ScalarEvolution.cpp revision 794fd75c67a2cdc128d67342c6d88a504d186896
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle.  These classes are reference counted, managed by the SCEVHandle
18// class.  We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression.  These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
36// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43//  Chains of recurrences -- a method to expedite the evaluation
44//  of closed-form functions
45//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47//  On computational properties of chains of recurrences
48//  Eugene V. Zima
49//
50//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51//  Robert A. van Engelen
52//
53//  Efficient Symbolic Analysis for Optimizing Compilers
54//  Robert A. van Engelen
55//
56//  Using the chains of recurrences algebra for data dependence testing and
57//  induction variable substitution
58//  MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
62#define DEBUG_TYPE "scalar-evolution"
63#include "llvm/Analysis/ScalarEvolutionExpressions.h"
64#include "llvm/Constants.h"
65#include "llvm/DerivedTypes.h"
66#include "llvm/GlobalVariable.h"
67#include "llvm/Instructions.h"
68#include "llvm/Analysis/ConstantFolding.h"
69#include "llvm/Analysis/LoopInfo.h"
70#include "llvm/Assembly/Writer.h"
71#include "llvm/Transforms/Scalar.h"
72#include "llvm/Support/CFG.h"
73#include "llvm/Support/CommandLine.h"
74#include "llvm/Support/Compiler.h"
75#include "llvm/Support/ConstantRange.h"
76#include "llvm/Support/InstIterator.h"
77#include "llvm/Support/ManagedStatic.h"
78#include "llvm/Support/MathExtras.h"
79#include "llvm/Support/Streams.h"
80#include "llvm/ADT/Statistic.h"
81#include <ostream>
82#include <algorithm>
83#include <cmath>
84using namespace llvm;
85
86STATISTIC(NumBruteForceEvaluations,
87          "Number of brute force evaluations needed to "
88          "calculate high-order polynomial exit values");
89STATISTIC(NumArrayLenItCounts,
90          "Number of trip counts computed with array length");
91STATISTIC(NumTripCountsComputed,
92          "Number of loops with predictable loop counts");
93STATISTIC(NumTripCountsNotComputed,
94          "Number of loops without predictable loop counts");
95STATISTIC(NumBruteForceTripCountsComputed,
96          "Number of loops with trip counts computed by force");
97
98cl::opt<unsigned>
99MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
100                        cl::desc("Maximum number of iterations SCEV will "
101                                 "symbolically execute a constant derived loop"),
102                        cl::init(100));
103
104namespace {
105  const int ScalarEvolution::ID = 0;
106  RegisterPass<ScalarEvolution>
107  R("scalar-evolution", "Scalar Evolution Analysis");
108}
109
110//===----------------------------------------------------------------------===//
111//                           SCEV class definitions
112//===----------------------------------------------------------------------===//
113
114//===----------------------------------------------------------------------===//
115// Implementation of the SCEV class.
116//
117SCEV::~SCEV() {}
118void SCEV::dump() const {
119  print(cerr);
120}
121
122/// getValueRange - Return the tightest constant bounds that this value is
123/// known to have.  This method is only valid on integer SCEV objects.
124ConstantRange SCEV::getValueRange() const {
125  const Type *Ty = getType();
126  assert(Ty->isInteger() && "Can't get range for a non-integer SCEV!");
127  // Default to a full range if no better information is available.
128  return ConstantRange(getBitWidth());
129}
130
131uint32_t SCEV::getBitWidth() const {
132  if (const IntegerType* ITy = dyn_cast<IntegerType>(getType()))
133    return ITy->getBitWidth();
134  return 0;
135}
136
137
138SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
139
140bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
141  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
142  return false;
143}
144
145const Type *SCEVCouldNotCompute::getType() const {
146  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
147  return 0;
148}
149
150bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
151  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
152  return false;
153}
154
155SCEVHandle SCEVCouldNotCompute::
156replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
157                                  const SCEVHandle &Conc) const {
158  return this;
159}
160
161void SCEVCouldNotCompute::print(std::ostream &OS) const {
162  OS << "***COULDNOTCOMPUTE***";
163}
164
165bool SCEVCouldNotCompute::classof(const SCEV *S) {
166  return S->getSCEVType() == scCouldNotCompute;
167}
168
169
170// SCEVConstants - Only allow the creation of one SCEVConstant for any
171// particular value.  Don't use a SCEVHandle here, or else the object will
172// never be deleted!
173static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
174
175
176SCEVConstant::~SCEVConstant() {
177  SCEVConstants->erase(V);
178}
179
180SCEVHandle SCEVConstant::get(ConstantInt *V) {
181  SCEVConstant *&R = (*SCEVConstants)[V];
182  if (R == 0) R = new SCEVConstant(V);
183  return R;
184}
185
186ConstantRange SCEVConstant::getValueRange() const {
187  return ConstantRange(V->getValue());
188}
189
190const Type *SCEVConstant::getType() const { return V->getType(); }
191
192void SCEVConstant::print(std::ostream &OS) const {
193  WriteAsOperand(OS, V, false);
194}
195
196// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
197// particular input.  Don't use a SCEVHandle here, or else the object will
198// never be deleted!
199static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
200                     SCEVTruncateExpr*> > SCEVTruncates;
201
202SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
203  : SCEV(scTruncate), Op(op), Ty(ty) {
204  assert(Op->getType()->isInteger() && Ty->isInteger() &&
205         "Cannot truncate non-integer value!");
206  assert(Op->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()
207         && "This is not a truncating conversion!");
208}
209
210SCEVTruncateExpr::~SCEVTruncateExpr() {
211  SCEVTruncates->erase(std::make_pair(Op, Ty));
212}
213
214ConstantRange SCEVTruncateExpr::getValueRange() const {
215  return getOperand()->getValueRange().truncate(getBitWidth());
216}
217
218void SCEVTruncateExpr::print(std::ostream &OS) const {
219  OS << "(truncate " << *Op << " to " << *Ty << ")";
220}
221
222// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
223// particular input.  Don't use a SCEVHandle here, or else the object will never
224// be deleted!
225static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
226                     SCEVZeroExtendExpr*> > SCEVZeroExtends;
227
228SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
229  : SCEV(scZeroExtend), Op(op), Ty(ty) {
230  assert(Op->getType()->isInteger() && Ty->isInteger() &&
231         "Cannot zero extend non-integer value!");
232  assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()
233         && "This is not an extending conversion!");
234}
235
236SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
237  SCEVZeroExtends->erase(std::make_pair(Op, Ty));
238}
239
240ConstantRange SCEVZeroExtendExpr::getValueRange() const {
241  return getOperand()->getValueRange().zeroExtend(getBitWidth());
242}
243
244void SCEVZeroExtendExpr::print(std::ostream &OS) const {
245  OS << "(zeroextend " << *Op << " to " << *Ty << ")";
246}
247
248// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
249// particular input.  Don't use a SCEVHandle here, or else the object will never
250// be deleted!
251static ManagedStatic<std::map<std::pair<unsigned, std::vector<SCEV*> >,
252                     SCEVCommutativeExpr*> > SCEVCommExprs;
253
254SCEVCommutativeExpr::~SCEVCommutativeExpr() {
255  SCEVCommExprs->erase(std::make_pair(getSCEVType(),
256                                      std::vector<SCEV*>(Operands.begin(),
257                                                         Operands.end())));
258}
259
260void SCEVCommutativeExpr::print(std::ostream &OS) const {
261  assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
262  const char *OpStr = getOperationStr();
263  OS << "(" << *Operands[0];
264  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
265    OS << OpStr << *Operands[i];
266  OS << ")";
267}
268
269SCEVHandle SCEVCommutativeExpr::
270replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
271                                  const SCEVHandle &Conc) const {
272  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
273    SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc);
274    if (H != getOperand(i)) {
275      std::vector<SCEVHandle> NewOps;
276      NewOps.reserve(getNumOperands());
277      for (unsigned j = 0; j != i; ++j)
278        NewOps.push_back(getOperand(j));
279      NewOps.push_back(H);
280      for (++i; i != e; ++i)
281        NewOps.push_back(getOperand(i)->
282                         replaceSymbolicValuesWithConcrete(Sym, Conc));
283
284      if (isa<SCEVAddExpr>(this))
285        return SCEVAddExpr::get(NewOps);
286      else if (isa<SCEVMulExpr>(this))
287        return SCEVMulExpr::get(NewOps);
288      else
289        assert(0 && "Unknown commutative expr!");
290    }
291  }
292  return this;
293}
294
295
296// SCEVSDivs - Only allow the creation of one SCEVSDivExpr for any particular
297// input.  Don't use a SCEVHandle here, or else the object will never be
298// deleted!
299static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>,
300                     SCEVSDivExpr*> > SCEVSDivs;
301
302SCEVSDivExpr::~SCEVSDivExpr() {
303  SCEVSDivs->erase(std::make_pair(LHS, RHS));
304}
305
306void SCEVSDivExpr::print(std::ostream &OS) const {
307  OS << "(" << *LHS << " /s " << *RHS << ")";
308}
309
310const Type *SCEVSDivExpr::getType() const {
311  return LHS->getType();
312}
313
314// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
315// particular input.  Don't use a SCEVHandle here, or else the object will never
316// be deleted!
317static ManagedStatic<std::map<std::pair<const Loop *, std::vector<SCEV*> >,
318                     SCEVAddRecExpr*> > SCEVAddRecExprs;
319
320SCEVAddRecExpr::~SCEVAddRecExpr() {
321  SCEVAddRecExprs->erase(std::make_pair(L,
322                                        std::vector<SCEV*>(Operands.begin(),
323                                                           Operands.end())));
324}
325
326SCEVHandle SCEVAddRecExpr::
327replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
328                                  const SCEVHandle &Conc) const {
329  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
330    SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc);
331    if (H != getOperand(i)) {
332      std::vector<SCEVHandle> NewOps;
333      NewOps.reserve(getNumOperands());
334      for (unsigned j = 0; j != i; ++j)
335        NewOps.push_back(getOperand(j));
336      NewOps.push_back(H);
337      for (++i; i != e; ++i)
338        NewOps.push_back(getOperand(i)->
339                         replaceSymbolicValuesWithConcrete(Sym, Conc));
340
341      return get(NewOps, L);
342    }
343  }
344  return this;
345}
346
347
348bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
349  // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
350  // contain L and if the start is invariant.
351  return !QueryLoop->contains(L->getHeader()) &&
352         getOperand(0)->isLoopInvariant(QueryLoop);
353}
354
355
356void SCEVAddRecExpr::print(std::ostream &OS) const {
357  OS << "{" << *Operands[0];
358  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
359    OS << ",+," << *Operands[i];
360  OS << "}<" << L->getHeader()->getName() + ">";
361}
362
363// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
364// value.  Don't use a SCEVHandle here, or else the object will never be
365// deleted!
366static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
367
368SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
369
370bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
371  // All non-instruction values are loop invariant.  All instructions are loop
372  // invariant if they are not contained in the specified loop.
373  if (Instruction *I = dyn_cast<Instruction>(V))
374    return !L->contains(I->getParent());
375  return true;
376}
377
378const Type *SCEVUnknown::getType() const {
379  return V->getType();
380}
381
382void SCEVUnknown::print(std::ostream &OS) const {
383  WriteAsOperand(OS, V, false);
384}
385
386//===----------------------------------------------------------------------===//
387//                               SCEV Utilities
388//===----------------------------------------------------------------------===//
389
390namespace {
391  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
392  /// than the complexity of the RHS.  This comparator is used to canonicalize
393  /// expressions.
394  struct VISIBILITY_HIDDEN SCEVComplexityCompare {
395    bool operator()(SCEV *LHS, SCEV *RHS) {
396      return LHS->getSCEVType() < RHS->getSCEVType();
397    }
398  };
399}
400
401/// GroupByComplexity - Given a list of SCEV objects, order them by their
402/// complexity, and group objects of the same complexity together by value.
403/// When this routine is finished, we know that any duplicates in the vector are
404/// consecutive and that complexity is monotonically increasing.
405///
406/// Note that we go take special precautions to ensure that we get determinstic
407/// results from this routine.  In other words, we don't want the results of
408/// this to depend on where the addresses of various SCEV objects happened to
409/// land in memory.
410///
411static void GroupByComplexity(std::vector<SCEVHandle> &Ops) {
412  if (Ops.size() < 2) return;  // Noop
413  if (Ops.size() == 2) {
414    // This is the common case, which also happens to be trivially simple.
415    // Special case it.
416    if (Ops[0]->getSCEVType() > Ops[1]->getSCEVType())
417      std::swap(Ops[0], Ops[1]);
418    return;
419  }
420
421  // Do the rough sort by complexity.
422  std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());
423
424  // Now that we are sorted by complexity, group elements of the same
425  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
426  // be extremely short in practice.  Note that we take this approach because we
427  // do not want to depend on the addresses of the objects we are grouping.
428  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
429    SCEV *S = Ops[i];
430    unsigned Complexity = S->getSCEVType();
431
432    // If there are any objects of the same complexity and same value as this
433    // one, group them.
434    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
435      if (Ops[j] == S) { // Found a duplicate.
436        // Move it to immediately after i'th element.
437        std::swap(Ops[i+1], Ops[j]);
438        ++i;   // no need to rescan it.
439        if (i == e-2) return;  // Done!
440      }
441    }
442  }
443}
444
445
446
447//===----------------------------------------------------------------------===//
448//                      Simple SCEV method implementations
449//===----------------------------------------------------------------------===//
450
451/// getIntegerSCEV - Given an integer or FP type, create a constant for the
452/// specified signed integer value and return a SCEV for the constant.
453SCEVHandle SCEVUnknown::getIntegerSCEV(int Val, const Type *Ty) {
454  Constant *C;
455  if (Val == 0)
456    C = Constant::getNullValue(Ty);
457  else if (Ty->isFloatingPoint())
458    C = ConstantFP::get(Ty, Val);
459  else
460    C = ConstantInt::get(Ty, Val);
461  return SCEVUnknown::get(C);
462}
463
464SCEVHandle SCEVUnknown::getIntegerSCEV(const APInt& Val) {
465  return SCEVUnknown::get(ConstantInt::get(Val));
466}
467
468/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
469/// input value to the specified type.  If the type must be extended, it is zero
470/// extended.
471static SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty) {
472  const Type *SrcTy = V->getType();
473  assert(SrcTy->isInteger() && Ty->isInteger() &&
474         "Cannot truncate or zero extend with non-integer arguments!");
475  if (SrcTy->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
476    return V;  // No conversion
477  if (SrcTy->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits())
478    return SCEVTruncateExpr::get(V, Ty);
479  return SCEVZeroExtendExpr::get(V, Ty);
480}
481
482/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
483///
484SCEVHandle SCEV::getNegativeSCEV(const SCEVHandle &V) {
485  if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
486    return SCEVUnknown::get(ConstantExpr::getNeg(VC->getValue()));
487
488  return SCEVMulExpr::get(V, SCEVUnknown::getIntegerSCEV(-1, V->getType()));
489}
490
491/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
492///
493SCEVHandle SCEV::getMinusSCEV(const SCEVHandle &LHS, const SCEVHandle &RHS) {
494  // X - Y --> X + -Y
495  return SCEVAddExpr::get(LHS, SCEV::getNegativeSCEV(RHS));
496}
497
498
499/// PartialFact - Compute V!/(V-NumSteps)!
500static SCEVHandle PartialFact(SCEVHandle V, unsigned NumSteps) {
501  // Handle this case efficiently, it is common to have constant iteration
502  // counts while computing loop exit values.
503  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
504    const APInt& Val = SC->getValue()->getValue();
505    APInt Result(Val.getBitWidth(), 1);
506    for (; NumSteps; --NumSteps)
507      Result *= Val-(NumSteps-1);
508    return SCEVUnknown::get(ConstantInt::get(Result));
509  }
510
511  const Type *Ty = V->getType();
512  if (NumSteps == 0)
513    return SCEVUnknown::getIntegerSCEV(1, Ty);
514
515  SCEVHandle Result = V;
516  for (unsigned i = 1; i != NumSteps; ++i)
517    Result = SCEVMulExpr::get(Result, SCEV::getMinusSCEV(V,
518                                          SCEVUnknown::getIntegerSCEV(i, Ty)));
519  return Result;
520}
521
522
523/// evaluateAtIteration - Return the value of this chain of recurrences at
524/// the specified iteration number.  We can evaluate this recurrence by
525/// multiplying each element in the chain by the binomial coefficient
526/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
527///
528///   A*choose(It, 0) + B*choose(It, 1) + C*choose(It, 2) + D*choose(It, 3)
529///
530/// FIXME/VERIFY: I don't trust that this is correct in the face of overflow.
531/// Is the binomial equation safe using modular arithmetic??
532///
533SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It) const {
534  SCEVHandle Result = getStart();
535  int Divisor = 1;
536  const Type *Ty = It->getType();
537  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
538    SCEVHandle BC = PartialFact(It, i);
539    Divisor *= i;
540    SCEVHandle Val = SCEVSDivExpr::get(SCEVMulExpr::get(BC, getOperand(i)),
541                                       SCEVUnknown::getIntegerSCEV(Divisor,Ty));
542    Result = SCEVAddExpr::get(Result, Val);
543  }
544  return Result;
545}
546
547
548//===----------------------------------------------------------------------===//
549//                    SCEV Expression folder implementations
550//===----------------------------------------------------------------------===//
551
552SCEVHandle SCEVTruncateExpr::get(const SCEVHandle &Op, const Type *Ty) {
553  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
554    return SCEVUnknown::get(
555        ConstantExpr::getTrunc(SC->getValue(), Ty));
556
557  // If the input value is a chrec scev made out of constants, truncate
558  // all of the constants.
559  if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
560    std::vector<SCEVHandle> Operands;
561    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
562      // FIXME: This should allow truncation of other expression types!
563      if (isa<SCEVConstant>(AddRec->getOperand(i)))
564        Operands.push_back(get(AddRec->getOperand(i), Ty));
565      else
566        break;
567    if (Operands.size() == AddRec->getNumOperands())
568      return SCEVAddRecExpr::get(Operands, AddRec->getLoop());
569  }
570
571  SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
572  if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
573  return Result;
574}
575
576SCEVHandle SCEVZeroExtendExpr::get(const SCEVHandle &Op, const Type *Ty) {
577  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
578    return SCEVUnknown::get(
579        ConstantExpr::getZExt(SC->getValue(), Ty));
580
581  // FIXME: If the input value is a chrec scev, and we can prove that the value
582  // did not overflow the old, smaller, value, we can zero extend all of the
583  // operands (often constants).  This would allow analysis of something like
584  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
585
586  SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
587  if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
588  return Result;
589}
590
591// get - Get a canonical add expression, or something simpler if possible.
592SCEVHandle SCEVAddExpr::get(std::vector<SCEVHandle> &Ops) {
593  assert(!Ops.empty() && "Cannot get empty add!");
594  if (Ops.size() == 1) return Ops[0];
595
596  // Sort by complexity, this groups all similar expression types together.
597  GroupByComplexity(Ops);
598
599  // If there are any constants, fold them together.
600  unsigned Idx = 0;
601  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
602    ++Idx;
603    assert(Idx < Ops.size());
604    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
605      // We found two constants, fold them together!
606      Constant *Fold = ConstantInt::get(LHSC->getValue()->getValue() +
607                                        RHSC->getValue()->getValue());
608      if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
609        Ops[0] = SCEVConstant::get(CI);
610        Ops.erase(Ops.begin()+1);  // Erase the folded element
611        if (Ops.size() == 1) return Ops[0];
612        LHSC = cast<SCEVConstant>(Ops[0]);
613      } else {
614        // If we couldn't fold the expression, move to the next constant.  Note
615        // that this is impossible to happen in practice because we always
616        // constant fold constant ints to constant ints.
617        ++Idx;
618      }
619    }
620
621    // If we are left with a constant zero being added, strip it off.
622    if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
623      Ops.erase(Ops.begin());
624      --Idx;
625    }
626  }
627
628  if (Ops.size() == 1) return Ops[0];
629
630  // Okay, check to see if the same value occurs in the operand list twice.  If
631  // so, merge them together into an multiply expression.  Since we sorted the
632  // list, these values are required to be adjacent.
633  const Type *Ty = Ops[0]->getType();
634  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
635    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
636      // Found a match, merge the two values into a multiply, and add any
637      // remaining values to the result.
638      SCEVHandle Two = SCEVUnknown::getIntegerSCEV(2, Ty);
639      SCEVHandle Mul = SCEVMulExpr::get(Ops[i], Two);
640      if (Ops.size() == 2)
641        return Mul;
642      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
643      Ops.push_back(Mul);
644      return SCEVAddExpr::get(Ops);
645    }
646
647  // Okay, now we know the first non-constant operand.  If there are add
648  // operands they would be next.
649  if (Idx < Ops.size()) {
650    bool DeletedAdd = false;
651    while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
652      // If we have an add, expand the add operands onto the end of the operands
653      // list.
654      Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
655      Ops.erase(Ops.begin()+Idx);
656      DeletedAdd = true;
657    }
658
659    // If we deleted at least one add, we added operands to the end of the list,
660    // and they are not necessarily sorted.  Recurse to resort and resimplify
661    // any operands we just aquired.
662    if (DeletedAdd)
663      return get(Ops);
664  }
665
666  // Skip over the add expression until we get to a multiply.
667  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
668    ++Idx;
669
670  // If we are adding something to a multiply expression, make sure the
671  // something is not already an operand of the multiply.  If so, merge it into
672  // the multiply.
673  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
674    SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
675    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
676      SCEV *MulOpSCEV = Mul->getOperand(MulOp);
677      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
678        if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
679          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
680          SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
681          if (Mul->getNumOperands() != 2) {
682            // If the multiply has more than two operands, we must get the
683            // Y*Z term.
684            std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
685            MulOps.erase(MulOps.begin()+MulOp);
686            InnerMul = SCEVMulExpr::get(MulOps);
687          }
688          SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, Ty);
689          SCEVHandle AddOne = SCEVAddExpr::get(InnerMul, One);
690          SCEVHandle OuterMul = SCEVMulExpr::get(AddOne, Ops[AddOp]);
691          if (Ops.size() == 2) return OuterMul;
692          if (AddOp < Idx) {
693            Ops.erase(Ops.begin()+AddOp);
694            Ops.erase(Ops.begin()+Idx-1);
695          } else {
696            Ops.erase(Ops.begin()+Idx);
697            Ops.erase(Ops.begin()+AddOp-1);
698          }
699          Ops.push_back(OuterMul);
700          return SCEVAddExpr::get(Ops);
701        }
702
703      // Check this multiply against other multiplies being added together.
704      for (unsigned OtherMulIdx = Idx+1;
705           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
706           ++OtherMulIdx) {
707        SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
708        // If MulOp occurs in OtherMul, we can fold the two multiplies
709        // together.
710        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
711             OMulOp != e; ++OMulOp)
712          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
713            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
714            SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
715            if (Mul->getNumOperands() != 2) {
716              std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
717              MulOps.erase(MulOps.begin()+MulOp);
718              InnerMul1 = SCEVMulExpr::get(MulOps);
719            }
720            SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
721            if (OtherMul->getNumOperands() != 2) {
722              std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
723                                             OtherMul->op_end());
724              MulOps.erase(MulOps.begin()+OMulOp);
725              InnerMul2 = SCEVMulExpr::get(MulOps);
726            }
727            SCEVHandle InnerMulSum = SCEVAddExpr::get(InnerMul1,InnerMul2);
728            SCEVHandle OuterMul = SCEVMulExpr::get(MulOpSCEV, InnerMulSum);
729            if (Ops.size() == 2) return OuterMul;
730            Ops.erase(Ops.begin()+Idx);
731            Ops.erase(Ops.begin()+OtherMulIdx-1);
732            Ops.push_back(OuterMul);
733            return SCEVAddExpr::get(Ops);
734          }
735      }
736    }
737  }
738
739  // If there are any add recurrences in the operands list, see if any other
740  // added values are loop invariant.  If so, we can fold them into the
741  // recurrence.
742  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
743    ++Idx;
744
745  // Scan over all recurrences, trying to fold loop invariants into them.
746  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
747    // Scan all of the other operands to this add and add them to the vector if
748    // they are loop invariant w.r.t. the recurrence.
749    std::vector<SCEVHandle> LIOps;
750    SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
751    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
752      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
753        LIOps.push_back(Ops[i]);
754        Ops.erase(Ops.begin()+i);
755        --i; --e;
756      }
757
758    // If we found some loop invariants, fold them into the recurrence.
759    if (!LIOps.empty()) {
760      //  NLI + LI + { Start,+,Step}  -->  NLI + { LI+Start,+,Step }
761      LIOps.push_back(AddRec->getStart());
762
763      std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
764      AddRecOps[0] = SCEVAddExpr::get(LIOps);
765
766      SCEVHandle NewRec = SCEVAddRecExpr::get(AddRecOps, AddRec->getLoop());
767      // If all of the other operands were loop invariant, we are done.
768      if (Ops.size() == 1) return NewRec;
769
770      // Otherwise, add the folded AddRec by the non-liv parts.
771      for (unsigned i = 0;; ++i)
772        if (Ops[i] == AddRec) {
773          Ops[i] = NewRec;
774          break;
775        }
776      return SCEVAddExpr::get(Ops);
777    }
778
779    // Okay, if there weren't any loop invariants to be folded, check to see if
780    // there are multiple AddRec's with the same loop induction variable being
781    // added together.  If so, we can fold them.
782    for (unsigned OtherIdx = Idx+1;
783         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
784      if (OtherIdx != Idx) {
785        SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
786        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
787          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
788          std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
789          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
790            if (i >= NewOps.size()) {
791              NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
792                            OtherAddRec->op_end());
793              break;
794            }
795            NewOps[i] = SCEVAddExpr::get(NewOps[i], OtherAddRec->getOperand(i));
796          }
797          SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
798
799          if (Ops.size() == 2) return NewAddRec;
800
801          Ops.erase(Ops.begin()+Idx);
802          Ops.erase(Ops.begin()+OtherIdx-1);
803          Ops.push_back(NewAddRec);
804          return SCEVAddExpr::get(Ops);
805        }
806      }
807
808    // Otherwise couldn't fold anything into this recurrence.  Move onto the
809    // next one.
810  }
811
812  // Okay, it looks like we really DO need an add expr.  Check to see if we
813  // already have one, otherwise create a new one.
814  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
815  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
816                                                                 SCEVOps)];
817  if (Result == 0) Result = new SCEVAddExpr(Ops);
818  return Result;
819}
820
821
822SCEVHandle SCEVMulExpr::get(std::vector<SCEVHandle> &Ops) {
823  assert(!Ops.empty() && "Cannot get empty mul!");
824
825  // Sort by complexity, this groups all similar expression types together.
826  GroupByComplexity(Ops);
827
828  // If there are any constants, fold them together.
829  unsigned Idx = 0;
830  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
831
832    // C1*(C2+V) -> C1*C2 + C1*V
833    if (Ops.size() == 2)
834      if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
835        if (Add->getNumOperands() == 2 &&
836            isa<SCEVConstant>(Add->getOperand(0)))
837          return SCEVAddExpr::get(SCEVMulExpr::get(LHSC, Add->getOperand(0)),
838                                  SCEVMulExpr::get(LHSC, Add->getOperand(1)));
839
840
841    ++Idx;
842    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
843      // We found two constants, fold them together!
844      Constant *Fold = ConstantInt::get(LHSC->getValue()->getValue() *
845                                        RHSC->getValue()->getValue());
846      if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
847        Ops[0] = SCEVConstant::get(CI);
848        Ops.erase(Ops.begin()+1);  // Erase the folded element
849        if (Ops.size() == 1) return Ops[0];
850        LHSC = cast<SCEVConstant>(Ops[0]);
851      } else {
852        // If we couldn't fold the expression, move to the next constant.  Note
853        // that this is impossible to happen in practice because we always
854        // constant fold constant ints to constant ints.
855        ++Idx;
856      }
857    }
858
859    // If we are left with a constant one being multiplied, strip it off.
860    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
861      Ops.erase(Ops.begin());
862      --Idx;
863    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
864      // If we have a multiply of zero, it will always be zero.
865      return Ops[0];
866    }
867  }
868
869  // Skip over the add expression until we get to a multiply.
870  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
871    ++Idx;
872
873  if (Ops.size() == 1)
874    return Ops[0];
875
876  // If there are mul operands inline them all into this expression.
877  if (Idx < Ops.size()) {
878    bool DeletedMul = false;
879    while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
880      // If we have an mul, expand the mul operands onto the end of the operands
881      // list.
882      Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
883      Ops.erase(Ops.begin()+Idx);
884      DeletedMul = true;
885    }
886
887    // If we deleted at least one mul, we added operands to the end of the list,
888    // and they are not necessarily sorted.  Recurse to resort and resimplify
889    // any operands we just aquired.
890    if (DeletedMul)
891      return get(Ops);
892  }
893
894  // If there are any add recurrences in the operands list, see if any other
895  // added values are loop invariant.  If so, we can fold them into the
896  // recurrence.
897  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
898    ++Idx;
899
900  // Scan over all recurrences, trying to fold loop invariants into them.
901  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
902    // Scan all of the other operands to this mul and add them to the vector if
903    // they are loop invariant w.r.t. the recurrence.
904    std::vector<SCEVHandle> LIOps;
905    SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
906    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
907      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
908        LIOps.push_back(Ops[i]);
909        Ops.erase(Ops.begin()+i);
910        --i; --e;
911      }
912
913    // If we found some loop invariants, fold them into the recurrence.
914    if (!LIOps.empty()) {
915      //  NLI * LI * { Start,+,Step}  -->  NLI * { LI*Start,+,LI*Step }
916      std::vector<SCEVHandle> NewOps;
917      NewOps.reserve(AddRec->getNumOperands());
918      if (LIOps.size() == 1) {
919        SCEV *Scale = LIOps[0];
920        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
921          NewOps.push_back(SCEVMulExpr::get(Scale, AddRec->getOperand(i)));
922      } else {
923        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
924          std::vector<SCEVHandle> MulOps(LIOps);
925          MulOps.push_back(AddRec->getOperand(i));
926          NewOps.push_back(SCEVMulExpr::get(MulOps));
927        }
928      }
929
930      SCEVHandle NewRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
931
932      // If all of the other operands were loop invariant, we are done.
933      if (Ops.size() == 1) return NewRec;
934
935      // Otherwise, multiply the folded AddRec by the non-liv parts.
936      for (unsigned i = 0;; ++i)
937        if (Ops[i] == AddRec) {
938          Ops[i] = NewRec;
939          break;
940        }
941      return SCEVMulExpr::get(Ops);
942    }
943
944    // Okay, if there weren't any loop invariants to be folded, check to see if
945    // there are multiple AddRec's with the same loop induction variable being
946    // multiplied together.  If so, we can fold them.
947    for (unsigned OtherIdx = Idx+1;
948         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
949      if (OtherIdx != Idx) {
950        SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
951        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
952          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
953          SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
954          SCEVHandle NewStart = SCEVMulExpr::get(F->getStart(),
955                                                 G->getStart());
956          SCEVHandle B = F->getStepRecurrence();
957          SCEVHandle D = G->getStepRecurrence();
958          SCEVHandle NewStep = SCEVAddExpr::get(SCEVMulExpr::get(F, D),
959                                                SCEVMulExpr::get(G, B),
960                                                SCEVMulExpr::get(B, D));
961          SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewStart, NewStep,
962                                                     F->getLoop());
963          if (Ops.size() == 2) return NewAddRec;
964
965          Ops.erase(Ops.begin()+Idx);
966          Ops.erase(Ops.begin()+OtherIdx-1);
967          Ops.push_back(NewAddRec);
968          return SCEVMulExpr::get(Ops);
969        }
970      }
971
972    // Otherwise couldn't fold anything into this recurrence.  Move onto the
973    // next one.
974  }
975
976  // Okay, it looks like we really DO need an mul expr.  Check to see if we
977  // already have one, otherwise create a new one.
978  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
979  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
980                                                                 SCEVOps)];
981  if (Result == 0)
982    Result = new SCEVMulExpr(Ops);
983  return Result;
984}
985
986SCEVHandle SCEVSDivExpr::get(const SCEVHandle &LHS, const SCEVHandle &RHS) {
987  if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
988    if (RHSC->getValue()->equalsInt(1))
989      return LHS;                            // X sdiv 1 --> x
990    if (RHSC->getValue()->isAllOnesValue())
991      return SCEV::getNegativeSCEV(LHS);           // X sdiv -1  -->  -x
992
993    if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
994      Constant *LHSCV = LHSC->getValue();
995      Constant *RHSCV = RHSC->getValue();
996      return SCEVUnknown::get(ConstantExpr::getSDiv(LHSCV, RHSCV));
997    }
998  }
999
1000  // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
1001
1002  SCEVSDivExpr *&Result = (*SCEVSDivs)[std::make_pair(LHS, RHS)];
1003  if (Result == 0) Result = new SCEVSDivExpr(LHS, RHS);
1004  return Result;
1005}
1006
1007
1008/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1009/// specified loop.  Simplify the expression as much as possible.
1010SCEVHandle SCEVAddRecExpr::get(const SCEVHandle &Start,
1011                               const SCEVHandle &Step, const Loop *L) {
1012  std::vector<SCEVHandle> Operands;
1013  Operands.push_back(Start);
1014  if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1015    if (StepChrec->getLoop() == L) {
1016      Operands.insert(Operands.end(), StepChrec->op_begin(),
1017                      StepChrec->op_end());
1018      return get(Operands, L);
1019    }
1020
1021  Operands.push_back(Step);
1022  return get(Operands, L);
1023}
1024
1025/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1026/// specified loop.  Simplify the expression as much as possible.
1027SCEVHandle SCEVAddRecExpr::get(std::vector<SCEVHandle> &Operands,
1028                               const Loop *L) {
1029  if (Operands.size() == 1) return Operands[0];
1030
1031  if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Operands.back()))
1032    if (StepC->getValue()->isZero()) {
1033      Operands.pop_back();
1034      return get(Operands, L);             // { X,+,0 }  -->  X
1035    }
1036
1037  SCEVAddRecExpr *&Result =
1038    (*SCEVAddRecExprs)[std::make_pair(L, std::vector<SCEV*>(Operands.begin(),
1039                                                            Operands.end()))];
1040  if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1041  return Result;
1042}
1043
1044SCEVHandle SCEVUnknown::get(Value *V) {
1045  if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
1046    return SCEVConstant::get(CI);
1047  SCEVUnknown *&Result = (*SCEVUnknowns)[V];
1048  if (Result == 0) Result = new SCEVUnknown(V);
1049  return Result;
1050}
1051
1052
1053//===----------------------------------------------------------------------===//
1054//             ScalarEvolutionsImpl Definition and Implementation
1055//===----------------------------------------------------------------------===//
1056//
1057/// ScalarEvolutionsImpl - This class implements the main driver for the scalar
1058/// evolution code.
1059///
1060namespace {
1061  struct VISIBILITY_HIDDEN ScalarEvolutionsImpl {
1062    /// F - The function we are analyzing.
1063    ///
1064    Function &F;
1065
1066    /// LI - The loop information for the function we are currently analyzing.
1067    ///
1068    LoopInfo &LI;
1069
1070    /// UnknownValue - This SCEV is used to represent unknown trip counts and
1071    /// things.
1072    SCEVHandle UnknownValue;
1073
1074    /// Scalars - This is a cache of the scalars we have analyzed so far.
1075    ///
1076    std::map<Value*, SCEVHandle> Scalars;
1077
1078    /// IterationCounts - Cache the iteration count of the loops for this
1079    /// function as they are computed.
1080    std::map<const Loop*, SCEVHandle> IterationCounts;
1081
1082    /// ConstantEvolutionLoopExitValue - This map contains entries for all of
1083    /// the PHI instructions that we attempt to compute constant evolutions for.
1084    /// This allows us to avoid potentially expensive recomputation of these
1085    /// properties.  An instruction maps to null if we are unable to compute its
1086    /// exit value.
1087    std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
1088
1089  public:
1090    ScalarEvolutionsImpl(Function &f, LoopInfo &li)
1091      : F(f), LI(li), UnknownValue(new SCEVCouldNotCompute()) {}
1092
1093    /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1094    /// expression and create a new one.
1095    SCEVHandle getSCEV(Value *V);
1096
1097    /// hasSCEV - Return true if the SCEV for this value has already been
1098    /// computed.
1099    bool hasSCEV(Value *V) const {
1100      return Scalars.count(V);
1101    }
1102
1103    /// setSCEV - Insert the specified SCEV into the map of current SCEVs for
1104    /// the specified value.
1105    void setSCEV(Value *V, const SCEVHandle &H) {
1106      bool isNew = Scalars.insert(std::make_pair(V, H)).second;
1107      assert(isNew && "This entry already existed!");
1108    }
1109
1110
1111    /// getSCEVAtScope - Compute the value of the specified expression within
1112    /// the indicated loop (which may be null to indicate in no loop).  If the
1113    /// expression cannot be evaluated, return UnknownValue itself.
1114    SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L);
1115
1116
1117    /// hasLoopInvariantIterationCount - Return true if the specified loop has
1118    /// an analyzable loop-invariant iteration count.
1119    bool hasLoopInvariantIterationCount(const Loop *L);
1120
1121    /// getIterationCount - If the specified loop has a predictable iteration
1122    /// count, return it.  Note that it is not valid to call this method on a
1123    /// loop without a loop-invariant iteration count.
1124    SCEVHandle getIterationCount(const Loop *L);
1125
1126    /// deleteInstructionFromRecords - This method should be called by the
1127    /// client before it removes an instruction from the program, to make sure
1128    /// that no dangling references are left around.
1129    void deleteInstructionFromRecords(Instruction *I);
1130
1131  private:
1132    /// createSCEV - We know that there is no SCEV for the specified value.
1133    /// Analyze the expression.
1134    SCEVHandle createSCEV(Value *V);
1135
1136    /// createNodeForPHI - Provide the special handling we need to analyze PHI
1137    /// SCEVs.
1138    SCEVHandle createNodeForPHI(PHINode *PN);
1139
1140    /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value
1141    /// for the specified instruction and replaces any references to the
1142    /// symbolic value SymName with the specified value.  This is used during
1143    /// PHI resolution.
1144    void ReplaceSymbolicValueWithConcrete(Instruction *I,
1145                                          const SCEVHandle &SymName,
1146                                          const SCEVHandle &NewVal);
1147
1148    /// ComputeIterationCount - Compute the number of times the specified loop
1149    /// will iterate.
1150    SCEVHandle ComputeIterationCount(const Loop *L);
1151
1152    /// ComputeLoadConstantCompareIterationCount - Given an exit condition of
1153    /// 'setcc load X, cst', try to see if we can compute the trip count.
1154    SCEVHandle ComputeLoadConstantCompareIterationCount(LoadInst *LI,
1155                                                        Constant *RHS,
1156                                                        const Loop *L,
1157                                                        ICmpInst::Predicate p);
1158
1159    /// ComputeIterationCountExhaustively - If the trip is known to execute a
1160    /// constant number of times (the condition evolves only from constants),
1161    /// try to evaluate a few iterations of the loop until we get the exit
1162    /// condition gets a value of ExitWhen (true or false).  If we cannot
1163    /// evaluate the trip count of the loop, return UnknownValue.
1164    SCEVHandle ComputeIterationCountExhaustively(const Loop *L, Value *Cond,
1165                                                 bool ExitWhen);
1166
1167    /// HowFarToZero - Return the number of times a backedge comparing the
1168    /// specified value to zero will execute.  If not computable, return
1169    /// UnknownValue.
1170    SCEVHandle HowFarToZero(SCEV *V, const Loop *L);
1171
1172    /// HowFarToNonZero - Return the number of times a backedge checking the
1173    /// specified value for nonzero will execute.  If not computable, return
1174    /// UnknownValue.
1175    SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L);
1176
1177    /// HowManyLessThans - Return the number of times a backedge containing the
1178    /// specified less-than comparison will execute.  If not computable, return
1179    /// UnknownValue.
1180    SCEVHandle HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L);
1181
1182    /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1183    /// in the header of its containing loop, we know the loop executes a
1184    /// constant number of times, and the PHI node is just a recurrence
1185    /// involving constants, fold it.
1186    Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its,
1187                                                const Loop *L);
1188  };
1189}
1190
1191//===----------------------------------------------------------------------===//
1192//            Basic SCEV Analysis and PHI Idiom Recognition Code
1193//
1194
1195/// deleteInstructionFromRecords - This method should be called by the
1196/// client before it removes an instruction from the program, to make sure
1197/// that no dangling references are left around.
1198void ScalarEvolutionsImpl::deleteInstructionFromRecords(Instruction *I) {
1199  Scalars.erase(I);
1200  if (PHINode *PN = dyn_cast<PHINode>(I))
1201    ConstantEvolutionLoopExitValue.erase(PN);
1202}
1203
1204
1205/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1206/// expression and create a new one.
1207SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) {
1208  assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!");
1209
1210  std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V);
1211  if (I != Scalars.end()) return I->second;
1212  SCEVHandle S = createSCEV(V);
1213  Scalars.insert(std::make_pair(V, S));
1214  return S;
1215}
1216
1217/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1218/// the specified instruction and replaces any references to the symbolic value
1219/// SymName with the specified value.  This is used during PHI resolution.
1220void ScalarEvolutionsImpl::
1221ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1222                                 const SCEVHandle &NewVal) {
1223  std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I);
1224  if (SI == Scalars.end()) return;
1225
1226  SCEVHandle NV =
1227    SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal);
1228  if (NV == SI->second) return;  // No change.
1229
1230  SI->second = NV;       // Update the scalars map!
1231
1232  // Any instruction values that use this instruction might also need to be
1233  // updated!
1234  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1235       UI != E; ++UI)
1236    ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1237}
1238
1239/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
1240/// a loop header, making it a potential recurrence, or it doesn't.
1241///
1242SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) {
1243  if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
1244    if (const Loop *L = LI.getLoopFor(PN->getParent()))
1245      if (L->getHeader() == PN->getParent()) {
1246        // If it lives in the loop header, it has two incoming values, one
1247        // from outside the loop, and one from inside.
1248        unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1249        unsigned BackEdge     = IncomingEdge^1;
1250
1251        // While we are analyzing this PHI node, handle its value symbolically.
1252        SCEVHandle SymbolicName = SCEVUnknown::get(PN);
1253        assert(Scalars.find(PN) == Scalars.end() &&
1254               "PHI node already processed?");
1255        Scalars.insert(std::make_pair(PN, SymbolicName));
1256
1257        // Using this symbolic name for the PHI, analyze the value coming around
1258        // the back-edge.
1259        SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1260
1261        // NOTE: If BEValue is loop invariant, we know that the PHI node just
1262        // has a special value for the first iteration of the loop.
1263
1264        // If the value coming around the backedge is an add with the symbolic
1265        // value we just inserted, then we found a simple induction variable!
1266        if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
1267          // If there is a single occurrence of the symbolic value, replace it
1268          // with a recurrence.
1269          unsigned FoundIndex = Add->getNumOperands();
1270          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1271            if (Add->getOperand(i) == SymbolicName)
1272              if (FoundIndex == e) {
1273                FoundIndex = i;
1274                break;
1275              }
1276
1277          if (FoundIndex != Add->getNumOperands()) {
1278            // Create an add with everything but the specified operand.
1279            std::vector<SCEVHandle> Ops;
1280            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1281              if (i != FoundIndex)
1282                Ops.push_back(Add->getOperand(i));
1283            SCEVHandle Accum = SCEVAddExpr::get(Ops);
1284
1285            // This is not a valid addrec if the step amount is varying each
1286            // loop iteration, but is not itself an addrec in this loop.
1287            if (Accum->isLoopInvariant(L) ||
1288                (isa<SCEVAddRecExpr>(Accum) &&
1289                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1290              SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1291              SCEVHandle PHISCEV  = SCEVAddRecExpr::get(StartVal, Accum, L);
1292
1293              // Okay, for the entire analysis of this edge we assumed the PHI
1294              // to be symbolic.  We now need to go back and update all of the
1295              // entries for the scalars that use the PHI (except for the PHI
1296              // itself) to use the new analyzed value instead of the "symbolic"
1297              // value.
1298              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1299              return PHISCEV;
1300            }
1301          }
1302        } else if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) {
1303          // Otherwise, this could be a loop like this:
1304          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
1305          // In this case, j = {1,+,1}  and BEValue is j.
1306          // Because the other in-value of i (0) fits the evolution of BEValue
1307          // i really is an addrec evolution.
1308          if (AddRec->getLoop() == L && AddRec->isAffine()) {
1309            SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1310
1311            // If StartVal = j.start - j.stride, we can use StartVal as the
1312            // initial step of the addrec evolution.
1313            if (StartVal == SCEV::getMinusSCEV(AddRec->getOperand(0),
1314                                               AddRec->getOperand(1))) {
1315              SCEVHandle PHISCEV =
1316                 SCEVAddRecExpr::get(StartVal, AddRec->getOperand(1), L);
1317
1318              // Okay, for the entire analysis of this edge we assumed the PHI
1319              // to be symbolic.  We now need to go back and update all of the
1320              // entries for the scalars that use the PHI (except for the PHI
1321              // itself) to use the new analyzed value instead of the "symbolic"
1322              // value.
1323              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1324              return PHISCEV;
1325            }
1326          }
1327        }
1328
1329        return SymbolicName;
1330      }
1331
1332  // If it's not a loop phi, we can't handle it yet.
1333  return SCEVUnknown::get(PN);
1334}
1335
1336/// GetConstantFactor - Determine the largest constant factor that S has.  For
1337/// example, turn {4,+,8} -> 4.    (S umod result) should always equal zero.
1338static APInt GetConstantFactor(SCEVHandle S) {
1339  if (SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
1340    const APInt& V = C->getValue()->getValue();
1341    if (!V.isMinValue())
1342      return V;
1343    else   // Zero is a multiple of everything.
1344      return APInt(C->getBitWidth(), 1).shl(C->getBitWidth()-1);
1345  }
1346
1347  if (SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) {
1348    return GetConstantFactor(T->getOperand()).trunc(
1349                               cast<IntegerType>(T->getType())->getBitWidth());
1350  }
1351  if (SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S))
1352    return GetConstantFactor(E->getOperand()).zext(
1353                               cast<IntegerType>(E->getType())->getBitWidth());
1354
1355  if (SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
1356    // The result is the min of all operands.
1357    APInt Res(GetConstantFactor(A->getOperand(0)));
1358    for (unsigned i = 1, e = A->getNumOperands();
1359         i != e && Res.ugt(APInt(Res.getBitWidth(),1)); ++i) {
1360      APInt Tmp(GetConstantFactor(A->getOperand(i)));
1361      Res = APIntOps::umin(Res, Tmp);
1362    }
1363    return Res;
1364  }
1365
1366  if (SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
1367    // The result is the product of all the operands.
1368    APInt Res(GetConstantFactor(M->getOperand(0)));
1369    for (unsigned i = 1, e = M->getNumOperands(); i != e; ++i) {
1370      APInt Tmp(GetConstantFactor(M->getOperand(i)));
1371      Res *= Tmp;
1372    }
1373    return Res;
1374  }
1375
1376  if (SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
1377    // For now, we just handle linear expressions.
1378    if (A->getNumOperands() == 2) {
1379      // We want the GCD between the start and the stride value.
1380      APInt Start(GetConstantFactor(A->getOperand(0)));
1381      if (Start == 1)
1382        return Start;
1383      APInt Stride(GetConstantFactor(A->getOperand(1)));
1384      return APIntOps::GreatestCommonDivisor(Start, Stride);
1385    }
1386  }
1387
1388  // SCEVSDivExpr, SCEVUnknown.
1389  return APInt(S->getBitWidth(), 1);
1390}
1391
1392/// createSCEV - We know that there is no SCEV for the specified value.
1393/// Analyze the expression.
1394///
1395SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) {
1396  if (Instruction *I = dyn_cast<Instruction>(V)) {
1397    switch (I->getOpcode()) {
1398    case Instruction::Add:
1399      return SCEVAddExpr::get(getSCEV(I->getOperand(0)),
1400                              getSCEV(I->getOperand(1)));
1401    case Instruction::Mul:
1402      return SCEVMulExpr::get(getSCEV(I->getOperand(0)),
1403                              getSCEV(I->getOperand(1)));
1404    case Instruction::SDiv:
1405      return SCEVSDivExpr::get(getSCEV(I->getOperand(0)),
1406                              getSCEV(I->getOperand(1)));
1407      break;
1408
1409    case Instruction::Sub:
1410      return SCEV::getMinusSCEV(getSCEV(I->getOperand(0)),
1411                                getSCEV(I->getOperand(1)));
1412    case Instruction::Or:
1413      // If the RHS of the Or is a constant, we may have something like:
1414      // X*4+1 which got turned into X*4|1.  Handle this as an add so loop
1415      // optimizations will transparently handle this case.
1416      if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
1417        SCEVHandle LHS = getSCEV(I->getOperand(0));
1418        APInt CommonFact(GetConstantFactor(LHS));
1419        assert(!CommonFact.isMinValue() &&
1420               "Common factor should at least be 1!");
1421        if (CommonFact.ugt(CI->getValue())) {
1422          // If the LHS is a multiple that is larger than the RHS, use +.
1423          return SCEVAddExpr::get(LHS,
1424                                  getSCEV(I->getOperand(1)));
1425        }
1426      }
1427      break;
1428    case Instruction::Xor:
1429      // If the RHS of the xor is a signbit, then this is just an add.
1430      // Instcombine turns add of signbit into xor as a strength reduction step.
1431      if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
1432        if (CI->getValue().isSignBit())
1433          return SCEVAddExpr::get(getSCEV(I->getOperand(0)),
1434                                  getSCEV(I->getOperand(1)));
1435      }
1436      break;
1437
1438    case Instruction::Shl:
1439      // Turn shift left of a constant amount into a multiply.
1440      if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1441        uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
1442        Constant *X = ConstantInt::get(
1443          APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
1444        return SCEVMulExpr::get(getSCEV(I->getOperand(0)), getSCEV(X));
1445      }
1446      break;
1447
1448    case Instruction::Trunc:
1449      return SCEVTruncateExpr::get(getSCEV(I->getOperand(0)), I->getType());
1450
1451    case Instruction::ZExt:
1452      return SCEVZeroExtendExpr::get(getSCEV(I->getOperand(0)), I->getType());
1453
1454    case Instruction::BitCast:
1455      // BitCasts are no-op casts so we just eliminate the cast.
1456      if (I->getType()->isInteger() &&
1457          I->getOperand(0)->getType()->isInteger())
1458        return getSCEV(I->getOperand(0));
1459      break;
1460
1461    case Instruction::PHI:
1462      return createNodeForPHI(cast<PHINode>(I));
1463
1464    default: // We cannot analyze this expression.
1465      break;
1466    }
1467  }
1468
1469  return SCEVUnknown::get(V);
1470}
1471
1472
1473
1474//===----------------------------------------------------------------------===//
1475//                   Iteration Count Computation Code
1476//
1477
1478/// getIterationCount - If the specified loop has a predictable iteration
1479/// count, return it.  Note that it is not valid to call this method on a
1480/// loop without a loop-invariant iteration count.
1481SCEVHandle ScalarEvolutionsImpl::getIterationCount(const Loop *L) {
1482  std::map<const Loop*, SCEVHandle>::iterator I = IterationCounts.find(L);
1483  if (I == IterationCounts.end()) {
1484    SCEVHandle ItCount = ComputeIterationCount(L);
1485    I = IterationCounts.insert(std::make_pair(L, ItCount)).first;
1486    if (ItCount != UnknownValue) {
1487      assert(ItCount->isLoopInvariant(L) &&
1488             "Computed trip count isn't loop invariant for loop!");
1489      ++NumTripCountsComputed;
1490    } else if (isa<PHINode>(L->getHeader()->begin())) {
1491      // Only count loops that have phi nodes as not being computable.
1492      ++NumTripCountsNotComputed;
1493    }
1494  }
1495  return I->second;
1496}
1497
1498/// ComputeIterationCount - Compute the number of times the specified loop
1499/// will iterate.
1500SCEVHandle ScalarEvolutionsImpl::ComputeIterationCount(const Loop *L) {
1501  // If the loop has a non-one exit block count, we can't analyze it.
1502  std::vector<BasicBlock*> ExitBlocks;
1503  L->getExitBlocks(ExitBlocks);
1504  if (ExitBlocks.size() != 1) return UnknownValue;
1505
1506  // Okay, there is one exit block.  Try to find the condition that causes the
1507  // loop to be exited.
1508  BasicBlock *ExitBlock = ExitBlocks[0];
1509
1510  BasicBlock *ExitingBlock = 0;
1511  for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
1512       PI != E; ++PI)
1513    if (L->contains(*PI)) {
1514      if (ExitingBlock == 0)
1515        ExitingBlock = *PI;
1516      else
1517        return UnknownValue;   // More than one block exiting!
1518    }
1519  assert(ExitingBlock && "No exits from loop, something is broken!");
1520
1521  // Okay, we've computed the exiting block.  See what condition causes us to
1522  // exit.
1523  //
1524  // FIXME: we should be able to handle switch instructions (with a single exit)
1525  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1526  if (ExitBr == 0) return UnknownValue;
1527  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
1528
1529  // At this point, we know we have a conditional branch that determines whether
1530  // the loop is exited.  However, we don't know if the branch is executed each
1531  // time through the loop.  If not, then the execution count of the branch will
1532  // not be equal to the trip count of the loop.
1533  //
1534  // Currently we check for this by checking to see if the Exit branch goes to
1535  // the loop header.  If so, we know it will always execute the same number of
1536  // times as the loop.  We also handle the case where the exit block *is* the
1537  // loop header.  This is common for un-rotated loops.  More extensive analysis
1538  // could be done to handle more cases here.
1539  if (ExitBr->getSuccessor(0) != L->getHeader() &&
1540      ExitBr->getSuccessor(1) != L->getHeader() &&
1541      ExitBr->getParent() != L->getHeader())
1542    return UnknownValue;
1543
1544  ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition());
1545
1546  // If its not an integer comparison then compute it the hard way.
1547  // Note that ICmpInst deals with pointer comparisons too so we must check
1548  // the type of the operand.
1549  if (ExitCond == 0 || isa<PointerType>(ExitCond->getOperand(0)->getType()))
1550    return ComputeIterationCountExhaustively(L, ExitBr->getCondition(),
1551                                          ExitBr->getSuccessor(0) == ExitBlock);
1552
1553  // If the condition was exit on true, convert the condition to exit on false
1554  ICmpInst::Predicate Cond;
1555  if (ExitBr->getSuccessor(1) == ExitBlock)
1556    Cond = ExitCond->getPredicate();
1557  else
1558    Cond = ExitCond->getInversePredicate();
1559
1560  // Handle common loops like: for (X = "string"; *X; ++X)
1561  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
1562    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
1563      SCEVHandle ItCnt =
1564        ComputeLoadConstantCompareIterationCount(LI, RHS, L, Cond);
1565      if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
1566    }
1567
1568  SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
1569  SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
1570
1571  // Try to evaluate any dependencies out of the loop.
1572  SCEVHandle Tmp = getSCEVAtScope(LHS, L);
1573  if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
1574  Tmp = getSCEVAtScope(RHS, L);
1575  if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
1576
1577  // At this point, we would like to compute how many iterations of the
1578  // loop the predicate will return true for these inputs.
1579  if (isa<SCEVConstant>(LHS) && !isa<SCEVConstant>(RHS)) {
1580    // If there is a constant, force it into the RHS.
1581    std::swap(LHS, RHS);
1582    Cond = ICmpInst::getSwappedPredicate(Cond);
1583  }
1584
1585  // FIXME: think about handling pointer comparisons!  i.e.:
1586  // while (P != P+100) ++P;
1587
1588  // If we have a comparison of a chrec against a constant, try to use value
1589  // ranges to answer this query.
1590  if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
1591    if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
1592      if (AddRec->getLoop() == L) {
1593        // Form the comparison range using the constant of the correct type so
1594        // that the ConstantRange class knows to do a signed or unsigned
1595        // comparison.
1596        ConstantInt *CompVal = RHSC->getValue();
1597        const Type *RealTy = ExitCond->getOperand(0)->getType();
1598        CompVal = dyn_cast<ConstantInt>(
1599          ConstantExpr::getBitCast(CompVal, RealTy));
1600        if (CompVal) {
1601          // Form the constant range.
1602          ConstantRange CompRange(
1603              ICmpInst::makeConstantRange(Cond, CompVal->getValue()));
1604
1605          SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange,
1606              false /*Always treat as unsigned range*/);
1607          if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
1608        }
1609      }
1610
1611  switch (Cond) {
1612  case ICmpInst::ICMP_NE: {                     // while (X != Y)
1613    // Convert to: while (X-Y != 0)
1614    SCEVHandle TC = HowFarToZero(SCEV::getMinusSCEV(LHS, RHS), L);
1615    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1616    break;
1617  }
1618  case ICmpInst::ICMP_EQ: {
1619    // Convert to: while (X-Y == 0)           // while (X == Y)
1620    SCEVHandle TC = HowFarToNonZero(SCEV::getMinusSCEV(LHS, RHS), L);
1621    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1622    break;
1623  }
1624  case ICmpInst::ICMP_SLT: {
1625    SCEVHandle TC = HowManyLessThans(LHS, RHS, L);
1626    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1627    break;
1628  }
1629  case ICmpInst::ICMP_SGT: {
1630    SCEVHandle TC = HowManyLessThans(RHS, LHS, L);
1631    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1632    break;
1633  }
1634  default:
1635#if 0
1636    cerr << "ComputeIterationCount ";
1637    if (ExitCond->getOperand(0)->getType()->isUnsigned())
1638      cerr << "[unsigned] ";
1639    cerr << *LHS << "   "
1640         << Instruction::getOpcodeName(Instruction::ICmp)
1641         << "   " << *RHS << "\n";
1642#endif
1643    break;
1644  }
1645  return ComputeIterationCountExhaustively(L, ExitCond,
1646                                       ExitBr->getSuccessor(0) == ExitBlock);
1647}
1648
1649static ConstantInt *
1650EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, Constant *C) {
1651  SCEVHandle InVal = SCEVConstant::get(cast<ConstantInt>(C));
1652  SCEVHandle Val = AddRec->evaluateAtIteration(InVal);
1653  assert(isa<SCEVConstant>(Val) &&
1654         "Evaluation of SCEV at constant didn't fold correctly?");
1655  return cast<SCEVConstant>(Val)->getValue();
1656}
1657
1658/// GetAddressedElementFromGlobal - Given a global variable with an initializer
1659/// and a GEP expression (missing the pointer index) indexing into it, return
1660/// the addressed element of the initializer or null if the index expression is
1661/// invalid.
1662static Constant *
1663GetAddressedElementFromGlobal(GlobalVariable *GV,
1664                              const std::vector<ConstantInt*> &Indices) {
1665  Constant *Init = GV->getInitializer();
1666  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1667    uint64_t Idx = Indices[i]->getZExtValue();
1668    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
1669      assert(Idx < CS->getNumOperands() && "Bad struct index!");
1670      Init = cast<Constant>(CS->getOperand(Idx));
1671    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
1672      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
1673      Init = cast<Constant>(CA->getOperand(Idx));
1674    } else if (isa<ConstantAggregateZero>(Init)) {
1675      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
1676        assert(Idx < STy->getNumElements() && "Bad struct index!");
1677        Init = Constant::getNullValue(STy->getElementType(Idx));
1678      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
1679        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
1680        Init = Constant::getNullValue(ATy->getElementType());
1681      } else {
1682        assert(0 && "Unknown constant aggregate type!");
1683      }
1684      return 0;
1685    } else {
1686      return 0; // Unknown initializer type
1687    }
1688  }
1689  return Init;
1690}
1691
1692/// ComputeLoadConstantCompareIterationCount - Given an exit condition of
1693/// 'setcc load X, cst', try to se if we can compute the trip count.
1694SCEVHandle ScalarEvolutionsImpl::
1695ComputeLoadConstantCompareIterationCount(LoadInst *LI, Constant *RHS,
1696                                         const Loop *L,
1697                                         ICmpInst::Predicate predicate) {
1698  if (LI->isVolatile()) return UnknownValue;
1699
1700  // Check to see if the loaded pointer is a getelementptr of a global.
1701  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
1702  if (!GEP) return UnknownValue;
1703
1704  // Make sure that it is really a constant global we are gepping, with an
1705  // initializer, and make sure the first IDX is really 0.
1706  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
1707  if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
1708      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
1709      !cast<Constant>(GEP->getOperand(1))->isNullValue())
1710    return UnknownValue;
1711
1712  // Okay, we allow one non-constant index into the GEP instruction.
1713  Value *VarIdx = 0;
1714  std::vector<ConstantInt*> Indexes;
1715  unsigned VarIdxNum = 0;
1716  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
1717    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
1718      Indexes.push_back(CI);
1719    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
1720      if (VarIdx) return UnknownValue;  // Multiple non-constant idx's.
1721      VarIdx = GEP->getOperand(i);
1722      VarIdxNum = i-2;
1723      Indexes.push_back(0);
1724    }
1725
1726  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
1727  // Check to see if X is a loop variant variable value now.
1728  SCEVHandle Idx = getSCEV(VarIdx);
1729  SCEVHandle Tmp = getSCEVAtScope(Idx, L);
1730  if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
1731
1732  // We can only recognize very limited forms of loop index expressions, in
1733  // particular, only affine AddRec's like {C1,+,C2}.
1734  SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
1735  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
1736      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
1737      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
1738    return UnknownValue;
1739
1740  unsigned MaxSteps = MaxBruteForceIterations;
1741  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
1742    ConstantInt *ItCst =
1743      ConstantInt::get(IdxExpr->getType(), IterationNum);
1744    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst);
1745
1746    // Form the GEP offset.
1747    Indexes[VarIdxNum] = Val;
1748
1749    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
1750    if (Result == 0) break;  // Cannot compute!
1751
1752    // Evaluate the condition for this iteration.
1753    Result = ConstantExpr::getICmp(predicate, Result, RHS);
1754    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
1755    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
1756#if 0
1757      cerr << "\n***\n*** Computed loop count " << *ItCst
1758           << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
1759           << "***\n";
1760#endif
1761      ++NumArrayLenItCounts;
1762      return SCEVConstant::get(ItCst);   // Found terminating iteration!
1763    }
1764  }
1765  return UnknownValue;
1766}
1767
1768
1769/// CanConstantFold - Return true if we can constant fold an instruction of the
1770/// specified type, assuming that all operands were constants.
1771static bool CanConstantFold(const Instruction *I) {
1772  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
1773      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
1774    return true;
1775
1776  if (const CallInst *CI = dyn_cast<CallInst>(I))
1777    if (const Function *F = CI->getCalledFunction())
1778      return canConstantFoldCallTo((Function*)F);  // FIXME: elim cast
1779  return false;
1780}
1781
1782/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
1783/// in the loop that V is derived from.  We allow arbitrary operations along the
1784/// way, but the operands of an operation must either be constants or a value
1785/// derived from a constant PHI.  If this expression does not fit with these
1786/// constraints, return null.
1787static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
1788  // If this is not an instruction, or if this is an instruction outside of the
1789  // loop, it can't be derived from a loop PHI.
1790  Instruction *I = dyn_cast<Instruction>(V);
1791  if (I == 0 || !L->contains(I->getParent())) return 0;
1792
1793  if (PHINode *PN = dyn_cast<PHINode>(I))
1794    if (L->getHeader() == I->getParent())
1795      return PN;
1796    else
1797      // We don't currently keep track of the control flow needed to evaluate
1798      // PHIs, so we cannot handle PHIs inside of loops.
1799      return 0;
1800
1801  // If we won't be able to constant fold this expression even if the operands
1802  // are constants, return early.
1803  if (!CanConstantFold(I)) return 0;
1804
1805  // Otherwise, we can evaluate this instruction if all of its operands are
1806  // constant or derived from a PHI node themselves.
1807  PHINode *PHI = 0;
1808  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
1809    if (!(isa<Constant>(I->getOperand(Op)) ||
1810          isa<GlobalValue>(I->getOperand(Op)))) {
1811      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
1812      if (P == 0) return 0;  // Not evolving from PHI
1813      if (PHI == 0)
1814        PHI = P;
1815      else if (PHI != P)
1816        return 0;  // Evolving from multiple different PHIs.
1817    }
1818
1819  // This is a expression evolving from a constant PHI!
1820  return PHI;
1821}
1822
1823/// EvaluateExpression - Given an expression that passes the
1824/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
1825/// in the loop has the value PHIVal.  If we can't fold this expression for some
1826/// reason, return null.
1827static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
1828  if (isa<PHINode>(V)) return PHIVal;
1829  if (GlobalValue *GV = dyn_cast<GlobalValue>(V))
1830    return GV;
1831  if (Constant *C = dyn_cast<Constant>(V)) return C;
1832  Instruction *I = cast<Instruction>(V);
1833
1834  std::vector<Constant*> Operands;
1835  Operands.resize(I->getNumOperands());
1836
1837  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
1838    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
1839    if (Operands[i] == 0) return 0;
1840  }
1841
1842  return ConstantFoldInstOperands(I, &Operands[0], Operands.size());
1843}
1844
1845/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1846/// in the header of its containing loop, we know the loop executes a
1847/// constant number of times, and the PHI node is just a recurrence
1848/// involving constants, fold it.
1849Constant *ScalarEvolutionsImpl::
1850getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its, const Loop *L){
1851  std::map<PHINode*, Constant*>::iterator I =
1852    ConstantEvolutionLoopExitValue.find(PN);
1853  if (I != ConstantEvolutionLoopExitValue.end())
1854    return I->second;
1855
1856  if (Its.ugt(APInt(Its.getBitWidth(),MaxBruteForceIterations)))
1857    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
1858
1859  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
1860
1861  // Since the loop is canonicalized, the PHI node must have two entries.  One
1862  // entry must be a constant (coming in from outside of the loop), and the
1863  // second must be derived from the same PHI.
1864  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
1865  Constant *StartCST =
1866    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
1867  if (StartCST == 0)
1868    return RetVal = 0;  // Must be a constant.
1869
1870  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
1871  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
1872  if (PN2 != PN)
1873    return RetVal = 0;  // Not derived from same PHI.
1874
1875  // Execute the loop symbolically to determine the exit value.
1876  if (Its.getActiveBits() >= 32)
1877    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
1878
1879  unsigned NumIterations = Its.getZExtValue(); // must be in range
1880  unsigned IterationNum = 0;
1881  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
1882    if (IterationNum == NumIterations)
1883      return RetVal = PHIVal;  // Got exit value!
1884
1885    // Compute the value of the PHI node for the next iteration.
1886    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
1887    if (NextPHI == PHIVal)
1888      return RetVal = NextPHI;  // Stopped evolving!
1889    if (NextPHI == 0)
1890      return 0;        // Couldn't evaluate!
1891    PHIVal = NextPHI;
1892  }
1893}
1894
1895/// ComputeIterationCountExhaustively - If the trip is known to execute a
1896/// constant number of times (the condition evolves only from constants),
1897/// try to evaluate a few iterations of the loop until we get the exit
1898/// condition gets a value of ExitWhen (true or false).  If we cannot
1899/// evaluate the trip count of the loop, return UnknownValue.
1900SCEVHandle ScalarEvolutionsImpl::
1901ComputeIterationCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
1902  PHINode *PN = getConstantEvolvingPHI(Cond, L);
1903  if (PN == 0) return UnknownValue;
1904
1905  // Since the loop is canonicalized, the PHI node must have two entries.  One
1906  // entry must be a constant (coming in from outside of the loop), and the
1907  // second must be derived from the same PHI.
1908  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
1909  Constant *StartCST =
1910    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
1911  if (StartCST == 0) return UnknownValue;  // Must be a constant.
1912
1913  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
1914  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
1915  if (PN2 != PN) return UnknownValue;  // Not derived from same PHI.
1916
1917  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
1918  // the loop symbolically to determine when the condition gets a value of
1919  // "ExitWhen".
1920  unsigned IterationNum = 0;
1921  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
1922  for (Constant *PHIVal = StartCST;
1923       IterationNum != MaxIterations; ++IterationNum) {
1924    ConstantInt *CondVal =
1925      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
1926
1927    // Couldn't symbolically evaluate.
1928    if (!CondVal) return UnknownValue;
1929
1930    if (CondVal->getValue() == uint64_t(ExitWhen)) {
1931      ConstantEvolutionLoopExitValue[PN] = PHIVal;
1932      ++NumBruteForceTripCountsComputed;
1933      return SCEVConstant::get(ConstantInt::get(Type::Int32Ty, IterationNum));
1934    }
1935
1936    // Compute the value of the PHI node for the next iteration.
1937    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
1938    if (NextPHI == 0 || NextPHI == PHIVal)
1939      return UnknownValue;  // Couldn't evaluate or not making progress...
1940    PHIVal = NextPHI;
1941  }
1942
1943  // Too many iterations were needed to evaluate.
1944  return UnknownValue;
1945}
1946
1947/// getSCEVAtScope - Compute the value of the specified expression within the
1948/// indicated loop (which may be null to indicate in no loop).  If the
1949/// expression cannot be evaluated, return UnknownValue.
1950SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) {
1951  // FIXME: this should be turned into a virtual method on SCEV!
1952
1953  if (isa<SCEVConstant>(V)) return V;
1954
1955  // If this instruction is evolves from a constant-evolving PHI, compute the
1956  // exit value from the loop without using SCEVs.
1957  if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
1958    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
1959      const Loop *LI = this->LI[I->getParent()];
1960      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
1961        if (PHINode *PN = dyn_cast<PHINode>(I))
1962          if (PN->getParent() == LI->getHeader()) {
1963            // Okay, there is no closed form solution for the PHI node.  Check
1964            // to see if the loop that contains it has a known iteration count.
1965            // If so, we may be able to force computation of the exit value.
1966            SCEVHandle IterationCount = getIterationCount(LI);
1967            if (SCEVConstant *ICC = dyn_cast<SCEVConstant>(IterationCount)) {
1968              // Okay, we know how many times the containing loop executes.  If
1969              // this is a constant evolving PHI node, get the final value at
1970              // the specified iteration number.
1971              Constant *RV = getConstantEvolutionLoopExitValue(PN,
1972                                                    ICC->getValue()->getValue(),
1973                                                               LI);
1974              if (RV) return SCEVUnknown::get(RV);
1975            }
1976          }
1977
1978      // Okay, this is an expression that we cannot symbolically evaluate
1979      // into a SCEV.  Check to see if it's possible to symbolically evaluate
1980      // the arguments into constants, and if so, try to constant propagate the
1981      // result.  This is particularly useful for computing loop exit values.
1982      if (CanConstantFold(I)) {
1983        std::vector<Constant*> Operands;
1984        Operands.reserve(I->getNumOperands());
1985        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
1986          Value *Op = I->getOperand(i);
1987          if (Constant *C = dyn_cast<Constant>(Op)) {
1988            Operands.push_back(C);
1989          } else {
1990            SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
1991            if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
1992              Operands.push_back(ConstantExpr::getIntegerCast(SC->getValue(),
1993                                                              Op->getType(),
1994                                                              false));
1995            else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
1996              if (Constant *C = dyn_cast<Constant>(SU->getValue()))
1997                Operands.push_back(ConstantExpr::getIntegerCast(C,
1998                                                                Op->getType(),
1999                                                                false));
2000              else
2001                return V;
2002            } else {
2003              return V;
2004            }
2005          }
2006        }
2007        Constant *C =ConstantFoldInstOperands(I, &Operands[0], Operands.size());
2008        return SCEVUnknown::get(C);
2009      }
2010    }
2011
2012    // This is some other type of SCEVUnknown, just return it.
2013    return V;
2014  }
2015
2016  if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
2017    // Avoid performing the look-up in the common case where the specified
2018    // expression has no loop-variant portions.
2019    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
2020      SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2021      if (OpAtScope != Comm->getOperand(i)) {
2022        if (OpAtScope == UnknownValue) return UnknownValue;
2023        // Okay, at least one of these operands is loop variant but might be
2024        // foldable.  Build a new instance of the folded commutative expression.
2025        std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
2026        NewOps.push_back(OpAtScope);
2027
2028        for (++i; i != e; ++i) {
2029          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2030          if (OpAtScope == UnknownValue) return UnknownValue;
2031          NewOps.push_back(OpAtScope);
2032        }
2033        if (isa<SCEVAddExpr>(Comm))
2034          return SCEVAddExpr::get(NewOps);
2035        assert(isa<SCEVMulExpr>(Comm) && "Only know about add and mul!");
2036        return SCEVMulExpr::get(NewOps);
2037      }
2038    }
2039    // If we got here, all operands are loop invariant.
2040    return Comm;
2041  }
2042
2043  if (SCEVSDivExpr *Div = dyn_cast<SCEVSDivExpr>(V)) {
2044    SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
2045    if (LHS == UnknownValue) return LHS;
2046    SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
2047    if (RHS == UnknownValue) return RHS;
2048    if (LHS == Div->getLHS() && RHS == Div->getRHS())
2049      return Div;   // must be loop invariant
2050    return SCEVSDivExpr::get(LHS, RHS);
2051  }
2052
2053  // If this is a loop recurrence for a loop that does not contain L, then we
2054  // are dealing with the final value computed by the loop.
2055  if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
2056    if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
2057      // To evaluate this recurrence, we need to know how many times the AddRec
2058      // loop iterates.  Compute this now.
2059      SCEVHandle IterationCount = getIterationCount(AddRec->getLoop());
2060      if (IterationCount == UnknownValue) return UnknownValue;
2061      IterationCount = getTruncateOrZeroExtend(IterationCount,
2062                                               AddRec->getType());
2063
2064      // If the value is affine, simplify the expression evaluation to just
2065      // Start + Step*IterationCount.
2066      if (AddRec->isAffine())
2067        return SCEVAddExpr::get(AddRec->getStart(),
2068                                SCEVMulExpr::get(IterationCount,
2069                                                 AddRec->getOperand(1)));
2070
2071      // Otherwise, evaluate it the hard way.
2072      return AddRec->evaluateAtIteration(IterationCount);
2073    }
2074    return UnknownValue;
2075  }
2076
2077  //assert(0 && "Unknown SCEV type!");
2078  return UnknownValue;
2079}
2080
2081
2082/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
2083/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
2084/// might be the same) or two SCEVCouldNotCompute objects.
2085///
2086static std::pair<SCEVHandle,SCEVHandle>
2087SolveQuadraticEquation(const SCEVAddRecExpr *AddRec) {
2088  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
2089  SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
2090  SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
2091  SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
2092
2093  // We currently can only solve this if the coefficients are constants.
2094  if (!LC || !MC || !NC) {
2095    SCEV *CNC = new SCEVCouldNotCompute();
2096    return std::make_pair(CNC, CNC);
2097  }
2098
2099  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
2100  const APInt &L = LC->getValue()->getValue();
2101  const APInt &M = MC->getValue()->getValue();
2102  const APInt &N = NC->getValue()->getValue();
2103  APInt Two(BitWidth, 2);
2104  APInt Four(BitWidth, 4);
2105
2106  {
2107    using namespace APIntOps;
2108    const APInt& C = L;
2109    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
2110    // The B coefficient is M-N/2
2111    APInt B(M);
2112    B -= sdiv(N,Two);
2113
2114    // The A coefficient is N/2
2115    APInt A(N.sdiv(Two));
2116
2117    // Compute the B^2-4ac term.
2118    APInt SqrtTerm(B);
2119    SqrtTerm *= B;
2120    SqrtTerm -= Four * (A * C);
2121
2122    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
2123    // integer value or else APInt::sqrt() will assert.
2124    APInt SqrtVal(SqrtTerm.sqrt());
2125
2126    // Compute the two solutions for the quadratic formula.
2127    // The divisions must be performed as signed divisions.
2128    APInt NegB(-B);
2129    APInt TwoA( A << 1 );
2130    ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA));
2131    ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA));
2132
2133    return std::make_pair(SCEVUnknown::get(Solution1),
2134                          SCEVUnknown::get(Solution2));
2135    } // end APIntOps namespace
2136}
2137
2138/// HowFarToZero - Return the number of times a backedge comparing the specified
2139/// value to zero will execute.  If not computable, return UnknownValue
2140SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) {
2141  // If the value is a constant
2142  if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2143    // If the value is already zero, the branch will execute zero times.
2144    if (C->getValue()->isZero()) return C;
2145    return UnknownValue;  // Otherwise it will loop infinitely.
2146  }
2147
2148  SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
2149  if (!AddRec || AddRec->getLoop() != L)
2150    return UnknownValue;
2151
2152  if (AddRec->isAffine()) {
2153    // If this is an affine expression the execution count of this branch is
2154    // equal to:
2155    //
2156    //     (0 - Start/Step)    iff   Start % Step == 0
2157    //
2158    // Get the initial value for the loop.
2159    SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
2160    if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
2161    SCEVHandle Step = AddRec->getOperand(1);
2162
2163    Step = getSCEVAtScope(Step, L->getParentLoop());
2164
2165    // Figure out if Start % Step == 0.
2166    // FIXME: We should add DivExpr and RemExpr operations to our AST.
2167    if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
2168      if (StepC->getValue()->equalsInt(1))      // N % 1 == 0
2169        return SCEV::getNegativeSCEV(Start);  // 0 - Start/1 == -Start
2170      if (StepC->getValue()->isAllOnesValue())  // N % -1 == 0
2171        return Start;                   // 0 - Start/-1 == Start
2172
2173      // Check to see if Start is divisible by SC with no remainder.
2174      if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
2175        ConstantInt *StartCC = StartC->getValue();
2176        Constant *StartNegC = ConstantExpr::getNeg(StartCC);
2177        Constant *Rem = ConstantExpr::getSRem(StartNegC, StepC->getValue());
2178        if (Rem->isNullValue()) {
2179          Constant *Result =ConstantExpr::getSDiv(StartNegC,StepC->getValue());
2180          return SCEVUnknown::get(Result);
2181        }
2182      }
2183    }
2184  } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
2185    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
2186    // the quadratic equation to solve it.
2187    std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec);
2188    SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2189    SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2190    if (R1) {
2191#if 0
2192      cerr << "HFTZ: " << *V << " - sol#1: " << *R1
2193           << "  sol#2: " << *R2 << "\n";
2194#endif
2195      // Pick the smallest positive root value.
2196      if (ConstantInt *CB =
2197          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
2198                                   R1->getValue(), R2->getValue()))) {
2199        if (CB->getZExtValue() == false)
2200          std::swap(R1, R2);   // R1 is the minimum root now.
2201
2202        // We can only use this value if the chrec ends up with an exact zero
2203        // value at this index.  When solving for "X*X != 5", for example, we
2204        // should not accept a root of 2.
2205        SCEVHandle Val = AddRec->evaluateAtIteration(R1);
2206        if (SCEVConstant *EvalVal = dyn_cast<SCEVConstant>(Val))
2207          if (EvalVal->getValue()->isZero())
2208            return R1;  // We found a quadratic root!
2209      }
2210    }
2211  }
2212
2213  return UnknownValue;
2214}
2215
2216/// HowFarToNonZero - Return the number of times a backedge checking the
2217/// specified value for nonzero will execute.  If not computable, return
2218/// UnknownValue
2219SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) {
2220  // Loops that look like: while (X == 0) are very strange indeed.  We don't
2221  // handle them yet except for the trivial case.  This could be expanded in the
2222  // future as needed.
2223
2224  // If the value is a constant, check to see if it is known to be non-zero
2225  // already.  If so, the backedge will execute zero times.
2226  if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2227    Constant *Zero = Constant::getNullValue(C->getValue()->getType());
2228    Constant *NonZero =
2229      ConstantExpr::getICmp(ICmpInst::ICMP_NE, C->getValue(), Zero);
2230    if (NonZero == ConstantInt::getTrue())
2231      return getSCEV(Zero);
2232    return UnknownValue;  // Otherwise it will loop infinitely.
2233  }
2234
2235  // We could implement others, but I really doubt anyone writes loops like
2236  // this, and if they did, they would already be constant folded.
2237  return UnknownValue;
2238}
2239
2240/// HowManyLessThans - Return the number of times a backedge containing the
2241/// specified less-than comparison will execute.  If not computable, return
2242/// UnknownValue.
2243SCEVHandle ScalarEvolutionsImpl::
2244HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L) {
2245  // Only handle:  "ADDREC < LoopInvariant".
2246  if (!RHS->isLoopInvariant(L)) return UnknownValue;
2247
2248  SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
2249  if (!AddRec || AddRec->getLoop() != L)
2250    return UnknownValue;
2251
2252  if (AddRec->isAffine()) {
2253    // FORNOW: We only support unit strides.
2254    SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, RHS->getType());
2255    if (AddRec->getOperand(1) != One)
2256      return UnknownValue;
2257
2258    // The number of iterations for "[n,+,1] < m", is m-n.  However, we don't
2259    // know that m is >= n on input to the loop.  If it is, the condition return
2260    // true zero times.  What we really should return, for full generality, is
2261    // SMAX(0, m-n).  Since we cannot check this, we will instead check for a
2262    // canonical loop form: most do-loops will have a check that dominates the
2263    // loop, that only enters the loop if [n-1]<m.  If we can find this check,
2264    // we know that the SMAX will evaluate to m-n, because we know that m >= n.
2265
2266    // Search for the check.
2267    BasicBlock *Preheader = L->getLoopPreheader();
2268    BasicBlock *PreheaderDest = L->getHeader();
2269    if (Preheader == 0) return UnknownValue;
2270
2271    BranchInst *LoopEntryPredicate =
2272      dyn_cast<BranchInst>(Preheader->getTerminator());
2273    if (!LoopEntryPredicate) return UnknownValue;
2274
2275    // This might be a critical edge broken out.  If the loop preheader ends in
2276    // an unconditional branch to the loop, check to see if the preheader has a
2277    // single predecessor, and if so, look for its terminator.
2278    while (LoopEntryPredicate->isUnconditional()) {
2279      PreheaderDest = Preheader;
2280      Preheader = Preheader->getSinglePredecessor();
2281      if (!Preheader) return UnknownValue;  // Multiple preds.
2282
2283      LoopEntryPredicate =
2284        dyn_cast<BranchInst>(Preheader->getTerminator());
2285      if (!LoopEntryPredicate) return UnknownValue;
2286    }
2287
2288    // Now that we found a conditional branch that dominates the loop, check to
2289    // see if it is the comparison we are looking for.
2290    if (ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition())){
2291      Value *PreCondLHS = ICI->getOperand(0);
2292      Value *PreCondRHS = ICI->getOperand(1);
2293      ICmpInst::Predicate Cond;
2294      if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest)
2295        Cond = ICI->getPredicate();
2296      else
2297        Cond = ICI->getInversePredicate();
2298
2299      switch (Cond) {
2300      case ICmpInst::ICMP_UGT:
2301        std::swap(PreCondLHS, PreCondRHS);
2302        Cond = ICmpInst::ICMP_ULT;
2303        break;
2304      case ICmpInst::ICMP_SGT:
2305        std::swap(PreCondLHS, PreCondRHS);
2306        Cond = ICmpInst::ICMP_SLT;
2307        break;
2308      default: break;
2309      }
2310
2311      if (Cond == ICmpInst::ICMP_SLT) {
2312        if (PreCondLHS->getType()->isInteger()) {
2313          if (RHS != getSCEV(PreCondRHS))
2314            return UnknownValue;  // Not a comparison against 'm'.
2315
2316          if (SCEV::getMinusSCEV(AddRec->getOperand(0), One)
2317                      != getSCEV(PreCondLHS))
2318            return UnknownValue;  // Not a comparison against 'n-1'.
2319        }
2320        else return UnknownValue;
2321      } else if (Cond == ICmpInst::ICMP_ULT)
2322        return UnknownValue;
2323
2324      // cerr << "Computed Loop Trip Count as: "
2325      //      << //  *SCEV::getMinusSCEV(RHS, AddRec->getOperand(0)) << "\n";
2326      return SCEV::getMinusSCEV(RHS, AddRec->getOperand(0));
2327    }
2328    else
2329      return UnknownValue;
2330  }
2331
2332  return UnknownValue;
2333}
2334
2335/// getNumIterationsInRange - Return the number of iterations of this loop that
2336/// produce values in the specified constant range.  Another way of looking at
2337/// this is that it returns the first iteration number where the value is not in
2338/// the condition, thus computing the exit count. If the iteration count can't
2339/// be computed, an instance of SCEVCouldNotCompute is returned.
2340SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
2341                                                   bool isSigned) const {
2342  if (Range.isFullSet())  // Infinite loop.
2343    return new SCEVCouldNotCompute();
2344
2345  // If the start is a non-zero constant, shift the range to simplify things.
2346  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
2347    if (!SC->getValue()->isZero()) {
2348      std::vector<SCEVHandle> Operands(op_begin(), op_end());
2349      Operands[0] = SCEVUnknown::getIntegerSCEV(0, SC->getType());
2350      SCEVHandle Shifted = SCEVAddRecExpr::get(Operands, getLoop());
2351      if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
2352        return ShiftedAddRec->getNumIterationsInRange(
2353                           Range.subtract(SC->getValue()->getValue()),isSigned);
2354      // This is strange and shouldn't happen.
2355      return new SCEVCouldNotCompute();
2356    }
2357
2358  // The only time we can solve this is when we have all constant indices.
2359  // Otherwise, we cannot determine the overflow conditions.
2360  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2361    if (!isa<SCEVConstant>(getOperand(i)))
2362      return new SCEVCouldNotCompute();
2363
2364
2365  // Okay at this point we know that all elements of the chrec are constants and
2366  // that the start element is zero.
2367
2368  // First check to see if the range contains zero.  If not, the first
2369  // iteration exits.
2370  if (!Range.contains(APInt(getBitWidth(),0)))
2371    return SCEVConstant::get(ConstantInt::get(getType(),0));
2372
2373  if (isAffine()) {
2374    // If this is an affine expression then we have this situation:
2375    //   Solve {0,+,A} in Range  ===  Ax in Range
2376
2377    // Since we know that zero is in the range, we know that the upper value of
2378    // the range must be the first possible exit value.  Also note that we
2379    // already checked for a full range.
2380    const APInt &Upper = Range.getUpper();
2381    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
2382    APInt One(getBitWidth(),1);
2383
2384    // The exit value should be (Upper+A-1)/A.
2385    APInt ExitVal(Upper);
2386    if (A != One)
2387      ExitVal = (Upper + A - One).sdiv(A);
2388    ConstantInt *ExitValue = ConstantInt::get(ExitVal);
2389
2390    // Evaluate at the exit value.  If we really did fall out of the valid
2391    // range, then we computed our trip count, otherwise wrap around or other
2392    // things must have happened.
2393    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue);
2394    if (Range.contains(Val->getValue()))
2395      return new SCEVCouldNotCompute();  // Something strange happened
2396
2397    // Ensure that the previous value is in the range.  This is a sanity check.
2398    assert(Range.contains(
2399           EvaluateConstantChrecAtConstant(this,
2400           ConstantInt::get(ExitVal - One))->getValue()) &&
2401           "Linear scev computation is off in a bad way!");
2402    return SCEVConstant::get(cast<ConstantInt>(ExitValue));
2403  } else if (isQuadratic()) {
2404    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
2405    // quadratic equation to solve it.  To do this, we must frame our problem in
2406    // terms of figuring out when zero is crossed, instead of when
2407    // Range.getUpper() is crossed.
2408    std::vector<SCEVHandle> NewOps(op_begin(), op_end());
2409    NewOps[0] = SCEV::getNegativeSCEV(SCEVUnknown::get(
2410                                           ConstantInt::get(Range.getUpper())));
2411    SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, getLoop());
2412
2413    // Next, solve the constructed addrec
2414    std::pair<SCEVHandle,SCEVHandle> Roots =
2415      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec));
2416    SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2417    SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2418    if (R1) {
2419      // Pick the smallest positive root value.
2420      if (ConstantInt *CB =
2421          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
2422                                   R1->getValue(), R2->getValue()))) {
2423        if (CB->getZExtValue() == false)
2424          std::swap(R1, R2);   // R1 is the minimum root now.
2425
2426        // Make sure the root is not off by one.  The returned iteration should
2427        // not be in the range, but the previous one should be.  When solving
2428        // for "X*X < 5", for example, we should not return a root of 2.
2429        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
2430                                                             R1->getValue());
2431        if (Range.contains(R1Val->getValue())) {
2432          // The next iteration must be out of the range...
2433          Constant *NextVal = ConstantInt::get(R1->getValue()->getValue()+1);
2434
2435          R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
2436          if (!Range.contains(R1Val->getValue()))
2437            return SCEVUnknown::get(NextVal);
2438          return new SCEVCouldNotCompute();  // Something strange happened
2439        }
2440
2441        // If R1 was not in the range, then it is a good return value.  Make
2442        // sure that R1-1 WAS in the range though, just in case.
2443        Constant *NextVal = ConstantInt::get(R1->getValue()->getValue()-1);
2444        R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
2445        if (Range.contains(R1Val->getValue()))
2446          return R1;
2447        return new SCEVCouldNotCompute();  // Something strange happened
2448      }
2449    }
2450  }
2451
2452  // Fallback, if this is a general polynomial, figure out the progression
2453  // through brute force: evaluate until we find an iteration that fails the
2454  // test.  This is likely to be slow, but getting an accurate trip count is
2455  // incredibly important, we will be able to simplify the exit test a lot, and
2456  // we are almost guaranteed to get a trip count in this case.
2457  ConstantInt *TestVal = ConstantInt::get(getType(), 0);
2458  ConstantInt *EndVal  = TestVal;  // Stop when we wrap around.
2459  do {
2460    ++NumBruteForceEvaluations;
2461    SCEVHandle Val = evaluateAtIteration(SCEVConstant::get(TestVal));
2462    if (!isa<SCEVConstant>(Val))  // This shouldn't happen.
2463      return new SCEVCouldNotCompute();
2464
2465    // Check to see if we found the value!
2466    if (!Range.contains(cast<SCEVConstant>(Val)->getValue()->getValue()))
2467      return SCEVConstant::get(TestVal);
2468
2469    // Increment to test the next index.
2470    TestVal = ConstantInt::get(TestVal->getValue()+1);
2471  } while (TestVal != EndVal);
2472
2473  return new SCEVCouldNotCompute();
2474}
2475
2476
2477
2478//===----------------------------------------------------------------------===//
2479//                   ScalarEvolution Class Implementation
2480//===----------------------------------------------------------------------===//
2481
2482bool ScalarEvolution::runOnFunction(Function &F) {
2483  Impl = new ScalarEvolutionsImpl(F, getAnalysis<LoopInfo>());
2484  return false;
2485}
2486
2487void ScalarEvolution::releaseMemory() {
2488  delete (ScalarEvolutionsImpl*)Impl;
2489  Impl = 0;
2490}
2491
2492void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
2493  AU.setPreservesAll();
2494  AU.addRequiredTransitive<LoopInfo>();
2495}
2496
2497SCEVHandle ScalarEvolution::getSCEV(Value *V) const {
2498  return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V);
2499}
2500
2501/// hasSCEV - Return true if the SCEV for this value has already been
2502/// computed.
2503bool ScalarEvolution::hasSCEV(Value *V) const {
2504  return ((ScalarEvolutionsImpl*)Impl)->hasSCEV(V);
2505}
2506
2507
2508/// setSCEV - Insert the specified SCEV into the map of current SCEVs for
2509/// the specified value.
2510void ScalarEvolution::setSCEV(Value *V, const SCEVHandle &H) {
2511  ((ScalarEvolutionsImpl*)Impl)->setSCEV(V, H);
2512}
2513
2514
2515SCEVHandle ScalarEvolution::getIterationCount(const Loop *L) const {
2516  return ((ScalarEvolutionsImpl*)Impl)->getIterationCount(L);
2517}
2518
2519bool ScalarEvolution::hasLoopInvariantIterationCount(const Loop *L) const {
2520  return !isa<SCEVCouldNotCompute>(getIterationCount(L));
2521}
2522
2523SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const {
2524  return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L);
2525}
2526
2527void ScalarEvolution::deleteInstructionFromRecords(Instruction *I) const {
2528  return ((ScalarEvolutionsImpl*)Impl)->deleteInstructionFromRecords(I);
2529}
2530
2531static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE,
2532                          const Loop *L) {
2533  // Print all inner loops first
2534  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
2535    PrintLoopInfo(OS, SE, *I);
2536
2537  cerr << "Loop " << L->getHeader()->getName() << ": ";
2538
2539  std::vector<BasicBlock*> ExitBlocks;
2540  L->getExitBlocks(ExitBlocks);
2541  if (ExitBlocks.size() != 1)
2542    cerr << "<multiple exits> ";
2543
2544  if (SE->hasLoopInvariantIterationCount(L)) {
2545    cerr << *SE->getIterationCount(L) << " iterations! ";
2546  } else {
2547    cerr << "Unpredictable iteration count. ";
2548  }
2549
2550  cerr << "\n";
2551}
2552
2553void ScalarEvolution::print(std::ostream &OS, const Module* ) const {
2554  Function &F = ((ScalarEvolutionsImpl*)Impl)->F;
2555  LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI;
2556
2557  OS << "Classifying expressions for: " << F.getName() << "\n";
2558  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
2559    if (I->getType()->isInteger()) {
2560      OS << *I;
2561      OS << "  --> ";
2562      SCEVHandle SV = getSCEV(&*I);
2563      SV->print(OS);
2564      OS << "\t\t";
2565
2566      if ((*I).getType()->isInteger()) {
2567        ConstantRange Bounds = SV->getValueRange();
2568        if (!Bounds.isFullSet())
2569          OS << "Bounds: " << Bounds << " ";
2570      }
2571
2572      if (const Loop *L = LI.getLoopFor((*I).getParent())) {
2573        OS << "Exits: ";
2574        SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop());
2575        if (isa<SCEVCouldNotCompute>(ExitValue)) {
2576          OS << "<<Unknown>>";
2577        } else {
2578          OS << *ExitValue;
2579        }
2580      }
2581
2582
2583      OS << "\n";
2584    }
2585
2586  OS << "Determining loop execution counts for: " << F.getName() << "\n";
2587  for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
2588    PrintLoopInfo(OS, this, *I);
2589}
2590
2591