ScalarEvolution.cpp revision 2b37d7cf28b1382420b5e4007042feeb66d21ac8
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle.  These classes are reference counted, managed by the SCEVHandle
18// class.  We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression.  These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
36// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43//  Chains of recurrences -- a method to expedite the evaluation
44//  of closed-form functions
45//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47//  On computational properties of chains of recurrences
48//  Eugene V. Zima
49//
50//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51//  Robert A. van Engelen
52//
53//  Efficient Symbolic Analysis for Optimizing Compilers
54//  Robert A. van Engelen
55//
56//  Using the chains of recurrences algebra for data dependence testing and
57//  induction variable substitution
58//  MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
62#include "llvm/Analysis/ScalarEvolutionExpressions.h"
63#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
65#include "llvm/GlobalVariable.h"
66#include "llvm/Instructions.h"
67#include "llvm/Analysis/LoopInfo.h"
68#include "llvm/Assembly/Writer.h"
69#include "llvm/Transforms/Scalar.h"
70#include "llvm/Transforms/Utils/Local.h"
71#include "llvm/Support/CFG.h"
72#include "llvm/Support/ConstantRange.h"
73#include "llvm/Support/InstIterator.h"
74#include "llvm/Support/CommandLine.h"
75#include "llvm/ADT/Statistic.h"
76#include <cmath>
77#include <algorithm>
78using namespace llvm;
79
80namespace {
81  RegisterAnalysis<ScalarEvolution>
82  R("scalar-evolution", "Scalar Evolution Analysis");
83
84  Statistic<>
85  NumBruteForceEvaluations("scalar-evolution",
86                           "Number of brute force evaluations needed to "
87                           "calculate high-order polynomial exit values");
88  Statistic<>
89  NumArrayLenItCounts("scalar-evolution",
90                      "Number of trip counts computed with array length");
91  Statistic<>
92  NumTripCountsComputed("scalar-evolution",
93                        "Number of loops with predictable loop counts");
94  Statistic<>
95  NumTripCountsNotComputed("scalar-evolution",
96                           "Number of loops without predictable loop counts");
97  Statistic<>
98  NumBruteForceTripCountsComputed("scalar-evolution",
99                        "Number of loops with trip counts computed by force");
100
101  cl::opt<unsigned>
102  MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
103                          cl::desc("Maximum number of iterations SCEV will symbolically execute a constant derived loop"),
104                          cl::init(100));
105}
106
107//===----------------------------------------------------------------------===//
108//                           SCEV class definitions
109//===----------------------------------------------------------------------===//
110
111//===----------------------------------------------------------------------===//
112// Implementation of the SCEV class.
113//
114SCEV::~SCEV() {}
115void SCEV::dump() const {
116  print(std::cerr);
117}
118
119/// getValueRange - Return the tightest constant bounds that this value is
120/// known to have.  This method is only valid on integer SCEV objects.
121ConstantRange SCEV::getValueRange() const {
122  const Type *Ty = getType();
123  assert(Ty->isInteger() && "Can't get range for a non-integer SCEV!");
124  Ty = Ty->getUnsignedVersion();
125  // Default to a full range if no better information is available.
126  return ConstantRange(getType());
127}
128
129
130SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
131
132bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
133  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
134  return false;
135}
136
137const Type *SCEVCouldNotCompute::getType() const {
138  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
139  return 0;
140}
141
142bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
143  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
144  return false;
145}
146
147SCEVHandle SCEVCouldNotCompute::
148replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
149                                  const SCEVHandle &Conc) const {
150  return this;
151}
152
153void SCEVCouldNotCompute::print(std::ostream &OS) const {
154  OS << "***COULDNOTCOMPUTE***";
155}
156
157bool SCEVCouldNotCompute::classof(const SCEV *S) {
158  return S->getSCEVType() == scCouldNotCompute;
159}
160
161
162// SCEVConstants - Only allow the creation of one SCEVConstant for any
163// particular value.  Don't use a SCEVHandle here, or else the object will
164// never be deleted!
165static std::map<ConstantInt*, SCEVConstant*> SCEVConstants;
166
167
168SCEVConstant::~SCEVConstant() {
169  SCEVConstants.erase(V);
170}
171
172SCEVHandle SCEVConstant::get(ConstantInt *V) {
173  // Make sure that SCEVConstant instances are all unsigned.
174  if (V->getType()->isSigned()) {
175    const Type *NewTy = V->getType()->getUnsignedVersion();
176    V = cast<ConstantUInt>(ConstantExpr::getCast(V, NewTy));
177  }
178
179  SCEVConstant *&R = SCEVConstants[V];
180  if (R == 0) R = new SCEVConstant(V);
181  return R;
182}
183
184ConstantRange SCEVConstant::getValueRange() const {
185  return ConstantRange(V);
186}
187
188const Type *SCEVConstant::getType() const { return V->getType(); }
189
190void SCEVConstant::print(std::ostream &OS) const {
191  WriteAsOperand(OS, V, false);
192}
193
194// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
195// particular input.  Don't use a SCEVHandle here, or else the object will
196// never be deleted!
197static std::map<std::pair<SCEV*, const Type*>, SCEVTruncateExpr*> SCEVTruncates;
198
199SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
200  : SCEV(scTruncate), Op(op), Ty(ty) {
201  assert(Op->getType()->isInteger() && Ty->isInteger() &&
202         Ty->isUnsigned() &&
203         "Cannot truncate non-integer value!");
204  assert(Op->getType()->getPrimitiveSize() > Ty->getPrimitiveSize() &&
205         "This is not a truncating conversion!");
206}
207
208SCEVTruncateExpr::~SCEVTruncateExpr() {
209  SCEVTruncates.erase(std::make_pair(Op, Ty));
210}
211
212ConstantRange SCEVTruncateExpr::getValueRange() const {
213  return getOperand()->getValueRange().truncate(getType());
214}
215
216void SCEVTruncateExpr::print(std::ostream &OS) const {
217  OS << "(truncate " << *Op << " to " << *Ty << ")";
218}
219
220// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
221// particular input.  Don't use a SCEVHandle here, or else the object will never
222// be deleted!
223static std::map<std::pair<SCEV*, const Type*>,
224                SCEVZeroExtendExpr*> SCEVZeroExtends;
225
226SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
227  : SCEV(scTruncate), Op(op), Ty(ty) {
228  assert(Op->getType()->isInteger() && Ty->isInteger() &&
229         Ty->isUnsigned() &&
230         "Cannot zero extend non-integer value!");
231  assert(Op->getType()->getPrimitiveSize() < Ty->getPrimitiveSize() &&
232         "This is not an extending conversion!");
233}
234
235SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
236  SCEVZeroExtends.erase(std::make_pair(Op, Ty));
237}
238
239ConstantRange SCEVZeroExtendExpr::getValueRange() const {
240  return getOperand()->getValueRange().zeroExtend(getType());
241}
242
243void SCEVZeroExtendExpr::print(std::ostream &OS) const {
244  OS << "(zeroextend " << *Op << " to " << *Ty << ")";
245}
246
247// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
248// particular input.  Don't use a SCEVHandle here, or else the object will never
249// be deleted!
250static std::map<std::pair<unsigned, std::vector<SCEV*> >,
251                SCEVCommutativeExpr*> SCEVCommExprs;
252
253SCEVCommutativeExpr::~SCEVCommutativeExpr() {
254  SCEVCommExprs.erase(std::make_pair(getSCEVType(),
255                                     std::vector<SCEV*>(Operands.begin(),
256                                                        Operands.end())));
257}
258
259void SCEVCommutativeExpr::print(std::ostream &OS) const {
260  assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
261  const char *OpStr = getOperationStr();
262  OS << "(" << *Operands[0];
263  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
264    OS << OpStr << *Operands[i];
265  OS << ")";
266}
267
268SCEVHandle SCEVCommutativeExpr::
269replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
270                                  const SCEVHandle &Conc) const {
271  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
272    SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc);
273    if (H != getOperand(i)) {
274      std::vector<SCEVHandle> NewOps;
275      NewOps.reserve(getNumOperands());
276      for (unsigned j = 0; j != i; ++j)
277        NewOps.push_back(getOperand(j));
278      NewOps.push_back(H);
279      for (++i; i != e; ++i)
280        NewOps.push_back(getOperand(i)->
281                         replaceSymbolicValuesWithConcrete(Sym, Conc));
282
283      if (isa<SCEVAddExpr>(this))
284        return SCEVAddExpr::get(NewOps);
285      else if (isa<SCEVMulExpr>(this))
286        return SCEVMulExpr::get(NewOps);
287      else
288        assert(0 && "Unknown commutative expr!");
289    }
290  }
291  return this;
292}
293
294
295// SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
296// input.  Don't use a SCEVHandle here, or else the object will never be
297// deleted!
298static std::map<std::pair<SCEV*, SCEV*>, SCEVUDivExpr*> SCEVUDivs;
299
300SCEVUDivExpr::~SCEVUDivExpr() {
301  SCEVUDivs.erase(std::make_pair(LHS, RHS));
302}
303
304void SCEVUDivExpr::print(std::ostream &OS) const {
305  OS << "(" << *LHS << " /u " << *RHS << ")";
306}
307
308const Type *SCEVUDivExpr::getType() const {
309  const Type *Ty = LHS->getType();
310  if (Ty->isSigned()) Ty = Ty->getUnsignedVersion();
311  return Ty;
312}
313
314// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
315// particular input.  Don't use a SCEVHandle here, or else the object will never
316// be deleted!
317static std::map<std::pair<const Loop *, std::vector<SCEV*> >,
318                SCEVAddRecExpr*> SCEVAddRecExprs;
319
320SCEVAddRecExpr::~SCEVAddRecExpr() {
321  SCEVAddRecExprs.erase(std::make_pair(L,
322                                       std::vector<SCEV*>(Operands.begin(),
323                                                          Operands.end())));
324}
325
326SCEVHandle SCEVAddRecExpr::
327replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
328                                  const SCEVHandle &Conc) const {
329  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
330    SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc);
331    if (H != getOperand(i)) {
332      std::vector<SCEVHandle> NewOps;
333      NewOps.reserve(getNumOperands());
334      for (unsigned j = 0; j != i; ++j)
335        NewOps.push_back(getOperand(j));
336      NewOps.push_back(H);
337      for (++i; i != e; ++i)
338        NewOps.push_back(getOperand(i)->
339                         replaceSymbolicValuesWithConcrete(Sym, Conc));
340
341      return get(NewOps, L);
342    }
343  }
344  return this;
345}
346
347
348bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
349  // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
350  // contain L.
351  return !QueryLoop->contains(L->getHeader());
352}
353
354
355void SCEVAddRecExpr::print(std::ostream &OS) const {
356  OS << "{" << *Operands[0];
357  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
358    OS << ",+," << *Operands[i];
359  OS << "}<" << L->getHeader()->getName() + ">";
360}
361
362// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
363// value.  Don't use a SCEVHandle here, or else the object will never be
364// deleted!
365static std::map<Value*, SCEVUnknown*> SCEVUnknowns;
366
367SCEVUnknown::~SCEVUnknown() { SCEVUnknowns.erase(V); }
368
369bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
370  // All non-instruction values are loop invariant.  All instructions are loop
371  // invariant if they are not contained in the specified loop.
372  if (Instruction *I = dyn_cast<Instruction>(V))
373    return !L->contains(I->getParent());
374  return true;
375}
376
377const Type *SCEVUnknown::getType() const {
378  return V->getType();
379}
380
381void SCEVUnknown::print(std::ostream &OS) const {
382  WriteAsOperand(OS, V, false);
383}
384
385//===----------------------------------------------------------------------===//
386//                               SCEV Utilities
387//===----------------------------------------------------------------------===//
388
389namespace {
390  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
391  /// than the complexity of the RHS.  This comparator is used to canonicalize
392  /// expressions.
393  struct SCEVComplexityCompare {
394    bool operator()(SCEV *LHS, SCEV *RHS) {
395      return LHS->getSCEVType() < RHS->getSCEVType();
396    }
397  };
398}
399
400/// GroupByComplexity - Given a list of SCEV objects, order them by their
401/// complexity, and group objects of the same complexity together by value.
402/// When this routine is finished, we know that any duplicates in the vector are
403/// consecutive and that complexity is monotonically increasing.
404///
405/// Note that we go take special precautions to ensure that we get determinstic
406/// results from this routine.  In other words, we don't want the results of
407/// this to depend on where the addresses of various SCEV objects happened to
408/// land in memory.
409///
410static void GroupByComplexity(std::vector<SCEVHandle> &Ops) {
411  if (Ops.size() < 2) return;  // Noop
412  if (Ops.size() == 2) {
413    // This is the common case, which also happens to be trivially simple.
414    // Special case it.
415    if (Ops[0]->getSCEVType() > Ops[1]->getSCEVType())
416      std::swap(Ops[0], Ops[1]);
417    return;
418  }
419
420  // Do the rough sort by complexity.
421  std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());
422
423  // Now that we are sorted by complexity, group elements of the same
424  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
425  // be extremely short in practice.  Note that we take this approach because we
426  // do not want to depend on the addresses of the objects we are grouping.
427  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
428    SCEV *S = Ops[i];
429    unsigned Complexity = S->getSCEVType();
430
431    // If there are any objects of the same complexity and same value as this
432    // one, group them.
433    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
434      if (Ops[j] == S) { // Found a duplicate.
435        // Move it to immediately after i'th element.
436        std::swap(Ops[i+1], Ops[j]);
437        ++i;   // no need to rescan it.
438        if (i == e-2) return;  // Done!
439      }
440    }
441  }
442}
443
444
445
446//===----------------------------------------------------------------------===//
447//                      Simple SCEV method implementations
448//===----------------------------------------------------------------------===//
449
450/// getIntegerSCEV - Given an integer or FP type, create a constant for the
451/// specified signed integer value and return a SCEV for the constant.
452SCEVHandle SCEVUnknown::getIntegerSCEV(int Val, const Type *Ty) {
453  Constant *C;
454  if (Val == 0)
455    C = Constant::getNullValue(Ty);
456  else if (Ty->isFloatingPoint())
457    C = ConstantFP::get(Ty, Val);
458  else if (Ty->isSigned())
459    C = ConstantSInt::get(Ty, Val);
460  else {
461    C = ConstantSInt::get(Ty->getSignedVersion(), Val);
462    C = ConstantExpr::getCast(C, Ty);
463  }
464  return SCEVUnknown::get(C);
465}
466
467/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
468/// input value to the specified type.  If the type must be extended, it is zero
469/// extended.
470static SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty) {
471  const Type *SrcTy = V->getType();
472  assert(SrcTy->isInteger() && Ty->isInteger() &&
473         "Cannot truncate or zero extend with non-integer arguments!");
474  if (SrcTy->getPrimitiveSize() == Ty->getPrimitiveSize())
475    return V;  // No conversion
476  if (SrcTy->getPrimitiveSize() > Ty->getPrimitiveSize())
477    return SCEVTruncateExpr::get(V, Ty);
478  return SCEVZeroExtendExpr::get(V, Ty);
479}
480
481/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
482///
483SCEVHandle SCEV::getNegativeSCEV(const SCEVHandle &V) {
484  if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
485    return SCEVUnknown::get(ConstantExpr::getNeg(VC->getValue()));
486
487  return SCEVMulExpr::get(V, SCEVUnknown::getIntegerSCEV(-1, V->getType()));
488}
489
490/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
491///
492SCEVHandle SCEV::getMinusSCEV(const SCEVHandle &LHS, const SCEVHandle &RHS) {
493  // X - Y --> X + -Y
494  return SCEVAddExpr::get(LHS, SCEV::getNegativeSCEV(RHS));
495}
496
497
498/// PartialFact - Compute V!/(V-NumSteps)!
499static SCEVHandle PartialFact(SCEVHandle V, unsigned NumSteps) {
500  // Handle this case efficiently, it is common to have constant iteration
501  // counts while computing loop exit values.
502  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
503    uint64_t Val = SC->getValue()->getRawValue();
504    uint64_t Result = 1;
505    for (; NumSteps; --NumSteps)
506      Result *= Val-(NumSteps-1);
507    Constant *Res = ConstantUInt::get(Type::ULongTy, Result);
508    return SCEVUnknown::get(ConstantExpr::getCast(Res, V->getType()));
509  }
510
511  const Type *Ty = V->getType();
512  if (NumSteps == 0)
513    return SCEVUnknown::getIntegerSCEV(1, Ty);
514
515  SCEVHandle Result = V;
516  for (unsigned i = 1; i != NumSteps; ++i)
517    Result = SCEVMulExpr::get(Result, SCEV::getMinusSCEV(V,
518                                          SCEVUnknown::getIntegerSCEV(i, Ty)));
519  return Result;
520}
521
522
523/// evaluateAtIteration - Return the value of this chain of recurrences at
524/// the specified iteration number.  We can evaluate this recurrence by
525/// multiplying each element in the chain by the binomial coefficient
526/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
527///
528///   A*choose(It, 0) + B*choose(It, 1) + C*choose(It, 2) + D*choose(It, 3)
529///
530/// FIXME/VERIFY: I don't trust that this is correct in the face of overflow.
531/// Is the binomial equation safe using modular arithmetic??
532///
533SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It) const {
534  SCEVHandle Result = getStart();
535  int Divisor = 1;
536  const Type *Ty = It->getType();
537  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
538    SCEVHandle BC = PartialFact(It, i);
539    Divisor *= i;
540    SCEVHandle Val = SCEVUDivExpr::get(SCEVMulExpr::get(BC, getOperand(i)),
541                                       SCEVUnknown::getIntegerSCEV(Divisor,Ty));
542    Result = SCEVAddExpr::get(Result, Val);
543  }
544  return Result;
545}
546
547
548//===----------------------------------------------------------------------===//
549//                    SCEV Expression folder implementations
550//===----------------------------------------------------------------------===//
551
552SCEVHandle SCEVTruncateExpr::get(const SCEVHandle &Op, const Type *Ty) {
553  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
554    return SCEVUnknown::get(ConstantExpr::getCast(SC->getValue(), Ty));
555
556  // If the input value is a chrec scev made out of constants, truncate
557  // all of the constants.
558  if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
559    std::vector<SCEVHandle> Operands;
560    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
561      // FIXME: This should allow truncation of other expression types!
562      if (isa<SCEVConstant>(AddRec->getOperand(i)))
563        Operands.push_back(get(AddRec->getOperand(i), Ty));
564      else
565        break;
566    if (Operands.size() == AddRec->getNumOperands())
567      return SCEVAddRecExpr::get(Operands, AddRec->getLoop());
568  }
569
570  SCEVTruncateExpr *&Result = SCEVTruncates[std::make_pair(Op, Ty)];
571  if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
572  return Result;
573}
574
575SCEVHandle SCEVZeroExtendExpr::get(const SCEVHandle &Op, const Type *Ty) {
576  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
577    return SCEVUnknown::get(ConstantExpr::getCast(SC->getValue(), Ty));
578
579  // FIXME: If the input value is a chrec scev, and we can prove that the value
580  // did not overflow the old, smaller, value, we can zero extend all of the
581  // operands (often constants).  This would allow analysis of something like
582  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
583
584  SCEVZeroExtendExpr *&Result = SCEVZeroExtends[std::make_pair(Op, Ty)];
585  if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
586  return Result;
587}
588
589// get - Get a canonical add expression, or something simpler if possible.
590SCEVHandle SCEVAddExpr::get(std::vector<SCEVHandle> &Ops) {
591  assert(!Ops.empty() && "Cannot get empty add!");
592  if (Ops.size() == 1) return Ops[0];
593
594  // Sort by complexity, this groups all similar expression types together.
595  GroupByComplexity(Ops);
596
597  // If there are any constants, fold them together.
598  unsigned Idx = 0;
599  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
600    ++Idx;
601    assert(Idx < Ops.size());
602    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
603      // We found two constants, fold them together!
604      Constant *Fold = ConstantExpr::getAdd(LHSC->getValue(), RHSC->getValue());
605      if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
606        Ops[0] = SCEVConstant::get(CI);
607        Ops.erase(Ops.begin()+1);  // Erase the folded element
608        if (Ops.size() == 1) return Ops[0];
609        LHSC = cast<SCEVConstant>(Ops[0]);
610      } else {
611        // If we couldn't fold the expression, move to the next constant.  Note
612        // that this is impossible to happen in practice because we always
613        // constant fold constant ints to constant ints.
614        ++Idx;
615      }
616    }
617
618    // If we are left with a constant zero being added, strip it off.
619    if (cast<SCEVConstant>(Ops[0])->getValue()->isNullValue()) {
620      Ops.erase(Ops.begin());
621      --Idx;
622    }
623  }
624
625  if (Ops.size() == 1) return Ops[0];
626
627  // Okay, check to see if the same value occurs in the operand list twice.  If
628  // so, merge them together into an multiply expression.  Since we sorted the
629  // list, these values are required to be adjacent.
630  const Type *Ty = Ops[0]->getType();
631  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
632    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
633      // Found a match, merge the two values into a multiply, and add any
634      // remaining values to the result.
635      SCEVHandle Two = SCEVUnknown::getIntegerSCEV(2, Ty);
636      SCEVHandle Mul = SCEVMulExpr::get(Ops[i], Two);
637      if (Ops.size() == 2)
638        return Mul;
639      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
640      Ops.push_back(Mul);
641      return SCEVAddExpr::get(Ops);
642    }
643
644  // Okay, now we know the first non-constant operand.  If there are add
645  // operands they would be next.
646  if (Idx < Ops.size()) {
647    bool DeletedAdd = false;
648    while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
649      // If we have an add, expand the add operands onto the end of the operands
650      // list.
651      Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
652      Ops.erase(Ops.begin()+Idx);
653      DeletedAdd = true;
654    }
655
656    // If we deleted at least one add, we added operands to the end of the list,
657    // and they are not necessarily sorted.  Recurse to resort and resimplify
658    // any operands we just aquired.
659    if (DeletedAdd)
660      return get(Ops);
661  }
662
663  // Skip over the add expression until we get to a multiply.
664  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
665    ++Idx;
666
667  // If we are adding something to a multiply expression, make sure the
668  // something is not already an operand of the multiply.  If so, merge it into
669  // the multiply.
670  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
671    SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
672    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
673      SCEV *MulOpSCEV = Mul->getOperand(MulOp);
674      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
675        if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
676          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
677          SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
678          if (Mul->getNumOperands() != 2) {
679            // If the multiply has more than two operands, we must get the
680            // Y*Z term.
681            std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
682            MulOps.erase(MulOps.begin()+MulOp);
683            InnerMul = SCEVMulExpr::get(MulOps);
684          }
685          SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, Ty);
686          SCEVHandle AddOne = SCEVAddExpr::get(InnerMul, One);
687          SCEVHandle OuterMul = SCEVMulExpr::get(AddOne, Ops[AddOp]);
688          if (Ops.size() == 2) return OuterMul;
689          if (AddOp < Idx) {
690            Ops.erase(Ops.begin()+AddOp);
691            Ops.erase(Ops.begin()+Idx-1);
692          } else {
693            Ops.erase(Ops.begin()+Idx);
694            Ops.erase(Ops.begin()+AddOp-1);
695          }
696          Ops.push_back(OuterMul);
697          return SCEVAddExpr::get(Ops);
698        }
699
700      // Check this multiply against other multiplies being added together.
701      for (unsigned OtherMulIdx = Idx+1;
702           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
703           ++OtherMulIdx) {
704        SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
705        // If MulOp occurs in OtherMul, we can fold the two multiplies
706        // together.
707        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
708             OMulOp != e; ++OMulOp)
709          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
710            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
711            SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
712            if (Mul->getNumOperands() != 2) {
713              std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
714              MulOps.erase(MulOps.begin()+MulOp);
715              InnerMul1 = SCEVMulExpr::get(MulOps);
716            }
717            SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
718            if (OtherMul->getNumOperands() != 2) {
719              std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
720                                             OtherMul->op_end());
721              MulOps.erase(MulOps.begin()+OMulOp);
722              InnerMul2 = SCEVMulExpr::get(MulOps);
723            }
724            SCEVHandle InnerMulSum = SCEVAddExpr::get(InnerMul1,InnerMul2);
725            SCEVHandle OuterMul = SCEVMulExpr::get(MulOpSCEV, InnerMulSum);
726            if (Ops.size() == 2) return OuterMul;
727            Ops.erase(Ops.begin()+Idx);
728            Ops.erase(Ops.begin()+OtherMulIdx-1);
729            Ops.push_back(OuterMul);
730            return SCEVAddExpr::get(Ops);
731          }
732      }
733    }
734  }
735
736  // If there are any add recurrences in the operands list, see if any other
737  // added values are loop invariant.  If so, we can fold them into the
738  // recurrence.
739  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
740    ++Idx;
741
742  // Scan over all recurrences, trying to fold loop invariants into them.
743  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
744    // Scan all of the other operands to this add and add them to the vector if
745    // they are loop invariant w.r.t. the recurrence.
746    std::vector<SCEVHandle> LIOps;
747    SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
748    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
749      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
750        LIOps.push_back(Ops[i]);
751        Ops.erase(Ops.begin()+i);
752        --i; --e;
753      }
754
755    // If we found some loop invariants, fold them into the recurrence.
756    if (!LIOps.empty()) {
757      //  NLI + LI + { Start,+,Step}  -->  NLI + { LI+Start,+,Step }
758      LIOps.push_back(AddRec->getStart());
759
760      std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
761      AddRecOps[0] = SCEVAddExpr::get(LIOps);
762
763      SCEVHandle NewRec = SCEVAddRecExpr::get(AddRecOps, AddRec->getLoop());
764      // If all of the other operands were loop invariant, we are done.
765      if (Ops.size() == 1) return NewRec;
766
767      // Otherwise, add the folded AddRec by the non-liv parts.
768      for (unsigned i = 0;; ++i)
769        if (Ops[i] == AddRec) {
770          Ops[i] = NewRec;
771          break;
772        }
773      return SCEVAddExpr::get(Ops);
774    }
775
776    // Okay, if there weren't any loop invariants to be folded, check to see if
777    // there are multiple AddRec's with the same loop induction variable being
778    // added together.  If so, we can fold them.
779    for (unsigned OtherIdx = Idx+1;
780         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
781      if (OtherIdx != Idx) {
782        SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
783        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
784          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
785          std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
786          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
787            if (i >= NewOps.size()) {
788              NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
789                            OtherAddRec->op_end());
790              break;
791            }
792            NewOps[i] = SCEVAddExpr::get(NewOps[i], OtherAddRec->getOperand(i));
793          }
794          SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
795
796          if (Ops.size() == 2) return NewAddRec;
797
798          Ops.erase(Ops.begin()+Idx);
799          Ops.erase(Ops.begin()+OtherIdx-1);
800          Ops.push_back(NewAddRec);
801          return SCEVAddExpr::get(Ops);
802        }
803      }
804
805    // Otherwise couldn't fold anything into this recurrence.  Move onto the
806    // next one.
807  }
808
809  // Okay, it looks like we really DO need an add expr.  Check to see if we
810  // already have one, otherwise create a new one.
811  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
812  SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scAddExpr,
813                                                              SCEVOps)];
814  if (Result == 0) Result = new SCEVAddExpr(Ops);
815  return Result;
816}
817
818
819SCEVHandle SCEVMulExpr::get(std::vector<SCEVHandle> &Ops) {
820  assert(!Ops.empty() && "Cannot get empty mul!");
821
822  // Sort by complexity, this groups all similar expression types together.
823  GroupByComplexity(Ops);
824
825  // If there are any constants, fold them together.
826  unsigned Idx = 0;
827  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
828
829    // C1*(C2+V) -> C1*C2 + C1*V
830    if (Ops.size() == 2)
831      if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
832        if (Add->getNumOperands() == 2 &&
833            isa<SCEVConstant>(Add->getOperand(0)))
834          return SCEVAddExpr::get(SCEVMulExpr::get(LHSC, Add->getOperand(0)),
835                                  SCEVMulExpr::get(LHSC, Add->getOperand(1)));
836
837
838    ++Idx;
839    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
840      // We found two constants, fold them together!
841      Constant *Fold = ConstantExpr::getMul(LHSC->getValue(), RHSC->getValue());
842      if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
843        Ops[0] = SCEVConstant::get(CI);
844        Ops.erase(Ops.begin()+1);  // Erase the folded element
845        if (Ops.size() == 1) return Ops[0];
846        LHSC = cast<SCEVConstant>(Ops[0]);
847      } else {
848        // If we couldn't fold the expression, move to the next constant.  Note
849        // that this is impossible to happen in practice because we always
850        // constant fold constant ints to constant ints.
851        ++Idx;
852      }
853    }
854
855    // If we are left with a constant one being multiplied, strip it off.
856    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
857      Ops.erase(Ops.begin());
858      --Idx;
859    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isNullValue()) {
860      // If we have a multiply of zero, it will always be zero.
861      return Ops[0];
862    }
863  }
864
865  // Skip over the add expression until we get to a multiply.
866  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
867    ++Idx;
868
869  if (Ops.size() == 1)
870    return Ops[0];
871
872  // If there are mul operands inline them all into this expression.
873  if (Idx < Ops.size()) {
874    bool DeletedMul = false;
875    while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
876      // If we have an mul, expand the mul operands onto the end of the operands
877      // list.
878      Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
879      Ops.erase(Ops.begin()+Idx);
880      DeletedMul = true;
881    }
882
883    // If we deleted at least one mul, we added operands to the end of the list,
884    // and they are not necessarily sorted.  Recurse to resort and resimplify
885    // any operands we just aquired.
886    if (DeletedMul)
887      return get(Ops);
888  }
889
890  // If there are any add recurrences in the operands list, see if any other
891  // added values are loop invariant.  If so, we can fold them into the
892  // recurrence.
893  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
894    ++Idx;
895
896  // Scan over all recurrences, trying to fold loop invariants into them.
897  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
898    // Scan all of the other operands to this mul and add them to the vector if
899    // they are loop invariant w.r.t. the recurrence.
900    std::vector<SCEVHandle> LIOps;
901    SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
902    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
903      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
904        LIOps.push_back(Ops[i]);
905        Ops.erase(Ops.begin()+i);
906        --i; --e;
907      }
908
909    // If we found some loop invariants, fold them into the recurrence.
910    if (!LIOps.empty()) {
911      //  NLI * LI * { Start,+,Step}  -->  NLI * { LI*Start,+,LI*Step }
912      std::vector<SCEVHandle> NewOps;
913      NewOps.reserve(AddRec->getNumOperands());
914      if (LIOps.size() == 1) {
915        SCEV *Scale = LIOps[0];
916        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
917          NewOps.push_back(SCEVMulExpr::get(Scale, AddRec->getOperand(i)));
918      } else {
919        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
920          std::vector<SCEVHandle> MulOps(LIOps);
921          MulOps.push_back(AddRec->getOperand(i));
922          NewOps.push_back(SCEVMulExpr::get(MulOps));
923        }
924      }
925
926      SCEVHandle NewRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
927
928      // If all of the other operands were loop invariant, we are done.
929      if (Ops.size() == 1) return NewRec;
930
931      // Otherwise, multiply the folded AddRec by the non-liv parts.
932      for (unsigned i = 0;; ++i)
933        if (Ops[i] == AddRec) {
934          Ops[i] = NewRec;
935          break;
936        }
937      return SCEVMulExpr::get(Ops);
938    }
939
940    // Okay, if there weren't any loop invariants to be folded, check to see if
941    // there are multiple AddRec's with the same loop induction variable being
942    // multiplied together.  If so, we can fold them.
943    for (unsigned OtherIdx = Idx+1;
944         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
945      if (OtherIdx != Idx) {
946        SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
947        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
948          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
949          SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
950          SCEVHandle NewStart = SCEVMulExpr::get(F->getStart(),
951                                                 G->getStart());
952          SCEVHandle B = F->getStepRecurrence();
953          SCEVHandle D = G->getStepRecurrence();
954          SCEVHandle NewStep = SCEVAddExpr::get(SCEVMulExpr::get(F, D),
955                                                SCEVMulExpr::get(G, B),
956                                                SCEVMulExpr::get(B, D));
957          SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewStart, NewStep,
958                                                     F->getLoop());
959          if (Ops.size() == 2) return NewAddRec;
960
961          Ops.erase(Ops.begin()+Idx);
962          Ops.erase(Ops.begin()+OtherIdx-1);
963          Ops.push_back(NewAddRec);
964          return SCEVMulExpr::get(Ops);
965        }
966      }
967
968    // Otherwise couldn't fold anything into this recurrence.  Move onto the
969    // next one.
970  }
971
972  // Okay, it looks like we really DO need an mul expr.  Check to see if we
973  // already have one, otherwise create a new one.
974  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
975  SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scMulExpr,
976                                                              SCEVOps)];
977  if (Result == 0)
978    Result = new SCEVMulExpr(Ops);
979  return Result;
980}
981
982SCEVHandle SCEVUDivExpr::get(const SCEVHandle &LHS, const SCEVHandle &RHS) {
983  if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
984    if (RHSC->getValue()->equalsInt(1))
985      return LHS;                            // X /u 1 --> x
986    if (RHSC->getValue()->isAllOnesValue())
987      return SCEV::getNegativeSCEV(LHS);           // X /u -1  -->  -x
988
989    if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
990      Constant *LHSCV = LHSC->getValue();
991      Constant *RHSCV = RHSC->getValue();
992      if (LHSCV->getType()->isSigned())
993        LHSCV = ConstantExpr::getCast(LHSCV,
994                                      LHSCV->getType()->getUnsignedVersion());
995      if (RHSCV->getType()->isSigned())
996        RHSCV = ConstantExpr::getCast(RHSCV, LHSCV->getType());
997      return SCEVUnknown::get(ConstantExpr::getDiv(LHSCV, RHSCV));
998    }
999  }
1000
1001  // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
1002
1003  SCEVUDivExpr *&Result = SCEVUDivs[std::make_pair(LHS, RHS)];
1004  if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
1005  return Result;
1006}
1007
1008
1009/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1010/// specified loop.  Simplify the expression as much as possible.
1011SCEVHandle SCEVAddRecExpr::get(const SCEVHandle &Start,
1012                               const SCEVHandle &Step, const Loop *L) {
1013  std::vector<SCEVHandle> Operands;
1014  Operands.push_back(Start);
1015  if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1016    if (StepChrec->getLoop() == L) {
1017      Operands.insert(Operands.end(), StepChrec->op_begin(),
1018                      StepChrec->op_end());
1019      return get(Operands, L);
1020    }
1021
1022  Operands.push_back(Step);
1023  return get(Operands, L);
1024}
1025
1026/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1027/// specified loop.  Simplify the expression as much as possible.
1028SCEVHandle SCEVAddRecExpr::get(std::vector<SCEVHandle> &Operands,
1029                               const Loop *L) {
1030  if (Operands.size() == 1) return Operands[0];
1031
1032  if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Operands.back()))
1033    if (StepC->getValue()->isNullValue()) {
1034      Operands.pop_back();
1035      return get(Operands, L);             // { X,+,0 }  -->  X
1036    }
1037
1038  SCEVAddRecExpr *&Result =
1039    SCEVAddRecExprs[std::make_pair(L, std::vector<SCEV*>(Operands.begin(),
1040                                                         Operands.end()))];
1041  if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1042  return Result;
1043}
1044
1045SCEVHandle SCEVUnknown::get(Value *V) {
1046  if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
1047    return SCEVConstant::get(CI);
1048  SCEVUnknown *&Result = SCEVUnknowns[V];
1049  if (Result == 0) Result = new SCEVUnknown(V);
1050  return Result;
1051}
1052
1053
1054//===----------------------------------------------------------------------===//
1055//             ScalarEvolutionsImpl Definition and Implementation
1056//===----------------------------------------------------------------------===//
1057//
1058/// ScalarEvolutionsImpl - This class implements the main driver for the scalar
1059/// evolution code.
1060///
1061namespace {
1062  struct ScalarEvolutionsImpl {
1063    /// F - The function we are analyzing.
1064    ///
1065    Function &F;
1066
1067    /// LI - The loop information for the function we are currently analyzing.
1068    ///
1069    LoopInfo &LI;
1070
1071    /// UnknownValue - This SCEV is used to represent unknown trip counts and
1072    /// things.
1073    SCEVHandle UnknownValue;
1074
1075    /// Scalars - This is a cache of the scalars we have analyzed so far.
1076    ///
1077    std::map<Value*, SCEVHandle> Scalars;
1078
1079    /// IterationCounts - Cache the iteration count of the loops for this
1080    /// function as they are computed.
1081    std::map<const Loop*, SCEVHandle> IterationCounts;
1082
1083    /// ConstantEvolutionLoopExitValue - This map contains entries for all of
1084    /// the PHI instructions that we attempt to compute constant evolutions for.
1085    /// This allows us to avoid potentially expensive recomputation of these
1086    /// properties.  An instruction maps to null if we are unable to compute its
1087    /// exit value.
1088    std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
1089
1090  public:
1091    ScalarEvolutionsImpl(Function &f, LoopInfo &li)
1092      : F(f), LI(li), UnknownValue(new SCEVCouldNotCompute()) {}
1093
1094    /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1095    /// expression and create a new one.
1096    SCEVHandle getSCEV(Value *V);
1097
1098    /// getSCEVAtScope - Compute the value of the specified expression within
1099    /// the indicated loop (which may be null to indicate in no loop).  If the
1100    /// expression cannot be evaluated, return UnknownValue itself.
1101    SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L);
1102
1103
1104    /// hasLoopInvariantIterationCount - Return true if the specified loop has
1105    /// an analyzable loop-invariant iteration count.
1106    bool hasLoopInvariantIterationCount(const Loop *L);
1107
1108    /// getIterationCount - If the specified loop has a predictable iteration
1109    /// count, return it.  Note that it is not valid to call this method on a
1110    /// loop without a loop-invariant iteration count.
1111    SCEVHandle getIterationCount(const Loop *L);
1112
1113    /// deleteInstructionFromRecords - This method should be called by the
1114    /// client before it removes an instruction from the program, to make sure
1115    /// that no dangling references are left around.
1116    void deleteInstructionFromRecords(Instruction *I);
1117
1118  private:
1119    /// createSCEV - We know that there is no SCEV for the specified value.
1120    /// Analyze the expression.
1121    SCEVHandle createSCEV(Value *V);
1122    SCEVHandle createNodeForCast(CastInst *CI);
1123
1124    /// createNodeForPHI - Provide the special handling we need to analyze PHI
1125    /// SCEVs.
1126    SCEVHandle createNodeForPHI(PHINode *PN);
1127
1128    /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value
1129    /// for the specified instruction and replaces any references to the
1130    /// symbolic value SymName with the specified value.  This is used during
1131    /// PHI resolution.
1132    void ReplaceSymbolicValueWithConcrete(Instruction *I,
1133                                          const SCEVHandle &SymName,
1134                                          const SCEVHandle &NewVal);
1135
1136    /// ComputeIterationCount - Compute the number of times the specified loop
1137    /// will iterate.
1138    SCEVHandle ComputeIterationCount(const Loop *L);
1139
1140    /// ComputeLoadConstantCompareIterationCount - Given an exit condition of
1141    /// 'setcc load X, cst', try to se if we can compute the trip count.
1142    SCEVHandle ComputeLoadConstantCompareIterationCount(LoadInst *LI,
1143                                                        Constant *RHS,
1144                                                        const Loop *L,
1145                                                        unsigned SetCCOpcode);
1146
1147    /// ComputeIterationCountExhaustively - If the trip is known to execute a
1148    /// constant number of times (the condition evolves only from constants),
1149    /// try to evaluate a few iterations of the loop until we get the exit
1150    /// condition gets a value of ExitWhen (true or false).  If we cannot
1151    /// evaluate the trip count of the loop, return UnknownValue.
1152    SCEVHandle ComputeIterationCountExhaustively(const Loop *L, Value *Cond,
1153                                                 bool ExitWhen);
1154
1155    /// HowFarToZero - Return the number of times a backedge comparing the
1156    /// specified value to zero will execute.  If not computable, return
1157    /// UnknownValue
1158    SCEVHandle HowFarToZero(SCEV *V, const Loop *L);
1159
1160    /// HowFarToNonZero - Return the number of times a backedge checking the
1161    /// specified value for nonzero will execute.  If not computable, return
1162    /// UnknownValue
1163    SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L);
1164
1165    /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1166    /// in the header of its containing loop, we know the loop executes a
1167    /// constant number of times, and the PHI node is just a recurrence
1168    /// involving constants, fold it.
1169    Constant *getConstantEvolutionLoopExitValue(PHINode *PN, uint64_t Its,
1170                                                const Loop *L);
1171  };
1172}
1173
1174//===----------------------------------------------------------------------===//
1175//            Basic SCEV Analysis and PHI Idiom Recognition Code
1176//
1177
1178/// deleteInstructionFromRecords - This method should be called by the
1179/// client before it removes an instruction from the program, to make sure
1180/// that no dangling references are left around.
1181void ScalarEvolutionsImpl::deleteInstructionFromRecords(Instruction *I) {
1182  Scalars.erase(I);
1183  if (PHINode *PN = dyn_cast<PHINode>(I))
1184    ConstantEvolutionLoopExitValue.erase(PN);
1185}
1186
1187
1188/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1189/// expression and create a new one.
1190SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) {
1191  assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!");
1192
1193  std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V);
1194  if (I != Scalars.end()) return I->second;
1195  SCEVHandle S = createSCEV(V);
1196  Scalars.insert(std::make_pair(V, S));
1197  return S;
1198}
1199
1200/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1201/// the specified instruction and replaces any references to the symbolic value
1202/// SymName with the specified value.  This is used during PHI resolution.
1203void ScalarEvolutionsImpl::
1204ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1205                                 const SCEVHandle &NewVal) {
1206  std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I);
1207  if (SI == Scalars.end()) return;
1208
1209  SCEVHandle NV =
1210    SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal);
1211  if (NV == SI->second) return;  // No change.
1212
1213  SI->second = NV;       // Update the scalars map!
1214
1215  // Any instruction values that use this instruction might also need to be
1216  // updated!
1217  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1218       UI != E; ++UI)
1219    ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1220}
1221
1222/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
1223/// a loop header, making it a potential recurrence, or it doesn't.
1224///
1225SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) {
1226  if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
1227    if (const Loop *L = LI.getLoopFor(PN->getParent()))
1228      if (L->getHeader() == PN->getParent()) {
1229        // If it lives in the loop header, it has two incoming values, one
1230        // from outside the loop, and one from inside.
1231        unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1232        unsigned BackEdge     = IncomingEdge^1;
1233
1234        // While we are analyzing this PHI node, handle its value symbolically.
1235        SCEVHandle SymbolicName = SCEVUnknown::get(PN);
1236        assert(Scalars.find(PN) == Scalars.end() &&
1237               "PHI node already processed?");
1238        Scalars.insert(std::make_pair(PN, SymbolicName));
1239
1240        // Using this symbolic name for the PHI, analyze the value coming around
1241        // the back-edge.
1242        SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1243
1244        // NOTE: If BEValue is loop invariant, we know that the PHI node just
1245        // has a special value for the first iteration of the loop.
1246
1247        // If the value coming around the backedge is an add with the symbolic
1248        // value we just inserted, then we found a simple induction variable!
1249        if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
1250          // If there is a single occurrence of the symbolic value, replace it
1251          // with a recurrence.
1252          unsigned FoundIndex = Add->getNumOperands();
1253          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1254            if (Add->getOperand(i) == SymbolicName)
1255              if (FoundIndex == e) {
1256                FoundIndex = i;
1257                break;
1258              }
1259
1260          if (FoundIndex != Add->getNumOperands()) {
1261            // Create an add with everything but the specified operand.
1262            std::vector<SCEVHandle> Ops;
1263            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1264              if (i != FoundIndex)
1265                Ops.push_back(Add->getOperand(i));
1266            SCEVHandle Accum = SCEVAddExpr::get(Ops);
1267
1268            // This is not a valid addrec if the step amount is varying each
1269            // loop iteration, but is not itself an addrec in this loop.
1270            if (Accum->isLoopInvariant(L) ||
1271                (isa<SCEVAddRecExpr>(Accum) &&
1272                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1273              SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1274              SCEVHandle PHISCEV  = SCEVAddRecExpr::get(StartVal, Accum, L);
1275
1276              // Okay, for the entire analysis of this edge we assumed the PHI
1277              // to be symbolic.  We now need to go back and update all of the
1278              // entries for the scalars that use the PHI (except for the PHI
1279              // itself) to use the new analyzed value instead of the "symbolic"
1280              // value.
1281              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1282              return PHISCEV;
1283            }
1284          }
1285        }
1286
1287        return SymbolicName;
1288      }
1289
1290  // If it's not a loop phi, we can't handle it yet.
1291  return SCEVUnknown::get(PN);
1292}
1293
1294/// createNodeForCast - Handle the various forms of casts that we support.
1295///
1296SCEVHandle ScalarEvolutionsImpl::createNodeForCast(CastInst *CI) {
1297  const Type *SrcTy = CI->getOperand(0)->getType();
1298  const Type *DestTy = CI->getType();
1299
1300  // If this is a noop cast (ie, conversion from int to uint), ignore it.
1301  if (SrcTy->isLosslesslyConvertibleTo(DestTy))
1302    return getSCEV(CI->getOperand(0));
1303
1304  if (SrcTy->isInteger() && DestTy->isInteger()) {
1305    // Otherwise, if this is a truncating integer cast, we can represent this
1306    // cast.
1307    if (SrcTy->getPrimitiveSize() > DestTy->getPrimitiveSize())
1308      return SCEVTruncateExpr::get(getSCEV(CI->getOperand(0)),
1309                                   CI->getType()->getUnsignedVersion());
1310    if (SrcTy->isUnsigned() &&
1311        SrcTy->getPrimitiveSize() > DestTy->getPrimitiveSize())
1312      return SCEVZeroExtendExpr::get(getSCEV(CI->getOperand(0)),
1313                                     CI->getType()->getUnsignedVersion());
1314  }
1315
1316  // If this is an sign or zero extending cast and we can prove that the value
1317  // will never overflow, we could do similar transformations.
1318
1319  // Otherwise, we can't handle this cast!
1320  return SCEVUnknown::get(CI);
1321}
1322
1323
1324/// createSCEV - We know that there is no SCEV for the specified value.
1325/// Analyze the expression.
1326///
1327SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) {
1328  if (Instruction *I = dyn_cast<Instruction>(V)) {
1329    switch (I->getOpcode()) {
1330    case Instruction::Add:
1331      return SCEVAddExpr::get(getSCEV(I->getOperand(0)),
1332                              getSCEV(I->getOperand(1)));
1333    case Instruction::Mul:
1334      return SCEVMulExpr::get(getSCEV(I->getOperand(0)),
1335                              getSCEV(I->getOperand(1)));
1336    case Instruction::Div:
1337      if (V->getType()->isInteger() && V->getType()->isUnsigned())
1338        return SCEVUDivExpr::get(getSCEV(I->getOperand(0)),
1339                                 getSCEV(I->getOperand(1)));
1340      break;
1341
1342    case Instruction::Sub:
1343      return SCEV::getMinusSCEV(getSCEV(I->getOperand(0)),
1344                                getSCEV(I->getOperand(1)));
1345
1346    case Instruction::Shl:
1347      // Turn shift left of a constant amount into a multiply.
1348      if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1349        Constant *X = ConstantInt::get(V->getType(), 1);
1350        X = ConstantExpr::getShl(X, SA);
1351        return SCEVMulExpr::get(getSCEV(I->getOperand(0)), getSCEV(X));
1352      }
1353      break;
1354
1355    case Instruction::Shr:
1356      if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1)))
1357        if (V->getType()->isUnsigned()) {
1358          Constant *X = ConstantInt::get(V->getType(), 1);
1359          X = ConstantExpr::getShl(X, SA);
1360          return SCEVUDivExpr::get(getSCEV(I->getOperand(0)), getSCEV(X));
1361        }
1362      break;
1363
1364    case Instruction::Cast:
1365      return createNodeForCast(cast<CastInst>(I));
1366
1367    case Instruction::PHI:
1368      return createNodeForPHI(cast<PHINode>(I));
1369
1370    default: // We cannot analyze this expression.
1371      break;
1372    }
1373  }
1374
1375  return SCEVUnknown::get(V);
1376}
1377
1378
1379
1380//===----------------------------------------------------------------------===//
1381//                   Iteration Count Computation Code
1382//
1383
1384/// getIterationCount - If the specified loop has a predictable iteration
1385/// count, return it.  Note that it is not valid to call this method on a
1386/// loop without a loop-invariant iteration count.
1387SCEVHandle ScalarEvolutionsImpl::getIterationCount(const Loop *L) {
1388  std::map<const Loop*, SCEVHandle>::iterator I = IterationCounts.find(L);
1389  if (I == IterationCounts.end()) {
1390    SCEVHandle ItCount = ComputeIterationCount(L);
1391    I = IterationCounts.insert(std::make_pair(L, ItCount)).first;
1392    if (ItCount != UnknownValue) {
1393      assert(ItCount->isLoopInvariant(L) &&
1394             "Computed trip count isn't loop invariant for loop!");
1395      ++NumTripCountsComputed;
1396    } else if (isa<PHINode>(L->getHeader()->begin())) {
1397      // Only count loops that have phi nodes as not being computable.
1398      ++NumTripCountsNotComputed;
1399    }
1400  }
1401  return I->second;
1402}
1403
1404/// ComputeIterationCount - Compute the number of times the specified loop
1405/// will iterate.
1406SCEVHandle ScalarEvolutionsImpl::ComputeIterationCount(const Loop *L) {
1407  // If the loop has a non-one exit block count, we can't analyze it.
1408  std::vector<BasicBlock*> ExitBlocks;
1409  L->getExitBlocks(ExitBlocks);
1410  if (ExitBlocks.size() != 1) return UnknownValue;
1411
1412  // Okay, there is one exit block.  Try to find the condition that causes the
1413  // loop to be exited.
1414  BasicBlock *ExitBlock = ExitBlocks[0];
1415
1416  BasicBlock *ExitingBlock = 0;
1417  for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
1418       PI != E; ++PI)
1419    if (L->contains(*PI)) {
1420      if (ExitingBlock == 0)
1421        ExitingBlock = *PI;
1422      else
1423        return UnknownValue;   // More than one block exiting!
1424    }
1425  assert(ExitingBlock && "No exits from loop, something is broken!");
1426
1427  // Okay, we've computed the exiting block.  See what condition causes us to
1428  // exit.
1429  //
1430  // FIXME: we should be able to handle switch instructions (with a single exit)
1431  // FIXME: We should handle cast of int to bool as well
1432  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1433  if (ExitBr == 0) return UnknownValue;
1434  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
1435  SetCondInst *ExitCond = dyn_cast<SetCondInst>(ExitBr->getCondition());
1436  if (ExitCond == 0)  // Not a setcc
1437    return ComputeIterationCountExhaustively(L, ExitBr->getCondition(),
1438                                          ExitBr->getSuccessor(0) == ExitBlock);
1439
1440  // If the condition was exit on true, convert the condition to exit on false.
1441  Instruction::BinaryOps Cond;
1442  if (ExitBr->getSuccessor(1) == ExitBlock)
1443    Cond = ExitCond->getOpcode();
1444  else
1445    Cond = ExitCond->getInverseCondition();
1446
1447  // Handle common loops like: for (X = "string"; *X; ++X)
1448  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
1449    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
1450      SCEVHandle ItCnt =
1451        ComputeLoadConstantCompareIterationCount(LI, RHS, L, Cond);
1452      if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
1453    }
1454
1455  SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
1456  SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
1457
1458  // Try to evaluate any dependencies out of the loop.
1459  SCEVHandle Tmp = getSCEVAtScope(LHS, L);
1460  if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
1461  Tmp = getSCEVAtScope(RHS, L);
1462  if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
1463
1464  // At this point, we would like to compute how many iterations of the loop the
1465  // predicate will return true for these inputs.
1466  if (isa<SCEVConstant>(LHS) && !isa<SCEVConstant>(RHS)) {
1467    // If there is a constant, force it into the RHS.
1468    std::swap(LHS, RHS);
1469    Cond = SetCondInst::getSwappedCondition(Cond);
1470  }
1471
1472  // FIXME: think about handling pointer comparisons!  i.e.:
1473  // while (P != P+100) ++P;
1474
1475  // If we have a comparison of a chrec against a constant, try to use value
1476  // ranges to answer this query.
1477  if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
1478    if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
1479      if (AddRec->getLoop() == L) {
1480        // Form the comparison range using the constant of the correct type so
1481        // that the ConstantRange class knows to do a signed or unsigned
1482        // comparison.
1483        ConstantInt *CompVal = RHSC->getValue();
1484        const Type *RealTy = ExitCond->getOperand(0)->getType();
1485        CompVal = dyn_cast<ConstantInt>(ConstantExpr::getCast(CompVal, RealTy));
1486        if (CompVal) {
1487          // Form the constant range.
1488          ConstantRange CompRange(Cond, CompVal);
1489
1490          // Now that we have it, if it's signed, convert it to an unsigned
1491          // range.
1492          if (CompRange.getLower()->getType()->isSigned()) {
1493            const Type *NewTy = RHSC->getValue()->getType();
1494            Constant *NewL = ConstantExpr::getCast(CompRange.getLower(), NewTy);
1495            Constant *NewU = ConstantExpr::getCast(CompRange.getUpper(), NewTy);
1496            CompRange = ConstantRange(NewL, NewU);
1497          }
1498
1499          SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange);
1500          if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
1501        }
1502      }
1503
1504  switch (Cond) {
1505  case Instruction::SetNE:                     // while (X != Y)
1506    // Convert to: while (X-Y != 0)
1507    if (LHS->getType()->isInteger()) {
1508      SCEVHandle TC = HowFarToZero(SCEV::getMinusSCEV(LHS, RHS), L);
1509      if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1510    }
1511    break;
1512  case Instruction::SetEQ:
1513    // Convert to: while (X-Y == 0)           // while (X == Y)
1514    if (LHS->getType()->isInteger()) {
1515      SCEVHandle TC = HowFarToNonZero(SCEV::getMinusSCEV(LHS, RHS), L);
1516      if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1517    }
1518    break;
1519  default:
1520#if 0
1521    std::cerr << "ComputeIterationCount ";
1522    if (ExitCond->getOperand(0)->getType()->isUnsigned())
1523      std::cerr << "[unsigned] ";
1524    std::cerr << *LHS << "   "
1525              << Instruction::getOpcodeName(Cond) << "   " << *RHS << "\n";
1526#endif
1527    break;
1528  }
1529
1530  return ComputeIterationCountExhaustively(L, ExitCond,
1531                                         ExitBr->getSuccessor(0) == ExitBlock);
1532}
1533
1534static ConstantInt *
1535EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, Constant *C) {
1536  SCEVHandle InVal = SCEVConstant::get(cast<ConstantInt>(C));
1537  SCEVHandle Val = AddRec->evaluateAtIteration(InVal);
1538  assert(isa<SCEVConstant>(Val) &&
1539         "Evaluation of SCEV at constant didn't fold correctly?");
1540  return cast<SCEVConstant>(Val)->getValue();
1541}
1542
1543/// GetAddressedElementFromGlobal - Given a global variable with an initializer
1544/// and a GEP expression (missing the pointer index) indexing into it, return
1545/// the addressed element of the initializer or null if the index expression is
1546/// invalid.
1547static Constant *
1548GetAddressedElementFromGlobal(GlobalVariable *GV,
1549                              const std::vector<ConstantInt*> &Indices) {
1550  Constant *Init = GV->getInitializer();
1551  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1552    uint64_t Idx = Indices[i]->getRawValue();
1553    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
1554      assert(Idx < CS->getNumOperands() && "Bad struct index!");
1555      Init = cast<Constant>(CS->getOperand(Idx));
1556    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
1557      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
1558      Init = cast<Constant>(CA->getOperand(Idx));
1559    } else if (isa<ConstantAggregateZero>(Init)) {
1560      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
1561        assert(Idx < STy->getNumElements() && "Bad struct index!");
1562        Init = Constant::getNullValue(STy->getElementType(Idx));
1563      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
1564        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
1565        Init = Constant::getNullValue(ATy->getElementType());
1566      } else {
1567        assert(0 && "Unknown constant aggregate type!");
1568      }
1569      return 0;
1570    } else {
1571      return 0; // Unknown initializer type
1572    }
1573  }
1574  return Init;
1575}
1576
1577/// ComputeLoadConstantCompareIterationCount - Given an exit condition of
1578/// 'setcc load X, cst', try to se if we can compute the trip count.
1579SCEVHandle ScalarEvolutionsImpl::
1580ComputeLoadConstantCompareIterationCount(LoadInst *LI, Constant *RHS,
1581                                         const Loop *L, unsigned SetCCOpcode) {
1582  if (LI->isVolatile()) return UnknownValue;
1583
1584  // Check to see if the loaded pointer is a getelementptr of a global.
1585  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
1586  if (!GEP) return UnknownValue;
1587
1588  // Make sure that it is really a constant global we are gepping, with an
1589  // initializer, and make sure the first IDX is really 0.
1590  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
1591  if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
1592      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
1593      !cast<Constant>(GEP->getOperand(1))->isNullValue())
1594    return UnknownValue;
1595
1596  // Okay, we allow one non-constant index into the GEP instruction.
1597  Value *VarIdx = 0;
1598  std::vector<ConstantInt*> Indexes;
1599  unsigned VarIdxNum = 0;
1600  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
1601    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
1602      Indexes.push_back(CI);
1603    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
1604      if (VarIdx) return UnknownValue;  // Multiple non-constant idx's.
1605      VarIdx = GEP->getOperand(i);
1606      VarIdxNum = i-2;
1607      Indexes.push_back(0);
1608    }
1609
1610  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
1611  // Check to see if X is a loop variant variable value now.
1612  SCEVHandle Idx = getSCEV(VarIdx);
1613  SCEVHandle Tmp = getSCEVAtScope(Idx, L);
1614  if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
1615
1616  // We can only recognize very limited forms of loop index expressions, in
1617  // particular, only affine AddRec's like {C1,+,C2}.
1618  SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
1619  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
1620      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
1621      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
1622    return UnknownValue;
1623
1624  unsigned MaxSteps = MaxBruteForceIterations;
1625  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
1626    ConstantUInt *ItCst =
1627      ConstantUInt::get(IdxExpr->getType()->getUnsignedVersion(), IterationNum);
1628    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst);
1629
1630    // Form the GEP offset.
1631    Indexes[VarIdxNum] = Val;
1632
1633    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
1634    if (Result == 0) break;  // Cannot compute!
1635
1636    // Evaluate the condition for this iteration.
1637    Result = ConstantExpr::get(SetCCOpcode, Result, RHS);
1638    if (!isa<ConstantBool>(Result)) break;  // Couldn't decide for sure
1639    if (Result == ConstantBool::False) {
1640#if 0
1641      std::cerr << "\n***\n*** Computed loop count " << *ItCst
1642                << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
1643                << "***\n";
1644#endif
1645      ++NumArrayLenItCounts;
1646      return SCEVConstant::get(ItCst);   // Found terminating iteration!
1647    }
1648  }
1649  return UnknownValue;
1650}
1651
1652
1653/// CanConstantFold - Return true if we can constant fold an instruction of the
1654/// specified type, assuming that all operands were constants.
1655static bool CanConstantFold(const Instruction *I) {
1656  if (isa<BinaryOperator>(I) || isa<ShiftInst>(I) ||
1657      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
1658    return true;
1659
1660  if (const CallInst *CI = dyn_cast<CallInst>(I))
1661    if (const Function *F = CI->getCalledFunction())
1662      return canConstantFoldCallTo((Function*)F);  // FIXME: elim cast
1663  return false;
1664}
1665
1666/// ConstantFold - Constant fold an instruction of the specified type with the
1667/// specified constant operands.  This function may modify the operands vector.
1668static Constant *ConstantFold(const Instruction *I,
1669                              std::vector<Constant*> &Operands) {
1670  if (isa<BinaryOperator>(I) || isa<ShiftInst>(I))
1671    return ConstantExpr::get(I->getOpcode(), Operands[0], Operands[1]);
1672
1673  switch (I->getOpcode()) {
1674  case Instruction::Cast:
1675    return ConstantExpr::getCast(Operands[0], I->getType());
1676  case Instruction::Select:
1677    return ConstantExpr::getSelect(Operands[0], Operands[1], Operands[2]);
1678  case Instruction::Call:
1679    if (Function *GV = dyn_cast<Function>(Operands[0])) {
1680      Operands.erase(Operands.begin());
1681      return ConstantFoldCall(cast<Function>(GV), Operands);
1682    }
1683
1684    return 0;
1685  case Instruction::GetElementPtr:
1686    Constant *Base = Operands[0];
1687    Operands.erase(Operands.begin());
1688    return ConstantExpr::getGetElementPtr(Base, Operands);
1689  }
1690  return 0;
1691}
1692
1693
1694/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
1695/// in the loop that V is derived from.  We allow arbitrary operations along the
1696/// way, but the operands of an operation must either be constants or a value
1697/// derived from a constant PHI.  If this expression does not fit with these
1698/// constraints, return null.
1699static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
1700  // If this is not an instruction, or if this is an instruction outside of the
1701  // loop, it can't be derived from a loop PHI.
1702  Instruction *I = dyn_cast<Instruction>(V);
1703  if (I == 0 || !L->contains(I->getParent())) return 0;
1704
1705  if (PHINode *PN = dyn_cast<PHINode>(I))
1706    if (L->getHeader() == I->getParent())
1707      return PN;
1708    else
1709      // We don't currently keep track of the control flow needed to evaluate
1710      // PHIs, so we cannot handle PHIs inside of loops.
1711      return 0;
1712
1713  // If we won't be able to constant fold this expression even if the operands
1714  // are constants, return early.
1715  if (!CanConstantFold(I)) return 0;
1716
1717  // Otherwise, we can evaluate this instruction if all of its operands are
1718  // constant or derived from a PHI node themselves.
1719  PHINode *PHI = 0;
1720  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
1721    if (!(isa<Constant>(I->getOperand(Op)) ||
1722          isa<GlobalValue>(I->getOperand(Op)))) {
1723      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
1724      if (P == 0) return 0;  // Not evolving from PHI
1725      if (PHI == 0)
1726        PHI = P;
1727      else if (PHI != P)
1728        return 0;  // Evolving from multiple different PHIs.
1729    }
1730
1731  // This is a expression evolving from a constant PHI!
1732  return PHI;
1733}
1734
1735/// EvaluateExpression - Given an expression that passes the
1736/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
1737/// in the loop has the value PHIVal.  If we can't fold this expression for some
1738/// reason, return null.
1739static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
1740  if (isa<PHINode>(V)) return PHIVal;
1741  if (GlobalValue *GV = dyn_cast<GlobalValue>(V))
1742    return GV;
1743  if (Constant *C = dyn_cast<Constant>(V)) return C;
1744  Instruction *I = cast<Instruction>(V);
1745
1746  std::vector<Constant*> Operands;
1747  Operands.resize(I->getNumOperands());
1748
1749  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
1750    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
1751    if (Operands[i] == 0) return 0;
1752  }
1753
1754  return ConstantFold(I, Operands);
1755}
1756
1757/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1758/// in the header of its containing loop, we know the loop executes a
1759/// constant number of times, and the PHI node is just a recurrence
1760/// involving constants, fold it.
1761Constant *ScalarEvolutionsImpl::
1762getConstantEvolutionLoopExitValue(PHINode *PN, uint64_t Its, const Loop *L) {
1763  std::map<PHINode*, Constant*>::iterator I =
1764    ConstantEvolutionLoopExitValue.find(PN);
1765  if (I != ConstantEvolutionLoopExitValue.end())
1766    return I->second;
1767
1768  if (Its > MaxBruteForceIterations)
1769    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
1770
1771  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
1772
1773  // Since the loop is canonicalized, the PHI node must have two entries.  One
1774  // entry must be a constant (coming in from outside of the loop), and the
1775  // second must be derived from the same PHI.
1776  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
1777  Constant *StartCST =
1778    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
1779  if (StartCST == 0)
1780    return RetVal = 0;  // Must be a constant.
1781
1782  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
1783  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
1784  if (PN2 != PN)
1785    return RetVal = 0;  // Not derived from same PHI.
1786
1787  // Execute the loop symbolically to determine the exit value.
1788  unsigned IterationNum = 0;
1789  unsigned NumIterations = Its;
1790  if (NumIterations != Its)
1791    return RetVal = 0;  // More than 2^32 iterations??
1792
1793  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
1794    if (IterationNum == NumIterations)
1795      return RetVal = PHIVal;  // Got exit value!
1796
1797    // Compute the value of the PHI node for the next iteration.
1798    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
1799    if (NextPHI == PHIVal)
1800      return RetVal = NextPHI;  // Stopped evolving!
1801    if (NextPHI == 0)
1802      return 0;        // Couldn't evaluate!
1803    PHIVal = NextPHI;
1804  }
1805}
1806
1807/// ComputeIterationCountExhaustively - If the trip is known to execute a
1808/// constant number of times (the condition evolves only from constants),
1809/// try to evaluate a few iterations of the loop until we get the exit
1810/// condition gets a value of ExitWhen (true or false).  If we cannot
1811/// evaluate the trip count of the loop, return UnknownValue.
1812SCEVHandle ScalarEvolutionsImpl::
1813ComputeIterationCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
1814  PHINode *PN = getConstantEvolvingPHI(Cond, L);
1815  if (PN == 0) return UnknownValue;
1816
1817  // Since the loop is canonicalized, the PHI node must have two entries.  One
1818  // entry must be a constant (coming in from outside of the loop), and the
1819  // second must be derived from the same PHI.
1820  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
1821  Constant *StartCST =
1822    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
1823  if (StartCST == 0) return UnknownValue;  // Must be a constant.
1824
1825  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
1826  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
1827  if (PN2 != PN) return UnknownValue;  // Not derived from same PHI.
1828
1829  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
1830  // the loop symbolically to determine when the condition gets a value of
1831  // "ExitWhen".
1832  unsigned IterationNum = 0;
1833  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
1834  for (Constant *PHIVal = StartCST;
1835       IterationNum != MaxIterations; ++IterationNum) {
1836    ConstantBool *CondVal =
1837      dyn_cast_or_null<ConstantBool>(EvaluateExpression(Cond, PHIVal));
1838    if (!CondVal) return UnknownValue;     // Couldn't symbolically evaluate.
1839
1840    if (CondVal->getValue() == ExitWhen) {
1841      ConstantEvolutionLoopExitValue[PN] = PHIVal;
1842      ++NumBruteForceTripCountsComputed;
1843      return SCEVConstant::get(ConstantUInt::get(Type::UIntTy, IterationNum));
1844    }
1845
1846    // Compute the value of the PHI node for the next iteration.
1847    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
1848    if (NextPHI == 0 || NextPHI == PHIVal)
1849      return UnknownValue;  // Couldn't evaluate or not making progress...
1850    PHIVal = NextPHI;
1851  }
1852
1853  // Too many iterations were needed to evaluate.
1854  return UnknownValue;
1855}
1856
1857/// getSCEVAtScope - Compute the value of the specified expression within the
1858/// indicated loop (which may be null to indicate in no loop).  If the
1859/// expression cannot be evaluated, return UnknownValue.
1860SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) {
1861  // FIXME: this should be turned into a virtual method on SCEV!
1862
1863  if (isa<SCEVConstant>(V)) return V;
1864
1865  // If this instruction is evolves from a constant-evolving PHI, compute the
1866  // exit value from the loop without using SCEVs.
1867  if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
1868    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
1869      const Loop *LI = this->LI[I->getParent()];
1870      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
1871        if (PHINode *PN = dyn_cast<PHINode>(I))
1872          if (PN->getParent() == LI->getHeader()) {
1873            // Okay, there is no closed form solution for the PHI node.  Check
1874            // to see if the loop that contains it has a known iteration count.
1875            // If so, we may be able to force computation of the exit value.
1876            SCEVHandle IterationCount = getIterationCount(LI);
1877            if (SCEVConstant *ICC = dyn_cast<SCEVConstant>(IterationCount)) {
1878              // Okay, we know how many times the containing loop executes.  If
1879              // this is a constant evolving PHI node, get the final value at
1880              // the specified iteration number.
1881              Constant *RV = getConstantEvolutionLoopExitValue(PN,
1882                                               ICC->getValue()->getRawValue(),
1883                                                               LI);
1884              if (RV) return SCEVUnknown::get(RV);
1885            }
1886          }
1887
1888      // Okay, this is a some expression that we cannot symbolically evaluate
1889      // into a SCEV.  Check to see if it's possible to symbolically evaluate
1890      // the arguments into constants, and if see, try to constant propagate the
1891      // result.  This is particularly useful for computing loop exit values.
1892      if (CanConstantFold(I)) {
1893        std::vector<Constant*> Operands;
1894        Operands.reserve(I->getNumOperands());
1895        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
1896          Value *Op = I->getOperand(i);
1897          if (Constant *C = dyn_cast<Constant>(Op)) {
1898            Operands.push_back(C);
1899          } else {
1900            SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
1901            if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
1902              Operands.push_back(ConstantExpr::getCast(SC->getValue(),
1903                                                       Op->getType()));
1904            else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
1905              if (Constant *C = dyn_cast<Constant>(SU->getValue()))
1906                Operands.push_back(ConstantExpr::getCast(C, Op->getType()));
1907              else
1908                return V;
1909            } else {
1910              return V;
1911            }
1912          }
1913        }
1914        return SCEVUnknown::get(ConstantFold(I, Operands));
1915      }
1916    }
1917
1918    // This is some other type of SCEVUnknown, just return it.
1919    return V;
1920  }
1921
1922  if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
1923    // Avoid performing the look-up in the common case where the specified
1924    // expression has no loop-variant portions.
1925    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
1926      SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
1927      if (OpAtScope != Comm->getOperand(i)) {
1928        if (OpAtScope == UnknownValue) return UnknownValue;
1929        // Okay, at least one of these operands is loop variant but might be
1930        // foldable.  Build a new instance of the folded commutative expression.
1931        std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
1932        NewOps.push_back(OpAtScope);
1933
1934        for (++i; i != e; ++i) {
1935          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
1936          if (OpAtScope == UnknownValue) return UnknownValue;
1937          NewOps.push_back(OpAtScope);
1938        }
1939        if (isa<SCEVAddExpr>(Comm))
1940          return SCEVAddExpr::get(NewOps);
1941        assert(isa<SCEVMulExpr>(Comm) && "Only know about add and mul!");
1942        return SCEVMulExpr::get(NewOps);
1943      }
1944    }
1945    // If we got here, all operands are loop invariant.
1946    return Comm;
1947  }
1948
1949  if (SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(V)) {
1950    SCEVHandle LHS = getSCEVAtScope(UDiv->getLHS(), L);
1951    if (LHS == UnknownValue) return LHS;
1952    SCEVHandle RHS = getSCEVAtScope(UDiv->getRHS(), L);
1953    if (RHS == UnknownValue) return RHS;
1954    if (LHS == UDiv->getLHS() && RHS == UDiv->getRHS())
1955      return UDiv;   // must be loop invariant
1956    return SCEVUDivExpr::get(LHS, RHS);
1957  }
1958
1959  // If this is a loop recurrence for a loop that does not contain L, then we
1960  // are dealing with the final value computed by the loop.
1961  if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
1962    if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
1963      // To evaluate this recurrence, we need to know how many times the AddRec
1964      // loop iterates.  Compute this now.
1965      SCEVHandle IterationCount = getIterationCount(AddRec->getLoop());
1966      if (IterationCount == UnknownValue) return UnknownValue;
1967      IterationCount = getTruncateOrZeroExtend(IterationCount,
1968                                               AddRec->getType());
1969
1970      // If the value is affine, simplify the expression evaluation to just
1971      // Start + Step*IterationCount.
1972      if (AddRec->isAffine())
1973        return SCEVAddExpr::get(AddRec->getStart(),
1974                                SCEVMulExpr::get(IterationCount,
1975                                                 AddRec->getOperand(1)));
1976
1977      // Otherwise, evaluate it the hard way.
1978      return AddRec->evaluateAtIteration(IterationCount);
1979    }
1980    return UnknownValue;
1981  }
1982
1983  //assert(0 && "Unknown SCEV type!");
1984  return UnknownValue;
1985}
1986
1987
1988/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
1989/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
1990/// might be the same) or two SCEVCouldNotCompute objects.
1991///
1992static std::pair<SCEVHandle,SCEVHandle>
1993SolveQuadraticEquation(const SCEVAddRecExpr *AddRec) {
1994  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
1995  SCEVConstant *L = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
1996  SCEVConstant *M = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
1997  SCEVConstant *N = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
1998
1999  // We currently can only solve this if the coefficients are constants.
2000  if (!L || !M || !N) {
2001    SCEV *CNC = new SCEVCouldNotCompute();
2002    return std::make_pair(CNC, CNC);
2003  }
2004
2005  Constant *Two = ConstantInt::get(L->getValue()->getType(), 2);
2006
2007  // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
2008  Constant *C = L->getValue();
2009  // The B coefficient is M-N/2
2010  Constant *B = ConstantExpr::getSub(M->getValue(),
2011                                     ConstantExpr::getDiv(N->getValue(),
2012                                                          Two));
2013  // The A coefficient is N/2
2014  Constant *A = ConstantExpr::getDiv(N->getValue(), Two);
2015
2016  // Compute the B^2-4ac term.
2017  Constant *SqrtTerm =
2018    ConstantExpr::getMul(ConstantInt::get(C->getType(), 4),
2019                         ConstantExpr::getMul(A, C));
2020  SqrtTerm = ConstantExpr::getSub(ConstantExpr::getMul(B, B), SqrtTerm);
2021
2022  // Compute floor(sqrt(B^2-4ac))
2023  ConstantUInt *SqrtVal =
2024    cast<ConstantUInt>(ConstantExpr::getCast(SqrtTerm,
2025                                   SqrtTerm->getType()->getUnsignedVersion()));
2026  uint64_t SqrtValV = SqrtVal->getValue();
2027  uint64_t SqrtValV2 = (uint64_t)sqrt((double)SqrtValV);
2028  // The square root might not be precise for arbitrary 64-bit integer
2029  // values.  Do some sanity checks to ensure it's correct.
2030  if (SqrtValV2*SqrtValV2 > SqrtValV ||
2031      (SqrtValV2+1)*(SqrtValV2+1) <= SqrtValV) {
2032    SCEV *CNC = new SCEVCouldNotCompute();
2033    return std::make_pair(CNC, CNC);
2034  }
2035
2036  SqrtVal = ConstantUInt::get(Type::ULongTy, SqrtValV2);
2037  SqrtTerm = ConstantExpr::getCast(SqrtVal, SqrtTerm->getType());
2038
2039  Constant *NegB = ConstantExpr::getNeg(B);
2040  Constant *TwoA = ConstantExpr::getMul(A, Two);
2041
2042  // The divisions must be performed as signed divisions.
2043  const Type *SignedTy = NegB->getType()->getSignedVersion();
2044  NegB = ConstantExpr::getCast(NegB, SignedTy);
2045  TwoA = ConstantExpr::getCast(TwoA, SignedTy);
2046  SqrtTerm = ConstantExpr::getCast(SqrtTerm, SignedTy);
2047
2048  Constant *Solution1 =
2049    ConstantExpr::getDiv(ConstantExpr::getAdd(NegB, SqrtTerm), TwoA);
2050  Constant *Solution2 =
2051    ConstantExpr::getDiv(ConstantExpr::getSub(NegB, SqrtTerm), TwoA);
2052  return std::make_pair(SCEVUnknown::get(Solution1),
2053                        SCEVUnknown::get(Solution2));
2054}
2055
2056/// HowFarToZero - Return the number of times a backedge comparing the specified
2057/// value to zero will execute.  If not computable, return UnknownValue
2058SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) {
2059  // If the value is a constant
2060  if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2061    // If the value is already zero, the branch will execute zero times.
2062    if (C->getValue()->isNullValue()) return C;
2063    return UnknownValue;  // Otherwise it will loop infinitely.
2064  }
2065
2066  SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
2067  if (!AddRec || AddRec->getLoop() != L)
2068    return UnknownValue;
2069
2070  if (AddRec->isAffine()) {
2071    // If this is an affine expression the execution count of this branch is
2072    // equal to:
2073    //
2074    //     (0 - Start/Step)    iff   Start % Step == 0
2075    //
2076    // Get the initial value for the loop.
2077    SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
2078    if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
2079    SCEVHandle Step = AddRec->getOperand(1);
2080
2081    Step = getSCEVAtScope(Step, L->getParentLoop());
2082
2083    // Figure out if Start % Step == 0.
2084    // FIXME: We should add DivExpr and RemExpr operations to our AST.
2085    if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
2086      if (StepC->getValue()->equalsInt(1))      // N % 1 == 0
2087        return SCEV::getNegativeSCEV(Start);  // 0 - Start/1 == -Start
2088      if (StepC->getValue()->isAllOnesValue())  // N % -1 == 0
2089        return Start;                   // 0 - Start/-1 == Start
2090
2091      // Check to see if Start is divisible by SC with no remainder.
2092      if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
2093        ConstantInt *StartCC = StartC->getValue();
2094        Constant *StartNegC = ConstantExpr::getNeg(StartCC);
2095        Constant *Rem = ConstantExpr::getRem(StartNegC, StepC->getValue());
2096        if (Rem->isNullValue()) {
2097          Constant *Result =ConstantExpr::getDiv(StartNegC,StepC->getValue());
2098          return SCEVUnknown::get(Result);
2099        }
2100      }
2101    }
2102  } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
2103    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
2104    // the quadratic equation to solve it.
2105    std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec);
2106    SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2107    SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2108    if (R1) {
2109#if 0
2110      std::cerr << "HFTZ: " << *V << " - sol#1: " << *R1
2111                << "  sol#2: " << *R2 << "\n";
2112#endif
2113      // Pick the smallest positive root value.
2114      assert(R1->getType()->isUnsigned()&&"Didn't canonicalize to unsigned?");
2115      if (ConstantBool *CB =
2116          dyn_cast<ConstantBool>(ConstantExpr::getSetLT(R1->getValue(),
2117                                                        R2->getValue()))) {
2118        if (CB != ConstantBool::True)
2119          std::swap(R1, R2);   // R1 is the minimum root now.
2120
2121        // We can only use this value if the chrec ends up with an exact zero
2122        // value at this index.  When solving for "X*X != 5", for example, we
2123        // should not accept a root of 2.
2124        SCEVHandle Val = AddRec->evaluateAtIteration(R1);
2125        if (SCEVConstant *EvalVal = dyn_cast<SCEVConstant>(Val))
2126          if (EvalVal->getValue()->isNullValue())
2127            return R1;  // We found a quadratic root!
2128      }
2129    }
2130  }
2131
2132  return UnknownValue;
2133}
2134
2135/// HowFarToNonZero - Return the number of times a backedge checking the
2136/// specified value for nonzero will execute.  If not computable, return
2137/// UnknownValue
2138SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) {
2139  // Loops that look like: while (X == 0) are very strange indeed.  We don't
2140  // handle them yet except for the trivial case.  This could be expanded in the
2141  // future as needed.
2142
2143  // If the value is a constant, check to see if it is known to be non-zero
2144  // already.  If so, the backedge will execute zero times.
2145  if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2146    Constant *Zero = Constant::getNullValue(C->getValue()->getType());
2147    Constant *NonZero = ConstantExpr::getSetNE(C->getValue(), Zero);
2148    if (NonZero == ConstantBool::True)
2149      return getSCEV(Zero);
2150    return UnknownValue;  // Otherwise it will loop infinitely.
2151  }
2152
2153  // We could implement others, but I really doubt anyone writes loops like
2154  // this, and if they did, they would already be constant folded.
2155  return UnknownValue;
2156}
2157
2158/// getNumIterationsInRange - Return the number of iterations of this loop that
2159/// produce values in the specified constant range.  Another way of looking at
2160/// this is that it returns the first iteration number where the value is not in
2161/// the condition, thus computing the exit count. If the iteration count can't
2162/// be computed, an instance of SCEVCouldNotCompute is returned.
2163SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range) const {
2164  if (Range.isFullSet())  // Infinite loop.
2165    return new SCEVCouldNotCompute();
2166
2167  // If the start is a non-zero constant, shift the range to simplify things.
2168  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
2169    if (!SC->getValue()->isNullValue()) {
2170      std::vector<SCEVHandle> Operands(op_begin(), op_end());
2171      Operands[0] = SCEVUnknown::getIntegerSCEV(0, SC->getType());
2172      SCEVHandle Shifted = SCEVAddRecExpr::get(Operands, getLoop());
2173      if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
2174        return ShiftedAddRec->getNumIterationsInRange(
2175                                              Range.subtract(SC->getValue()));
2176      // This is strange and shouldn't happen.
2177      return new SCEVCouldNotCompute();
2178    }
2179
2180  // The only time we can solve this is when we have all constant indices.
2181  // Otherwise, we cannot determine the overflow conditions.
2182  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2183    if (!isa<SCEVConstant>(getOperand(i)))
2184      return new SCEVCouldNotCompute();
2185
2186
2187  // Okay at this point we know that all elements of the chrec are constants and
2188  // that the start element is zero.
2189
2190  // First check to see if the range contains zero.  If not, the first
2191  // iteration exits.
2192  ConstantInt *Zero = ConstantInt::get(getType(), 0);
2193  if (!Range.contains(Zero)) return SCEVConstant::get(Zero);
2194
2195  if (isAffine()) {
2196    // If this is an affine expression then we have this situation:
2197    //   Solve {0,+,A} in Range  ===  Ax in Range
2198
2199    // Since we know that zero is in the range, we know that the upper value of
2200    // the range must be the first possible exit value.  Also note that we
2201    // already checked for a full range.
2202    ConstantInt *Upper = cast<ConstantInt>(Range.getUpper());
2203    ConstantInt *A     = cast<SCEVConstant>(getOperand(1))->getValue();
2204    ConstantInt *One   = ConstantInt::get(getType(), 1);
2205
2206    // The exit value should be (Upper+A-1)/A.
2207    Constant *ExitValue = Upper;
2208    if (A != One) {
2209      ExitValue = ConstantExpr::getSub(ConstantExpr::getAdd(Upper, A), One);
2210      ExitValue = ConstantExpr::getDiv(ExitValue, A);
2211    }
2212    assert(isa<ConstantInt>(ExitValue) &&
2213           "Constant folding of integers not implemented?");
2214
2215    // Evaluate at the exit value.  If we really did fall out of the valid
2216    // range, then we computed our trip count, otherwise wrap around or other
2217    // things must have happened.
2218    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue);
2219    if (Range.contains(Val))
2220      return new SCEVCouldNotCompute();  // Something strange happened
2221
2222    // Ensure that the previous value is in the range.  This is a sanity check.
2223    assert(Range.contains(EvaluateConstantChrecAtConstant(this,
2224                              ConstantExpr::getSub(ExitValue, One))) &&
2225           "Linear scev computation is off in a bad way!");
2226    return SCEVConstant::get(cast<ConstantInt>(ExitValue));
2227  } else if (isQuadratic()) {
2228    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
2229    // quadratic equation to solve it.  To do this, we must frame our problem in
2230    // terms of figuring out when zero is crossed, instead of when
2231    // Range.getUpper() is crossed.
2232    std::vector<SCEVHandle> NewOps(op_begin(), op_end());
2233    NewOps[0] = SCEV::getNegativeSCEV(SCEVUnknown::get(Range.getUpper()));
2234    SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, getLoop());
2235
2236    // Next, solve the constructed addrec
2237    std::pair<SCEVHandle,SCEVHandle> Roots =
2238      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec));
2239    SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2240    SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2241    if (R1) {
2242      // Pick the smallest positive root value.
2243      assert(R1->getType()->isUnsigned() && "Didn't canonicalize to unsigned?");
2244      if (ConstantBool *CB =
2245          dyn_cast<ConstantBool>(ConstantExpr::getSetLT(R1->getValue(),
2246                                                        R2->getValue()))) {
2247        if (CB != ConstantBool::True)
2248          std::swap(R1, R2);   // R1 is the minimum root now.
2249
2250        // Make sure the root is not off by one.  The returned iteration should
2251        // not be in the range, but the previous one should be.  When solving
2252        // for "X*X < 5", for example, we should not return a root of 2.
2253        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
2254                                                             R1->getValue());
2255        if (Range.contains(R1Val)) {
2256          // The next iteration must be out of the range...
2257          Constant *NextVal =
2258            ConstantExpr::getAdd(R1->getValue(),
2259                                 ConstantInt::get(R1->getType(), 1));
2260
2261          R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
2262          if (!Range.contains(R1Val))
2263            return SCEVUnknown::get(NextVal);
2264          return new SCEVCouldNotCompute();  // Something strange happened
2265        }
2266
2267        // If R1 was not in the range, then it is a good return value.  Make
2268        // sure that R1-1 WAS in the range though, just in case.
2269        Constant *NextVal =
2270          ConstantExpr::getSub(R1->getValue(),
2271                               ConstantInt::get(R1->getType(), 1));
2272        R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
2273        if (Range.contains(R1Val))
2274          return R1;
2275        return new SCEVCouldNotCompute();  // Something strange happened
2276      }
2277    }
2278  }
2279
2280  // Fallback, if this is a general polynomial, figure out the progression
2281  // through brute force: evaluate until we find an iteration that fails the
2282  // test.  This is likely to be slow, but getting an accurate trip count is
2283  // incredibly important, we will be able to simplify the exit test a lot, and
2284  // we are almost guaranteed to get a trip count in this case.
2285  ConstantInt *TestVal = ConstantInt::get(getType(), 0);
2286  ConstantInt *One     = ConstantInt::get(getType(), 1);
2287  ConstantInt *EndVal  = TestVal;  // Stop when we wrap around.
2288  do {
2289    ++NumBruteForceEvaluations;
2290    SCEVHandle Val = evaluateAtIteration(SCEVConstant::get(TestVal));
2291    if (!isa<SCEVConstant>(Val))  // This shouldn't happen.
2292      return new SCEVCouldNotCompute();
2293
2294    // Check to see if we found the value!
2295    if (!Range.contains(cast<SCEVConstant>(Val)->getValue()))
2296      return SCEVConstant::get(TestVal);
2297
2298    // Increment to test the next index.
2299    TestVal = cast<ConstantInt>(ConstantExpr::getAdd(TestVal, One));
2300  } while (TestVal != EndVal);
2301
2302  return new SCEVCouldNotCompute();
2303}
2304
2305
2306
2307//===----------------------------------------------------------------------===//
2308//                   ScalarEvolution Class Implementation
2309//===----------------------------------------------------------------------===//
2310
2311bool ScalarEvolution::runOnFunction(Function &F) {
2312  Impl = new ScalarEvolutionsImpl(F, getAnalysis<LoopInfo>());
2313  return false;
2314}
2315
2316void ScalarEvolution::releaseMemory() {
2317  delete (ScalarEvolutionsImpl*)Impl;
2318  Impl = 0;
2319}
2320
2321void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
2322  AU.setPreservesAll();
2323  AU.addRequiredTransitive<LoopInfo>();
2324}
2325
2326SCEVHandle ScalarEvolution::getSCEV(Value *V) const {
2327  return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V);
2328}
2329
2330SCEVHandle ScalarEvolution::getIterationCount(const Loop *L) const {
2331  return ((ScalarEvolutionsImpl*)Impl)->getIterationCount(L);
2332}
2333
2334bool ScalarEvolution::hasLoopInvariantIterationCount(const Loop *L) const {
2335  return !isa<SCEVCouldNotCompute>(getIterationCount(L));
2336}
2337
2338SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const {
2339  return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L);
2340}
2341
2342void ScalarEvolution::deleteInstructionFromRecords(Instruction *I) const {
2343  return ((ScalarEvolutionsImpl*)Impl)->deleteInstructionFromRecords(I);
2344}
2345
2346static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE,
2347                          const Loop *L) {
2348  // Print all inner loops first
2349  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
2350    PrintLoopInfo(OS, SE, *I);
2351
2352  std::cerr << "Loop " << L->getHeader()->getName() << ": ";
2353
2354  std::vector<BasicBlock*> ExitBlocks;
2355  L->getExitBlocks(ExitBlocks);
2356  if (ExitBlocks.size() != 1)
2357    std::cerr << "<multiple exits> ";
2358
2359  if (SE->hasLoopInvariantIterationCount(L)) {
2360    std::cerr << *SE->getIterationCount(L) << " iterations! ";
2361  } else {
2362    std::cerr << "Unpredictable iteration count. ";
2363  }
2364
2365  std::cerr << "\n";
2366}
2367
2368void ScalarEvolution::print(std::ostream &OS, const Module* ) const {
2369  Function &F = ((ScalarEvolutionsImpl*)Impl)->F;
2370  LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI;
2371
2372  OS << "Classifying expressions for: " << F.getName() << "\n";
2373  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
2374    if (I->getType()->isInteger()) {
2375      OS << *I;
2376      OS << "  --> ";
2377      SCEVHandle SV = getSCEV(&*I);
2378      SV->print(OS);
2379      OS << "\t\t";
2380
2381      if ((*I).getType()->isIntegral()) {
2382        ConstantRange Bounds = SV->getValueRange();
2383        if (!Bounds.isFullSet())
2384          OS << "Bounds: " << Bounds << " ";
2385      }
2386
2387      if (const Loop *L = LI.getLoopFor((*I).getParent())) {
2388        OS << "Exits: ";
2389        SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop());
2390        if (isa<SCEVCouldNotCompute>(ExitValue)) {
2391          OS << "<<Unknown>>";
2392        } else {
2393          OS << *ExitValue;
2394        }
2395      }
2396
2397
2398      OS << "\n";
2399    }
2400
2401  OS << "Determining loop execution counts for: " << F.getName() << "\n";
2402  for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
2403    PrintLoopInfo(OS, this, *I);
2404}
2405
2406