ScalarEvolution.cpp revision ecb35ece5c42d89057da3c2c7bc2e95f08b1dbef
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
19//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression.  These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
30//
31// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
35// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42//  Chains of recurrences -- a method to expedite the evaluation
43//  of closed-form functions
44//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46//  On computational properties of chains of recurrences
47//  Eugene V. Zima
48//
49//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50//  Robert A. van Engelen
51//
52//  Efficient Symbolic Analysis for Optimizing Compilers
53//  Robert A. van Engelen
54//
55//  Using the chains of recurrences algebra for data dependence testing and
56//  induction variable substitution
57//  MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
61#define DEBUG_TYPE "scalar-evolution"
62#include "llvm/Analysis/ScalarEvolutionExpressions.h"
63#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
65#include "llvm/GlobalVariable.h"
66#include "llvm/GlobalAlias.h"
67#include "llvm/Instructions.h"
68#include "llvm/LLVMContext.h"
69#include "llvm/Operator.h"
70#include "llvm/Analysis/ConstantFolding.h"
71#include "llvm/Analysis/Dominators.h"
72#include "llvm/Analysis/InstructionSimplify.h"
73#include "llvm/Analysis/LoopInfo.h"
74#include "llvm/Analysis/ValueTracking.h"
75#include "llvm/Assembly/Writer.h"
76#include "llvm/Target/TargetData.h"
77#include "llvm/Support/CommandLine.h"
78#include "llvm/Support/ConstantRange.h"
79#include "llvm/Support/Debug.h"
80#include "llvm/Support/ErrorHandling.h"
81#include "llvm/Support/GetElementPtrTypeIterator.h"
82#include "llvm/Support/InstIterator.h"
83#include "llvm/Support/MathExtras.h"
84#include "llvm/Support/raw_ostream.h"
85#include "llvm/ADT/Statistic.h"
86#include "llvm/ADT/STLExtras.h"
87#include "llvm/ADT/SmallPtrSet.h"
88#include <algorithm>
89using namespace llvm;
90
91STATISTIC(NumArrayLenItCounts,
92          "Number of trip counts computed with array length");
93STATISTIC(NumTripCountsComputed,
94          "Number of loops with predictable loop counts");
95STATISTIC(NumTripCountsNotComputed,
96          "Number of loops without predictable loop counts");
97STATISTIC(NumBruteForceTripCountsComputed,
98          "Number of loops with trip counts computed by force");
99
100static cl::opt<unsigned>
101MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
102                        cl::desc("Maximum number of iterations SCEV will "
103                                 "symbolically execute a constant "
104                                 "derived loop"),
105                        cl::init(100));
106
107INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
108                "Scalar Evolution Analysis", false, true)
109INITIALIZE_PASS_DEPENDENCY(LoopInfo)
110INITIALIZE_PASS_DEPENDENCY(DominatorTree)
111INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
112                "Scalar Evolution Analysis", false, true)
113char ScalarEvolution::ID = 0;
114
115//===----------------------------------------------------------------------===//
116//                           SCEV class definitions
117//===----------------------------------------------------------------------===//
118
119//===----------------------------------------------------------------------===//
120// Implementation of the SCEV class.
121//
122
123void SCEV::dump() const {
124  print(dbgs());
125  dbgs() << '\n';
126}
127
128void SCEV::print(raw_ostream &OS) const {
129  switch (getSCEVType()) {
130  case scConstant:
131    WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
132    return;
133  case scTruncate: {
134    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
135    const SCEV *Op = Trunc->getOperand();
136    OS << "(trunc " << *Op->getType() << " " << *Op << " to "
137       << *Trunc->getType() << ")";
138    return;
139  }
140  case scZeroExtend: {
141    const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
142    const SCEV *Op = ZExt->getOperand();
143    OS << "(zext " << *Op->getType() << " " << *Op << " to "
144       << *ZExt->getType() << ")";
145    return;
146  }
147  case scSignExtend: {
148    const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
149    const SCEV *Op = SExt->getOperand();
150    OS << "(sext " << *Op->getType() << " " << *Op << " to "
151       << *SExt->getType() << ")";
152    return;
153  }
154  case scAddRecExpr: {
155    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
156    OS << "{" << *AR->getOperand(0);
157    for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
158      OS << ",+," << *AR->getOperand(i);
159    OS << "}<";
160    if (AR->getNoWrapFlags(FlagNUW))
161      OS << "nuw><";
162    if (AR->getNoWrapFlags(FlagNSW))
163      OS << "nsw><";
164    if (AR->getNoWrapFlags(FlagNW) &&
165        !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
166      OS << "nw><";
167    WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
168    OS << ">";
169    return;
170  }
171  case scAddExpr:
172  case scMulExpr:
173  case scUMaxExpr:
174  case scSMaxExpr: {
175    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
176    const char *OpStr = 0;
177    switch (NAry->getSCEVType()) {
178    case scAddExpr: OpStr = " + "; break;
179    case scMulExpr: OpStr = " * "; break;
180    case scUMaxExpr: OpStr = " umax "; break;
181    case scSMaxExpr: OpStr = " smax "; break;
182    }
183    OS << "(";
184    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
185         I != E; ++I) {
186      OS << **I;
187      if (llvm::next(I) != E)
188        OS << OpStr;
189    }
190    OS << ")";
191    switch (NAry->getSCEVType()) {
192    case scAddExpr:
193    case scMulExpr:
194      if (NAry->getNoWrapFlags(FlagNUW))
195        OS << "<nuw>";
196      if (NAry->getNoWrapFlags(FlagNSW))
197        OS << "<nsw>";
198    }
199    return;
200  }
201  case scUDivExpr: {
202    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
203    OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
204    return;
205  }
206  case scUnknown: {
207    const SCEVUnknown *U = cast<SCEVUnknown>(this);
208    Type *AllocTy;
209    if (U->isSizeOf(AllocTy)) {
210      OS << "sizeof(" << *AllocTy << ")";
211      return;
212    }
213    if (U->isAlignOf(AllocTy)) {
214      OS << "alignof(" << *AllocTy << ")";
215      return;
216    }
217
218    Type *CTy;
219    Constant *FieldNo;
220    if (U->isOffsetOf(CTy, FieldNo)) {
221      OS << "offsetof(" << *CTy << ", ";
222      WriteAsOperand(OS, FieldNo, false);
223      OS << ")";
224      return;
225    }
226
227    // Otherwise just print it normally.
228    WriteAsOperand(OS, U->getValue(), false);
229    return;
230  }
231  case scCouldNotCompute:
232    OS << "***COULDNOTCOMPUTE***";
233    return;
234  default: break;
235  }
236  llvm_unreachable("Unknown SCEV kind!");
237}
238
239Type *SCEV::getType() const {
240  switch (getSCEVType()) {
241  case scConstant:
242    return cast<SCEVConstant>(this)->getType();
243  case scTruncate:
244  case scZeroExtend:
245  case scSignExtend:
246    return cast<SCEVCastExpr>(this)->getType();
247  case scAddRecExpr:
248  case scMulExpr:
249  case scUMaxExpr:
250  case scSMaxExpr:
251    return cast<SCEVNAryExpr>(this)->getType();
252  case scAddExpr:
253    return cast<SCEVAddExpr>(this)->getType();
254  case scUDivExpr:
255    return cast<SCEVUDivExpr>(this)->getType();
256  case scUnknown:
257    return cast<SCEVUnknown>(this)->getType();
258  case scCouldNotCompute:
259    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
260    return 0;
261  default: break;
262  }
263  llvm_unreachable("Unknown SCEV kind!");
264  return 0;
265}
266
267bool SCEV::isZero() const {
268  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
269    return SC->getValue()->isZero();
270  return false;
271}
272
273bool SCEV::isOne() const {
274  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
275    return SC->getValue()->isOne();
276  return false;
277}
278
279bool SCEV::isAllOnesValue() const {
280  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
281    return SC->getValue()->isAllOnesValue();
282  return false;
283}
284
285SCEVCouldNotCompute::SCEVCouldNotCompute() :
286  SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
287
288bool SCEVCouldNotCompute::classof(const SCEV *S) {
289  return S->getSCEVType() == scCouldNotCompute;
290}
291
292const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
293  FoldingSetNodeID ID;
294  ID.AddInteger(scConstant);
295  ID.AddPointer(V);
296  void *IP = 0;
297  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
298  SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
299  UniqueSCEVs.InsertNode(S, IP);
300  return S;
301}
302
303const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
304  return getConstant(ConstantInt::get(getContext(), Val));
305}
306
307const SCEV *
308ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
309  IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
310  return getConstant(ConstantInt::get(ITy, V, isSigned));
311}
312
313SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
314                           unsigned SCEVTy, const SCEV *op, Type *ty)
315  : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
316
317SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
318                                   const SCEV *op, Type *ty)
319  : SCEVCastExpr(ID, scTruncate, op, ty) {
320  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
321         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
322         "Cannot truncate non-integer value!");
323}
324
325SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
326                                       const SCEV *op, Type *ty)
327  : SCEVCastExpr(ID, scZeroExtend, op, ty) {
328  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
329         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
330         "Cannot zero extend non-integer value!");
331}
332
333SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
334                                       const SCEV *op, Type *ty)
335  : SCEVCastExpr(ID, scSignExtend, op, ty) {
336  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
337         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
338         "Cannot sign extend non-integer value!");
339}
340
341void SCEVUnknown::deleted() {
342  // Clear this SCEVUnknown from various maps.
343  SE->forgetMemoizedResults(this);
344
345  // Remove this SCEVUnknown from the uniquing map.
346  SE->UniqueSCEVs.RemoveNode(this);
347
348  // Release the value.
349  setValPtr(0);
350}
351
352void SCEVUnknown::allUsesReplacedWith(Value *New) {
353  // Clear this SCEVUnknown from various maps.
354  SE->forgetMemoizedResults(this);
355
356  // Remove this SCEVUnknown from the uniquing map.
357  SE->UniqueSCEVs.RemoveNode(this);
358
359  // Update this SCEVUnknown to point to the new value. This is needed
360  // because there may still be outstanding SCEVs which still point to
361  // this SCEVUnknown.
362  setValPtr(New);
363}
364
365bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
366  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
367    if (VCE->getOpcode() == Instruction::PtrToInt)
368      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
369        if (CE->getOpcode() == Instruction::GetElementPtr &&
370            CE->getOperand(0)->isNullValue() &&
371            CE->getNumOperands() == 2)
372          if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
373            if (CI->isOne()) {
374              AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
375                                 ->getElementType();
376              return true;
377            }
378
379  return false;
380}
381
382bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
383  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
384    if (VCE->getOpcode() == Instruction::PtrToInt)
385      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
386        if (CE->getOpcode() == Instruction::GetElementPtr &&
387            CE->getOperand(0)->isNullValue()) {
388          Type *Ty =
389            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
390          if (StructType *STy = dyn_cast<StructType>(Ty))
391            if (!STy->isPacked() &&
392                CE->getNumOperands() == 3 &&
393                CE->getOperand(1)->isNullValue()) {
394              if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
395                if (CI->isOne() &&
396                    STy->getNumElements() == 2 &&
397                    STy->getElementType(0)->isIntegerTy(1)) {
398                  AllocTy = STy->getElementType(1);
399                  return true;
400                }
401            }
402        }
403
404  return false;
405}
406
407bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
408  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
409    if (VCE->getOpcode() == Instruction::PtrToInt)
410      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
411        if (CE->getOpcode() == Instruction::GetElementPtr &&
412            CE->getNumOperands() == 3 &&
413            CE->getOperand(0)->isNullValue() &&
414            CE->getOperand(1)->isNullValue()) {
415          Type *Ty =
416            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
417          // Ignore vector types here so that ScalarEvolutionExpander doesn't
418          // emit getelementptrs that index into vectors.
419          if (Ty->isStructTy() || Ty->isArrayTy()) {
420            CTy = Ty;
421            FieldNo = CE->getOperand(2);
422            return true;
423          }
424        }
425
426  return false;
427}
428
429//===----------------------------------------------------------------------===//
430//                               SCEV Utilities
431//===----------------------------------------------------------------------===//
432
433namespace {
434  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
435  /// than the complexity of the RHS.  This comparator is used to canonicalize
436  /// expressions.
437  class SCEVComplexityCompare {
438    const LoopInfo *const LI;
439  public:
440    explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
441
442    // Return true or false if LHS is less than, or at least RHS, respectively.
443    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
444      return compare(LHS, RHS) < 0;
445    }
446
447    // Return negative, zero, or positive, if LHS is less than, equal to, or
448    // greater than RHS, respectively. A three-way result allows recursive
449    // comparisons to be more efficient.
450    int compare(const SCEV *LHS, const SCEV *RHS) const {
451      // Fast-path: SCEVs are uniqued so we can do a quick equality check.
452      if (LHS == RHS)
453        return 0;
454
455      // Primarily, sort the SCEVs by their getSCEVType().
456      unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
457      if (LType != RType)
458        return (int)LType - (int)RType;
459
460      // Aside from the getSCEVType() ordering, the particular ordering
461      // isn't very important except that it's beneficial to be consistent,
462      // so that (a + b) and (b + a) don't end up as different expressions.
463      switch (LType) {
464      case scUnknown: {
465        const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
466        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
467
468        // Sort SCEVUnknown values with some loose heuristics. TODO: This is
469        // not as complete as it could be.
470        const Value *LV = LU->getValue(), *RV = RU->getValue();
471
472        // Order pointer values after integer values. This helps SCEVExpander
473        // form GEPs.
474        bool LIsPointer = LV->getType()->isPointerTy(),
475             RIsPointer = RV->getType()->isPointerTy();
476        if (LIsPointer != RIsPointer)
477          return (int)LIsPointer - (int)RIsPointer;
478
479        // Compare getValueID values.
480        unsigned LID = LV->getValueID(),
481                 RID = RV->getValueID();
482        if (LID != RID)
483          return (int)LID - (int)RID;
484
485        // Sort arguments by their position.
486        if (const Argument *LA = dyn_cast<Argument>(LV)) {
487          const Argument *RA = cast<Argument>(RV);
488          unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
489          return (int)LArgNo - (int)RArgNo;
490        }
491
492        // For instructions, compare their loop depth, and their operand
493        // count.  This is pretty loose.
494        if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
495          const Instruction *RInst = cast<Instruction>(RV);
496
497          // Compare loop depths.
498          const BasicBlock *LParent = LInst->getParent(),
499                           *RParent = RInst->getParent();
500          if (LParent != RParent) {
501            unsigned LDepth = LI->getLoopDepth(LParent),
502                     RDepth = LI->getLoopDepth(RParent);
503            if (LDepth != RDepth)
504              return (int)LDepth - (int)RDepth;
505          }
506
507          // Compare the number of operands.
508          unsigned LNumOps = LInst->getNumOperands(),
509                   RNumOps = RInst->getNumOperands();
510          return (int)LNumOps - (int)RNumOps;
511        }
512
513        return 0;
514      }
515
516      case scConstant: {
517        const SCEVConstant *LC = cast<SCEVConstant>(LHS);
518        const SCEVConstant *RC = cast<SCEVConstant>(RHS);
519
520        // Compare constant values.
521        const APInt &LA = LC->getValue()->getValue();
522        const APInt &RA = RC->getValue()->getValue();
523        unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
524        if (LBitWidth != RBitWidth)
525          return (int)LBitWidth - (int)RBitWidth;
526        return LA.ult(RA) ? -1 : 1;
527      }
528
529      case scAddRecExpr: {
530        const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
531        const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
532
533        // Compare addrec loop depths.
534        const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
535        if (LLoop != RLoop) {
536          unsigned LDepth = LLoop->getLoopDepth(),
537                   RDepth = RLoop->getLoopDepth();
538          if (LDepth != RDepth)
539            return (int)LDepth - (int)RDepth;
540        }
541
542        // Addrec complexity grows with operand count.
543        unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
544        if (LNumOps != RNumOps)
545          return (int)LNumOps - (int)RNumOps;
546
547        // Lexicographically compare.
548        for (unsigned i = 0; i != LNumOps; ++i) {
549          long X = compare(LA->getOperand(i), RA->getOperand(i));
550          if (X != 0)
551            return X;
552        }
553
554        return 0;
555      }
556
557      case scAddExpr:
558      case scMulExpr:
559      case scSMaxExpr:
560      case scUMaxExpr: {
561        const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
562        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
563
564        // Lexicographically compare n-ary expressions.
565        unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
566        for (unsigned i = 0; i != LNumOps; ++i) {
567          if (i >= RNumOps)
568            return 1;
569          long X = compare(LC->getOperand(i), RC->getOperand(i));
570          if (X != 0)
571            return X;
572        }
573        return (int)LNumOps - (int)RNumOps;
574      }
575
576      case scUDivExpr: {
577        const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
578        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
579
580        // Lexicographically compare udiv expressions.
581        long X = compare(LC->getLHS(), RC->getLHS());
582        if (X != 0)
583          return X;
584        return compare(LC->getRHS(), RC->getRHS());
585      }
586
587      case scTruncate:
588      case scZeroExtend:
589      case scSignExtend: {
590        const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
591        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
592
593        // Compare cast expressions by operand.
594        return compare(LC->getOperand(), RC->getOperand());
595      }
596
597      default:
598        break;
599      }
600
601      llvm_unreachable("Unknown SCEV kind!");
602      return 0;
603    }
604  };
605}
606
607/// GroupByComplexity - Given a list of SCEV objects, order them by their
608/// complexity, and group objects of the same complexity together by value.
609/// When this routine is finished, we know that any duplicates in the vector are
610/// consecutive and that complexity is monotonically increasing.
611///
612/// Note that we go take special precautions to ensure that we get deterministic
613/// results from this routine.  In other words, we don't want the results of
614/// this to depend on where the addresses of various SCEV objects happened to
615/// land in memory.
616///
617static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
618                              LoopInfo *LI) {
619  if (Ops.size() < 2) return;  // Noop
620  if (Ops.size() == 2) {
621    // This is the common case, which also happens to be trivially simple.
622    // Special case it.
623    const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
624    if (SCEVComplexityCompare(LI)(RHS, LHS))
625      std::swap(LHS, RHS);
626    return;
627  }
628
629  // Do the rough sort by complexity.
630  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
631
632  // Now that we are sorted by complexity, group elements of the same
633  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
634  // be extremely short in practice.  Note that we take this approach because we
635  // do not want to depend on the addresses of the objects we are grouping.
636  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
637    const SCEV *S = Ops[i];
638    unsigned Complexity = S->getSCEVType();
639
640    // If there are any objects of the same complexity and same value as this
641    // one, group them.
642    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
643      if (Ops[j] == S) { // Found a duplicate.
644        // Move it to immediately after i'th element.
645        std::swap(Ops[i+1], Ops[j]);
646        ++i;   // no need to rescan it.
647        if (i == e-2) return;  // Done!
648      }
649    }
650  }
651}
652
653
654
655//===----------------------------------------------------------------------===//
656//                      Simple SCEV method implementations
657//===----------------------------------------------------------------------===//
658
659/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
660/// Assume, K > 0.
661static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
662                                       ScalarEvolution &SE,
663                                       Type *ResultTy) {
664  // Handle the simplest case efficiently.
665  if (K == 1)
666    return SE.getTruncateOrZeroExtend(It, ResultTy);
667
668  // We are using the following formula for BC(It, K):
669  //
670  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
671  //
672  // Suppose, W is the bitwidth of the return value.  We must be prepared for
673  // overflow.  Hence, we must assure that the result of our computation is
674  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
675  // safe in modular arithmetic.
676  //
677  // However, this code doesn't use exactly that formula; the formula it uses
678  // is something like the following, where T is the number of factors of 2 in
679  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
680  // exponentiation:
681  //
682  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
683  //
684  // This formula is trivially equivalent to the previous formula.  However,
685  // this formula can be implemented much more efficiently.  The trick is that
686  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
687  // arithmetic.  To do exact division in modular arithmetic, all we have
688  // to do is multiply by the inverse.  Therefore, this step can be done at
689  // width W.
690  //
691  // The next issue is how to safely do the division by 2^T.  The way this
692  // is done is by doing the multiplication step at a width of at least W + T
693  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
694  // when we perform the division by 2^T (which is equivalent to a right shift
695  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
696  // truncated out after the division by 2^T.
697  //
698  // In comparison to just directly using the first formula, this technique
699  // is much more efficient; using the first formula requires W * K bits,
700  // but this formula less than W + K bits. Also, the first formula requires
701  // a division step, whereas this formula only requires multiplies and shifts.
702  //
703  // It doesn't matter whether the subtraction step is done in the calculation
704  // width or the input iteration count's width; if the subtraction overflows,
705  // the result must be zero anyway.  We prefer here to do it in the width of
706  // the induction variable because it helps a lot for certain cases; CodeGen
707  // isn't smart enough to ignore the overflow, which leads to much less
708  // efficient code if the width of the subtraction is wider than the native
709  // register width.
710  //
711  // (It's possible to not widen at all by pulling out factors of 2 before
712  // the multiplication; for example, K=2 can be calculated as
713  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
714  // extra arithmetic, so it's not an obvious win, and it gets
715  // much more complicated for K > 3.)
716
717  // Protection from insane SCEVs; this bound is conservative,
718  // but it probably doesn't matter.
719  if (K > 1000)
720    return SE.getCouldNotCompute();
721
722  unsigned W = SE.getTypeSizeInBits(ResultTy);
723
724  // Calculate K! / 2^T and T; we divide out the factors of two before
725  // multiplying for calculating K! / 2^T to avoid overflow.
726  // Other overflow doesn't matter because we only care about the bottom
727  // W bits of the result.
728  APInt OddFactorial(W, 1);
729  unsigned T = 1;
730  for (unsigned i = 3; i <= K; ++i) {
731    APInt Mult(W, i);
732    unsigned TwoFactors = Mult.countTrailingZeros();
733    T += TwoFactors;
734    Mult = Mult.lshr(TwoFactors);
735    OddFactorial *= Mult;
736  }
737
738  // We need at least W + T bits for the multiplication step
739  unsigned CalculationBits = W + T;
740
741  // Calculate 2^T, at width T+W.
742  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
743
744  // Calculate the multiplicative inverse of K! / 2^T;
745  // this multiplication factor will perform the exact division by
746  // K! / 2^T.
747  APInt Mod = APInt::getSignedMinValue(W+1);
748  APInt MultiplyFactor = OddFactorial.zext(W+1);
749  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
750  MultiplyFactor = MultiplyFactor.trunc(W);
751
752  // Calculate the product, at width T+W
753  IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
754                                                      CalculationBits);
755  const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
756  for (unsigned i = 1; i != K; ++i) {
757    const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
758    Dividend = SE.getMulExpr(Dividend,
759                             SE.getTruncateOrZeroExtend(S, CalculationTy));
760  }
761
762  // Divide by 2^T
763  const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
764
765  // Truncate the result, and divide by K! / 2^T.
766
767  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
768                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
769}
770
771/// evaluateAtIteration - Return the value of this chain of recurrences at
772/// the specified iteration number.  We can evaluate this recurrence by
773/// multiplying each element in the chain by the binomial coefficient
774/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
775///
776///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
777///
778/// where BC(It, k) stands for binomial coefficient.
779///
780const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
781                                                ScalarEvolution &SE) const {
782  const SCEV *Result = getStart();
783  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
784    // The computation is correct in the face of overflow provided that the
785    // multiplication is performed _after_ the evaluation of the binomial
786    // coefficient.
787    const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
788    if (isa<SCEVCouldNotCompute>(Coeff))
789      return Coeff;
790
791    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
792  }
793  return Result;
794}
795
796//===----------------------------------------------------------------------===//
797//                    SCEV Expression folder implementations
798//===----------------------------------------------------------------------===//
799
800const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
801                                             Type *Ty) {
802  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
803         "This is not a truncating conversion!");
804  assert(isSCEVable(Ty) &&
805         "This is not a conversion to a SCEVable type!");
806  Ty = getEffectiveSCEVType(Ty);
807
808  FoldingSetNodeID ID;
809  ID.AddInteger(scTruncate);
810  ID.AddPointer(Op);
811  ID.AddPointer(Ty);
812  void *IP = 0;
813  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
814
815  // Fold if the operand is constant.
816  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
817    return getConstant(
818      cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
819                                               getEffectiveSCEVType(Ty))));
820
821  // trunc(trunc(x)) --> trunc(x)
822  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
823    return getTruncateExpr(ST->getOperand(), Ty);
824
825  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
826  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
827    return getTruncateOrSignExtend(SS->getOperand(), Ty);
828
829  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
830  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
831    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
832
833  // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
834  // eliminate all the truncates.
835  if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
836    SmallVector<const SCEV *, 4> Operands;
837    bool hasTrunc = false;
838    for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
839      const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
840      hasTrunc = isa<SCEVTruncateExpr>(S);
841      Operands.push_back(S);
842    }
843    if (!hasTrunc)
844      return getAddExpr(Operands);
845    UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
846  }
847
848  // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
849  // eliminate all the truncates.
850  if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
851    SmallVector<const SCEV *, 4> Operands;
852    bool hasTrunc = false;
853    for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
854      const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
855      hasTrunc = isa<SCEVTruncateExpr>(S);
856      Operands.push_back(S);
857    }
858    if (!hasTrunc)
859      return getMulExpr(Operands);
860    UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
861  }
862
863  // If the input value is a chrec scev, truncate the chrec's operands.
864  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
865    SmallVector<const SCEV *, 4> Operands;
866    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
867      Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
868    return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
869  }
870
871  // As a special case, fold trunc(undef) to undef. We don't want to
872  // know too much about SCEVUnknowns, but this special case is handy
873  // and harmless.
874  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
875    if (isa<UndefValue>(U->getValue()))
876      return getSCEV(UndefValue::get(Ty));
877
878  // The cast wasn't folded; create an explicit cast node. We can reuse
879  // the existing insert position since if we get here, we won't have
880  // made any changes which would invalidate it.
881  SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
882                                                 Op, Ty);
883  UniqueSCEVs.InsertNode(S, IP);
884  return S;
885}
886
887const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
888                                               Type *Ty) {
889  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
890         "This is not an extending conversion!");
891  assert(isSCEVable(Ty) &&
892         "This is not a conversion to a SCEVable type!");
893  Ty = getEffectiveSCEVType(Ty);
894
895  // Fold if the operand is constant.
896  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
897    return getConstant(
898      cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
899                                              getEffectiveSCEVType(Ty))));
900
901  // zext(zext(x)) --> zext(x)
902  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
903    return getZeroExtendExpr(SZ->getOperand(), Ty);
904
905  // Before doing any expensive analysis, check to see if we've already
906  // computed a SCEV for this Op and Ty.
907  FoldingSetNodeID ID;
908  ID.AddInteger(scZeroExtend);
909  ID.AddPointer(Op);
910  ID.AddPointer(Ty);
911  void *IP = 0;
912  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
913
914  // zext(trunc(x)) --> zext(x) or x or trunc(x)
915  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
916    // It's possible the bits taken off by the truncate were all zero bits. If
917    // so, we should be able to simplify this further.
918    const SCEV *X = ST->getOperand();
919    ConstantRange CR = getUnsignedRange(X);
920    unsigned TruncBits = getTypeSizeInBits(ST->getType());
921    unsigned NewBits = getTypeSizeInBits(Ty);
922    if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
923            CR.zextOrTrunc(NewBits)))
924      return getTruncateOrZeroExtend(X, Ty);
925  }
926
927  // If the input value is a chrec scev, and we can prove that the value
928  // did not overflow the old, smaller, value, we can zero extend all of the
929  // operands (often constants).  This allows analysis of something like
930  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
931  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
932    if (AR->isAffine()) {
933      const SCEV *Start = AR->getStart();
934      const SCEV *Step = AR->getStepRecurrence(*this);
935      unsigned BitWidth = getTypeSizeInBits(AR->getType());
936      const Loop *L = AR->getLoop();
937
938      // If we have special knowledge that this addrec won't overflow,
939      // we don't need to do any further analysis.
940      if (AR->getNoWrapFlags(SCEV::FlagNUW))
941        return getAddRecExpr(getZeroExtendExpr(Start, Ty),
942                             getZeroExtendExpr(Step, Ty),
943                             L, AR->getNoWrapFlags());
944
945      // Check whether the backedge-taken count is SCEVCouldNotCompute.
946      // Note that this serves two purposes: It filters out loops that are
947      // simply not analyzable, and it covers the case where this code is
948      // being called from within backedge-taken count analysis, such that
949      // attempting to ask for the backedge-taken count would likely result
950      // in infinite recursion. In the later case, the analysis code will
951      // cope with a conservative value, and it will take care to purge
952      // that value once it has finished.
953      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
954      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
955        // Manually compute the final value for AR, checking for
956        // overflow.
957
958        // Check whether the backedge-taken count can be losslessly casted to
959        // the addrec's type. The count is always unsigned.
960        const SCEV *CastedMaxBECount =
961          getTruncateOrZeroExtend(MaxBECount, Start->getType());
962        const SCEV *RecastedMaxBECount =
963          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
964        if (MaxBECount == RecastedMaxBECount) {
965          Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
966          // Check whether Start+Step*MaxBECount has no unsigned overflow.
967          const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
968          const SCEV *Add = getAddExpr(Start, ZMul);
969          const SCEV *OperandExtendedAdd =
970            getAddExpr(getZeroExtendExpr(Start, WideTy),
971                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
972                                  getZeroExtendExpr(Step, WideTy)));
973          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) {
974            // Cache knowledge of AR NUW, which is propagated to this AddRec.
975            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
976            // Return the expression with the addrec on the outside.
977            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
978                                 getZeroExtendExpr(Step, Ty),
979                                 L, AR->getNoWrapFlags());
980          }
981          // Similar to above, only this time treat the step value as signed.
982          // This covers loops that count down.
983          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
984          Add = getAddExpr(Start, SMul);
985          OperandExtendedAdd =
986            getAddExpr(getZeroExtendExpr(Start, WideTy),
987                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
988                                  getSignExtendExpr(Step, WideTy)));
989          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) {
990            // Cache knowledge of AR NW, which is propagated to this AddRec.
991            // Negative step causes unsigned wrap, but it still can't self-wrap.
992            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
993            // Return the expression with the addrec on the outside.
994            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
995                                 getSignExtendExpr(Step, Ty),
996                                 L, AR->getNoWrapFlags());
997          }
998        }
999
1000        // If the backedge is guarded by a comparison with the pre-inc value
1001        // the addrec is safe. Also, if the entry is guarded by a comparison
1002        // with the start value and the backedge is guarded by a comparison
1003        // with the post-inc value, the addrec is safe.
1004        if (isKnownPositive(Step)) {
1005          const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1006                                      getUnsignedRange(Step).getUnsignedMax());
1007          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1008              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1009               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1010                                           AR->getPostIncExpr(*this), N))) {
1011            // Cache knowledge of AR NUW, which is propagated to this AddRec.
1012            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1013            // Return the expression with the addrec on the outside.
1014            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1015                                 getZeroExtendExpr(Step, Ty),
1016                                 L, AR->getNoWrapFlags());
1017          }
1018        } else if (isKnownNegative(Step)) {
1019          const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1020                                      getSignedRange(Step).getSignedMin());
1021          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1022              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1023               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1024                                           AR->getPostIncExpr(*this), N))) {
1025            // Cache knowledge of AR NW, which is propagated to this AddRec.
1026            // Negative step causes unsigned wrap, but it still can't self-wrap.
1027            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1028            // Return the expression with the addrec on the outside.
1029            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1030                                 getSignExtendExpr(Step, Ty),
1031                                 L, AR->getNoWrapFlags());
1032          }
1033        }
1034      }
1035    }
1036
1037  // The cast wasn't folded; create an explicit cast node.
1038  // Recompute the insert position, as it may have been invalidated.
1039  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1040  SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1041                                                   Op, Ty);
1042  UniqueSCEVs.InsertNode(S, IP);
1043  return S;
1044}
1045
1046// Get the limit of a recurrence such that incrementing by Step cannot cause
1047// signed overflow as long as the value of the recurrence within the loop does
1048// not exceed this limit before incrementing.
1049static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1050                                           ICmpInst::Predicate *Pred,
1051                                           ScalarEvolution *SE) {
1052  unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1053  if (SE->isKnownPositive(Step)) {
1054    *Pred = ICmpInst::ICMP_SLT;
1055    return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1056                           SE->getSignedRange(Step).getSignedMax());
1057  }
1058  if (SE->isKnownNegative(Step)) {
1059    *Pred = ICmpInst::ICMP_SGT;
1060    return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1061                       SE->getSignedRange(Step).getSignedMin());
1062  }
1063  return 0;
1064}
1065
1066// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1067// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1068// or postincrement sibling. This allows normalizing a sign extended AddRec as
1069// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1070// result, the expression "Step + sext(PreIncAR)" is congruent with
1071// "sext(PostIncAR)"
1072static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
1073                                            Type *Ty,
1074                                            ScalarEvolution *SE) {
1075  const Loop *L = AR->getLoop();
1076  const SCEV *Start = AR->getStart();
1077  const SCEV *Step = AR->getStepRecurrence(*SE);
1078
1079  // Check for a simple looking step prior to loop entry.
1080  const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1081  if (!SA)
1082    return 0;
1083
1084  // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1085  // subtraction is expensive. For this purpose, perform a quick and dirty
1086  // difference, by checking for Step in the operand list.
1087  SmallVector<const SCEV *, 4> DiffOps;
1088  for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end();
1089       I != E; ++I) {
1090    if (*I != Step)
1091      DiffOps.push_back(*I);
1092  }
1093  if (DiffOps.size() == SA->getNumOperands())
1094    return 0;
1095
1096  // This is a postinc AR. Check for overflow on the preinc recurrence using the
1097  // same three conditions that getSignExtendedExpr checks.
1098
1099  // 1. NSW flags on the step increment.
1100  const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
1101  const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1102    SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1103
1104  if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
1105    return PreStart;
1106
1107  // 2. Direct overflow check on the step operation's expression.
1108  unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1109  Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1110  const SCEV *OperandExtendedStart =
1111    SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1112                   SE->getSignExtendExpr(Step, WideTy));
1113  if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1114    // Cache knowledge of PreAR NSW.
1115    if (PreAR)
1116      const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1117    // FIXME: this optimization needs a unit test
1118    DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1119    return PreStart;
1120  }
1121
1122  // 3. Loop precondition.
1123  ICmpInst::Predicate Pred;
1124  const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1125
1126  if (OverflowLimit &&
1127      SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
1128    return PreStart;
1129  }
1130  return 0;
1131}
1132
1133// Get the normalized sign-extended expression for this AddRec's Start.
1134static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
1135                                            Type *Ty,
1136                                            ScalarEvolution *SE) {
1137  const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1138  if (!PreStart)
1139    return SE->getSignExtendExpr(AR->getStart(), Ty);
1140
1141  return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1142                        SE->getSignExtendExpr(PreStart, Ty));
1143}
1144
1145const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1146                                               Type *Ty) {
1147  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1148         "This is not an extending conversion!");
1149  assert(isSCEVable(Ty) &&
1150         "This is not a conversion to a SCEVable type!");
1151  Ty = getEffectiveSCEVType(Ty);
1152
1153  // Fold if the operand is constant.
1154  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1155    return getConstant(
1156      cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1157                                              getEffectiveSCEVType(Ty))));
1158
1159  // sext(sext(x)) --> sext(x)
1160  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1161    return getSignExtendExpr(SS->getOperand(), Ty);
1162
1163  // sext(zext(x)) --> zext(x)
1164  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1165    return getZeroExtendExpr(SZ->getOperand(), Ty);
1166
1167  // Before doing any expensive analysis, check to see if we've already
1168  // computed a SCEV for this Op and Ty.
1169  FoldingSetNodeID ID;
1170  ID.AddInteger(scSignExtend);
1171  ID.AddPointer(Op);
1172  ID.AddPointer(Ty);
1173  void *IP = 0;
1174  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1175
1176  // If the input value is provably positive, build a zext instead.
1177  if (isKnownNonNegative(Op))
1178    return getZeroExtendExpr(Op, Ty);
1179
1180  // sext(trunc(x)) --> sext(x) or x or trunc(x)
1181  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1182    // It's possible the bits taken off by the truncate were all sign bits. If
1183    // so, we should be able to simplify this further.
1184    const SCEV *X = ST->getOperand();
1185    ConstantRange CR = getSignedRange(X);
1186    unsigned TruncBits = getTypeSizeInBits(ST->getType());
1187    unsigned NewBits = getTypeSizeInBits(Ty);
1188    if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1189            CR.sextOrTrunc(NewBits)))
1190      return getTruncateOrSignExtend(X, Ty);
1191  }
1192
1193  // If the input value is a chrec scev, and we can prove that the value
1194  // did not overflow the old, smaller, value, we can sign extend all of the
1195  // operands (often constants).  This allows analysis of something like
1196  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1197  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1198    if (AR->isAffine()) {
1199      const SCEV *Start = AR->getStart();
1200      const SCEV *Step = AR->getStepRecurrence(*this);
1201      unsigned BitWidth = getTypeSizeInBits(AR->getType());
1202      const Loop *L = AR->getLoop();
1203
1204      // If we have special knowledge that this addrec won't overflow,
1205      // we don't need to do any further analysis.
1206      if (AR->getNoWrapFlags(SCEV::FlagNSW))
1207        return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1208                             getSignExtendExpr(Step, Ty),
1209                             L, SCEV::FlagNSW);
1210
1211      // Check whether the backedge-taken count is SCEVCouldNotCompute.
1212      // Note that this serves two purposes: It filters out loops that are
1213      // simply not analyzable, and it covers the case where this code is
1214      // being called from within backedge-taken count analysis, such that
1215      // attempting to ask for the backedge-taken count would likely result
1216      // in infinite recursion. In the later case, the analysis code will
1217      // cope with a conservative value, and it will take care to purge
1218      // that value once it has finished.
1219      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1220      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1221        // Manually compute the final value for AR, checking for
1222        // overflow.
1223
1224        // Check whether the backedge-taken count can be losslessly casted to
1225        // the addrec's type. The count is always unsigned.
1226        const SCEV *CastedMaxBECount =
1227          getTruncateOrZeroExtend(MaxBECount, Start->getType());
1228        const SCEV *RecastedMaxBECount =
1229          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1230        if (MaxBECount == RecastedMaxBECount) {
1231          Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1232          // Check whether Start+Step*MaxBECount has no signed overflow.
1233          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1234          const SCEV *Add = getAddExpr(Start, SMul);
1235          const SCEV *OperandExtendedAdd =
1236            getAddExpr(getSignExtendExpr(Start, WideTy),
1237                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1238                                  getSignExtendExpr(Step, WideTy)));
1239          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) {
1240            // Cache knowledge of AR NSW, which is propagated to this AddRec.
1241            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1242            // Return the expression with the addrec on the outside.
1243            return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1244                                 getSignExtendExpr(Step, Ty),
1245                                 L, AR->getNoWrapFlags());
1246          }
1247          // Similar to above, only this time treat the step value as unsigned.
1248          // This covers loops that count up with an unsigned step.
1249          const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
1250          Add = getAddExpr(Start, UMul);
1251          OperandExtendedAdd =
1252            getAddExpr(getSignExtendExpr(Start, WideTy),
1253                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1254                                  getZeroExtendExpr(Step, WideTy)));
1255          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) {
1256            // Cache knowledge of AR NSW, which is propagated to this AddRec.
1257            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1258            // Return the expression with the addrec on the outside.
1259            return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1260                                 getZeroExtendExpr(Step, Ty),
1261                                 L, AR->getNoWrapFlags());
1262          }
1263        }
1264
1265        // If the backedge is guarded by a comparison with the pre-inc value
1266        // the addrec is safe. Also, if the entry is guarded by a comparison
1267        // with the start value and the backedge is guarded by a comparison
1268        // with the post-inc value, the addrec is safe.
1269        ICmpInst::Predicate Pred;
1270        const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1271        if (OverflowLimit &&
1272            (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1273             (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1274              isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1275                                          OverflowLimit)))) {
1276          // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1277          const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1278          return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1279                               getSignExtendExpr(Step, Ty),
1280                               L, AR->getNoWrapFlags());
1281        }
1282      }
1283    }
1284
1285  // The cast wasn't folded; create an explicit cast node.
1286  // Recompute the insert position, as it may have been invalidated.
1287  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1288  SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1289                                                   Op, Ty);
1290  UniqueSCEVs.InsertNode(S, IP);
1291  return S;
1292}
1293
1294/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1295/// unspecified bits out to the given type.
1296///
1297const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1298                                              Type *Ty) {
1299  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1300         "This is not an extending conversion!");
1301  assert(isSCEVable(Ty) &&
1302         "This is not a conversion to a SCEVable type!");
1303  Ty = getEffectiveSCEVType(Ty);
1304
1305  // Sign-extend negative constants.
1306  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1307    if (SC->getValue()->getValue().isNegative())
1308      return getSignExtendExpr(Op, Ty);
1309
1310  // Peel off a truncate cast.
1311  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1312    const SCEV *NewOp = T->getOperand();
1313    if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1314      return getAnyExtendExpr(NewOp, Ty);
1315    return getTruncateOrNoop(NewOp, Ty);
1316  }
1317
1318  // Next try a zext cast. If the cast is folded, use it.
1319  const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1320  if (!isa<SCEVZeroExtendExpr>(ZExt))
1321    return ZExt;
1322
1323  // Next try a sext cast. If the cast is folded, use it.
1324  const SCEV *SExt = getSignExtendExpr(Op, Ty);
1325  if (!isa<SCEVSignExtendExpr>(SExt))
1326    return SExt;
1327
1328  // Force the cast to be folded into the operands of an addrec.
1329  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1330    SmallVector<const SCEV *, 4> Ops;
1331    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1332         I != E; ++I)
1333      Ops.push_back(getAnyExtendExpr(*I, Ty));
1334    return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
1335  }
1336
1337  // As a special case, fold anyext(undef) to undef. We don't want to
1338  // know too much about SCEVUnknowns, but this special case is handy
1339  // and harmless.
1340  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1341    if (isa<UndefValue>(U->getValue()))
1342      return getSCEV(UndefValue::get(Ty));
1343
1344  // If the expression is obviously signed, use the sext cast value.
1345  if (isa<SCEVSMaxExpr>(Op))
1346    return SExt;
1347
1348  // Absent any other information, use the zext cast value.
1349  return ZExt;
1350}
1351
1352/// CollectAddOperandsWithScales - Process the given Ops list, which is
1353/// a list of operands to be added under the given scale, update the given
1354/// map. This is a helper function for getAddRecExpr. As an example of
1355/// what it does, given a sequence of operands that would form an add
1356/// expression like this:
1357///
1358///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1359///
1360/// where A and B are constants, update the map with these values:
1361///
1362///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1363///
1364/// and add 13 + A*B*29 to AccumulatedConstant.
1365/// This will allow getAddRecExpr to produce this:
1366///
1367///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1368///
1369/// This form often exposes folding opportunities that are hidden in
1370/// the original operand list.
1371///
1372/// Return true iff it appears that any interesting folding opportunities
1373/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1374/// the common case where no interesting opportunities are present, and
1375/// is also used as a check to avoid infinite recursion.
1376///
1377static bool
1378CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1379                             SmallVector<const SCEV *, 8> &NewOps,
1380                             APInt &AccumulatedConstant,
1381                             const SCEV *const *Ops, size_t NumOperands,
1382                             const APInt &Scale,
1383                             ScalarEvolution &SE) {
1384  bool Interesting = false;
1385
1386  // Iterate over the add operands. They are sorted, with constants first.
1387  unsigned i = 0;
1388  while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1389    ++i;
1390    // Pull a buried constant out to the outside.
1391    if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1392      Interesting = true;
1393    AccumulatedConstant += Scale * C->getValue()->getValue();
1394  }
1395
1396  // Next comes everything else. We're especially interested in multiplies
1397  // here, but they're in the middle, so just visit the rest with one loop.
1398  for (; i != NumOperands; ++i) {
1399    const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1400    if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1401      APInt NewScale =
1402        Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1403      if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1404        // A multiplication of a constant with another add; recurse.
1405        const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1406        Interesting |=
1407          CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1408                                       Add->op_begin(), Add->getNumOperands(),
1409                                       NewScale, SE);
1410      } else {
1411        // A multiplication of a constant with some other value. Update
1412        // the map.
1413        SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1414        const SCEV *Key = SE.getMulExpr(MulOps);
1415        std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1416          M.insert(std::make_pair(Key, NewScale));
1417        if (Pair.second) {
1418          NewOps.push_back(Pair.first->first);
1419        } else {
1420          Pair.first->second += NewScale;
1421          // The map already had an entry for this value, which may indicate
1422          // a folding opportunity.
1423          Interesting = true;
1424        }
1425      }
1426    } else {
1427      // An ordinary operand. Update the map.
1428      std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1429        M.insert(std::make_pair(Ops[i], Scale));
1430      if (Pair.second) {
1431        NewOps.push_back(Pair.first->first);
1432      } else {
1433        Pair.first->second += Scale;
1434        // The map already had an entry for this value, which may indicate
1435        // a folding opportunity.
1436        Interesting = true;
1437      }
1438    }
1439  }
1440
1441  return Interesting;
1442}
1443
1444namespace {
1445  struct APIntCompare {
1446    bool operator()(const APInt &LHS, const APInt &RHS) const {
1447      return LHS.ult(RHS);
1448    }
1449  };
1450}
1451
1452/// getAddExpr - Get a canonical add expression, or something simpler if
1453/// possible.
1454const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1455                                        SCEV::NoWrapFlags Flags) {
1456  assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1457         "only nuw or nsw allowed");
1458  assert(!Ops.empty() && "Cannot get empty add!");
1459  if (Ops.size() == 1) return Ops[0];
1460#ifndef NDEBUG
1461  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1462  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1463    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1464           "SCEVAddExpr operand types don't match!");
1465#endif
1466
1467  // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1468  // And vice-versa.
1469  int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1470  SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1471  if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
1472    bool All = true;
1473    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1474         E = Ops.end(); I != E; ++I)
1475      if (!isKnownNonNegative(*I)) {
1476        All = false;
1477        break;
1478      }
1479    if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1480  }
1481
1482  // Sort by complexity, this groups all similar expression types together.
1483  GroupByComplexity(Ops, LI);
1484
1485  // If there are any constants, fold them together.
1486  unsigned Idx = 0;
1487  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1488    ++Idx;
1489    assert(Idx < Ops.size());
1490    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1491      // We found two constants, fold them together!
1492      Ops[0] = getConstant(LHSC->getValue()->getValue() +
1493                           RHSC->getValue()->getValue());
1494      if (Ops.size() == 2) return Ops[0];
1495      Ops.erase(Ops.begin()+1);  // Erase the folded element
1496      LHSC = cast<SCEVConstant>(Ops[0]);
1497    }
1498
1499    // If we are left with a constant zero being added, strip it off.
1500    if (LHSC->getValue()->isZero()) {
1501      Ops.erase(Ops.begin());
1502      --Idx;
1503    }
1504
1505    if (Ops.size() == 1) return Ops[0];
1506  }
1507
1508  // Okay, check to see if the same value occurs in the operand list more than
1509  // once.  If so, merge them together into an multiply expression.  Since we
1510  // sorted the list, these values are required to be adjacent.
1511  Type *Ty = Ops[0]->getType();
1512  bool FoundMatch = false;
1513  for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
1514    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
1515      // Scan ahead to count how many equal operands there are.
1516      unsigned Count = 2;
1517      while (i+Count != e && Ops[i+Count] == Ops[i])
1518        ++Count;
1519      // Merge the values into a multiply.
1520      const SCEV *Scale = getConstant(Ty, Count);
1521      const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1522      if (Ops.size() == Count)
1523        return Mul;
1524      Ops[i] = Mul;
1525      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
1526      --i; e -= Count - 1;
1527      FoundMatch = true;
1528    }
1529  if (FoundMatch)
1530    return getAddExpr(Ops, Flags);
1531
1532  // Check for truncates. If all the operands are truncated from the same
1533  // type, see if factoring out the truncate would permit the result to be
1534  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1535  // if the contents of the resulting outer trunc fold to something simple.
1536  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1537    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1538    Type *DstType = Trunc->getType();
1539    Type *SrcType = Trunc->getOperand()->getType();
1540    SmallVector<const SCEV *, 8> LargeOps;
1541    bool Ok = true;
1542    // Check all the operands to see if they can be represented in the
1543    // source type of the truncate.
1544    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1545      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1546        if (T->getOperand()->getType() != SrcType) {
1547          Ok = false;
1548          break;
1549        }
1550        LargeOps.push_back(T->getOperand());
1551      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1552        LargeOps.push_back(getAnyExtendExpr(C, SrcType));
1553      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1554        SmallVector<const SCEV *, 8> LargeMulOps;
1555        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1556          if (const SCEVTruncateExpr *T =
1557                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1558            if (T->getOperand()->getType() != SrcType) {
1559              Ok = false;
1560              break;
1561            }
1562            LargeMulOps.push_back(T->getOperand());
1563          } else if (const SCEVConstant *C =
1564                       dyn_cast<SCEVConstant>(M->getOperand(j))) {
1565            LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
1566          } else {
1567            Ok = false;
1568            break;
1569          }
1570        }
1571        if (Ok)
1572          LargeOps.push_back(getMulExpr(LargeMulOps));
1573      } else {
1574        Ok = false;
1575        break;
1576      }
1577    }
1578    if (Ok) {
1579      // Evaluate the expression in the larger type.
1580      const SCEV *Fold = getAddExpr(LargeOps, Flags);
1581      // If it folds to something simple, use it. Otherwise, don't.
1582      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1583        return getTruncateExpr(Fold, DstType);
1584    }
1585  }
1586
1587  // Skip past any other cast SCEVs.
1588  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1589    ++Idx;
1590
1591  // If there are add operands they would be next.
1592  if (Idx < Ops.size()) {
1593    bool DeletedAdd = false;
1594    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1595      // If we have an add, expand the add operands onto the end of the operands
1596      // list.
1597      Ops.erase(Ops.begin()+Idx);
1598      Ops.append(Add->op_begin(), Add->op_end());
1599      DeletedAdd = true;
1600    }
1601
1602    // If we deleted at least one add, we added operands to the end of the list,
1603    // and they are not necessarily sorted.  Recurse to resort and resimplify
1604    // any operands we just acquired.
1605    if (DeletedAdd)
1606      return getAddExpr(Ops);
1607  }
1608
1609  // Skip over the add expression until we get to a multiply.
1610  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1611    ++Idx;
1612
1613  // Check to see if there are any folding opportunities present with
1614  // operands multiplied by constant values.
1615  if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1616    uint64_t BitWidth = getTypeSizeInBits(Ty);
1617    DenseMap<const SCEV *, APInt> M;
1618    SmallVector<const SCEV *, 8> NewOps;
1619    APInt AccumulatedConstant(BitWidth, 0);
1620    if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1621                                     Ops.data(), Ops.size(),
1622                                     APInt(BitWidth, 1), *this)) {
1623      // Some interesting folding opportunity is present, so its worthwhile to
1624      // re-generate the operands list. Group the operands by constant scale,
1625      // to avoid multiplying by the same constant scale multiple times.
1626      std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1627      for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
1628           E = NewOps.end(); I != E; ++I)
1629        MulOpLists[M.find(*I)->second].push_back(*I);
1630      // Re-generate the operands list.
1631      Ops.clear();
1632      if (AccumulatedConstant != 0)
1633        Ops.push_back(getConstant(AccumulatedConstant));
1634      for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1635           I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1636        if (I->first != 0)
1637          Ops.push_back(getMulExpr(getConstant(I->first),
1638                                   getAddExpr(I->second)));
1639      if (Ops.empty())
1640        return getConstant(Ty, 0);
1641      if (Ops.size() == 1)
1642        return Ops[0];
1643      return getAddExpr(Ops);
1644    }
1645  }
1646
1647  // If we are adding something to a multiply expression, make sure the
1648  // something is not already an operand of the multiply.  If so, merge it into
1649  // the multiply.
1650  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1651    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1652    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1653      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1654      if (isa<SCEVConstant>(MulOpSCEV))
1655        continue;
1656      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1657        if (MulOpSCEV == Ops[AddOp]) {
1658          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1659          const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1660          if (Mul->getNumOperands() != 2) {
1661            // If the multiply has more than two operands, we must get the
1662            // Y*Z term.
1663            SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1664                                                Mul->op_begin()+MulOp);
1665            MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1666            InnerMul = getMulExpr(MulOps);
1667          }
1668          const SCEV *One = getConstant(Ty, 1);
1669          const SCEV *AddOne = getAddExpr(One, InnerMul);
1670          const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
1671          if (Ops.size() == 2) return OuterMul;
1672          if (AddOp < Idx) {
1673            Ops.erase(Ops.begin()+AddOp);
1674            Ops.erase(Ops.begin()+Idx-1);
1675          } else {
1676            Ops.erase(Ops.begin()+Idx);
1677            Ops.erase(Ops.begin()+AddOp-1);
1678          }
1679          Ops.push_back(OuterMul);
1680          return getAddExpr(Ops);
1681        }
1682
1683      // Check this multiply against other multiplies being added together.
1684      for (unsigned OtherMulIdx = Idx+1;
1685           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1686           ++OtherMulIdx) {
1687        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1688        // If MulOp occurs in OtherMul, we can fold the two multiplies
1689        // together.
1690        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1691             OMulOp != e; ++OMulOp)
1692          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1693            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1694            const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
1695            if (Mul->getNumOperands() != 2) {
1696              SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1697                                                  Mul->op_begin()+MulOp);
1698              MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1699              InnerMul1 = getMulExpr(MulOps);
1700            }
1701            const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1702            if (OtherMul->getNumOperands() != 2) {
1703              SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1704                                                  OtherMul->op_begin()+OMulOp);
1705              MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
1706              InnerMul2 = getMulExpr(MulOps);
1707            }
1708            const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1709            const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1710            if (Ops.size() == 2) return OuterMul;
1711            Ops.erase(Ops.begin()+Idx);
1712            Ops.erase(Ops.begin()+OtherMulIdx-1);
1713            Ops.push_back(OuterMul);
1714            return getAddExpr(Ops);
1715          }
1716      }
1717    }
1718  }
1719
1720  // If there are any add recurrences in the operands list, see if any other
1721  // added values are loop invariant.  If so, we can fold them into the
1722  // recurrence.
1723  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1724    ++Idx;
1725
1726  // Scan over all recurrences, trying to fold loop invariants into them.
1727  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1728    // Scan all of the other operands to this add and add them to the vector if
1729    // they are loop invariant w.r.t. the recurrence.
1730    SmallVector<const SCEV *, 8> LIOps;
1731    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1732    const Loop *AddRecLoop = AddRec->getLoop();
1733    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1734      if (isLoopInvariant(Ops[i], AddRecLoop)) {
1735        LIOps.push_back(Ops[i]);
1736        Ops.erase(Ops.begin()+i);
1737        --i; --e;
1738      }
1739
1740    // If we found some loop invariants, fold them into the recurrence.
1741    if (!LIOps.empty()) {
1742      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1743      LIOps.push_back(AddRec->getStart());
1744
1745      SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1746                                             AddRec->op_end());
1747      AddRecOps[0] = getAddExpr(LIOps);
1748
1749      // Build the new addrec. Propagate the NUW and NSW flags if both the
1750      // outer add and the inner addrec are guaranteed to have no overflow.
1751      // Always propagate NW.
1752      Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
1753      const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
1754
1755      // If all of the other operands were loop invariant, we are done.
1756      if (Ops.size() == 1) return NewRec;
1757
1758      // Otherwise, add the folded AddRec by the non-invariant parts.
1759      for (unsigned i = 0;; ++i)
1760        if (Ops[i] == AddRec) {
1761          Ops[i] = NewRec;
1762          break;
1763        }
1764      return getAddExpr(Ops);
1765    }
1766
1767    // Okay, if there weren't any loop invariants to be folded, check to see if
1768    // there are multiple AddRec's with the same loop induction variable being
1769    // added together.  If so, we can fold them.
1770    for (unsigned OtherIdx = Idx+1;
1771         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1772         ++OtherIdx)
1773      if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1774        // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
1775        SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1776                                               AddRec->op_end());
1777        for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1778             ++OtherIdx)
1779          if (const SCEVAddRecExpr *OtherAddRec =
1780                dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1781            if (OtherAddRec->getLoop() == AddRecLoop) {
1782              for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1783                   i != e; ++i) {
1784                if (i >= AddRecOps.size()) {
1785                  AddRecOps.append(OtherAddRec->op_begin()+i,
1786                                   OtherAddRec->op_end());
1787                  break;
1788                }
1789                AddRecOps[i] = getAddExpr(AddRecOps[i],
1790                                          OtherAddRec->getOperand(i));
1791              }
1792              Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1793            }
1794        // Step size has changed, so we cannot guarantee no self-wraparound.
1795        Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
1796        return getAddExpr(Ops);
1797      }
1798
1799    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1800    // next one.
1801  }
1802
1803  // Okay, it looks like we really DO need an add expr.  Check to see if we
1804  // already have one, otherwise create a new one.
1805  FoldingSetNodeID ID;
1806  ID.AddInteger(scAddExpr);
1807  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1808    ID.AddPointer(Ops[i]);
1809  void *IP = 0;
1810  SCEVAddExpr *S =
1811    static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1812  if (!S) {
1813    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1814    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1815    S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1816                                        O, Ops.size());
1817    UniqueSCEVs.InsertNode(S, IP);
1818  }
1819  S->setNoWrapFlags(Flags);
1820  return S;
1821}
1822
1823static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
1824  uint64_t k = i*j;
1825  if (j > 1 && k / j != i) Overflow = true;
1826  return k;
1827}
1828
1829/// Compute the result of "n choose k", the binomial coefficient.  If an
1830/// intermediate computation overflows, Overflow will be set and the return will
1831/// be garbage. Overflow is not cleared on absense of overflow.
1832static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
1833  // We use the multiplicative formula:
1834  //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
1835  // At each iteration, we take the n-th term of the numeral and divide by the
1836  // (k-n)th term of the denominator.  This division will always produce an
1837  // integral result, and helps reduce the chance of overflow in the
1838  // intermediate computations. However, we can still overflow even when the
1839  // final result would fit.
1840
1841  if (n == 0 || n == k) return 1;
1842  if (k > n) return 0;
1843
1844  if (k > n/2)
1845    k = n-k;
1846
1847  uint64_t r = 1;
1848  for (uint64_t i = 1; i <= k; ++i) {
1849    r = umul_ov(r, n-(i-1), Overflow);
1850    r /= i;
1851  }
1852  return r;
1853}
1854
1855/// getMulExpr - Get a canonical multiply expression, or something simpler if
1856/// possible.
1857const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1858                                        SCEV::NoWrapFlags Flags) {
1859  assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
1860         "only nuw or nsw allowed");
1861  assert(!Ops.empty() && "Cannot get empty mul!");
1862  if (Ops.size() == 1) return Ops[0];
1863#ifndef NDEBUG
1864  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1865  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1866    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1867           "SCEVMulExpr operand types don't match!");
1868#endif
1869
1870  // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1871  // And vice-versa.
1872  int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1873  SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1874  if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
1875    bool All = true;
1876    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1877         E = Ops.end(); I != E; ++I)
1878      if (!isKnownNonNegative(*I)) {
1879        All = false;
1880        break;
1881      }
1882    if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1883  }
1884
1885  // Sort by complexity, this groups all similar expression types together.
1886  GroupByComplexity(Ops, LI);
1887
1888  // If there are any constants, fold them together.
1889  unsigned Idx = 0;
1890  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1891
1892    // C1*(C2+V) -> C1*C2 + C1*V
1893    if (Ops.size() == 2)
1894      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1895        if (Add->getNumOperands() == 2 &&
1896            isa<SCEVConstant>(Add->getOperand(0)))
1897          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1898                            getMulExpr(LHSC, Add->getOperand(1)));
1899
1900    ++Idx;
1901    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1902      // We found two constants, fold them together!
1903      ConstantInt *Fold = ConstantInt::get(getContext(),
1904                                           LHSC->getValue()->getValue() *
1905                                           RHSC->getValue()->getValue());
1906      Ops[0] = getConstant(Fold);
1907      Ops.erase(Ops.begin()+1);  // Erase the folded element
1908      if (Ops.size() == 1) return Ops[0];
1909      LHSC = cast<SCEVConstant>(Ops[0]);
1910    }
1911
1912    // If we are left with a constant one being multiplied, strip it off.
1913    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1914      Ops.erase(Ops.begin());
1915      --Idx;
1916    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1917      // If we have a multiply of zero, it will always be zero.
1918      return Ops[0];
1919    } else if (Ops[0]->isAllOnesValue()) {
1920      // If we have a mul by -1 of an add, try distributing the -1 among the
1921      // add operands.
1922      if (Ops.size() == 2) {
1923        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1924          SmallVector<const SCEV *, 4> NewOps;
1925          bool AnyFolded = false;
1926          for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
1927                 E = Add->op_end(); I != E; ++I) {
1928            const SCEV *Mul = getMulExpr(Ops[0], *I);
1929            if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1930            NewOps.push_back(Mul);
1931          }
1932          if (AnyFolded)
1933            return getAddExpr(NewOps);
1934        }
1935        else if (const SCEVAddRecExpr *
1936                 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
1937          // Negation preserves a recurrence's no self-wrap property.
1938          SmallVector<const SCEV *, 4> Operands;
1939          for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
1940                 E = AddRec->op_end(); I != E; ++I) {
1941            Operands.push_back(getMulExpr(Ops[0], *I));
1942          }
1943          return getAddRecExpr(Operands, AddRec->getLoop(),
1944                               AddRec->getNoWrapFlags(SCEV::FlagNW));
1945        }
1946      }
1947    }
1948
1949    if (Ops.size() == 1)
1950      return Ops[0];
1951  }
1952
1953  // Skip over the add expression until we get to a multiply.
1954  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1955    ++Idx;
1956
1957  // If there are mul operands inline them all into this expression.
1958  if (Idx < Ops.size()) {
1959    bool DeletedMul = false;
1960    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1961      // If we have an mul, expand the mul operands onto the end of the operands
1962      // list.
1963      Ops.erase(Ops.begin()+Idx);
1964      Ops.append(Mul->op_begin(), Mul->op_end());
1965      DeletedMul = true;
1966    }
1967
1968    // If we deleted at least one mul, we added operands to the end of the list,
1969    // and they are not necessarily sorted.  Recurse to resort and resimplify
1970    // any operands we just acquired.
1971    if (DeletedMul)
1972      return getMulExpr(Ops);
1973  }
1974
1975  // If there are any add recurrences in the operands list, see if any other
1976  // added values are loop invariant.  If so, we can fold them into the
1977  // recurrence.
1978  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1979    ++Idx;
1980
1981  // Scan over all recurrences, trying to fold loop invariants into them.
1982  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1983    // Scan all of the other operands to this mul and add them to the vector if
1984    // they are loop invariant w.r.t. the recurrence.
1985    SmallVector<const SCEV *, 8> LIOps;
1986    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1987    const Loop *AddRecLoop = AddRec->getLoop();
1988    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1989      if (isLoopInvariant(Ops[i], AddRecLoop)) {
1990        LIOps.push_back(Ops[i]);
1991        Ops.erase(Ops.begin()+i);
1992        --i; --e;
1993      }
1994
1995    // If we found some loop invariants, fold them into the recurrence.
1996    if (!LIOps.empty()) {
1997      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1998      SmallVector<const SCEV *, 4> NewOps;
1999      NewOps.reserve(AddRec->getNumOperands());
2000      const SCEV *Scale = getMulExpr(LIOps);
2001      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2002        NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
2003
2004      // Build the new addrec. Propagate the NUW and NSW flags if both the
2005      // outer mul and the inner addrec are guaranteed to have no overflow.
2006      //
2007      // No self-wrap cannot be guaranteed after changing the step size, but
2008      // will be inferred if either NUW or NSW is true.
2009      Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2010      const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
2011
2012      // If all of the other operands were loop invariant, we are done.
2013      if (Ops.size() == 1) return NewRec;
2014
2015      // Otherwise, multiply the folded AddRec by the non-invariant parts.
2016      for (unsigned i = 0;; ++i)
2017        if (Ops[i] == AddRec) {
2018          Ops[i] = NewRec;
2019          break;
2020        }
2021      return getMulExpr(Ops);
2022    }
2023
2024    // Okay, if there weren't any loop invariants to be folded, check to see if
2025    // there are multiple AddRec's with the same loop induction variable being
2026    // multiplied together.  If so, we can fold them.
2027    for (unsigned OtherIdx = Idx+1;
2028         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2029         ++OtherIdx) {
2030      if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2031        // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2032        // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2033        //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2034        //   ]]],+,...up to x=2n}.
2035        // Note that the arguments to choose() are always integers with values
2036        // known at compile time, never SCEV objects.
2037        //
2038        // The implementation avoids pointless extra computations when the two
2039        // addrec's are of different length (mathematically, it's equivalent to
2040        // an infinite stream of zeros on the right).
2041        bool OpsModified = false;
2042        for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2043             ++OtherIdx)
2044          if (const SCEVAddRecExpr *OtherAddRec =
2045                dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
2046            if (OtherAddRec->getLoop() == AddRecLoop) {
2047              bool Overflow = false;
2048              Type *Ty = AddRec->getType();
2049              bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2050              SmallVector<const SCEV*, 7> AddRecOps;
2051              for (int x = 0, xe = AddRec->getNumOperands() +
2052                     OtherAddRec->getNumOperands() - 1;
2053                   x != xe && !Overflow; ++x) {
2054                const SCEV *Term = getConstant(Ty, 0);
2055                for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2056                  uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2057                  for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2058                         ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2059                       z < ze && !Overflow; ++z) {
2060                    uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2061                    uint64_t Coeff;
2062                    if (LargerThan64Bits)
2063                      Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2064                    else
2065                      Coeff = Coeff1*Coeff2;
2066                    const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2067                    const SCEV *Term1 = AddRec->getOperand(y-z);
2068                    const SCEV *Term2 = OtherAddRec->getOperand(z);
2069                    Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
2070                  }
2071                }
2072                AddRecOps.push_back(Term);
2073              }
2074              if (!Overflow) {
2075                const SCEV *NewAddRec = getAddRecExpr(AddRecOps,
2076                                                      AddRec->getLoop(),
2077                                                      SCEV::FlagAnyWrap);
2078                if (Ops.size() == 2) return NewAddRec;
2079                Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
2080                Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2081                OpsModified = true;
2082              }
2083            }
2084        if (OpsModified)
2085          return getMulExpr(Ops);
2086      }
2087    }
2088
2089    // Otherwise couldn't fold anything into this recurrence.  Move onto the
2090    // next one.
2091  }
2092
2093  // Okay, it looks like we really DO need an mul expr.  Check to see if we
2094  // already have one, otherwise create a new one.
2095  FoldingSetNodeID ID;
2096  ID.AddInteger(scMulExpr);
2097  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2098    ID.AddPointer(Ops[i]);
2099  void *IP = 0;
2100  SCEVMulExpr *S =
2101    static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2102  if (!S) {
2103    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2104    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2105    S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2106                                        O, Ops.size());
2107    UniqueSCEVs.InsertNode(S, IP);
2108  }
2109  S->setNoWrapFlags(Flags);
2110  return S;
2111}
2112
2113/// getUDivExpr - Get a canonical unsigned division expression, or something
2114/// simpler if possible.
2115const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2116                                         const SCEV *RHS) {
2117  assert(getEffectiveSCEVType(LHS->getType()) ==
2118         getEffectiveSCEVType(RHS->getType()) &&
2119         "SCEVUDivExpr operand types don't match!");
2120
2121  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2122    if (RHSC->getValue()->equalsInt(1))
2123      return LHS;                               // X udiv 1 --> x
2124    // If the denominator is zero, the result of the udiv is undefined. Don't
2125    // try to analyze it, because the resolution chosen here may differ from
2126    // the resolution chosen in other parts of the compiler.
2127    if (!RHSC->getValue()->isZero()) {
2128      // Determine if the division can be folded into the operands of
2129      // its operands.
2130      // TODO: Generalize this to non-constants by using known-bits information.
2131      Type *Ty = LHS->getType();
2132      unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
2133      unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
2134      // For non-power-of-two values, effectively round the value up to the
2135      // nearest power of two.
2136      if (!RHSC->getValue()->getValue().isPowerOf2())
2137        ++MaxShiftAmt;
2138      IntegerType *ExtTy =
2139        IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
2140      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2141        if (const SCEVConstant *Step =
2142            dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2143          // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2144          const APInt &StepInt = Step->getValue()->getValue();
2145          const APInt &DivInt = RHSC->getValue()->getValue();
2146          if (!StepInt.urem(DivInt) &&
2147              getZeroExtendExpr(AR, ExtTy) ==
2148              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2149                            getZeroExtendExpr(Step, ExtTy),
2150                            AR->getLoop(), SCEV::FlagAnyWrap)) {
2151            SmallVector<const SCEV *, 4> Operands;
2152            for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2153              Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
2154            return getAddRecExpr(Operands, AR->getLoop(),
2155                                 SCEV::FlagNW);
2156          }
2157          /// Get a canonical UDivExpr for a recurrence.
2158          /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2159          // We can currently only fold X%N if X is constant.
2160          const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2161          if (StartC && !DivInt.urem(StepInt) &&
2162              getZeroExtendExpr(AR, ExtTy) ==
2163              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2164                            getZeroExtendExpr(Step, ExtTy),
2165                            AR->getLoop(), SCEV::FlagAnyWrap)) {
2166            const APInt &StartInt = StartC->getValue()->getValue();
2167            const APInt &StartRem = StartInt.urem(StepInt);
2168            if (StartRem != 0)
2169              LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2170                                  AR->getLoop(), SCEV::FlagNW);
2171          }
2172        }
2173      // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2174      if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2175        SmallVector<const SCEV *, 4> Operands;
2176        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2177          Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2178        if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2179          // Find an operand that's safely divisible.
2180          for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2181            const SCEV *Op = M->getOperand(i);
2182            const SCEV *Div = getUDivExpr(Op, RHSC);
2183            if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2184              Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2185                                                      M->op_end());
2186              Operands[i] = Div;
2187              return getMulExpr(Operands);
2188            }
2189          }
2190      }
2191      // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2192      if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
2193        SmallVector<const SCEV *, 4> Operands;
2194        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2195          Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2196        if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2197          Operands.clear();
2198          for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2199            const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2200            if (isa<SCEVUDivExpr>(Op) ||
2201                getMulExpr(Op, RHS) != A->getOperand(i))
2202              break;
2203            Operands.push_back(Op);
2204          }
2205          if (Operands.size() == A->getNumOperands())
2206            return getAddExpr(Operands);
2207        }
2208      }
2209
2210      // Fold if both operands are constant.
2211      if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2212        Constant *LHSCV = LHSC->getValue();
2213        Constant *RHSCV = RHSC->getValue();
2214        return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2215                                                                   RHSCV)));
2216      }
2217    }
2218  }
2219
2220  FoldingSetNodeID ID;
2221  ID.AddInteger(scUDivExpr);
2222  ID.AddPointer(LHS);
2223  ID.AddPointer(RHS);
2224  void *IP = 0;
2225  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2226  SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2227                                             LHS, RHS);
2228  UniqueSCEVs.InsertNode(S, IP);
2229  return S;
2230}
2231
2232
2233/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2234/// Simplify the expression as much as possible.
2235const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2236                                           const Loop *L,
2237                                           SCEV::NoWrapFlags Flags) {
2238  SmallVector<const SCEV *, 4> Operands;
2239  Operands.push_back(Start);
2240  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2241    if (StepChrec->getLoop() == L) {
2242      Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2243      return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
2244    }
2245
2246  Operands.push_back(Step);
2247  return getAddRecExpr(Operands, L, Flags);
2248}
2249
2250/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2251/// Simplify the expression as much as possible.
2252const SCEV *
2253ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2254                               const Loop *L, SCEV::NoWrapFlags Flags) {
2255  if (Operands.size() == 1) return Operands[0];
2256#ifndef NDEBUG
2257  Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2258  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2259    assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2260           "SCEVAddRecExpr operand types don't match!");
2261  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2262    assert(isLoopInvariant(Operands[i], L) &&
2263           "SCEVAddRecExpr operand is not loop-invariant!");
2264#endif
2265
2266  if (Operands.back()->isZero()) {
2267    Operands.pop_back();
2268    return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
2269  }
2270
2271  // It's tempting to want to call getMaxBackedgeTakenCount count here and
2272  // use that information to infer NUW and NSW flags. However, computing a
2273  // BE count requires calling getAddRecExpr, so we may not yet have a
2274  // meaningful BE count at this point (and if we don't, we'd be stuck
2275  // with a SCEVCouldNotCompute as the cached BE count).
2276
2277  // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2278  // And vice-versa.
2279  int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2280  SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2281  if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
2282    bool All = true;
2283    for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2284         E = Operands.end(); I != E; ++I)
2285      if (!isKnownNonNegative(*I)) {
2286        All = false;
2287        break;
2288      }
2289    if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2290  }
2291
2292  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2293  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2294    const Loop *NestedLoop = NestedAR->getLoop();
2295    if (L->contains(NestedLoop) ?
2296        (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
2297        (!NestedLoop->contains(L) &&
2298         DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
2299      SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2300                                                  NestedAR->op_end());
2301      Operands[0] = NestedAR->getStart();
2302      // AddRecs require their operands be loop-invariant with respect to their
2303      // loops. Don't perform this transformation if it would break this
2304      // requirement.
2305      bool AllInvariant = true;
2306      for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2307        if (!isLoopInvariant(Operands[i], L)) {
2308          AllInvariant = false;
2309          break;
2310        }
2311      if (AllInvariant) {
2312        // Create a recurrence for the outer loop with the same step size.
2313        //
2314        // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2315        // inner recurrence has the same property.
2316        SCEV::NoWrapFlags OuterFlags =
2317          maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
2318
2319        NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
2320        AllInvariant = true;
2321        for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2322          if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
2323            AllInvariant = false;
2324            break;
2325          }
2326        if (AllInvariant) {
2327          // Ok, both add recurrences are valid after the transformation.
2328          //
2329          // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2330          // the outer recurrence has the same property.
2331          SCEV::NoWrapFlags InnerFlags =
2332            maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
2333          return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2334        }
2335      }
2336      // Reset Operands to its original state.
2337      Operands[0] = NestedAR;
2338    }
2339  }
2340
2341  // Okay, it looks like we really DO need an addrec expr.  Check to see if we
2342  // already have one, otherwise create a new one.
2343  FoldingSetNodeID ID;
2344  ID.AddInteger(scAddRecExpr);
2345  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2346    ID.AddPointer(Operands[i]);
2347  ID.AddPointer(L);
2348  void *IP = 0;
2349  SCEVAddRecExpr *S =
2350    static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2351  if (!S) {
2352    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2353    std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2354    S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2355                                           O, Operands.size(), L);
2356    UniqueSCEVs.InsertNode(S, IP);
2357  }
2358  S->setNoWrapFlags(Flags);
2359  return S;
2360}
2361
2362const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2363                                         const SCEV *RHS) {
2364  SmallVector<const SCEV *, 2> Ops;
2365  Ops.push_back(LHS);
2366  Ops.push_back(RHS);
2367  return getSMaxExpr(Ops);
2368}
2369
2370const SCEV *
2371ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2372  assert(!Ops.empty() && "Cannot get empty smax!");
2373  if (Ops.size() == 1) return Ops[0];
2374#ifndef NDEBUG
2375  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2376  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2377    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2378           "SCEVSMaxExpr operand types don't match!");
2379#endif
2380
2381  // Sort by complexity, this groups all similar expression types together.
2382  GroupByComplexity(Ops, LI);
2383
2384  // If there are any constants, fold them together.
2385  unsigned Idx = 0;
2386  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2387    ++Idx;
2388    assert(Idx < Ops.size());
2389    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2390      // We found two constants, fold them together!
2391      ConstantInt *Fold = ConstantInt::get(getContext(),
2392                              APIntOps::smax(LHSC->getValue()->getValue(),
2393                                             RHSC->getValue()->getValue()));
2394      Ops[0] = getConstant(Fold);
2395      Ops.erase(Ops.begin()+1);  // Erase the folded element
2396      if (Ops.size() == 1) return Ops[0];
2397      LHSC = cast<SCEVConstant>(Ops[0]);
2398    }
2399
2400    // If we are left with a constant minimum-int, strip it off.
2401    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2402      Ops.erase(Ops.begin());
2403      --Idx;
2404    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2405      // If we have an smax with a constant maximum-int, it will always be
2406      // maximum-int.
2407      return Ops[0];
2408    }
2409
2410    if (Ops.size() == 1) return Ops[0];
2411  }
2412
2413  // Find the first SMax
2414  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2415    ++Idx;
2416
2417  // Check to see if one of the operands is an SMax. If so, expand its operands
2418  // onto our operand list, and recurse to simplify.
2419  if (Idx < Ops.size()) {
2420    bool DeletedSMax = false;
2421    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
2422      Ops.erase(Ops.begin()+Idx);
2423      Ops.append(SMax->op_begin(), SMax->op_end());
2424      DeletedSMax = true;
2425    }
2426
2427    if (DeletedSMax)
2428      return getSMaxExpr(Ops);
2429  }
2430
2431  // Okay, check to see if the same value occurs in the operand list twice.  If
2432  // so, delete one.  Since we sorted the list, these values are required to
2433  // be adjacent.
2434  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2435    //  X smax Y smax Y  -->  X smax Y
2436    //  X smax Y         -->  X, if X is always greater than Y
2437    if (Ops[i] == Ops[i+1] ||
2438        isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2439      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2440      --i; --e;
2441    } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
2442      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2443      --i; --e;
2444    }
2445
2446  if (Ops.size() == 1) return Ops[0];
2447
2448  assert(!Ops.empty() && "Reduced smax down to nothing!");
2449
2450  // Okay, it looks like we really DO need an smax expr.  Check to see if we
2451  // already have one, otherwise create a new one.
2452  FoldingSetNodeID ID;
2453  ID.AddInteger(scSMaxExpr);
2454  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2455    ID.AddPointer(Ops[i]);
2456  void *IP = 0;
2457  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2458  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2459  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2460  SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2461                                             O, Ops.size());
2462  UniqueSCEVs.InsertNode(S, IP);
2463  return S;
2464}
2465
2466const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2467                                         const SCEV *RHS) {
2468  SmallVector<const SCEV *, 2> Ops;
2469  Ops.push_back(LHS);
2470  Ops.push_back(RHS);
2471  return getUMaxExpr(Ops);
2472}
2473
2474const SCEV *
2475ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2476  assert(!Ops.empty() && "Cannot get empty umax!");
2477  if (Ops.size() == 1) return Ops[0];
2478#ifndef NDEBUG
2479  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2480  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2481    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2482           "SCEVUMaxExpr operand types don't match!");
2483#endif
2484
2485  // Sort by complexity, this groups all similar expression types together.
2486  GroupByComplexity(Ops, LI);
2487
2488  // If there are any constants, fold them together.
2489  unsigned Idx = 0;
2490  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2491    ++Idx;
2492    assert(Idx < Ops.size());
2493    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2494      // We found two constants, fold them together!
2495      ConstantInt *Fold = ConstantInt::get(getContext(),
2496                              APIntOps::umax(LHSC->getValue()->getValue(),
2497                                             RHSC->getValue()->getValue()));
2498      Ops[0] = getConstant(Fold);
2499      Ops.erase(Ops.begin()+1);  // Erase the folded element
2500      if (Ops.size() == 1) return Ops[0];
2501      LHSC = cast<SCEVConstant>(Ops[0]);
2502    }
2503
2504    // If we are left with a constant minimum-int, strip it off.
2505    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2506      Ops.erase(Ops.begin());
2507      --Idx;
2508    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2509      // If we have an umax with a constant maximum-int, it will always be
2510      // maximum-int.
2511      return Ops[0];
2512    }
2513
2514    if (Ops.size() == 1) return Ops[0];
2515  }
2516
2517  // Find the first UMax
2518  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2519    ++Idx;
2520
2521  // Check to see if one of the operands is a UMax. If so, expand its operands
2522  // onto our operand list, and recurse to simplify.
2523  if (Idx < Ops.size()) {
2524    bool DeletedUMax = false;
2525    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
2526      Ops.erase(Ops.begin()+Idx);
2527      Ops.append(UMax->op_begin(), UMax->op_end());
2528      DeletedUMax = true;
2529    }
2530
2531    if (DeletedUMax)
2532      return getUMaxExpr(Ops);
2533  }
2534
2535  // Okay, check to see if the same value occurs in the operand list twice.  If
2536  // so, delete one.  Since we sorted the list, these values are required to
2537  // be adjacent.
2538  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2539    //  X umax Y umax Y  -->  X umax Y
2540    //  X umax Y         -->  X, if X is always greater than Y
2541    if (Ops[i] == Ops[i+1] ||
2542        isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2543      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2544      --i; --e;
2545    } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
2546      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2547      --i; --e;
2548    }
2549
2550  if (Ops.size() == 1) return Ops[0];
2551
2552  assert(!Ops.empty() && "Reduced umax down to nothing!");
2553
2554  // Okay, it looks like we really DO need a umax expr.  Check to see if we
2555  // already have one, otherwise create a new one.
2556  FoldingSetNodeID ID;
2557  ID.AddInteger(scUMaxExpr);
2558  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2559    ID.AddPointer(Ops[i]);
2560  void *IP = 0;
2561  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2562  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2563  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2564  SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2565                                             O, Ops.size());
2566  UniqueSCEVs.InsertNode(S, IP);
2567  return S;
2568}
2569
2570const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2571                                         const SCEV *RHS) {
2572  // ~smax(~x, ~y) == smin(x, y).
2573  return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2574}
2575
2576const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2577                                         const SCEV *RHS) {
2578  // ~umax(~x, ~y) == umin(x, y)
2579  return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2580}
2581
2582const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy) {
2583  // If we have TargetData, we can bypass creating a target-independent
2584  // constant expression and then folding it back into a ConstantInt.
2585  // This is just a compile-time optimization.
2586  if (TD)
2587    return getConstant(TD->getIntPtrType(getContext()),
2588                       TD->getTypeAllocSize(AllocTy));
2589
2590  Constant *C = ConstantExpr::getSizeOf(AllocTy);
2591  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2592    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2593      C = Folded;
2594  Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2595  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2596}
2597
2598const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) {
2599  Constant *C = ConstantExpr::getAlignOf(AllocTy);
2600  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2601    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2602      C = Folded;
2603  Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2604  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2605}
2606
2607const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy,
2608                                             unsigned FieldNo) {
2609  // If we have TargetData, we can bypass creating a target-independent
2610  // constant expression and then folding it back into a ConstantInt.
2611  // This is just a compile-time optimization.
2612  if (TD)
2613    return getConstant(TD->getIntPtrType(getContext()),
2614                       TD->getStructLayout(STy)->getElementOffset(FieldNo));
2615
2616  Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2617  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2618    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2619      C = Folded;
2620  Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2621  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2622}
2623
2624const SCEV *ScalarEvolution::getOffsetOfExpr(Type *CTy,
2625                                             Constant *FieldNo) {
2626  Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
2627  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2628    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2629      C = Folded;
2630  Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
2631  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2632}
2633
2634const SCEV *ScalarEvolution::getUnknown(Value *V) {
2635  // Don't attempt to do anything other than create a SCEVUnknown object
2636  // here.  createSCEV only calls getUnknown after checking for all other
2637  // interesting possibilities, and any other code that calls getUnknown
2638  // is doing so in order to hide a value from SCEV canonicalization.
2639
2640  FoldingSetNodeID ID;
2641  ID.AddInteger(scUnknown);
2642  ID.AddPointer(V);
2643  void *IP = 0;
2644  if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2645    assert(cast<SCEVUnknown>(S)->getValue() == V &&
2646           "Stale SCEVUnknown in uniquing map!");
2647    return S;
2648  }
2649  SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2650                                            FirstUnknown);
2651  FirstUnknown = cast<SCEVUnknown>(S);
2652  UniqueSCEVs.InsertNode(S, IP);
2653  return S;
2654}
2655
2656//===----------------------------------------------------------------------===//
2657//            Basic SCEV Analysis and PHI Idiom Recognition Code
2658//
2659
2660/// isSCEVable - Test if values of the given type are analyzable within
2661/// the SCEV framework. This primarily includes integer types, and it
2662/// can optionally include pointer types if the ScalarEvolution class
2663/// has access to target-specific information.
2664bool ScalarEvolution::isSCEVable(Type *Ty) const {
2665  // Integers and pointers are always SCEVable.
2666  return Ty->isIntegerTy() || Ty->isPointerTy();
2667}
2668
2669/// getTypeSizeInBits - Return the size in bits of the specified type,
2670/// for which isSCEVable must return true.
2671uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
2672  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2673
2674  // If we have a TargetData, use it!
2675  if (TD)
2676    return TD->getTypeSizeInBits(Ty);
2677
2678  // Integer types have fixed sizes.
2679  if (Ty->isIntegerTy())
2680    return Ty->getPrimitiveSizeInBits();
2681
2682  // The only other support type is pointer. Without TargetData, conservatively
2683  // assume pointers are 64-bit.
2684  assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
2685  return 64;
2686}
2687
2688/// getEffectiveSCEVType - Return a type with the same bitwidth as
2689/// the given type and which represents how SCEV will treat the given
2690/// type, for which isSCEVable must return true. For pointer types,
2691/// this is the pointer-sized integer type.
2692Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
2693  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2694
2695  if (Ty->isIntegerTy())
2696    return Ty;
2697
2698  // The only other support type is pointer.
2699  assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
2700  if (TD) return TD->getIntPtrType(getContext());
2701
2702  // Without TargetData, conservatively assume pointers are 64-bit.
2703  return Type::getInt64Ty(getContext());
2704}
2705
2706const SCEV *ScalarEvolution::getCouldNotCompute() {
2707  return &CouldNotCompute;
2708}
2709
2710/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2711/// expression and create a new one.
2712const SCEV *ScalarEvolution::getSCEV(Value *V) {
2713  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
2714
2715  ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2716  if (I != ValueExprMap.end()) return I->second;
2717  const SCEV *S = createSCEV(V);
2718
2719  // The process of creating a SCEV for V may have caused other SCEVs
2720  // to have been created, so it's necessary to insert the new entry
2721  // from scratch, rather than trying to remember the insert position
2722  // above.
2723  ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
2724  return S;
2725}
2726
2727/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2728///
2729const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
2730  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2731    return getConstant(
2732               cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
2733
2734  Type *Ty = V->getType();
2735  Ty = getEffectiveSCEVType(Ty);
2736  return getMulExpr(V,
2737                  getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
2738}
2739
2740/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2741const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
2742  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2743    return getConstant(
2744                cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
2745
2746  Type *Ty = V->getType();
2747  Ty = getEffectiveSCEVType(Ty);
2748  const SCEV *AllOnes =
2749                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
2750  return getMinusSCEV(AllOnes, V);
2751}
2752
2753/// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
2754const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
2755                                          SCEV::NoWrapFlags Flags) {
2756  assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
2757
2758  // Fast path: X - X --> 0.
2759  if (LHS == RHS)
2760    return getConstant(LHS->getType(), 0);
2761
2762  // X - Y --> X + -Y
2763  return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
2764}
2765
2766/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2767/// input value to the specified type.  If the type must be extended, it is zero
2768/// extended.
2769const SCEV *
2770ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
2771  Type *SrcTy = V->getType();
2772  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2773         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2774         "Cannot truncate or zero extend with non-integer arguments!");
2775  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2776    return V;  // No conversion
2777  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2778    return getTruncateExpr(V, Ty);
2779  return getZeroExtendExpr(V, Ty);
2780}
2781
2782/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2783/// input value to the specified type.  If the type must be extended, it is sign
2784/// extended.
2785const SCEV *
2786ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
2787                                         Type *Ty) {
2788  Type *SrcTy = V->getType();
2789  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2790         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2791         "Cannot truncate or zero extend with non-integer arguments!");
2792  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2793    return V;  // No conversion
2794  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2795    return getTruncateExpr(V, Ty);
2796  return getSignExtendExpr(V, Ty);
2797}
2798
2799/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2800/// input value to the specified type.  If the type must be extended, it is zero
2801/// extended.  The conversion must not be narrowing.
2802const SCEV *
2803ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
2804  Type *SrcTy = V->getType();
2805  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2806         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2807         "Cannot noop or zero extend with non-integer arguments!");
2808  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2809         "getNoopOrZeroExtend cannot truncate!");
2810  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2811    return V;  // No conversion
2812  return getZeroExtendExpr(V, Ty);
2813}
2814
2815/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2816/// input value to the specified type.  If the type must be extended, it is sign
2817/// extended.  The conversion must not be narrowing.
2818const SCEV *
2819ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
2820  Type *SrcTy = V->getType();
2821  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2822         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2823         "Cannot noop or sign extend with non-integer arguments!");
2824  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2825         "getNoopOrSignExtend cannot truncate!");
2826  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2827    return V;  // No conversion
2828  return getSignExtendExpr(V, Ty);
2829}
2830
2831/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2832/// the input value to the specified type. If the type must be extended,
2833/// it is extended with unspecified bits. The conversion must not be
2834/// narrowing.
2835const SCEV *
2836ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
2837  Type *SrcTy = V->getType();
2838  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2839         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2840         "Cannot noop or any extend with non-integer arguments!");
2841  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2842         "getNoopOrAnyExtend cannot truncate!");
2843  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2844    return V;  // No conversion
2845  return getAnyExtendExpr(V, Ty);
2846}
2847
2848/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2849/// input value to the specified type.  The conversion must not be widening.
2850const SCEV *
2851ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
2852  Type *SrcTy = V->getType();
2853  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2854         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2855         "Cannot truncate or noop with non-integer arguments!");
2856  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2857         "getTruncateOrNoop cannot extend!");
2858  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2859    return V;  // No conversion
2860  return getTruncateExpr(V, Ty);
2861}
2862
2863/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2864/// the types using zero-extension, and then perform a umax operation
2865/// with them.
2866const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2867                                                        const SCEV *RHS) {
2868  const SCEV *PromotedLHS = LHS;
2869  const SCEV *PromotedRHS = RHS;
2870
2871  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2872    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2873  else
2874    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2875
2876  return getUMaxExpr(PromotedLHS, PromotedRHS);
2877}
2878
2879/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2880/// the types using zero-extension, and then perform a umin operation
2881/// with them.
2882const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2883                                                        const SCEV *RHS) {
2884  const SCEV *PromotedLHS = LHS;
2885  const SCEV *PromotedRHS = RHS;
2886
2887  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2888    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2889  else
2890    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2891
2892  return getUMinExpr(PromotedLHS, PromotedRHS);
2893}
2894
2895/// getPointerBase - Transitively follow the chain of pointer-type operands
2896/// until reaching a SCEV that does not have a single pointer operand. This
2897/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
2898/// but corner cases do exist.
2899const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
2900  // A pointer operand may evaluate to a nonpointer expression, such as null.
2901  if (!V->getType()->isPointerTy())
2902    return V;
2903
2904  if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
2905    return getPointerBase(Cast->getOperand());
2906  }
2907  else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
2908    const SCEV *PtrOp = 0;
2909    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
2910         I != E; ++I) {
2911      if ((*I)->getType()->isPointerTy()) {
2912        // Cannot find the base of an expression with multiple pointer operands.
2913        if (PtrOp)
2914          return V;
2915        PtrOp = *I;
2916      }
2917    }
2918    if (!PtrOp)
2919      return V;
2920    return getPointerBase(PtrOp);
2921  }
2922  return V;
2923}
2924
2925/// PushDefUseChildren - Push users of the given Instruction
2926/// onto the given Worklist.
2927static void
2928PushDefUseChildren(Instruction *I,
2929                   SmallVectorImpl<Instruction *> &Worklist) {
2930  // Push the def-use children onto the Worklist stack.
2931  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2932       UI != UE; ++UI)
2933    Worklist.push_back(cast<Instruction>(*UI));
2934}
2935
2936/// ForgetSymbolicValue - This looks up computed SCEV values for all
2937/// instructions that depend on the given instruction and removes them from
2938/// the ValueExprMapType map if they reference SymName. This is used during PHI
2939/// resolution.
2940void
2941ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
2942  SmallVector<Instruction *, 16> Worklist;
2943  PushDefUseChildren(PN, Worklist);
2944
2945  SmallPtrSet<Instruction *, 8> Visited;
2946  Visited.insert(PN);
2947  while (!Worklist.empty()) {
2948    Instruction *I = Worklist.pop_back_val();
2949    if (!Visited.insert(I)) continue;
2950
2951    ValueExprMapType::iterator It =
2952      ValueExprMap.find(static_cast<Value *>(I));
2953    if (It != ValueExprMap.end()) {
2954      const SCEV *Old = It->second;
2955
2956      // Short-circuit the def-use traversal if the symbolic name
2957      // ceases to appear in expressions.
2958      if (Old != SymName && !hasOperand(Old, SymName))
2959        continue;
2960
2961      // SCEVUnknown for a PHI either means that it has an unrecognized
2962      // structure, it's a PHI that's in the progress of being computed
2963      // by createNodeForPHI, or it's a single-value PHI. In the first case,
2964      // additional loop trip count information isn't going to change anything.
2965      // In the second case, createNodeForPHI will perform the necessary
2966      // updates on its own when it gets to that point. In the third, we do
2967      // want to forget the SCEVUnknown.
2968      if (!isa<PHINode>(I) ||
2969          !isa<SCEVUnknown>(Old) ||
2970          (I != PN && Old == SymName)) {
2971        forgetMemoizedResults(Old);
2972        ValueExprMap.erase(It);
2973      }
2974    }
2975
2976    PushDefUseChildren(I, Worklist);
2977  }
2978}
2979
2980/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
2981/// a loop header, making it a potential recurrence, or it doesn't.
2982///
2983const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
2984  if (const Loop *L = LI->getLoopFor(PN->getParent()))
2985    if (L->getHeader() == PN->getParent()) {
2986      // The loop may have multiple entrances or multiple exits; we can analyze
2987      // this phi as an addrec if it has a unique entry value and a unique
2988      // backedge value.
2989      Value *BEValueV = 0, *StartValueV = 0;
2990      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2991        Value *V = PN->getIncomingValue(i);
2992        if (L->contains(PN->getIncomingBlock(i))) {
2993          if (!BEValueV) {
2994            BEValueV = V;
2995          } else if (BEValueV != V) {
2996            BEValueV = 0;
2997            break;
2998          }
2999        } else if (!StartValueV) {
3000          StartValueV = V;
3001        } else if (StartValueV != V) {
3002          StartValueV = 0;
3003          break;
3004        }
3005      }
3006      if (BEValueV && StartValueV) {
3007        // While we are analyzing this PHI node, handle its value symbolically.
3008        const SCEV *SymbolicName = getUnknown(PN);
3009        assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
3010               "PHI node already processed?");
3011        ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
3012
3013        // Using this symbolic name for the PHI, analyze the value coming around
3014        // the back-edge.
3015        const SCEV *BEValue = getSCEV(BEValueV);
3016
3017        // NOTE: If BEValue is loop invariant, we know that the PHI node just
3018        // has a special value for the first iteration of the loop.
3019
3020        // If the value coming around the backedge is an add with the symbolic
3021        // value we just inserted, then we found a simple induction variable!
3022        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
3023          // If there is a single occurrence of the symbolic value, replace it
3024          // with a recurrence.
3025          unsigned FoundIndex = Add->getNumOperands();
3026          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3027            if (Add->getOperand(i) == SymbolicName)
3028              if (FoundIndex == e) {
3029                FoundIndex = i;
3030                break;
3031              }
3032
3033          if (FoundIndex != Add->getNumOperands()) {
3034            // Create an add with everything but the specified operand.
3035            SmallVector<const SCEV *, 8> Ops;
3036            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3037              if (i != FoundIndex)
3038                Ops.push_back(Add->getOperand(i));
3039            const SCEV *Accum = getAddExpr(Ops);
3040
3041            // This is not a valid addrec if the step amount is varying each
3042            // loop iteration, but is not itself an addrec in this loop.
3043            if (isLoopInvariant(Accum, L) ||
3044                (isa<SCEVAddRecExpr>(Accum) &&
3045                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
3046              SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
3047
3048              // If the increment doesn't overflow, then neither the addrec nor
3049              // the post-increment will overflow.
3050              if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3051                if (OBO->hasNoUnsignedWrap())
3052                  Flags = setFlags(Flags, SCEV::FlagNUW);
3053                if (OBO->hasNoSignedWrap())
3054                  Flags = setFlags(Flags, SCEV::FlagNSW);
3055              } else if (const GEPOperator *GEP =
3056                         dyn_cast<GEPOperator>(BEValueV)) {
3057                // If the increment is an inbounds GEP, then we know the address
3058                // space cannot be wrapped around. We cannot make any guarantee
3059                // about signed or unsigned overflow because pointers are
3060                // unsigned but we may have a negative index from the base
3061                // pointer.
3062                if (GEP->isInBounds())
3063                  Flags = setFlags(Flags, SCEV::FlagNW);
3064              }
3065
3066              const SCEV *StartVal = getSCEV(StartValueV);
3067              const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
3068
3069              // Since the no-wrap flags are on the increment, they apply to the
3070              // post-incremented value as well.
3071              if (isLoopInvariant(Accum, L))
3072                (void)getAddRecExpr(getAddExpr(StartVal, Accum),
3073                                    Accum, L, Flags);
3074
3075              // Okay, for the entire analysis of this edge we assumed the PHI
3076              // to be symbolic.  We now need to go back and purge all of the
3077              // entries for the scalars that use the symbolic expression.
3078              ForgetSymbolicName(PN, SymbolicName);
3079              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3080              return PHISCEV;
3081            }
3082          }
3083        } else if (const SCEVAddRecExpr *AddRec =
3084                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
3085          // Otherwise, this could be a loop like this:
3086          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
3087          // In this case, j = {1,+,1}  and BEValue is j.
3088          // Because the other in-value of i (0) fits the evolution of BEValue
3089          // i really is an addrec evolution.
3090          if (AddRec->getLoop() == L && AddRec->isAffine()) {
3091            const SCEV *StartVal = getSCEV(StartValueV);
3092
3093            // If StartVal = j.start - j.stride, we can use StartVal as the
3094            // initial step of the addrec evolution.
3095            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
3096                                         AddRec->getOperand(1))) {
3097              // FIXME: For constant StartVal, we should be able to infer
3098              // no-wrap flags.
3099              const SCEV *PHISCEV =
3100                getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3101                              SCEV::FlagAnyWrap);
3102
3103              // Okay, for the entire analysis of this edge we assumed the PHI
3104              // to be symbolic.  We now need to go back and purge all of the
3105              // entries for the scalars that use the symbolic expression.
3106              ForgetSymbolicName(PN, SymbolicName);
3107              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3108              return PHISCEV;
3109            }
3110          }
3111        }
3112      }
3113    }
3114
3115  // If the PHI has a single incoming value, follow that value, unless the
3116  // PHI's incoming blocks are in a different loop, in which case doing so
3117  // risks breaking LCSSA form. Instcombine would normally zap these, but
3118  // it doesn't have DominatorTree information, so it may miss cases.
3119  if (Value *V = SimplifyInstruction(PN, TD, DT))
3120    if (LI->replacementPreservesLCSSAForm(PN, V))
3121      return getSCEV(V);
3122
3123  // If it's not a loop phi, we can't handle it yet.
3124  return getUnknown(PN);
3125}
3126
3127/// createNodeForGEP - Expand GEP instructions into add and multiply
3128/// operations. This allows them to be analyzed by regular SCEV code.
3129///
3130const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
3131
3132  // Don't blindly transfer the inbounds flag from the GEP instruction to the
3133  // Add expression, because the Instruction may be guarded by control flow
3134  // and the no-overflow bits may not be valid for the expression in any
3135  // context.
3136  bool isInBounds = GEP->isInBounds();
3137
3138  Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
3139  Value *Base = GEP->getOperand(0);
3140  // Don't attempt to analyze GEPs over unsized objects.
3141  if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
3142    return getUnknown(GEP);
3143  const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
3144  gep_type_iterator GTI = gep_type_begin(GEP);
3145  for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
3146                                      E = GEP->op_end();
3147       I != E; ++I) {
3148    Value *Index = *I;
3149    // Compute the (potentially symbolic) offset in bytes for this index.
3150    if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
3151      // For a struct, add the member offset.
3152      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
3153      const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
3154
3155      // Add the field offset to the running total offset.
3156      TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3157    } else {
3158      // For an array, add the element offset, explicitly scaled.
3159      const SCEV *ElementSize = getSizeOfExpr(*GTI);
3160      const SCEV *IndexS = getSCEV(Index);
3161      // Getelementptr indices are signed.
3162      IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3163
3164      // Multiply the index by the element size to compute the element offset.
3165      const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize,
3166                                           isInBounds ? SCEV::FlagNSW :
3167                                           SCEV::FlagAnyWrap);
3168
3169      // Add the element offset to the running total offset.
3170      TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3171    }
3172  }
3173
3174  // Get the SCEV for the GEP base.
3175  const SCEV *BaseS = getSCEV(Base);
3176
3177  // Add the total offset from all the GEP indices to the base.
3178  return getAddExpr(BaseS, TotalOffset,
3179                    isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap);
3180}
3181
3182/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3183/// guaranteed to end in (at every loop iteration).  It is, at the same time,
3184/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
3185/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
3186uint32_t
3187ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
3188  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3189    return C->getValue()->getValue().countTrailingZeros();
3190
3191  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
3192    return std::min(GetMinTrailingZeros(T->getOperand()),
3193                    (uint32_t)getTypeSizeInBits(T->getType()));
3194
3195  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
3196    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3197    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3198             getTypeSizeInBits(E->getType()) : OpRes;
3199  }
3200
3201  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
3202    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3203    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3204             getTypeSizeInBits(E->getType()) : OpRes;
3205  }
3206
3207  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
3208    // The result is the min of all operands results.
3209    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
3210    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
3211      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
3212    return MinOpRes;
3213  }
3214
3215  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
3216    // The result is the sum of all operands results.
3217    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3218    uint32_t BitWidth = getTypeSizeInBits(M->getType());
3219    for (unsigned i = 1, e = M->getNumOperands();
3220         SumOpRes != BitWidth && i != e; ++i)
3221      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
3222                          BitWidth);
3223    return SumOpRes;
3224  }
3225
3226  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
3227    // The result is the min of all operands results.
3228    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
3229    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
3230      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
3231    return MinOpRes;
3232  }
3233
3234  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
3235    // The result is the min of all operands results.
3236    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
3237    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3238      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3239    return MinOpRes;
3240  }
3241
3242  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
3243    // The result is the min of all operands results.
3244    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
3245    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3246      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3247    return MinOpRes;
3248  }
3249
3250  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3251    // For a SCEVUnknown, ask ValueTracking.
3252    unsigned BitWidth = getTypeSizeInBits(U->getType());
3253    APInt Mask = APInt::getAllOnesValue(BitWidth);
3254    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3255    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
3256    return Zeros.countTrailingOnes();
3257  }
3258
3259  // SCEVUDivExpr
3260  return 0;
3261}
3262
3263/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3264///
3265ConstantRange
3266ScalarEvolution::getUnsignedRange(const SCEV *S) {
3267  // See if we've computed this range already.
3268  DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3269  if (I != UnsignedRanges.end())
3270    return I->second;
3271
3272  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3273    return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
3274
3275  unsigned BitWidth = getTypeSizeInBits(S->getType());
3276  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3277
3278  // If the value has known zeros, the maximum unsigned value will have those
3279  // known zeros as well.
3280  uint32_t TZ = GetMinTrailingZeros(S);
3281  if (TZ != 0)
3282    ConservativeResult =
3283      ConstantRange(APInt::getMinValue(BitWidth),
3284                    APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3285
3286  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3287    ConstantRange X = getUnsignedRange(Add->getOperand(0));
3288    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3289      X = X.add(getUnsignedRange(Add->getOperand(i)));
3290    return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
3291  }
3292
3293  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3294    ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3295    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3296      X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
3297    return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
3298  }
3299
3300  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3301    ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3302    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3303      X = X.smax(getUnsignedRange(SMax->getOperand(i)));
3304    return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
3305  }
3306
3307  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3308    ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3309    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3310      X = X.umax(getUnsignedRange(UMax->getOperand(i)));
3311    return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
3312  }
3313
3314  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3315    ConstantRange X = getUnsignedRange(UDiv->getLHS());
3316    ConstantRange Y = getUnsignedRange(UDiv->getRHS());
3317    return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
3318  }
3319
3320  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3321    ConstantRange X = getUnsignedRange(ZExt->getOperand());
3322    return setUnsignedRange(ZExt,
3323      ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3324  }
3325
3326  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3327    ConstantRange X = getUnsignedRange(SExt->getOperand());
3328    return setUnsignedRange(SExt,
3329      ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3330  }
3331
3332  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3333    ConstantRange X = getUnsignedRange(Trunc->getOperand());
3334    return setUnsignedRange(Trunc,
3335      ConservativeResult.intersectWith(X.truncate(BitWidth)));
3336  }
3337
3338  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3339    // If there's no unsigned wrap, the value will never be less than its
3340    // initial value.
3341    if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
3342      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
3343        if (!C->getValue()->isZero())
3344          ConservativeResult =
3345            ConservativeResult.intersectWith(
3346              ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
3347
3348    // TODO: non-affine addrec
3349    if (AddRec->isAffine()) {
3350      Type *Ty = AddRec->getType();
3351      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3352      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3353          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3354        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3355
3356        const SCEV *Start = AddRec->getStart();
3357        const SCEV *Step = AddRec->getStepRecurrence(*this);
3358
3359        ConstantRange StartRange = getUnsignedRange(Start);
3360        ConstantRange StepRange = getSignedRange(Step);
3361        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3362        ConstantRange EndRange =
3363          StartRange.add(MaxBECountRange.multiply(StepRange));
3364
3365        // Check for overflow. This must be done with ConstantRange arithmetic
3366        // because we could be called from within the ScalarEvolution overflow
3367        // checking code.
3368        ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3369        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3370        ConstantRange ExtMaxBECountRange =
3371          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3372        ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3373        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3374            ExtEndRange)
3375          return setUnsignedRange(AddRec, ConservativeResult);
3376
3377        APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3378                                   EndRange.getUnsignedMin());
3379        APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3380                                   EndRange.getUnsignedMax());
3381        if (Min.isMinValue() && Max.isMaxValue())
3382          return setUnsignedRange(AddRec, ConservativeResult);
3383        return setUnsignedRange(AddRec,
3384          ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3385      }
3386    }
3387
3388    return setUnsignedRange(AddRec, ConservativeResult);
3389  }
3390
3391  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3392    // For a SCEVUnknown, ask ValueTracking.
3393    APInt Mask = APInt::getAllOnesValue(BitWidth);
3394    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3395    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
3396    if (Ones == ~Zeros + 1)
3397      return setUnsignedRange(U, ConservativeResult);
3398    return setUnsignedRange(U,
3399      ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
3400  }
3401
3402  return setUnsignedRange(S, ConservativeResult);
3403}
3404
3405/// getSignedRange - Determine the signed range for a particular SCEV.
3406///
3407ConstantRange
3408ScalarEvolution::getSignedRange(const SCEV *S) {
3409  // See if we've computed this range already.
3410  DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3411  if (I != SignedRanges.end())
3412    return I->second;
3413
3414  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3415    return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
3416
3417  unsigned BitWidth = getTypeSizeInBits(S->getType());
3418  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3419
3420  // If the value has known zeros, the maximum signed value will have those
3421  // known zeros as well.
3422  uint32_t TZ = GetMinTrailingZeros(S);
3423  if (TZ != 0)
3424    ConservativeResult =
3425      ConstantRange(APInt::getSignedMinValue(BitWidth),
3426                    APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3427
3428  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3429    ConstantRange X = getSignedRange(Add->getOperand(0));
3430    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3431      X = X.add(getSignedRange(Add->getOperand(i)));
3432    return setSignedRange(Add, ConservativeResult.intersectWith(X));
3433  }
3434
3435  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3436    ConstantRange X = getSignedRange(Mul->getOperand(0));
3437    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3438      X = X.multiply(getSignedRange(Mul->getOperand(i)));
3439    return setSignedRange(Mul, ConservativeResult.intersectWith(X));
3440  }
3441
3442  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3443    ConstantRange X = getSignedRange(SMax->getOperand(0));
3444    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3445      X = X.smax(getSignedRange(SMax->getOperand(i)));
3446    return setSignedRange(SMax, ConservativeResult.intersectWith(X));
3447  }
3448
3449  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3450    ConstantRange X = getSignedRange(UMax->getOperand(0));
3451    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3452      X = X.umax(getSignedRange(UMax->getOperand(i)));
3453    return setSignedRange(UMax, ConservativeResult.intersectWith(X));
3454  }
3455
3456  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3457    ConstantRange X = getSignedRange(UDiv->getLHS());
3458    ConstantRange Y = getSignedRange(UDiv->getRHS());
3459    return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
3460  }
3461
3462  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3463    ConstantRange X = getSignedRange(ZExt->getOperand());
3464    return setSignedRange(ZExt,
3465      ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3466  }
3467
3468  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3469    ConstantRange X = getSignedRange(SExt->getOperand());
3470    return setSignedRange(SExt,
3471      ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3472  }
3473
3474  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3475    ConstantRange X = getSignedRange(Trunc->getOperand());
3476    return setSignedRange(Trunc,
3477      ConservativeResult.intersectWith(X.truncate(BitWidth)));
3478  }
3479
3480  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3481    // If there's no signed wrap, and all the operands have the same sign or
3482    // zero, the value won't ever change sign.
3483    if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
3484      bool AllNonNeg = true;
3485      bool AllNonPos = true;
3486      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3487        if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3488        if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3489      }
3490      if (AllNonNeg)
3491        ConservativeResult = ConservativeResult.intersectWith(
3492          ConstantRange(APInt(BitWidth, 0),
3493                        APInt::getSignedMinValue(BitWidth)));
3494      else if (AllNonPos)
3495        ConservativeResult = ConservativeResult.intersectWith(
3496          ConstantRange(APInt::getSignedMinValue(BitWidth),
3497                        APInt(BitWidth, 1)));
3498    }
3499
3500    // TODO: non-affine addrec
3501    if (AddRec->isAffine()) {
3502      Type *Ty = AddRec->getType();
3503      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3504      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3505          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3506        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3507
3508        const SCEV *Start = AddRec->getStart();
3509        const SCEV *Step = AddRec->getStepRecurrence(*this);
3510
3511        ConstantRange StartRange = getSignedRange(Start);
3512        ConstantRange StepRange = getSignedRange(Step);
3513        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3514        ConstantRange EndRange =
3515          StartRange.add(MaxBECountRange.multiply(StepRange));
3516
3517        // Check for overflow. This must be done with ConstantRange arithmetic
3518        // because we could be called from within the ScalarEvolution overflow
3519        // checking code.
3520        ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3521        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3522        ConstantRange ExtMaxBECountRange =
3523          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3524        ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3525        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3526            ExtEndRange)
3527          return setSignedRange(AddRec, ConservativeResult);
3528
3529        APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3530                                   EndRange.getSignedMin());
3531        APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3532                                   EndRange.getSignedMax());
3533        if (Min.isMinSignedValue() && Max.isMaxSignedValue())
3534          return setSignedRange(AddRec, ConservativeResult);
3535        return setSignedRange(AddRec,
3536          ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3537      }
3538    }
3539
3540    return setSignedRange(AddRec, ConservativeResult);
3541  }
3542
3543  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3544    // For a SCEVUnknown, ask ValueTracking.
3545    if (!U->getValue()->getType()->isIntegerTy() && !TD)
3546      return setSignedRange(U, ConservativeResult);
3547    unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3548    if (NS == 1)
3549      return setSignedRange(U, ConservativeResult);
3550    return setSignedRange(U, ConservativeResult.intersectWith(
3551      ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
3552                    APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
3553  }
3554
3555  return setSignedRange(S, ConservativeResult);
3556}
3557
3558/// createSCEV - We know that there is no SCEV for the specified value.
3559/// Analyze the expression.
3560///
3561const SCEV *ScalarEvolution::createSCEV(Value *V) {
3562  if (!isSCEVable(V->getType()))
3563    return getUnknown(V);
3564
3565  unsigned Opcode = Instruction::UserOp1;
3566  if (Instruction *I = dyn_cast<Instruction>(V)) {
3567    Opcode = I->getOpcode();
3568
3569    // Don't attempt to analyze instructions in blocks that aren't
3570    // reachable. Such instructions don't matter, and they aren't required
3571    // to obey basic rules for definitions dominating uses which this
3572    // analysis depends on.
3573    if (!DT->isReachableFromEntry(I->getParent()))
3574      return getUnknown(V);
3575  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
3576    Opcode = CE->getOpcode();
3577  else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3578    return getConstant(CI);
3579  else if (isa<ConstantPointerNull>(V))
3580    return getConstant(V->getType(), 0);
3581  else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3582    return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
3583  else
3584    return getUnknown(V);
3585
3586  Operator *U = cast<Operator>(V);
3587  switch (Opcode) {
3588  case Instruction::Add: {
3589    // The simple thing to do would be to just call getSCEV on both operands
3590    // and call getAddExpr with the result. However if we're looking at a
3591    // bunch of things all added together, this can be quite inefficient,
3592    // because it leads to N-1 getAddExpr calls for N ultimate operands.
3593    // Instead, gather up all the operands and make a single getAddExpr call.
3594    // LLVM IR canonical form means we need only traverse the left operands.
3595    //
3596    // Don't apply this instruction's NSW or NUW flags to the new
3597    // expression. The instruction may be guarded by control flow that the
3598    // no-wrap behavior depends on. Non-control-equivalent instructions can be
3599    // mapped to the same SCEV expression, and it would be incorrect to transfer
3600    // NSW/NUW semantics to those operations.
3601    SmallVector<const SCEV *, 4> AddOps;
3602    AddOps.push_back(getSCEV(U->getOperand(1)));
3603    for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3604      unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3605      if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3606        break;
3607      U = cast<Operator>(Op);
3608      const SCEV *Op1 = getSCEV(U->getOperand(1));
3609      if (Opcode == Instruction::Sub)
3610        AddOps.push_back(getNegativeSCEV(Op1));
3611      else
3612        AddOps.push_back(Op1);
3613    }
3614    AddOps.push_back(getSCEV(U->getOperand(0)));
3615    return getAddExpr(AddOps);
3616  }
3617  case Instruction::Mul: {
3618    // Don't transfer NSW/NUW for the same reason as AddExpr.
3619    SmallVector<const SCEV *, 4> MulOps;
3620    MulOps.push_back(getSCEV(U->getOperand(1)));
3621    for (Value *Op = U->getOperand(0);
3622         Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3623         Op = U->getOperand(0)) {
3624      U = cast<Operator>(Op);
3625      MulOps.push_back(getSCEV(U->getOperand(1)));
3626    }
3627    MulOps.push_back(getSCEV(U->getOperand(0)));
3628    return getMulExpr(MulOps);
3629  }
3630  case Instruction::UDiv:
3631    return getUDivExpr(getSCEV(U->getOperand(0)),
3632                       getSCEV(U->getOperand(1)));
3633  case Instruction::Sub:
3634    return getMinusSCEV(getSCEV(U->getOperand(0)),
3635                        getSCEV(U->getOperand(1)));
3636  case Instruction::And:
3637    // For an expression like x&255 that merely masks off the high bits,
3638    // use zext(trunc(x)) as the SCEV expression.
3639    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3640      if (CI->isNullValue())
3641        return getSCEV(U->getOperand(1));
3642      if (CI->isAllOnesValue())
3643        return getSCEV(U->getOperand(0));
3644      const APInt &A = CI->getValue();
3645
3646      // Instcombine's ShrinkDemandedConstant may strip bits out of
3647      // constants, obscuring what would otherwise be a low-bits mask.
3648      // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3649      // knew about to reconstruct a low-bits mask value.
3650      unsigned LZ = A.countLeadingZeros();
3651      unsigned BitWidth = A.getBitWidth();
3652      APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3653      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3654      ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3655
3656      APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3657
3658      if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
3659        return
3660          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
3661                                IntegerType::get(getContext(), BitWidth - LZ)),
3662                            U->getType());
3663    }
3664    break;
3665
3666  case Instruction::Or:
3667    // If the RHS of the Or is a constant, we may have something like:
3668    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
3669    // optimizations will transparently handle this case.
3670    //
3671    // In order for this transformation to be safe, the LHS must be of the
3672    // form X*(2^n) and the Or constant must be less than 2^n.
3673    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3674      const SCEV *LHS = getSCEV(U->getOperand(0));
3675      const APInt &CIVal = CI->getValue();
3676      if (GetMinTrailingZeros(LHS) >=
3677          (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3678        // Build a plain add SCEV.
3679        const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3680        // If the LHS of the add was an addrec and it has no-wrap flags,
3681        // transfer the no-wrap flags, since an or won't introduce a wrap.
3682        if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3683          const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3684          const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
3685            OldAR->getNoWrapFlags());
3686        }
3687        return S;
3688      }
3689    }
3690    break;
3691  case Instruction::Xor:
3692    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3693      // If the RHS of the xor is a signbit, then this is just an add.
3694      // Instcombine turns add of signbit into xor as a strength reduction step.
3695      if (CI->getValue().isSignBit())
3696        return getAddExpr(getSCEV(U->getOperand(0)),
3697                          getSCEV(U->getOperand(1)));
3698
3699      // If the RHS of xor is -1, then this is a not operation.
3700      if (CI->isAllOnesValue())
3701        return getNotSCEV(getSCEV(U->getOperand(0)));
3702
3703      // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3704      // This is a variant of the check for xor with -1, and it handles
3705      // the case where instcombine has trimmed non-demanded bits out
3706      // of an xor with -1.
3707      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3708        if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3709          if (BO->getOpcode() == Instruction::And &&
3710              LCI->getValue() == CI->getValue())
3711            if (const SCEVZeroExtendExpr *Z =
3712                  dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
3713              Type *UTy = U->getType();
3714              const SCEV *Z0 = Z->getOperand();
3715              Type *Z0Ty = Z0->getType();
3716              unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3717
3718              // If C is a low-bits mask, the zero extend is serving to
3719              // mask off the high bits. Complement the operand and
3720              // re-apply the zext.
3721              if (APIntOps::isMask(Z0TySize, CI->getValue()))
3722                return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3723
3724              // If C is a single bit, it may be in the sign-bit position
3725              // before the zero-extend. In this case, represent the xor
3726              // using an add, which is equivalent, and re-apply the zext.
3727              APInt Trunc = CI->getValue().trunc(Z0TySize);
3728              if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3729                  Trunc.isSignBit())
3730                return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3731                                         UTy);
3732            }
3733    }
3734    break;
3735
3736  case Instruction::Shl:
3737    // Turn shift left of a constant amount into a multiply.
3738    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3739      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3740
3741      // If the shift count is not less than the bitwidth, the result of
3742      // the shift is undefined. Don't try to analyze it, because the
3743      // resolution chosen here may differ from the resolution chosen in
3744      // other parts of the compiler.
3745      if (SA->getValue().uge(BitWidth))
3746        break;
3747
3748      Constant *X = ConstantInt::get(getContext(),
3749        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3750      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3751    }
3752    break;
3753
3754  case Instruction::LShr:
3755    // Turn logical shift right of a constant into a unsigned divide.
3756    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3757      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3758
3759      // If the shift count is not less than the bitwidth, the result of
3760      // the shift is undefined. Don't try to analyze it, because the
3761      // resolution chosen here may differ from the resolution chosen in
3762      // other parts of the compiler.
3763      if (SA->getValue().uge(BitWidth))
3764        break;
3765
3766      Constant *X = ConstantInt::get(getContext(),
3767        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3768      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3769    }
3770    break;
3771
3772  case Instruction::AShr:
3773    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3774    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
3775      if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
3776        if (L->getOpcode() == Instruction::Shl &&
3777            L->getOperand(1) == U->getOperand(1)) {
3778          uint64_t BitWidth = getTypeSizeInBits(U->getType());
3779
3780          // If the shift count is not less than the bitwidth, the result of
3781          // the shift is undefined. Don't try to analyze it, because the
3782          // resolution chosen here may differ from the resolution chosen in
3783          // other parts of the compiler.
3784          if (CI->getValue().uge(BitWidth))
3785            break;
3786
3787          uint64_t Amt = BitWidth - CI->getZExtValue();
3788          if (Amt == BitWidth)
3789            return getSCEV(L->getOperand(0));       // shift by zero --> noop
3790          return
3791            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
3792                                              IntegerType::get(getContext(),
3793                                                               Amt)),
3794                              U->getType());
3795        }
3796    break;
3797
3798  case Instruction::Trunc:
3799    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
3800
3801  case Instruction::ZExt:
3802    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3803
3804  case Instruction::SExt:
3805    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3806
3807  case Instruction::BitCast:
3808    // BitCasts are no-op casts so we just eliminate the cast.
3809    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
3810      return getSCEV(U->getOperand(0));
3811    break;
3812
3813  // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3814  // lead to pointer expressions which cannot safely be expanded to GEPs,
3815  // because ScalarEvolution doesn't respect the GEP aliasing rules when
3816  // simplifying integer expressions.
3817
3818  case Instruction::GetElementPtr:
3819    return createNodeForGEP(cast<GEPOperator>(U));
3820
3821  case Instruction::PHI:
3822    return createNodeForPHI(cast<PHINode>(U));
3823
3824  case Instruction::Select:
3825    // This could be a smax or umax that was lowered earlier.
3826    // Try to recover it.
3827    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3828      Value *LHS = ICI->getOperand(0);
3829      Value *RHS = ICI->getOperand(1);
3830      switch (ICI->getPredicate()) {
3831      case ICmpInst::ICMP_SLT:
3832      case ICmpInst::ICMP_SLE:
3833        std::swap(LHS, RHS);
3834        // fall through
3835      case ICmpInst::ICMP_SGT:
3836      case ICmpInst::ICMP_SGE:
3837        // a >s b ? a+x : b+x  ->  smax(a, b)+x
3838        // a >s b ? b+x : a+x  ->  smin(a, b)+x
3839        if (LHS->getType() == U->getType()) {
3840          const SCEV *LS = getSCEV(LHS);
3841          const SCEV *RS = getSCEV(RHS);
3842          const SCEV *LA = getSCEV(U->getOperand(1));
3843          const SCEV *RA = getSCEV(U->getOperand(2));
3844          const SCEV *LDiff = getMinusSCEV(LA, LS);
3845          const SCEV *RDiff = getMinusSCEV(RA, RS);
3846          if (LDiff == RDiff)
3847            return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3848          LDiff = getMinusSCEV(LA, RS);
3849          RDiff = getMinusSCEV(RA, LS);
3850          if (LDiff == RDiff)
3851            return getAddExpr(getSMinExpr(LS, RS), LDiff);
3852        }
3853        break;
3854      case ICmpInst::ICMP_ULT:
3855      case ICmpInst::ICMP_ULE:
3856        std::swap(LHS, RHS);
3857        // fall through
3858      case ICmpInst::ICMP_UGT:
3859      case ICmpInst::ICMP_UGE:
3860        // a >u b ? a+x : b+x  ->  umax(a, b)+x
3861        // a >u b ? b+x : a+x  ->  umin(a, b)+x
3862        if (LHS->getType() == U->getType()) {
3863          const SCEV *LS = getSCEV(LHS);
3864          const SCEV *RS = getSCEV(RHS);
3865          const SCEV *LA = getSCEV(U->getOperand(1));
3866          const SCEV *RA = getSCEV(U->getOperand(2));
3867          const SCEV *LDiff = getMinusSCEV(LA, LS);
3868          const SCEV *RDiff = getMinusSCEV(RA, RS);
3869          if (LDiff == RDiff)
3870            return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3871          LDiff = getMinusSCEV(LA, RS);
3872          RDiff = getMinusSCEV(RA, LS);
3873          if (LDiff == RDiff)
3874            return getAddExpr(getUMinExpr(LS, RS), LDiff);
3875        }
3876        break;
3877      case ICmpInst::ICMP_NE:
3878        // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
3879        if (LHS->getType() == U->getType() &&
3880            isa<ConstantInt>(RHS) &&
3881            cast<ConstantInt>(RHS)->isZero()) {
3882          const SCEV *One = getConstant(LHS->getType(), 1);
3883          const SCEV *LS = getSCEV(LHS);
3884          const SCEV *LA = getSCEV(U->getOperand(1));
3885          const SCEV *RA = getSCEV(U->getOperand(2));
3886          const SCEV *LDiff = getMinusSCEV(LA, LS);
3887          const SCEV *RDiff = getMinusSCEV(RA, One);
3888          if (LDiff == RDiff)
3889            return getAddExpr(getUMaxExpr(One, LS), LDiff);
3890        }
3891        break;
3892      case ICmpInst::ICMP_EQ:
3893        // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
3894        if (LHS->getType() == U->getType() &&
3895            isa<ConstantInt>(RHS) &&
3896            cast<ConstantInt>(RHS)->isZero()) {
3897          const SCEV *One = getConstant(LHS->getType(), 1);
3898          const SCEV *LS = getSCEV(LHS);
3899          const SCEV *LA = getSCEV(U->getOperand(1));
3900          const SCEV *RA = getSCEV(U->getOperand(2));
3901          const SCEV *LDiff = getMinusSCEV(LA, One);
3902          const SCEV *RDiff = getMinusSCEV(RA, LS);
3903          if (LDiff == RDiff)
3904            return getAddExpr(getUMaxExpr(One, LS), LDiff);
3905        }
3906        break;
3907      default:
3908        break;
3909      }
3910    }
3911
3912  default: // We cannot analyze this expression.
3913    break;
3914  }
3915
3916  return getUnknown(V);
3917}
3918
3919
3920
3921//===----------------------------------------------------------------------===//
3922//                   Iteration Count Computation Code
3923//
3924
3925/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
3926/// normal unsigned value, if possible. Returns 0 if the trip count is unknown
3927/// or not constant. Will also return 0 if the maximum trip count is very large
3928/// (>= 2^32)
3929unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
3930                                                    BasicBlock *ExitBlock) {
3931  const SCEVConstant *ExitCount =
3932    dyn_cast<SCEVConstant>(getExitCount(L, ExitBlock));
3933  if (!ExitCount)
3934    return 0;
3935
3936  ConstantInt *ExitConst = ExitCount->getValue();
3937
3938  // Guard against huge trip counts.
3939  if (ExitConst->getValue().getActiveBits() > 32)
3940    return 0;
3941
3942  // In case of integer overflow, this returns 0, which is correct.
3943  return ((unsigned)ExitConst->getZExtValue()) + 1;
3944}
3945
3946/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
3947/// trip count of this loop as a normal unsigned value, if possible. This
3948/// means that the actual trip count is always a multiple of the returned
3949/// value (don't forget the trip count could very well be zero as well!).
3950///
3951/// Returns 1 if the trip count is unknown or not guaranteed to be the
3952/// multiple of a constant (which is also the case if the trip count is simply
3953/// constant, use getSmallConstantTripCount for that case), Will also return 1
3954/// if the trip count is very large (>= 2^32).
3955unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
3956                                                       BasicBlock *ExitBlock) {
3957  const SCEV *ExitCount = getExitCount(L, ExitBlock);
3958  if (ExitCount == getCouldNotCompute())
3959    return 1;
3960
3961  // Get the trip count from the BE count by adding 1.
3962  const SCEV *TCMul = getAddExpr(ExitCount,
3963                                 getConstant(ExitCount->getType(), 1));
3964  // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
3965  // to factor simple cases.
3966  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
3967    TCMul = Mul->getOperand(0);
3968
3969  const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
3970  if (!MulC)
3971    return 1;
3972
3973  ConstantInt *Result = MulC->getValue();
3974
3975  // Guard against huge trip counts.
3976  if (!Result || Result->getValue().getActiveBits() > 32)
3977    return 1;
3978
3979  return (unsigned)Result->getZExtValue();
3980}
3981
3982// getExitCount - Get the expression for the number of loop iterations for which
3983// this loop is guaranteed not to exit via ExitintBlock. Otherwise return
3984// SCEVCouldNotCompute.
3985const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
3986  return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
3987}
3988
3989/// getBackedgeTakenCount - If the specified loop has a predictable
3990/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3991/// object. The backedge-taken count is the number of times the loop header
3992/// will be branched to from within the loop. This is one less than the
3993/// trip count of the loop, since it doesn't count the first iteration,
3994/// when the header is branched to from outside the loop.
3995///
3996/// Note that it is not valid to call this method on a loop without a
3997/// loop-invariant backedge-taken count (see
3998/// hasLoopInvariantBackedgeTakenCount).
3999///
4000const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
4001  return getBackedgeTakenInfo(L).getExact(this);
4002}
4003
4004/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4005/// return the least SCEV value that is known never to be less than the
4006/// actual backedge taken count.
4007const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
4008  return getBackedgeTakenInfo(L).getMax(this);
4009}
4010
4011/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4012/// onto the given Worklist.
4013static void
4014PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4015  BasicBlock *Header = L->getHeader();
4016
4017  // Push all Loop-header PHIs onto the Worklist stack.
4018  for (BasicBlock::iterator I = Header->begin();
4019       PHINode *PN = dyn_cast<PHINode>(I); ++I)
4020    Worklist.push_back(PN);
4021}
4022
4023const ScalarEvolution::BackedgeTakenInfo &
4024ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
4025  // Initially insert an invalid entry for this loop. If the insertion
4026  // succeeds, proceed to actually compute a backedge-taken count and
4027  // update the value. The temporary CouldNotCompute value tells SCEV
4028  // code elsewhere that it shouldn't attempt to request a new
4029  // backedge-taken count, which could result in infinite recursion.
4030  std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
4031    BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
4032  if (!Pair.second)
4033    return Pair.first->second;
4034
4035  // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4036  // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4037  // must be cleared in this scope.
4038  BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4039
4040  if (Result.getExact(this) != getCouldNotCompute()) {
4041    assert(isLoopInvariant(Result.getExact(this), L) &&
4042           isLoopInvariant(Result.getMax(this), L) &&
4043           "Computed backedge-taken count isn't loop invariant for loop!");
4044    ++NumTripCountsComputed;
4045  }
4046  else if (Result.getMax(this) == getCouldNotCompute() &&
4047           isa<PHINode>(L->getHeader()->begin())) {
4048    // Only count loops that have phi nodes as not being computable.
4049    ++NumTripCountsNotComputed;
4050  }
4051
4052  // Now that we know more about the trip count for this loop, forget any
4053  // existing SCEV values for PHI nodes in this loop since they are only
4054  // conservative estimates made without the benefit of trip count
4055  // information. This is similar to the code in forgetLoop, except that
4056  // it handles SCEVUnknown PHI nodes specially.
4057  if (Result.hasAnyInfo()) {
4058    SmallVector<Instruction *, 16> Worklist;
4059    PushLoopPHIs(L, Worklist);
4060
4061    SmallPtrSet<Instruction *, 8> Visited;
4062    while (!Worklist.empty()) {
4063      Instruction *I = Worklist.pop_back_val();
4064      if (!Visited.insert(I)) continue;
4065
4066      ValueExprMapType::iterator It =
4067        ValueExprMap.find(static_cast<Value *>(I));
4068      if (It != ValueExprMap.end()) {
4069        const SCEV *Old = It->second;
4070
4071        // SCEVUnknown for a PHI either means that it has an unrecognized
4072        // structure, or it's a PHI that's in the progress of being computed
4073        // by createNodeForPHI.  In the former case, additional loop trip
4074        // count information isn't going to change anything. In the later
4075        // case, createNodeForPHI will perform the necessary updates on its
4076        // own when it gets to that point.
4077        if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4078          forgetMemoizedResults(Old);
4079          ValueExprMap.erase(It);
4080        }
4081        if (PHINode *PN = dyn_cast<PHINode>(I))
4082          ConstantEvolutionLoopExitValue.erase(PN);
4083      }
4084
4085      PushDefUseChildren(I, Worklist);
4086    }
4087  }
4088
4089  // Re-lookup the insert position, since the call to
4090  // ComputeBackedgeTakenCount above could result in a
4091  // recusive call to getBackedgeTakenInfo (on a different
4092  // loop), which would invalidate the iterator computed
4093  // earlier.
4094  return BackedgeTakenCounts.find(L)->second = Result;
4095}
4096
4097/// forgetLoop - This method should be called by the client when it has
4098/// changed a loop in a way that may effect ScalarEvolution's ability to
4099/// compute a trip count, or if the loop is deleted.
4100void ScalarEvolution::forgetLoop(const Loop *L) {
4101  // Drop any stored trip count value.
4102  DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4103    BackedgeTakenCounts.find(L);
4104  if (BTCPos != BackedgeTakenCounts.end()) {
4105    BTCPos->second.clear();
4106    BackedgeTakenCounts.erase(BTCPos);
4107  }
4108
4109  // Drop information about expressions based on loop-header PHIs.
4110  SmallVector<Instruction *, 16> Worklist;
4111  PushLoopPHIs(L, Worklist);
4112
4113  SmallPtrSet<Instruction *, 8> Visited;
4114  while (!Worklist.empty()) {
4115    Instruction *I = Worklist.pop_back_val();
4116    if (!Visited.insert(I)) continue;
4117
4118    ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
4119    if (It != ValueExprMap.end()) {
4120      forgetMemoizedResults(It->second);
4121      ValueExprMap.erase(It);
4122      if (PHINode *PN = dyn_cast<PHINode>(I))
4123        ConstantEvolutionLoopExitValue.erase(PN);
4124    }
4125
4126    PushDefUseChildren(I, Worklist);
4127  }
4128
4129  // Forget all contained loops too, to avoid dangling entries in the
4130  // ValuesAtScopes map.
4131  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4132    forgetLoop(*I);
4133}
4134
4135/// forgetValue - This method should be called by the client when it has
4136/// changed a value in a way that may effect its value, or which may
4137/// disconnect it from a def-use chain linking it to a loop.
4138void ScalarEvolution::forgetValue(Value *V) {
4139  Instruction *I = dyn_cast<Instruction>(V);
4140  if (!I) return;
4141
4142  // Drop information about expressions based on loop-header PHIs.
4143  SmallVector<Instruction *, 16> Worklist;
4144  Worklist.push_back(I);
4145
4146  SmallPtrSet<Instruction *, 8> Visited;
4147  while (!Worklist.empty()) {
4148    I = Worklist.pop_back_val();
4149    if (!Visited.insert(I)) continue;
4150
4151    ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
4152    if (It != ValueExprMap.end()) {
4153      forgetMemoizedResults(It->second);
4154      ValueExprMap.erase(It);
4155      if (PHINode *PN = dyn_cast<PHINode>(I))
4156        ConstantEvolutionLoopExitValue.erase(PN);
4157    }
4158
4159    PushDefUseChildren(I, Worklist);
4160  }
4161}
4162
4163/// getExact - Get the exact loop backedge taken count considering all loop
4164/// exits. A computable result can only be return for loops with a single exit.
4165/// Returning the minimum taken count among all exits is incorrect because one
4166/// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4167/// the limit of each loop test is never skipped. This is a valid assumption as
4168/// long as the loop exits via that test. For precise results, it is the
4169/// caller's responsibility to specify the relevant loop exit using
4170/// getExact(ExitingBlock, SE).
4171const SCEV *
4172ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4173  // If any exits were not computable, the loop is not computable.
4174  if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4175
4176  // We need exactly one computable exit.
4177  if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
4178  assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4179
4180  const SCEV *BECount = 0;
4181  for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4182       ENT != 0; ENT = ENT->getNextExit()) {
4183
4184    assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4185
4186    if (!BECount)
4187      BECount = ENT->ExactNotTaken;
4188    else if (BECount != ENT->ExactNotTaken)
4189      return SE->getCouldNotCompute();
4190  }
4191  assert(BECount && "Invalid not taken count for loop exit");
4192  return BECount;
4193}
4194
4195/// getExact - Get the exact not taken count for this loop exit.
4196const SCEV *
4197ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
4198                                             ScalarEvolution *SE) const {
4199  for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4200       ENT != 0; ENT = ENT->getNextExit()) {
4201
4202    if (ENT->ExitingBlock == ExitingBlock)
4203      return ENT->ExactNotTaken;
4204  }
4205  return SE->getCouldNotCompute();
4206}
4207
4208/// getMax - Get the max backedge taken count for the loop.
4209const SCEV *
4210ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4211  return Max ? Max : SE->getCouldNotCompute();
4212}
4213
4214/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4215/// computable exit into a persistent ExitNotTakenInfo array.
4216ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4217  SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4218  bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4219
4220  if (!Complete)
4221    ExitNotTaken.setIncomplete();
4222
4223  unsigned NumExits = ExitCounts.size();
4224  if (NumExits == 0) return;
4225
4226  ExitNotTaken.ExitingBlock = ExitCounts[0].first;
4227  ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4228  if (NumExits == 1) return;
4229
4230  // Handle the rare case of multiple computable exits.
4231  ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4232
4233  ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4234  for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4235    PrevENT->setNextExit(ENT);
4236    ENT->ExitingBlock = ExitCounts[i].first;
4237    ENT->ExactNotTaken = ExitCounts[i].second;
4238  }
4239}
4240
4241/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4242void ScalarEvolution::BackedgeTakenInfo::clear() {
4243  ExitNotTaken.ExitingBlock = 0;
4244  ExitNotTaken.ExactNotTaken = 0;
4245  delete[] ExitNotTaken.getNextExit();
4246}
4247
4248/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4249/// of the specified loop will execute.
4250ScalarEvolution::BackedgeTakenInfo
4251ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
4252  SmallVector<BasicBlock *, 8> ExitingBlocks;
4253  L->getExitingBlocks(ExitingBlocks);
4254
4255  // Examine all exits and pick the most conservative values.
4256  const SCEV *MaxBECount = getCouldNotCompute();
4257  bool CouldComputeBECount = true;
4258  SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
4259  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
4260    ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]);
4261    if (EL.Exact == getCouldNotCompute())
4262      // We couldn't compute an exact value for this exit, so
4263      // we won't be able to compute an exact value for the loop.
4264      CouldComputeBECount = false;
4265    else
4266      ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact));
4267
4268    if (MaxBECount == getCouldNotCompute())
4269      MaxBECount = EL.Max;
4270    else if (EL.Max != getCouldNotCompute()) {
4271      // We cannot take the "min" MaxBECount, because non-unit stride loops may
4272      // skip some loop tests. Taking the max over the exits is sufficiently
4273      // conservative.  TODO: We could do better taking into consideration
4274      // that (1) the loop has unit stride (2) the last loop test is
4275      // less-than/greater-than (3) any loop test is less-than/greater-than AND
4276      // falls-through some constant times less then the other tests.
4277      MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max);
4278    }
4279  }
4280
4281  return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
4282}
4283
4284/// ComputeExitLimit - Compute the number of times the backedge of the specified
4285/// loop will execute if it exits via the specified block.
4286ScalarEvolution::ExitLimit
4287ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
4288
4289  // Okay, we've chosen an exiting block.  See what condition causes us to
4290  // exit at this block.
4291  //
4292  // FIXME: we should be able to handle switch instructions (with a single exit)
4293  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
4294  if (ExitBr == 0) return getCouldNotCompute();
4295  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
4296
4297  // At this point, we know we have a conditional branch that determines whether
4298  // the loop is exited.  However, we don't know if the branch is executed each
4299  // time through the loop.  If not, then the execution count of the branch will
4300  // not be equal to the trip count of the loop.
4301  //
4302  // Currently we check for this by checking to see if the Exit branch goes to
4303  // the loop header.  If so, we know it will always execute the same number of
4304  // times as the loop.  We also handle the case where the exit block *is* the
4305  // loop header.  This is common for un-rotated loops.
4306  //
4307  // If both of those tests fail, walk up the unique predecessor chain to the
4308  // header, stopping if there is an edge that doesn't exit the loop. If the
4309  // header is reached, the execution count of the branch will be equal to the
4310  // trip count of the loop.
4311  //
4312  //  More extensive analysis could be done to handle more cases here.
4313  //
4314  if (ExitBr->getSuccessor(0) != L->getHeader() &&
4315      ExitBr->getSuccessor(1) != L->getHeader() &&
4316      ExitBr->getParent() != L->getHeader()) {
4317    // The simple checks failed, try climbing the unique predecessor chain
4318    // up to the header.
4319    bool Ok = false;
4320    for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
4321      BasicBlock *Pred = BB->getUniquePredecessor();
4322      if (!Pred)
4323        return getCouldNotCompute();
4324      TerminatorInst *PredTerm = Pred->getTerminator();
4325      for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4326        BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4327        if (PredSucc == BB)
4328          continue;
4329        // If the predecessor has a successor that isn't BB and isn't
4330        // outside the loop, assume the worst.
4331        if (L->contains(PredSucc))
4332          return getCouldNotCompute();
4333      }
4334      if (Pred == L->getHeader()) {
4335        Ok = true;
4336        break;
4337      }
4338      BB = Pred;
4339    }
4340    if (!Ok)
4341      return getCouldNotCompute();
4342  }
4343
4344  // Proceed to the next level to examine the exit condition expression.
4345  return ComputeExitLimitFromCond(L, ExitBr->getCondition(),
4346                                  ExitBr->getSuccessor(0),
4347                                  ExitBr->getSuccessor(1));
4348}
4349
4350/// ComputeExitLimitFromCond - Compute the number of times the
4351/// backedge of the specified loop will execute if its exit condition
4352/// were a conditional branch of ExitCond, TBB, and FBB.
4353ScalarEvolution::ExitLimit
4354ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4355                                          Value *ExitCond,
4356                                          BasicBlock *TBB,
4357                                          BasicBlock *FBB) {
4358  // Check if the controlling expression for this loop is an And or Or.
4359  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4360    if (BO->getOpcode() == Instruction::And) {
4361      // Recurse on the operands of the and.
4362      ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4363      ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
4364      const SCEV *BECount = getCouldNotCompute();
4365      const SCEV *MaxBECount = getCouldNotCompute();
4366      if (L->contains(TBB)) {
4367        // Both conditions must be true for the loop to continue executing.
4368        // Choose the less conservative count.
4369        if (EL0.Exact == getCouldNotCompute() ||
4370            EL1.Exact == getCouldNotCompute())
4371          BECount = getCouldNotCompute();
4372        else
4373          BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4374        if (EL0.Max == getCouldNotCompute())
4375          MaxBECount = EL1.Max;
4376        else if (EL1.Max == getCouldNotCompute())
4377          MaxBECount = EL0.Max;
4378        else
4379          MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
4380      } else {
4381        // Both conditions must be true at the same time for the loop to exit.
4382        // For now, be conservative.
4383        assert(L->contains(FBB) && "Loop block has no successor in loop!");
4384        if (EL0.Max == EL1.Max)
4385          MaxBECount = EL0.Max;
4386        if (EL0.Exact == EL1.Exact)
4387          BECount = EL0.Exact;
4388      }
4389
4390      return ExitLimit(BECount, MaxBECount);
4391    }
4392    if (BO->getOpcode() == Instruction::Or) {
4393      // Recurse on the operands of the or.
4394      ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4395      ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
4396      const SCEV *BECount = getCouldNotCompute();
4397      const SCEV *MaxBECount = getCouldNotCompute();
4398      if (L->contains(FBB)) {
4399        // Both conditions must be false for the loop to continue executing.
4400        // Choose the less conservative count.
4401        if (EL0.Exact == getCouldNotCompute() ||
4402            EL1.Exact == getCouldNotCompute())
4403          BECount = getCouldNotCompute();
4404        else
4405          BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4406        if (EL0.Max == getCouldNotCompute())
4407          MaxBECount = EL1.Max;
4408        else if (EL1.Max == getCouldNotCompute())
4409          MaxBECount = EL0.Max;
4410        else
4411          MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
4412      } else {
4413        // Both conditions must be false at the same time for the loop to exit.
4414        // For now, be conservative.
4415        assert(L->contains(TBB) && "Loop block has no successor in loop!");
4416        if (EL0.Max == EL1.Max)
4417          MaxBECount = EL0.Max;
4418        if (EL0.Exact == EL1.Exact)
4419          BECount = EL0.Exact;
4420      }
4421
4422      return ExitLimit(BECount, MaxBECount);
4423    }
4424  }
4425
4426  // With an icmp, it may be feasible to compute an exact backedge-taken count.
4427  // Proceed to the next level to examine the icmp.
4428  if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
4429    return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB);
4430
4431  // Check for a constant condition. These are normally stripped out by
4432  // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4433  // preserve the CFG and is temporarily leaving constant conditions
4434  // in place.
4435  if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4436    if (L->contains(FBB) == !CI->getZExtValue())
4437      // The backedge is always taken.
4438      return getCouldNotCompute();
4439    else
4440      // The backedge is never taken.
4441      return getConstant(CI->getType(), 0);
4442  }
4443
4444  // If it's not an integer or pointer comparison then compute it the hard way.
4445  return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
4446}
4447
4448/// ComputeExitLimitFromICmp - Compute the number of times the
4449/// backedge of the specified loop will execute if its exit condition
4450/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4451ScalarEvolution::ExitLimit
4452ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
4453                                          ICmpInst *ExitCond,
4454                                          BasicBlock *TBB,
4455                                          BasicBlock *FBB) {
4456
4457  // If the condition was exit on true, convert the condition to exit on false
4458  ICmpInst::Predicate Cond;
4459  if (!L->contains(FBB))
4460    Cond = ExitCond->getPredicate();
4461  else
4462    Cond = ExitCond->getInversePredicate();
4463
4464  // Handle common loops like: for (X = "string"; *X; ++X)
4465  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4466    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
4467      ExitLimit ItCnt =
4468        ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
4469      if (ItCnt.hasAnyInfo())
4470        return ItCnt;
4471    }
4472
4473  const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4474  const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
4475
4476  // Try to evaluate any dependencies out of the loop.
4477  LHS = getSCEVAtScope(LHS, L);
4478  RHS = getSCEVAtScope(RHS, L);
4479
4480  // At this point, we would like to compute how many iterations of the
4481  // loop the predicate will return true for these inputs.
4482  if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
4483    // If there is a loop-invariant, force it into the RHS.
4484    std::swap(LHS, RHS);
4485    Cond = ICmpInst::getSwappedPredicate(Cond);
4486  }
4487
4488  // Simplify the operands before analyzing them.
4489  (void)SimplifyICmpOperands(Cond, LHS, RHS);
4490
4491  // If we have a comparison of a chrec against a constant, try to use value
4492  // ranges to answer this query.
4493  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4494    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
4495      if (AddRec->getLoop() == L) {
4496        // Form the constant range.
4497        ConstantRange CompRange(
4498            ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
4499
4500        const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
4501        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
4502      }
4503
4504  switch (Cond) {
4505  case ICmpInst::ICMP_NE: {                     // while (X != Y)
4506    // Convert to: while (X-Y != 0)
4507    ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L);
4508    if (EL.hasAnyInfo()) return EL;
4509    break;
4510  }
4511  case ICmpInst::ICMP_EQ: {                     // while (X == Y)
4512    // Convert to: while (X-Y == 0)
4513    ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4514    if (EL.hasAnyInfo()) return EL;
4515    break;
4516  }
4517  case ICmpInst::ICMP_SLT: {
4518    ExitLimit EL = HowManyLessThans(LHS, RHS, L, true);
4519    if (EL.hasAnyInfo()) return EL;
4520    break;
4521  }
4522  case ICmpInst::ICMP_SGT: {
4523    ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
4524                                             getNotSCEV(RHS), L, true);
4525    if (EL.hasAnyInfo()) return EL;
4526    break;
4527  }
4528  case ICmpInst::ICMP_ULT: {
4529    ExitLimit EL = HowManyLessThans(LHS, RHS, L, false);
4530    if (EL.hasAnyInfo()) return EL;
4531    break;
4532  }
4533  case ICmpInst::ICMP_UGT: {
4534    ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
4535                                             getNotSCEV(RHS), L, false);
4536    if (EL.hasAnyInfo()) return EL;
4537    break;
4538  }
4539  default:
4540#if 0
4541    dbgs() << "ComputeBackedgeTakenCount ";
4542    if (ExitCond->getOperand(0)->getType()->isUnsigned())
4543      dbgs() << "[unsigned] ";
4544    dbgs() << *LHS << "   "
4545         << Instruction::getOpcodeName(Instruction::ICmp)
4546         << "   " << *RHS << "\n";
4547#endif
4548    break;
4549  }
4550  return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
4551}
4552
4553static ConstantInt *
4554EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4555                                ScalarEvolution &SE) {
4556  const SCEV *InVal = SE.getConstant(C);
4557  const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
4558  assert(isa<SCEVConstant>(Val) &&
4559         "Evaluation of SCEV at constant didn't fold correctly?");
4560  return cast<SCEVConstant>(Val)->getValue();
4561}
4562
4563/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4564/// and a GEP expression (missing the pointer index) indexing into it, return
4565/// the addressed element of the initializer or null if the index expression is
4566/// invalid.
4567static Constant *
4568GetAddressedElementFromGlobal(GlobalVariable *GV,
4569                              const std::vector<ConstantInt*> &Indices) {
4570  Constant *Init = GV->getInitializer();
4571  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
4572    uint64_t Idx = Indices[i]->getZExtValue();
4573    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4574      assert(Idx < CS->getNumOperands() && "Bad struct index!");
4575      Init = cast<Constant>(CS->getOperand(Idx));
4576    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4577      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
4578      Init = cast<Constant>(CA->getOperand(Idx));
4579    } else if (isa<ConstantAggregateZero>(Init)) {
4580      if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
4581        assert(Idx < STy->getNumElements() && "Bad struct index!");
4582        Init = Constant::getNullValue(STy->getElementType(Idx));
4583      } else if (ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4584        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
4585        Init = Constant::getNullValue(ATy->getElementType());
4586      } else {
4587        llvm_unreachable("Unknown constant aggregate type!");
4588      }
4589      return 0;
4590    } else {
4591      return 0; // Unknown initializer type
4592    }
4593  }
4594  return Init;
4595}
4596
4597/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
4598/// 'icmp op load X, cst', try to see if we can compute the backedge
4599/// execution count.
4600ScalarEvolution::ExitLimit
4601ScalarEvolution::ComputeLoadConstantCompareExitLimit(
4602  LoadInst *LI,
4603  Constant *RHS,
4604  const Loop *L,
4605  ICmpInst::Predicate predicate) {
4606
4607  if (LI->isVolatile()) return getCouldNotCompute();
4608
4609  // Check to see if the loaded pointer is a getelementptr of a global.
4610  // TODO: Use SCEV instead of manually grubbing with GEPs.
4611  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
4612  if (!GEP) return getCouldNotCompute();
4613
4614  // Make sure that it is really a constant global we are gepping, with an
4615  // initializer, and make sure the first IDX is really 0.
4616  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
4617  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
4618      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4619      !cast<Constant>(GEP->getOperand(1))->isNullValue())
4620    return getCouldNotCompute();
4621
4622  // Okay, we allow one non-constant index into the GEP instruction.
4623  Value *VarIdx = 0;
4624  std::vector<ConstantInt*> Indexes;
4625  unsigned VarIdxNum = 0;
4626  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4627    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4628      Indexes.push_back(CI);
4629    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
4630      if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
4631      VarIdx = GEP->getOperand(i);
4632      VarIdxNum = i-2;
4633      Indexes.push_back(0);
4634    }
4635
4636  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4637  // Check to see if X is a loop variant variable value now.
4638  const SCEV *Idx = getSCEV(VarIdx);
4639  Idx = getSCEVAtScope(Idx, L);
4640
4641  // We can only recognize very limited forms of loop index expressions, in
4642  // particular, only affine AddRec's like {C1,+,C2}.
4643  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
4644  if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
4645      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4646      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
4647    return getCouldNotCompute();
4648
4649  unsigned MaxSteps = MaxBruteForceIterations;
4650  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
4651    ConstantInt *ItCst = ConstantInt::get(
4652                           cast<IntegerType>(IdxExpr->getType()), IterationNum);
4653    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
4654
4655    // Form the GEP offset.
4656    Indexes[VarIdxNum] = Val;
4657
4658    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
4659    if (Result == 0) break;  // Cannot compute!
4660
4661    // Evaluate the condition for this iteration.
4662    Result = ConstantExpr::getICmp(predicate, Result, RHS);
4663    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
4664    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
4665#if 0
4666      dbgs() << "\n***\n*** Computed loop count " << *ItCst
4667             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4668             << "***\n";
4669#endif
4670      ++NumArrayLenItCounts;
4671      return getConstant(ItCst);   // Found terminating iteration!
4672    }
4673  }
4674  return getCouldNotCompute();
4675}
4676
4677
4678/// CanConstantFold - Return true if we can constant fold an instruction of the
4679/// specified type, assuming that all operands were constants.
4680static bool CanConstantFold(const Instruction *I) {
4681  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
4682      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
4683      isa<LoadInst>(I))
4684    return true;
4685
4686  if (const CallInst *CI = dyn_cast<CallInst>(I))
4687    if (const Function *F = CI->getCalledFunction())
4688      return canConstantFoldCallTo(F);
4689  return false;
4690}
4691
4692/// Determine whether this instruction can constant evolve within this loop
4693/// assuming its operands can all constant evolve.
4694static bool canConstantEvolve(Instruction *I, const Loop *L) {
4695  // An instruction outside of the loop can't be derived from a loop PHI.
4696  if (!L->contains(I)) return false;
4697
4698  if (isa<PHINode>(I)) {
4699    if (L->getHeader() == I->getParent())
4700      return true;
4701    else
4702      // We don't currently keep track of the control flow needed to evaluate
4703      // PHIs, so we cannot handle PHIs inside of loops.
4704      return false;
4705  }
4706
4707  // If we won't be able to constant fold this expression even if the operands
4708  // are constants, bail early.
4709  return CanConstantFold(I);
4710}
4711
4712/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
4713/// recursing through each instruction operand until reaching a loop header phi.
4714static PHINode *
4715getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
4716                               DenseMap<Instruction *, PHINode *> &PHIMap) {
4717
4718  // Otherwise, we can evaluate this instruction if all of its operands are
4719  // constant or derived from a PHI node themselves.
4720  PHINode *PHI = 0;
4721  for (Instruction::op_iterator OpI = UseInst->op_begin(),
4722         OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
4723
4724    if (isa<Constant>(*OpI)) continue;
4725
4726    Instruction *OpInst = dyn_cast<Instruction>(*OpI);
4727    if (!OpInst || !canConstantEvolve(OpInst, L)) return 0;
4728
4729    PHINode *P = dyn_cast<PHINode>(OpInst);
4730    if (!P)
4731      // If this operand is already visited, reuse the prior result.
4732      // We may have P != PHI if this is the deepest point at which the
4733      // inconsistent paths meet.
4734      P = PHIMap.lookup(OpInst);
4735    if (!P) {
4736      // Recurse and memoize the results, whether a phi is found or not.
4737      // This recursive call invalidates pointers into PHIMap.
4738      P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
4739      PHIMap[OpInst] = P;
4740    }
4741    if (P == 0) return 0;        // Not evolving from PHI
4742    if (PHI && PHI != P) return 0;  // Evolving from multiple different PHIs.
4743    PHI = P;
4744  }
4745  // This is a expression evolving from a constant PHI!
4746  return PHI;
4747}
4748
4749/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4750/// in the loop that V is derived from.  We allow arbitrary operations along the
4751/// way, but the operands of an operation must either be constants or a value
4752/// derived from a constant PHI.  If this expression does not fit with these
4753/// constraints, return null.
4754static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4755  Instruction *I = dyn_cast<Instruction>(V);
4756  if (I == 0 || !canConstantEvolve(I, L)) return 0;
4757
4758  if (PHINode *PN = dyn_cast<PHINode>(I)) {
4759    return PN;
4760  }
4761
4762  // Record non-constant instructions contained by the loop.
4763  DenseMap<Instruction *, PHINode *> PHIMap;
4764  return getConstantEvolvingPHIOperands(I, L, PHIMap);
4765}
4766
4767/// EvaluateExpression - Given an expression that passes the
4768/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4769/// in the loop has the value PHIVal.  If we can't fold this expression for some
4770/// reason, return null.
4771static Constant *EvaluateExpression(Value *V, const Loop *L,
4772                                    DenseMap<Instruction *, Constant *> &Vals,
4773                                    const TargetData *TD) {
4774  // Convenient constant check, but redundant for recursive calls.
4775  if (Constant *C = dyn_cast<Constant>(V)) return C;
4776  Instruction *I = dyn_cast<Instruction>(V);
4777  if (!I) return 0;
4778
4779  if (Constant *C = Vals.lookup(I)) return C;
4780
4781  // An instruction inside the loop depends on a value outside the loop that we
4782  // weren't given a mapping for, or a value such as a call inside the loop.
4783  if (!canConstantEvolve(I, L)) return 0;
4784
4785  // An unmapped PHI can be due to a branch or another loop inside this loop,
4786  // or due to this not being the initial iteration through a loop where we
4787  // couldn't compute the evolution of this particular PHI last time.
4788  if (isa<PHINode>(I)) return 0;
4789
4790  std::vector<Constant*> Operands(I->getNumOperands());
4791
4792  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4793    Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
4794    if (!Operand) {
4795      Operands[i] = dyn_cast<Constant>(I->getOperand(i));
4796      if (!Operands[i]) return 0;
4797      continue;
4798    }
4799    Constant *C = EvaluateExpression(Operand, L, Vals, TD);
4800    Vals[Operand] = C;
4801    if (!C) return 0;
4802    Operands[i] = C;
4803  }
4804
4805  if (CmpInst *CI = dyn_cast<CmpInst>(I))
4806    return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
4807                                           Operands[1], TD);
4808  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
4809    if (!LI->isVolatile())
4810      return ConstantFoldLoadFromConstPtr(Operands[0], TD);
4811  }
4812  return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD);
4813}
4814
4815/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4816/// in the header of its containing loop, we know the loop executes a
4817/// constant number of times, and the PHI node is just a recurrence
4818/// involving constants, fold it.
4819Constant *
4820ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
4821                                                   const APInt &BEs,
4822                                                   const Loop *L) {
4823  DenseMap<PHINode*, Constant*>::const_iterator I =
4824    ConstantEvolutionLoopExitValue.find(PN);
4825  if (I != ConstantEvolutionLoopExitValue.end())
4826    return I->second;
4827
4828  if (BEs.ugt(MaxBruteForceIterations))
4829    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
4830
4831  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4832
4833  DenseMap<Instruction *, Constant *> CurrentIterVals;
4834  BasicBlock *Header = L->getHeader();
4835  assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
4836
4837  // Since the loop is canonicalized, the PHI node must have two entries.  One
4838  // entry must be a constant (coming in from outside of the loop), and the
4839  // second must be derived from the same PHI.
4840  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4841  PHINode *PHI = 0;
4842  for (BasicBlock::iterator I = Header->begin();
4843       (PHI = dyn_cast<PHINode>(I)); ++I) {
4844    Constant *StartCST =
4845      dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
4846    if (StartCST == 0) continue;
4847    CurrentIterVals[PHI] = StartCST;
4848  }
4849  if (!CurrentIterVals.count(PN))
4850    return RetVal = 0;
4851
4852  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4853
4854  // Execute the loop symbolically to determine the exit value.
4855  if (BEs.getActiveBits() >= 32)
4856    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
4857
4858  unsigned NumIterations = BEs.getZExtValue(); // must be in range
4859  unsigned IterationNum = 0;
4860  for (; ; ++IterationNum) {
4861    if (IterationNum == NumIterations)
4862      return RetVal = CurrentIterVals[PN];  // Got exit value!
4863
4864    // Compute the value of the PHIs for the next iteration.
4865    // EvaluateExpression adds non-phi values to the CurrentIterVals map.
4866    DenseMap<Instruction *, Constant *> NextIterVals;
4867    Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD);
4868    if (NextPHI == 0)
4869      return 0;        // Couldn't evaluate!
4870    NextIterVals[PN] = NextPHI;
4871
4872    bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
4873
4874    // Also evaluate the other PHI nodes.  However, we don't get to stop if we
4875    // cease to be able to evaluate one of them or if they stop evolving,
4876    // because that doesn't necessarily prevent us from computing PN.
4877    SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
4878    for (DenseMap<Instruction *, Constant *>::const_iterator
4879           I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
4880      PHINode *PHI = dyn_cast<PHINode>(I->first);
4881      if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
4882      PHIsToCompute.push_back(std::make_pair(PHI, I->second));
4883    }
4884    // We use two distinct loops because EvaluateExpression may invalidate any
4885    // iterators into CurrentIterVals.
4886    for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
4887             I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
4888      PHINode *PHI = I->first;
4889      Constant *&NextPHI = NextIterVals[PHI];
4890      if (!NextPHI) {   // Not already computed.
4891        Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
4892        NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD);
4893      }
4894      if (NextPHI != I->second)
4895        StoppedEvolving = false;
4896    }
4897
4898    // If all entries in CurrentIterVals == NextIterVals then we can stop
4899    // iterating, the loop can't continue to change.
4900    if (StoppedEvolving)
4901      return RetVal = CurrentIterVals[PN];
4902
4903    CurrentIterVals.swap(NextIterVals);
4904  }
4905}
4906
4907/// ComputeExitCountExhaustively - If the loop is known to execute a
4908/// constant number of times (the condition evolves only from constants),
4909/// try to evaluate a few iterations of the loop until we get the exit
4910/// condition gets a value of ExitWhen (true or false).  If we cannot
4911/// evaluate the trip count of the loop, return getCouldNotCompute().
4912const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
4913                                                          Value *Cond,
4914                                                          bool ExitWhen) {
4915  PHINode *PN = getConstantEvolvingPHI(Cond, L);
4916  if (PN == 0) return getCouldNotCompute();
4917
4918  // If the loop is canonicalized, the PHI will have exactly two entries.
4919  // That's the only form we support here.
4920  if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4921
4922  DenseMap<Instruction *, Constant *> CurrentIterVals;
4923  BasicBlock *Header = L->getHeader();
4924  assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
4925
4926  // One entry must be a constant (coming in from outside of the loop), and the
4927  // second must be derived from the same PHI.
4928  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4929  PHINode *PHI = 0;
4930  for (BasicBlock::iterator I = Header->begin();
4931       (PHI = dyn_cast<PHINode>(I)); ++I) {
4932    Constant *StartCST =
4933      dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
4934    if (StartCST == 0) continue;
4935    CurrentIterVals[PHI] = StartCST;
4936  }
4937  if (!CurrentIterVals.count(PN))
4938    return getCouldNotCompute();
4939
4940  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
4941  // the loop symbolically to determine when the condition gets a value of
4942  // "ExitWhen".
4943
4944  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
4945  for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
4946    ConstantInt *CondVal =
4947      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L,
4948                                                       CurrentIterVals, TD));
4949
4950    // Couldn't symbolically evaluate.
4951    if (!CondVal) return getCouldNotCompute();
4952
4953    if (CondVal->getValue() == uint64_t(ExitWhen)) {
4954      ++NumBruteForceTripCountsComputed;
4955      return getConstant(Type::getInt32Ty(getContext()), IterationNum);
4956    }
4957
4958    // Update all the PHI nodes for the next iteration.
4959    DenseMap<Instruction *, Constant *> NextIterVals;
4960
4961    // Create a list of which PHIs we need to compute. We want to do this before
4962    // calling EvaluateExpression on them because that may invalidate iterators
4963    // into CurrentIterVals.
4964    SmallVector<PHINode *, 8> PHIsToCompute;
4965    for (DenseMap<Instruction *, Constant *>::const_iterator
4966           I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
4967      PHINode *PHI = dyn_cast<PHINode>(I->first);
4968      if (!PHI || PHI->getParent() != Header) continue;
4969      PHIsToCompute.push_back(PHI);
4970    }
4971    for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
4972             E = PHIsToCompute.end(); I != E; ++I) {
4973      PHINode *PHI = *I;
4974      Constant *&NextPHI = NextIterVals[PHI];
4975      if (NextPHI) continue;    // Already computed!
4976
4977      Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
4978      NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD);
4979    }
4980    CurrentIterVals.swap(NextIterVals);
4981  }
4982
4983  // Too many iterations were needed to evaluate.
4984  return getCouldNotCompute();
4985}
4986
4987/// getSCEVAtScope - Return a SCEV expression for the specified value
4988/// at the specified scope in the program.  The L value specifies a loop
4989/// nest to evaluate the expression at, where null is the top-level or a
4990/// specified loop is immediately inside of the loop.
4991///
4992/// This method can be used to compute the exit value for a variable defined
4993/// in a loop by querying what the value will hold in the parent loop.
4994///
4995/// In the case that a relevant loop exit value cannot be computed, the
4996/// original value V is returned.
4997const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
4998  // Check to see if we've folded this expression at this loop before.
4999  std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
5000  std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
5001    Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
5002  if (!Pair.second)
5003    return Pair.first->second ? Pair.first->second : V;
5004
5005  // Otherwise compute it.
5006  const SCEV *C = computeSCEVAtScope(V, L);
5007  ValuesAtScopes[V][L] = C;
5008  return C;
5009}
5010
5011/// This builds up a Constant using the ConstantExpr interface.  That way, we
5012/// will return Constants for objects which aren't represented by a
5013/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5014/// Returns NULL if the SCEV isn't representable as a Constant.
5015static Constant *BuildConstantFromSCEV(const SCEV *V) {
5016  switch (V->getSCEVType()) {
5017    default:  // TODO: smax, umax.
5018    case scCouldNotCompute:
5019    case scAddRecExpr:
5020      break;
5021    case scConstant:
5022      return cast<SCEVConstant>(V)->getValue();
5023    case scUnknown:
5024      return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5025    case scSignExtend: {
5026      const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5027      if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5028        return ConstantExpr::getSExt(CastOp, SS->getType());
5029      break;
5030    }
5031    case scZeroExtend: {
5032      const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5033      if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5034        return ConstantExpr::getZExt(CastOp, SZ->getType());
5035      break;
5036    }
5037    case scTruncate: {
5038      const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5039      if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5040        return ConstantExpr::getTrunc(CastOp, ST->getType());
5041      break;
5042    }
5043    case scAddExpr: {
5044      const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5045      if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
5046        if (C->getType()->isPointerTy())
5047          C = ConstantExpr::getBitCast(C, Type::getInt8PtrTy(C->getContext()));
5048        for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5049          Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
5050          if (!C2) return 0;
5051
5052          // First pointer!
5053          if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
5054            std::swap(C, C2);
5055            // The offsets have been converted to bytes.  We can add bytes to an
5056            // i8* by GEP with the byte count in the first index.
5057            C = ConstantExpr::getBitCast(C,Type::getInt8PtrTy(C->getContext()));
5058          }
5059
5060          // Don't bother trying to sum two pointers. We probably can't
5061          // statically compute a load that results from it anyway.
5062          if (C2->getType()->isPointerTy())
5063            return 0;
5064
5065          if (C->getType()->isPointerTy()) {
5066            if (cast<PointerType>(C->getType())->getElementType()->isStructTy())
5067              C2 = ConstantExpr::getIntegerCast(
5068                  C2, Type::getInt32Ty(C->getContext()), true);
5069            C = ConstantExpr::getGetElementPtr(C, C2);
5070          } else
5071            C = ConstantExpr::getAdd(C, C2);
5072        }
5073        return C;
5074      }
5075      break;
5076    }
5077    case scMulExpr: {
5078      const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5079      if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5080        // Don't bother with pointers at all.
5081        if (C->getType()->isPointerTy()) return 0;
5082        for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5083          Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
5084          if (!C2 || C2->getType()->isPointerTy()) return 0;
5085          C = ConstantExpr::getMul(C, C2);
5086        }
5087        return C;
5088      }
5089      break;
5090    }
5091    case scUDivExpr: {
5092      const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5093      if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5094        if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5095          if (LHS->getType() == RHS->getType())
5096            return ConstantExpr::getUDiv(LHS, RHS);
5097      break;
5098    }
5099  }
5100  return 0;
5101}
5102
5103const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
5104  if (isa<SCEVConstant>(V)) return V;
5105
5106  // If this instruction is evolved from a constant-evolving PHI, compute the
5107  // exit value from the loop without using SCEVs.
5108  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
5109    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
5110      const Loop *LI = (*this->LI)[I->getParent()];
5111      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
5112        if (PHINode *PN = dyn_cast<PHINode>(I))
5113          if (PN->getParent() == LI->getHeader()) {
5114            // Okay, there is no closed form solution for the PHI node.  Check
5115            // to see if the loop that contains it has a known backedge-taken
5116            // count.  If so, we may be able to force computation of the exit
5117            // value.
5118            const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
5119            if (const SCEVConstant *BTCC =
5120                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
5121              // Okay, we know how many times the containing loop executes.  If
5122              // this is a constant evolving PHI node, get the final value at
5123              // the specified iteration number.
5124              Constant *RV = getConstantEvolutionLoopExitValue(PN,
5125                                                   BTCC->getValue()->getValue(),
5126                                                               LI);
5127              if (RV) return getSCEV(RV);
5128            }
5129          }
5130
5131      // Okay, this is an expression that we cannot symbolically evaluate
5132      // into a SCEV.  Check to see if it's possible to symbolically evaluate
5133      // the arguments into constants, and if so, try to constant propagate the
5134      // result.  This is particularly useful for computing loop exit values.
5135      if (CanConstantFold(I)) {
5136        SmallVector<Constant *, 4> Operands;
5137        bool MadeImprovement = false;
5138        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5139          Value *Op = I->getOperand(i);
5140          if (Constant *C = dyn_cast<Constant>(Op)) {
5141            Operands.push_back(C);
5142            continue;
5143          }
5144
5145          // If any of the operands is non-constant and if they are
5146          // non-integer and non-pointer, don't even try to analyze them
5147          // with scev techniques.
5148          if (!isSCEVable(Op->getType()))
5149            return V;
5150
5151          const SCEV *OrigV = getSCEV(Op);
5152          const SCEV *OpV = getSCEVAtScope(OrigV, L);
5153          MadeImprovement |= OrigV != OpV;
5154
5155          Constant *C = BuildConstantFromSCEV(OpV);
5156          if (!C) return V;
5157          if (C->getType() != Op->getType())
5158            C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5159                                                              Op->getType(),
5160                                                              false),
5161                                      C, Op->getType());
5162          Operands.push_back(C);
5163        }
5164
5165        // Check to see if getSCEVAtScope actually made an improvement.
5166        if (MadeImprovement) {
5167          Constant *C = 0;
5168          if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5169            C = ConstantFoldCompareInstOperands(CI->getPredicate(),
5170                                                Operands[0], Operands[1], TD);
5171          else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5172            if (!LI->isVolatile())
5173              C = ConstantFoldLoadFromConstPtr(Operands[0], TD);
5174          } else
5175            C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
5176                                         Operands, TD);
5177          if (!C) return V;
5178          return getSCEV(C);
5179        }
5180      }
5181    }
5182
5183    // This is some other type of SCEVUnknown, just return it.
5184    return V;
5185  }
5186
5187  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
5188    // Avoid performing the look-up in the common case where the specified
5189    // expression has no loop-variant portions.
5190    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
5191      const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
5192      if (OpAtScope != Comm->getOperand(i)) {
5193        // Okay, at least one of these operands is loop variant but might be
5194        // foldable.  Build a new instance of the folded commutative expression.
5195        SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5196                                            Comm->op_begin()+i);
5197        NewOps.push_back(OpAtScope);
5198
5199        for (++i; i != e; ++i) {
5200          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
5201          NewOps.push_back(OpAtScope);
5202        }
5203        if (isa<SCEVAddExpr>(Comm))
5204          return getAddExpr(NewOps);
5205        if (isa<SCEVMulExpr>(Comm))
5206          return getMulExpr(NewOps);
5207        if (isa<SCEVSMaxExpr>(Comm))
5208          return getSMaxExpr(NewOps);
5209        if (isa<SCEVUMaxExpr>(Comm))
5210          return getUMaxExpr(NewOps);
5211        llvm_unreachable("Unknown commutative SCEV type!");
5212      }
5213    }
5214    // If we got here, all operands are loop invariant.
5215    return Comm;
5216  }
5217
5218  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
5219    const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5220    const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
5221    if (LHS == Div->getLHS() && RHS == Div->getRHS())
5222      return Div;   // must be loop invariant
5223    return getUDivExpr(LHS, RHS);
5224  }
5225
5226  // If this is a loop recurrence for a loop that does not contain L, then we
5227  // are dealing with the final value computed by the loop.
5228  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
5229    // First, attempt to evaluate each operand.
5230    // Avoid performing the look-up in the common case where the specified
5231    // expression has no loop-variant portions.
5232    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5233      const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5234      if (OpAtScope == AddRec->getOperand(i))
5235        continue;
5236
5237      // Okay, at least one of these operands is loop variant but might be
5238      // foldable.  Build a new instance of the folded commutative expression.
5239      SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5240                                          AddRec->op_begin()+i);
5241      NewOps.push_back(OpAtScope);
5242      for (++i; i != e; ++i)
5243        NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5244
5245      const SCEV *FoldedRec =
5246        getAddRecExpr(NewOps, AddRec->getLoop(),
5247                      AddRec->getNoWrapFlags(SCEV::FlagNW));
5248      AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
5249      // The addrec may be folded to a nonrecurrence, for example, if the
5250      // induction variable is multiplied by zero after constant folding. Go
5251      // ahead and return the folded value.
5252      if (!AddRec)
5253        return FoldedRec;
5254      break;
5255    }
5256
5257    // If the scope is outside the addrec's loop, evaluate it by using the
5258    // loop exit value of the addrec.
5259    if (!AddRec->getLoop()->contains(L)) {
5260      // To evaluate this recurrence, we need to know how many times the AddRec
5261      // loop iterates.  Compute this now.
5262      const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
5263      if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
5264
5265      // Then, evaluate the AddRec.
5266      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
5267    }
5268
5269    return AddRec;
5270  }
5271
5272  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
5273    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5274    if (Op == Cast->getOperand())
5275      return Cast;  // must be loop invariant
5276    return getZeroExtendExpr(Op, Cast->getType());
5277  }
5278
5279  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
5280    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5281    if (Op == Cast->getOperand())
5282      return Cast;  // must be loop invariant
5283    return getSignExtendExpr(Op, Cast->getType());
5284  }
5285
5286  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
5287    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5288    if (Op == Cast->getOperand())
5289      return Cast;  // must be loop invariant
5290    return getTruncateExpr(Op, Cast->getType());
5291  }
5292
5293  llvm_unreachable("Unknown SCEV type!");
5294  return 0;
5295}
5296
5297/// getSCEVAtScope - This is a convenience function which does
5298/// getSCEVAtScope(getSCEV(V), L).
5299const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
5300  return getSCEVAtScope(getSCEV(V), L);
5301}
5302
5303/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5304/// following equation:
5305///
5306///     A * X = B (mod N)
5307///
5308/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5309/// A and B isn't important.
5310///
5311/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
5312static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
5313                                               ScalarEvolution &SE) {
5314  uint32_t BW = A.getBitWidth();
5315  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5316  assert(A != 0 && "A must be non-zero.");
5317
5318  // 1. D = gcd(A, N)
5319  //
5320  // The gcd of A and N may have only one prime factor: 2. The number of
5321  // trailing zeros in A is its multiplicity
5322  uint32_t Mult2 = A.countTrailingZeros();
5323  // D = 2^Mult2
5324
5325  // 2. Check if B is divisible by D.
5326  //
5327  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5328  // is not less than multiplicity of this prime factor for D.
5329  if (B.countTrailingZeros() < Mult2)
5330    return SE.getCouldNotCompute();
5331
5332  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5333  // modulo (N / D).
5334  //
5335  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
5336  // bit width during computations.
5337  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
5338  APInt Mod(BW + 1, 0);
5339  Mod.setBit(BW - Mult2);  // Mod = N / D
5340  APInt I = AD.multiplicativeInverse(Mod);
5341
5342  // 4. Compute the minimum unsigned root of the equation:
5343  // I * (B / D) mod (N / D)
5344  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5345
5346  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5347  // bits.
5348  return SE.getConstant(Result.trunc(BW));
5349}
5350
5351/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5352/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
5353/// might be the same) or two SCEVCouldNotCompute objects.
5354///
5355static std::pair<const SCEV *,const SCEV *>
5356SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
5357  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
5358  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5359  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5360  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
5361
5362  // We currently can only solve this if the coefficients are constants.
5363  if (!LC || !MC || !NC) {
5364    const SCEV *CNC = SE.getCouldNotCompute();
5365    return std::make_pair(CNC, CNC);
5366  }
5367
5368  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
5369  const APInt &L = LC->getValue()->getValue();
5370  const APInt &M = MC->getValue()->getValue();
5371  const APInt &N = NC->getValue()->getValue();
5372  APInt Two(BitWidth, 2);
5373  APInt Four(BitWidth, 4);
5374
5375  {
5376    using namespace APIntOps;
5377    const APInt& C = L;
5378    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5379    // The B coefficient is M-N/2
5380    APInt B(M);
5381    B -= sdiv(N,Two);
5382
5383    // The A coefficient is N/2
5384    APInt A(N.sdiv(Two));
5385
5386    // Compute the B^2-4ac term.
5387    APInt SqrtTerm(B);
5388    SqrtTerm *= B;
5389    SqrtTerm -= Four * (A * C);
5390
5391    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5392    // integer value or else APInt::sqrt() will assert.
5393    APInt SqrtVal(SqrtTerm.sqrt());
5394
5395    // Compute the two solutions for the quadratic formula.
5396    // The divisions must be performed as signed divisions.
5397    APInt NegB(-B);
5398    APInt TwoA(A << 1);
5399    if (TwoA.isMinValue()) {
5400      const SCEV *CNC = SE.getCouldNotCompute();
5401      return std::make_pair(CNC, CNC);
5402    }
5403
5404    LLVMContext &Context = SE.getContext();
5405
5406    ConstantInt *Solution1 =
5407      ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
5408    ConstantInt *Solution2 =
5409      ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
5410
5411    return std::make_pair(SE.getConstant(Solution1),
5412                          SE.getConstant(Solution2));
5413  } // end APIntOps namespace
5414}
5415
5416/// HowFarToZero - Return the number of times a backedge comparing the specified
5417/// value to zero will execute.  If not computable, return CouldNotCompute.
5418///
5419/// This is only used for loops with a "x != y" exit test. The exit condition is
5420/// now expressed as a single expression, V = x-y. So the exit test is
5421/// effectively V != 0.  We know and take advantage of the fact that this
5422/// expression only being used in a comparison by zero context.
5423ScalarEvolution::ExitLimit
5424ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
5425  // If the value is a constant
5426  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
5427    // If the value is already zero, the branch will execute zero times.
5428    if (C->getValue()->isZero()) return C;
5429    return getCouldNotCompute();  // Otherwise it will loop infinitely.
5430  }
5431
5432  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
5433  if (!AddRec || AddRec->getLoop() != L)
5434    return getCouldNotCompute();
5435
5436  // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
5437  // the quadratic equation to solve it.
5438  if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
5439    std::pair<const SCEV *,const SCEV *> Roots =
5440      SolveQuadraticEquation(AddRec, *this);
5441    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5442    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
5443    if (R1 && R2) {
5444#if 0
5445      dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
5446             << "  sol#2: " << *R2 << "\n";
5447#endif
5448      // Pick the smallest positive root value.
5449      if (ConstantInt *CB =
5450          dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
5451                                                      R1->getValue(),
5452                                                      R2->getValue()))) {
5453        if (CB->getZExtValue() == false)
5454          std::swap(R1, R2);   // R1 is the minimum root now.
5455
5456        // We can only use this value if the chrec ends up with an exact zero
5457        // value at this index.  When solving for "X*X != 5", for example, we
5458        // should not accept a root of 2.
5459        const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
5460        if (Val->isZero())
5461          return R1;  // We found a quadratic root!
5462      }
5463    }
5464    return getCouldNotCompute();
5465  }
5466
5467  // Otherwise we can only handle this if it is affine.
5468  if (!AddRec->isAffine())
5469    return getCouldNotCompute();
5470
5471  // If this is an affine expression, the execution count of this branch is
5472  // the minimum unsigned root of the following equation:
5473  //
5474  //     Start + Step*N = 0 (mod 2^BW)
5475  //
5476  // equivalent to:
5477  //
5478  //             Step*N = -Start (mod 2^BW)
5479  //
5480  // where BW is the common bit width of Start and Step.
5481
5482  // Get the initial value for the loop.
5483  const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
5484  const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
5485
5486  // For now we handle only constant steps.
5487  //
5488  // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
5489  // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
5490  // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
5491  // We have not yet seen any such cases.
5492  const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
5493  if (StepC == 0)
5494    return getCouldNotCompute();
5495
5496  // For positive steps (counting up until unsigned overflow):
5497  //   N = -Start/Step (as unsigned)
5498  // For negative steps (counting down to zero):
5499  //   N = Start/-Step
5500  // First compute the unsigned distance from zero in the direction of Step.
5501  bool CountDown = StepC->getValue()->getValue().isNegative();
5502  const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
5503
5504  // Handle unitary steps, which cannot wraparound.
5505  // 1*N = -Start; -1*N = Start (mod 2^BW), so:
5506  //   N = Distance (as unsigned)
5507  if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
5508    ConstantRange CR = getUnsignedRange(Start);
5509    const SCEV *MaxBECount;
5510    if (!CountDown && CR.getUnsignedMin().isMinValue())
5511      // When counting up, the worst starting value is 1, not 0.
5512      MaxBECount = CR.getUnsignedMax().isMinValue()
5513        ? getConstant(APInt::getMinValue(CR.getBitWidth()))
5514        : getConstant(APInt::getMaxValue(CR.getBitWidth()));
5515    else
5516      MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
5517                                         : -CR.getUnsignedMin());
5518    return ExitLimit(Distance, MaxBECount);
5519  }
5520
5521  // If the recurrence is known not to wraparound, unsigned divide computes the
5522  // back edge count. We know that the value will either become zero (and thus
5523  // the loop terminates), that the loop will terminate through some other exit
5524  // condition first, or that the loop has undefined behavior.  This means
5525  // we can't "miss" the exit value, even with nonunit stride.
5526  //
5527  // FIXME: Prove that loops always exhibits *acceptable* undefined
5528  // behavior. Loops must exhibit defined behavior until a wrapped value is
5529  // actually used. So the trip count computed by udiv could be smaller than the
5530  // number of well-defined iterations.
5531  if (AddRec->getNoWrapFlags(SCEV::FlagNW)) {
5532    // FIXME: We really want an "isexact" bit for udiv.
5533    return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
5534  }
5535  // Then, try to solve the above equation provided that Start is constant.
5536  if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
5537    return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
5538                                        -StartC->getValue()->getValue(),
5539                                        *this);
5540  return getCouldNotCompute();
5541}
5542
5543/// HowFarToNonZero - Return the number of times a backedge checking the
5544/// specified value for nonzero will execute.  If not computable, return
5545/// CouldNotCompute
5546ScalarEvolution::ExitLimit
5547ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
5548  // Loops that look like: while (X == 0) are very strange indeed.  We don't
5549  // handle them yet except for the trivial case.  This could be expanded in the
5550  // future as needed.
5551
5552  // If the value is a constant, check to see if it is known to be non-zero
5553  // already.  If so, the backedge will execute zero times.
5554  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
5555    if (!C->getValue()->isNullValue())
5556      return getConstant(C->getType(), 0);
5557    return getCouldNotCompute();  // Otherwise it will loop infinitely.
5558  }
5559
5560  // We could implement others, but I really doubt anyone writes loops like
5561  // this, and if they did, they would already be constant folded.
5562  return getCouldNotCompute();
5563}
5564
5565/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
5566/// (which may not be an immediate predecessor) which has exactly one
5567/// successor from which BB is reachable, or null if no such block is
5568/// found.
5569///
5570std::pair<BasicBlock *, BasicBlock *>
5571ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
5572  // If the block has a unique predecessor, then there is no path from the
5573  // predecessor to the block that does not go through the direct edge
5574  // from the predecessor to the block.
5575  if (BasicBlock *Pred = BB->getSinglePredecessor())
5576    return std::make_pair(Pred, BB);
5577
5578  // A loop's header is defined to be a block that dominates the loop.
5579  // If the header has a unique predecessor outside the loop, it must be
5580  // a block that has exactly one successor that can reach the loop.
5581  if (Loop *L = LI->getLoopFor(BB))
5582    return std::make_pair(L->getLoopPredecessor(), L->getHeader());
5583
5584  return std::pair<BasicBlock *, BasicBlock *>();
5585}
5586
5587/// HasSameValue - SCEV structural equivalence is usually sufficient for
5588/// testing whether two expressions are equal, however for the purposes of
5589/// looking for a condition guarding a loop, it can be useful to be a little
5590/// more general, since a front-end may have replicated the controlling
5591/// expression.
5592///
5593static bool HasSameValue(const SCEV *A, const SCEV *B) {
5594  // Quick check to see if they are the same SCEV.
5595  if (A == B) return true;
5596
5597  // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5598  // two different instructions with the same value. Check for this case.
5599  if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5600    if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5601      if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5602        if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
5603          if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
5604            return true;
5605
5606  // Otherwise assume they may have a different value.
5607  return false;
5608}
5609
5610/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
5611/// predicate Pred. Return true iff any changes were made.
5612///
5613bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
5614                                           const SCEV *&LHS, const SCEV *&RHS) {
5615  bool Changed = false;
5616
5617  // Canonicalize a constant to the right side.
5618  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5619    // Check for both operands constant.
5620    if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5621      if (ConstantExpr::getICmp(Pred,
5622                                LHSC->getValue(),
5623                                RHSC->getValue())->isNullValue())
5624        goto trivially_false;
5625      else
5626        goto trivially_true;
5627    }
5628    // Otherwise swap the operands to put the constant on the right.
5629    std::swap(LHS, RHS);
5630    Pred = ICmpInst::getSwappedPredicate(Pred);
5631    Changed = true;
5632  }
5633
5634  // If we're comparing an addrec with a value which is loop-invariant in the
5635  // addrec's loop, put the addrec on the left. Also make a dominance check,
5636  // as both operands could be addrecs loop-invariant in each other's loop.
5637  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5638    const Loop *L = AR->getLoop();
5639    if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
5640      std::swap(LHS, RHS);
5641      Pred = ICmpInst::getSwappedPredicate(Pred);
5642      Changed = true;
5643    }
5644  }
5645
5646  // If there's a constant operand, canonicalize comparisons with boundary
5647  // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5648  if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5649    const APInt &RA = RC->getValue()->getValue();
5650    switch (Pred) {
5651    default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5652    case ICmpInst::ICMP_EQ:
5653    case ICmpInst::ICMP_NE:
5654      break;
5655    case ICmpInst::ICMP_UGE:
5656      if ((RA - 1).isMinValue()) {
5657        Pred = ICmpInst::ICMP_NE;
5658        RHS = getConstant(RA - 1);
5659        Changed = true;
5660        break;
5661      }
5662      if (RA.isMaxValue()) {
5663        Pred = ICmpInst::ICMP_EQ;
5664        Changed = true;
5665        break;
5666      }
5667      if (RA.isMinValue()) goto trivially_true;
5668
5669      Pred = ICmpInst::ICMP_UGT;
5670      RHS = getConstant(RA - 1);
5671      Changed = true;
5672      break;
5673    case ICmpInst::ICMP_ULE:
5674      if ((RA + 1).isMaxValue()) {
5675        Pred = ICmpInst::ICMP_NE;
5676        RHS = getConstant(RA + 1);
5677        Changed = true;
5678        break;
5679      }
5680      if (RA.isMinValue()) {
5681        Pred = ICmpInst::ICMP_EQ;
5682        Changed = true;
5683        break;
5684      }
5685      if (RA.isMaxValue()) goto trivially_true;
5686
5687      Pred = ICmpInst::ICMP_ULT;
5688      RHS = getConstant(RA + 1);
5689      Changed = true;
5690      break;
5691    case ICmpInst::ICMP_SGE:
5692      if ((RA - 1).isMinSignedValue()) {
5693        Pred = ICmpInst::ICMP_NE;
5694        RHS = getConstant(RA - 1);
5695        Changed = true;
5696        break;
5697      }
5698      if (RA.isMaxSignedValue()) {
5699        Pred = ICmpInst::ICMP_EQ;
5700        Changed = true;
5701        break;
5702      }
5703      if (RA.isMinSignedValue()) goto trivially_true;
5704
5705      Pred = ICmpInst::ICMP_SGT;
5706      RHS = getConstant(RA - 1);
5707      Changed = true;
5708      break;
5709    case ICmpInst::ICMP_SLE:
5710      if ((RA + 1).isMaxSignedValue()) {
5711        Pred = ICmpInst::ICMP_NE;
5712        RHS = getConstant(RA + 1);
5713        Changed = true;
5714        break;
5715      }
5716      if (RA.isMinSignedValue()) {
5717        Pred = ICmpInst::ICMP_EQ;
5718        Changed = true;
5719        break;
5720      }
5721      if (RA.isMaxSignedValue()) goto trivially_true;
5722
5723      Pred = ICmpInst::ICMP_SLT;
5724      RHS = getConstant(RA + 1);
5725      Changed = true;
5726      break;
5727    case ICmpInst::ICMP_UGT:
5728      if (RA.isMinValue()) {
5729        Pred = ICmpInst::ICMP_NE;
5730        Changed = true;
5731        break;
5732      }
5733      if ((RA + 1).isMaxValue()) {
5734        Pred = ICmpInst::ICMP_EQ;
5735        RHS = getConstant(RA + 1);
5736        Changed = true;
5737        break;
5738      }
5739      if (RA.isMaxValue()) goto trivially_false;
5740      break;
5741    case ICmpInst::ICMP_ULT:
5742      if (RA.isMaxValue()) {
5743        Pred = ICmpInst::ICMP_NE;
5744        Changed = true;
5745        break;
5746      }
5747      if ((RA - 1).isMinValue()) {
5748        Pred = ICmpInst::ICMP_EQ;
5749        RHS = getConstant(RA - 1);
5750        Changed = true;
5751        break;
5752      }
5753      if (RA.isMinValue()) goto trivially_false;
5754      break;
5755    case ICmpInst::ICMP_SGT:
5756      if (RA.isMinSignedValue()) {
5757        Pred = ICmpInst::ICMP_NE;
5758        Changed = true;
5759        break;
5760      }
5761      if ((RA + 1).isMaxSignedValue()) {
5762        Pred = ICmpInst::ICMP_EQ;
5763        RHS = getConstant(RA + 1);
5764        Changed = true;
5765        break;
5766      }
5767      if (RA.isMaxSignedValue()) goto trivially_false;
5768      break;
5769    case ICmpInst::ICMP_SLT:
5770      if (RA.isMaxSignedValue()) {
5771        Pred = ICmpInst::ICMP_NE;
5772        Changed = true;
5773        break;
5774      }
5775      if ((RA - 1).isMinSignedValue()) {
5776       Pred = ICmpInst::ICMP_EQ;
5777       RHS = getConstant(RA - 1);
5778        Changed = true;
5779       break;
5780      }
5781      if (RA.isMinSignedValue()) goto trivially_false;
5782      break;
5783    }
5784  }
5785
5786  // Check for obvious equality.
5787  if (HasSameValue(LHS, RHS)) {
5788    if (ICmpInst::isTrueWhenEqual(Pred))
5789      goto trivially_true;
5790    if (ICmpInst::isFalseWhenEqual(Pred))
5791      goto trivially_false;
5792  }
5793
5794  // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5795  // adding or subtracting 1 from one of the operands.
5796  switch (Pred) {
5797  case ICmpInst::ICMP_SLE:
5798    if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5799      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5800                       SCEV::FlagNSW);
5801      Pred = ICmpInst::ICMP_SLT;
5802      Changed = true;
5803    } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
5804      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5805                       SCEV::FlagNSW);
5806      Pred = ICmpInst::ICMP_SLT;
5807      Changed = true;
5808    }
5809    break;
5810  case ICmpInst::ICMP_SGE:
5811    if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
5812      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5813                       SCEV::FlagNSW);
5814      Pred = ICmpInst::ICMP_SGT;
5815      Changed = true;
5816    } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5817      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5818                       SCEV::FlagNSW);
5819      Pred = ICmpInst::ICMP_SGT;
5820      Changed = true;
5821    }
5822    break;
5823  case ICmpInst::ICMP_ULE:
5824    if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
5825      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5826                       SCEV::FlagNUW);
5827      Pred = ICmpInst::ICMP_ULT;
5828      Changed = true;
5829    } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
5830      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5831                       SCEV::FlagNUW);
5832      Pred = ICmpInst::ICMP_ULT;
5833      Changed = true;
5834    }
5835    break;
5836  case ICmpInst::ICMP_UGE:
5837    if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
5838      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5839                       SCEV::FlagNUW);
5840      Pred = ICmpInst::ICMP_UGT;
5841      Changed = true;
5842    } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
5843      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5844                       SCEV::FlagNUW);
5845      Pred = ICmpInst::ICMP_UGT;
5846      Changed = true;
5847    }
5848    break;
5849  default:
5850    break;
5851  }
5852
5853  // TODO: More simplifications are possible here.
5854
5855  return Changed;
5856
5857trivially_true:
5858  // Return 0 == 0.
5859  LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
5860  Pred = ICmpInst::ICMP_EQ;
5861  return true;
5862
5863trivially_false:
5864  // Return 0 != 0.
5865  LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
5866  Pred = ICmpInst::ICMP_NE;
5867  return true;
5868}
5869
5870bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5871  return getSignedRange(S).getSignedMax().isNegative();
5872}
5873
5874bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5875  return getSignedRange(S).getSignedMin().isStrictlyPositive();
5876}
5877
5878bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5879  return !getSignedRange(S).getSignedMin().isNegative();
5880}
5881
5882bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5883  return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5884}
5885
5886bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5887  return isKnownNegative(S) || isKnownPositive(S);
5888}
5889
5890bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5891                                       const SCEV *LHS, const SCEV *RHS) {
5892  // Canonicalize the inputs first.
5893  (void)SimplifyICmpOperands(Pred, LHS, RHS);
5894
5895  // If LHS or RHS is an addrec, check to see if the condition is true in
5896  // every iteration of the loop.
5897  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5898    if (isLoopEntryGuardedByCond(
5899          AR->getLoop(), Pred, AR->getStart(), RHS) &&
5900        isLoopBackedgeGuardedByCond(
5901          AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
5902      return true;
5903  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5904    if (isLoopEntryGuardedByCond(
5905          AR->getLoop(), Pred, LHS, AR->getStart()) &&
5906        isLoopBackedgeGuardedByCond(
5907          AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
5908      return true;
5909
5910  // Otherwise see what can be done with known constant ranges.
5911  return isKnownPredicateWithRanges(Pred, LHS, RHS);
5912}
5913
5914bool
5915ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5916                                            const SCEV *LHS, const SCEV *RHS) {
5917  if (HasSameValue(LHS, RHS))
5918    return ICmpInst::isTrueWhenEqual(Pred);
5919
5920  // This code is split out from isKnownPredicate because it is called from
5921  // within isLoopEntryGuardedByCond.
5922  switch (Pred) {
5923  default:
5924    llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5925    break;
5926  case ICmpInst::ICMP_SGT:
5927    Pred = ICmpInst::ICMP_SLT;
5928    std::swap(LHS, RHS);
5929  case ICmpInst::ICMP_SLT: {
5930    ConstantRange LHSRange = getSignedRange(LHS);
5931    ConstantRange RHSRange = getSignedRange(RHS);
5932    if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5933      return true;
5934    if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5935      return false;
5936    break;
5937  }
5938  case ICmpInst::ICMP_SGE:
5939    Pred = ICmpInst::ICMP_SLE;
5940    std::swap(LHS, RHS);
5941  case ICmpInst::ICMP_SLE: {
5942    ConstantRange LHSRange = getSignedRange(LHS);
5943    ConstantRange RHSRange = getSignedRange(RHS);
5944    if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5945      return true;
5946    if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5947      return false;
5948    break;
5949  }
5950  case ICmpInst::ICMP_UGT:
5951    Pred = ICmpInst::ICMP_ULT;
5952    std::swap(LHS, RHS);
5953  case ICmpInst::ICMP_ULT: {
5954    ConstantRange LHSRange = getUnsignedRange(LHS);
5955    ConstantRange RHSRange = getUnsignedRange(RHS);
5956    if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5957      return true;
5958    if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5959      return false;
5960    break;
5961  }
5962  case ICmpInst::ICMP_UGE:
5963    Pred = ICmpInst::ICMP_ULE;
5964    std::swap(LHS, RHS);
5965  case ICmpInst::ICMP_ULE: {
5966    ConstantRange LHSRange = getUnsignedRange(LHS);
5967    ConstantRange RHSRange = getUnsignedRange(RHS);
5968    if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5969      return true;
5970    if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5971      return false;
5972    break;
5973  }
5974  case ICmpInst::ICMP_NE: {
5975    if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5976      return true;
5977    if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5978      return true;
5979
5980    const SCEV *Diff = getMinusSCEV(LHS, RHS);
5981    if (isKnownNonZero(Diff))
5982      return true;
5983    break;
5984  }
5985  case ICmpInst::ICMP_EQ:
5986    // The check at the top of the function catches the case where
5987    // the values are known to be equal.
5988    break;
5989  }
5990  return false;
5991}
5992
5993/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5994/// protected by a conditional between LHS and RHS.  This is used to
5995/// to eliminate casts.
5996bool
5997ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5998                                             ICmpInst::Predicate Pred,
5999                                             const SCEV *LHS, const SCEV *RHS) {
6000  // Interpret a null as meaning no loop, where there is obviously no guard
6001  // (interprocedural conditions notwithstanding).
6002  if (!L) return true;
6003
6004  BasicBlock *Latch = L->getLoopLatch();
6005  if (!Latch)
6006    return false;
6007
6008  BranchInst *LoopContinuePredicate =
6009    dyn_cast<BranchInst>(Latch->getTerminator());
6010  if (!LoopContinuePredicate ||
6011      LoopContinuePredicate->isUnconditional())
6012    return false;
6013
6014  return isImpliedCond(Pred, LHS, RHS,
6015                       LoopContinuePredicate->getCondition(),
6016                       LoopContinuePredicate->getSuccessor(0) != L->getHeader());
6017}
6018
6019/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
6020/// by a conditional between LHS and RHS.  This is used to help avoid max
6021/// expressions in loop trip counts, and to eliminate casts.
6022bool
6023ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6024                                          ICmpInst::Predicate Pred,
6025                                          const SCEV *LHS, const SCEV *RHS) {
6026  // Interpret a null as meaning no loop, where there is obviously no guard
6027  // (interprocedural conditions notwithstanding).
6028  if (!L) return false;
6029
6030  // Starting at the loop predecessor, climb up the predecessor chain, as long
6031  // as there are predecessors that can be found that have unique successors
6032  // leading to the original header.
6033  for (std::pair<BasicBlock *, BasicBlock *>
6034         Pair(L->getLoopPredecessor(), L->getHeader());
6035       Pair.first;
6036       Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
6037
6038    BranchInst *LoopEntryPredicate =
6039      dyn_cast<BranchInst>(Pair.first->getTerminator());
6040    if (!LoopEntryPredicate ||
6041        LoopEntryPredicate->isUnconditional())
6042      continue;
6043
6044    if (isImpliedCond(Pred, LHS, RHS,
6045                      LoopEntryPredicate->getCondition(),
6046                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
6047      return true;
6048  }
6049
6050  return false;
6051}
6052
6053/// isImpliedCond - Test whether the condition described by Pred, LHS,
6054/// and RHS is true whenever the given Cond value evaluates to true.
6055bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
6056                                    const SCEV *LHS, const SCEV *RHS,
6057                                    Value *FoundCondValue,
6058                                    bool Inverse) {
6059  // Recursively handle And and Or conditions.
6060  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
6061    if (BO->getOpcode() == Instruction::And) {
6062      if (!Inverse)
6063        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6064               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
6065    } else if (BO->getOpcode() == Instruction::Or) {
6066      if (Inverse)
6067        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6068               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
6069    }
6070  }
6071
6072  ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
6073  if (!ICI) return false;
6074
6075  // Bail if the ICmp's operands' types are wider than the needed type
6076  // before attempting to call getSCEV on them. This avoids infinite
6077  // recursion, since the analysis of widening casts can require loop
6078  // exit condition information for overflow checking, which would
6079  // lead back here.
6080  if (getTypeSizeInBits(LHS->getType()) <
6081      getTypeSizeInBits(ICI->getOperand(0)->getType()))
6082    return false;
6083
6084  // Now that we found a conditional branch that dominates the loop, check to
6085  // see if it is the comparison we are looking for.
6086  ICmpInst::Predicate FoundPred;
6087  if (Inverse)
6088    FoundPred = ICI->getInversePredicate();
6089  else
6090    FoundPred = ICI->getPredicate();
6091
6092  const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6093  const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
6094
6095  // Balance the types. The case where FoundLHS' type is wider than
6096  // LHS' type is checked for above.
6097  if (getTypeSizeInBits(LHS->getType()) >
6098      getTypeSizeInBits(FoundLHS->getType())) {
6099    if (CmpInst::isSigned(Pred)) {
6100      FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6101      FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6102    } else {
6103      FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6104      FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6105    }
6106  }
6107
6108  // Canonicalize the query to match the way instcombine will have
6109  // canonicalized the comparison.
6110  if (SimplifyICmpOperands(Pred, LHS, RHS))
6111    if (LHS == RHS)
6112      return CmpInst::isTrueWhenEqual(Pred);
6113  if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6114    if (FoundLHS == FoundRHS)
6115      return CmpInst::isFalseWhenEqual(Pred);
6116
6117  // Check to see if we can make the LHS or RHS match.
6118  if (LHS == FoundRHS || RHS == FoundLHS) {
6119    if (isa<SCEVConstant>(RHS)) {
6120      std::swap(FoundLHS, FoundRHS);
6121      FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6122    } else {
6123      std::swap(LHS, RHS);
6124      Pred = ICmpInst::getSwappedPredicate(Pred);
6125    }
6126  }
6127
6128  // Check whether the found predicate is the same as the desired predicate.
6129  if (FoundPred == Pred)
6130    return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6131
6132  // Check whether swapping the found predicate makes it the same as the
6133  // desired predicate.
6134  if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6135    if (isa<SCEVConstant>(RHS))
6136      return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6137    else
6138      return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6139                                   RHS, LHS, FoundLHS, FoundRHS);
6140  }
6141
6142  // Check whether the actual condition is beyond sufficient.
6143  if (FoundPred == ICmpInst::ICMP_EQ)
6144    if (ICmpInst::isTrueWhenEqual(Pred))
6145      if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6146        return true;
6147  if (Pred == ICmpInst::ICMP_NE)
6148    if (!ICmpInst::isTrueWhenEqual(FoundPred))
6149      if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6150        return true;
6151
6152  // Otherwise assume the worst.
6153  return false;
6154}
6155
6156/// isImpliedCondOperands - Test whether the condition described by Pred,
6157/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
6158/// and FoundRHS is true.
6159bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6160                                            const SCEV *LHS, const SCEV *RHS,
6161                                            const SCEV *FoundLHS,
6162                                            const SCEV *FoundRHS) {
6163  return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6164                                     FoundLHS, FoundRHS) ||
6165         // ~x < ~y --> x > y
6166         isImpliedCondOperandsHelper(Pred, LHS, RHS,
6167                                     getNotSCEV(FoundRHS),
6168                                     getNotSCEV(FoundLHS));
6169}
6170
6171/// isImpliedCondOperandsHelper - Test whether the condition described by
6172/// Pred, LHS, and RHS is true whenever the condition described by Pred,
6173/// FoundLHS, and FoundRHS is true.
6174bool
6175ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
6176                                             const SCEV *LHS, const SCEV *RHS,
6177                                             const SCEV *FoundLHS,
6178                                             const SCEV *FoundRHS) {
6179  switch (Pred) {
6180  default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6181  case ICmpInst::ICMP_EQ:
6182  case ICmpInst::ICMP_NE:
6183    if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
6184      return true;
6185    break;
6186  case ICmpInst::ICMP_SLT:
6187  case ICmpInst::ICMP_SLE:
6188    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
6189        isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
6190      return true;
6191    break;
6192  case ICmpInst::ICMP_SGT:
6193  case ICmpInst::ICMP_SGE:
6194    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
6195        isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
6196      return true;
6197    break;
6198  case ICmpInst::ICMP_ULT:
6199  case ICmpInst::ICMP_ULE:
6200    if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
6201        isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
6202      return true;
6203    break;
6204  case ICmpInst::ICMP_UGT:
6205  case ICmpInst::ICMP_UGE:
6206    if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
6207        isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
6208      return true;
6209    break;
6210  }
6211
6212  return false;
6213}
6214
6215/// getBECount - Subtract the end and start values and divide by the step,
6216/// rounding up, to get the number of times the backedge is executed. Return
6217/// CouldNotCompute if an intermediate computation overflows.
6218const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
6219                                        const SCEV *End,
6220                                        const SCEV *Step,
6221                                        bool NoWrap) {
6222  assert(!isKnownNegative(Step) &&
6223         "This code doesn't handle negative strides yet!");
6224
6225  Type *Ty = Start->getType();
6226
6227  // When Start == End, we have an exact BECount == 0. Short-circuit this case
6228  // here because SCEV may not be able to determine that the unsigned division
6229  // after rounding is zero.
6230  if (Start == End)
6231    return getConstant(Ty, 0);
6232
6233  const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
6234  const SCEV *Diff = getMinusSCEV(End, Start);
6235  const SCEV *RoundUp = getAddExpr(Step, NegOne);
6236
6237  // Add an adjustment to the difference between End and Start so that
6238  // the division will effectively round up.
6239  const SCEV *Add = getAddExpr(Diff, RoundUp);
6240
6241  if (!NoWrap) {
6242    // Check Add for unsigned overflow.
6243    // TODO: More sophisticated things could be done here.
6244    Type *WideTy = IntegerType::get(getContext(),
6245                                          getTypeSizeInBits(Ty) + 1);
6246    const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
6247    const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
6248    const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
6249    if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
6250      return getCouldNotCompute();
6251  }
6252
6253  return getUDivExpr(Add, Step);
6254}
6255
6256/// HowManyLessThans - Return the number of times a backedge containing the
6257/// specified less-than comparison will execute.  If not computable, return
6258/// CouldNotCompute.
6259ScalarEvolution::ExitLimit
6260ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
6261                                  const Loop *L, bool isSigned) {
6262  // Only handle:  "ADDREC < LoopInvariant".
6263  if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
6264
6265  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
6266  if (!AddRec || AddRec->getLoop() != L)
6267    return getCouldNotCompute();
6268
6269  // Check to see if we have a flag which makes analysis easy.
6270  bool NoWrap = isSigned ?
6271    AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNW)) :
6272    AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNW));
6273
6274  if (AddRec->isAffine()) {
6275    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
6276    const SCEV *Step = AddRec->getStepRecurrence(*this);
6277
6278    if (Step->isZero())
6279      return getCouldNotCompute();
6280    if (Step->isOne()) {
6281      // With unit stride, the iteration never steps past the limit value.
6282    } else if (isKnownPositive(Step)) {
6283      // Test whether a positive iteration can step past the limit
6284      // value and past the maximum value for its type in a single step.
6285      // Note that it's not sufficient to check NoWrap here, because even
6286      // though the value after a wrap is undefined, it's not undefined
6287      // behavior, so if wrap does occur, the loop could either terminate or
6288      // loop infinitely, but in either case, the loop is guaranteed to
6289      // iterate at least until the iteration where the wrapping occurs.
6290      const SCEV *One = getConstant(Step->getType(), 1);
6291      if (isSigned) {
6292        APInt Max = APInt::getSignedMaxValue(BitWidth);
6293        if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
6294              .slt(getSignedRange(RHS).getSignedMax()))
6295          return getCouldNotCompute();
6296      } else {
6297        APInt Max = APInt::getMaxValue(BitWidth);
6298        if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
6299              .ult(getUnsignedRange(RHS).getUnsignedMax()))
6300          return getCouldNotCompute();
6301      }
6302    } else
6303      // TODO: Handle negative strides here and below.
6304      return getCouldNotCompute();
6305
6306    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
6307    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
6308    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
6309    // treat m-n as signed nor unsigned due to overflow possibility.
6310
6311    // First, we get the value of the LHS in the first iteration: n
6312    const SCEV *Start = AddRec->getOperand(0);
6313
6314    // Determine the minimum constant start value.
6315    const SCEV *MinStart = getConstant(isSigned ?
6316      getSignedRange(Start).getSignedMin() :
6317      getUnsignedRange(Start).getUnsignedMin());
6318
6319    // If we know that the condition is true in order to enter the loop,
6320    // then we know that it will run exactly (m-n)/s times. Otherwise, we
6321    // only know that it will execute (max(m,n)-n)/s times. In both cases,
6322    // the division must round up.
6323    const SCEV *End = RHS;
6324    if (!isLoopEntryGuardedByCond(L,
6325                                  isSigned ? ICmpInst::ICMP_SLT :
6326                                             ICmpInst::ICMP_ULT,
6327                                  getMinusSCEV(Start, Step), RHS))
6328      End = isSigned ? getSMaxExpr(RHS, Start)
6329                     : getUMaxExpr(RHS, Start);
6330
6331    // Determine the maximum constant end value.
6332    const SCEV *MaxEnd = getConstant(isSigned ?
6333      getSignedRange(End).getSignedMax() :
6334      getUnsignedRange(End).getUnsignedMax());
6335
6336    // If MaxEnd is within a step of the maximum integer value in its type,
6337    // adjust it down to the minimum value which would produce the same effect.
6338    // This allows the subsequent ceiling division of (N+(step-1))/step to
6339    // compute the correct value.
6340    const SCEV *StepMinusOne = getMinusSCEV(Step,
6341                                            getConstant(Step->getType(), 1));
6342    MaxEnd = isSigned ?
6343      getSMinExpr(MaxEnd,
6344                  getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
6345                               StepMinusOne)) :
6346      getUMinExpr(MaxEnd,
6347                  getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
6348                               StepMinusOne));
6349
6350    // Finally, we subtract these two values and divide, rounding up, to get
6351    // the number of times the backedge is executed.
6352    const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
6353
6354    // The maximum backedge count is similar, except using the minimum start
6355    // value and the maximum end value.
6356    // If we already have an exact constant BECount, use it instead.
6357    const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount
6358      : getBECount(MinStart, MaxEnd, Step, NoWrap);
6359
6360    // If the stride is nonconstant, and NoWrap == true, then
6361    // getBECount(MinStart, MaxEnd) may not compute. This would result in an
6362    // exact BECount and invalid MaxBECount, which should be avoided to catch
6363    // more optimization opportunities.
6364    if (isa<SCEVCouldNotCompute>(MaxBECount))
6365      MaxBECount = BECount;
6366
6367    return ExitLimit(BECount, MaxBECount);
6368  }
6369
6370  return getCouldNotCompute();
6371}
6372
6373/// getNumIterationsInRange - Return the number of iterations of this loop that
6374/// produce values in the specified constant range.  Another way of looking at
6375/// this is that it returns the first iteration number where the value is not in
6376/// the condition, thus computing the exit count. If the iteration count can't
6377/// be computed, an instance of SCEVCouldNotCompute is returned.
6378const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
6379                                                    ScalarEvolution &SE) const {
6380  if (Range.isFullSet())  // Infinite loop.
6381    return SE.getCouldNotCompute();
6382
6383  // If the start is a non-zero constant, shift the range to simplify things.
6384  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
6385    if (!SC->getValue()->isZero()) {
6386      SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
6387      Operands[0] = SE.getConstant(SC->getType(), 0);
6388      const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
6389                                             getNoWrapFlags(FlagNW));
6390      if (const SCEVAddRecExpr *ShiftedAddRec =
6391            dyn_cast<SCEVAddRecExpr>(Shifted))
6392        return ShiftedAddRec->getNumIterationsInRange(
6393                           Range.subtract(SC->getValue()->getValue()), SE);
6394      // This is strange and shouldn't happen.
6395      return SE.getCouldNotCompute();
6396    }
6397
6398  // The only time we can solve this is when we have all constant indices.
6399  // Otherwise, we cannot determine the overflow conditions.
6400  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6401    if (!isa<SCEVConstant>(getOperand(i)))
6402      return SE.getCouldNotCompute();
6403
6404
6405  // Okay at this point we know that all elements of the chrec are constants and
6406  // that the start element is zero.
6407
6408  // First check to see if the range contains zero.  If not, the first
6409  // iteration exits.
6410  unsigned BitWidth = SE.getTypeSizeInBits(getType());
6411  if (!Range.contains(APInt(BitWidth, 0)))
6412    return SE.getConstant(getType(), 0);
6413
6414  if (isAffine()) {
6415    // If this is an affine expression then we have this situation:
6416    //   Solve {0,+,A} in Range  ===  Ax in Range
6417
6418    // We know that zero is in the range.  If A is positive then we know that
6419    // the upper value of the range must be the first possible exit value.
6420    // If A is negative then the lower of the range is the last possible loop
6421    // value.  Also note that we already checked for a full range.
6422    APInt One(BitWidth,1);
6423    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
6424    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
6425
6426    // The exit value should be (End+A)/A.
6427    APInt ExitVal = (End + A).udiv(A);
6428    ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
6429
6430    // Evaluate at the exit value.  If we really did fall out of the valid
6431    // range, then we computed our trip count, otherwise wrap around or other
6432    // things must have happened.
6433    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
6434    if (Range.contains(Val->getValue()))
6435      return SE.getCouldNotCompute();  // Something strange happened
6436
6437    // Ensure that the previous value is in the range.  This is a sanity check.
6438    assert(Range.contains(
6439           EvaluateConstantChrecAtConstant(this,
6440           ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
6441           "Linear scev computation is off in a bad way!");
6442    return SE.getConstant(ExitValue);
6443  } else if (isQuadratic()) {
6444    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
6445    // quadratic equation to solve it.  To do this, we must frame our problem in
6446    // terms of figuring out when zero is crossed, instead of when
6447    // Range.getUpper() is crossed.
6448    SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
6449    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
6450    const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
6451                                             // getNoWrapFlags(FlagNW)
6452                                             FlagAnyWrap);
6453
6454    // Next, solve the constructed addrec
6455    std::pair<const SCEV *,const SCEV *> Roots =
6456      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
6457    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6458    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
6459    if (R1) {
6460      // Pick the smallest positive root value.
6461      if (ConstantInt *CB =
6462          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
6463                         R1->getValue(), R2->getValue()))) {
6464        if (CB->getZExtValue() == false)
6465          std::swap(R1, R2);   // R1 is the minimum root now.
6466
6467        // Make sure the root is not off by one.  The returned iteration should
6468        // not be in the range, but the previous one should be.  When solving
6469        // for "X*X < 5", for example, we should not return a root of 2.
6470        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
6471                                                             R1->getValue(),
6472                                                             SE);
6473        if (Range.contains(R1Val->getValue())) {
6474          // The next iteration must be out of the range...
6475          ConstantInt *NextVal =
6476                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
6477
6478          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
6479          if (!Range.contains(R1Val->getValue()))
6480            return SE.getConstant(NextVal);
6481          return SE.getCouldNotCompute();  // Something strange happened
6482        }
6483
6484        // If R1 was not in the range, then it is a good return value.  Make
6485        // sure that R1-1 WAS in the range though, just in case.
6486        ConstantInt *NextVal =
6487               ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
6488        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
6489        if (Range.contains(R1Val->getValue()))
6490          return R1;
6491        return SE.getCouldNotCompute();  // Something strange happened
6492      }
6493    }
6494  }
6495
6496  return SE.getCouldNotCompute();
6497}
6498
6499
6500
6501//===----------------------------------------------------------------------===//
6502//                   SCEVCallbackVH Class Implementation
6503//===----------------------------------------------------------------------===//
6504
6505void ScalarEvolution::SCEVCallbackVH::deleted() {
6506  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
6507  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
6508    SE->ConstantEvolutionLoopExitValue.erase(PN);
6509  SE->ValueExprMap.erase(getValPtr());
6510  // this now dangles!
6511}
6512
6513void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
6514  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
6515
6516  // Forget all the expressions associated with users of the old value,
6517  // so that future queries will recompute the expressions using the new
6518  // value.
6519  Value *Old = getValPtr();
6520  SmallVector<User *, 16> Worklist;
6521  SmallPtrSet<User *, 8> Visited;
6522  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
6523       UI != UE; ++UI)
6524    Worklist.push_back(*UI);
6525  while (!Worklist.empty()) {
6526    User *U = Worklist.pop_back_val();
6527    // Deleting the Old value will cause this to dangle. Postpone
6528    // that until everything else is done.
6529    if (U == Old)
6530      continue;
6531    if (!Visited.insert(U))
6532      continue;
6533    if (PHINode *PN = dyn_cast<PHINode>(U))
6534      SE->ConstantEvolutionLoopExitValue.erase(PN);
6535    SE->ValueExprMap.erase(U);
6536    for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
6537         UI != UE; ++UI)
6538      Worklist.push_back(*UI);
6539  }
6540  // Delete the Old value.
6541  if (PHINode *PN = dyn_cast<PHINode>(Old))
6542    SE->ConstantEvolutionLoopExitValue.erase(PN);
6543  SE->ValueExprMap.erase(Old);
6544  // this now dangles!
6545}
6546
6547ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
6548  : CallbackVH(V), SE(se) {}
6549
6550//===----------------------------------------------------------------------===//
6551//                   ScalarEvolution Class Implementation
6552//===----------------------------------------------------------------------===//
6553
6554ScalarEvolution::ScalarEvolution()
6555  : FunctionPass(ID), FirstUnknown(0) {
6556  initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
6557}
6558
6559bool ScalarEvolution::runOnFunction(Function &F) {
6560  this->F = &F;
6561  LI = &getAnalysis<LoopInfo>();
6562  TD = getAnalysisIfAvailable<TargetData>();
6563  DT = &getAnalysis<DominatorTree>();
6564  return false;
6565}
6566
6567void ScalarEvolution::releaseMemory() {
6568  // Iterate through all the SCEVUnknown instances and call their
6569  // destructors, so that they release their references to their values.
6570  for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
6571    U->~SCEVUnknown();
6572  FirstUnknown = 0;
6573
6574  ValueExprMap.clear();
6575
6576  // Free any extra memory created for ExitNotTakenInfo in the unlikely event
6577  // that a loop had multiple computable exits.
6578  for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
6579         BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
6580       I != E; ++I) {
6581    I->second.clear();
6582  }
6583
6584  BackedgeTakenCounts.clear();
6585  ConstantEvolutionLoopExitValue.clear();
6586  ValuesAtScopes.clear();
6587  LoopDispositions.clear();
6588  BlockDispositions.clear();
6589  UnsignedRanges.clear();
6590  SignedRanges.clear();
6591  UniqueSCEVs.clear();
6592  SCEVAllocator.Reset();
6593}
6594
6595void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
6596  AU.setPreservesAll();
6597  AU.addRequiredTransitive<LoopInfo>();
6598  AU.addRequiredTransitive<DominatorTree>();
6599}
6600
6601bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
6602  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
6603}
6604
6605static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
6606                          const Loop *L) {
6607  // Print all inner loops first
6608  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
6609    PrintLoopInfo(OS, SE, *I);
6610
6611  OS << "Loop ";
6612  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6613  OS << ": ";
6614
6615  SmallVector<BasicBlock *, 8> ExitBlocks;
6616  L->getExitBlocks(ExitBlocks);
6617  if (ExitBlocks.size() != 1)
6618    OS << "<multiple exits> ";
6619
6620  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
6621    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
6622  } else {
6623    OS << "Unpredictable backedge-taken count. ";
6624  }
6625
6626  OS << "\n"
6627        "Loop ";
6628  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6629  OS << ": ";
6630
6631  if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
6632    OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
6633  } else {
6634    OS << "Unpredictable max backedge-taken count. ";
6635  }
6636
6637  OS << "\n";
6638}
6639
6640void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
6641  // ScalarEvolution's implementation of the print method is to print
6642  // out SCEV values of all instructions that are interesting. Doing
6643  // this potentially causes it to create new SCEV objects though,
6644  // which technically conflicts with the const qualifier. This isn't
6645  // observable from outside the class though, so casting away the
6646  // const isn't dangerous.
6647  ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
6648
6649  OS << "Classifying expressions for: ";
6650  WriteAsOperand(OS, F, /*PrintType=*/false);
6651  OS << "\n";
6652  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
6653    if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
6654      OS << *I << '\n';
6655      OS << "  -->  ";
6656      const SCEV *SV = SE.getSCEV(&*I);
6657      SV->print(OS);
6658
6659      const Loop *L = LI->getLoopFor((*I).getParent());
6660
6661      const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
6662      if (AtUse != SV) {
6663        OS << "  -->  ";
6664        AtUse->print(OS);
6665      }
6666
6667      if (L) {
6668        OS << "\t\t" "Exits: ";
6669        const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
6670        if (!SE.isLoopInvariant(ExitValue, L)) {
6671          OS << "<<Unknown>>";
6672        } else {
6673          OS << *ExitValue;
6674        }
6675      }
6676
6677      OS << "\n";
6678    }
6679
6680  OS << "Determining loop execution counts for: ";
6681  WriteAsOperand(OS, F, /*PrintType=*/false);
6682  OS << "\n";
6683  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
6684    PrintLoopInfo(OS, &SE, *I);
6685}
6686
6687ScalarEvolution::LoopDisposition
6688ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
6689  std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
6690  std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
6691    Values.insert(std::make_pair(L, LoopVariant));
6692  if (!Pair.second)
6693    return Pair.first->second;
6694
6695  LoopDisposition D = computeLoopDisposition(S, L);
6696  return LoopDispositions[S][L] = D;
6697}
6698
6699ScalarEvolution::LoopDisposition
6700ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
6701  switch (S->getSCEVType()) {
6702  case scConstant:
6703    return LoopInvariant;
6704  case scTruncate:
6705  case scZeroExtend:
6706  case scSignExtend:
6707    return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
6708  case scAddRecExpr: {
6709    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6710
6711    // If L is the addrec's loop, it's computable.
6712    if (AR->getLoop() == L)
6713      return LoopComputable;
6714
6715    // Add recurrences are never invariant in the function-body (null loop).
6716    if (!L)
6717      return LoopVariant;
6718
6719    // This recurrence is variant w.r.t. L if L contains AR's loop.
6720    if (L->contains(AR->getLoop()))
6721      return LoopVariant;
6722
6723    // This recurrence is invariant w.r.t. L if AR's loop contains L.
6724    if (AR->getLoop()->contains(L))
6725      return LoopInvariant;
6726
6727    // This recurrence is variant w.r.t. L if any of its operands
6728    // are variant.
6729    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
6730         I != E; ++I)
6731      if (!isLoopInvariant(*I, L))
6732        return LoopVariant;
6733
6734    // Otherwise it's loop-invariant.
6735    return LoopInvariant;
6736  }
6737  case scAddExpr:
6738  case scMulExpr:
6739  case scUMaxExpr:
6740  case scSMaxExpr: {
6741    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6742    bool HasVarying = false;
6743    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6744         I != E; ++I) {
6745      LoopDisposition D = getLoopDisposition(*I, L);
6746      if (D == LoopVariant)
6747        return LoopVariant;
6748      if (D == LoopComputable)
6749        HasVarying = true;
6750    }
6751    return HasVarying ? LoopComputable : LoopInvariant;
6752  }
6753  case scUDivExpr: {
6754    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6755    LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
6756    if (LD == LoopVariant)
6757      return LoopVariant;
6758    LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
6759    if (RD == LoopVariant)
6760      return LoopVariant;
6761    return (LD == LoopInvariant && RD == LoopInvariant) ?
6762           LoopInvariant : LoopComputable;
6763  }
6764  case scUnknown:
6765    // All non-instruction values are loop invariant.  All instructions are loop
6766    // invariant if they are not contained in the specified loop.
6767    // Instructions are never considered invariant in the function body
6768    // (null loop) because they are defined within the "loop".
6769    if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
6770      return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
6771    return LoopInvariant;
6772  case scCouldNotCompute:
6773    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6774    return LoopVariant;
6775  default: break;
6776  }
6777  llvm_unreachable("Unknown SCEV kind!");
6778  return LoopVariant;
6779}
6780
6781bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
6782  return getLoopDisposition(S, L) == LoopInvariant;
6783}
6784
6785bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6786  return getLoopDisposition(S, L) == LoopComputable;
6787}
6788
6789ScalarEvolution::BlockDisposition
6790ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6791  std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
6792  std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
6793    Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
6794  if (!Pair.second)
6795    return Pair.first->second;
6796
6797  BlockDisposition D = computeBlockDisposition(S, BB);
6798  return BlockDispositions[S][BB] = D;
6799}
6800
6801ScalarEvolution::BlockDisposition
6802ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6803  switch (S->getSCEVType()) {
6804  case scConstant:
6805    return ProperlyDominatesBlock;
6806  case scTruncate:
6807  case scZeroExtend:
6808  case scSignExtend:
6809    return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
6810  case scAddRecExpr: {
6811    // This uses a "dominates" query instead of "properly dominates" query
6812    // to test for proper dominance too, because the instruction which
6813    // produces the addrec's value is a PHI, and a PHI effectively properly
6814    // dominates its entire containing block.
6815    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6816    if (!DT->dominates(AR->getLoop()->getHeader(), BB))
6817      return DoesNotDominateBlock;
6818  }
6819  // FALL THROUGH into SCEVNAryExpr handling.
6820  case scAddExpr:
6821  case scMulExpr:
6822  case scUMaxExpr:
6823  case scSMaxExpr: {
6824    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6825    bool Proper = true;
6826    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6827         I != E; ++I) {
6828      BlockDisposition D = getBlockDisposition(*I, BB);
6829      if (D == DoesNotDominateBlock)
6830        return DoesNotDominateBlock;
6831      if (D == DominatesBlock)
6832        Proper = false;
6833    }
6834    return Proper ? ProperlyDominatesBlock : DominatesBlock;
6835  }
6836  case scUDivExpr: {
6837    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6838    const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6839    BlockDisposition LD = getBlockDisposition(LHS, BB);
6840    if (LD == DoesNotDominateBlock)
6841      return DoesNotDominateBlock;
6842    BlockDisposition RD = getBlockDisposition(RHS, BB);
6843    if (RD == DoesNotDominateBlock)
6844      return DoesNotDominateBlock;
6845    return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6846      ProperlyDominatesBlock : DominatesBlock;
6847  }
6848  case scUnknown:
6849    if (Instruction *I =
6850          dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6851      if (I->getParent() == BB)
6852        return DominatesBlock;
6853      if (DT->properlyDominates(I->getParent(), BB))
6854        return ProperlyDominatesBlock;
6855      return DoesNotDominateBlock;
6856    }
6857    return ProperlyDominatesBlock;
6858  case scCouldNotCompute:
6859    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6860    return DoesNotDominateBlock;
6861  default: break;
6862  }
6863  llvm_unreachable("Unknown SCEV kind!");
6864  return DoesNotDominateBlock;
6865}
6866
6867bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
6868  return getBlockDisposition(S, BB) >= DominatesBlock;
6869}
6870
6871bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
6872  return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
6873}
6874
6875bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
6876  switch (S->getSCEVType()) {
6877  case scConstant:
6878    return false;
6879  case scTruncate:
6880  case scZeroExtend:
6881  case scSignExtend: {
6882    const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S);
6883    const SCEV *CastOp = Cast->getOperand();
6884    return Op == CastOp || hasOperand(CastOp, Op);
6885  }
6886  case scAddRecExpr:
6887  case scAddExpr:
6888  case scMulExpr:
6889  case scUMaxExpr:
6890  case scSMaxExpr: {
6891    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6892    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6893         I != E; ++I) {
6894      const SCEV *NAryOp = *I;
6895      if (NAryOp == Op || hasOperand(NAryOp, Op))
6896        return true;
6897    }
6898    return false;
6899  }
6900  case scUDivExpr: {
6901    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6902    const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6903    return LHS == Op || hasOperand(LHS, Op) ||
6904           RHS == Op || hasOperand(RHS, Op);
6905  }
6906  case scUnknown:
6907    return false;
6908  case scCouldNotCompute:
6909    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6910    return false;
6911  default: break;
6912  }
6913  llvm_unreachable("Unknown SCEV kind!");
6914  return false;
6915}
6916
6917void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
6918  ValuesAtScopes.erase(S);
6919  LoopDispositions.erase(S);
6920  BlockDispositions.erase(S);
6921  UnsignedRanges.erase(S);
6922  SignedRanges.erase(S);
6923}
6924