ScalarEvolution.cpp revision 581b0d453a63f7f657248f80317976995262be11
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle.  These classes are reference counted, managed by the SCEVHandle
18// class.  We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression.  These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
36// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43//  Chains of recurrences -- a method to expedite the evaluation
44//  of closed-form functions
45//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47//  On computational properties of chains of recurrences
48//  Eugene V. Zima
49//
50//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51//  Robert A. van Engelen
52//
53//  Efficient Symbolic Analysis for Optimizing Compilers
54//  Robert A. van Engelen
55//
56//  Using the chains of recurrences algebra for data dependence testing and
57//  induction variable substitution
58//  MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
62#define DEBUG_TYPE "scalar-evolution"
63#include "llvm/Analysis/ScalarEvolutionExpressions.h"
64#include "llvm/Constants.h"
65#include "llvm/DerivedTypes.h"
66#include "llvm/GlobalVariable.h"
67#include "llvm/Instructions.h"
68#include "llvm/Analysis/ConstantFolding.h"
69#include "llvm/Analysis/LoopInfo.h"
70#include "llvm/Assembly/Writer.h"
71#include "llvm/Transforms/Scalar.h"
72#include "llvm/Support/CFG.h"
73#include "llvm/Support/CommandLine.h"
74#include "llvm/Support/Compiler.h"
75#include "llvm/Support/ConstantRange.h"
76#include "llvm/Support/InstIterator.h"
77#include "llvm/Support/ManagedStatic.h"
78#include "llvm/Support/MathExtras.h"
79#include "llvm/Support/Streams.h"
80#include "llvm/ADT/Statistic.h"
81#include <ostream>
82#include <algorithm>
83#include <cmath>
84using namespace llvm;
85
86STATISTIC(NumBruteForceEvaluations,
87          "Number of brute force evaluations needed to "
88          "calculate high-order polynomial exit values");
89STATISTIC(NumArrayLenItCounts,
90          "Number of trip counts computed with array length");
91STATISTIC(NumTripCountsComputed,
92          "Number of loops with predictable loop counts");
93STATISTIC(NumTripCountsNotComputed,
94          "Number of loops without predictable loop counts");
95STATISTIC(NumBruteForceTripCountsComputed,
96          "Number of loops with trip counts computed by force");
97
98cl::opt<unsigned>
99MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
100                        cl::desc("Maximum number of iterations SCEV will "
101                                 "symbolically execute a constant derived loop"),
102                        cl::init(100));
103
104namespace {
105  RegisterPass<ScalarEvolution>
106  R("scalar-evolution", "Scalar Evolution Analysis");
107}
108
109//===----------------------------------------------------------------------===//
110//                           SCEV class definitions
111//===----------------------------------------------------------------------===//
112
113//===----------------------------------------------------------------------===//
114// Implementation of the SCEV class.
115//
116SCEV::~SCEV() {}
117void SCEV::dump() const {
118  print(cerr);
119}
120
121/// getValueRange - Return the tightest constant bounds that this value is
122/// known to have.  This method is only valid on integer SCEV objects.
123ConstantRange SCEV::getValueRange() const {
124  const Type *Ty = getType();
125  assert(Ty->isInteger() && "Can't get range for a non-integer SCEV!");
126  // Default to a full range if no better information is available.
127  return ConstantRange(getType());
128}
129
130uint32_t SCEV::getBitWidth() const {
131  if (const IntegerType* ITy = dyn_cast<IntegerType>(getType()))
132    return ITy->getBitWidth();
133  return 0;
134}
135
136
137SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
138
139bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
140  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
141  return false;
142}
143
144const Type *SCEVCouldNotCompute::getType() const {
145  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
146  return 0;
147}
148
149bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
150  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
151  return false;
152}
153
154SCEVHandle SCEVCouldNotCompute::
155replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
156                                  const SCEVHandle &Conc) const {
157  return this;
158}
159
160void SCEVCouldNotCompute::print(std::ostream &OS) const {
161  OS << "***COULDNOTCOMPUTE***";
162}
163
164bool SCEVCouldNotCompute::classof(const SCEV *S) {
165  return S->getSCEVType() == scCouldNotCompute;
166}
167
168
169// SCEVConstants - Only allow the creation of one SCEVConstant for any
170// particular value.  Don't use a SCEVHandle here, or else the object will
171// never be deleted!
172static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
173
174
175SCEVConstant::~SCEVConstant() {
176  SCEVConstants->erase(V);
177}
178
179SCEVHandle SCEVConstant::get(ConstantInt *V) {
180  SCEVConstant *&R = (*SCEVConstants)[V];
181  if (R == 0) R = new SCEVConstant(V);
182  return R;
183}
184
185ConstantRange SCEVConstant::getValueRange() const {
186  return ConstantRange(V->getValue());
187}
188
189const Type *SCEVConstant::getType() const { return V->getType(); }
190
191void SCEVConstant::print(std::ostream &OS) const {
192  WriteAsOperand(OS, V, false);
193}
194
195// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
196// particular input.  Don't use a SCEVHandle here, or else the object will
197// never be deleted!
198static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
199                     SCEVTruncateExpr*> > SCEVTruncates;
200
201SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
202  : SCEV(scTruncate), Op(op), Ty(ty) {
203  assert(Op->getType()->isInteger() && Ty->isInteger() &&
204         "Cannot truncate non-integer value!");
205  assert(Op->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()
206         && "This is not a truncating conversion!");
207}
208
209SCEVTruncateExpr::~SCEVTruncateExpr() {
210  SCEVTruncates->erase(std::make_pair(Op, Ty));
211}
212
213ConstantRange SCEVTruncateExpr::getValueRange() const {
214  return getOperand()->getValueRange().truncate(getType());
215}
216
217void SCEVTruncateExpr::print(std::ostream &OS) const {
218  OS << "(truncate " << *Op << " to " << *Ty << ")";
219}
220
221// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
222// particular input.  Don't use a SCEVHandle here, or else the object will never
223// be deleted!
224static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
225                     SCEVZeroExtendExpr*> > SCEVZeroExtends;
226
227SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
228  : SCEV(scZeroExtend), Op(op), Ty(ty) {
229  assert(Op->getType()->isInteger() && Ty->isInteger() &&
230         "Cannot zero extend non-integer value!");
231  assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()
232         && "This is not an extending conversion!");
233}
234
235SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
236  SCEVZeroExtends->erase(std::make_pair(Op, Ty));
237}
238
239ConstantRange SCEVZeroExtendExpr::getValueRange() const {
240  return getOperand()->getValueRange().zeroExtend(getType());
241}
242
243void SCEVZeroExtendExpr::print(std::ostream &OS) const {
244  OS << "(zeroextend " << *Op << " to " << *Ty << ")";
245}
246
247// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
248// particular input.  Don't use a SCEVHandle here, or else the object will never
249// be deleted!
250static ManagedStatic<std::map<std::pair<unsigned, std::vector<SCEV*> >,
251                     SCEVCommutativeExpr*> > SCEVCommExprs;
252
253SCEVCommutativeExpr::~SCEVCommutativeExpr() {
254  SCEVCommExprs->erase(std::make_pair(getSCEVType(),
255                                      std::vector<SCEV*>(Operands.begin(),
256                                                         Operands.end())));
257}
258
259void SCEVCommutativeExpr::print(std::ostream &OS) const {
260  assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
261  const char *OpStr = getOperationStr();
262  OS << "(" << *Operands[0];
263  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
264    OS << OpStr << *Operands[i];
265  OS << ")";
266}
267
268SCEVHandle SCEVCommutativeExpr::
269replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
270                                  const SCEVHandle &Conc) const {
271  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
272    SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc);
273    if (H != getOperand(i)) {
274      std::vector<SCEVHandle> NewOps;
275      NewOps.reserve(getNumOperands());
276      for (unsigned j = 0; j != i; ++j)
277        NewOps.push_back(getOperand(j));
278      NewOps.push_back(H);
279      for (++i; i != e; ++i)
280        NewOps.push_back(getOperand(i)->
281                         replaceSymbolicValuesWithConcrete(Sym, Conc));
282
283      if (isa<SCEVAddExpr>(this))
284        return SCEVAddExpr::get(NewOps);
285      else if (isa<SCEVMulExpr>(this))
286        return SCEVMulExpr::get(NewOps);
287      else
288        assert(0 && "Unknown commutative expr!");
289    }
290  }
291  return this;
292}
293
294
295// SCEVSDivs - Only allow the creation of one SCEVSDivExpr for any particular
296// input.  Don't use a SCEVHandle here, or else the object will never be
297// deleted!
298static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>,
299                     SCEVSDivExpr*> > SCEVSDivs;
300
301SCEVSDivExpr::~SCEVSDivExpr() {
302  SCEVSDivs->erase(std::make_pair(LHS, RHS));
303}
304
305void SCEVSDivExpr::print(std::ostream &OS) const {
306  OS << "(" << *LHS << " /s " << *RHS << ")";
307}
308
309const Type *SCEVSDivExpr::getType() const {
310  return LHS->getType();
311}
312
313// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
314// particular input.  Don't use a SCEVHandle here, or else the object will never
315// be deleted!
316static ManagedStatic<std::map<std::pair<const Loop *, std::vector<SCEV*> >,
317                     SCEVAddRecExpr*> > SCEVAddRecExprs;
318
319SCEVAddRecExpr::~SCEVAddRecExpr() {
320  SCEVAddRecExprs->erase(std::make_pair(L,
321                                        std::vector<SCEV*>(Operands.begin(),
322                                                           Operands.end())));
323}
324
325SCEVHandle SCEVAddRecExpr::
326replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
327                                  const SCEVHandle &Conc) const {
328  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
329    SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc);
330    if (H != getOperand(i)) {
331      std::vector<SCEVHandle> NewOps;
332      NewOps.reserve(getNumOperands());
333      for (unsigned j = 0; j != i; ++j)
334        NewOps.push_back(getOperand(j));
335      NewOps.push_back(H);
336      for (++i; i != e; ++i)
337        NewOps.push_back(getOperand(i)->
338                         replaceSymbolicValuesWithConcrete(Sym, Conc));
339
340      return get(NewOps, L);
341    }
342  }
343  return this;
344}
345
346
347bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
348  // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
349  // contain L and if the start is invariant.
350  return !QueryLoop->contains(L->getHeader()) &&
351         getOperand(0)->isLoopInvariant(QueryLoop);
352}
353
354
355void SCEVAddRecExpr::print(std::ostream &OS) const {
356  OS << "{" << *Operands[0];
357  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
358    OS << ",+," << *Operands[i];
359  OS << "}<" << L->getHeader()->getName() + ">";
360}
361
362// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
363// value.  Don't use a SCEVHandle here, or else the object will never be
364// deleted!
365static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
366
367SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
368
369bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
370  // All non-instruction values are loop invariant.  All instructions are loop
371  // invariant if they are not contained in the specified loop.
372  if (Instruction *I = dyn_cast<Instruction>(V))
373    return !L->contains(I->getParent());
374  return true;
375}
376
377const Type *SCEVUnknown::getType() const {
378  return V->getType();
379}
380
381void SCEVUnknown::print(std::ostream &OS) const {
382  WriteAsOperand(OS, V, false);
383}
384
385//===----------------------------------------------------------------------===//
386//                               SCEV Utilities
387//===----------------------------------------------------------------------===//
388
389namespace {
390  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
391  /// than the complexity of the RHS.  This comparator is used to canonicalize
392  /// expressions.
393  struct VISIBILITY_HIDDEN SCEVComplexityCompare {
394    bool operator()(SCEV *LHS, SCEV *RHS) {
395      return LHS->getSCEVType() < RHS->getSCEVType();
396    }
397  };
398}
399
400/// GroupByComplexity - Given a list of SCEV objects, order them by their
401/// complexity, and group objects of the same complexity together by value.
402/// When this routine is finished, we know that any duplicates in the vector are
403/// consecutive and that complexity is monotonically increasing.
404///
405/// Note that we go take special precautions to ensure that we get determinstic
406/// results from this routine.  In other words, we don't want the results of
407/// this to depend on where the addresses of various SCEV objects happened to
408/// land in memory.
409///
410static void GroupByComplexity(std::vector<SCEVHandle> &Ops) {
411  if (Ops.size() < 2) return;  // Noop
412  if (Ops.size() == 2) {
413    // This is the common case, which also happens to be trivially simple.
414    // Special case it.
415    if (Ops[0]->getSCEVType() > Ops[1]->getSCEVType())
416      std::swap(Ops[0], Ops[1]);
417    return;
418  }
419
420  // Do the rough sort by complexity.
421  std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());
422
423  // Now that we are sorted by complexity, group elements of the same
424  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
425  // be extremely short in practice.  Note that we take this approach because we
426  // do not want to depend on the addresses of the objects we are grouping.
427  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
428    SCEV *S = Ops[i];
429    unsigned Complexity = S->getSCEVType();
430
431    // If there are any objects of the same complexity and same value as this
432    // one, group them.
433    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
434      if (Ops[j] == S) { // Found a duplicate.
435        // Move it to immediately after i'th element.
436        std::swap(Ops[i+1], Ops[j]);
437        ++i;   // no need to rescan it.
438        if (i == e-2) return;  // Done!
439      }
440    }
441  }
442}
443
444
445
446//===----------------------------------------------------------------------===//
447//                      Simple SCEV method implementations
448//===----------------------------------------------------------------------===//
449
450/// getIntegerSCEV - Given an integer or FP type, create a constant for the
451/// specified signed integer value and return a SCEV for the constant.
452SCEVHandle SCEVUnknown::getIntegerSCEV(int Val, const Type *Ty) {
453  Constant *C;
454  if (Val == 0)
455    C = Constant::getNullValue(Ty);
456  else if (Ty->isFloatingPoint())
457    C = ConstantFP::get(Ty, Val);
458  else
459    C = ConstantInt::get(Ty, Val);
460  return SCEVUnknown::get(C);
461}
462
463/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
464/// input value to the specified type.  If the type must be extended, it is zero
465/// extended.
466static SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty) {
467  const Type *SrcTy = V->getType();
468  assert(SrcTy->isInteger() && Ty->isInteger() &&
469         "Cannot truncate or zero extend with non-integer arguments!");
470  if (SrcTy->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
471    return V;  // No conversion
472  if (SrcTy->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits())
473    return SCEVTruncateExpr::get(V, Ty);
474  return SCEVZeroExtendExpr::get(V, Ty);
475}
476
477/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
478///
479SCEVHandle SCEV::getNegativeSCEV(const SCEVHandle &V) {
480  if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
481    return SCEVUnknown::get(ConstantExpr::getNeg(VC->getValue()));
482
483  return SCEVMulExpr::get(V, SCEVUnknown::getIntegerSCEV(-1, V->getType()));
484}
485
486/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
487///
488SCEVHandle SCEV::getMinusSCEV(const SCEVHandle &LHS, const SCEVHandle &RHS) {
489  // X - Y --> X + -Y
490  return SCEVAddExpr::get(LHS, SCEV::getNegativeSCEV(RHS));
491}
492
493
494/// PartialFact - Compute V!/(V-NumSteps)!
495static SCEVHandle PartialFact(SCEVHandle V, unsigned NumSteps) {
496  // Handle this case efficiently, it is common to have constant iteration
497  // counts while computing loop exit values.
498  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
499    APInt Val = SC->getValue()->getValue();
500    APInt Result(Val.getBitWidth(), 1);
501    for (; NumSteps; --NumSteps)
502      Result *= Val-(NumSteps-1);
503    return SCEVUnknown::get(ConstantInt::get(V->getType(), Result));
504  }
505
506  const Type *Ty = V->getType();
507  if (NumSteps == 0)
508    return SCEVUnknown::getIntegerSCEV(1, Ty);
509
510  SCEVHandle Result = V;
511  for (unsigned i = 1; i != NumSteps; ++i)
512    Result = SCEVMulExpr::get(Result, SCEV::getMinusSCEV(V,
513                                          SCEVUnknown::getIntegerSCEV(i, Ty)));
514  return Result;
515}
516
517
518/// evaluateAtIteration - Return the value of this chain of recurrences at
519/// the specified iteration number.  We can evaluate this recurrence by
520/// multiplying each element in the chain by the binomial coefficient
521/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
522///
523///   A*choose(It, 0) + B*choose(It, 1) + C*choose(It, 2) + D*choose(It, 3)
524///
525/// FIXME/VERIFY: I don't trust that this is correct in the face of overflow.
526/// Is the binomial equation safe using modular arithmetic??
527///
528SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It) const {
529  SCEVHandle Result = getStart();
530  int Divisor = 1;
531  const Type *Ty = It->getType();
532  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
533    SCEVHandle BC = PartialFact(It, i);
534    Divisor *= i;
535    SCEVHandle Val = SCEVSDivExpr::get(SCEVMulExpr::get(BC, getOperand(i)),
536                                       SCEVUnknown::getIntegerSCEV(Divisor,Ty));
537    Result = SCEVAddExpr::get(Result, Val);
538  }
539  return Result;
540}
541
542
543//===----------------------------------------------------------------------===//
544//                    SCEV Expression folder implementations
545//===----------------------------------------------------------------------===//
546
547SCEVHandle SCEVTruncateExpr::get(const SCEVHandle &Op, const Type *Ty) {
548  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
549    return SCEVUnknown::get(
550        ConstantExpr::getTrunc(SC->getValue(), Ty));
551
552  // If the input value is a chrec scev made out of constants, truncate
553  // all of the constants.
554  if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
555    std::vector<SCEVHandle> Operands;
556    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
557      // FIXME: This should allow truncation of other expression types!
558      if (isa<SCEVConstant>(AddRec->getOperand(i)))
559        Operands.push_back(get(AddRec->getOperand(i), Ty));
560      else
561        break;
562    if (Operands.size() == AddRec->getNumOperands())
563      return SCEVAddRecExpr::get(Operands, AddRec->getLoop());
564  }
565
566  SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
567  if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
568  return Result;
569}
570
571SCEVHandle SCEVZeroExtendExpr::get(const SCEVHandle &Op, const Type *Ty) {
572  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
573    return SCEVUnknown::get(
574        ConstantExpr::getZExt(SC->getValue(), Ty));
575
576  // FIXME: If the input value is a chrec scev, and we can prove that the value
577  // did not overflow the old, smaller, value, we can zero extend all of the
578  // operands (often constants).  This would allow analysis of something like
579  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
580
581  SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
582  if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
583  return Result;
584}
585
586// get - Get a canonical add expression, or something simpler if possible.
587SCEVHandle SCEVAddExpr::get(std::vector<SCEVHandle> &Ops) {
588  assert(!Ops.empty() && "Cannot get empty add!");
589  if (Ops.size() == 1) return Ops[0];
590
591  // Sort by complexity, this groups all similar expression types together.
592  GroupByComplexity(Ops);
593
594  // If there are any constants, fold them together.
595  unsigned Idx = 0;
596  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
597    ++Idx;
598    assert(Idx < Ops.size());
599    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
600      // We found two constants, fold them together!
601      Constant *Fold = ConstantExpr::getAdd(LHSC->getValue(), RHSC->getValue());
602      if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
603        Ops[0] = SCEVConstant::get(CI);
604        Ops.erase(Ops.begin()+1);  // Erase the folded element
605        if (Ops.size() == 1) return Ops[0];
606        LHSC = cast<SCEVConstant>(Ops[0]);
607      } else {
608        // If we couldn't fold the expression, move to the next constant.  Note
609        // that this is impossible to happen in practice because we always
610        // constant fold constant ints to constant ints.
611        ++Idx;
612      }
613    }
614
615    // If we are left with a constant zero being added, strip it off.
616    if (cast<SCEVConstant>(Ops[0])->getValue()->isNullValue()) {
617      Ops.erase(Ops.begin());
618      --Idx;
619    }
620  }
621
622  if (Ops.size() == 1) return Ops[0];
623
624  // Okay, check to see if the same value occurs in the operand list twice.  If
625  // so, merge them together into an multiply expression.  Since we sorted the
626  // list, these values are required to be adjacent.
627  const Type *Ty = Ops[0]->getType();
628  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
629    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
630      // Found a match, merge the two values into a multiply, and add any
631      // remaining values to the result.
632      SCEVHandle Two = SCEVUnknown::getIntegerSCEV(2, Ty);
633      SCEVHandle Mul = SCEVMulExpr::get(Ops[i], Two);
634      if (Ops.size() == 2)
635        return Mul;
636      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
637      Ops.push_back(Mul);
638      return SCEVAddExpr::get(Ops);
639    }
640
641  // Okay, now we know the first non-constant operand.  If there are add
642  // operands they would be next.
643  if (Idx < Ops.size()) {
644    bool DeletedAdd = false;
645    while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
646      // If we have an add, expand the add operands onto the end of the operands
647      // list.
648      Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
649      Ops.erase(Ops.begin()+Idx);
650      DeletedAdd = true;
651    }
652
653    // If we deleted at least one add, we added operands to the end of the list,
654    // and they are not necessarily sorted.  Recurse to resort and resimplify
655    // any operands we just aquired.
656    if (DeletedAdd)
657      return get(Ops);
658  }
659
660  // Skip over the add expression until we get to a multiply.
661  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
662    ++Idx;
663
664  // If we are adding something to a multiply expression, make sure the
665  // something is not already an operand of the multiply.  If so, merge it into
666  // the multiply.
667  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
668    SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
669    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
670      SCEV *MulOpSCEV = Mul->getOperand(MulOp);
671      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
672        if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
673          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
674          SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
675          if (Mul->getNumOperands() != 2) {
676            // If the multiply has more than two operands, we must get the
677            // Y*Z term.
678            std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
679            MulOps.erase(MulOps.begin()+MulOp);
680            InnerMul = SCEVMulExpr::get(MulOps);
681          }
682          SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, Ty);
683          SCEVHandle AddOne = SCEVAddExpr::get(InnerMul, One);
684          SCEVHandle OuterMul = SCEVMulExpr::get(AddOne, Ops[AddOp]);
685          if (Ops.size() == 2) return OuterMul;
686          if (AddOp < Idx) {
687            Ops.erase(Ops.begin()+AddOp);
688            Ops.erase(Ops.begin()+Idx-1);
689          } else {
690            Ops.erase(Ops.begin()+Idx);
691            Ops.erase(Ops.begin()+AddOp-1);
692          }
693          Ops.push_back(OuterMul);
694          return SCEVAddExpr::get(Ops);
695        }
696
697      // Check this multiply against other multiplies being added together.
698      for (unsigned OtherMulIdx = Idx+1;
699           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
700           ++OtherMulIdx) {
701        SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
702        // If MulOp occurs in OtherMul, we can fold the two multiplies
703        // together.
704        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
705             OMulOp != e; ++OMulOp)
706          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
707            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
708            SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
709            if (Mul->getNumOperands() != 2) {
710              std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
711              MulOps.erase(MulOps.begin()+MulOp);
712              InnerMul1 = SCEVMulExpr::get(MulOps);
713            }
714            SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
715            if (OtherMul->getNumOperands() != 2) {
716              std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
717                                             OtherMul->op_end());
718              MulOps.erase(MulOps.begin()+OMulOp);
719              InnerMul2 = SCEVMulExpr::get(MulOps);
720            }
721            SCEVHandle InnerMulSum = SCEVAddExpr::get(InnerMul1,InnerMul2);
722            SCEVHandle OuterMul = SCEVMulExpr::get(MulOpSCEV, InnerMulSum);
723            if (Ops.size() == 2) return OuterMul;
724            Ops.erase(Ops.begin()+Idx);
725            Ops.erase(Ops.begin()+OtherMulIdx-1);
726            Ops.push_back(OuterMul);
727            return SCEVAddExpr::get(Ops);
728          }
729      }
730    }
731  }
732
733  // If there are any add recurrences in the operands list, see if any other
734  // added values are loop invariant.  If so, we can fold them into the
735  // recurrence.
736  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
737    ++Idx;
738
739  // Scan over all recurrences, trying to fold loop invariants into them.
740  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
741    // Scan all of the other operands to this add and add them to the vector if
742    // they are loop invariant w.r.t. the recurrence.
743    std::vector<SCEVHandle> LIOps;
744    SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
745    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
746      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
747        LIOps.push_back(Ops[i]);
748        Ops.erase(Ops.begin()+i);
749        --i; --e;
750      }
751
752    // If we found some loop invariants, fold them into the recurrence.
753    if (!LIOps.empty()) {
754      //  NLI + LI + { Start,+,Step}  -->  NLI + { LI+Start,+,Step }
755      LIOps.push_back(AddRec->getStart());
756
757      std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
758      AddRecOps[0] = SCEVAddExpr::get(LIOps);
759
760      SCEVHandle NewRec = SCEVAddRecExpr::get(AddRecOps, AddRec->getLoop());
761      // If all of the other operands were loop invariant, we are done.
762      if (Ops.size() == 1) return NewRec;
763
764      // Otherwise, add the folded AddRec by the non-liv parts.
765      for (unsigned i = 0;; ++i)
766        if (Ops[i] == AddRec) {
767          Ops[i] = NewRec;
768          break;
769        }
770      return SCEVAddExpr::get(Ops);
771    }
772
773    // Okay, if there weren't any loop invariants to be folded, check to see if
774    // there are multiple AddRec's with the same loop induction variable being
775    // added together.  If so, we can fold them.
776    for (unsigned OtherIdx = Idx+1;
777         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
778      if (OtherIdx != Idx) {
779        SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
780        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
781          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
782          std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
783          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
784            if (i >= NewOps.size()) {
785              NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
786                            OtherAddRec->op_end());
787              break;
788            }
789            NewOps[i] = SCEVAddExpr::get(NewOps[i], OtherAddRec->getOperand(i));
790          }
791          SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
792
793          if (Ops.size() == 2) return NewAddRec;
794
795          Ops.erase(Ops.begin()+Idx);
796          Ops.erase(Ops.begin()+OtherIdx-1);
797          Ops.push_back(NewAddRec);
798          return SCEVAddExpr::get(Ops);
799        }
800      }
801
802    // Otherwise couldn't fold anything into this recurrence.  Move onto the
803    // next one.
804  }
805
806  // Okay, it looks like we really DO need an add expr.  Check to see if we
807  // already have one, otherwise create a new one.
808  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
809  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
810                                                                 SCEVOps)];
811  if (Result == 0) Result = new SCEVAddExpr(Ops);
812  return Result;
813}
814
815
816SCEVHandle SCEVMulExpr::get(std::vector<SCEVHandle> &Ops) {
817  assert(!Ops.empty() && "Cannot get empty mul!");
818
819  // Sort by complexity, this groups all similar expression types together.
820  GroupByComplexity(Ops);
821
822  // If there are any constants, fold them together.
823  unsigned Idx = 0;
824  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
825
826    // C1*(C2+V) -> C1*C2 + C1*V
827    if (Ops.size() == 2)
828      if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
829        if (Add->getNumOperands() == 2 &&
830            isa<SCEVConstant>(Add->getOperand(0)))
831          return SCEVAddExpr::get(SCEVMulExpr::get(LHSC, Add->getOperand(0)),
832                                  SCEVMulExpr::get(LHSC, Add->getOperand(1)));
833
834
835    ++Idx;
836    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
837      // We found two constants, fold them together!
838      Constant *Fold = ConstantExpr::getMul(LHSC->getValue(), RHSC->getValue());
839      if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
840        Ops[0] = SCEVConstant::get(CI);
841        Ops.erase(Ops.begin()+1);  // Erase the folded element
842        if (Ops.size() == 1) return Ops[0];
843        LHSC = cast<SCEVConstant>(Ops[0]);
844      } else {
845        // If we couldn't fold the expression, move to the next constant.  Note
846        // that this is impossible to happen in practice because we always
847        // constant fold constant ints to constant ints.
848        ++Idx;
849      }
850    }
851
852    // If we are left with a constant one being multiplied, strip it off.
853    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
854      Ops.erase(Ops.begin());
855      --Idx;
856    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isNullValue()) {
857      // If we have a multiply of zero, it will always be zero.
858      return Ops[0];
859    }
860  }
861
862  // Skip over the add expression until we get to a multiply.
863  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
864    ++Idx;
865
866  if (Ops.size() == 1)
867    return Ops[0];
868
869  // If there are mul operands inline them all into this expression.
870  if (Idx < Ops.size()) {
871    bool DeletedMul = false;
872    while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
873      // If we have an mul, expand the mul operands onto the end of the operands
874      // list.
875      Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
876      Ops.erase(Ops.begin()+Idx);
877      DeletedMul = true;
878    }
879
880    // If we deleted at least one mul, we added operands to the end of the list,
881    // and they are not necessarily sorted.  Recurse to resort and resimplify
882    // any operands we just aquired.
883    if (DeletedMul)
884      return get(Ops);
885  }
886
887  // If there are any add recurrences in the operands list, see if any other
888  // added values are loop invariant.  If so, we can fold them into the
889  // recurrence.
890  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
891    ++Idx;
892
893  // Scan over all recurrences, trying to fold loop invariants into them.
894  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
895    // Scan all of the other operands to this mul and add them to the vector if
896    // they are loop invariant w.r.t. the recurrence.
897    std::vector<SCEVHandle> LIOps;
898    SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
899    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
900      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
901        LIOps.push_back(Ops[i]);
902        Ops.erase(Ops.begin()+i);
903        --i; --e;
904      }
905
906    // If we found some loop invariants, fold them into the recurrence.
907    if (!LIOps.empty()) {
908      //  NLI * LI * { Start,+,Step}  -->  NLI * { LI*Start,+,LI*Step }
909      std::vector<SCEVHandle> NewOps;
910      NewOps.reserve(AddRec->getNumOperands());
911      if (LIOps.size() == 1) {
912        SCEV *Scale = LIOps[0];
913        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
914          NewOps.push_back(SCEVMulExpr::get(Scale, AddRec->getOperand(i)));
915      } else {
916        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
917          std::vector<SCEVHandle> MulOps(LIOps);
918          MulOps.push_back(AddRec->getOperand(i));
919          NewOps.push_back(SCEVMulExpr::get(MulOps));
920        }
921      }
922
923      SCEVHandle NewRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
924
925      // If all of the other operands were loop invariant, we are done.
926      if (Ops.size() == 1) return NewRec;
927
928      // Otherwise, multiply the folded AddRec by the non-liv parts.
929      for (unsigned i = 0;; ++i)
930        if (Ops[i] == AddRec) {
931          Ops[i] = NewRec;
932          break;
933        }
934      return SCEVMulExpr::get(Ops);
935    }
936
937    // Okay, if there weren't any loop invariants to be folded, check to see if
938    // there are multiple AddRec's with the same loop induction variable being
939    // multiplied together.  If so, we can fold them.
940    for (unsigned OtherIdx = Idx+1;
941         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
942      if (OtherIdx != Idx) {
943        SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
944        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
945          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
946          SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
947          SCEVHandle NewStart = SCEVMulExpr::get(F->getStart(),
948                                                 G->getStart());
949          SCEVHandle B = F->getStepRecurrence();
950          SCEVHandle D = G->getStepRecurrence();
951          SCEVHandle NewStep = SCEVAddExpr::get(SCEVMulExpr::get(F, D),
952                                                SCEVMulExpr::get(G, B),
953                                                SCEVMulExpr::get(B, D));
954          SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewStart, NewStep,
955                                                     F->getLoop());
956          if (Ops.size() == 2) return NewAddRec;
957
958          Ops.erase(Ops.begin()+Idx);
959          Ops.erase(Ops.begin()+OtherIdx-1);
960          Ops.push_back(NewAddRec);
961          return SCEVMulExpr::get(Ops);
962        }
963      }
964
965    // Otherwise couldn't fold anything into this recurrence.  Move onto the
966    // next one.
967  }
968
969  // Okay, it looks like we really DO need an mul expr.  Check to see if we
970  // already have one, otherwise create a new one.
971  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
972  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
973                                                                 SCEVOps)];
974  if (Result == 0)
975    Result = new SCEVMulExpr(Ops);
976  return Result;
977}
978
979SCEVHandle SCEVSDivExpr::get(const SCEVHandle &LHS, const SCEVHandle &RHS) {
980  if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
981    if (RHSC->getValue()->equalsInt(1))
982      return LHS;                            // X sdiv 1 --> x
983    if (RHSC->getValue()->isAllOnesValue())
984      return SCEV::getNegativeSCEV(LHS);           // X sdiv -1  -->  -x
985
986    if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
987      Constant *LHSCV = LHSC->getValue();
988      Constant *RHSCV = RHSC->getValue();
989      return SCEVUnknown::get(ConstantExpr::getSDiv(LHSCV, RHSCV));
990    }
991  }
992
993  // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
994
995  SCEVSDivExpr *&Result = (*SCEVSDivs)[std::make_pair(LHS, RHS)];
996  if (Result == 0) Result = new SCEVSDivExpr(LHS, RHS);
997  return Result;
998}
999
1000
1001/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1002/// specified loop.  Simplify the expression as much as possible.
1003SCEVHandle SCEVAddRecExpr::get(const SCEVHandle &Start,
1004                               const SCEVHandle &Step, const Loop *L) {
1005  std::vector<SCEVHandle> Operands;
1006  Operands.push_back(Start);
1007  if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1008    if (StepChrec->getLoop() == L) {
1009      Operands.insert(Operands.end(), StepChrec->op_begin(),
1010                      StepChrec->op_end());
1011      return get(Operands, L);
1012    }
1013
1014  Operands.push_back(Step);
1015  return get(Operands, L);
1016}
1017
1018/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1019/// specified loop.  Simplify the expression as much as possible.
1020SCEVHandle SCEVAddRecExpr::get(std::vector<SCEVHandle> &Operands,
1021                               const Loop *L) {
1022  if (Operands.size() == 1) return Operands[0];
1023
1024  if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Operands.back()))
1025    if (StepC->getValue()->isNullValue()) {
1026      Operands.pop_back();
1027      return get(Operands, L);             // { X,+,0 }  -->  X
1028    }
1029
1030  SCEVAddRecExpr *&Result =
1031    (*SCEVAddRecExprs)[std::make_pair(L, std::vector<SCEV*>(Operands.begin(),
1032                                                            Operands.end()))];
1033  if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1034  return Result;
1035}
1036
1037SCEVHandle SCEVUnknown::get(Value *V) {
1038  if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
1039    return SCEVConstant::get(CI);
1040  SCEVUnknown *&Result = (*SCEVUnknowns)[V];
1041  if (Result == 0) Result = new SCEVUnknown(V);
1042  return Result;
1043}
1044
1045
1046//===----------------------------------------------------------------------===//
1047//             ScalarEvolutionsImpl Definition and Implementation
1048//===----------------------------------------------------------------------===//
1049//
1050/// ScalarEvolutionsImpl - This class implements the main driver for the scalar
1051/// evolution code.
1052///
1053namespace {
1054  struct VISIBILITY_HIDDEN ScalarEvolutionsImpl {
1055    /// F - The function we are analyzing.
1056    ///
1057    Function &F;
1058
1059    /// LI - The loop information for the function we are currently analyzing.
1060    ///
1061    LoopInfo &LI;
1062
1063    /// UnknownValue - This SCEV is used to represent unknown trip counts and
1064    /// things.
1065    SCEVHandle UnknownValue;
1066
1067    /// Scalars - This is a cache of the scalars we have analyzed so far.
1068    ///
1069    std::map<Value*, SCEVHandle> Scalars;
1070
1071    /// IterationCounts - Cache the iteration count of the loops for this
1072    /// function as they are computed.
1073    std::map<const Loop*, SCEVHandle> IterationCounts;
1074
1075    /// ConstantEvolutionLoopExitValue - This map contains entries for all of
1076    /// the PHI instructions that we attempt to compute constant evolutions for.
1077    /// This allows us to avoid potentially expensive recomputation of these
1078    /// properties.  An instruction maps to null if we are unable to compute its
1079    /// exit value.
1080    std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
1081
1082  public:
1083    ScalarEvolutionsImpl(Function &f, LoopInfo &li)
1084      : F(f), LI(li), UnknownValue(new SCEVCouldNotCompute()) {}
1085
1086    /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1087    /// expression and create a new one.
1088    SCEVHandle getSCEV(Value *V);
1089
1090    /// hasSCEV - Return true if the SCEV for this value has already been
1091    /// computed.
1092    bool hasSCEV(Value *V) const {
1093      return Scalars.count(V);
1094    }
1095
1096    /// setSCEV - Insert the specified SCEV into the map of current SCEVs for
1097    /// the specified value.
1098    void setSCEV(Value *V, const SCEVHandle &H) {
1099      bool isNew = Scalars.insert(std::make_pair(V, H)).second;
1100      assert(isNew && "This entry already existed!");
1101    }
1102
1103
1104    /// getSCEVAtScope - Compute the value of the specified expression within
1105    /// the indicated loop (which may be null to indicate in no loop).  If the
1106    /// expression cannot be evaluated, return UnknownValue itself.
1107    SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L);
1108
1109
1110    /// hasLoopInvariantIterationCount - Return true if the specified loop has
1111    /// an analyzable loop-invariant iteration count.
1112    bool hasLoopInvariantIterationCount(const Loop *L);
1113
1114    /// getIterationCount - If the specified loop has a predictable iteration
1115    /// count, return it.  Note that it is not valid to call this method on a
1116    /// loop without a loop-invariant iteration count.
1117    SCEVHandle getIterationCount(const Loop *L);
1118
1119    /// deleteInstructionFromRecords - This method should be called by the
1120    /// client before it removes an instruction from the program, to make sure
1121    /// that no dangling references are left around.
1122    void deleteInstructionFromRecords(Instruction *I);
1123
1124  private:
1125    /// createSCEV - We know that there is no SCEV for the specified value.
1126    /// Analyze the expression.
1127    SCEVHandle createSCEV(Value *V);
1128
1129    /// createNodeForPHI - Provide the special handling we need to analyze PHI
1130    /// SCEVs.
1131    SCEVHandle createNodeForPHI(PHINode *PN);
1132
1133    /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value
1134    /// for the specified instruction and replaces any references to the
1135    /// symbolic value SymName with the specified value.  This is used during
1136    /// PHI resolution.
1137    void ReplaceSymbolicValueWithConcrete(Instruction *I,
1138                                          const SCEVHandle &SymName,
1139                                          const SCEVHandle &NewVal);
1140
1141    /// ComputeIterationCount - Compute the number of times the specified loop
1142    /// will iterate.
1143    SCEVHandle ComputeIterationCount(const Loop *L);
1144
1145    /// ComputeLoadConstantCompareIterationCount - Given an exit condition of
1146    /// 'setcc load X, cst', try to se if we can compute the trip count.
1147    SCEVHandle ComputeLoadConstantCompareIterationCount(LoadInst *LI,
1148                                                        Constant *RHS,
1149                                                        const Loop *L,
1150                                                        ICmpInst::Predicate p);
1151
1152    /// ComputeIterationCountExhaustively - If the trip is known to execute a
1153    /// constant number of times (the condition evolves only from constants),
1154    /// try to evaluate a few iterations of the loop until we get the exit
1155    /// condition gets a value of ExitWhen (true or false).  If we cannot
1156    /// evaluate the trip count of the loop, return UnknownValue.
1157    SCEVHandle ComputeIterationCountExhaustively(const Loop *L, Value *Cond,
1158                                                 bool ExitWhen);
1159
1160    /// HowFarToZero - Return the number of times a backedge comparing the
1161    /// specified value to zero will execute.  If not computable, return
1162    /// UnknownValue.
1163    SCEVHandle HowFarToZero(SCEV *V, const Loop *L);
1164
1165    /// HowFarToNonZero - Return the number of times a backedge checking the
1166    /// specified value for nonzero will execute.  If not computable, return
1167    /// UnknownValue.
1168    SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L);
1169
1170    /// HowManyLessThans - Return the number of times a backedge containing the
1171    /// specified less-than comparison will execute.  If not computable, return
1172    /// UnknownValue.
1173    SCEVHandle HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L);
1174
1175    /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1176    /// in the header of its containing loop, we know the loop executes a
1177    /// constant number of times, and the PHI node is just a recurrence
1178    /// involving constants, fold it.
1179    Constant *getConstantEvolutionLoopExitValue(PHINode *PN, uint64_t Its,
1180                                                const Loop *L);
1181  };
1182}
1183
1184//===----------------------------------------------------------------------===//
1185//            Basic SCEV Analysis and PHI Idiom Recognition Code
1186//
1187
1188/// deleteInstructionFromRecords - This method should be called by the
1189/// client before it removes an instruction from the program, to make sure
1190/// that no dangling references are left around.
1191void ScalarEvolutionsImpl::deleteInstructionFromRecords(Instruction *I) {
1192  Scalars.erase(I);
1193  if (PHINode *PN = dyn_cast<PHINode>(I))
1194    ConstantEvolutionLoopExitValue.erase(PN);
1195}
1196
1197
1198/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1199/// expression and create a new one.
1200SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) {
1201  assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!");
1202
1203  std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V);
1204  if (I != Scalars.end()) return I->second;
1205  SCEVHandle S = createSCEV(V);
1206  Scalars.insert(std::make_pair(V, S));
1207  return S;
1208}
1209
1210/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1211/// the specified instruction and replaces any references to the symbolic value
1212/// SymName with the specified value.  This is used during PHI resolution.
1213void ScalarEvolutionsImpl::
1214ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1215                                 const SCEVHandle &NewVal) {
1216  std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I);
1217  if (SI == Scalars.end()) return;
1218
1219  SCEVHandle NV =
1220    SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal);
1221  if (NV == SI->second) return;  // No change.
1222
1223  SI->second = NV;       // Update the scalars map!
1224
1225  // Any instruction values that use this instruction might also need to be
1226  // updated!
1227  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1228       UI != E; ++UI)
1229    ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1230}
1231
1232/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
1233/// a loop header, making it a potential recurrence, or it doesn't.
1234///
1235SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) {
1236  if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
1237    if (const Loop *L = LI.getLoopFor(PN->getParent()))
1238      if (L->getHeader() == PN->getParent()) {
1239        // If it lives in the loop header, it has two incoming values, one
1240        // from outside the loop, and one from inside.
1241        unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1242        unsigned BackEdge     = IncomingEdge^1;
1243
1244        // While we are analyzing this PHI node, handle its value symbolically.
1245        SCEVHandle SymbolicName = SCEVUnknown::get(PN);
1246        assert(Scalars.find(PN) == Scalars.end() &&
1247               "PHI node already processed?");
1248        Scalars.insert(std::make_pair(PN, SymbolicName));
1249
1250        // Using this symbolic name for the PHI, analyze the value coming around
1251        // the back-edge.
1252        SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1253
1254        // NOTE: If BEValue is loop invariant, we know that the PHI node just
1255        // has a special value for the first iteration of the loop.
1256
1257        // If the value coming around the backedge is an add with the symbolic
1258        // value we just inserted, then we found a simple induction variable!
1259        if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
1260          // If there is a single occurrence of the symbolic value, replace it
1261          // with a recurrence.
1262          unsigned FoundIndex = Add->getNumOperands();
1263          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1264            if (Add->getOperand(i) == SymbolicName)
1265              if (FoundIndex == e) {
1266                FoundIndex = i;
1267                break;
1268              }
1269
1270          if (FoundIndex != Add->getNumOperands()) {
1271            // Create an add with everything but the specified operand.
1272            std::vector<SCEVHandle> Ops;
1273            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1274              if (i != FoundIndex)
1275                Ops.push_back(Add->getOperand(i));
1276            SCEVHandle Accum = SCEVAddExpr::get(Ops);
1277
1278            // This is not a valid addrec if the step amount is varying each
1279            // loop iteration, but is not itself an addrec in this loop.
1280            if (Accum->isLoopInvariant(L) ||
1281                (isa<SCEVAddRecExpr>(Accum) &&
1282                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1283              SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1284              SCEVHandle PHISCEV  = SCEVAddRecExpr::get(StartVal, Accum, L);
1285
1286              // Okay, for the entire analysis of this edge we assumed the PHI
1287              // to be symbolic.  We now need to go back and update all of the
1288              // entries for the scalars that use the PHI (except for the PHI
1289              // itself) to use the new analyzed value instead of the "symbolic"
1290              // value.
1291              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1292              return PHISCEV;
1293            }
1294          }
1295        } else if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) {
1296          // Otherwise, this could be a loop like this:
1297          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
1298          // In this case, j = {1,+,1}  and BEValue is j.
1299          // Because the other in-value of i (0) fits the evolution of BEValue
1300          // i really is an addrec evolution.
1301          if (AddRec->getLoop() == L && AddRec->isAffine()) {
1302            SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1303
1304            // If StartVal = j.start - j.stride, we can use StartVal as the
1305            // initial step of the addrec evolution.
1306            if (StartVal == SCEV::getMinusSCEV(AddRec->getOperand(0),
1307                                               AddRec->getOperand(1))) {
1308              SCEVHandle PHISCEV =
1309                 SCEVAddRecExpr::get(StartVal, AddRec->getOperand(1), L);
1310
1311              // Okay, for the entire analysis of this edge we assumed the PHI
1312              // to be symbolic.  We now need to go back and update all of the
1313              // entries for the scalars that use the PHI (except for the PHI
1314              // itself) to use the new analyzed value instead of the "symbolic"
1315              // value.
1316              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1317              return PHISCEV;
1318            }
1319          }
1320        }
1321
1322        return SymbolicName;
1323      }
1324
1325  // If it's not a loop phi, we can't handle it yet.
1326  return SCEVUnknown::get(PN);
1327}
1328
1329/// GetConstantFactor - Determine the largest constant factor that S has.  For
1330/// example, turn {4,+,8} -> 4.    (S umod result) should always equal zero.
1331static uint64_t GetConstantFactor(SCEVHandle S) {
1332  if (SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
1333    if (uint64_t V = C->getValue()->getZExtValue())
1334      return V;
1335    else   // Zero is a multiple of everything.
1336      return 1ULL << (S->getType()->getPrimitiveSizeInBits()-1);
1337  }
1338
1339  if (SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
1340    return GetConstantFactor(T->getOperand()) &
1341           cast<IntegerType>(T->getType())->getBitMask();
1342  if (SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S))
1343    return GetConstantFactor(E->getOperand());
1344
1345  if (SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
1346    // The result is the min of all operands.
1347    uint64_t Res = GetConstantFactor(A->getOperand(0));
1348    for (unsigned i = 1, e = A->getNumOperands(); i != e && Res > 1; ++i)
1349      Res = std::min(Res, GetConstantFactor(A->getOperand(i)));
1350    return Res;
1351  }
1352
1353  if (SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
1354    // The result is the product of all the operands.
1355    uint64_t Res = GetConstantFactor(M->getOperand(0));
1356    for (unsigned i = 1, e = M->getNumOperands(); i != e; ++i)
1357      Res *= GetConstantFactor(M->getOperand(i));
1358    return Res;
1359  }
1360
1361  if (SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
1362    // For now, we just handle linear expressions.
1363    if (A->getNumOperands() == 2) {
1364      // We want the GCD between the start and the stride value.
1365      uint64_t Start = GetConstantFactor(A->getOperand(0));
1366      if (Start == 1) return 1;
1367      uint64_t Stride = GetConstantFactor(A->getOperand(1));
1368      return GreatestCommonDivisor64(Start, Stride);
1369    }
1370  }
1371
1372  // SCEVSDivExpr, SCEVUnknown.
1373  return 1;
1374}
1375
1376/// createSCEV - We know that there is no SCEV for the specified value.
1377/// Analyze the expression.
1378///
1379SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) {
1380  if (Instruction *I = dyn_cast<Instruction>(V)) {
1381    switch (I->getOpcode()) {
1382    case Instruction::Add:
1383      return SCEVAddExpr::get(getSCEV(I->getOperand(0)),
1384                              getSCEV(I->getOperand(1)));
1385    case Instruction::Mul:
1386      return SCEVMulExpr::get(getSCEV(I->getOperand(0)),
1387                              getSCEV(I->getOperand(1)));
1388    case Instruction::SDiv:
1389      return SCEVSDivExpr::get(getSCEV(I->getOperand(0)),
1390                              getSCEV(I->getOperand(1)));
1391      break;
1392
1393    case Instruction::Sub:
1394      return SCEV::getMinusSCEV(getSCEV(I->getOperand(0)),
1395                                getSCEV(I->getOperand(1)));
1396    case Instruction::Or:
1397      // If the RHS of the Or is a constant, we may have something like:
1398      // X*4+1 which got turned into X*4|1.  Handle this as an add so loop
1399      // optimizations will transparently handle this case.
1400      if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
1401        SCEVHandle LHS = getSCEV(I->getOperand(0));
1402        uint64_t CommonFact = GetConstantFactor(LHS);
1403        assert(CommonFact && "Common factor should at least be 1!");
1404        if (CommonFact > CI->getZExtValue()) {
1405          // If the LHS is a multiple that is larger than the RHS, use +.
1406          return SCEVAddExpr::get(LHS,
1407                                  getSCEV(I->getOperand(1)));
1408        }
1409      }
1410      break;
1411
1412    case Instruction::Shl:
1413      // Turn shift left of a constant amount into a multiply.
1414      if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1415        Constant *X = ConstantInt::get(V->getType(), 1);
1416        X = ConstantExpr::getShl(X, SA);
1417        return SCEVMulExpr::get(getSCEV(I->getOperand(0)), getSCEV(X));
1418      }
1419      break;
1420
1421    case Instruction::Trunc:
1422      return SCEVTruncateExpr::get(getSCEV(I->getOperand(0)), I->getType());
1423
1424    case Instruction::ZExt:
1425      return SCEVZeroExtendExpr::get(getSCEV(I->getOperand(0)), I->getType());
1426
1427    case Instruction::BitCast:
1428      // BitCasts are no-op casts so we just eliminate the cast.
1429      if (I->getType()->isInteger() &&
1430          I->getOperand(0)->getType()->isInteger())
1431        return getSCEV(I->getOperand(0));
1432      break;
1433
1434    case Instruction::PHI:
1435      return createNodeForPHI(cast<PHINode>(I));
1436
1437    default: // We cannot analyze this expression.
1438      break;
1439    }
1440  }
1441
1442  return SCEVUnknown::get(V);
1443}
1444
1445
1446
1447//===----------------------------------------------------------------------===//
1448//                   Iteration Count Computation Code
1449//
1450
1451/// getIterationCount - If the specified loop has a predictable iteration
1452/// count, return it.  Note that it is not valid to call this method on a
1453/// loop without a loop-invariant iteration count.
1454SCEVHandle ScalarEvolutionsImpl::getIterationCount(const Loop *L) {
1455  std::map<const Loop*, SCEVHandle>::iterator I = IterationCounts.find(L);
1456  if (I == IterationCounts.end()) {
1457    SCEVHandle ItCount = ComputeIterationCount(L);
1458    I = IterationCounts.insert(std::make_pair(L, ItCount)).first;
1459    if (ItCount != UnknownValue) {
1460      assert(ItCount->isLoopInvariant(L) &&
1461             "Computed trip count isn't loop invariant for loop!");
1462      ++NumTripCountsComputed;
1463    } else if (isa<PHINode>(L->getHeader()->begin())) {
1464      // Only count loops that have phi nodes as not being computable.
1465      ++NumTripCountsNotComputed;
1466    }
1467  }
1468  return I->second;
1469}
1470
1471/// ComputeIterationCount - Compute the number of times the specified loop
1472/// will iterate.
1473SCEVHandle ScalarEvolutionsImpl::ComputeIterationCount(const Loop *L) {
1474  // If the loop has a non-one exit block count, we can't analyze it.
1475  std::vector<BasicBlock*> ExitBlocks;
1476  L->getExitBlocks(ExitBlocks);
1477  if (ExitBlocks.size() != 1) return UnknownValue;
1478
1479  // Okay, there is one exit block.  Try to find the condition that causes the
1480  // loop to be exited.
1481  BasicBlock *ExitBlock = ExitBlocks[0];
1482
1483  BasicBlock *ExitingBlock = 0;
1484  for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
1485       PI != E; ++PI)
1486    if (L->contains(*PI)) {
1487      if (ExitingBlock == 0)
1488        ExitingBlock = *PI;
1489      else
1490        return UnknownValue;   // More than one block exiting!
1491    }
1492  assert(ExitingBlock && "No exits from loop, something is broken!");
1493
1494  // Okay, we've computed the exiting block.  See what condition causes us to
1495  // exit.
1496  //
1497  // FIXME: we should be able to handle switch instructions (with a single exit)
1498  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1499  if (ExitBr == 0) return UnknownValue;
1500  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
1501
1502  // At this point, we know we have a conditional branch that determines whether
1503  // the loop is exited.  However, we don't know if the branch is executed each
1504  // time through the loop.  If not, then the execution count of the branch will
1505  // not be equal to the trip count of the loop.
1506  //
1507  // Currently we check for this by checking to see if the Exit branch goes to
1508  // the loop header.  If so, we know it will always execute the same number of
1509  // times as the loop.  We also handle the case where the exit block *is* the
1510  // loop header.  This is common for un-rotated loops.  More extensive analysis
1511  // could be done to handle more cases here.
1512  if (ExitBr->getSuccessor(0) != L->getHeader() &&
1513      ExitBr->getSuccessor(1) != L->getHeader() &&
1514      ExitBr->getParent() != L->getHeader())
1515    return UnknownValue;
1516
1517  ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition());
1518
1519  // If its not an integer comparison then compute it the hard way.
1520  // Note that ICmpInst deals with pointer comparisons too so we must check
1521  // the type of the operand.
1522  if (ExitCond == 0 || isa<PointerType>(ExitCond->getOperand(0)->getType()))
1523    return ComputeIterationCountExhaustively(L, ExitBr->getCondition(),
1524                                          ExitBr->getSuccessor(0) == ExitBlock);
1525
1526  // If the condition was exit on true, convert the condition to exit on false
1527  ICmpInst::Predicate Cond;
1528  if (ExitBr->getSuccessor(1) == ExitBlock)
1529    Cond = ExitCond->getPredicate();
1530  else
1531    Cond = ExitCond->getInversePredicate();
1532
1533  // Handle common loops like: for (X = "string"; *X; ++X)
1534  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
1535    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
1536      SCEVHandle ItCnt =
1537        ComputeLoadConstantCompareIterationCount(LI, RHS, L, Cond);
1538      if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
1539    }
1540
1541  SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
1542  SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
1543
1544  // Try to evaluate any dependencies out of the loop.
1545  SCEVHandle Tmp = getSCEVAtScope(LHS, L);
1546  if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
1547  Tmp = getSCEVAtScope(RHS, L);
1548  if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
1549
1550  // At this point, we would like to compute how many iterations of the
1551  // loop the predicate will return true for these inputs.
1552  if (isa<SCEVConstant>(LHS) && !isa<SCEVConstant>(RHS)) {
1553    // If there is a constant, force it into the RHS.
1554    std::swap(LHS, RHS);
1555    Cond = ICmpInst::getSwappedPredicate(Cond);
1556  }
1557
1558  // FIXME: think about handling pointer comparisons!  i.e.:
1559  // while (P != P+100) ++P;
1560
1561  // If we have a comparison of a chrec against a constant, try to use value
1562  // ranges to answer this query.
1563  if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
1564    if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
1565      if (AddRec->getLoop() == L) {
1566        // Form the comparison range using the constant of the correct type so
1567        // that the ConstantRange class knows to do a signed or unsigned
1568        // comparison.
1569        ConstantInt *CompVal = RHSC->getValue();
1570        const Type *RealTy = ExitCond->getOperand(0)->getType();
1571        CompVal = dyn_cast<ConstantInt>(
1572          ConstantExpr::getBitCast(CompVal, RealTy));
1573        if (CompVal) {
1574          // Form the constant range.
1575          ConstantRange CompRange(Cond, CompVal->getValue());
1576
1577          SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange,
1578              false /*Always treat as unsigned range*/);
1579          if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
1580        }
1581      }
1582
1583  switch (Cond) {
1584  case ICmpInst::ICMP_NE: {                     // while (X != Y)
1585    // Convert to: while (X-Y != 0)
1586    SCEVHandle TC = HowFarToZero(SCEV::getMinusSCEV(LHS, RHS), L);
1587    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1588    break;
1589  }
1590  case ICmpInst::ICMP_EQ: {
1591    // Convert to: while (X-Y == 0)           // while (X == Y)
1592    SCEVHandle TC = HowFarToNonZero(SCEV::getMinusSCEV(LHS, RHS), L);
1593    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1594    break;
1595  }
1596  case ICmpInst::ICMP_SLT: {
1597    SCEVHandle TC = HowManyLessThans(LHS, RHS, L);
1598    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1599    break;
1600  }
1601  case ICmpInst::ICMP_SGT: {
1602    SCEVHandle TC = HowManyLessThans(RHS, LHS, L);
1603    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1604    break;
1605  }
1606  default:
1607#if 0
1608    cerr << "ComputeIterationCount ";
1609    if (ExitCond->getOperand(0)->getType()->isUnsigned())
1610      cerr << "[unsigned] ";
1611    cerr << *LHS << "   "
1612         << Instruction::getOpcodeName(Instruction::ICmp)
1613         << "   " << *RHS << "\n";
1614#endif
1615    break;
1616  }
1617  return ComputeIterationCountExhaustively(L, ExitCond,
1618                                       ExitBr->getSuccessor(0) == ExitBlock);
1619}
1620
1621static ConstantInt *
1622EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, Constant *C) {
1623  SCEVHandle InVal = SCEVConstant::get(cast<ConstantInt>(C));
1624  SCEVHandle Val = AddRec->evaluateAtIteration(InVal);
1625  assert(isa<SCEVConstant>(Val) &&
1626         "Evaluation of SCEV at constant didn't fold correctly?");
1627  return cast<SCEVConstant>(Val)->getValue();
1628}
1629
1630/// GetAddressedElementFromGlobal - Given a global variable with an initializer
1631/// and a GEP expression (missing the pointer index) indexing into it, return
1632/// the addressed element of the initializer or null if the index expression is
1633/// invalid.
1634static Constant *
1635GetAddressedElementFromGlobal(GlobalVariable *GV,
1636                              const std::vector<ConstantInt*> &Indices) {
1637  Constant *Init = GV->getInitializer();
1638  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1639    uint64_t Idx = Indices[i]->getZExtValue();
1640    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
1641      assert(Idx < CS->getNumOperands() && "Bad struct index!");
1642      Init = cast<Constant>(CS->getOperand(Idx));
1643    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
1644      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
1645      Init = cast<Constant>(CA->getOperand(Idx));
1646    } else if (isa<ConstantAggregateZero>(Init)) {
1647      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
1648        assert(Idx < STy->getNumElements() && "Bad struct index!");
1649        Init = Constant::getNullValue(STy->getElementType(Idx));
1650      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
1651        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
1652        Init = Constant::getNullValue(ATy->getElementType());
1653      } else {
1654        assert(0 && "Unknown constant aggregate type!");
1655      }
1656      return 0;
1657    } else {
1658      return 0; // Unknown initializer type
1659    }
1660  }
1661  return Init;
1662}
1663
1664/// ComputeLoadConstantCompareIterationCount - Given an exit condition of
1665/// 'setcc load X, cst', try to se if we can compute the trip count.
1666SCEVHandle ScalarEvolutionsImpl::
1667ComputeLoadConstantCompareIterationCount(LoadInst *LI, Constant *RHS,
1668                                         const Loop *L,
1669                                         ICmpInst::Predicate predicate) {
1670  if (LI->isVolatile()) return UnknownValue;
1671
1672  // Check to see if the loaded pointer is a getelementptr of a global.
1673  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
1674  if (!GEP) return UnknownValue;
1675
1676  // Make sure that it is really a constant global we are gepping, with an
1677  // initializer, and make sure the first IDX is really 0.
1678  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
1679  if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
1680      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
1681      !cast<Constant>(GEP->getOperand(1))->isNullValue())
1682    return UnknownValue;
1683
1684  // Okay, we allow one non-constant index into the GEP instruction.
1685  Value *VarIdx = 0;
1686  std::vector<ConstantInt*> Indexes;
1687  unsigned VarIdxNum = 0;
1688  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
1689    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
1690      Indexes.push_back(CI);
1691    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
1692      if (VarIdx) return UnknownValue;  // Multiple non-constant idx's.
1693      VarIdx = GEP->getOperand(i);
1694      VarIdxNum = i-2;
1695      Indexes.push_back(0);
1696    }
1697
1698  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
1699  // Check to see if X is a loop variant variable value now.
1700  SCEVHandle Idx = getSCEV(VarIdx);
1701  SCEVHandle Tmp = getSCEVAtScope(Idx, L);
1702  if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
1703
1704  // We can only recognize very limited forms of loop index expressions, in
1705  // particular, only affine AddRec's like {C1,+,C2}.
1706  SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
1707  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
1708      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
1709      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
1710    return UnknownValue;
1711
1712  unsigned MaxSteps = MaxBruteForceIterations;
1713  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
1714    ConstantInt *ItCst =
1715      ConstantInt::get(IdxExpr->getType(), IterationNum);
1716    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst);
1717
1718    // Form the GEP offset.
1719    Indexes[VarIdxNum] = Val;
1720
1721    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
1722    if (Result == 0) break;  // Cannot compute!
1723
1724    // Evaluate the condition for this iteration.
1725    Result = ConstantExpr::getICmp(predicate, Result, RHS);
1726    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
1727    if (cast<ConstantInt>(Result)->getZExtValue() == false) {
1728#if 0
1729      cerr << "\n***\n*** Computed loop count " << *ItCst
1730           << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
1731           << "***\n";
1732#endif
1733      ++NumArrayLenItCounts;
1734      return SCEVConstant::get(ItCst);   // Found terminating iteration!
1735    }
1736  }
1737  return UnknownValue;
1738}
1739
1740
1741/// CanConstantFold - Return true if we can constant fold an instruction of the
1742/// specified type, assuming that all operands were constants.
1743static bool CanConstantFold(const Instruction *I) {
1744  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
1745      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
1746    return true;
1747
1748  if (const CallInst *CI = dyn_cast<CallInst>(I))
1749    if (const Function *F = CI->getCalledFunction())
1750      return canConstantFoldCallTo((Function*)F);  // FIXME: elim cast
1751  return false;
1752}
1753
1754/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
1755/// in the loop that V is derived from.  We allow arbitrary operations along the
1756/// way, but the operands of an operation must either be constants or a value
1757/// derived from a constant PHI.  If this expression does not fit with these
1758/// constraints, return null.
1759static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
1760  // If this is not an instruction, or if this is an instruction outside of the
1761  // loop, it can't be derived from a loop PHI.
1762  Instruction *I = dyn_cast<Instruction>(V);
1763  if (I == 0 || !L->contains(I->getParent())) return 0;
1764
1765  if (PHINode *PN = dyn_cast<PHINode>(I))
1766    if (L->getHeader() == I->getParent())
1767      return PN;
1768    else
1769      // We don't currently keep track of the control flow needed to evaluate
1770      // PHIs, so we cannot handle PHIs inside of loops.
1771      return 0;
1772
1773  // If we won't be able to constant fold this expression even if the operands
1774  // are constants, return early.
1775  if (!CanConstantFold(I)) return 0;
1776
1777  // Otherwise, we can evaluate this instruction if all of its operands are
1778  // constant or derived from a PHI node themselves.
1779  PHINode *PHI = 0;
1780  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
1781    if (!(isa<Constant>(I->getOperand(Op)) ||
1782          isa<GlobalValue>(I->getOperand(Op)))) {
1783      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
1784      if (P == 0) return 0;  // Not evolving from PHI
1785      if (PHI == 0)
1786        PHI = P;
1787      else if (PHI != P)
1788        return 0;  // Evolving from multiple different PHIs.
1789    }
1790
1791  // This is a expression evolving from a constant PHI!
1792  return PHI;
1793}
1794
1795/// EvaluateExpression - Given an expression that passes the
1796/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
1797/// in the loop has the value PHIVal.  If we can't fold this expression for some
1798/// reason, return null.
1799static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
1800  if (isa<PHINode>(V)) return PHIVal;
1801  if (GlobalValue *GV = dyn_cast<GlobalValue>(V))
1802    return GV;
1803  if (Constant *C = dyn_cast<Constant>(V)) return C;
1804  Instruction *I = cast<Instruction>(V);
1805
1806  std::vector<Constant*> Operands;
1807  Operands.resize(I->getNumOperands());
1808
1809  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
1810    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
1811    if (Operands[i] == 0) return 0;
1812  }
1813
1814  return ConstantFoldInstOperands(I, &Operands[0], Operands.size());
1815}
1816
1817/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1818/// in the header of its containing loop, we know the loop executes a
1819/// constant number of times, and the PHI node is just a recurrence
1820/// involving constants, fold it.
1821Constant *ScalarEvolutionsImpl::
1822getConstantEvolutionLoopExitValue(PHINode *PN, uint64_t Its, const Loop *L) {
1823  std::map<PHINode*, Constant*>::iterator I =
1824    ConstantEvolutionLoopExitValue.find(PN);
1825  if (I != ConstantEvolutionLoopExitValue.end())
1826    return I->second;
1827
1828  if (Its > MaxBruteForceIterations)
1829    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
1830
1831  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
1832
1833  // Since the loop is canonicalized, the PHI node must have two entries.  One
1834  // entry must be a constant (coming in from outside of the loop), and the
1835  // second must be derived from the same PHI.
1836  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
1837  Constant *StartCST =
1838    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
1839  if (StartCST == 0)
1840    return RetVal = 0;  // Must be a constant.
1841
1842  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
1843  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
1844  if (PN2 != PN)
1845    return RetVal = 0;  // Not derived from same PHI.
1846
1847  // Execute the loop symbolically to determine the exit value.
1848  unsigned IterationNum = 0;
1849  unsigned NumIterations = Its;
1850  if (NumIterations != Its)
1851    return RetVal = 0;  // More than 2^32 iterations??
1852
1853  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
1854    if (IterationNum == NumIterations)
1855      return RetVal = PHIVal;  // Got exit value!
1856
1857    // Compute the value of the PHI node for the next iteration.
1858    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
1859    if (NextPHI == PHIVal)
1860      return RetVal = NextPHI;  // Stopped evolving!
1861    if (NextPHI == 0)
1862      return 0;        // Couldn't evaluate!
1863    PHIVal = NextPHI;
1864  }
1865}
1866
1867/// ComputeIterationCountExhaustively - If the trip is known to execute a
1868/// constant number of times (the condition evolves only from constants),
1869/// try to evaluate a few iterations of the loop until we get the exit
1870/// condition gets a value of ExitWhen (true or false).  If we cannot
1871/// evaluate the trip count of the loop, return UnknownValue.
1872SCEVHandle ScalarEvolutionsImpl::
1873ComputeIterationCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
1874  PHINode *PN = getConstantEvolvingPHI(Cond, L);
1875  if (PN == 0) return UnknownValue;
1876
1877  // Since the loop is canonicalized, the PHI node must have two entries.  One
1878  // entry must be a constant (coming in from outside of the loop), and the
1879  // second must be derived from the same PHI.
1880  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
1881  Constant *StartCST =
1882    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
1883  if (StartCST == 0) return UnknownValue;  // Must be a constant.
1884
1885  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
1886  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
1887  if (PN2 != PN) return UnknownValue;  // Not derived from same PHI.
1888
1889  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
1890  // the loop symbolically to determine when the condition gets a value of
1891  // "ExitWhen".
1892  unsigned IterationNum = 0;
1893  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
1894  for (Constant *PHIVal = StartCST;
1895       IterationNum != MaxIterations; ++IterationNum) {
1896    ConstantInt *CondVal =
1897      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
1898
1899    // Couldn't symbolically evaluate.
1900    if (!CondVal) return UnknownValue;
1901
1902    if (CondVal->getZExtValue() == uint64_t(ExitWhen)) {
1903      ConstantEvolutionLoopExitValue[PN] = PHIVal;
1904      ++NumBruteForceTripCountsComputed;
1905      return SCEVConstant::get(ConstantInt::get(Type::Int32Ty, IterationNum));
1906    }
1907
1908    // Compute the value of the PHI node for the next iteration.
1909    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
1910    if (NextPHI == 0 || NextPHI == PHIVal)
1911      return UnknownValue;  // Couldn't evaluate or not making progress...
1912    PHIVal = NextPHI;
1913  }
1914
1915  // Too many iterations were needed to evaluate.
1916  return UnknownValue;
1917}
1918
1919/// getSCEVAtScope - Compute the value of the specified expression within the
1920/// indicated loop (which may be null to indicate in no loop).  If the
1921/// expression cannot be evaluated, return UnknownValue.
1922SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) {
1923  // FIXME: this should be turned into a virtual method on SCEV!
1924
1925  if (isa<SCEVConstant>(V)) return V;
1926
1927  // If this instruction is evolves from a constant-evolving PHI, compute the
1928  // exit value from the loop without using SCEVs.
1929  if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
1930    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
1931      const Loop *LI = this->LI[I->getParent()];
1932      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
1933        if (PHINode *PN = dyn_cast<PHINode>(I))
1934          if (PN->getParent() == LI->getHeader()) {
1935            // Okay, there is no closed form solution for the PHI node.  Check
1936            // to see if the loop that contains it has a known iteration count.
1937            // If so, we may be able to force computation of the exit value.
1938            SCEVHandle IterationCount = getIterationCount(LI);
1939            if (SCEVConstant *ICC = dyn_cast<SCEVConstant>(IterationCount)) {
1940              // Okay, we know how many times the containing loop executes.  If
1941              // this is a constant evolving PHI node, get the final value at
1942              // the specified iteration number.
1943              Constant *RV = getConstantEvolutionLoopExitValue(PN,
1944                                               ICC->getValue()->getZExtValue(),
1945                                                               LI);
1946              if (RV) return SCEVUnknown::get(RV);
1947            }
1948          }
1949
1950      // Okay, this is an expression that we cannot symbolically evaluate
1951      // into a SCEV.  Check to see if it's possible to symbolically evaluate
1952      // the arguments into constants, and if so, try to constant propagate the
1953      // result.  This is particularly useful for computing loop exit values.
1954      if (CanConstantFold(I)) {
1955        std::vector<Constant*> Operands;
1956        Operands.reserve(I->getNumOperands());
1957        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
1958          Value *Op = I->getOperand(i);
1959          if (Constant *C = dyn_cast<Constant>(Op)) {
1960            Operands.push_back(C);
1961          } else {
1962            SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
1963            if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
1964              Operands.push_back(ConstantExpr::getIntegerCast(SC->getValue(),
1965                                                              Op->getType(),
1966                                                              false));
1967            else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
1968              if (Constant *C = dyn_cast<Constant>(SU->getValue()))
1969                Operands.push_back(ConstantExpr::getIntegerCast(C,
1970                                                                Op->getType(),
1971                                                                false));
1972              else
1973                return V;
1974            } else {
1975              return V;
1976            }
1977          }
1978        }
1979        Constant *C =ConstantFoldInstOperands(I, &Operands[0], Operands.size());
1980        return SCEVUnknown::get(C);
1981      }
1982    }
1983
1984    // This is some other type of SCEVUnknown, just return it.
1985    return V;
1986  }
1987
1988  if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
1989    // Avoid performing the look-up in the common case where the specified
1990    // expression has no loop-variant portions.
1991    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
1992      SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
1993      if (OpAtScope != Comm->getOperand(i)) {
1994        if (OpAtScope == UnknownValue) return UnknownValue;
1995        // Okay, at least one of these operands is loop variant but might be
1996        // foldable.  Build a new instance of the folded commutative expression.
1997        std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
1998        NewOps.push_back(OpAtScope);
1999
2000        for (++i; i != e; ++i) {
2001          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2002          if (OpAtScope == UnknownValue) return UnknownValue;
2003          NewOps.push_back(OpAtScope);
2004        }
2005        if (isa<SCEVAddExpr>(Comm))
2006          return SCEVAddExpr::get(NewOps);
2007        assert(isa<SCEVMulExpr>(Comm) && "Only know about add and mul!");
2008        return SCEVMulExpr::get(NewOps);
2009      }
2010    }
2011    // If we got here, all operands are loop invariant.
2012    return Comm;
2013  }
2014
2015  if (SCEVSDivExpr *Div = dyn_cast<SCEVSDivExpr>(V)) {
2016    SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
2017    if (LHS == UnknownValue) return LHS;
2018    SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
2019    if (RHS == UnknownValue) return RHS;
2020    if (LHS == Div->getLHS() && RHS == Div->getRHS())
2021      return Div;   // must be loop invariant
2022    return SCEVSDivExpr::get(LHS, RHS);
2023  }
2024
2025  // If this is a loop recurrence for a loop that does not contain L, then we
2026  // are dealing with the final value computed by the loop.
2027  if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
2028    if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
2029      // To evaluate this recurrence, we need to know how many times the AddRec
2030      // loop iterates.  Compute this now.
2031      SCEVHandle IterationCount = getIterationCount(AddRec->getLoop());
2032      if (IterationCount == UnknownValue) return UnknownValue;
2033      IterationCount = getTruncateOrZeroExtend(IterationCount,
2034                                               AddRec->getType());
2035
2036      // If the value is affine, simplify the expression evaluation to just
2037      // Start + Step*IterationCount.
2038      if (AddRec->isAffine())
2039        return SCEVAddExpr::get(AddRec->getStart(),
2040                                SCEVMulExpr::get(IterationCount,
2041                                                 AddRec->getOperand(1)));
2042
2043      // Otherwise, evaluate it the hard way.
2044      return AddRec->evaluateAtIteration(IterationCount);
2045    }
2046    return UnknownValue;
2047  }
2048
2049  //assert(0 && "Unknown SCEV type!");
2050  return UnknownValue;
2051}
2052
2053
2054/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
2055/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
2056/// might be the same) or two SCEVCouldNotCompute objects.
2057///
2058static std::pair<SCEVHandle,SCEVHandle>
2059SolveQuadraticEquation(const SCEVAddRecExpr *AddRec) {
2060  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
2061  SCEVConstant *L = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
2062  SCEVConstant *M = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
2063  SCEVConstant *N = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
2064
2065  // We currently can only solve this if the coefficients are constants.
2066  if (!L || !M || !N) {
2067    SCEV *CNC = new SCEVCouldNotCompute();
2068    return std::make_pair(CNC, CNC);
2069  }
2070
2071  Constant *C = L->getValue();
2072  Constant *Two = ConstantInt::get(C->getType(), 2);
2073
2074  // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
2075  // The B coefficient is M-N/2
2076  Constant *B = ConstantExpr::getSub(M->getValue(),
2077                                     ConstantExpr::getSDiv(N->getValue(),
2078                                                          Two));
2079  // The A coefficient is N/2
2080  Constant *A = ConstantExpr::getSDiv(N->getValue(), Two);
2081
2082  // Compute the B^2-4ac term.
2083  Constant *SqrtTerm =
2084    ConstantExpr::getMul(ConstantInt::get(C->getType(), 4),
2085                         ConstantExpr::getMul(A, C));
2086  SqrtTerm = ConstantExpr::getSub(ConstantExpr::getMul(B, B), SqrtTerm);
2087
2088  // Compute floor(sqrt(B^2-4ac))
2089  uint64_t SqrtValV = cast<ConstantInt>(SqrtTerm)->getZExtValue();
2090  uint64_t SqrtValV2 = (uint64_t)sqrt((double)SqrtValV);
2091  // The square root might not be precise for arbitrary 64-bit integer
2092  // values.  Do some sanity checks to ensure it's correct.
2093  if (SqrtValV2*SqrtValV2 > SqrtValV ||
2094      (SqrtValV2+1)*(SqrtValV2+1) <= SqrtValV) {
2095    SCEV *CNC = new SCEVCouldNotCompute();
2096    return std::make_pair(CNC, CNC);
2097  }
2098
2099  ConstantInt *SqrtVal = ConstantInt::get(Type::Int64Ty, SqrtValV2);
2100  SqrtTerm = ConstantExpr::getTruncOrBitCast(SqrtVal, SqrtTerm->getType());
2101
2102  Constant *NegB = ConstantExpr::getNeg(B);
2103  Constant *TwoA = ConstantExpr::getMul(A, Two);
2104
2105  // The divisions must be performed as signed divisions.
2106  Constant *Solution1 =
2107    ConstantExpr::getSDiv(ConstantExpr::getAdd(NegB, SqrtTerm), TwoA);
2108  Constant *Solution2 =
2109    ConstantExpr::getSDiv(ConstantExpr::getSub(NegB, SqrtTerm), TwoA);
2110  return std::make_pair(SCEVUnknown::get(Solution1),
2111                        SCEVUnknown::get(Solution2));
2112}
2113
2114/// HowFarToZero - Return the number of times a backedge comparing the specified
2115/// value to zero will execute.  If not computable, return UnknownValue
2116SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) {
2117  // If the value is a constant
2118  if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2119    // If the value is already zero, the branch will execute zero times.
2120    if (C->getValue()->isNullValue()) return C;
2121    return UnknownValue;  // Otherwise it will loop infinitely.
2122  }
2123
2124  SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
2125  if (!AddRec || AddRec->getLoop() != L)
2126    return UnknownValue;
2127
2128  if (AddRec->isAffine()) {
2129    // If this is an affine expression the execution count of this branch is
2130    // equal to:
2131    //
2132    //     (0 - Start/Step)    iff   Start % Step == 0
2133    //
2134    // Get the initial value for the loop.
2135    SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
2136    if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
2137    SCEVHandle Step = AddRec->getOperand(1);
2138
2139    Step = getSCEVAtScope(Step, L->getParentLoop());
2140
2141    // Figure out if Start % Step == 0.
2142    // FIXME: We should add DivExpr and RemExpr operations to our AST.
2143    if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
2144      if (StepC->getValue()->equalsInt(1))      // N % 1 == 0
2145        return SCEV::getNegativeSCEV(Start);  // 0 - Start/1 == -Start
2146      if (StepC->getValue()->isAllOnesValue())  // N % -1 == 0
2147        return Start;                   // 0 - Start/-1 == Start
2148
2149      // Check to see if Start is divisible by SC with no remainder.
2150      if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
2151        ConstantInt *StartCC = StartC->getValue();
2152        Constant *StartNegC = ConstantExpr::getNeg(StartCC);
2153        Constant *Rem = ConstantExpr::getSRem(StartNegC, StepC->getValue());
2154        if (Rem->isNullValue()) {
2155          Constant *Result =ConstantExpr::getSDiv(StartNegC,StepC->getValue());
2156          return SCEVUnknown::get(Result);
2157        }
2158      }
2159    }
2160  } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
2161    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
2162    // the quadratic equation to solve it.
2163    std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec);
2164    SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2165    SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2166    if (R1) {
2167#if 0
2168      cerr << "HFTZ: " << *V << " - sol#1: " << *R1
2169           << "  sol#2: " << *R2 << "\n";
2170#endif
2171      // Pick the smallest positive root value.
2172      if (ConstantInt *CB =
2173          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
2174                                   R1->getValue(), R2->getValue()))) {
2175        if (CB->getZExtValue() == false)
2176          std::swap(R1, R2);   // R1 is the minimum root now.
2177
2178        // We can only use this value if the chrec ends up with an exact zero
2179        // value at this index.  When solving for "X*X != 5", for example, we
2180        // should not accept a root of 2.
2181        SCEVHandle Val = AddRec->evaluateAtIteration(R1);
2182        if (SCEVConstant *EvalVal = dyn_cast<SCEVConstant>(Val))
2183          if (EvalVal->getValue()->isNullValue())
2184            return R1;  // We found a quadratic root!
2185      }
2186    }
2187  }
2188
2189  return UnknownValue;
2190}
2191
2192/// HowFarToNonZero - Return the number of times a backedge checking the
2193/// specified value for nonzero will execute.  If not computable, return
2194/// UnknownValue
2195SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) {
2196  // Loops that look like: while (X == 0) are very strange indeed.  We don't
2197  // handle them yet except for the trivial case.  This could be expanded in the
2198  // future as needed.
2199
2200  // If the value is a constant, check to see if it is known to be non-zero
2201  // already.  If so, the backedge will execute zero times.
2202  if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2203    Constant *Zero = Constant::getNullValue(C->getValue()->getType());
2204    Constant *NonZero =
2205      ConstantExpr::getICmp(ICmpInst::ICMP_NE, C->getValue(), Zero);
2206    if (NonZero == ConstantInt::getTrue())
2207      return getSCEV(Zero);
2208    return UnknownValue;  // Otherwise it will loop infinitely.
2209  }
2210
2211  // We could implement others, but I really doubt anyone writes loops like
2212  // this, and if they did, they would already be constant folded.
2213  return UnknownValue;
2214}
2215
2216/// HowManyLessThans - Return the number of times a backedge containing the
2217/// specified less-than comparison will execute.  If not computable, return
2218/// UnknownValue.
2219SCEVHandle ScalarEvolutionsImpl::
2220HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L) {
2221  // Only handle:  "ADDREC < LoopInvariant".
2222  if (!RHS->isLoopInvariant(L)) return UnknownValue;
2223
2224  SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
2225  if (!AddRec || AddRec->getLoop() != L)
2226    return UnknownValue;
2227
2228  if (AddRec->isAffine()) {
2229    // FORNOW: We only support unit strides.
2230    SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, RHS->getType());
2231    if (AddRec->getOperand(1) != One)
2232      return UnknownValue;
2233
2234    // The number of iterations for "[n,+,1] < m", is m-n.  However, we don't
2235    // know that m is >= n on input to the loop.  If it is, the condition return
2236    // true zero times.  What we really should return, for full generality, is
2237    // SMAX(0, m-n).  Since we cannot check this, we will instead check for a
2238    // canonical loop form: most do-loops will have a check that dominates the
2239    // loop, that only enters the loop if [n-1]<m.  If we can find this check,
2240    // we know that the SMAX will evaluate to m-n, because we know that m >= n.
2241
2242    // Search for the check.
2243    BasicBlock *Preheader = L->getLoopPreheader();
2244    BasicBlock *PreheaderDest = L->getHeader();
2245    if (Preheader == 0) return UnknownValue;
2246
2247    BranchInst *LoopEntryPredicate =
2248      dyn_cast<BranchInst>(Preheader->getTerminator());
2249    if (!LoopEntryPredicate) return UnknownValue;
2250
2251    // This might be a critical edge broken out.  If the loop preheader ends in
2252    // an unconditional branch to the loop, check to see if the preheader has a
2253    // single predecessor, and if so, look for its terminator.
2254    while (LoopEntryPredicate->isUnconditional()) {
2255      PreheaderDest = Preheader;
2256      Preheader = Preheader->getSinglePredecessor();
2257      if (!Preheader) return UnknownValue;  // Multiple preds.
2258
2259      LoopEntryPredicate =
2260        dyn_cast<BranchInst>(Preheader->getTerminator());
2261      if (!LoopEntryPredicate) return UnknownValue;
2262    }
2263
2264    // Now that we found a conditional branch that dominates the loop, check to
2265    // see if it is the comparison we are looking for.
2266    if (ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition())){
2267      Value *PreCondLHS = ICI->getOperand(0);
2268      Value *PreCondRHS = ICI->getOperand(1);
2269      ICmpInst::Predicate Cond;
2270      if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest)
2271        Cond = ICI->getPredicate();
2272      else
2273        Cond = ICI->getInversePredicate();
2274
2275      switch (Cond) {
2276      case ICmpInst::ICMP_UGT:
2277        std::swap(PreCondLHS, PreCondRHS);
2278        Cond = ICmpInst::ICMP_ULT;
2279        break;
2280      case ICmpInst::ICMP_SGT:
2281        std::swap(PreCondLHS, PreCondRHS);
2282        Cond = ICmpInst::ICMP_SLT;
2283        break;
2284      default: break;
2285      }
2286
2287      if (Cond == ICmpInst::ICMP_SLT) {
2288        if (PreCondLHS->getType()->isInteger()) {
2289          if (RHS != getSCEV(PreCondRHS))
2290            return UnknownValue;  // Not a comparison against 'm'.
2291
2292          if (SCEV::getMinusSCEV(AddRec->getOperand(0), One)
2293                      != getSCEV(PreCondLHS))
2294            return UnknownValue;  // Not a comparison against 'n-1'.
2295        }
2296        else return UnknownValue;
2297      } else if (Cond == ICmpInst::ICMP_ULT)
2298        return UnknownValue;
2299
2300      // cerr << "Computed Loop Trip Count as: "
2301      //      << //  *SCEV::getMinusSCEV(RHS, AddRec->getOperand(0)) << "\n";
2302      return SCEV::getMinusSCEV(RHS, AddRec->getOperand(0));
2303    }
2304    else
2305      return UnknownValue;
2306  }
2307
2308  return UnknownValue;
2309}
2310
2311/// getNumIterationsInRange - Return the number of iterations of this loop that
2312/// produce values in the specified constant range.  Another way of looking at
2313/// this is that it returns the first iteration number where the value is not in
2314/// the condition, thus computing the exit count. If the iteration count can't
2315/// be computed, an instance of SCEVCouldNotCompute is returned.
2316SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
2317                                                   bool isSigned) const {
2318  if (Range.isFullSet())  // Infinite loop.
2319    return new SCEVCouldNotCompute();
2320
2321  // If the start is a non-zero constant, shift the range to simplify things.
2322  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
2323    if (!SC->getValue()->isNullValue()) {
2324      std::vector<SCEVHandle> Operands(op_begin(), op_end());
2325      Operands[0] = SCEVUnknown::getIntegerSCEV(0, SC->getType());
2326      SCEVHandle Shifted = SCEVAddRecExpr::get(Operands, getLoop());
2327      if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
2328        return ShiftedAddRec->getNumIterationsInRange(
2329                           Range.subtract(SC->getValue()->getValue()),isSigned);
2330      // This is strange and shouldn't happen.
2331      return new SCEVCouldNotCompute();
2332    }
2333
2334  // The only time we can solve this is when we have all constant indices.
2335  // Otherwise, we cannot determine the overflow conditions.
2336  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2337    if (!isa<SCEVConstant>(getOperand(i)))
2338      return new SCEVCouldNotCompute();
2339
2340
2341  // Okay at this point we know that all elements of the chrec are constants and
2342  // that the start element is zero.
2343
2344  // First check to see if the range contains zero.  If not, the first
2345  // iteration exits.
2346  if (!Range.contains(APInt(getBitWidth(),0), isSigned))
2347    return SCEVConstant::get(ConstantInt::get(getType(),0));
2348
2349  if (isAffine()) {
2350    // If this is an affine expression then we have this situation:
2351    //   Solve {0,+,A} in Range  ===  Ax in Range
2352
2353    // Since we know that zero is in the range, we know that the upper value of
2354    // the range must be the first possible exit value.  Also note that we
2355    // already checked for a full range.
2356    const APInt &Upper = Range.getUpper();
2357    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
2358    APInt One(getBitWidth(),1);
2359
2360    // The exit value should be (Upper+A-1)/A.
2361    APInt ExitVal(Upper);
2362    if (A != One)
2363      ExitVal = (Upper + A - One).sdiv(A);
2364    ConstantInt *ExitValue = ConstantInt::get(getType(), ExitVal);
2365
2366    // Evaluate at the exit value.  If we really did fall out of the valid
2367    // range, then we computed our trip count, otherwise wrap around or other
2368    // things must have happened.
2369    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue);
2370    if (Range.contains(Val->getValue(), isSigned))
2371      return new SCEVCouldNotCompute();  // Something strange happened
2372
2373    // Ensure that the previous value is in the range.  This is a sanity check.
2374    assert(Range.contains(
2375           EvaluateConstantChrecAtConstant(this,
2376           ConstantInt::get(getType(), ExitVal - One))->getValue(), isSigned) &&
2377           "Linear scev computation is off in a bad way!");
2378    return SCEVConstant::get(cast<ConstantInt>(ExitValue));
2379  } else if (isQuadratic()) {
2380    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
2381    // quadratic equation to solve it.  To do this, we must frame our problem in
2382    // terms of figuring out when zero is crossed, instead of when
2383    // Range.getUpper() is crossed.
2384    std::vector<SCEVHandle> NewOps(op_begin(), op_end());
2385    NewOps[0] = SCEV::getNegativeSCEV(SCEVUnknown::get(
2386                                ConstantInt::get(getType(), Range.getUpper())));
2387    SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, getLoop());
2388
2389    // Next, solve the constructed addrec
2390    std::pair<SCEVHandle,SCEVHandle> Roots =
2391      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec));
2392    SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2393    SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2394    if (R1) {
2395      // Pick the smallest positive root value.
2396      if (ConstantInt *CB =
2397          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
2398                                   R1->getValue(), R2->getValue()))) {
2399        if (CB->getZExtValue() == false)
2400          std::swap(R1, R2);   // R1 is the minimum root now.
2401
2402        // Make sure the root is not off by one.  The returned iteration should
2403        // not be in the range, but the previous one should be.  When solving
2404        // for "X*X < 5", for example, we should not return a root of 2.
2405        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
2406                                                             R1->getValue());
2407        if (Range.contains(R1Val->getValue(), isSigned)) {
2408          // The next iteration must be out of the range...
2409          Constant *NextVal =
2410            ConstantExpr::getAdd(R1->getValue(),
2411                                 ConstantInt::get(R1->getType(), 1));
2412
2413          R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
2414          if (!Range.contains(R1Val->getValue(), isSigned))
2415            return SCEVUnknown::get(NextVal);
2416          return new SCEVCouldNotCompute();  // Something strange happened
2417        }
2418
2419        // If R1 was not in the range, then it is a good return value.  Make
2420        // sure that R1-1 WAS in the range though, just in case.
2421        Constant *NextVal =
2422          ConstantExpr::getSub(R1->getValue(),
2423                               ConstantInt::get(R1->getType(), 1));
2424        R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
2425        if (Range.contains(R1Val->getValue(), isSigned))
2426          return R1;
2427        return new SCEVCouldNotCompute();  // Something strange happened
2428      }
2429    }
2430  }
2431
2432  // Fallback, if this is a general polynomial, figure out the progression
2433  // through brute force: evaluate until we find an iteration that fails the
2434  // test.  This is likely to be slow, but getting an accurate trip count is
2435  // incredibly important, we will be able to simplify the exit test a lot, and
2436  // we are almost guaranteed to get a trip count in this case.
2437  ConstantInt *TestVal = ConstantInt::get(getType(), 0);
2438  ConstantInt *One     = ConstantInt::get(getType(), 1);
2439  ConstantInt *EndVal  = TestVal;  // Stop when we wrap around.
2440  do {
2441    ++NumBruteForceEvaluations;
2442    SCEVHandle Val = evaluateAtIteration(SCEVConstant::get(TestVal));
2443    if (!isa<SCEVConstant>(Val))  // This shouldn't happen.
2444      return new SCEVCouldNotCompute();
2445
2446    // Check to see if we found the value!
2447    if (!Range.contains(cast<SCEVConstant>(Val)->getValue()->getValue(),
2448                        isSigned))
2449      return SCEVConstant::get(TestVal);
2450
2451    // Increment to test the next index.
2452    TestVal = cast<ConstantInt>(ConstantExpr::getAdd(TestVal, One));
2453  } while (TestVal != EndVal);
2454
2455  return new SCEVCouldNotCompute();
2456}
2457
2458
2459
2460//===----------------------------------------------------------------------===//
2461//                   ScalarEvolution Class Implementation
2462//===----------------------------------------------------------------------===//
2463
2464bool ScalarEvolution::runOnFunction(Function &F) {
2465  Impl = new ScalarEvolutionsImpl(F, getAnalysis<LoopInfo>());
2466  return false;
2467}
2468
2469void ScalarEvolution::releaseMemory() {
2470  delete (ScalarEvolutionsImpl*)Impl;
2471  Impl = 0;
2472}
2473
2474void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
2475  AU.setPreservesAll();
2476  AU.addRequiredTransitive<LoopInfo>();
2477}
2478
2479SCEVHandle ScalarEvolution::getSCEV(Value *V) const {
2480  return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V);
2481}
2482
2483/// hasSCEV - Return true if the SCEV for this value has already been
2484/// computed.
2485bool ScalarEvolution::hasSCEV(Value *V) const {
2486  return ((ScalarEvolutionsImpl*)Impl)->hasSCEV(V);
2487}
2488
2489
2490/// setSCEV - Insert the specified SCEV into the map of current SCEVs for
2491/// the specified value.
2492void ScalarEvolution::setSCEV(Value *V, const SCEVHandle &H) {
2493  ((ScalarEvolutionsImpl*)Impl)->setSCEV(V, H);
2494}
2495
2496
2497SCEVHandle ScalarEvolution::getIterationCount(const Loop *L) const {
2498  return ((ScalarEvolutionsImpl*)Impl)->getIterationCount(L);
2499}
2500
2501bool ScalarEvolution::hasLoopInvariantIterationCount(const Loop *L) const {
2502  return !isa<SCEVCouldNotCompute>(getIterationCount(L));
2503}
2504
2505SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const {
2506  return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L);
2507}
2508
2509void ScalarEvolution::deleteInstructionFromRecords(Instruction *I) const {
2510  return ((ScalarEvolutionsImpl*)Impl)->deleteInstructionFromRecords(I);
2511}
2512
2513static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE,
2514                          const Loop *L) {
2515  // Print all inner loops first
2516  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
2517    PrintLoopInfo(OS, SE, *I);
2518
2519  cerr << "Loop " << L->getHeader()->getName() << ": ";
2520
2521  std::vector<BasicBlock*> ExitBlocks;
2522  L->getExitBlocks(ExitBlocks);
2523  if (ExitBlocks.size() != 1)
2524    cerr << "<multiple exits> ";
2525
2526  if (SE->hasLoopInvariantIterationCount(L)) {
2527    cerr << *SE->getIterationCount(L) << " iterations! ";
2528  } else {
2529    cerr << "Unpredictable iteration count. ";
2530  }
2531
2532  cerr << "\n";
2533}
2534
2535void ScalarEvolution::print(std::ostream &OS, const Module* ) const {
2536  Function &F = ((ScalarEvolutionsImpl*)Impl)->F;
2537  LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI;
2538
2539  OS << "Classifying expressions for: " << F.getName() << "\n";
2540  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
2541    if (I->getType()->isInteger()) {
2542      OS << *I;
2543      OS << "  --> ";
2544      SCEVHandle SV = getSCEV(&*I);
2545      SV->print(OS);
2546      OS << "\t\t";
2547
2548      if ((*I).getType()->isInteger()) {
2549        ConstantRange Bounds = SV->getValueRange();
2550        if (!Bounds.isFullSet())
2551          OS << "Bounds: " << Bounds << " ";
2552      }
2553
2554      if (const Loop *L = LI.getLoopFor((*I).getParent())) {
2555        OS << "Exits: ";
2556        SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop());
2557        if (isa<SCEVCouldNotCompute>(ExitValue)) {
2558          OS << "<<Unknown>>";
2559        } else {
2560          OS << *ExitValue;
2561        }
2562      }
2563
2564
2565      OS << "\n";
2566    }
2567
2568  OS << "Determining loop execution counts for: " << F.getName() << "\n";
2569  for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
2570    PrintLoopInfo(OS, this, *I);
2571}
2572
2573