// isImpliedCond - Test whether the condition described by Pred, LHS,
5352/// and RHS is true whenever the given Cond value evaluates to true.
5353bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
5354                                    const SCEV *LHS, const SCEV *RHS,
5355                                    Value *FoundCondValue,
5356                                    bool Inverse) {
5357  // Recursively handle And and Or conditions.
5358  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
5359    if (BO->getOpcode() == Instruction::And) {
5360      if (!Inverse)
5361        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5362               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
5363    } else if (BO->getOpcode() == Instruction::Or) {
5364      if (Inverse)
5365        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5366               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
5367    }
5368  }
5369
5370  ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
5371  if (!ICI) return false;
5372
5373  // Bail if the ICmp's operands' types are wider than the needed type
5374  // before attempting to call getSCEV on them. This avoids infinite
5375  // recursion, since the analysis of widening casts can require loop
5376  // exit condition information for overflow checking, which would
5377  // lead back here.
5378  if (getTypeSizeInBits(LHS->getType()) <
5379      getTypeSizeInBits(ICI->getOperand(0)->getType()))
5380    return false;
5381
5382  // Now that we found a conditional branch that dominates the loop, check to
5383  // see if it is the comparison we are looking for.
5384  ICmpInst::Predicate FoundPred;
5385  if (Inverse)
5386    FoundPred = ICI->getInversePredicate();
5387  else
5388    FoundPred = ICI->getPredicate();
5389
5390  const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5391  const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
5392
5393  // Balance the types. The case where FoundLHS' type is wider than
5394  // LHS' type is checked for above.
5395  if (getTypeSizeInBits(LHS->getType()) >
5396      getTypeSizeInBits(FoundLHS->getType())) {
5397    if (CmpInst::isSigned(Pred)) {
5398      FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5399      FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5400    } else {
5401      FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5402      FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5403    }
5404  }
5405
5406  // Canonicalize the query to match the way instcombine will have
5407  // canonicalized the comparison.
5408  if (SimplifyICmpOperands(Pred, LHS, RHS))
5409    if (LHS == RHS)
5410      return CmpInst::isTrueWhenEqual(Pred);
5411  if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5412    if (FoundLHS == FoundRHS)
5413      return CmpInst::isFalseWhenEqual(Pred);
5414
5415  // Check to see if we can make the LHS or RHS match.
5416  if (LHS == FoundRHS || RHS == FoundLHS) {
5417    if (isa<SCEVConstant>(RHS)) {
5418      std::swap(FoundLHS, FoundRHS);
5419      FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5420    } else {
5421      std::swap(LHS, RHS);
5422      Pred = ICmpInst::getSwappedPredicate(Pred);
5423    }
5424  }
5425
5426  // Check whether the found predicate is the same as the desired predicate.
5427  if (FoundPred == Pred)
5428    return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5429
5430  // Check whether swapping the found predicate makes it the same as the
5431  // desired predicate.
5432  if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5433    if (isa<SCEVConstant>(RHS))
5434      return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5435    else
5436      return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5437                                   RHS, LHS, FoundLHS, FoundRHS);
5438  }
5439
5440  // Check whether the actual condition is beyond sufficient.
5441  if (FoundPred == ICmpInst::ICMP_EQ)
5442    if (ICmpInst::isTrueWhenEqual(Pred))
5443      if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5444        return true;
5445  if (Pred == ICmpInst::ICMP_NE)
5446    if (!ICmpInst::isTrueWhenEqual(FoundPred))
5447      if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5448        return true;
5449
5450  // Otherwise assume the worst.
5451  return false;
5452}
5453
5454/// isImpliedCondOperands - Test whether the condition described by Pred,
5455/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
5456/// and FoundRHS is true.
5457bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5458                                            const SCEV *LHS, const SCEV *RHS,
5459                                            const SCEV *FoundLHS,
5460                                            const SCEV *FoundRHS) {
5461  return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5462                                     FoundLHS, FoundRHS) ||
5463         // ~x < ~y --> x > y
5464         isImpliedCondOperandsHelper(Pred, LHS, RHS,
5465                                     getNotSCEV(FoundRHS),
5466                                     getNotSCEV(FoundLHS));
5467}
5468
5469/// isImpliedCondOperandsHelper - Test whether the condition described by
5470/// Pred, LHS, and RHS is true whenever the condition described by Pred,
5471/// FoundLHS, and FoundRHS is true.
5472bool
5473ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5474                                             const SCEV *LHS, const SCEV *RHS,
5475                                             const SCEV *FoundLHS,
5476                                             const SCEV *FoundRHS) {
5477  switch (Pred) {
5478  default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5479  case ICmpInst::ICMP_EQ:
5480  case ICmpInst::ICMP_NE:
5481    if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5482      return true;
5483    break;
5484  case ICmpInst::ICMP_SLT:
5485  case ICmpInst::ICMP_SLE:
5486    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5487        isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
5488      return true;
5489    break;
5490  case ICmpInst::ICMP_SGT:
5491  case ICmpInst::ICMP_SGE:
5492    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5493        isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
5494      return true;
5495    break;
5496  case ICmpInst::ICMP_ULT:
5497  case ICmpInst::ICMP_ULE:
5498    if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5499        isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
5500      return true;
5501    break;
5502  case ICmpInst::ICMP_UGT:
5503  case ICmpInst::ICMP_UGE:
5504    if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5505        isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
5506      return true;
5507    break;
5508  }
5509
5510  return false;
5511}
5512
5513/// getBECount - Subtract the end and start values and divide by the step,
5514/// rounding up, to get the number of times the backedge is executed. Return
5515/// CouldNotCompute if an intermediate computation overflows.
5516const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
5517                                        const SCEV *End,
5518                                        const SCEV *Step,
5519                                        bool NoWrap) {
5520  assert(!isKnownNegative(Step) &&
5521         "This code doesn't handle negative strides yet!");
5522
5523  const Type *Ty = Start->getType();
5524  const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
5525  const SCEV *Diff = getMinusSCEV(End, Start);
5526  const SCEV *RoundUp = getAddExpr(Step, NegOne);
5527
5528  // Add an adjustment to the difference between End and Start so that
5529  // the division will effectively round up.
5530  const SCEV *Add = getAddExpr(Diff, RoundUp);
5531
5532  if (!NoWrap) {
5533    // Check Add for unsigned overflow.
5534    // TODO: More sophisticated things could be done here.
5535    const Type *WideTy = IntegerType::get(getContext(),
5536                                          getTypeSizeInBits(Ty) + 1);
5537    const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5538    const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5539    const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5540    if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5541      return getCouldNotCompute();
5542  }
5543
5544  return getUDivExpr(Add, Step);
5545}
5546
5547/// HowManyLessThans - Return the number of times a backedge containing the
5548/// specified less-than comparison will execute.  If not computable, return
5549/// CouldNotCompute.
5550ScalarEvolution::BackedgeTakenInfo
5551ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5552                                  const Loop *L, bool isSigned) {
5553  // Only handle:  "ADDREC < LoopInvariant".
5554  if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
5555
5556  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
5557  if (!AddRec || AddRec->getLoop() != L)
5558    return getCouldNotCompute();
5559
5560  // Check to see if we have a flag which makes analysis easy.
5561  bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5562                           AddRec->hasNoUnsignedWrap();
5563
5564  if (AddRec->isAffine()) {
5565    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
5566    const SCEV *Step = AddRec->getStepRecurrence(*this);
5567
5568    if (Step->isZero())
5569      return getCouldNotCompute();
5570    if (Step->isOne()) {
5571      // With unit stride, the iteration never steps past the limit value.
5572    } else if (isKnownPositive(Step)) {
5573      // Test whether a positive iteration can step past the limit
5574      // value and past the maximum value for its type in a single step.
5575      // Note that it's not sufficient to check NoWrap here, because even
5576      // though the value after a wrap is undefined, it's not undefined
5577      // behavior, so if wrap does occur, the loop could either terminate or
5578      // loop infinitely, but in either case, the loop is guaranteed to
5579      // iterate at least until the iteration where the wrapping occurs.
5580      const SCEV *One = getConstant(Step->getType(), 1);
5581      if (isSigned) {
5582        APInt Max = APInt::getSignedMaxValue(BitWidth);
5583        if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5584              .slt(getSignedRange(RHS).getSignedMax()))
5585          return getCouldNotCompute();
5586      } else {
5587        APInt Max = APInt::getMaxValue(BitWidth);
5588        if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5589              .ult(getUnsignedRange(RHS).getUnsignedMax()))
5590          return getCouldNotCompute();
5591      }
5592    } else
5593      // TODO: Handle negative strides here and below.
5594      return getCouldNotCompute();
5595
5596    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5597    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
5598    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
5599    // treat m-n as signed nor unsigned due to overflow possibility.
5600
5601    // First, we get the value of the LHS in the first iteration: n
5602    const SCEV *Start = AddRec->getOperand(0);
5603
5604    // Determine the minimum constant start value.
5605    const SCEV *MinStart = getConstant(isSigned ?
5606      getSignedRange(Start).getSignedMin() :
5607      getUnsignedRange(Start).getUnsignedMin());
5608
5609    // If we know that the condition is true in order to enter the loop,
5610    // then we know that it will run exactly (m-n)/s times. Otherwise, we
5611    // only know that it will execute (max(m,n)-n)/s times. In both cases,
5612    // the division must round up.
5613    const SCEV *End = RHS;
5614    if (!isLoopEntryGuardedByCond(L,
5615                                  isSigned ? ICmpInst::ICMP_SLT :
5616                                             ICmpInst::ICMP_ULT,
5617                                  getMinusSCEV(Start, Step), RHS))
5618      End = isSigned ? getSMaxExpr(RHS, Start)
5619                     : getUMaxExpr(RHS, Start);
5620
5621    // Determine the maximum constant end value.
5622    const SCEV *MaxEnd = getConstant(isSigned ?
5623      getSignedRange(End).getSignedMax() :
5624      getUnsignedRange(End).getUnsignedMax());
5625
5626    // If MaxEnd is within a step of the maximum integer value in its type,
5627    // adjust it down to the minimum value which would produce the same effect.
5628    // This allows the subsequent ceiling division of (N+(step-1))/step to
5629    // compute the correct value.
5630    const SCEV *StepMinusOne = getMinusSCEV(Step,
5631                                            getConstant(Step->getType(), 1));
5632    MaxEnd = isSigned ?
5633      getSMinExpr(MaxEnd,
5634                  getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5635                               StepMinusOne)) :
5636      getUMinExpr(MaxEnd,
5637                  getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5638                               StepMinusOne));
5639
5640    // Finally, we subtract these two values and divide, rounding up, to get
5641    // the number of times the backedge is executed.
5642    const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
5643
5644    // The maximum backedge count is similar, except using the minimum start
5645    // value and the maximum end value.
5646    const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
5647
5648    return BackedgeTakenInfo(BECount, MaxBECount);
5649  }
5650
5651  return getCouldNotCompute();
5652}
5653
5654/// getNumIterationsInRange - Return the number of iterations of this loop that
5655/// produce values in the specified constant range.  Another way of looking at
5656/// this is that it returns the first iteration number where the value is not in
5657/// the condition, thus computing the exit count. If the iteration count can't
5658/// be computed, an instance of SCEVCouldNotCompute is returned.
5659const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
5660                                                    ScalarEvolution &SE) const {
5661  if (Range.isFullSet())  // Infinite loop.
5662    return SE.getCouldNotCompute();
5663
5664  // If the start is a non-zero constant, shift the range to simplify things.
5665  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
5666    if (!SC->getValue()->isZero()) {
5667      SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
5668      Operands[0] = SE.getConstant(SC->getType(), 0);
5669      const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
5670      if (const SCEVAddRecExpr *ShiftedAddRec =
5671            dyn_cast<SCEVAddRecExpr>(Shifted))
5672        return ShiftedAddRec->getNumIterationsInRange(
5673                           Range.subtract(SC->getValue()->getValue()), SE);
5674      // This is strange and shouldn't happen.
5675      return SE.getCouldNotCompute();
5676    }
5677
5678  // The only time we can solve this is when we have all constant indices.
5679  // Otherwise, we cannot determine the overflow conditions.
5680  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5681    if (!isa<SCEVConstant>(getOperand(i)))
5682      return SE.getCouldNotCompute();
5683
5684
5685  // Okay at this point we know that all elements of the chrec are constants and
5686  // that the start element is zero.
5687
5688  // First check to see if the range contains zero.  If not, the first
5689  // iteration exits.
5690  unsigned BitWidth = SE.getTypeSizeInBits(getType());
5691  if (!Range.contains(APInt(BitWidth, 0)))
5692    return SE.getConstant(getType(), 0);
5693
5694  if (isAffine()) {
5695    // If this is an affine expression then we have this situation:
5696    //   Solve {0,+,A} in Range  ===  Ax in Range
5697
5698    // We know that zero is in the range.  If A is positive then we know that
5699    // the upper value of the range must be the first possible exit value.
5700    // If A is negative then the lower of the range is the last possible loop
5701    // value.  Also note that we already checked for a full range.
5702    APInt One(BitWidth,1);
5703    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5704    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
5705
5706    // The exit value should be (End+A)/A.
5707    APInt ExitVal = (End + A).udiv(A);
5708    ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
5709
5710    // Evaluate at the exit value.  If we really did fall out of the valid
5711    // range, then we computed our trip count, otherwise wrap around or other
5712    // things must have happened.
5713    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
5714    if (Range.contains(Val->getValue()))
5715      return SE.getCouldNotCompute();  // Something strange happened
5716
5717    // Ensure that the previous value is in the range.  This is a sanity check.
5718    assert(Range.contains(
5719           EvaluateConstantChrecAtConstant(this,
5720           ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
5721           "Linear scev computation is off in a bad way!");
5722    return SE.getConstant(ExitValue);
5723  } else if (isQuadratic()) {
5724    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5725    // quadratic equation to solve it.  To do this, we must frame our problem in
5726    // terms of figuring out when zero is crossed, instead of when
5727    // Range.getUpper() is crossed.
5728    SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
5729    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
5730    const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
5731
5732    // Next, solve the constructed addrec
5733    std::pair<const SCEV *,const SCEV *> Roots =
5734      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
5735    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5736    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
5737    if (R1) {
5738      // Pick the smallest positive root value.
5739      if (ConstantInt *CB =
5740          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
5741                         R1->getValue(), R2->getValue()))) {
5742        if (CB->getZExtValue() == false)
5743          std::swap(R1, R2);   // R1 is the minimum root now.
5744
5745        // Make sure the root is not off by one.  The returned iteration should
5746        // not be in the range, but the previous one should be.  When solving
5747        // for "X*X < 5", for example, we should not return a root of 2.
5748        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
5749                                                             R1->getValue(),
5750                                                             SE);
5751        if (Range.contains(R1Val->getValue())) {
5752          // The next iteration must be out of the range...
5753          ConstantInt *NextVal =
5754                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
5755
5756          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5757          if (!Range.contains(R1Val->getValue()))
5758            return SE.getConstant(NextVal);
5759          return SE.getCouldNotCompute();  // Something strange happened
5760        }
5761
5762        // If R1 was not in the range, then it is a good return value.  Make
5763        // sure that R1-1 WAS in the range though, just in case.
5764        ConstantInt *NextVal =
5765               ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
5766        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5767        if (Range.contains(R1Val->getValue()))
5768          return R1;
5769        return SE.getCouldNotCompute();  // Something strange happened
5770      }
5771    }
5772  }
5773
5774  return SE.getCouldNotCompute();
5775}
5776
5777
5778
5779//===----------------------------------------------------------------------===//
5780//                   SCEVCallbackVH Class Implementation
5781//===----------------------------------------------------------------------===//
5782
5783void ScalarEvolution::SCEVCallbackVH::deleted() {
5784  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5785  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5786    SE->ConstantEvolutionLoopExitValue.erase(PN);
5787  SE->ValueExprMap.erase(getValPtr());
5788  // this now dangles!
5789}
5790
5791void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
5792  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5793
5794  // Forget all the expressions associated with users of the old value,
5795  // so that future queries will recompute the expressions using the new
5796  // value.
5797  Value *Old = getValPtr();
5798  SmallVector<User *, 16> Worklist;
5799  SmallPtrSet<User *, 8> Visited;
5800  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5801       UI != UE; ++UI)
5802    Worklist.push_back(*UI);
5803  while (!Worklist.empty()) {
5804    User *U = Worklist.pop_back_val();
5805    // Deleting the Old value will cause this to dangle. Postpone
5806    // that until everything else is done.
5807    if (U == Old)
5808      continue;
5809    if (!Visited.insert(U))
5810      continue;
5811    if (PHINode *PN = dyn_cast<PHINode>(U))
5812      SE->ConstantEvolutionLoopExitValue.erase(PN);
5813    SE->ValueExprMap.erase(U);
5814    for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5815         UI != UE; ++UI)
5816      Worklist.push_back(*UI);
5817  }
5818  // Delete the Old value.
5819  if (PHINode *PN = dyn_cast<PHINode>(Old))
5820    SE->ConstantEvolutionLoopExitValue.erase(PN);
5821  SE->ValueExprMap.erase(Old);
5822  // this now dangles!
5823}
5824
5825ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
5826  : CallbackVH(V), SE(se) {}
5827
5828//===----------------------------------------------------------------------===//
5829//                   ScalarEvolution Class Implementation
5830//===----------------------------------------------------------------------===//
5831
5832ScalarEvolution::ScalarEvolution()
5833  : FunctionPass(ID), FirstUnknown(0) {
5834}
5835
5836bool ScalarEvolution::runOnFunction(Function &F) {
5837  this->F = &F;
5838  LI = &getAnalysis<LoopInfo>();
5839  TD = getAnalysisIfAvailable<TargetData>();
5840  DT = &getAnalysis<DominatorTree>();
5841  return false;
5842}
5843
5844void ScalarEvolution::releaseMemory() {
5845  // Iterate through all the SCEVUnknown instances and call their
5846  // destructors, so that they release their references to their values.
5847  for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
5848    U->~SCEVUnknown();
5849  FirstUnknown = 0;
5850
5851  ValueExprMap.clear();
5852  BackedgeTakenCounts.clear();
5853  ConstantEvolutionLoopExitValue.clear();
5854  ValuesAtScopes.clear();
5855  UniqueSCEVs.clear();
5856  SCEVAllocator.Reset();
5857}
5858
5859void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5860  AU.setPreservesAll();
5861  AU.addRequiredTransitive<LoopInfo>();
5862  AU.addRequiredTransitive<DominatorTree>();
5863}
5864
5865bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
5866  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
5867}
5868
5869static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
5870                          const Loop *L) {
5871  // Print all inner loops first
5872  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5873    PrintLoopInfo(OS, SE, *I);
5874
5875  OS << "Loop ";
5876  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5877  OS << ": ";
5878
5879  SmallVector<BasicBlock *, 8> ExitBlocks;
5880  L->getExitBlocks(ExitBlocks);
5881  if (ExitBlocks.size() != 1)
5882    OS << "<multiple exits> ";
5883
5884  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5885    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
5886  } else {
5887    OS << "Unpredictable backedge-taken count. ";
5888  }
5889
5890  OS << "\n"
5891        "Loop ";
5892  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5893  OS << ": ";
5894
5895  if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5896    OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5897  } else {
5898    OS << "Unpredictable max backedge-taken count. ";
5899  }
5900
5901  OS << "\n";
5902}
5903
5904void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
5905  // ScalarEvolution's implementation of the print method is to print
5906  // out SCEV values of all instructions that are interesting. Doing
5907  // this potentially causes it to create new SCEV objects though,
5908  // which technically conflicts with the const qualifier. This isn't
5909  // observable from outside the class though, so casting away the
5910  // const isn't dangerous.
5911  ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
5912
5913  OS << "Classifying expressions for: ";
5914  WriteAsOperand(OS, F, /*PrintType=*/false);
5915  OS << "\n";
5916  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
5917    if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
5918      OS << *I << '\n';
5919      OS << "  -->  ";
5920      const SCEV *SV = SE.getSCEV(&*I);
5921      SV->print(OS);
5922
5923      const Loop *L = LI->getLoopFor((*I).getParent());
5924
5925      const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
5926      if (AtUse != SV) {
5927        OS << "  -->  ";
5928        AtUse->print(OS);
5929      }
5930
5931      if (L) {
5932        OS << "\t\t" "Exits: ";
5933        const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
5934        if (!ExitValue->isLoopInvariant(L)) {
5935          OS << "<<Unknown>>";
5936        } else {
5937          OS << *ExitValue;
5938        }
5939      }
5940
5941      OS << "\n";
5942    }
5943
5944  OS << "Determining loop execution counts for: ";
5945  WriteAsOperand(OS, F, /*PrintType=*/false);
5946  OS << "\n";
5947  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5948    PrintLoopInfo(OS, &SE, *I);
5949}
5950
5951