1//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/AutoUpgrade.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instructions.h"
21#include "llvm/Module.h"
22#include "llvm/Operator.h"
23#include "llvm/ValueSymbolTable.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/raw_ostream.h"
27using namespace llvm;
28
29static std::string getTypeString(Type *T) {
30  std::string Result;
31  raw_string_ostream Tmp(Result);
32  Tmp << *T;
33  return Tmp.str();
34}
35
36/// Run: module ::= toplevelentity*
37bool LLParser::Run() {
38  // Prime the lexer.
39  Lex.Lex();
40
41  return ParseTopLevelEntities() ||
42         ValidateEndOfModule();
43}
44
45/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
46/// module.
47bool LLParser::ValidateEndOfModule() {
48  // Handle any instruction metadata forward references.
49  if (!ForwardRefInstMetadata.empty()) {
50    for (DenseMap<Instruction*, std::vector<MDRef> >::iterator
51         I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end();
52         I != E; ++I) {
53      Instruction *Inst = I->first;
54      const std::vector<MDRef> &MDList = I->second;
55
56      for (unsigned i = 0, e = MDList.size(); i != e; ++i) {
57        unsigned SlotNo = MDList[i].MDSlot;
58
59        if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0)
60          return Error(MDList[i].Loc, "use of undefined metadata '!" +
61                       Twine(SlotNo) + "'");
62        Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]);
63      }
64    }
65    ForwardRefInstMetadata.clear();
66  }
67
68
69  // If there are entries in ForwardRefBlockAddresses at this point, they are
70  // references after the function was defined.  Resolve those now.
71  while (!ForwardRefBlockAddresses.empty()) {
72    // Okay, we are referencing an already-parsed function, resolve them now.
73    Function *TheFn = 0;
74    const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
75    if (Fn.Kind == ValID::t_GlobalName)
76      TheFn = M->getFunction(Fn.StrVal);
77    else if (Fn.UIntVal < NumberedVals.size())
78      TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
79
80    if (TheFn == 0)
81      return Error(Fn.Loc, "unknown function referenced by blockaddress");
82
83    // Resolve all these references.
84    if (ResolveForwardRefBlockAddresses(TheFn,
85                                      ForwardRefBlockAddresses.begin()->second,
86                                        0))
87      return true;
88
89    ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
90  }
91
92  for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i)
93    if (NumberedTypes[i].second.isValid())
94      return Error(NumberedTypes[i].second,
95                   "use of undefined type '%" + Twine(i) + "'");
96
97  for (StringMap<std::pair<Type*, LocTy> >::iterator I =
98       NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
99    if (I->second.second.isValid())
100      return Error(I->second.second,
101                   "use of undefined type named '" + I->getKey() + "'");
102
103  if (!ForwardRefVals.empty())
104    return Error(ForwardRefVals.begin()->second.second,
105                 "use of undefined value '@" + ForwardRefVals.begin()->first +
106                 "'");
107
108  if (!ForwardRefValIDs.empty())
109    return Error(ForwardRefValIDs.begin()->second.second,
110                 "use of undefined value '@" +
111                 Twine(ForwardRefValIDs.begin()->first) + "'");
112
113  if (!ForwardRefMDNodes.empty())
114    return Error(ForwardRefMDNodes.begin()->second.second,
115                 "use of undefined metadata '!" +
116                 Twine(ForwardRefMDNodes.begin()->first) + "'");
117
118
119  // Look for intrinsic functions and CallInst that need to be upgraded
120  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
121    UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
122
123  return false;
124}
125
126bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn,
127                             std::vector<std::pair<ValID, GlobalValue*> > &Refs,
128                                               PerFunctionState *PFS) {
129  // Loop over all the references, resolving them.
130  for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
131    BasicBlock *Res;
132    if (PFS) {
133      if (Refs[i].first.Kind == ValID::t_LocalName)
134        Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
135      else
136        Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
137    } else if (Refs[i].first.Kind == ValID::t_LocalID) {
138      return Error(Refs[i].first.Loc,
139       "cannot take address of numeric label after the function is defined");
140    } else {
141      Res = dyn_cast_or_null<BasicBlock>(
142                     TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
143    }
144
145    if (Res == 0)
146      return Error(Refs[i].first.Loc,
147                   "referenced value is not a basic block");
148
149    // Get the BlockAddress for this and update references to use it.
150    BlockAddress *BA = BlockAddress::get(TheFn, Res);
151    Refs[i].second->replaceAllUsesWith(BA);
152    Refs[i].second->eraseFromParent();
153  }
154  return false;
155}
156
157
158//===----------------------------------------------------------------------===//
159// Top-Level Entities
160//===----------------------------------------------------------------------===//
161
162bool LLParser::ParseTopLevelEntities() {
163  while (1) {
164    switch (Lex.getKind()) {
165    default:         return TokError("expected top-level entity");
166    case lltok::Eof: return false;
167    case lltok::kw_declare: if (ParseDeclare()) return true; break;
168    case lltok::kw_define:  if (ParseDefine()) return true; break;
169    case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
170    case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
171    case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
172    case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
173    case lltok::LocalVar:   if (ParseNamedType()) return true; break;
174    case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
175    case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
176    case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
177    case lltok::MetadataVar: if (ParseNamedMetadata()) return true; break;
178
179    // The Global variable production with no name can have many different
180    // optional leading prefixes, the production is:
181    // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
182    //               OptionalAddrSpace OptionalUnNammedAddr
183    //               ('constant'|'global') ...
184    case lltok::kw_private:             // OptionalLinkage
185    case lltok::kw_linker_private:      // OptionalLinkage
186    case lltok::kw_linker_private_weak: // OptionalLinkage
187    case lltok::kw_linker_private_weak_def_auto: // FIXME: backwards compat.
188    case lltok::kw_internal:            // OptionalLinkage
189    case lltok::kw_weak:                // OptionalLinkage
190    case lltok::kw_weak_odr:            // OptionalLinkage
191    case lltok::kw_linkonce:            // OptionalLinkage
192    case lltok::kw_linkonce_odr:        // OptionalLinkage
193    case lltok::kw_linkonce_odr_auto_hide: // OptionalLinkage
194    case lltok::kw_appending:           // OptionalLinkage
195    case lltok::kw_dllexport:           // OptionalLinkage
196    case lltok::kw_common:              // OptionalLinkage
197    case lltok::kw_dllimport:           // OptionalLinkage
198    case lltok::kw_extern_weak:         // OptionalLinkage
199    case lltok::kw_external: {          // OptionalLinkage
200      unsigned Linkage, Visibility;
201      if (ParseOptionalLinkage(Linkage) ||
202          ParseOptionalVisibility(Visibility) ||
203          ParseGlobal("", SMLoc(), Linkage, true, Visibility))
204        return true;
205      break;
206    }
207    case lltok::kw_default:       // OptionalVisibility
208    case lltok::kw_hidden:        // OptionalVisibility
209    case lltok::kw_protected: {   // OptionalVisibility
210      unsigned Visibility;
211      if (ParseOptionalVisibility(Visibility) ||
212          ParseGlobal("", SMLoc(), 0, false, Visibility))
213        return true;
214      break;
215    }
216
217    case lltok::kw_thread_local:  // OptionalThreadLocal
218    case lltok::kw_addrspace:     // OptionalAddrSpace
219    case lltok::kw_constant:      // GlobalType
220    case lltok::kw_global:        // GlobalType
221      if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
222      break;
223    }
224  }
225}
226
227
228/// toplevelentity
229///   ::= 'module' 'asm' STRINGCONSTANT
230bool LLParser::ParseModuleAsm() {
231  assert(Lex.getKind() == lltok::kw_module);
232  Lex.Lex();
233
234  std::string AsmStr;
235  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
236      ParseStringConstant(AsmStr)) return true;
237
238  M->appendModuleInlineAsm(AsmStr);
239  return false;
240}
241
242/// toplevelentity
243///   ::= 'target' 'triple' '=' STRINGCONSTANT
244///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
245bool LLParser::ParseTargetDefinition() {
246  assert(Lex.getKind() == lltok::kw_target);
247  std::string Str;
248  switch (Lex.Lex()) {
249  default: return TokError("unknown target property");
250  case lltok::kw_triple:
251    Lex.Lex();
252    if (ParseToken(lltok::equal, "expected '=' after target triple") ||
253        ParseStringConstant(Str))
254      return true;
255    M->setTargetTriple(Str);
256    return false;
257  case lltok::kw_datalayout:
258    Lex.Lex();
259    if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
260        ParseStringConstant(Str))
261      return true;
262    M->setDataLayout(Str);
263    return false;
264  }
265}
266
267/// toplevelentity
268///   ::= 'deplibs' '=' '[' ']'
269///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
270bool LLParser::ParseDepLibs() {
271  assert(Lex.getKind() == lltok::kw_deplibs);
272  Lex.Lex();
273  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
274      ParseToken(lltok::lsquare, "expected '=' after deplibs"))
275    return true;
276
277  if (EatIfPresent(lltok::rsquare))
278    return false;
279
280  std::string Str;
281  if (ParseStringConstant(Str)) return true;
282  M->addLibrary(Str);
283
284  while (EatIfPresent(lltok::comma)) {
285    if (ParseStringConstant(Str)) return true;
286    M->addLibrary(Str);
287  }
288
289  return ParseToken(lltok::rsquare, "expected ']' at end of list");
290}
291
292/// ParseUnnamedType:
293///   ::= LocalVarID '=' 'type' type
294bool LLParser::ParseUnnamedType() {
295  LocTy TypeLoc = Lex.getLoc();
296  unsigned TypeID = Lex.getUIntVal();
297  Lex.Lex(); // eat LocalVarID;
298
299  if (ParseToken(lltok::equal, "expected '=' after name") ||
300      ParseToken(lltok::kw_type, "expected 'type' after '='"))
301    return true;
302
303  if (TypeID >= NumberedTypes.size())
304    NumberedTypes.resize(TypeID+1);
305
306  Type *Result = 0;
307  if (ParseStructDefinition(TypeLoc, "",
308                            NumberedTypes[TypeID], Result)) return true;
309
310  if (!isa<StructType>(Result)) {
311    std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
312    if (Entry.first)
313      return Error(TypeLoc, "non-struct types may not be recursive");
314    Entry.first = Result;
315    Entry.second = SMLoc();
316  }
317
318  return false;
319}
320
321
322/// toplevelentity
323///   ::= LocalVar '=' 'type' type
324bool LLParser::ParseNamedType() {
325  std::string Name = Lex.getStrVal();
326  LocTy NameLoc = Lex.getLoc();
327  Lex.Lex();  // eat LocalVar.
328
329  if (ParseToken(lltok::equal, "expected '=' after name") ||
330      ParseToken(lltok::kw_type, "expected 'type' after name"))
331    return true;
332
333  Type *Result = 0;
334  if (ParseStructDefinition(NameLoc, Name,
335                            NamedTypes[Name], Result)) return true;
336
337  if (!isa<StructType>(Result)) {
338    std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
339    if (Entry.first)
340      return Error(NameLoc, "non-struct types may not be recursive");
341    Entry.first = Result;
342    Entry.second = SMLoc();
343  }
344
345  return false;
346}
347
348
349/// toplevelentity
350///   ::= 'declare' FunctionHeader
351bool LLParser::ParseDeclare() {
352  assert(Lex.getKind() == lltok::kw_declare);
353  Lex.Lex();
354
355  Function *F;
356  return ParseFunctionHeader(F, false);
357}
358
359/// toplevelentity
360///   ::= 'define' FunctionHeader '{' ...
361bool LLParser::ParseDefine() {
362  assert(Lex.getKind() == lltok::kw_define);
363  Lex.Lex();
364
365  Function *F;
366  return ParseFunctionHeader(F, true) ||
367         ParseFunctionBody(*F);
368}
369
370/// ParseGlobalType
371///   ::= 'constant'
372///   ::= 'global'
373bool LLParser::ParseGlobalType(bool &IsConstant) {
374  if (Lex.getKind() == lltok::kw_constant)
375    IsConstant = true;
376  else if (Lex.getKind() == lltok::kw_global)
377    IsConstant = false;
378  else {
379    IsConstant = false;
380    return TokError("expected 'global' or 'constant'");
381  }
382  Lex.Lex();
383  return false;
384}
385
386/// ParseUnnamedGlobal:
387///   OptionalVisibility ALIAS ...
388///   OptionalLinkage OptionalVisibility ...   -> global variable
389///   GlobalID '=' OptionalVisibility ALIAS ...
390///   GlobalID '=' OptionalLinkage OptionalVisibility ...   -> global variable
391bool LLParser::ParseUnnamedGlobal() {
392  unsigned VarID = NumberedVals.size();
393  std::string Name;
394  LocTy NameLoc = Lex.getLoc();
395
396  // Handle the GlobalID form.
397  if (Lex.getKind() == lltok::GlobalID) {
398    if (Lex.getUIntVal() != VarID)
399      return Error(Lex.getLoc(), "variable expected to be numbered '%" +
400                   Twine(VarID) + "'");
401    Lex.Lex(); // eat GlobalID;
402
403    if (ParseToken(lltok::equal, "expected '=' after name"))
404      return true;
405  }
406
407  bool HasLinkage;
408  unsigned Linkage, Visibility;
409  if (ParseOptionalLinkage(Linkage, HasLinkage) ||
410      ParseOptionalVisibility(Visibility))
411    return true;
412
413  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
414    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
415  return ParseAlias(Name, NameLoc, Visibility);
416}
417
418/// ParseNamedGlobal:
419///   GlobalVar '=' OptionalVisibility ALIAS ...
420///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
421bool LLParser::ParseNamedGlobal() {
422  assert(Lex.getKind() == lltok::GlobalVar);
423  LocTy NameLoc = Lex.getLoc();
424  std::string Name = Lex.getStrVal();
425  Lex.Lex();
426
427  bool HasLinkage;
428  unsigned Linkage, Visibility;
429  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
430      ParseOptionalLinkage(Linkage, HasLinkage) ||
431      ParseOptionalVisibility(Visibility))
432    return true;
433
434  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
435    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
436  return ParseAlias(Name, NameLoc, Visibility);
437}
438
439// MDString:
440//   ::= '!' STRINGCONSTANT
441bool LLParser::ParseMDString(MDString *&Result) {
442  std::string Str;
443  if (ParseStringConstant(Str)) return true;
444  Result = MDString::get(Context, Str);
445  return false;
446}
447
448// MDNode:
449//   ::= '!' MDNodeNumber
450//
451/// This version of ParseMDNodeID returns the slot number and null in the case
452/// of a forward reference.
453bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) {
454  // !{ ..., !42, ... }
455  if (ParseUInt32(SlotNo)) return true;
456
457  // Check existing MDNode.
458  if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0)
459    Result = NumberedMetadata[SlotNo];
460  else
461    Result = 0;
462  return false;
463}
464
465bool LLParser::ParseMDNodeID(MDNode *&Result) {
466  // !{ ..., !42, ... }
467  unsigned MID = 0;
468  if (ParseMDNodeID(Result, MID)) return true;
469
470  // If not a forward reference, just return it now.
471  if (Result) return false;
472
473  // Otherwise, create MDNode forward reference.
474  MDNode *FwdNode = MDNode::getTemporary(Context, ArrayRef<Value*>());
475  ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
476
477  if (NumberedMetadata.size() <= MID)
478    NumberedMetadata.resize(MID+1);
479  NumberedMetadata[MID] = FwdNode;
480  Result = FwdNode;
481  return false;
482}
483
484/// ParseNamedMetadata:
485///   !foo = !{ !1, !2 }
486bool LLParser::ParseNamedMetadata() {
487  assert(Lex.getKind() == lltok::MetadataVar);
488  std::string Name = Lex.getStrVal();
489  Lex.Lex();
490
491  if (ParseToken(lltok::equal, "expected '=' here") ||
492      ParseToken(lltok::exclaim, "Expected '!' here") ||
493      ParseToken(lltok::lbrace, "Expected '{' here"))
494    return true;
495
496  NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
497  if (Lex.getKind() != lltok::rbrace)
498    do {
499      if (ParseToken(lltok::exclaim, "Expected '!' here"))
500        return true;
501
502      MDNode *N = 0;
503      if (ParseMDNodeID(N)) return true;
504      NMD->addOperand(N);
505    } while (EatIfPresent(lltok::comma));
506
507  if (ParseToken(lltok::rbrace, "expected end of metadata node"))
508    return true;
509
510  return false;
511}
512
513/// ParseStandaloneMetadata:
514///   !42 = !{...}
515bool LLParser::ParseStandaloneMetadata() {
516  assert(Lex.getKind() == lltok::exclaim);
517  Lex.Lex();
518  unsigned MetadataID = 0;
519
520  LocTy TyLoc;
521  Type *Ty = 0;
522  SmallVector<Value *, 16> Elts;
523  if (ParseUInt32(MetadataID) ||
524      ParseToken(lltok::equal, "expected '=' here") ||
525      ParseType(Ty, TyLoc) ||
526      ParseToken(lltok::exclaim, "Expected '!' here") ||
527      ParseToken(lltok::lbrace, "Expected '{' here") ||
528      ParseMDNodeVector(Elts, NULL) ||
529      ParseToken(lltok::rbrace, "expected end of metadata node"))
530    return true;
531
532  MDNode *Init = MDNode::get(Context, Elts);
533
534  // See if this was forward referenced, if so, handle it.
535  std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
536    FI = ForwardRefMDNodes.find(MetadataID);
537  if (FI != ForwardRefMDNodes.end()) {
538    MDNode *Temp = FI->second.first;
539    Temp->replaceAllUsesWith(Init);
540    MDNode::deleteTemporary(Temp);
541    ForwardRefMDNodes.erase(FI);
542
543    assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
544  } else {
545    if (MetadataID >= NumberedMetadata.size())
546      NumberedMetadata.resize(MetadataID+1);
547
548    if (NumberedMetadata[MetadataID] != 0)
549      return TokError("Metadata id is already used");
550    NumberedMetadata[MetadataID] = Init;
551  }
552
553  return false;
554}
555
556/// ParseAlias:
557///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
558/// Aliasee
559///   ::= TypeAndValue
560///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
561///   ::= 'getelementptr' 'inbounds'? '(' ... ')'
562///
563/// Everything through visibility has already been parsed.
564///
565bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
566                          unsigned Visibility) {
567  assert(Lex.getKind() == lltok::kw_alias);
568  Lex.Lex();
569  unsigned Linkage;
570  LocTy LinkageLoc = Lex.getLoc();
571  if (ParseOptionalLinkage(Linkage))
572    return true;
573
574  if (Linkage != GlobalValue::ExternalLinkage &&
575      Linkage != GlobalValue::WeakAnyLinkage &&
576      Linkage != GlobalValue::WeakODRLinkage &&
577      Linkage != GlobalValue::InternalLinkage &&
578      Linkage != GlobalValue::PrivateLinkage &&
579      Linkage != GlobalValue::LinkerPrivateLinkage &&
580      Linkage != GlobalValue::LinkerPrivateWeakLinkage)
581    return Error(LinkageLoc, "invalid linkage type for alias");
582
583  Constant *Aliasee;
584  LocTy AliaseeLoc = Lex.getLoc();
585  if (Lex.getKind() != lltok::kw_bitcast &&
586      Lex.getKind() != lltok::kw_getelementptr) {
587    if (ParseGlobalTypeAndValue(Aliasee)) return true;
588  } else {
589    // The bitcast dest type is not present, it is implied by the dest type.
590    ValID ID;
591    if (ParseValID(ID)) return true;
592    if (ID.Kind != ValID::t_Constant)
593      return Error(AliaseeLoc, "invalid aliasee");
594    Aliasee = ID.ConstantVal;
595  }
596
597  if (!Aliasee->getType()->isPointerTy())
598    return Error(AliaseeLoc, "alias must have pointer type");
599
600  // Okay, create the alias but do not insert it into the module yet.
601  GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
602                                    (GlobalValue::LinkageTypes)Linkage, Name,
603                                    Aliasee);
604  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
605
606  // See if this value already exists in the symbol table.  If so, it is either
607  // a redefinition or a definition of a forward reference.
608  if (GlobalValue *Val = M->getNamedValue(Name)) {
609    // See if this was a redefinition.  If so, there is no entry in
610    // ForwardRefVals.
611    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
612      I = ForwardRefVals.find(Name);
613    if (I == ForwardRefVals.end())
614      return Error(NameLoc, "redefinition of global named '@" + Name + "'");
615
616    // Otherwise, this was a definition of forward ref.  Verify that types
617    // agree.
618    if (Val->getType() != GA->getType())
619      return Error(NameLoc,
620              "forward reference and definition of alias have different types");
621
622    // If they agree, just RAUW the old value with the alias and remove the
623    // forward ref info.
624    Val->replaceAllUsesWith(GA);
625    Val->eraseFromParent();
626    ForwardRefVals.erase(I);
627  }
628
629  // Insert into the module, we know its name won't collide now.
630  M->getAliasList().push_back(GA);
631  assert(GA->getName() == Name && "Should not be a name conflict!");
632
633  return false;
634}
635
636/// ParseGlobal
637///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
638///       OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const
639///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
640///       OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const
641///
642/// Everything through visibility has been parsed already.
643///
644bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
645                           unsigned Linkage, bool HasLinkage,
646                           unsigned Visibility) {
647  unsigned AddrSpace;
648  bool IsConstant, UnnamedAddr;
649  GlobalVariable::ThreadLocalMode TLM;
650  LocTy UnnamedAddrLoc;
651  LocTy TyLoc;
652
653  Type *Ty = 0;
654  if (ParseOptionalThreadLocal(TLM) ||
655      ParseOptionalAddrSpace(AddrSpace) ||
656      ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
657                         &UnnamedAddrLoc) ||
658      ParseGlobalType(IsConstant) ||
659      ParseType(Ty, TyLoc))
660    return true;
661
662  // If the linkage is specified and is external, then no initializer is
663  // present.
664  Constant *Init = 0;
665  if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
666                      Linkage != GlobalValue::ExternalWeakLinkage &&
667                      Linkage != GlobalValue::ExternalLinkage)) {
668    if (ParseGlobalValue(Ty, Init))
669      return true;
670  }
671
672  if (Ty->isFunctionTy() || Ty->isLabelTy())
673    return Error(TyLoc, "invalid type for global variable");
674
675  GlobalVariable *GV = 0;
676
677  // See if the global was forward referenced, if so, use the global.
678  if (!Name.empty()) {
679    if (GlobalValue *GVal = M->getNamedValue(Name)) {
680      if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
681        return Error(NameLoc, "redefinition of global '@" + Name + "'");
682      GV = cast<GlobalVariable>(GVal);
683    }
684  } else {
685    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
686      I = ForwardRefValIDs.find(NumberedVals.size());
687    if (I != ForwardRefValIDs.end()) {
688      GV = cast<GlobalVariable>(I->second.first);
689      ForwardRefValIDs.erase(I);
690    }
691  }
692
693  if (GV == 0) {
694    GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
695                            Name, 0, GlobalVariable::NotThreadLocal,
696                            AddrSpace);
697  } else {
698    if (GV->getType()->getElementType() != Ty)
699      return Error(TyLoc,
700            "forward reference and definition of global have different types");
701
702    // Move the forward-reference to the correct spot in the module.
703    M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
704  }
705
706  if (Name.empty())
707    NumberedVals.push_back(GV);
708
709  // Set the parsed properties on the global.
710  if (Init)
711    GV->setInitializer(Init);
712  GV->setConstant(IsConstant);
713  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
714  GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
715  GV->setThreadLocalMode(TLM);
716  GV->setUnnamedAddr(UnnamedAddr);
717
718  // Parse attributes on the global.
719  while (Lex.getKind() == lltok::comma) {
720    Lex.Lex();
721
722    if (Lex.getKind() == lltok::kw_section) {
723      Lex.Lex();
724      GV->setSection(Lex.getStrVal());
725      if (ParseToken(lltok::StringConstant, "expected global section string"))
726        return true;
727    } else if (Lex.getKind() == lltok::kw_align) {
728      unsigned Alignment;
729      if (ParseOptionalAlignment(Alignment)) return true;
730      GV->setAlignment(Alignment);
731    } else {
732      TokError("unknown global variable property!");
733    }
734  }
735
736  return false;
737}
738
739
740//===----------------------------------------------------------------------===//
741// GlobalValue Reference/Resolution Routines.
742//===----------------------------------------------------------------------===//
743
744/// GetGlobalVal - Get a value with the specified name or ID, creating a
745/// forward reference record if needed.  This can return null if the value
746/// exists but does not have the right type.
747GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
748                                    LocTy Loc) {
749  PointerType *PTy = dyn_cast<PointerType>(Ty);
750  if (PTy == 0) {
751    Error(Loc, "global variable reference must have pointer type");
752    return 0;
753  }
754
755  // Look this name up in the normal function symbol table.
756  GlobalValue *Val =
757    cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
758
759  // If this is a forward reference for the value, see if we already created a
760  // forward ref record.
761  if (Val == 0) {
762    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
763      I = ForwardRefVals.find(Name);
764    if (I != ForwardRefVals.end())
765      Val = I->second.first;
766  }
767
768  // If we have the value in the symbol table or fwd-ref table, return it.
769  if (Val) {
770    if (Val->getType() == Ty) return Val;
771    Error(Loc, "'@" + Name + "' defined with type '" +
772          getTypeString(Val->getType()) + "'");
773    return 0;
774  }
775
776  // Otherwise, create a new forward reference for this value and remember it.
777  GlobalValue *FwdVal;
778  if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
779    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
780  else
781    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
782                                GlobalValue::ExternalWeakLinkage, 0, Name);
783
784  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
785  return FwdVal;
786}
787
788GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
789  PointerType *PTy = dyn_cast<PointerType>(Ty);
790  if (PTy == 0) {
791    Error(Loc, "global variable reference must have pointer type");
792    return 0;
793  }
794
795  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
796
797  // If this is a forward reference for the value, see if we already created a
798  // forward ref record.
799  if (Val == 0) {
800    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
801      I = ForwardRefValIDs.find(ID);
802    if (I != ForwardRefValIDs.end())
803      Val = I->second.first;
804  }
805
806  // If we have the value in the symbol table or fwd-ref table, return it.
807  if (Val) {
808    if (Val->getType() == Ty) return Val;
809    Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
810          getTypeString(Val->getType()) + "'");
811    return 0;
812  }
813
814  // Otherwise, create a new forward reference for this value and remember it.
815  GlobalValue *FwdVal;
816  if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
817    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
818  else
819    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
820                                GlobalValue::ExternalWeakLinkage, 0, "");
821
822  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
823  return FwdVal;
824}
825
826
827//===----------------------------------------------------------------------===//
828// Helper Routines.
829//===----------------------------------------------------------------------===//
830
831/// ParseToken - If the current token has the specified kind, eat it and return
832/// success.  Otherwise, emit the specified error and return failure.
833bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
834  if (Lex.getKind() != T)
835    return TokError(ErrMsg);
836  Lex.Lex();
837  return false;
838}
839
840/// ParseStringConstant
841///   ::= StringConstant
842bool LLParser::ParseStringConstant(std::string &Result) {
843  if (Lex.getKind() != lltok::StringConstant)
844    return TokError("expected string constant");
845  Result = Lex.getStrVal();
846  Lex.Lex();
847  return false;
848}
849
850/// ParseUInt32
851///   ::= uint32
852bool LLParser::ParseUInt32(unsigned &Val) {
853  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
854    return TokError("expected integer");
855  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
856  if (Val64 != unsigned(Val64))
857    return TokError("expected 32-bit integer (too large)");
858  Val = Val64;
859  Lex.Lex();
860  return false;
861}
862
863/// ParseTLSModel
864///   := 'localdynamic'
865///   := 'initialexec'
866///   := 'localexec'
867bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
868  switch (Lex.getKind()) {
869    default:
870      return TokError("expected localdynamic, initialexec or localexec");
871    case lltok::kw_localdynamic:
872      TLM = GlobalVariable::LocalDynamicTLSModel;
873      break;
874    case lltok::kw_initialexec:
875      TLM = GlobalVariable::InitialExecTLSModel;
876      break;
877    case lltok::kw_localexec:
878      TLM = GlobalVariable::LocalExecTLSModel;
879      break;
880  }
881
882  Lex.Lex();
883  return false;
884}
885
886/// ParseOptionalThreadLocal
887///   := /*empty*/
888///   := 'thread_local'
889///   := 'thread_local' '(' tlsmodel ')'
890bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
891  TLM = GlobalVariable::NotThreadLocal;
892  if (!EatIfPresent(lltok::kw_thread_local))
893    return false;
894
895  TLM = GlobalVariable::GeneralDynamicTLSModel;
896  if (Lex.getKind() == lltok::lparen) {
897    Lex.Lex();
898    return ParseTLSModel(TLM) ||
899      ParseToken(lltok::rparen, "expected ')' after thread local model");
900  }
901  return false;
902}
903
904/// ParseOptionalAddrSpace
905///   := /*empty*/
906///   := 'addrspace' '(' uint32 ')'
907bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
908  AddrSpace = 0;
909  if (!EatIfPresent(lltok::kw_addrspace))
910    return false;
911  return ParseToken(lltok::lparen, "expected '(' in address space") ||
912         ParseUInt32(AddrSpace) ||
913         ParseToken(lltok::rparen, "expected ')' in address space");
914}
915
916/// ParseOptionalAttrs - Parse a potentially empty attribute list.  AttrKind
917/// indicates what kind of attribute list this is: 0: function arg, 1: result,
918/// 2: function attr.
919bool LLParser::ParseOptionalAttrs(Attributes &Attrs, unsigned AttrKind) {
920  Attrs = Attribute::None;
921  LocTy AttrLoc = Lex.getLoc();
922
923  while (1) {
924    switch (Lex.getKind()) {
925    default:  // End of attributes.
926      if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
927        return Error(AttrLoc, "invalid use of function-only attribute");
928
929      // As a hack, we allow "align 2" on functions as a synonym for
930      // "alignstack 2".
931      if (AttrKind == 2 &&
932          (Attrs & ~(Attribute::FunctionOnly | Attribute::Alignment)))
933        return Error(AttrLoc, "invalid use of attribute on a function");
934
935      if (AttrKind != 0 && (Attrs & Attribute::ParameterOnly))
936        return Error(AttrLoc, "invalid use of parameter-only attribute");
937
938      return false;
939    case lltok::kw_zeroext:         Attrs |= Attribute::ZExt; break;
940    case lltok::kw_signext:         Attrs |= Attribute::SExt; break;
941    case lltok::kw_inreg:           Attrs |= Attribute::InReg; break;
942    case lltok::kw_sret:            Attrs |= Attribute::StructRet; break;
943    case lltok::kw_noalias:         Attrs |= Attribute::NoAlias; break;
944    case lltok::kw_nocapture:       Attrs |= Attribute::NoCapture; break;
945    case lltok::kw_byval:           Attrs |= Attribute::ByVal; break;
946    case lltok::kw_nest:            Attrs |= Attribute::Nest; break;
947
948    case lltok::kw_noreturn:        Attrs |= Attribute::NoReturn; break;
949    case lltok::kw_nounwind:        Attrs |= Attribute::NoUnwind; break;
950    case lltok::kw_uwtable:         Attrs |= Attribute::UWTable; break;
951    case lltok::kw_returns_twice:   Attrs |= Attribute::ReturnsTwice; break;
952    case lltok::kw_noinline:        Attrs |= Attribute::NoInline; break;
953    case lltok::kw_readnone:        Attrs |= Attribute::ReadNone; break;
954    case lltok::kw_readonly:        Attrs |= Attribute::ReadOnly; break;
955    case lltok::kw_inlinehint:      Attrs |= Attribute::InlineHint; break;
956    case lltok::kw_alwaysinline:    Attrs |= Attribute::AlwaysInline; break;
957    case lltok::kw_optsize:         Attrs |= Attribute::OptimizeForSize; break;
958    case lltok::kw_ssp:             Attrs |= Attribute::StackProtect; break;
959    case lltok::kw_sspreq:          Attrs |= Attribute::StackProtectReq; break;
960    case lltok::kw_noredzone:       Attrs |= Attribute::NoRedZone; break;
961    case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
962    case lltok::kw_naked:           Attrs |= Attribute::Naked; break;
963    case lltok::kw_nonlazybind:     Attrs |= Attribute::NonLazyBind; break;
964    case lltok::kw_address_safety:  Attrs |= Attribute::AddressSafety; break;
965
966    case lltok::kw_alignstack: {
967      unsigned Alignment;
968      if (ParseOptionalStackAlignment(Alignment))
969        return true;
970      Attrs |= Attribute::constructStackAlignmentFromInt(Alignment);
971      continue;
972    }
973
974    case lltok::kw_align: {
975      unsigned Alignment;
976      if (ParseOptionalAlignment(Alignment))
977        return true;
978      Attrs |= Attribute::constructAlignmentFromInt(Alignment);
979      continue;
980    }
981
982    }
983    Lex.Lex();
984  }
985}
986
987/// ParseOptionalLinkage
988///   ::= /*empty*/
989///   ::= 'private'
990///   ::= 'linker_private'
991///   ::= 'linker_private_weak'
992///   ::= 'internal'
993///   ::= 'weak'
994///   ::= 'weak_odr'
995///   ::= 'linkonce'
996///   ::= 'linkonce_odr'
997///   ::= 'linkonce_odr_auto_hide'
998///   ::= 'available_externally'
999///   ::= 'appending'
1000///   ::= 'dllexport'
1001///   ::= 'common'
1002///   ::= 'dllimport'
1003///   ::= 'extern_weak'
1004///   ::= 'external'
1005bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
1006  HasLinkage = false;
1007  switch (Lex.getKind()) {
1008  default:                       Res=GlobalValue::ExternalLinkage; return false;
1009  case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
1010  case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
1011  case lltok::kw_linker_private_weak:
1012    Res = GlobalValue::LinkerPrivateWeakLinkage;
1013    break;
1014  case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
1015  case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
1016  case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
1017  case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
1018  case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
1019  case lltok::kw_linkonce_odr_auto_hide:
1020  case lltok::kw_linker_private_weak_def_auto: // FIXME: For backwards compat.
1021    Res = GlobalValue::LinkOnceODRAutoHideLinkage;
1022    break;
1023  case lltok::kw_available_externally:
1024    Res = GlobalValue::AvailableExternallyLinkage;
1025    break;
1026  case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
1027  case lltok::kw_dllexport:      Res = GlobalValue::DLLExportLinkage;     break;
1028  case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
1029  case lltok::kw_dllimport:      Res = GlobalValue::DLLImportLinkage;     break;
1030  case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
1031  case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
1032  }
1033  Lex.Lex();
1034  HasLinkage = true;
1035  return false;
1036}
1037
1038/// ParseOptionalVisibility
1039///   ::= /*empty*/
1040///   ::= 'default'
1041///   ::= 'hidden'
1042///   ::= 'protected'
1043///
1044bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1045  switch (Lex.getKind()) {
1046  default:                  Res = GlobalValue::DefaultVisibility; return false;
1047  case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
1048  case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
1049  case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1050  }
1051  Lex.Lex();
1052  return false;
1053}
1054
1055/// ParseOptionalCallingConv
1056///   ::= /*empty*/
1057///   ::= 'ccc'
1058///   ::= 'fastcc'
1059///   ::= 'coldcc'
1060///   ::= 'x86_stdcallcc'
1061///   ::= 'x86_fastcallcc'
1062///   ::= 'x86_thiscallcc'
1063///   ::= 'arm_apcscc'
1064///   ::= 'arm_aapcscc'
1065///   ::= 'arm_aapcs_vfpcc'
1066///   ::= 'msp430_intrcc'
1067///   ::= 'ptx_kernel'
1068///   ::= 'ptx_device'
1069///   ::= 'cc' UINT
1070///
1071bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
1072  switch (Lex.getKind()) {
1073  default:                       CC = CallingConv::C; return false;
1074  case lltok::kw_ccc:            CC = CallingConv::C; break;
1075  case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1076  case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1077  case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1078  case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1079  case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1080  case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1081  case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1082  case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1083  case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1084  case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1085  case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1086  case lltok::kw_cc: {
1087      unsigned ArbitraryCC;
1088      Lex.Lex();
1089      if (ParseUInt32(ArbitraryCC))
1090        return true;
1091      CC = static_cast<CallingConv::ID>(ArbitraryCC);
1092      return false;
1093    }
1094  }
1095
1096  Lex.Lex();
1097  return false;
1098}
1099
1100/// ParseInstructionMetadata
1101///   ::= !dbg !42 (',' !dbg !57)*
1102bool LLParser::ParseInstructionMetadata(Instruction *Inst,
1103                                        PerFunctionState *PFS) {
1104  do {
1105    if (Lex.getKind() != lltok::MetadataVar)
1106      return TokError("expected metadata after comma");
1107
1108    std::string Name = Lex.getStrVal();
1109    unsigned MDK = M->getMDKindID(Name);
1110    Lex.Lex();
1111
1112    MDNode *Node;
1113    SMLoc Loc = Lex.getLoc();
1114
1115    if (ParseToken(lltok::exclaim, "expected '!' here"))
1116      return true;
1117
1118    // This code is similar to that of ParseMetadataValue, however it needs to
1119    // have special-case code for a forward reference; see the comments on
1120    // ForwardRefInstMetadata for details. Also, MDStrings are not supported
1121    // at the top level here.
1122    if (Lex.getKind() == lltok::lbrace) {
1123      ValID ID;
1124      if (ParseMetadataListValue(ID, PFS))
1125        return true;
1126      assert(ID.Kind == ValID::t_MDNode);
1127      Inst->setMetadata(MDK, ID.MDNodeVal);
1128    } else {
1129      unsigned NodeID = 0;
1130      if (ParseMDNodeID(Node, NodeID))
1131        return true;
1132      if (Node) {
1133        // If we got the node, add it to the instruction.
1134        Inst->setMetadata(MDK, Node);
1135      } else {
1136        MDRef R = { Loc, MDK, NodeID };
1137        // Otherwise, remember that this should be resolved later.
1138        ForwardRefInstMetadata[Inst].push_back(R);
1139      }
1140    }
1141
1142    // If this is the end of the list, we're done.
1143  } while (EatIfPresent(lltok::comma));
1144  return false;
1145}
1146
1147/// ParseOptionalAlignment
1148///   ::= /* empty */
1149///   ::= 'align' 4
1150bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1151  Alignment = 0;
1152  if (!EatIfPresent(lltok::kw_align))
1153    return false;
1154  LocTy AlignLoc = Lex.getLoc();
1155  if (ParseUInt32(Alignment)) return true;
1156  if (!isPowerOf2_32(Alignment))
1157    return Error(AlignLoc, "alignment is not a power of two");
1158  if (Alignment > Value::MaximumAlignment)
1159    return Error(AlignLoc, "huge alignments are not supported yet");
1160  return false;
1161}
1162
1163/// ParseOptionalCommaAlign
1164///   ::=
1165///   ::= ',' align 4
1166///
1167/// This returns with AteExtraComma set to true if it ate an excess comma at the
1168/// end.
1169bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1170                                       bool &AteExtraComma) {
1171  AteExtraComma = false;
1172  while (EatIfPresent(lltok::comma)) {
1173    // Metadata at the end is an early exit.
1174    if (Lex.getKind() == lltok::MetadataVar) {
1175      AteExtraComma = true;
1176      return false;
1177    }
1178
1179    if (Lex.getKind() != lltok::kw_align)
1180      return Error(Lex.getLoc(), "expected metadata or 'align'");
1181
1182    if (ParseOptionalAlignment(Alignment)) return true;
1183  }
1184
1185  return false;
1186}
1187
1188/// ParseScopeAndOrdering
1189///   if isAtomic: ::= 'singlethread'? AtomicOrdering
1190///   else: ::=
1191///
1192/// This sets Scope and Ordering to the parsed values.
1193bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
1194                                     AtomicOrdering &Ordering) {
1195  if (!isAtomic)
1196    return false;
1197
1198  Scope = CrossThread;
1199  if (EatIfPresent(lltok::kw_singlethread))
1200    Scope = SingleThread;
1201  switch (Lex.getKind()) {
1202  default: return TokError("Expected ordering on atomic instruction");
1203  case lltok::kw_unordered: Ordering = Unordered; break;
1204  case lltok::kw_monotonic: Ordering = Monotonic; break;
1205  case lltok::kw_acquire: Ordering = Acquire; break;
1206  case lltok::kw_release: Ordering = Release; break;
1207  case lltok::kw_acq_rel: Ordering = AcquireRelease; break;
1208  case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break;
1209  }
1210  Lex.Lex();
1211  return false;
1212}
1213
1214/// ParseOptionalStackAlignment
1215///   ::= /* empty */
1216///   ::= 'alignstack' '(' 4 ')'
1217bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1218  Alignment = 0;
1219  if (!EatIfPresent(lltok::kw_alignstack))
1220    return false;
1221  LocTy ParenLoc = Lex.getLoc();
1222  if (!EatIfPresent(lltok::lparen))
1223    return Error(ParenLoc, "expected '('");
1224  LocTy AlignLoc = Lex.getLoc();
1225  if (ParseUInt32(Alignment)) return true;
1226  ParenLoc = Lex.getLoc();
1227  if (!EatIfPresent(lltok::rparen))
1228    return Error(ParenLoc, "expected ')'");
1229  if (!isPowerOf2_32(Alignment))
1230    return Error(AlignLoc, "stack alignment is not a power of two");
1231  return false;
1232}
1233
1234/// ParseIndexList - This parses the index list for an insert/extractvalue
1235/// instruction.  This sets AteExtraComma in the case where we eat an extra
1236/// comma at the end of the line and find that it is followed by metadata.
1237/// Clients that don't allow metadata can call the version of this function that
1238/// only takes one argument.
1239///
1240/// ParseIndexList
1241///    ::=  (',' uint32)+
1242///
1243bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1244                              bool &AteExtraComma) {
1245  AteExtraComma = false;
1246
1247  if (Lex.getKind() != lltok::comma)
1248    return TokError("expected ',' as start of index list");
1249
1250  while (EatIfPresent(lltok::comma)) {
1251    if (Lex.getKind() == lltok::MetadataVar) {
1252      AteExtraComma = true;
1253      return false;
1254    }
1255    unsigned Idx = 0;
1256    if (ParseUInt32(Idx)) return true;
1257    Indices.push_back(Idx);
1258  }
1259
1260  return false;
1261}
1262
1263//===----------------------------------------------------------------------===//
1264// Type Parsing.
1265//===----------------------------------------------------------------------===//
1266
1267/// ParseType - Parse a type.
1268bool LLParser::ParseType(Type *&Result, bool AllowVoid) {
1269  SMLoc TypeLoc = Lex.getLoc();
1270  switch (Lex.getKind()) {
1271  default:
1272    return TokError("expected type");
1273  case lltok::Type:
1274    // Type ::= 'float' | 'void' (etc)
1275    Result = Lex.getTyVal();
1276    Lex.Lex();
1277    break;
1278  case lltok::lbrace:
1279    // Type ::= StructType
1280    if (ParseAnonStructType(Result, false))
1281      return true;
1282    break;
1283  case lltok::lsquare:
1284    // Type ::= '[' ... ']'
1285    Lex.Lex(); // eat the lsquare.
1286    if (ParseArrayVectorType(Result, false))
1287      return true;
1288    break;
1289  case lltok::less: // Either vector or packed struct.
1290    // Type ::= '<' ... '>'
1291    Lex.Lex();
1292    if (Lex.getKind() == lltok::lbrace) {
1293      if (ParseAnonStructType(Result, true) ||
1294          ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1295        return true;
1296    } else if (ParseArrayVectorType(Result, true))
1297      return true;
1298    break;
1299  case lltok::LocalVar: {
1300    // Type ::= %foo
1301    std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
1302
1303    // If the type hasn't been defined yet, create a forward definition and
1304    // remember where that forward def'n was seen (in case it never is defined).
1305    if (Entry.first == 0) {
1306      Entry.first = StructType::create(Context, Lex.getStrVal());
1307      Entry.second = Lex.getLoc();
1308    }
1309    Result = Entry.first;
1310    Lex.Lex();
1311    break;
1312  }
1313
1314  case lltok::LocalVarID: {
1315    // Type ::= %4
1316    if (Lex.getUIntVal() >= NumberedTypes.size())
1317      NumberedTypes.resize(Lex.getUIntVal()+1);
1318    std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
1319
1320    // If the type hasn't been defined yet, create a forward definition and
1321    // remember where that forward def'n was seen (in case it never is defined).
1322    if (Entry.first == 0) {
1323      Entry.first = StructType::create(Context);
1324      Entry.second = Lex.getLoc();
1325    }
1326    Result = Entry.first;
1327    Lex.Lex();
1328    break;
1329  }
1330  }
1331
1332  // Parse the type suffixes.
1333  while (1) {
1334    switch (Lex.getKind()) {
1335    // End of type.
1336    default:
1337      if (!AllowVoid && Result->isVoidTy())
1338        return Error(TypeLoc, "void type only allowed for function results");
1339      return false;
1340
1341    // Type ::= Type '*'
1342    case lltok::star:
1343      if (Result->isLabelTy())
1344        return TokError("basic block pointers are invalid");
1345      if (Result->isVoidTy())
1346        return TokError("pointers to void are invalid - use i8* instead");
1347      if (!PointerType::isValidElementType(Result))
1348        return TokError("pointer to this type is invalid");
1349      Result = PointerType::getUnqual(Result);
1350      Lex.Lex();
1351      break;
1352
1353    // Type ::= Type 'addrspace' '(' uint32 ')' '*'
1354    case lltok::kw_addrspace: {
1355      if (Result->isLabelTy())
1356        return TokError("basic block pointers are invalid");
1357      if (Result->isVoidTy())
1358        return TokError("pointers to void are invalid; use i8* instead");
1359      if (!PointerType::isValidElementType(Result))
1360        return TokError("pointer to this type is invalid");
1361      unsigned AddrSpace;
1362      if (ParseOptionalAddrSpace(AddrSpace) ||
1363          ParseToken(lltok::star, "expected '*' in address space"))
1364        return true;
1365
1366      Result = PointerType::get(Result, AddrSpace);
1367      break;
1368    }
1369
1370    /// Types '(' ArgTypeListI ')' OptFuncAttrs
1371    case lltok::lparen:
1372      if (ParseFunctionType(Result))
1373        return true;
1374      break;
1375    }
1376  }
1377}
1378
1379/// ParseParameterList
1380///    ::= '(' ')'
1381///    ::= '(' Arg (',' Arg)* ')'
1382///  Arg
1383///    ::= Type OptionalAttributes Value OptionalAttributes
1384bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1385                                  PerFunctionState &PFS) {
1386  if (ParseToken(lltok::lparen, "expected '(' in call"))
1387    return true;
1388
1389  while (Lex.getKind() != lltok::rparen) {
1390    // If this isn't the first argument, we need a comma.
1391    if (!ArgList.empty() &&
1392        ParseToken(lltok::comma, "expected ',' in argument list"))
1393      return true;
1394
1395    // Parse the argument.
1396    LocTy ArgLoc;
1397    Type *ArgTy = 0;
1398    Attributes ArgAttrs1;
1399    Attributes ArgAttrs2;
1400    Value *V;
1401    if (ParseType(ArgTy, ArgLoc))
1402      return true;
1403
1404    // Otherwise, handle normal operands.
1405    if (ParseOptionalAttrs(ArgAttrs1, 0) || ParseValue(ArgTy, V, PFS))
1406      return true;
1407    ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1408  }
1409
1410  Lex.Lex();  // Lex the ')'.
1411  return false;
1412}
1413
1414
1415
1416/// ParseArgumentList - Parse the argument list for a function type or function
1417/// prototype.
1418///   ::= '(' ArgTypeListI ')'
1419/// ArgTypeListI
1420///   ::= /*empty*/
1421///   ::= '...'
1422///   ::= ArgTypeList ',' '...'
1423///   ::= ArgType (',' ArgType)*
1424///
1425bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
1426                                 bool &isVarArg){
1427  isVarArg = false;
1428  assert(Lex.getKind() == lltok::lparen);
1429  Lex.Lex(); // eat the (.
1430
1431  if (Lex.getKind() == lltok::rparen) {
1432    // empty
1433  } else if (Lex.getKind() == lltok::dotdotdot) {
1434    isVarArg = true;
1435    Lex.Lex();
1436  } else {
1437    LocTy TypeLoc = Lex.getLoc();
1438    Type *ArgTy = 0;
1439    Attributes Attrs;
1440    std::string Name;
1441
1442    if (ParseType(ArgTy) ||
1443        ParseOptionalAttrs(Attrs, 0)) return true;
1444
1445    if (ArgTy->isVoidTy())
1446      return Error(TypeLoc, "argument can not have void type");
1447
1448    if (Lex.getKind() == lltok::LocalVar) {
1449      Name = Lex.getStrVal();
1450      Lex.Lex();
1451    }
1452
1453    if (!FunctionType::isValidArgumentType(ArgTy))
1454      return Error(TypeLoc, "invalid type for function argument");
1455
1456    ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1457
1458    while (EatIfPresent(lltok::comma)) {
1459      // Handle ... at end of arg list.
1460      if (EatIfPresent(lltok::dotdotdot)) {
1461        isVarArg = true;
1462        break;
1463      }
1464
1465      // Otherwise must be an argument type.
1466      TypeLoc = Lex.getLoc();
1467      if (ParseType(ArgTy) || ParseOptionalAttrs(Attrs, 0)) return true;
1468
1469      if (ArgTy->isVoidTy())
1470        return Error(TypeLoc, "argument can not have void type");
1471
1472      if (Lex.getKind() == lltok::LocalVar) {
1473        Name = Lex.getStrVal();
1474        Lex.Lex();
1475      } else {
1476        Name = "";
1477      }
1478
1479      if (!ArgTy->isFirstClassType())
1480        return Error(TypeLoc, "invalid type for function argument");
1481
1482      ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1483    }
1484  }
1485
1486  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1487}
1488
1489/// ParseFunctionType
1490///  ::= Type ArgumentList OptionalAttrs
1491bool LLParser::ParseFunctionType(Type *&Result) {
1492  assert(Lex.getKind() == lltok::lparen);
1493
1494  if (!FunctionType::isValidReturnType(Result))
1495    return TokError("invalid function return type");
1496
1497  SmallVector<ArgInfo, 8> ArgList;
1498  bool isVarArg;
1499  if (ParseArgumentList(ArgList, isVarArg))
1500    return true;
1501
1502  // Reject names on the arguments lists.
1503  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1504    if (!ArgList[i].Name.empty())
1505      return Error(ArgList[i].Loc, "argument name invalid in function type");
1506    if (ArgList[i].Attrs)
1507      return Error(ArgList[i].Loc,
1508                   "argument attributes invalid in function type");
1509  }
1510
1511  SmallVector<Type*, 16> ArgListTy;
1512  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1513    ArgListTy.push_back(ArgList[i].Ty);
1514
1515  Result = FunctionType::get(Result, ArgListTy, isVarArg);
1516  return false;
1517}
1518
1519/// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
1520/// other structs.
1521bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
1522  SmallVector<Type*, 8> Elts;
1523  if (ParseStructBody(Elts)) return true;
1524
1525  Result = StructType::get(Context, Elts, Packed);
1526  return false;
1527}
1528
1529/// ParseStructDefinition - Parse a struct in a 'type' definition.
1530bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
1531                                     std::pair<Type*, LocTy> &Entry,
1532                                     Type *&ResultTy) {
1533  // If the type was already defined, diagnose the redefinition.
1534  if (Entry.first && !Entry.second.isValid())
1535    return Error(TypeLoc, "redefinition of type");
1536
1537  // If we have opaque, just return without filling in the definition for the
1538  // struct.  This counts as a definition as far as the .ll file goes.
1539  if (EatIfPresent(lltok::kw_opaque)) {
1540    // This type is being defined, so clear the location to indicate this.
1541    Entry.second = SMLoc();
1542
1543    // If this type number has never been uttered, create it.
1544    if (Entry.first == 0)
1545      Entry.first = StructType::create(Context, Name);
1546    ResultTy = Entry.first;
1547    return false;
1548  }
1549
1550  // If the type starts with '<', then it is either a packed struct or a vector.
1551  bool isPacked = EatIfPresent(lltok::less);
1552
1553  // If we don't have a struct, then we have a random type alias, which we
1554  // accept for compatibility with old files.  These types are not allowed to be
1555  // forward referenced and not allowed to be recursive.
1556  if (Lex.getKind() != lltok::lbrace) {
1557    if (Entry.first)
1558      return Error(TypeLoc, "forward references to non-struct type");
1559
1560    ResultTy = 0;
1561    if (isPacked)
1562      return ParseArrayVectorType(ResultTy, true);
1563    return ParseType(ResultTy);
1564  }
1565
1566  // This type is being defined, so clear the location to indicate this.
1567  Entry.second = SMLoc();
1568
1569  // If this type number has never been uttered, create it.
1570  if (Entry.first == 0)
1571    Entry.first = StructType::create(Context, Name);
1572
1573  StructType *STy = cast<StructType>(Entry.first);
1574
1575  SmallVector<Type*, 8> Body;
1576  if (ParseStructBody(Body) ||
1577      (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
1578    return true;
1579
1580  STy->setBody(Body, isPacked);
1581  ResultTy = STy;
1582  return false;
1583}
1584
1585
1586/// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1587///   StructType
1588///     ::= '{' '}'
1589///     ::= '{' Type (',' Type)* '}'
1590///     ::= '<' '{' '}' '>'
1591///     ::= '<' '{' Type (',' Type)* '}' '>'
1592bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
1593  assert(Lex.getKind() == lltok::lbrace);
1594  Lex.Lex(); // Consume the '{'
1595
1596  // Handle the empty struct.
1597  if (EatIfPresent(lltok::rbrace))
1598    return false;
1599
1600  LocTy EltTyLoc = Lex.getLoc();
1601  Type *Ty = 0;
1602  if (ParseType(Ty)) return true;
1603  Body.push_back(Ty);
1604
1605  if (!StructType::isValidElementType(Ty))
1606    return Error(EltTyLoc, "invalid element type for struct");
1607
1608  while (EatIfPresent(lltok::comma)) {
1609    EltTyLoc = Lex.getLoc();
1610    if (ParseType(Ty)) return true;
1611
1612    if (!StructType::isValidElementType(Ty))
1613      return Error(EltTyLoc, "invalid element type for struct");
1614
1615    Body.push_back(Ty);
1616  }
1617
1618  return ParseToken(lltok::rbrace, "expected '}' at end of struct");
1619}
1620
1621/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1622/// token has already been consumed.
1623///   Type
1624///     ::= '[' APSINTVAL 'x' Types ']'
1625///     ::= '<' APSINTVAL 'x' Types '>'
1626bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
1627  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1628      Lex.getAPSIntVal().getBitWidth() > 64)
1629    return TokError("expected number in address space");
1630
1631  LocTy SizeLoc = Lex.getLoc();
1632  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1633  Lex.Lex();
1634
1635  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1636      return true;
1637
1638  LocTy TypeLoc = Lex.getLoc();
1639  Type *EltTy = 0;
1640  if (ParseType(EltTy)) return true;
1641
1642  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1643                 "expected end of sequential type"))
1644    return true;
1645
1646  if (isVector) {
1647    if (Size == 0)
1648      return Error(SizeLoc, "zero element vector is illegal");
1649    if ((unsigned)Size != Size)
1650      return Error(SizeLoc, "size too large for vector");
1651    if (!VectorType::isValidElementType(EltTy))
1652      return Error(TypeLoc,
1653       "vector element type must be fp, integer or a pointer to these types");
1654    Result = VectorType::get(EltTy, unsigned(Size));
1655  } else {
1656    if (!ArrayType::isValidElementType(EltTy))
1657      return Error(TypeLoc, "invalid array element type");
1658    Result = ArrayType::get(EltTy, Size);
1659  }
1660  return false;
1661}
1662
1663//===----------------------------------------------------------------------===//
1664// Function Semantic Analysis.
1665//===----------------------------------------------------------------------===//
1666
1667LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
1668                                             int functionNumber)
1669  : P(p), F(f), FunctionNumber(functionNumber) {
1670
1671  // Insert unnamed arguments into the NumberedVals list.
1672  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1673       AI != E; ++AI)
1674    if (!AI->hasName())
1675      NumberedVals.push_back(AI);
1676}
1677
1678LLParser::PerFunctionState::~PerFunctionState() {
1679  // If there were any forward referenced non-basicblock values, delete them.
1680  for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1681       I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1682    if (!isa<BasicBlock>(I->second.first)) {
1683      I->second.first->replaceAllUsesWith(
1684                           UndefValue::get(I->second.first->getType()));
1685      delete I->second.first;
1686      I->second.first = 0;
1687    }
1688
1689  for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1690       I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1691    if (!isa<BasicBlock>(I->second.first)) {
1692      I->second.first->replaceAllUsesWith(
1693                           UndefValue::get(I->second.first->getType()));
1694      delete I->second.first;
1695      I->second.first = 0;
1696    }
1697}
1698
1699bool LLParser::PerFunctionState::FinishFunction() {
1700  // Check to see if someone took the address of labels in this block.
1701  if (!P.ForwardRefBlockAddresses.empty()) {
1702    ValID FunctionID;
1703    if (!F.getName().empty()) {
1704      FunctionID.Kind = ValID::t_GlobalName;
1705      FunctionID.StrVal = F.getName();
1706    } else {
1707      FunctionID.Kind = ValID::t_GlobalID;
1708      FunctionID.UIntVal = FunctionNumber;
1709    }
1710
1711    std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
1712      FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
1713    if (FRBAI != P.ForwardRefBlockAddresses.end()) {
1714      // Resolve all these references.
1715      if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
1716        return true;
1717
1718      P.ForwardRefBlockAddresses.erase(FRBAI);
1719    }
1720  }
1721
1722  if (!ForwardRefVals.empty())
1723    return P.Error(ForwardRefVals.begin()->second.second,
1724                   "use of undefined value '%" + ForwardRefVals.begin()->first +
1725                   "'");
1726  if (!ForwardRefValIDs.empty())
1727    return P.Error(ForwardRefValIDs.begin()->second.second,
1728                   "use of undefined value '%" +
1729                   Twine(ForwardRefValIDs.begin()->first) + "'");
1730  return false;
1731}
1732
1733
1734/// GetVal - Get a value with the specified name or ID, creating a
1735/// forward reference record if needed.  This can return null if the value
1736/// exists but does not have the right type.
1737Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1738                                          Type *Ty, LocTy Loc) {
1739  // Look this name up in the normal function symbol table.
1740  Value *Val = F.getValueSymbolTable().lookup(Name);
1741
1742  // If this is a forward reference for the value, see if we already created a
1743  // forward ref record.
1744  if (Val == 0) {
1745    std::map<std::string, std::pair<Value*, LocTy> >::iterator
1746      I = ForwardRefVals.find(Name);
1747    if (I != ForwardRefVals.end())
1748      Val = I->second.first;
1749  }
1750
1751  // If we have the value in the symbol table or fwd-ref table, return it.
1752  if (Val) {
1753    if (Val->getType() == Ty) return Val;
1754    if (Ty->isLabelTy())
1755      P.Error(Loc, "'%" + Name + "' is not a basic block");
1756    else
1757      P.Error(Loc, "'%" + Name + "' defined with type '" +
1758              getTypeString(Val->getType()) + "'");
1759    return 0;
1760  }
1761
1762  // Don't make placeholders with invalid type.
1763  if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
1764    P.Error(Loc, "invalid use of a non-first-class type");
1765    return 0;
1766  }
1767
1768  // Otherwise, create a new forward reference for this value and remember it.
1769  Value *FwdVal;
1770  if (Ty->isLabelTy())
1771    FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
1772  else
1773    FwdVal = new Argument(Ty, Name);
1774
1775  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1776  return FwdVal;
1777}
1778
1779Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty,
1780                                          LocTy Loc) {
1781  // Look this name up in the normal function symbol table.
1782  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1783
1784  // If this is a forward reference for the value, see if we already created a
1785  // forward ref record.
1786  if (Val == 0) {
1787    std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1788      I = ForwardRefValIDs.find(ID);
1789    if (I != ForwardRefValIDs.end())
1790      Val = I->second.first;
1791  }
1792
1793  // If we have the value in the symbol table or fwd-ref table, return it.
1794  if (Val) {
1795    if (Val->getType() == Ty) return Val;
1796    if (Ty->isLabelTy())
1797      P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
1798    else
1799      P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
1800              getTypeString(Val->getType()) + "'");
1801    return 0;
1802  }
1803
1804  if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
1805    P.Error(Loc, "invalid use of a non-first-class type");
1806    return 0;
1807  }
1808
1809  // Otherwise, create a new forward reference for this value and remember it.
1810  Value *FwdVal;
1811  if (Ty->isLabelTy())
1812    FwdVal = BasicBlock::Create(F.getContext(), "", &F);
1813  else
1814    FwdVal = new Argument(Ty);
1815
1816  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1817  return FwdVal;
1818}
1819
1820/// SetInstName - After an instruction is parsed and inserted into its
1821/// basic block, this installs its name.
1822bool LLParser::PerFunctionState::SetInstName(int NameID,
1823                                             const std::string &NameStr,
1824                                             LocTy NameLoc, Instruction *Inst) {
1825  // If this instruction has void type, it cannot have a name or ID specified.
1826  if (Inst->getType()->isVoidTy()) {
1827    if (NameID != -1 || !NameStr.empty())
1828      return P.Error(NameLoc, "instructions returning void cannot have a name");
1829    return false;
1830  }
1831
1832  // If this was a numbered instruction, verify that the instruction is the
1833  // expected value and resolve any forward references.
1834  if (NameStr.empty()) {
1835    // If neither a name nor an ID was specified, just use the next ID.
1836    if (NameID == -1)
1837      NameID = NumberedVals.size();
1838
1839    if (unsigned(NameID) != NumberedVals.size())
1840      return P.Error(NameLoc, "instruction expected to be numbered '%" +
1841                     Twine(NumberedVals.size()) + "'");
1842
1843    std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1844      ForwardRefValIDs.find(NameID);
1845    if (FI != ForwardRefValIDs.end()) {
1846      if (FI->second.first->getType() != Inst->getType())
1847        return P.Error(NameLoc, "instruction forward referenced with type '" +
1848                       getTypeString(FI->second.first->getType()) + "'");
1849      FI->second.first->replaceAllUsesWith(Inst);
1850      delete FI->second.first;
1851      ForwardRefValIDs.erase(FI);
1852    }
1853
1854    NumberedVals.push_back(Inst);
1855    return false;
1856  }
1857
1858  // Otherwise, the instruction had a name.  Resolve forward refs and set it.
1859  std::map<std::string, std::pair<Value*, LocTy> >::iterator
1860    FI = ForwardRefVals.find(NameStr);
1861  if (FI != ForwardRefVals.end()) {
1862    if (FI->second.first->getType() != Inst->getType())
1863      return P.Error(NameLoc, "instruction forward referenced with type '" +
1864                     getTypeString(FI->second.first->getType()) + "'");
1865    FI->second.first->replaceAllUsesWith(Inst);
1866    delete FI->second.first;
1867    ForwardRefVals.erase(FI);
1868  }
1869
1870  // Set the name on the instruction.
1871  Inst->setName(NameStr);
1872
1873  if (Inst->getName() != NameStr)
1874    return P.Error(NameLoc, "multiple definition of local value named '" +
1875                   NameStr + "'");
1876  return false;
1877}
1878
1879/// GetBB - Get a basic block with the specified name or ID, creating a
1880/// forward reference record if needed.
1881BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1882                                              LocTy Loc) {
1883  return cast_or_null<BasicBlock>(GetVal(Name,
1884                                        Type::getLabelTy(F.getContext()), Loc));
1885}
1886
1887BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1888  return cast_or_null<BasicBlock>(GetVal(ID,
1889                                        Type::getLabelTy(F.getContext()), Loc));
1890}
1891
1892/// DefineBB - Define the specified basic block, which is either named or
1893/// unnamed.  If there is an error, this returns null otherwise it returns
1894/// the block being defined.
1895BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1896                                                 LocTy Loc) {
1897  BasicBlock *BB;
1898  if (Name.empty())
1899    BB = GetBB(NumberedVals.size(), Loc);
1900  else
1901    BB = GetBB(Name, Loc);
1902  if (BB == 0) return 0; // Already diagnosed error.
1903
1904  // Move the block to the end of the function.  Forward ref'd blocks are
1905  // inserted wherever they happen to be referenced.
1906  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1907
1908  // Remove the block from forward ref sets.
1909  if (Name.empty()) {
1910    ForwardRefValIDs.erase(NumberedVals.size());
1911    NumberedVals.push_back(BB);
1912  } else {
1913    // BB forward references are already in the function symbol table.
1914    ForwardRefVals.erase(Name);
1915  }
1916
1917  return BB;
1918}
1919
1920//===----------------------------------------------------------------------===//
1921// Constants.
1922//===----------------------------------------------------------------------===//
1923
1924/// ParseValID - Parse an abstract value that doesn't necessarily have a
1925/// type implied.  For example, if we parse "4" we don't know what integer type
1926/// it has.  The value will later be combined with its type and checked for
1927/// sanity.  PFS is used to convert function-local operands of metadata (since
1928/// metadata operands are not just parsed here but also converted to values).
1929/// PFS can be null when we are not parsing metadata values inside a function.
1930bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
1931  ID.Loc = Lex.getLoc();
1932  switch (Lex.getKind()) {
1933  default: return TokError("expected value token");
1934  case lltok::GlobalID:  // @42
1935    ID.UIntVal = Lex.getUIntVal();
1936    ID.Kind = ValID::t_GlobalID;
1937    break;
1938  case lltok::GlobalVar:  // @foo
1939    ID.StrVal = Lex.getStrVal();
1940    ID.Kind = ValID::t_GlobalName;
1941    break;
1942  case lltok::LocalVarID:  // %42
1943    ID.UIntVal = Lex.getUIntVal();
1944    ID.Kind = ValID::t_LocalID;
1945    break;
1946  case lltok::LocalVar:  // %foo
1947    ID.StrVal = Lex.getStrVal();
1948    ID.Kind = ValID::t_LocalName;
1949    break;
1950  case lltok::exclaim:   // !42, !{...}, or !"foo"
1951    return ParseMetadataValue(ID, PFS);
1952  case lltok::APSInt:
1953    ID.APSIntVal = Lex.getAPSIntVal();
1954    ID.Kind = ValID::t_APSInt;
1955    break;
1956  case lltok::APFloat:
1957    ID.APFloatVal = Lex.getAPFloatVal();
1958    ID.Kind = ValID::t_APFloat;
1959    break;
1960  case lltok::kw_true:
1961    ID.ConstantVal = ConstantInt::getTrue(Context);
1962    ID.Kind = ValID::t_Constant;
1963    break;
1964  case lltok::kw_false:
1965    ID.ConstantVal = ConstantInt::getFalse(Context);
1966    ID.Kind = ValID::t_Constant;
1967    break;
1968  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
1969  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
1970  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
1971
1972  case lltok::lbrace: {
1973    // ValID ::= '{' ConstVector '}'
1974    Lex.Lex();
1975    SmallVector<Constant*, 16> Elts;
1976    if (ParseGlobalValueVector(Elts) ||
1977        ParseToken(lltok::rbrace, "expected end of struct constant"))
1978      return true;
1979
1980    ID.ConstantStructElts = new Constant*[Elts.size()];
1981    ID.UIntVal = Elts.size();
1982    memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
1983    ID.Kind = ValID::t_ConstantStruct;
1984    return false;
1985  }
1986  case lltok::less: {
1987    // ValID ::= '<' ConstVector '>'         --> Vector.
1988    // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1989    Lex.Lex();
1990    bool isPackedStruct = EatIfPresent(lltok::lbrace);
1991
1992    SmallVector<Constant*, 16> Elts;
1993    LocTy FirstEltLoc = Lex.getLoc();
1994    if (ParseGlobalValueVector(Elts) ||
1995        (isPackedStruct &&
1996         ParseToken(lltok::rbrace, "expected end of packed struct")) ||
1997        ParseToken(lltok::greater, "expected end of constant"))
1998      return true;
1999
2000    if (isPackedStruct) {
2001      ID.ConstantStructElts = new Constant*[Elts.size()];
2002      memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
2003      ID.UIntVal = Elts.size();
2004      ID.Kind = ValID::t_PackedConstantStruct;
2005      return false;
2006    }
2007
2008    if (Elts.empty())
2009      return Error(ID.Loc, "constant vector must not be empty");
2010
2011    if (!Elts[0]->getType()->isIntegerTy() &&
2012        !Elts[0]->getType()->isFloatingPointTy() &&
2013        !Elts[0]->getType()->isPointerTy())
2014      return Error(FirstEltLoc,
2015            "vector elements must have integer, pointer or floating point type");
2016
2017    // Verify that all the vector elements have the same type.
2018    for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2019      if (Elts[i]->getType() != Elts[0]->getType())
2020        return Error(FirstEltLoc,
2021                     "vector element #" + Twine(i) +
2022                    " is not of type '" + getTypeString(Elts[0]->getType()));
2023
2024    ID.ConstantVal = ConstantVector::get(Elts);
2025    ID.Kind = ValID::t_Constant;
2026    return false;
2027  }
2028  case lltok::lsquare: {   // Array Constant
2029    Lex.Lex();
2030    SmallVector<Constant*, 16> Elts;
2031    LocTy FirstEltLoc = Lex.getLoc();
2032    if (ParseGlobalValueVector(Elts) ||
2033        ParseToken(lltok::rsquare, "expected end of array constant"))
2034      return true;
2035
2036    // Handle empty element.
2037    if (Elts.empty()) {
2038      // Use undef instead of an array because it's inconvenient to determine
2039      // the element type at this point, there being no elements to examine.
2040      ID.Kind = ValID::t_EmptyArray;
2041      return false;
2042    }
2043
2044    if (!Elts[0]->getType()->isFirstClassType())
2045      return Error(FirstEltLoc, "invalid array element type: " +
2046                   getTypeString(Elts[0]->getType()));
2047
2048    ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2049
2050    // Verify all elements are correct type!
2051    for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2052      if (Elts[i]->getType() != Elts[0]->getType())
2053        return Error(FirstEltLoc,
2054                     "array element #" + Twine(i) +
2055                     " is not of type '" + getTypeString(Elts[0]->getType()));
2056    }
2057
2058    ID.ConstantVal = ConstantArray::get(ATy, Elts);
2059    ID.Kind = ValID::t_Constant;
2060    return false;
2061  }
2062  case lltok::kw_c:  // c "foo"
2063    Lex.Lex();
2064    ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
2065                                                  false);
2066    if (ParseToken(lltok::StringConstant, "expected string")) return true;
2067    ID.Kind = ValID::t_Constant;
2068    return false;
2069
2070  case lltok::kw_asm: {
2071    // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT
2072    bool HasSideEffect, AlignStack, AsmDialect;
2073    Lex.Lex();
2074    if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2075        ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2076        ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
2077        ParseStringConstant(ID.StrVal) ||
2078        ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2079        ParseToken(lltok::StringConstant, "expected constraint string"))
2080      return true;
2081    ID.StrVal2 = Lex.getStrVal();
2082    ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
2083      (unsigned(AsmDialect)<<2);
2084    ID.Kind = ValID::t_InlineAsm;
2085    return false;
2086  }
2087
2088  case lltok::kw_blockaddress: {
2089    // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2090    Lex.Lex();
2091
2092    ValID Fn, Label;
2093    LocTy FnLoc, LabelLoc;
2094
2095    if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2096        ParseValID(Fn) ||
2097        ParseToken(lltok::comma, "expected comma in block address expression")||
2098        ParseValID(Label) ||
2099        ParseToken(lltok::rparen, "expected ')' in block address expression"))
2100      return true;
2101
2102    if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2103      return Error(Fn.Loc, "expected function name in blockaddress");
2104    if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2105      return Error(Label.Loc, "expected basic block name in blockaddress");
2106
2107    // Make a global variable as a placeholder for this reference.
2108    GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
2109                                           false, GlobalValue::InternalLinkage,
2110                                                0, "");
2111    ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
2112    ID.ConstantVal = FwdRef;
2113    ID.Kind = ValID::t_Constant;
2114    return false;
2115  }
2116
2117  case lltok::kw_trunc:
2118  case lltok::kw_zext:
2119  case lltok::kw_sext:
2120  case lltok::kw_fptrunc:
2121  case lltok::kw_fpext:
2122  case lltok::kw_bitcast:
2123  case lltok::kw_uitofp:
2124  case lltok::kw_sitofp:
2125  case lltok::kw_fptoui:
2126  case lltok::kw_fptosi:
2127  case lltok::kw_inttoptr:
2128  case lltok::kw_ptrtoint: {
2129    unsigned Opc = Lex.getUIntVal();
2130    Type *DestTy = 0;
2131    Constant *SrcVal;
2132    Lex.Lex();
2133    if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2134        ParseGlobalTypeAndValue(SrcVal) ||
2135        ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2136        ParseType(DestTy) ||
2137        ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2138      return true;
2139    if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2140      return Error(ID.Loc, "invalid cast opcode for cast from '" +
2141                   getTypeString(SrcVal->getType()) + "' to '" +
2142                   getTypeString(DestTy) + "'");
2143    ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2144                                                 SrcVal, DestTy);
2145    ID.Kind = ValID::t_Constant;
2146    return false;
2147  }
2148  case lltok::kw_extractvalue: {
2149    Lex.Lex();
2150    Constant *Val;
2151    SmallVector<unsigned, 4> Indices;
2152    if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2153        ParseGlobalTypeAndValue(Val) ||
2154        ParseIndexList(Indices) ||
2155        ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2156      return true;
2157
2158    if (!Val->getType()->isAggregateType())
2159      return Error(ID.Loc, "extractvalue operand must be aggregate type");
2160    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
2161      return Error(ID.Loc, "invalid indices for extractvalue");
2162    ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
2163    ID.Kind = ValID::t_Constant;
2164    return false;
2165  }
2166  case lltok::kw_insertvalue: {
2167    Lex.Lex();
2168    Constant *Val0, *Val1;
2169    SmallVector<unsigned, 4> Indices;
2170    if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2171        ParseGlobalTypeAndValue(Val0) ||
2172        ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2173        ParseGlobalTypeAndValue(Val1) ||
2174        ParseIndexList(Indices) ||
2175        ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2176      return true;
2177    if (!Val0->getType()->isAggregateType())
2178      return Error(ID.Loc, "insertvalue operand must be aggregate type");
2179    if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
2180      return Error(ID.Loc, "invalid indices for insertvalue");
2181    ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
2182    ID.Kind = ValID::t_Constant;
2183    return false;
2184  }
2185  case lltok::kw_icmp:
2186  case lltok::kw_fcmp: {
2187    unsigned PredVal, Opc = Lex.getUIntVal();
2188    Constant *Val0, *Val1;
2189    Lex.Lex();
2190    if (ParseCmpPredicate(PredVal, Opc) ||
2191        ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2192        ParseGlobalTypeAndValue(Val0) ||
2193        ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2194        ParseGlobalTypeAndValue(Val1) ||
2195        ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2196      return true;
2197
2198    if (Val0->getType() != Val1->getType())
2199      return Error(ID.Loc, "compare operands must have the same type");
2200
2201    CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2202
2203    if (Opc == Instruction::FCmp) {
2204      if (!Val0->getType()->isFPOrFPVectorTy())
2205        return Error(ID.Loc, "fcmp requires floating point operands");
2206      ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2207    } else {
2208      assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2209      if (!Val0->getType()->isIntOrIntVectorTy() &&
2210          !Val0->getType()->getScalarType()->isPointerTy())
2211        return Error(ID.Loc, "icmp requires pointer or integer operands");
2212      ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2213    }
2214    ID.Kind = ValID::t_Constant;
2215    return false;
2216  }
2217
2218  // Binary Operators.
2219  case lltok::kw_add:
2220  case lltok::kw_fadd:
2221  case lltok::kw_sub:
2222  case lltok::kw_fsub:
2223  case lltok::kw_mul:
2224  case lltok::kw_fmul:
2225  case lltok::kw_udiv:
2226  case lltok::kw_sdiv:
2227  case lltok::kw_fdiv:
2228  case lltok::kw_urem:
2229  case lltok::kw_srem:
2230  case lltok::kw_frem:
2231  case lltok::kw_shl:
2232  case lltok::kw_lshr:
2233  case lltok::kw_ashr: {
2234    bool NUW = false;
2235    bool NSW = false;
2236    bool Exact = false;
2237    unsigned Opc = Lex.getUIntVal();
2238    Constant *Val0, *Val1;
2239    Lex.Lex();
2240    LocTy ModifierLoc = Lex.getLoc();
2241    if (Opc == Instruction::Add || Opc == Instruction::Sub ||
2242        Opc == Instruction::Mul || Opc == Instruction::Shl) {
2243      if (EatIfPresent(lltok::kw_nuw))
2244        NUW = true;
2245      if (EatIfPresent(lltok::kw_nsw)) {
2246        NSW = true;
2247        if (EatIfPresent(lltok::kw_nuw))
2248          NUW = true;
2249      }
2250    } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
2251               Opc == Instruction::LShr || Opc == Instruction::AShr) {
2252      if (EatIfPresent(lltok::kw_exact))
2253        Exact = true;
2254    }
2255    if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2256        ParseGlobalTypeAndValue(Val0) ||
2257        ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2258        ParseGlobalTypeAndValue(Val1) ||
2259        ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2260      return true;
2261    if (Val0->getType() != Val1->getType())
2262      return Error(ID.Loc, "operands of constexpr must have same type");
2263    if (!Val0->getType()->isIntOrIntVectorTy()) {
2264      if (NUW)
2265        return Error(ModifierLoc, "nuw only applies to integer operations");
2266      if (NSW)
2267        return Error(ModifierLoc, "nsw only applies to integer operations");
2268    }
2269    // Check that the type is valid for the operator.
2270    switch (Opc) {
2271    case Instruction::Add:
2272    case Instruction::Sub:
2273    case Instruction::Mul:
2274    case Instruction::UDiv:
2275    case Instruction::SDiv:
2276    case Instruction::URem:
2277    case Instruction::SRem:
2278    case Instruction::Shl:
2279    case Instruction::AShr:
2280    case Instruction::LShr:
2281      if (!Val0->getType()->isIntOrIntVectorTy())
2282        return Error(ID.Loc, "constexpr requires integer operands");
2283      break;
2284    case Instruction::FAdd:
2285    case Instruction::FSub:
2286    case Instruction::FMul:
2287    case Instruction::FDiv:
2288    case Instruction::FRem:
2289      if (!Val0->getType()->isFPOrFPVectorTy())
2290        return Error(ID.Loc, "constexpr requires fp operands");
2291      break;
2292    default: llvm_unreachable("Unknown binary operator!");
2293    }
2294    unsigned Flags = 0;
2295    if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2296    if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
2297    if (Exact) Flags |= PossiblyExactOperator::IsExact;
2298    Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2299    ID.ConstantVal = C;
2300    ID.Kind = ValID::t_Constant;
2301    return false;
2302  }
2303
2304  // Logical Operations
2305  case lltok::kw_and:
2306  case lltok::kw_or:
2307  case lltok::kw_xor: {
2308    unsigned Opc = Lex.getUIntVal();
2309    Constant *Val0, *Val1;
2310    Lex.Lex();
2311    if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2312        ParseGlobalTypeAndValue(Val0) ||
2313        ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2314        ParseGlobalTypeAndValue(Val1) ||
2315        ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2316      return true;
2317    if (Val0->getType() != Val1->getType())
2318      return Error(ID.Loc, "operands of constexpr must have same type");
2319    if (!Val0->getType()->isIntOrIntVectorTy())
2320      return Error(ID.Loc,
2321                   "constexpr requires integer or integer vector operands");
2322    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2323    ID.Kind = ValID::t_Constant;
2324    return false;
2325  }
2326
2327  case lltok::kw_getelementptr:
2328  case lltok::kw_shufflevector:
2329  case lltok::kw_insertelement:
2330  case lltok::kw_extractelement:
2331  case lltok::kw_select: {
2332    unsigned Opc = Lex.getUIntVal();
2333    SmallVector<Constant*, 16> Elts;
2334    bool InBounds = false;
2335    Lex.Lex();
2336    if (Opc == Instruction::GetElementPtr)
2337      InBounds = EatIfPresent(lltok::kw_inbounds);
2338    if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2339        ParseGlobalValueVector(Elts) ||
2340        ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2341      return true;
2342
2343    if (Opc == Instruction::GetElementPtr) {
2344      if (Elts.size() == 0 ||
2345          !Elts[0]->getType()->getScalarType()->isPointerTy())
2346        return Error(ID.Loc, "getelementptr requires pointer operand");
2347
2348      ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2349      if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), Indices))
2350        return Error(ID.Loc, "invalid indices for getelementptr");
2351      ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0], Indices,
2352                                                      InBounds);
2353    } else if (Opc == Instruction::Select) {
2354      if (Elts.size() != 3)
2355        return Error(ID.Loc, "expected three operands to select");
2356      if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2357                                                              Elts[2]))
2358        return Error(ID.Loc, Reason);
2359      ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2360    } else if (Opc == Instruction::ShuffleVector) {
2361      if (Elts.size() != 3)
2362        return Error(ID.Loc, "expected three operands to shufflevector");
2363      if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2364        return Error(ID.Loc, "invalid operands to shufflevector");
2365      ID.ConstantVal =
2366                 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2367    } else if (Opc == Instruction::ExtractElement) {
2368      if (Elts.size() != 2)
2369        return Error(ID.Loc, "expected two operands to extractelement");
2370      if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2371        return Error(ID.Loc, "invalid extractelement operands");
2372      ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2373    } else {
2374      assert(Opc == Instruction::InsertElement && "Unknown opcode");
2375      if (Elts.size() != 3)
2376      return Error(ID.Loc, "expected three operands to insertelement");
2377      if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2378        return Error(ID.Loc, "invalid insertelement operands");
2379      ID.ConstantVal =
2380                 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2381    }
2382
2383    ID.Kind = ValID::t_Constant;
2384    return false;
2385  }
2386  }
2387
2388  Lex.Lex();
2389  return false;
2390}
2391
2392/// ParseGlobalValue - Parse a global value with the specified type.
2393bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
2394  C = 0;
2395  ValID ID;
2396  Value *V = NULL;
2397  bool Parsed = ParseValID(ID) ||
2398                ConvertValIDToValue(Ty, ID, V, NULL);
2399  if (V && !(C = dyn_cast<Constant>(V)))
2400    return Error(ID.Loc, "global values must be constants");
2401  return Parsed;
2402}
2403
2404bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2405  Type *Ty = 0;
2406  return ParseType(Ty) ||
2407         ParseGlobalValue(Ty, V);
2408}
2409
2410/// ParseGlobalValueVector
2411///   ::= /*empty*/
2412///   ::= TypeAndValue (',' TypeAndValue)*
2413bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2414  // Empty list.
2415  if (Lex.getKind() == lltok::rbrace ||
2416      Lex.getKind() == lltok::rsquare ||
2417      Lex.getKind() == lltok::greater ||
2418      Lex.getKind() == lltok::rparen)
2419    return false;
2420
2421  Constant *C;
2422  if (ParseGlobalTypeAndValue(C)) return true;
2423  Elts.push_back(C);
2424
2425  while (EatIfPresent(lltok::comma)) {
2426    if (ParseGlobalTypeAndValue(C)) return true;
2427    Elts.push_back(C);
2428  }
2429
2430  return false;
2431}
2432
2433bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) {
2434  assert(Lex.getKind() == lltok::lbrace);
2435  Lex.Lex();
2436
2437  SmallVector<Value*, 16> Elts;
2438  if (ParseMDNodeVector(Elts, PFS) ||
2439      ParseToken(lltok::rbrace, "expected end of metadata node"))
2440    return true;
2441
2442  ID.MDNodeVal = MDNode::get(Context, Elts);
2443  ID.Kind = ValID::t_MDNode;
2444  return false;
2445}
2446
2447/// ParseMetadataValue
2448///  ::= !42
2449///  ::= !{...}
2450///  ::= !"string"
2451bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) {
2452  assert(Lex.getKind() == lltok::exclaim);
2453  Lex.Lex();
2454
2455  // MDNode:
2456  // !{ ... }
2457  if (Lex.getKind() == lltok::lbrace)
2458    return ParseMetadataListValue(ID, PFS);
2459
2460  // Standalone metadata reference
2461  // !42
2462  if (Lex.getKind() == lltok::APSInt) {
2463    if (ParseMDNodeID(ID.MDNodeVal)) return true;
2464    ID.Kind = ValID::t_MDNode;
2465    return false;
2466  }
2467
2468  // MDString:
2469  //   ::= '!' STRINGCONSTANT
2470  if (ParseMDString(ID.MDStringVal)) return true;
2471  ID.Kind = ValID::t_MDString;
2472  return false;
2473}
2474
2475
2476//===----------------------------------------------------------------------===//
2477// Function Parsing.
2478//===----------------------------------------------------------------------===//
2479
2480bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
2481                                   PerFunctionState *PFS) {
2482  if (Ty->isFunctionTy())
2483    return Error(ID.Loc, "functions are not values, refer to them as pointers");
2484
2485  switch (ID.Kind) {
2486  case ValID::t_LocalID:
2487    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2488    V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
2489    return (V == 0);
2490  case ValID::t_LocalName:
2491    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2492    V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
2493    return (V == 0);
2494  case ValID::t_InlineAsm: {
2495    PointerType *PTy = dyn_cast<PointerType>(Ty);
2496    FunctionType *FTy =
2497      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2498    if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2499      return Error(ID.Loc, "invalid type for inline asm constraint string");
2500    V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1,
2501                       (ID.UIntVal>>1)&1, (InlineAsm::AsmDialect(ID.UIntVal>>2)));
2502    return false;
2503  }
2504  case ValID::t_MDNode:
2505    if (!Ty->isMetadataTy())
2506      return Error(ID.Loc, "metadata value must have metadata type");
2507    V = ID.MDNodeVal;
2508    return false;
2509  case ValID::t_MDString:
2510    if (!Ty->isMetadataTy())
2511      return Error(ID.Loc, "metadata value must have metadata type");
2512    V = ID.MDStringVal;
2513    return false;
2514  case ValID::t_GlobalName:
2515    V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2516    return V == 0;
2517  case ValID::t_GlobalID:
2518    V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2519    return V == 0;
2520  case ValID::t_APSInt:
2521    if (!Ty->isIntegerTy())
2522      return Error(ID.Loc, "integer constant must have integer type");
2523    ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2524    V = ConstantInt::get(Context, ID.APSIntVal);
2525    return false;
2526  case ValID::t_APFloat:
2527    if (!Ty->isFloatingPointTy() ||
2528        !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2529      return Error(ID.Loc, "floating point constant invalid for type");
2530
2531    // The lexer has no type info, so builds all half, float, and double FP
2532    // constants as double.  Fix this here.  Long double does not need this.
2533    if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) {
2534      bool Ignored;
2535      if (Ty->isHalfTy())
2536        ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven,
2537                              &Ignored);
2538      else if (Ty->isFloatTy())
2539        ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2540                              &Ignored);
2541    }
2542    V = ConstantFP::get(Context, ID.APFloatVal);
2543
2544    if (V->getType() != Ty)
2545      return Error(ID.Loc, "floating point constant does not have type '" +
2546                   getTypeString(Ty) + "'");
2547
2548    return false;
2549  case ValID::t_Null:
2550    if (!Ty->isPointerTy())
2551      return Error(ID.Loc, "null must be a pointer type");
2552    V = ConstantPointerNull::get(cast<PointerType>(Ty));
2553    return false;
2554  case ValID::t_Undef:
2555    // FIXME: LabelTy should not be a first-class type.
2556    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2557      return Error(ID.Loc, "invalid type for undef constant");
2558    V = UndefValue::get(Ty);
2559    return false;
2560  case ValID::t_EmptyArray:
2561    if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
2562      return Error(ID.Loc, "invalid empty array initializer");
2563    V = UndefValue::get(Ty);
2564    return false;
2565  case ValID::t_Zero:
2566    // FIXME: LabelTy should not be a first-class type.
2567    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2568      return Error(ID.Loc, "invalid type for null constant");
2569    V = Constant::getNullValue(Ty);
2570    return false;
2571  case ValID::t_Constant:
2572    if (ID.ConstantVal->getType() != Ty)
2573      return Error(ID.Loc, "constant expression type mismatch");
2574
2575    V = ID.ConstantVal;
2576    return false;
2577  case ValID::t_ConstantStruct:
2578  case ValID::t_PackedConstantStruct:
2579    if (StructType *ST = dyn_cast<StructType>(Ty)) {
2580      if (ST->getNumElements() != ID.UIntVal)
2581        return Error(ID.Loc,
2582                     "initializer with struct type has wrong # elements");
2583      if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
2584        return Error(ID.Loc, "packed'ness of initializer and type don't match");
2585
2586      // Verify that the elements are compatible with the structtype.
2587      for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
2588        if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
2589          return Error(ID.Loc, "element " + Twine(i) +
2590                    " of struct initializer doesn't match struct element type");
2591
2592      V = ConstantStruct::get(ST, makeArrayRef(ID.ConstantStructElts,
2593                                               ID.UIntVal));
2594    } else
2595      return Error(ID.Loc, "constant expression type mismatch");
2596    return false;
2597  }
2598  llvm_unreachable("Invalid ValID");
2599}
2600
2601bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
2602  V = 0;
2603  ValID ID;
2604  return ParseValID(ID, PFS) ||
2605         ConvertValIDToValue(Ty, ID, V, PFS);
2606}
2607
2608bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
2609  Type *Ty = 0;
2610  return ParseType(Ty) ||
2611         ParseValue(Ty, V, PFS);
2612}
2613
2614bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
2615                                      PerFunctionState &PFS) {
2616  Value *V;
2617  Loc = Lex.getLoc();
2618  if (ParseTypeAndValue(V, PFS)) return true;
2619  if (!isa<BasicBlock>(V))
2620    return Error(Loc, "expected a basic block");
2621  BB = cast<BasicBlock>(V);
2622  return false;
2623}
2624
2625
2626/// FunctionHeader
2627///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2628///       OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2629///       OptionalAlign OptGC
2630bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2631  // Parse the linkage.
2632  LocTy LinkageLoc = Lex.getLoc();
2633  unsigned Linkage;
2634
2635  unsigned Visibility;
2636  Attributes RetAttrs;
2637  CallingConv::ID CC;
2638  Type *RetType = 0;
2639  LocTy RetTypeLoc = Lex.getLoc();
2640  if (ParseOptionalLinkage(Linkage) ||
2641      ParseOptionalVisibility(Visibility) ||
2642      ParseOptionalCallingConv(CC) ||
2643      ParseOptionalAttrs(RetAttrs, 1) ||
2644      ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2645    return true;
2646
2647  // Verify that the linkage is ok.
2648  switch ((GlobalValue::LinkageTypes)Linkage) {
2649  case GlobalValue::ExternalLinkage:
2650    break; // always ok.
2651  case GlobalValue::DLLImportLinkage:
2652  case GlobalValue::ExternalWeakLinkage:
2653    if (isDefine)
2654      return Error(LinkageLoc, "invalid linkage for function definition");
2655    break;
2656  case GlobalValue::PrivateLinkage:
2657  case GlobalValue::LinkerPrivateLinkage:
2658  case GlobalValue::LinkerPrivateWeakLinkage:
2659  case GlobalValue::InternalLinkage:
2660  case GlobalValue::AvailableExternallyLinkage:
2661  case GlobalValue::LinkOnceAnyLinkage:
2662  case GlobalValue::LinkOnceODRLinkage:
2663  case GlobalValue::LinkOnceODRAutoHideLinkage:
2664  case GlobalValue::WeakAnyLinkage:
2665  case GlobalValue::WeakODRLinkage:
2666  case GlobalValue::DLLExportLinkage:
2667    if (!isDefine)
2668      return Error(LinkageLoc, "invalid linkage for function declaration");
2669    break;
2670  case GlobalValue::AppendingLinkage:
2671  case GlobalValue::CommonLinkage:
2672    return Error(LinkageLoc, "invalid function linkage type");
2673  }
2674
2675  if (!FunctionType::isValidReturnType(RetType))
2676    return Error(RetTypeLoc, "invalid function return type");
2677
2678  LocTy NameLoc = Lex.getLoc();
2679
2680  std::string FunctionName;
2681  if (Lex.getKind() == lltok::GlobalVar) {
2682    FunctionName = Lex.getStrVal();
2683  } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
2684    unsigned NameID = Lex.getUIntVal();
2685
2686    if (NameID != NumberedVals.size())
2687      return TokError("function expected to be numbered '%" +
2688                      Twine(NumberedVals.size()) + "'");
2689  } else {
2690    return TokError("expected function name");
2691  }
2692
2693  Lex.Lex();
2694
2695  if (Lex.getKind() != lltok::lparen)
2696    return TokError("expected '(' in function argument list");
2697
2698  SmallVector<ArgInfo, 8> ArgList;
2699  bool isVarArg;
2700  Attributes FuncAttrs;
2701  std::string Section;
2702  unsigned Alignment;
2703  std::string GC;
2704  bool UnnamedAddr;
2705  LocTy UnnamedAddrLoc;
2706
2707  if (ParseArgumentList(ArgList, isVarArg) ||
2708      ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
2709                         &UnnamedAddrLoc) ||
2710      ParseOptionalAttrs(FuncAttrs, 2) ||
2711      (EatIfPresent(lltok::kw_section) &&
2712       ParseStringConstant(Section)) ||
2713      ParseOptionalAlignment(Alignment) ||
2714      (EatIfPresent(lltok::kw_gc) &&
2715       ParseStringConstant(GC)))
2716    return true;
2717
2718  // If the alignment was parsed as an attribute, move to the alignment field.
2719  if (FuncAttrs & Attribute::Alignment) {
2720    Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2721    FuncAttrs &= ~Attribute::Alignment;
2722  }
2723
2724  // Okay, if we got here, the function is syntactically valid.  Convert types
2725  // and do semantic checks.
2726  std::vector<Type*> ParamTypeList;
2727  SmallVector<AttributeWithIndex, 8> Attrs;
2728
2729  if (RetAttrs != Attribute::None)
2730    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2731
2732  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2733    ParamTypeList.push_back(ArgList[i].Ty);
2734    if (ArgList[i].Attrs != Attribute::None)
2735      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2736  }
2737
2738  if (FuncAttrs != Attribute::None)
2739    Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2740
2741  AttrListPtr PAL = AttrListPtr::get(Attrs);
2742
2743  if (PAL.paramHasAttr(1, Attribute::StructRet) && !RetType->isVoidTy())
2744    return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2745
2746  FunctionType *FT =
2747    FunctionType::get(RetType, ParamTypeList, isVarArg);
2748  PointerType *PFT = PointerType::getUnqual(FT);
2749
2750  Fn = 0;
2751  if (!FunctionName.empty()) {
2752    // If this was a definition of a forward reference, remove the definition
2753    // from the forward reference table and fill in the forward ref.
2754    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2755      ForwardRefVals.find(FunctionName);
2756    if (FRVI != ForwardRefVals.end()) {
2757      Fn = M->getFunction(FunctionName);
2758      if (Fn->getType() != PFT)
2759        return Error(FRVI->second.second, "invalid forward reference to "
2760                     "function '" + FunctionName + "' with wrong type!");
2761
2762      ForwardRefVals.erase(FRVI);
2763    } else if ((Fn = M->getFunction(FunctionName))) {
2764      // Reject redefinitions.
2765      return Error(NameLoc, "invalid redefinition of function '" +
2766                   FunctionName + "'");
2767    } else if (M->getNamedValue(FunctionName)) {
2768      return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
2769    }
2770
2771  } else {
2772    // If this is a definition of a forward referenced function, make sure the
2773    // types agree.
2774    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2775      = ForwardRefValIDs.find(NumberedVals.size());
2776    if (I != ForwardRefValIDs.end()) {
2777      Fn = cast<Function>(I->second.first);
2778      if (Fn->getType() != PFT)
2779        return Error(NameLoc, "type of definition and forward reference of '@" +
2780                     Twine(NumberedVals.size()) + "' disagree");
2781      ForwardRefValIDs.erase(I);
2782    }
2783  }
2784
2785  if (Fn == 0)
2786    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2787  else // Move the forward-reference to the correct spot in the module.
2788    M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2789
2790  if (FunctionName.empty())
2791    NumberedVals.push_back(Fn);
2792
2793  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2794  Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2795  Fn->setCallingConv(CC);
2796  Fn->setAttributes(PAL);
2797  Fn->setUnnamedAddr(UnnamedAddr);
2798  Fn->setAlignment(Alignment);
2799  Fn->setSection(Section);
2800  if (!GC.empty()) Fn->setGC(GC.c_str());
2801
2802  // Add all of the arguments we parsed to the function.
2803  Function::arg_iterator ArgIt = Fn->arg_begin();
2804  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2805    // If the argument has a name, insert it into the argument symbol table.
2806    if (ArgList[i].Name.empty()) continue;
2807
2808    // Set the name, if it conflicted, it will be auto-renamed.
2809    ArgIt->setName(ArgList[i].Name);
2810
2811    if (ArgIt->getName() != ArgList[i].Name)
2812      return Error(ArgList[i].Loc, "redefinition of argument '%" +
2813                   ArgList[i].Name + "'");
2814  }
2815
2816  return false;
2817}
2818
2819
2820/// ParseFunctionBody
2821///   ::= '{' BasicBlock+ '}'
2822///
2823bool LLParser::ParseFunctionBody(Function &Fn) {
2824  if (Lex.getKind() != lltok::lbrace)
2825    return TokError("expected '{' in function body");
2826  Lex.Lex();  // eat the {.
2827
2828  int FunctionNumber = -1;
2829  if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
2830
2831  PerFunctionState PFS(*this, Fn, FunctionNumber);
2832
2833  // We need at least one basic block.
2834  if (Lex.getKind() == lltok::rbrace)
2835    return TokError("function body requires at least one basic block");
2836
2837  while (Lex.getKind() != lltok::rbrace)
2838    if (ParseBasicBlock(PFS)) return true;
2839
2840  // Eat the }.
2841  Lex.Lex();
2842
2843  // Verify function is ok.
2844  return PFS.FinishFunction();
2845}
2846
2847/// ParseBasicBlock
2848///   ::= LabelStr? Instruction*
2849bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2850  // If this basic block starts out with a name, remember it.
2851  std::string Name;
2852  LocTy NameLoc = Lex.getLoc();
2853  if (Lex.getKind() == lltok::LabelStr) {
2854    Name = Lex.getStrVal();
2855    Lex.Lex();
2856  }
2857
2858  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2859  if (BB == 0) return true;
2860
2861  std::string NameStr;
2862
2863  // Parse the instructions in this block until we get a terminator.
2864  Instruction *Inst;
2865  SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst;
2866  do {
2867    // This instruction may have three possibilities for a name: a) none
2868    // specified, b) name specified "%foo =", c) number specified: "%4 =".
2869    LocTy NameLoc = Lex.getLoc();
2870    int NameID = -1;
2871    NameStr = "";
2872
2873    if (Lex.getKind() == lltok::LocalVarID) {
2874      NameID = Lex.getUIntVal();
2875      Lex.Lex();
2876      if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2877        return true;
2878    } else if (Lex.getKind() == lltok::LocalVar) {
2879      NameStr = Lex.getStrVal();
2880      Lex.Lex();
2881      if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2882        return true;
2883    }
2884
2885    switch (ParseInstruction(Inst, BB, PFS)) {
2886    default: llvm_unreachable("Unknown ParseInstruction result!");
2887    case InstError: return true;
2888    case InstNormal:
2889      BB->getInstList().push_back(Inst);
2890
2891      // With a normal result, we check to see if the instruction is followed by
2892      // a comma and metadata.
2893      if (EatIfPresent(lltok::comma))
2894        if (ParseInstructionMetadata(Inst, &PFS))
2895          return true;
2896      break;
2897    case InstExtraComma:
2898      BB->getInstList().push_back(Inst);
2899
2900      // If the instruction parser ate an extra comma at the end of it, it
2901      // *must* be followed by metadata.
2902      if (ParseInstructionMetadata(Inst, &PFS))
2903        return true;
2904      break;
2905    }
2906
2907    // Set the name on the instruction.
2908    if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2909  } while (!isa<TerminatorInst>(Inst));
2910
2911  return false;
2912}
2913
2914//===----------------------------------------------------------------------===//
2915// Instruction Parsing.
2916//===----------------------------------------------------------------------===//
2917
2918/// ParseInstruction - Parse one of the many different instructions.
2919///
2920int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2921                               PerFunctionState &PFS) {
2922  lltok::Kind Token = Lex.getKind();
2923  if (Token == lltok::Eof)
2924    return TokError("found end of file when expecting more instructions");
2925  LocTy Loc = Lex.getLoc();
2926  unsigned KeywordVal = Lex.getUIntVal();
2927  Lex.Lex();  // Eat the keyword.
2928
2929  switch (Token) {
2930  default:                    return Error(Loc, "expected instruction opcode");
2931  // Terminator Instructions.
2932  case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
2933  case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
2934  case lltok::kw_br:          return ParseBr(Inst, PFS);
2935  case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
2936  case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
2937  case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
2938  case lltok::kw_resume:      return ParseResume(Inst, PFS);
2939  // Binary Operators.
2940  case lltok::kw_add:
2941  case lltok::kw_sub:
2942  case lltok::kw_mul:
2943  case lltok::kw_shl: {
2944    bool NUW = EatIfPresent(lltok::kw_nuw);
2945    bool NSW = EatIfPresent(lltok::kw_nsw);
2946    if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
2947
2948    if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
2949
2950    if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
2951    if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
2952    return false;
2953  }
2954  case lltok::kw_fadd:
2955  case lltok::kw_fsub:
2956  case lltok::kw_fmul:    return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2957
2958  case lltok::kw_sdiv:
2959  case lltok::kw_udiv:
2960  case lltok::kw_lshr:
2961  case lltok::kw_ashr: {
2962    bool Exact = EatIfPresent(lltok::kw_exact);
2963
2964    if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
2965    if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
2966    return false;
2967  }
2968
2969  case lltok::kw_urem:
2970  case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
2971  case lltok::kw_fdiv:
2972  case lltok::kw_frem:   return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2973  case lltok::kw_and:
2974  case lltok::kw_or:
2975  case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
2976  case lltok::kw_icmp:
2977  case lltok::kw_fcmp:   return ParseCompare(Inst, PFS, KeywordVal);
2978  // Casts.
2979  case lltok::kw_trunc:
2980  case lltok::kw_zext:
2981  case lltok::kw_sext:
2982  case lltok::kw_fptrunc:
2983  case lltok::kw_fpext:
2984  case lltok::kw_bitcast:
2985  case lltok::kw_uitofp:
2986  case lltok::kw_sitofp:
2987  case lltok::kw_fptoui:
2988  case lltok::kw_fptosi:
2989  case lltok::kw_inttoptr:
2990  case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
2991  // Other.
2992  case lltok::kw_select:         return ParseSelect(Inst, PFS);
2993  case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
2994  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
2995  case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
2996  case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
2997  case lltok::kw_phi:            return ParsePHI(Inst, PFS);
2998  case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
2999  case lltok::kw_call:           return ParseCall(Inst, PFS, false);
3000  case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
3001  // Memory.
3002  case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
3003  case lltok::kw_load:           return ParseLoad(Inst, PFS);
3004  case lltok::kw_store:          return ParseStore(Inst, PFS);
3005  case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
3006  case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
3007  case lltok::kw_fence:          return ParseFence(Inst, PFS);
3008  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
3009  case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
3010  case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
3011  }
3012}
3013
3014/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
3015bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
3016  if (Opc == Instruction::FCmp) {
3017    switch (Lex.getKind()) {
3018    default: TokError("expected fcmp predicate (e.g. 'oeq')");
3019    case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
3020    case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
3021    case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
3022    case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
3023    case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
3024    case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
3025    case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
3026    case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
3027    case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
3028    case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
3029    case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
3030    case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
3031    case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
3032    case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
3033    case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
3034    case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
3035    }
3036  } else {
3037    switch (Lex.getKind()) {
3038    default: TokError("expected icmp predicate (e.g. 'eq')");
3039    case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
3040    case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
3041    case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
3042    case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
3043    case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
3044    case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
3045    case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
3046    case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
3047    case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
3048    case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
3049    }
3050  }
3051  Lex.Lex();
3052  return false;
3053}
3054
3055//===----------------------------------------------------------------------===//
3056// Terminator Instructions.
3057//===----------------------------------------------------------------------===//
3058
3059/// ParseRet - Parse a return instruction.
3060///   ::= 'ret' void (',' !dbg, !1)*
3061///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
3062bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
3063                        PerFunctionState &PFS) {
3064  SMLoc TypeLoc = Lex.getLoc();
3065  Type *Ty = 0;
3066  if (ParseType(Ty, true /*void allowed*/)) return true;
3067
3068  Type *ResType = PFS.getFunction().getReturnType();
3069
3070  if (Ty->isVoidTy()) {
3071    if (!ResType->isVoidTy())
3072      return Error(TypeLoc, "value doesn't match function result type '" +
3073                   getTypeString(ResType) + "'");
3074
3075    Inst = ReturnInst::Create(Context);
3076    return false;
3077  }
3078
3079  Value *RV;
3080  if (ParseValue(Ty, RV, PFS)) return true;
3081
3082  if (ResType != RV->getType())
3083    return Error(TypeLoc, "value doesn't match function result type '" +
3084                 getTypeString(ResType) + "'");
3085
3086  Inst = ReturnInst::Create(Context, RV);
3087  return false;
3088}
3089
3090
3091/// ParseBr
3092///   ::= 'br' TypeAndValue
3093///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3094bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
3095  LocTy Loc, Loc2;
3096  Value *Op0;
3097  BasicBlock *Op1, *Op2;
3098  if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
3099
3100  if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
3101    Inst = BranchInst::Create(BB);
3102    return false;
3103  }
3104
3105  if (Op0->getType() != Type::getInt1Ty(Context))
3106    return Error(Loc, "branch condition must have 'i1' type");
3107
3108  if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
3109      ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
3110      ParseToken(lltok::comma, "expected ',' after true destination") ||
3111      ParseTypeAndBasicBlock(Op2, Loc2, PFS))
3112    return true;
3113
3114  Inst = BranchInst::Create(Op1, Op2, Op0);
3115  return false;
3116}
3117
3118/// ParseSwitch
3119///  Instruction
3120///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
3121///  JumpTable
3122///    ::= (TypeAndValue ',' TypeAndValue)*
3123bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
3124  LocTy CondLoc, BBLoc;
3125  Value *Cond;
3126  BasicBlock *DefaultBB;
3127  if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
3128      ParseToken(lltok::comma, "expected ',' after switch condition") ||
3129      ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
3130      ParseToken(lltok::lsquare, "expected '[' with switch table"))
3131    return true;
3132
3133  if (!Cond->getType()->isIntegerTy())
3134    return Error(CondLoc, "switch condition must have integer type");
3135
3136  // Parse the jump table pairs.
3137  SmallPtrSet<Value*, 32> SeenCases;
3138  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
3139  while (Lex.getKind() != lltok::rsquare) {
3140    Value *Constant;
3141    BasicBlock *DestBB;
3142
3143    if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
3144        ParseToken(lltok::comma, "expected ',' after case value") ||
3145        ParseTypeAndBasicBlock(DestBB, PFS))
3146      return true;
3147
3148    if (!SeenCases.insert(Constant))
3149      return Error(CondLoc, "duplicate case value in switch");
3150    if (!isa<ConstantInt>(Constant))
3151      return Error(CondLoc, "case value is not a constant integer");
3152
3153    Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
3154  }
3155
3156  Lex.Lex();  // Eat the ']'.
3157
3158  SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
3159  for (unsigned i = 0, e = Table.size(); i != e; ++i)
3160    SI->addCase(Table[i].first, Table[i].second);
3161  Inst = SI;
3162  return false;
3163}
3164
3165/// ParseIndirectBr
3166///  Instruction
3167///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
3168bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
3169  LocTy AddrLoc;
3170  Value *Address;
3171  if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
3172      ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
3173      ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
3174    return true;
3175
3176  if (!Address->getType()->isPointerTy())
3177    return Error(AddrLoc, "indirectbr address must have pointer type");
3178
3179  // Parse the destination list.
3180  SmallVector<BasicBlock*, 16> DestList;
3181
3182  if (Lex.getKind() != lltok::rsquare) {
3183    BasicBlock *DestBB;
3184    if (ParseTypeAndBasicBlock(DestBB, PFS))
3185      return true;
3186    DestList.push_back(DestBB);
3187
3188    while (EatIfPresent(lltok::comma)) {
3189      if (ParseTypeAndBasicBlock(DestBB, PFS))
3190        return true;
3191      DestList.push_back(DestBB);
3192    }
3193  }
3194
3195  if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
3196    return true;
3197
3198  IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
3199  for (unsigned i = 0, e = DestList.size(); i != e; ++i)
3200    IBI->addDestination(DestList[i]);
3201  Inst = IBI;
3202  return false;
3203}
3204
3205
3206/// ParseInvoke
3207///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
3208///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
3209bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
3210  LocTy CallLoc = Lex.getLoc();
3211  Attributes RetAttrs, FnAttrs;
3212  CallingConv::ID CC;
3213  Type *RetType = 0;
3214  LocTy RetTypeLoc;
3215  ValID CalleeID;
3216  SmallVector<ParamInfo, 16> ArgList;
3217
3218  BasicBlock *NormalBB, *UnwindBB;
3219  if (ParseOptionalCallingConv(CC) ||
3220      ParseOptionalAttrs(RetAttrs, 1) ||
3221      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3222      ParseValID(CalleeID) ||
3223      ParseParameterList(ArgList, PFS) ||
3224      ParseOptionalAttrs(FnAttrs, 2) ||
3225      ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
3226      ParseTypeAndBasicBlock(NormalBB, PFS) ||
3227      ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
3228      ParseTypeAndBasicBlock(UnwindBB, PFS))
3229    return true;
3230
3231  // If RetType is a non-function pointer type, then this is the short syntax
3232  // for the call, which means that RetType is just the return type.  Infer the
3233  // rest of the function argument types from the arguments that are present.
3234  PointerType *PFTy = 0;
3235  FunctionType *Ty = 0;
3236  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3237      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3238    // Pull out the types of all of the arguments...
3239    std::vector<Type*> ParamTypes;
3240    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3241      ParamTypes.push_back(ArgList[i].V->getType());
3242
3243    if (!FunctionType::isValidReturnType(RetType))
3244      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3245
3246    Ty = FunctionType::get(RetType, ParamTypes, false);
3247    PFTy = PointerType::getUnqual(Ty);
3248  }
3249
3250  // Look up the callee.
3251  Value *Callee;
3252  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3253
3254  // Set up the Attributes for the function.
3255  SmallVector<AttributeWithIndex, 8> Attrs;
3256  if (RetAttrs != Attribute::None)
3257    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3258
3259  SmallVector<Value*, 8> Args;
3260
3261  // Loop through FunctionType's arguments and ensure they are specified
3262  // correctly.  Also, gather any parameter attributes.
3263  FunctionType::param_iterator I = Ty->param_begin();
3264  FunctionType::param_iterator E = Ty->param_end();
3265  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3266    Type *ExpectedTy = 0;
3267    if (I != E) {
3268      ExpectedTy = *I++;
3269    } else if (!Ty->isVarArg()) {
3270      return Error(ArgList[i].Loc, "too many arguments specified");
3271    }
3272
3273    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3274      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3275                   getTypeString(ExpectedTy) + "'");
3276    Args.push_back(ArgList[i].V);
3277    if (ArgList[i].Attrs != Attribute::None)
3278      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3279  }
3280
3281  if (I != E)
3282    return Error(CallLoc, "not enough parameters specified for call");
3283
3284  if (FnAttrs != Attribute::None)
3285    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3286
3287  // Finish off the Attributes and check them
3288  AttrListPtr PAL = AttrListPtr::get(Attrs);
3289
3290  InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, Args);
3291  II->setCallingConv(CC);
3292  II->setAttributes(PAL);
3293  Inst = II;
3294  return false;
3295}
3296
3297/// ParseResume
3298///   ::= 'resume' TypeAndValue
3299bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
3300  Value *Exn; LocTy ExnLoc;
3301  if (ParseTypeAndValue(Exn, ExnLoc, PFS))
3302    return true;
3303
3304  ResumeInst *RI = ResumeInst::Create(Exn);
3305  Inst = RI;
3306  return false;
3307}
3308
3309//===----------------------------------------------------------------------===//
3310// Binary Operators.
3311//===----------------------------------------------------------------------===//
3312
3313/// ParseArithmetic
3314///  ::= ArithmeticOps TypeAndValue ',' Value
3315///
3316/// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
3317/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
3318bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
3319                               unsigned Opc, unsigned OperandType) {
3320  LocTy Loc; Value *LHS, *RHS;
3321  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3322      ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
3323      ParseValue(LHS->getType(), RHS, PFS))
3324    return true;
3325
3326  bool Valid;
3327  switch (OperandType) {
3328  default: llvm_unreachable("Unknown operand type!");
3329  case 0: // int or FP.
3330    Valid = LHS->getType()->isIntOrIntVectorTy() ||
3331            LHS->getType()->isFPOrFPVectorTy();
3332    break;
3333  case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
3334  case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
3335  }
3336
3337  if (!Valid)
3338    return Error(Loc, "invalid operand type for instruction");
3339
3340  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3341  return false;
3342}
3343
3344/// ParseLogical
3345///  ::= ArithmeticOps TypeAndValue ',' Value {
3346bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3347                            unsigned Opc) {
3348  LocTy Loc; Value *LHS, *RHS;
3349  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3350      ParseToken(lltok::comma, "expected ',' in logical operation") ||
3351      ParseValue(LHS->getType(), RHS, PFS))
3352    return true;
3353
3354  if (!LHS->getType()->isIntOrIntVectorTy())
3355    return Error(Loc,"instruction requires integer or integer vector operands");
3356
3357  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3358  return false;
3359}
3360
3361
3362/// ParseCompare
3363///  ::= 'icmp' IPredicates TypeAndValue ',' Value
3364///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
3365bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3366                            unsigned Opc) {
3367  // Parse the integer/fp comparison predicate.
3368  LocTy Loc;
3369  unsigned Pred;
3370  Value *LHS, *RHS;
3371  if (ParseCmpPredicate(Pred, Opc) ||
3372      ParseTypeAndValue(LHS, Loc, PFS) ||
3373      ParseToken(lltok::comma, "expected ',' after compare value") ||
3374      ParseValue(LHS->getType(), RHS, PFS))
3375    return true;
3376
3377  if (Opc == Instruction::FCmp) {
3378    if (!LHS->getType()->isFPOrFPVectorTy())
3379      return Error(Loc, "fcmp requires floating point operands");
3380    Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3381  } else {
3382    assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3383    if (!LHS->getType()->isIntOrIntVectorTy() &&
3384        !LHS->getType()->getScalarType()->isPointerTy())
3385      return Error(Loc, "icmp requires integer operands");
3386    Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3387  }
3388  return false;
3389}
3390
3391//===----------------------------------------------------------------------===//
3392// Other Instructions.
3393//===----------------------------------------------------------------------===//
3394
3395
3396/// ParseCast
3397///   ::= CastOpc TypeAndValue 'to' Type
3398bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3399                         unsigned Opc) {
3400  LocTy Loc;
3401  Value *Op;
3402  Type *DestTy = 0;
3403  if (ParseTypeAndValue(Op, Loc, PFS) ||
3404      ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3405      ParseType(DestTy))
3406    return true;
3407
3408  if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3409    CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3410    return Error(Loc, "invalid cast opcode for cast from '" +
3411                 getTypeString(Op->getType()) + "' to '" +
3412                 getTypeString(DestTy) + "'");
3413  }
3414  Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3415  return false;
3416}
3417
3418/// ParseSelect
3419///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3420bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3421  LocTy Loc;
3422  Value *Op0, *Op1, *Op2;
3423  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3424      ParseToken(lltok::comma, "expected ',' after select condition") ||
3425      ParseTypeAndValue(Op1, PFS) ||
3426      ParseToken(lltok::comma, "expected ',' after select value") ||
3427      ParseTypeAndValue(Op2, PFS))
3428    return true;
3429
3430  if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3431    return Error(Loc, Reason);
3432
3433  Inst = SelectInst::Create(Op0, Op1, Op2);
3434  return false;
3435}
3436
3437/// ParseVA_Arg
3438///   ::= 'va_arg' TypeAndValue ',' Type
3439bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3440  Value *Op;
3441  Type *EltTy = 0;
3442  LocTy TypeLoc;
3443  if (ParseTypeAndValue(Op, PFS) ||
3444      ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3445      ParseType(EltTy, TypeLoc))
3446    return true;
3447
3448  if (!EltTy->isFirstClassType())
3449    return Error(TypeLoc, "va_arg requires operand with first class type");
3450
3451  Inst = new VAArgInst(Op, EltTy);
3452  return false;
3453}
3454
3455/// ParseExtractElement
3456///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
3457bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3458  LocTy Loc;
3459  Value *Op0, *Op1;
3460  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3461      ParseToken(lltok::comma, "expected ',' after extract value") ||
3462      ParseTypeAndValue(Op1, PFS))
3463    return true;
3464
3465  if (!ExtractElementInst::isValidOperands(Op0, Op1))
3466    return Error(Loc, "invalid extractelement operands");
3467
3468  Inst = ExtractElementInst::Create(Op0, Op1);
3469  return false;
3470}
3471
3472/// ParseInsertElement
3473///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3474bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3475  LocTy Loc;
3476  Value *Op0, *Op1, *Op2;
3477  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3478      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3479      ParseTypeAndValue(Op1, PFS) ||
3480      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3481      ParseTypeAndValue(Op2, PFS))
3482    return true;
3483
3484  if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3485    return Error(Loc, "invalid insertelement operands");
3486
3487  Inst = InsertElementInst::Create(Op0, Op1, Op2);
3488  return false;
3489}
3490
3491/// ParseShuffleVector
3492///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3493bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3494  LocTy Loc;
3495  Value *Op0, *Op1, *Op2;
3496  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3497      ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3498      ParseTypeAndValue(Op1, PFS) ||
3499      ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3500      ParseTypeAndValue(Op2, PFS))
3501    return true;
3502
3503  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3504    return Error(Loc, "invalid shufflevector operands");
3505
3506  Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3507  return false;
3508}
3509
3510/// ParsePHI
3511///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
3512int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3513  Type *Ty = 0;  LocTy TypeLoc;
3514  Value *Op0, *Op1;
3515
3516  if (ParseType(Ty, TypeLoc) ||
3517      ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3518      ParseValue(Ty, Op0, PFS) ||
3519      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3520      ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3521      ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3522    return true;
3523
3524  bool AteExtraComma = false;
3525  SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3526  while (1) {
3527    PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3528
3529    if (!EatIfPresent(lltok::comma))
3530      break;
3531
3532    if (Lex.getKind() == lltok::MetadataVar) {
3533      AteExtraComma = true;
3534      break;
3535    }
3536
3537    if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3538        ParseValue(Ty, Op0, PFS) ||
3539        ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3540        ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3541        ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3542      return true;
3543  }
3544
3545  if (!Ty->isFirstClassType())
3546    return Error(TypeLoc, "phi node must have first class type");
3547
3548  PHINode *PN = PHINode::Create(Ty, PHIVals.size());
3549  for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3550    PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3551  Inst = PN;
3552  return AteExtraComma ? InstExtraComma : InstNormal;
3553}
3554
3555/// ParseLandingPad
3556///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
3557/// Clause
3558///   ::= 'catch' TypeAndValue
3559///   ::= 'filter'
3560///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
3561bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
3562  Type *Ty = 0; LocTy TyLoc;
3563  Value *PersFn; LocTy PersFnLoc;
3564
3565  if (ParseType(Ty, TyLoc) ||
3566      ParseToken(lltok::kw_personality, "expected 'personality'") ||
3567      ParseTypeAndValue(PersFn, PersFnLoc, PFS))
3568    return true;
3569
3570  LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, 0);
3571  LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
3572
3573  while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
3574    LandingPadInst::ClauseType CT;
3575    if (EatIfPresent(lltok::kw_catch))
3576      CT = LandingPadInst::Catch;
3577    else if (EatIfPresent(lltok::kw_filter))
3578      CT = LandingPadInst::Filter;
3579    else
3580      return TokError("expected 'catch' or 'filter' clause type");
3581
3582    Value *V; LocTy VLoc;
3583    if (ParseTypeAndValue(V, VLoc, PFS)) {
3584      delete LP;
3585      return true;
3586    }
3587
3588    // A 'catch' type expects a non-array constant. A filter clause expects an
3589    // array constant.
3590    if (CT == LandingPadInst::Catch) {
3591      if (isa<ArrayType>(V->getType()))
3592        Error(VLoc, "'catch' clause has an invalid type");
3593    } else {
3594      if (!isa<ArrayType>(V->getType()))
3595        Error(VLoc, "'filter' clause has an invalid type");
3596    }
3597
3598    LP->addClause(V);
3599  }
3600
3601  Inst = LP;
3602  return false;
3603}
3604
3605/// ParseCall
3606///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3607///       ParameterList OptionalAttrs
3608bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3609                         bool isTail) {
3610  Attributes RetAttrs, FnAttrs;
3611  CallingConv::ID CC;
3612  Type *RetType = 0;
3613  LocTy RetTypeLoc;
3614  ValID CalleeID;
3615  SmallVector<ParamInfo, 16> ArgList;
3616  LocTy CallLoc = Lex.getLoc();
3617
3618  if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3619      ParseOptionalCallingConv(CC) ||
3620      ParseOptionalAttrs(RetAttrs, 1) ||
3621      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3622      ParseValID(CalleeID) ||
3623      ParseParameterList(ArgList, PFS) ||
3624      ParseOptionalAttrs(FnAttrs, 2))
3625    return true;
3626
3627  // If RetType is a non-function pointer type, then this is the short syntax
3628  // for the call, which means that RetType is just the return type.  Infer the
3629  // rest of the function argument types from the arguments that are present.
3630  PointerType *PFTy = 0;
3631  FunctionType *Ty = 0;
3632  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3633      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3634    // Pull out the types of all of the arguments...
3635    std::vector<Type*> ParamTypes;
3636    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3637      ParamTypes.push_back(ArgList[i].V->getType());
3638
3639    if (!FunctionType::isValidReturnType(RetType))
3640      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3641
3642    Ty = FunctionType::get(RetType, ParamTypes, false);
3643    PFTy = PointerType::getUnqual(Ty);
3644  }
3645
3646  // Look up the callee.
3647  Value *Callee;
3648  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3649
3650  // Set up the Attributes for the function.
3651  SmallVector<AttributeWithIndex, 8> Attrs;
3652  if (RetAttrs != Attribute::None)
3653    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3654
3655  SmallVector<Value*, 8> Args;
3656
3657  // Loop through FunctionType's arguments and ensure they are specified
3658  // correctly.  Also, gather any parameter attributes.
3659  FunctionType::param_iterator I = Ty->param_begin();
3660  FunctionType::param_iterator E = Ty->param_end();
3661  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3662    Type *ExpectedTy = 0;
3663    if (I != E) {
3664      ExpectedTy = *I++;
3665    } else if (!Ty->isVarArg()) {
3666      return Error(ArgList[i].Loc, "too many arguments specified");
3667    }
3668
3669    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3670      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3671                   getTypeString(ExpectedTy) + "'");
3672    Args.push_back(ArgList[i].V);
3673    if (ArgList[i].Attrs != Attribute::None)
3674      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3675  }
3676
3677  if (I != E)
3678    return Error(CallLoc, "not enough parameters specified for call");
3679
3680  if (FnAttrs != Attribute::None)
3681    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3682
3683  // Finish off the Attributes and check them
3684  AttrListPtr PAL = AttrListPtr::get(Attrs);
3685
3686  CallInst *CI = CallInst::Create(Callee, Args);
3687  CI->setTailCall(isTail);
3688  CI->setCallingConv(CC);
3689  CI->setAttributes(PAL);
3690  Inst = CI;
3691  return false;
3692}
3693
3694//===----------------------------------------------------------------------===//
3695// Memory Instructions.
3696//===----------------------------------------------------------------------===//
3697
3698/// ParseAlloc
3699///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
3700int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
3701  Value *Size = 0;
3702  LocTy SizeLoc;
3703  unsigned Alignment = 0;
3704  Type *Ty = 0;
3705  if (ParseType(Ty)) return true;
3706
3707  bool AteExtraComma = false;
3708  if (EatIfPresent(lltok::comma)) {
3709    if (Lex.getKind() == lltok::kw_align) {
3710      if (ParseOptionalAlignment(Alignment)) return true;
3711    } else if (Lex.getKind() == lltok::MetadataVar) {
3712      AteExtraComma = true;
3713    } else {
3714      if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
3715          ParseOptionalCommaAlign(Alignment, AteExtraComma))
3716        return true;
3717    }
3718  }
3719
3720  if (Size && !Size->getType()->isIntegerTy())
3721    return Error(SizeLoc, "element count must have integer type");
3722
3723  Inst = new AllocaInst(Ty, Size, Alignment);
3724  return AteExtraComma ? InstExtraComma : InstNormal;
3725}
3726
3727/// ParseLoad
3728///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
3729///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
3730///       'singlethread'? AtomicOrdering (',' 'align' i32)?
3731int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
3732  Value *Val; LocTy Loc;
3733  unsigned Alignment = 0;
3734  bool AteExtraComma = false;
3735  bool isAtomic = false;
3736  AtomicOrdering Ordering = NotAtomic;
3737  SynchronizationScope Scope = CrossThread;
3738
3739  if (Lex.getKind() == lltok::kw_atomic) {
3740    isAtomic = true;
3741    Lex.Lex();
3742  }
3743
3744  bool isVolatile = false;
3745  if (Lex.getKind() == lltok::kw_volatile) {
3746    isVolatile = true;
3747    Lex.Lex();
3748  }
3749
3750  if (ParseTypeAndValue(Val, Loc, PFS) ||
3751      ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
3752      ParseOptionalCommaAlign(Alignment, AteExtraComma))
3753    return true;
3754
3755  if (!Val->getType()->isPointerTy() ||
3756      !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3757    return Error(Loc, "load operand must be a pointer to a first class type");
3758  if (isAtomic && !Alignment)
3759    return Error(Loc, "atomic load must have explicit non-zero alignment");
3760  if (Ordering == Release || Ordering == AcquireRelease)
3761    return Error(Loc, "atomic load cannot use Release ordering");
3762
3763  Inst = new LoadInst(Val, "", isVolatile, Alignment, Ordering, Scope);
3764  return AteExtraComma ? InstExtraComma : InstNormal;
3765}
3766
3767/// ParseStore
3768
3769///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3770///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
3771///       'singlethread'? AtomicOrdering (',' 'align' i32)?
3772int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
3773  Value *Val, *Ptr; LocTy Loc, PtrLoc;
3774  unsigned Alignment = 0;
3775  bool AteExtraComma = false;
3776  bool isAtomic = false;
3777  AtomicOrdering Ordering = NotAtomic;
3778  SynchronizationScope Scope = CrossThread;
3779
3780  if (Lex.getKind() == lltok::kw_atomic) {
3781    isAtomic = true;
3782    Lex.Lex();
3783  }
3784
3785  bool isVolatile = false;
3786  if (Lex.getKind() == lltok::kw_volatile) {
3787    isVolatile = true;
3788    Lex.Lex();
3789  }
3790
3791  if (ParseTypeAndValue(Val, Loc, PFS) ||
3792      ParseToken(lltok::comma, "expected ',' after store operand") ||
3793      ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3794      ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
3795      ParseOptionalCommaAlign(Alignment, AteExtraComma))
3796    return true;
3797
3798  if (!Ptr->getType()->isPointerTy())
3799    return Error(PtrLoc, "store operand must be a pointer");
3800  if (!Val->getType()->isFirstClassType())
3801    return Error(Loc, "store operand must be a first class value");
3802  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3803    return Error(Loc, "stored value and pointer type do not match");
3804  if (isAtomic && !Alignment)
3805    return Error(Loc, "atomic store must have explicit non-zero alignment");
3806  if (Ordering == Acquire || Ordering == AcquireRelease)
3807    return Error(Loc, "atomic store cannot use Acquire ordering");
3808
3809  Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
3810  return AteExtraComma ? InstExtraComma : InstNormal;
3811}
3812
3813/// ParseCmpXchg
3814///   ::= 'cmpxchg' 'volatile'? TypeAndValue ',' TypeAndValue ',' TypeAndValue
3815///       'singlethread'? AtomicOrdering
3816int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
3817  Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
3818  bool AteExtraComma = false;
3819  AtomicOrdering Ordering = NotAtomic;
3820  SynchronizationScope Scope = CrossThread;
3821  bool isVolatile = false;
3822
3823  if (EatIfPresent(lltok::kw_volatile))
3824    isVolatile = true;
3825
3826  if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3827      ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
3828      ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
3829      ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
3830      ParseTypeAndValue(New, NewLoc, PFS) ||
3831      ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
3832    return true;
3833
3834  if (Ordering == Unordered)
3835    return TokError("cmpxchg cannot be unordered");
3836  if (!Ptr->getType()->isPointerTy())
3837    return Error(PtrLoc, "cmpxchg operand must be a pointer");
3838  if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
3839    return Error(CmpLoc, "compare value and pointer type do not match");
3840  if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
3841    return Error(NewLoc, "new value and pointer type do not match");
3842  if (!New->getType()->isIntegerTy())
3843    return Error(NewLoc, "cmpxchg operand must be an integer");
3844  unsigned Size = New->getType()->getPrimitiveSizeInBits();
3845  if (Size < 8 || (Size & (Size - 1)))
3846    return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized"
3847                         " integer");
3848
3849  AtomicCmpXchgInst *CXI =
3850    new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Scope);
3851  CXI->setVolatile(isVolatile);
3852  Inst = CXI;
3853  return AteExtraComma ? InstExtraComma : InstNormal;
3854}
3855
3856/// ParseAtomicRMW
3857///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
3858///       'singlethread'? AtomicOrdering
3859int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
3860  Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
3861  bool AteExtraComma = false;
3862  AtomicOrdering Ordering = NotAtomic;
3863  SynchronizationScope Scope = CrossThread;
3864  bool isVolatile = false;
3865  AtomicRMWInst::BinOp Operation;
3866
3867  if (EatIfPresent(lltok::kw_volatile))
3868    isVolatile = true;
3869
3870  switch (Lex.getKind()) {
3871  default: return TokError("expected binary operation in atomicrmw");
3872  case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
3873  case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
3874  case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
3875  case lltok::kw_and: Operation = AtomicRMWInst::And; break;
3876  case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
3877  case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
3878  case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
3879  case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
3880  case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
3881  case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
3882  case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
3883  }
3884  Lex.Lex();  // Eat the operation.
3885
3886  if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3887      ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
3888      ParseTypeAndValue(Val, ValLoc, PFS) ||
3889      ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
3890    return true;
3891
3892  if (Ordering == Unordered)
3893    return TokError("atomicrmw cannot be unordered");
3894  if (!Ptr->getType()->isPointerTy())
3895    return Error(PtrLoc, "atomicrmw operand must be a pointer");
3896  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3897    return Error(ValLoc, "atomicrmw value and pointer type do not match");
3898  if (!Val->getType()->isIntegerTy())
3899    return Error(ValLoc, "atomicrmw operand must be an integer");
3900  unsigned Size = Val->getType()->getPrimitiveSizeInBits();
3901  if (Size < 8 || (Size & (Size - 1)))
3902    return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
3903                         " integer");
3904
3905  AtomicRMWInst *RMWI =
3906    new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
3907  RMWI->setVolatile(isVolatile);
3908  Inst = RMWI;
3909  return AteExtraComma ? InstExtraComma : InstNormal;
3910}
3911
3912/// ParseFence
3913///   ::= 'fence' 'singlethread'? AtomicOrdering
3914int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
3915  AtomicOrdering Ordering = NotAtomic;
3916  SynchronizationScope Scope = CrossThread;
3917  if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
3918    return true;
3919
3920  if (Ordering == Unordered)
3921    return TokError("fence cannot be unordered");
3922  if (Ordering == Monotonic)
3923    return TokError("fence cannot be monotonic");
3924
3925  Inst = new FenceInst(Context, Ordering, Scope);
3926  return InstNormal;
3927}
3928
3929/// ParseGetElementPtr
3930///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
3931int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3932  Value *Ptr = 0;
3933  Value *Val = 0;
3934  LocTy Loc, EltLoc;
3935
3936  bool InBounds = EatIfPresent(lltok::kw_inbounds);
3937
3938  if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3939
3940  if (!Ptr->getType()->getScalarType()->isPointerTy())
3941    return Error(Loc, "base of getelementptr must be a pointer");
3942
3943  SmallVector<Value*, 16> Indices;
3944  bool AteExtraComma = false;
3945  while (EatIfPresent(lltok::comma)) {
3946    if (Lex.getKind() == lltok::MetadataVar) {
3947      AteExtraComma = true;
3948      break;
3949    }
3950    if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3951    if (!Val->getType()->getScalarType()->isIntegerTy())
3952      return Error(EltLoc, "getelementptr index must be an integer");
3953    if (Val->getType()->isVectorTy() != Ptr->getType()->isVectorTy())
3954      return Error(EltLoc, "getelementptr index type missmatch");
3955    if (Val->getType()->isVectorTy()) {
3956      unsigned ValNumEl = cast<VectorType>(Val->getType())->getNumElements();
3957      unsigned PtrNumEl = cast<VectorType>(Ptr->getType())->getNumElements();
3958      if (ValNumEl != PtrNumEl)
3959        return Error(EltLoc,
3960          "getelementptr vector index has a wrong number of elements");
3961    }
3962    Indices.push_back(Val);
3963  }
3964
3965  if (Val && Val->getType()->isVectorTy() && Indices.size() != 1)
3966    return Error(EltLoc, "vector getelementptrs must have a single index");
3967
3968  if (!GetElementPtrInst::getIndexedType(Ptr->getType(), Indices))
3969    return Error(Loc, "invalid getelementptr indices");
3970  Inst = GetElementPtrInst::Create(Ptr, Indices);
3971  if (InBounds)
3972    cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
3973  return AteExtraComma ? InstExtraComma : InstNormal;
3974}
3975
3976/// ParseExtractValue
3977///   ::= 'extractvalue' TypeAndValue (',' uint32)+
3978int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3979  Value *Val; LocTy Loc;
3980  SmallVector<unsigned, 4> Indices;
3981  bool AteExtraComma;
3982  if (ParseTypeAndValue(Val, Loc, PFS) ||
3983      ParseIndexList(Indices, AteExtraComma))
3984    return true;
3985
3986  if (!Val->getType()->isAggregateType())
3987    return Error(Loc, "extractvalue operand must be aggregate type");
3988
3989  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3990    return Error(Loc, "invalid indices for extractvalue");
3991  Inst = ExtractValueInst::Create(Val, Indices);
3992  return AteExtraComma ? InstExtraComma : InstNormal;
3993}
3994
3995/// ParseInsertValue
3996///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3997int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3998  Value *Val0, *Val1; LocTy Loc0, Loc1;
3999  SmallVector<unsigned, 4> Indices;
4000  bool AteExtraComma;
4001  if (ParseTypeAndValue(Val0, Loc0, PFS) ||
4002      ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
4003      ParseTypeAndValue(Val1, Loc1, PFS) ||
4004      ParseIndexList(Indices, AteExtraComma))
4005    return true;
4006
4007  if (!Val0->getType()->isAggregateType())
4008    return Error(Loc0, "insertvalue operand must be aggregate type");
4009
4010  if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
4011    return Error(Loc0, "invalid indices for insertvalue");
4012  Inst = InsertValueInst::Create(Val0, Val1, Indices);
4013  return AteExtraComma ? InstExtraComma : InstNormal;
4014}
4015
4016//===----------------------------------------------------------------------===//
4017// Embedded metadata.
4018//===----------------------------------------------------------------------===//
4019
4020/// ParseMDNodeVector
4021///   ::= Element (',' Element)*
4022/// Element
4023///   ::= 'null' | TypeAndValue
4024bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts,
4025                                 PerFunctionState *PFS) {
4026  // Check for an empty list.
4027  if (Lex.getKind() == lltok::rbrace)
4028    return false;
4029
4030  do {
4031    // Null is a special case since it is typeless.
4032    if (EatIfPresent(lltok::kw_null)) {
4033      Elts.push_back(0);
4034      continue;
4035    }
4036
4037    Value *V = 0;
4038    if (ParseTypeAndValue(V, PFS)) return true;
4039    Elts.push_back(V);
4040  } while (EatIfPresent(lltok::comma));
4041
4042  return false;
4043}
4044