LLParser.cpp revision 211a14e476abc9b864ab6a5d5e0bbb86d288b650
1//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/AutoUpgrade.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instructions.h"
21#include "llvm/LLVMContext.h"
22#include "llvm/Metadata.h"
23#include "llvm/Module.h"
24#include "llvm/Operator.h"
25#include "llvm/ValueSymbolTable.h"
26#include "llvm/ADT/SmallPtrSet.h"
27#include "llvm/ADT/StringExtras.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/raw_ostream.h"
30using namespace llvm;
31
32/// Run: module ::= toplevelentity*
33bool LLParser::Run() {
34  // Prime the lexer.
35  Lex.Lex();
36
37  return ParseTopLevelEntities() ||
38         ValidateEndOfModule();
39}
40
41/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
42/// module.
43bool LLParser::ValidateEndOfModule() {
44  // Update auto-upgraded malloc calls to "malloc".
45  // FIXME: Remove in LLVM 3.0.
46  if (MallocF) {
47    MallocF->setName("malloc");
48    // If setName() does not set the name to "malloc", then there is already a
49    // declaration of "malloc".  In that case, iterate over all calls to MallocF
50    // and get them to call the declared "malloc" instead.
51    if (MallocF->getName() != "malloc") {
52      Constant *RealMallocF = M->getFunction("malloc");
53      if (RealMallocF->getType() != MallocF->getType())
54        RealMallocF = ConstantExpr::getBitCast(RealMallocF, MallocF->getType());
55      MallocF->replaceAllUsesWith(RealMallocF);
56      MallocF->eraseFromParent();
57      MallocF = NULL;
58    }
59  }
60
61
62  // If there are entries in ForwardRefBlockAddresses at this point, they are
63  // references after the function was defined.  Resolve those now.
64  while (!ForwardRefBlockAddresses.empty()) {
65    // Okay, we are referencing an already-parsed function, resolve them now.
66    Function *TheFn = 0;
67    const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
68    if (Fn.Kind == ValID::t_GlobalName)
69      TheFn = M->getFunction(Fn.StrVal);
70    else if (Fn.UIntVal < NumberedVals.size())
71      TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
72
73    if (TheFn == 0)
74      return Error(Fn.Loc, "unknown function referenced by blockaddress");
75
76    // Resolve all these references.
77    if (ResolveForwardRefBlockAddresses(TheFn,
78                                      ForwardRefBlockAddresses.begin()->second,
79                                        0))
80      return true;
81
82    ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
83  }
84
85
86  if (!ForwardRefTypes.empty())
87    return Error(ForwardRefTypes.begin()->second.second,
88                 "use of undefined type named '" +
89                 ForwardRefTypes.begin()->first + "'");
90  if (!ForwardRefTypeIDs.empty())
91    return Error(ForwardRefTypeIDs.begin()->second.second,
92                 "use of undefined type '%" +
93                 utostr(ForwardRefTypeIDs.begin()->first) + "'");
94
95  if (!ForwardRefVals.empty())
96    return Error(ForwardRefVals.begin()->second.second,
97                 "use of undefined value '@" + ForwardRefVals.begin()->first +
98                 "'");
99
100  if (!ForwardRefValIDs.empty())
101    return Error(ForwardRefValIDs.begin()->second.second,
102                 "use of undefined value '@" +
103                 utostr(ForwardRefValIDs.begin()->first) + "'");
104
105  if (!ForwardRefMDNodes.empty())
106    return Error(ForwardRefMDNodes.begin()->second.second,
107                 "use of undefined metadata '!" +
108                 utostr(ForwardRefMDNodes.begin()->first) + "'");
109
110
111  // Look for intrinsic functions and CallInst that need to be upgraded
112  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
113    UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
114
115  // Check debug info intrinsics.
116  CheckDebugInfoIntrinsics(M);
117  return false;
118}
119
120bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn,
121                             std::vector<std::pair<ValID, GlobalValue*> > &Refs,
122                                               PerFunctionState *PFS) {
123  // Loop over all the references, resolving them.
124  for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
125    BasicBlock *Res;
126    if (PFS) {
127      if (Refs[i].first.Kind == ValID::t_LocalName)
128        Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
129      else
130        Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
131    } else if (Refs[i].first.Kind == ValID::t_LocalID) {
132      return Error(Refs[i].first.Loc,
133       "cannot take address of numeric label after the function is defined");
134    } else {
135      Res = dyn_cast_or_null<BasicBlock>(
136                     TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
137    }
138
139    if (Res == 0)
140      return Error(Refs[i].first.Loc,
141                   "referenced value is not a basic block");
142
143    // Get the BlockAddress for this and update references to use it.
144    BlockAddress *BA = BlockAddress::get(TheFn, Res);
145    Refs[i].second->replaceAllUsesWith(BA);
146    Refs[i].second->eraseFromParent();
147  }
148  return false;
149}
150
151
152//===----------------------------------------------------------------------===//
153// Top-Level Entities
154//===----------------------------------------------------------------------===//
155
156bool LLParser::ParseTopLevelEntities() {
157  while (1) {
158    switch (Lex.getKind()) {
159    default:         return TokError("expected top-level entity");
160    case lltok::Eof: return false;
161    //case lltok::kw_define:
162    case lltok::kw_declare: if (ParseDeclare()) return true; break;
163    case lltok::kw_define:  if (ParseDefine()) return true; break;
164    case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
165    case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
166    case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
167    case lltok::kw_type:    if (ParseUnnamedType()) return true; break;
168    case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
169    case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
170    case lltok::LocalVar:   if (ParseNamedType()) return true; break;
171    case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
172    case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
173    case lltok::Metadata:   if (ParseStandaloneMetadata()) return true; break;
174    case lltok::NamedOrCustomMD: if (ParseNamedMetadata()) return true; break;
175
176    // The Global variable production with no name can have many different
177    // optional leading prefixes, the production is:
178    // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
179    //               OptionalAddrSpace ('constant'|'global') ...
180    case lltok::kw_private :       // OptionalLinkage
181    case lltok::kw_linker_private: // OptionalLinkage
182    case lltok::kw_internal:       // OptionalLinkage
183    case lltok::kw_weak:           // OptionalLinkage
184    case lltok::kw_weak_odr:       // OptionalLinkage
185    case lltok::kw_linkonce:       // OptionalLinkage
186    case lltok::kw_linkonce_odr:   // OptionalLinkage
187    case lltok::kw_appending:      // OptionalLinkage
188    case lltok::kw_dllexport:      // OptionalLinkage
189    case lltok::kw_common:         // OptionalLinkage
190    case lltok::kw_dllimport:      // OptionalLinkage
191    case lltok::kw_extern_weak:    // OptionalLinkage
192    case lltok::kw_external: {     // OptionalLinkage
193      unsigned Linkage, Visibility;
194      if (ParseOptionalLinkage(Linkage) ||
195          ParseOptionalVisibility(Visibility) ||
196          ParseGlobal("", SMLoc(), Linkage, true, Visibility))
197        return true;
198      break;
199    }
200    case lltok::kw_default:       // OptionalVisibility
201    case lltok::kw_hidden:        // OptionalVisibility
202    case lltok::kw_protected: {   // OptionalVisibility
203      unsigned Visibility;
204      if (ParseOptionalVisibility(Visibility) ||
205          ParseGlobal("", SMLoc(), 0, false, Visibility))
206        return true;
207      break;
208    }
209
210    case lltok::kw_thread_local:  // OptionalThreadLocal
211    case lltok::kw_addrspace:     // OptionalAddrSpace
212    case lltok::kw_constant:      // GlobalType
213    case lltok::kw_global:        // GlobalType
214      if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
215      break;
216    }
217  }
218}
219
220
221/// toplevelentity
222///   ::= 'module' 'asm' STRINGCONSTANT
223bool LLParser::ParseModuleAsm() {
224  assert(Lex.getKind() == lltok::kw_module);
225  Lex.Lex();
226
227  std::string AsmStr;
228  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
229      ParseStringConstant(AsmStr)) return true;
230
231  const std::string &AsmSoFar = M->getModuleInlineAsm();
232  if (AsmSoFar.empty())
233    M->setModuleInlineAsm(AsmStr);
234  else
235    M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr);
236  return false;
237}
238
239/// toplevelentity
240///   ::= 'target' 'triple' '=' STRINGCONSTANT
241///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
242bool LLParser::ParseTargetDefinition() {
243  assert(Lex.getKind() == lltok::kw_target);
244  std::string Str;
245  switch (Lex.Lex()) {
246  default: return TokError("unknown target property");
247  case lltok::kw_triple:
248    Lex.Lex();
249    if (ParseToken(lltok::equal, "expected '=' after target triple") ||
250        ParseStringConstant(Str))
251      return true;
252    M->setTargetTriple(Str);
253    return false;
254  case lltok::kw_datalayout:
255    Lex.Lex();
256    if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
257        ParseStringConstant(Str))
258      return true;
259    M->setDataLayout(Str);
260    return false;
261  }
262}
263
264/// toplevelentity
265///   ::= 'deplibs' '=' '[' ']'
266///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
267bool LLParser::ParseDepLibs() {
268  assert(Lex.getKind() == lltok::kw_deplibs);
269  Lex.Lex();
270  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
271      ParseToken(lltok::lsquare, "expected '=' after deplibs"))
272    return true;
273
274  if (EatIfPresent(lltok::rsquare))
275    return false;
276
277  std::string Str;
278  if (ParseStringConstant(Str)) return true;
279  M->addLibrary(Str);
280
281  while (EatIfPresent(lltok::comma)) {
282    if (ParseStringConstant(Str)) return true;
283    M->addLibrary(Str);
284  }
285
286  return ParseToken(lltok::rsquare, "expected ']' at end of list");
287}
288
289/// ParseUnnamedType:
290///   ::= 'type' type
291///   ::= LocalVarID '=' 'type' type
292bool LLParser::ParseUnnamedType() {
293  unsigned TypeID = NumberedTypes.size();
294
295  // Handle the LocalVarID form.
296  if (Lex.getKind() == lltok::LocalVarID) {
297    if (Lex.getUIntVal() != TypeID)
298      return Error(Lex.getLoc(), "type expected to be numbered '%" +
299                   utostr(TypeID) + "'");
300    Lex.Lex(); // eat LocalVarID;
301
302    if (ParseToken(lltok::equal, "expected '=' after name"))
303      return true;
304  }
305
306  assert(Lex.getKind() == lltok::kw_type);
307  LocTy TypeLoc = Lex.getLoc();
308  Lex.Lex(); // eat kw_type
309
310  PATypeHolder Ty(Type::getVoidTy(Context));
311  if (ParseType(Ty)) return true;
312
313  // See if this type was previously referenced.
314  std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
315    FI = ForwardRefTypeIDs.find(TypeID);
316  if (FI != ForwardRefTypeIDs.end()) {
317    if (FI->second.first.get() == Ty)
318      return Error(TypeLoc, "self referential type is invalid");
319
320    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
321    Ty = FI->second.first.get();
322    ForwardRefTypeIDs.erase(FI);
323  }
324
325  NumberedTypes.push_back(Ty);
326
327  return false;
328}
329
330/// toplevelentity
331///   ::= LocalVar '=' 'type' type
332bool LLParser::ParseNamedType() {
333  std::string Name = Lex.getStrVal();
334  LocTy NameLoc = Lex.getLoc();
335  Lex.Lex();  // eat LocalVar.
336
337  PATypeHolder Ty(Type::getVoidTy(Context));
338
339  if (ParseToken(lltok::equal, "expected '=' after name") ||
340      ParseToken(lltok::kw_type, "expected 'type' after name") ||
341      ParseType(Ty))
342    return true;
343
344  // Set the type name, checking for conflicts as we do so.
345  bool AlreadyExists = M->addTypeName(Name, Ty);
346  if (!AlreadyExists) return false;
347
348  // See if this type is a forward reference.  We need to eagerly resolve
349  // types to allow recursive type redefinitions below.
350  std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator
351  FI = ForwardRefTypes.find(Name);
352  if (FI != ForwardRefTypes.end()) {
353    if (FI->second.first.get() == Ty)
354      return Error(NameLoc, "self referential type is invalid");
355
356    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
357    Ty = FI->second.first.get();
358    ForwardRefTypes.erase(FI);
359  }
360
361  // Inserting a name that is already defined, get the existing name.
362  const Type *Existing = M->getTypeByName(Name);
363  assert(Existing && "Conflict but no matching type?!");
364
365  // Otherwise, this is an attempt to redefine a type. That's okay if
366  // the redefinition is identical to the original.
367  // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
368  if (Existing == Ty) return false;
369
370  // Any other kind of (non-equivalent) redefinition is an error.
371  return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
372               Ty->getDescription() + "'");
373}
374
375
376/// toplevelentity
377///   ::= 'declare' FunctionHeader
378bool LLParser::ParseDeclare() {
379  assert(Lex.getKind() == lltok::kw_declare);
380  Lex.Lex();
381
382  Function *F;
383  return ParseFunctionHeader(F, false);
384}
385
386/// toplevelentity
387///   ::= 'define' FunctionHeader '{' ...
388bool LLParser::ParseDefine() {
389  assert(Lex.getKind() == lltok::kw_define);
390  Lex.Lex();
391
392  Function *F;
393  return ParseFunctionHeader(F, true) ||
394         ParseFunctionBody(*F);
395}
396
397/// ParseGlobalType
398///   ::= 'constant'
399///   ::= 'global'
400bool LLParser::ParseGlobalType(bool &IsConstant) {
401  if (Lex.getKind() == lltok::kw_constant)
402    IsConstant = true;
403  else if (Lex.getKind() == lltok::kw_global)
404    IsConstant = false;
405  else {
406    IsConstant = false;
407    return TokError("expected 'global' or 'constant'");
408  }
409  Lex.Lex();
410  return false;
411}
412
413/// ParseUnnamedGlobal:
414///   OptionalVisibility ALIAS ...
415///   OptionalLinkage OptionalVisibility ...   -> global variable
416///   GlobalID '=' OptionalVisibility ALIAS ...
417///   GlobalID '=' OptionalLinkage OptionalVisibility ...   -> global variable
418bool LLParser::ParseUnnamedGlobal() {
419  unsigned VarID = NumberedVals.size();
420  std::string Name;
421  LocTy NameLoc = Lex.getLoc();
422
423  // Handle the GlobalID form.
424  if (Lex.getKind() == lltok::GlobalID) {
425    if (Lex.getUIntVal() != VarID)
426      return Error(Lex.getLoc(), "variable expected to be numbered '%" +
427                   utostr(VarID) + "'");
428    Lex.Lex(); // eat GlobalID;
429
430    if (ParseToken(lltok::equal, "expected '=' after name"))
431      return true;
432  }
433
434  bool HasLinkage;
435  unsigned Linkage, Visibility;
436  if (ParseOptionalLinkage(Linkage, HasLinkage) ||
437      ParseOptionalVisibility(Visibility))
438    return true;
439
440  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
441    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
442  return ParseAlias(Name, NameLoc, Visibility);
443}
444
445/// ParseNamedGlobal:
446///   GlobalVar '=' OptionalVisibility ALIAS ...
447///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
448bool LLParser::ParseNamedGlobal() {
449  assert(Lex.getKind() == lltok::GlobalVar);
450  LocTy NameLoc = Lex.getLoc();
451  std::string Name = Lex.getStrVal();
452  Lex.Lex();
453
454  bool HasLinkage;
455  unsigned Linkage, Visibility;
456  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
457      ParseOptionalLinkage(Linkage, HasLinkage) ||
458      ParseOptionalVisibility(Visibility))
459    return true;
460
461  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
462    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
463  return ParseAlias(Name, NameLoc, Visibility);
464}
465
466// MDString:
467//   ::= '!' STRINGCONSTANT
468bool LLParser::ParseMDString(MetadataBase *&MDS) {
469  std::string Str;
470  if (ParseStringConstant(Str)) return true;
471  MDS = MDString::get(Context, Str);
472  return false;
473}
474
475// MDNode:
476//   ::= '!' MDNodeNumber
477bool LLParser::ParseMDNode(MetadataBase *&Node) {
478  // !{ ..., !42, ... }
479  unsigned MID = 0;
480  if (ParseUInt32(MID))  return true;
481
482  // Check existing MDNode.
483  std::map<unsigned, WeakVH>::iterator I = MetadataCache.find(MID);
484  if (I != MetadataCache.end()) {
485    Node = cast<MetadataBase>(I->second);
486    return false;
487  }
488
489  // Check known forward references.
490  std::map<unsigned, std::pair<WeakVH, LocTy> >::iterator
491    FI = ForwardRefMDNodes.find(MID);
492  if (FI != ForwardRefMDNodes.end()) {
493    Node = cast<MetadataBase>(FI->second.first);
494    return false;
495  }
496
497  // Create MDNode forward reference
498  SmallVector<Value *, 1> Elts;
499  std::string FwdRefName = "llvm.mdnode.fwdref." + utostr(MID);
500  Elts.push_back(MDString::get(Context, FwdRefName));
501  MDNode *FwdNode = MDNode::get(Context, Elts.data(), Elts.size());
502  ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
503  Node = FwdNode;
504  return false;
505}
506
507///ParseNamedMetadata:
508///   !foo = !{ !1, !2 }
509bool LLParser::ParseNamedMetadata() {
510  assert(Lex.getKind() == lltok::NamedOrCustomMD);
511  Lex.Lex();
512  std::string Name = Lex.getStrVal();
513
514  if (ParseToken(lltok::equal, "expected '=' here"))
515    return true;
516
517  if (Lex.getKind() != lltok::Metadata)
518    return TokError("Expected '!' here");
519  Lex.Lex();
520
521  if (Lex.getKind() != lltok::lbrace)
522    return TokError("Expected '{' here");
523  Lex.Lex();
524  SmallVector<MetadataBase *, 8> Elts;
525  do {
526    if (Lex.getKind() != lltok::Metadata)
527      return TokError("Expected '!' here");
528    Lex.Lex();
529    MetadataBase *N = 0;
530    if (ParseMDNode(N)) return true;
531    Elts.push_back(N);
532  } while (EatIfPresent(lltok::comma));
533
534  if (ParseToken(lltok::rbrace, "expected end of metadata node"))
535    return true;
536
537  NamedMDNode::Create(Context, Name, Elts.data(), Elts.size(), M);
538  return false;
539}
540
541/// ParseStandaloneMetadata:
542///   !42 = !{...}
543bool LLParser::ParseStandaloneMetadata() {
544  assert(Lex.getKind() == lltok::Metadata);
545  Lex.Lex();
546  unsigned MetadataID = 0;
547  if (ParseUInt32(MetadataID))
548    return true;
549  if (MetadataCache.find(MetadataID) != MetadataCache.end())
550    return TokError("Metadata id is already used");
551  if (ParseToken(lltok::equal, "expected '=' here"))
552    return true;
553
554  LocTy TyLoc;
555  PATypeHolder Ty(Type::getVoidTy(Context));
556  if (ParseType(Ty, TyLoc))
557    return true;
558
559  if (Lex.getKind() != lltok::Metadata)
560    return TokError("Expected metadata here");
561
562  Lex.Lex();
563  if (Lex.getKind() != lltok::lbrace)
564    return TokError("Expected '{' here");
565
566  SmallVector<Value *, 16> Elts;
567  if (ParseMDNodeVector(Elts)
568      || ParseToken(lltok::rbrace, "expected end of metadata node"))
569    return true;
570
571  MDNode *Init = MDNode::get(Context, Elts.data(), Elts.size());
572  MetadataCache[MetadataID] = Init;
573  std::map<unsigned, std::pair<WeakVH, LocTy> >::iterator
574    FI = ForwardRefMDNodes.find(MetadataID);
575  if (FI != ForwardRefMDNodes.end()) {
576    MDNode *FwdNode = cast<MDNode>(FI->second.first);
577    FwdNode->replaceAllUsesWith(Init);
578    ForwardRefMDNodes.erase(FI);
579  }
580
581  return false;
582}
583
584/// ParseInlineMetadata:
585///   !{type %instr}
586///   !{...} MDNode
587///   !"foo" MDString
588bool LLParser::ParseInlineMetadata(Value *&V, PerFunctionState &PFS) {
589  assert(Lex.getKind() == lltok::Metadata && "Only for Metadata");
590  V = 0;
591
592  Lex.Lex();
593  if (Lex.getKind() == lltok::lbrace) {
594    Lex.Lex();
595    if (ParseTypeAndValue(V, PFS) ||
596        ParseToken(lltok::rbrace, "expected end of metadata node"))
597      return true;
598
599    Value *Vals[] = { V };
600    V = MDNode::get(Context, Vals, 1);
601    return false;
602  }
603
604  // Standalone metadata reference
605  // !{ ..., !42, ... }
606  if (!ParseMDNode((MetadataBase *&)V))
607    return false;
608
609  // MDString:
610  // '!' STRINGCONSTANT
611  if (ParseMDString((MetadataBase *&)V)) return true;
612  return false;
613}
614
615/// ParseAlias:
616///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
617/// Aliasee
618///   ::= TypeAndValue
619///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
620///   ::= 'getelementptr' 'inbounds'? '(' ... ')'
621///
622/// Everything through visibility has already been parsed.
623///
624bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
625                          unsigned Visibility) {
626  assert(Lex.getKind() == lltok::kw_alias);
627  Lex.Lex();
628  unsigned Linkage;
629  LocTy LinkageLoc = Lex.getLoc();
630  if (ParseOptionalLinkage(Linkage))
631    return true;
632
633  if (Linkage != GlobalValue::ExternalLinkage &&
634      Linkage != GlobalValue::WeakAnyLinkage &&
635      Linkage != GlobalValue::WeakODRLinkage &&
636      Linkage != GlobalValue::InternalLinkage &&
637      Linkage != GlobalValue::PrivateLinkage &&
638      Linkage != GlobalValue::LinkerPrivateLinkage)
639    return Error(LinkageLoc, "invalid linkage type for alias");
640
641  Constant *Aliasee;
642  LocTy AliaseeLoc = Lex.getLoc();
643  if (Lex.getKind() != lltok::kw_bitcast &&
644      Lex.getKind() != lltok::kw_getelementptr) {
645    if (ParseGlobalTypeAndValue(Aliasee)) return true;
646  } else {
647    // The bitcast dest type is not present, it is implied by the dest type.
648    ValID ID;
649    if (ParseValID(ID)) return true;
650    if (ID.Kind != ValID::t_Constant)
651      return Error(AliaseeLoc, "invalid aliasee");
652    Aliasee = ID.ConstantVal;
653  }
654
655  if (!isa<PointerType>(Aliasee->getType()))
656    return Error(AliaseeLoc, "alias must have pointer type");
657
658  // Okay, create the alias but do not insert it into the module yet.
659  GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
660                                    (GlobalValue::LinkageTypes)Linkage, Name,
661                                    Aliasee);
662  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
663
664  // See if this value already exists in the symbol table.  If so, it is either
665  // a redefinition or a definition of a forward reference.
666  if (GlobalValue *Val = M->getNamedValue(Name)) {
667    // See if this was a redefinition.  If so, there is no entry in
668    // ForwardRefVals.
669    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
670      I = ForwardRefVals.find(Name);
671    if (I == ForwardRefVals.end())
672      return Error(NameLoc, "redefinition of global named '@" + Name + "'");
673
674    // Otherwise, this was a definition of forward ref.  Verify that types
675    // agree.
676    if (Val->getType() != GA->getType())
677      return Error(NameLoc,
678              "forward reference and definition of alias have different types");
679
680    // If they agree, just RAUW the old value with the alias and remove the
681    // forward ref info.
682    Val->replaceAllUsesWith(GA);
683    Val->eraseFromParent();
684    ForwardRefVals.erase(I);
685  }
686
687  // Insert into the module, we know its name won't collide now.
688  M->getAliasList().push_back(GA);
689  assert(GA->getNameStr() == Name && "Should not be a name conflict!");
690
691  return false;
692}
693
694/// ParseGlobal
695///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
696///       OptionalAddrSpace GlobalType Type Const
697///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
698///       OptionalAddrSpace GlobalType Type Const
699///
700/// Everything through visibility has been parsed already.
701///
702bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
703                           unsigned Linkage, bool HasLinkage,
704                           unsigned Visibility) {
705  unsigned AddrSpace;
706  bool ThreadLocal, IsConstant;
707  LocTy TyLoc;
708
709  PATypeHolder Ty(Type::getVoidTy(Context));
710  if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
711      ParseOptionalAddrSpace(AddrSpace) ||
712      ParseGlobalType(IsConstant) ||
713      ParseType(Ty, TyLoc))
714    return true;
715
716  // If the linkage is specified and is external, then no initializer is
717  // present.
718  Constant *Init = 0;
719  if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
720                      Linkage != GlobalValue::ExternalWeakLinkage &&
721                      Linkage != GlobalValue::ExternalLinkage)) {
722    if (ParseGlobalValue(Ty, Init))
723      return true;
724  }
725
726  if (isa<FunctionType>(Ty) || Ty->isLabelTy())
727    return Error(TyLoc, "invalid type for global variable");
728
729  GlobalVariable *GV = 0;
730
731  // See if the global was forward referenced, if so, use the global.
732  if (!Name.empty()) {
733    if (GlobalValue *GVal = M->getNamedValue(Name)) {
734      if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
735        return Error(NameLoc, "redefinition of global '@" + Name + "'");
736      GV = cast<GlobalVariable>(GVal);
737    }
738  } else {
739    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
740      I = ForwardRefValIDs.find(NumberedVals.size());
741    if (I != ForwardRefValIDs.end()) {
742      GV = cast<GlobalVariable>(I->second.first);
743      ForwardRefValIDs.erase(I);
744    }
745  }
746
747  if (GV == 0) {
748    GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
749                            Name, 0, false, AddrSpace);
750  } else {
751    if (GV->getType()->getElementType() != Ty)
752      return Error(TyLoc,
753            "forward reference and definition of global have different types");
754
755    // Move the forward-reference to the correct spot in the module.
756    M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
757  }
758
759  if (Name.empty())
760    NumberedVals.push_back(GV);
761
762  // Set the parsed properties on the global.
763  if (Init)
764    GV->setInitializer(Init);
765  GV->setConstant(IsConstant);
766  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
767  GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
768  GV->setThreadLocal(ThreadLocal);
769
770  // Parse attributes on the global.
771  while (Lex.getKind() == lltok::comma) {
772    Lex.Lex();
773
774    if (Lex.getKind() == lltok::kw_section) {
775      Lex.Lex();
776      GV->setSection(Lex.getStrVal());
777      if (ParseToken(lltok::StringConstant, "expected global section string"))
778        return true;
779    } else if (Lex.getKind() == lltok::kw_align) {
780      unsigned Alignment;
781      if (ParseOptionalAlignment(Alignment)) return true;
782      GV->setAlignment(Alignment);
783    } else {
784      TokError("unknown global variable property!");
785    }
786  }
787
788  return false;
789}
790
791
792//===----------------------------------------------------------------------===//
793// GlobalValue Reference/Resolution Routines.
794//===----------------------------------------------------------------------===//
795
796/// GetGlobalVal - Get a value with the specified name or ID, creating a
797/// forward reference record if needed.  This can return null if the value
798/// exists but does not have the right type.
799GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
800                                    LocTy Loc) {
801  const PointerType *PTy = dyn_cast<PointerType>(Ty);
802  if (PTy == 0) {
803    Error(Loc, "global variable reference must have pointer type");
804    return 0;
805  }
806
807  // Look this name up in the normal function symbol table.
808  GlobalValue *Val =
809    cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
810
811  // If this is a forward reference for the value, see if we already created a
812  // forward ref record.
813  if (Val == 0) {
814    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
815      I = ForwardRefVals.find(Name);
816    if (I != ForwardRefVals.end())
817      Val = I->second.first;
818  }
819
820  // If we have the value in the symbol table or fwd-ref table, return it.
821  if (Val) {
822    if (Val->getType() == Ty) return Val;
823    Error(Loc, "'@" + Name + "' defined with type '" +
824          Val->getType()->getDescription() + "'");
825    return 0;
826  }
827
828  // Otherwise, create a new forward reference for this value and remember it.
829  GlobalValue *FwdVal;
830  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
831    // Function types can return opaque but functions can't.
832    if (isa<OpaqueType>(FT->getReturnType())) {
833      Error(Loc, "function may not return opaque type");
834      return 0;
835    }
836
837    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
838  } else {
839    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
840                                GlobalValue::ExternalWeakLinkage, 0, Name);
841  }
842
843  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
844  return FwdVal;
845}
846
847GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
848  const PointerType *PTy = dyn_cast<PointerType>(Ty);
849  if (PTy == 0) {
850    Error(Loc, "global variable reference must have pointer type");
851    return 0;
852  }
853
854  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
855
856  // If this is a forward reference for the value, see if we already created a
857  // forward ref record.
858  if (Val == 0) {
859    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
860      I = ForwardRefValIDs.find(ID);
861    if (I != ForwardRefValIDs.end())
862      Val = I->second.first;
863  }
864
865  // If we have the value in the symbol table or fwd-ref table, return it.
866  if (Val) {
867    if (Val->getType() == Ty) return Val;
868    Error(Loc, "'@" + utostr(ID) + "' defined with type '" +
869          Val->getType()->getDescription() + "'");
870    return 0;
871  }
872
873  // Otherwise, create a new forward reference for this value and remember it.
874  GlobalValue *FwdVal;
875  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
876    // Function types can return opaque but functions can't.
877    if (isa<OpaqueType>(FT->getReturnType())) {
878      Error(Loc, "function may not return opaque type");
879      return 0;
880    }
881    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
882  } else {
883    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
884                                GlobalValue::ExternalWeakLinkage, 0, "");
885  }
886
887  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
888  return FwdVal;
889}
890
891
892//===----------------------------------------------------------------------===//
893// Helper Routines.
894//===----------------------------------------------------------------------===//
895
896/// ParseToken - If the current token has the specified kind, eat it and return
897/// success.  Otherwise, emit the specified error and return failure.
898bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
899  if (Lex.getKind() != T)
900    return TokError(ErrMsg);
901  Lex.Lex();
902  return false;
903}
904
905/// ParseStringConstant
906///   ::= StringConstant
907bool LLParser::ParseStringConstant(std::string &Result) {
908  if (Lex.getKind() != lltok::StringConstant)
909    return TokError("expected string constant");
910  Result = Lex.getStrVal();
911  Lex.Lex();
912  return false;
913}
914
915/// ParseUInt32
916///   ::= uint32
917bool LLParser::ParseUInt32(unsigned &Val) {
918  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
919    return TokError("expected integer");
920  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
921  if (Val64 != unsigned(Val64))
922    return TokError("expected 32-bit integer (too large)");
923  Val = Val64;
924  Lex.Lex();
925  return false;
926}
927
928
929/// ParseOptionalAddrSpace
930///   := /*empty*/
931///   := 'addrspace' '(' uint32 ')'
932bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
933  AddrSpace = 0;
934  if (!EatIfPresent(lltok::kw_addrspace))
935    return false;
936  return ParseToken(lltok::lparen, "expected '(' in address space") ||
937         ParseUInt32(AddrSpace) ||
938         ParseToken(lltok::rparen, "expected ')' in address space");
939}
940
941/// ParseOptionalAttrs - Parse a potentially empty attribute list.  AttrKind
942/// indicates what kind of attribute list this is: 0: function arg, 1: result,
943/// 2: function attr.
944/// 3: function arg after value: FIXME: REMOVE IN LLVM 3.0
945bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
946  Attrs = Attribute::None;
947  LocTy AttrLoc = Lex.getLoc();
948
949  while (1) {
950    switch (Lex.getKind()) {
951    case lltok::kw_sext:
952    case lltok::kw_zext:
953      // Treat these as signext/zeroext if they occur in the argument list after
954      // the value, as in "call i8 @foo(i8 10 sext)".  If they occur before the
955      // value, as in "call i8 @foo(i8 sext (" then it is part of a constant
956      // expr.
957      // FIXME: REMOVE THIS IN LLVM 3.0
958      if (AttrKind == 3) {
959        if (Lex.getKind() == lltok::kw_sext)
960          Attrs |= Attribute::SExt;
961        else
962          Attrs |= Attribute::ZExt;
963        break;
964      }
965      // FALL THROUGH.
966    default:  // End of attributes.
967      if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
968        return Error(AttrLoc, "invalid use of function-only attribute");
969
970      if (AttrKind != 0 && AttrKind != 3 && (Attrs & Attribute::ParameterOnly))
971        return Error(AttrLoc, "invalid use of parameter-only attribute");
972
973      return false;
974    case lltok::kw_zeroext:         Attrs |= Attribute::ZExt; break;
975    case lltok::kw_signext:         Attrs |= Attribute::SExt; break;
976    case lltok::kw_inreg:           Attrs |= Attribute::InReg; break;
977    case lltok::kw_sret:            Attrs |= Attribute::StructRet; break;
978    case lltok::kw_noalias:         Attrs |= Attribute::NoAlias; break;
979    case lltok::kw_nocapture:       Attrs |= Attribute::NoCapture; break;
980    case lltok::kw_byval:           Attrs |= Attribute::ByVal; break;
981    case lltok::kw_nest:            Attrs |= Attribute::Nest; break;
982
983    case lltok::kw_noreturn:        Attrs |= Attribute::NoReturn; break;
984    case lltok::kw_nounwind:        Attrs |= Attribute::NoUnwind; break;
985    case lltok::kw_noinline:        Attrs |= Attribute::NoInline; break;
986    case lltok::kw_readnone:        Attrs |= Attribute::ReadNone; break;
987    case lltok::kw_readonly:        Attrs |= Attribute::ReadOnly; break;
988    case lltok::kw_inlinehint:      Attrs |= Attribute::InlineHint; break;
989    case lltok::kw_alwaysinline:    Attrs |= Attribute::AlwaysInline; break;
990    case lltok::kw_optsize:         Attrs |= Attribute::OptimizeForSize; break;
991    case lltok::kw_ssp:             Attrs |= Attribute::StackProtect; break;
992    case lltok::kw_sspreq:          Attrs |= Attribute::StackProtectReq; break;
993    case lltok::kw_noredzone:       Attrs |= Attribute::NoRedZone; break;
994    case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
995    case lltok::kw_naked:           Attrs |= Attribute::Naked; break;
996
997    case lltok::kw_align: {
998      unsigned Alignment;
999      if (ParseOptionalAlignment(Alignment))
1000        return true;
1001      Attrs |= Attribute::constructAlignmentFromInt(Alignment);
1002      continue;
1003    }
1004    }
1005    Lex.Lex();
1006  }
1007}
1008
1009/// ParseOptionalLinkage
1010///   ::= /*empty*/
1011///   ::= 'private'
1012///   ::= 'linker_private'
1013///   ::= 'internal'
1014///   ::= 'weak'
1015///   ::= 'weak_odr'
1016///   ::= 'linkonce'
1017///   ::= 'linkonce_odr'
1018///   ::= 'appending'
1019///   ::= 'dllexport'
1020///   ::= 'common'
1021///   ::= 'dllimport'
1022///   ::= 'extern_weak'
1023///   ::= 'external'
1024bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
1025  HasLinkage = false;
1026  switch (Lex.getKind()) {
1027  default:                       Res=GlobalValue::ExternalLinkage; return false;
1028  case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
1029  case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
1030  case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
1031  case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
1032  case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
1033  case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
1034  case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
1035  case lltok::kw_available_externally:
1036    Res = GlobalValue::AvailableExternallyLinkage;
1037    break;
1038  case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
1039  case lltok::kw_dllexport:      Res = GlobalValue::DLLExportLinkage;     break;
1040  case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
1041  case lltok::kw_dllimport:      Res = GlobalValue::DLLImportLinkage;     break;
1042  case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
1043  case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
1044  }
1045  Lex.Lex();
1046  HasLinkage = true;
1047  return false;
1048}
1049
1050/// ParseOptionalVisibility
1051///   ::= /*empty*/
1052///   ::= 'default'
1053///   ::= 'hidden'
1054///   ::= 'protected'
1055///
1056bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1057  switch (Lex.getKind()) {
1058  default:                  Res = GlobalValue::DefaultVisibility; return false;
1059  case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
1060  case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
1061  case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1062  }
1063  Lex.Lex();
1064  return false;
1065}
1066
1067/// ParseOptionalCallingConv
1068///   ::= /*empty*/
1069///   ::= 'ccc'
1070///   ::= 'fastcc'
1071///   ::= 'coldcc'
1072///   ::= 'x86_stdcallcc'
1073///   ::= 'x86_fastcallcc'
1074///   ::= 'arm_apcscc'
1075///   ::= 'arm_aapcscc'
1076///   ::= 'arm_aapcs_vfpcc'
1077///   ::= 'msp430_intrcc'
1078///   ::= 'cc' UINT
1079///
1080bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
1081  switch (Lex.getKind()) {
1082  default:                       CC = CallingConv::C; return false;
1083  case lltok::kw_ccc:            CC = CallingConv::C; break;
1084  case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1085  case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1086  case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1087  case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1088  case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1089  case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1090  case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1091  case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1092  case lltok::kw_cc: {
1093      unsigned ArbitraryCC;
1094      Lex.Lex();
1095      if (ParseUInt32(ArbitraryCC)) {
1096        return true;
1097      } else
1098        CC = static_cast<CallingConv::ID>(ArbitraryCC);
1099        return false;
1100    }
1101    break;
1102  }
1103
1104  Lex.Lex();
1105  return false;
1106}
1107
1108/// ParseOptionalCustomMetadata
1109///   ::= /* empty */
1110///   ::= !dbg !42
1111bool LLParser::ParseOptionalCustomMetadata() {
1112  if (Lex.getKind() != lltok::NamedOrCustomMD)
1113    return false;
1114
1115  std::string Name = Lex.getStrVal();
1116  Lex.Lex();
1117
1118  if (Lex.getKind() != lltok::Metadata)
1119    return TokError("Expected '!' here");
1120  Lex.Lex();
1121
1122  MetadataBase *Node;
1123  if (ParseMDNode(Node)) return true;
1124
1125  MetadataContext &TheMetadata = M->getContext().getMetadata();
1126  unsigned MDK = TheMetadata.getMDKind(Name.c_str());
1127  if (!MDK)
1128    MDK = TheMetadata.registerMDKind(Name.c_str());
1129  MDsOnInst.push_back(std::make_pair(MDK, cast<MDNode>(Node)));
1130
1131  return false;
1132}
1133
1134/// ParseOptionalAlignment
1135///   ::= /* empty */
1136///   ::= 'align' 4
1137bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1138  Alignment = 0;
1139  if (!EatIfPresent(lltok::kw_align))
1140    return false;
1141  LocTy AlignLoc = Lex.getLoc();
1142  if (ParseUInt32(Alignment)) return true;
1143  if (!isPowerOf2_32(Alignment))
1144    return Error(AlignLoc, "alignment is not a power of two");
1145  return false;
1146}
1147
1148/// ParseOptionalInfo
1149///   ::= OptionalInfo (',' OptionalInfo)+
1150bool LLParser::ParseOptionalInfo(unsigned &Alignment) {
1151
1152  // FIXME: Handle customized metadata info attached with an instruction.
1153  do {
1154      if (Lex.getKind() == lltok::NamedOrCustomMD) {
1155      if (ParseOptionalCustomMetadata()) return true;
1156    } else if (Lex.getKind() == lltok::kw_align) {
1157      if (ParseOptionalAlignment(Alignment)) return true;
1158    } else
1159      return true;
1160  } while (EatIfPresent(lltok::comma));
1161
1162  return false;
1163}
1164
1165
1166/// ParseIndexList
1167///    ::=  (',' uint32)+
1168bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices) {
1169  if (Lex.getKind() != lltok::comma)
1170    return TokError("expected ',' as start of index list");
1171
1172  while (EatIfPresent(lltok::comma)) {
1173    if (Lex.getKind() == lltok::NamedOrCustomMD)
1174      break;
1175    unsigned Idx;
1176    if (ParseUInt32(Idx)) return true;
1177    Indices.push_back(Idx);
1178  }
1179
1180  return false;
1181}
1182
1183//===----------------------------------------------------------------------===//
1184// Type Parsing.
1185//===----------------------------------------------------------------------===//
1186
1187/// ParseType - Parse and resolve a full type.
1188bool LLParser::ParseType(PATypeHolder &Result, bool AllowVoid) {
1189  LocTy TypeLoc = Lex.getLoc();
1190  if (ParseTypeRec(Result)) return true;
1191
1192  // Verify no unresolved uprefs.
1193  if (!UpRefs.empty())
1194    return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
1195
1196  if (!AllowVoid && Result.get()->isVoidTy())
1197    return Error(TypeLoc, "void type only allowed for function results");
1198
1199  return false;
1200}
1201
1202/// HandleUpRefs - Every time we finish a new layer of types, this function is
1203/// called.  It loops through the UpRefs vector, which is a list of the
1204/// currently active types.  For each type, if the up-reference is contained in
1205/// the newly completed type, we decrement the level count.  When the level
1206/// count reaches zero, the up-referenced type is the type that is passed in:
1207/// thus we can complete the cycle.
1208///
1209PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
1210  // If Ty isn't abstract, or if there are no up-references in it, then there is
1211  // nothing to resolve here.
1212  if (!ty->isAbstract() || UpRefs.empty()) return ty;
1213
1214  PATypeHolder Ty(ty);
1215#if 0
1216  errs() << "Type '" << Ty->getDescription()
1217         << "' newly formed.  Resolving upreferences.\n"
1218         << UpRefs.size() << " upreferences active!\n";
1219#endif
1220
1221  // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
1222  // to zero), we resolve them all together before we resolve them to Ty.  At
1223  // the end of the loop, if there is anything to resolve to Ty, it will be in
1224  // this variable.
1225  OpaqueType *TypeToResolve = 0;
1226
1227  for (unsigned i = 0; i != UpRefs.size(); ++i) {
1228    // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
1229    bool ContainsType =
1230      std::find(Ty->subtype_begin(), Ty->subtype_end(),
1231                UpRefs[i].LastContainedTy) != Ty->subtype_end();
1232
1233#if 0
1234    errs() << "  UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
1235           << UpRefs[i].LastContainedTy->getDescription() << ") = "
1236           << (ContainsType ? "true" : "false")
1237           << " level=" << UpRefs[i].NestingLevel << "\n";
1238#endif
1239    if (!ContainsType)
1240      continue;
1241
1242    // Decrement level of upreference
1243    unsigned Level = --UpRefs[i].NestingLevel;
1244    UpRefs[i].LastContainedTy = Ty;
1245
1246    // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
1247    if (Level != 0)
1248      continue;
1249
1250#if 0
1251    errs() << "  * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
1252#endif
1253    if (!TypeToResolve)
1254      TypeToResolve = UpRefs[i].UpRefTy;
1255    else
1256      UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
1257    UpRefs.erase(UpRefs.begin()+i);     // Remove from upreference list.
1258    --i;                                // Do not skip the next element.
1259  }
1260
1261  if (TypeToResolve)
1262    TypeToResolve->refineAbstractTypeTo(Ty);
1263
1264  return Ty;
1265}
1266
1267
1268/// ParseTypeRec - The recursive function used to process the internal
1269/// implementation details of types.
1270bool LLParser::ParseTypeRec(PATypeHolder &Result) {
1271  switch (Lex.getKind()) {
1272  default:
1273    return TokError("expected type");
1274  case lltok::Type:
1275    // TypeRec ::= 'float' | 'void' (etc)
1276    Result = Lex.getTyVal();
1277    Lex.Lex();
1278    break;
1279  case lltok::kw_opaque:
1280    // TypeRec ::= 'opaque'
1281    Result = OpaqueType::get(Context);
1282    Lex.Lex();
1283    break;
1284  case lltok::lbrace:
1285    // TypeRec ::= '{' ... '}'
1286    if (ParseStructType(Result, false))
1287      return true;
1288    break;
1289  case lltok::lsquare:
1290    // TypeRec ::= '[' ... ']'
1291    Lex.Lex(); // eat the lsquare.
1292    if (ParseArrayVectorType(Result, false))
1293      return true;
1294    break;
1295  case lltok::less: // Either vector or packed struct.
1296    // TypeRec ::= '<' ... '>'
1297    Lex.Lex();
1298    if (Lex.getKind() == lltok::lbrace) {
1299      if (ParseStructType(Result, true) ||
1300          ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1301        return true;
1302    } else if (ParseArrayVectorType(Result, true))
1303      return true;
1304    break;
1305  case lltok::LocalVar:
1306  case lltok::StringConstant:  // FIXME: REMOVE IN LLVM 3.0
1307    // TypeRec ::= %foo
1308    if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
1309      Result = T;
1310    } else {
1311      Result = OpaqueType::get(Context);
1312      ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
1313                                            std::make_pair(Result,
1314                                                           Lex.getLoc())));
1315      M->addTypeName(Lex.getStrVal(), Result.get());
1316    }
1317    Lex.Lex();
1318    break;
1319
1320  case lltok::LocalVarID:
1321    // TypeRec ::= %4
1322    if (Lex.getUIntVal() < NumberedTypes.size())
1323      Result = NumberedTypes[Lex.getUIntVal()];
1324    else {
1325      std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
1326        I = ForwardRefTypeIDs.find(Lex.getUIntVal());
1327      if (I != ForwardRefTypeIDs.end())
1328        Result = I->second.first;
1329      else {
1330        Result = OpaqueType::get(Context);
1331        ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
1332                                                std::make_pair(Result,
1333                                                               Lex.getLoc())));
1334      }
1335    }
1336    Lex.Lex();
1337    break;
1338  case lltok::backslash: {
1339    // TypeRec ::= '\' 4
1340    Lex.Lex();
1341    unsigned Val;
1342    if (ParseUInt32(Val)) return true;
1343    OpaqueType *OT = OpaqueType::get(Context); //Use temporary placeholder.
1344    UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
1345    Result = OT;
1346    break;
1347  }
1348  }
1349
1350  // Parse the type suffixes.
1351  while (1) {
1352    switch (Lex.getKind()) {
1353    // End of type.
1354    default: return false;
1355
1356    // TypeRec ::= TypeRec '*'
1357    case lltok::star:
1358      if (Result.get()->isLabelTy())
1359        return TokError("basic block pointers are invalid");
1360      if (Result.get()->isVoidTy())
1361        return TokError("pointers to void are invalid; use i8* instead");
1362      if (!PointerType::isValidElementType(Result.get()))
1363        return TokError("pointer to this type is invalid");
1364      Result = HandleUpRefs(PointerType::getUnqual(Result.get()));
1365      Lex.Lex();
1366      break;
1367
1368    // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1369    case lltok::kw_addrspace: {
1370      if (Result.get()->isLabelTy())
1371        return TokError("basic block pointers are invalid");
1372      if (Result.get()->isVoidTy())
1373        return TokError("pointers to void are invalid; use i8* instead");
1374      if (!PointerType::isValidElementType(Result.get()))
1375        return TokError("pointer to this type is invalid");
1376      unsigned AddrSpace;
1377      if (ParseOptionalAddrSpace(AddrSpace) ||
1378          ParseToken(lltok::star, "expected '*' in address space"))
1379        return true;
1380
1381      Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace));
1382      break;
1383    }
1384
1385    /// Types '(' ArgTypeListI ')' OptFuncAttrs
1386    case lltok::lparen:
1387      if (ParseFunctionType(Result))
1388        return true;
1389      break;
1390    }
1391  }
1392}
1393
1394/// ParseParameterList
1395///    ::= '(' ')'
1396///    ::= '(' Arg (',' Arg)* ')'
1397///  Arg
1398///    ::= Type OptionalAttributes Value OptionalAttributes
1399bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1400                                  PerFunctionState &PFS) {
1401  if (ParseToken(lltok::lparen, "expected '(' in call"))
1402    return true;
1403
1404  while (Lex.getKind() != lltok::rparen) {
1405    // If this isn't the first argument, we need a comma.
1406    if (!ArgList.empty() &&
1407        ParseToken(lltok::comma, "expected ',' in argument list"))
1408      return true;
1409
1410    // Parse the argument.
1411    LocTy ArgLoc;
1412    PATypeHolder ArgTy(Type::getVoidTy(Context));
1413    unsigned ArgAttrs1 = Attribute::None;
1414    unsigned ArgAttrs2 = Attribute::None;
1415    Value *V;
1416    if (ParseType(ArgTy, ArgLoc))
1417      return true;
1418
1419    if (Lex.getKind() == lltok::Metadata) {
1420      if (ParseInlineMetadata(V, PFS))
1421        return true;
1422    } else {
1423      if (ParseOptionalAttrs(ArgAttrs1, 0) ||
1424          ParseValue(ArgTy, V, PFS) ||
1425          // FIXME: Should not allow attributes after the argument, remove this
1426          // in LLVM 3.0.
1427          ParseOptionalAttrs(ArgAttrs2, 3))
1428        return true;
1429    }
1430    ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1431  }
1432
1433  Lex.Lex();  // Lex the ')'.
1434  return false;
1435}
1436
1437
1438
1439/// ParseArgumentList - Parse the argument list for a function type or function
1440/// prototype.  If 'inType' is true then we are parsing a FunctionType.
1441///   ::= '(' ArgTypeListI ')'
1442/// ArgTypeListI
1443///   ::= /*empty*/
1444///   ::= '...'
1445///   ::= ArgTypeList ',' '...'
1446///   ::= ArgType (',' ArgType)*
1447///
1448bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
1449                                 bool &isVarArg, bool inType) {
1450  isVarArg = false;
1451  assert(Lex.getKind() == lltok::lparen);
1452  Lex.Lex(); // eat the (.
1453
1454  if (Lex.getKind() == lltok::rparen) {
1455    // empty
1456  } else if (Lex.getKind() == lltok::dotdotdot) {
1457    isVarArg = true;
1458    Lex.Lex();
1459  } else {
1460    LocTy TypeLoc = Lex.getLoc();
1461    PATypeHolder ArgTy(Type::getVoidTy(Context));
1462    unsigned Attrs;
1463    std::string Name;
1464
1465    // If we're parsing a type, use ParseTypeRec, because we allow recursive
1466    // types (such as a function returning a pointer to itself).  If parsing a
1467    // function prototype, we require fully resolved types.
1468    if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1469        ParseOptionalAttrs(Attrs, 0)) return true;
1470
1471    if (ArgTy->isVoidTy())
1472      return Error(TypeLoc, "argument can not have void type");
1473
1474    if (Lex.getKind() == lltok::LocalVar ||
1475        Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1476      Name = Lex.getStrVal();
1477      Lex.Lex();
1478    }
1479
1480    if (!FunctionType::isValidArgumentType(ArgTy))
1481      return Error(TypeLoc, "invalid type for function argument");
1482
1483    ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1484
1485    while (EatIfPresent(lltok::comma)) {
1486      // Handle ... at end of arg list.
1487      if (EatIfPresent(lltok::dotdotdot)) {
1488        isVarArg = true;
1489        break;
1490      }
1491
1492      // Otherwise must be an argument type.
1493      TypeLoc = Lex.getLoc();
1494      if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1495          ParseOptionalAttrs(Attrs, 0)) return true;
1496
1497      if (ArgTy->isVoidTy())
1498        return Error(TypeLoc, "argument can not have void type");
1499
1500      if (Lex.getKind() == lltok::LocalVar ||
1501          Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1502        Name = Lex.getStrVal();
1503        Lex.Lex();
1504      } else {
1505        Name = "";
1506      }
1507
1508      if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1509        return Error(TypeLoc, "invalid type for function argument");
1510
1511      ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1512    }
1513  }
1514
1515  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1516}
1517
1518/// ParseFunctionType
1519///  ::= Type ArgumentList OptionalAttrs
1520bool LLParser::ParseFunctionType(PATypeHolder &Result) {
1521  assert(Lex.getKind() == lltok::lparen);
1522
1523  if (!FunctionType::isValidReturnType(Result))
1524    return TokError("invalid function return type");
1525
1526  std::vector<ArgInfo> ArgList;
1527  bool isVarArg;
1528  unsigned Attrs;
1529  if (ParseArgumentList(ArgList, isVarArg, true) ||
1530      // FIXME: Allow, but ignore attributes on function types!
1531      // FIXME: Remove in LLVM 3.0
1532      ParseOptionalAttrs(Attrs, 2))
1533    return true;
1534
1535  // Reject names on the arguments lists.
1536  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1537    if (!ArgList[i].Name.empty())
1538      return Error(ArgList[i].Loc, "argument name invalid in function type");
1539    if (!ArgList[i].Attrs != 0) {
1540      // Allow but ignore attributes on function types; this permits
1541      // auto-upgrade.
1542      // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1543    }
1544  }
1545
1546  std::vector<const Type*> ArgListTy;
1547  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1548    ArgListTy.push_back(ArgList[i].Type);
1549
1550  Result = HandleUpRefs(FunctionType::get(Result.get(),
1551                                                ArgListTy, isVarArg));
1552  return false;
1553}
1554
1555/// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1556///   TypeRec
1557///     ::= '{' '}'
1558///     ::= '{' TypeRec (',' TypeRec)* '}'
1559///     ::= '<' '{' '}' '>'
1560///     ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1561bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
1562  assert(Lex.getKind() == lltok::lbrace);
1563  Lex.Lex(); // Consume the '{'
1564
1565  if (EatIfPresent(lltok::rbrace)) {
1566    Result = StructType::get(Context, Packed);
1567    return false;
1568  }
1569
1570  std::vector<PATypeHolder> ParamsList;
1571  LocTy EltTyLoc = Lex.getLoc();
1572  if (ParseTypeRec(Result)) return true;
1573  ParamsList.push_back(Result);
1574
1575  if (Result->isVoidTy())
1576    return Error(EltTyLoc, "struct element can not have void type");
1577  if (!StructType::isValidElementType(Result))
1578    return Error(EltTyLoc, "invalid element type for struct");
1579
1580  while (EatIfPresent(lltok::comma)) {
1581    EltTyLoc = Lex.getLoc();
1582    if (ParseTypeRec(Result)) return true;
1583
1584    if (Result->isVoidTy())
1585      return Error(EltTyLoc, "struct element can not have void type");
1586    if (!StructType::isValidElementType(Result))
1587      return Error(EltTyLoc, "invalid element type for struct");
1588
1589    ParamsList.push_back(Result);
1590  }
1591
1592  if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
1593    return true;
1594
1595  std::vector<const Type*> ParamsListTy;
1596  for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1597    ParamsListTy.push_back(ParamsList[i].get());
1598  Result = HandleUpRefs(StructType::get(Context, ParamsListTy, Packed));
1599  return false;
1600}
1601
1602/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1603/// token has already been consumed.
1604///   TypeRec
1605///     ::= '[' APSINTVAL 'x' Types ']'
1606///     ::= '<' APSINTVAL 'x' Types '>'
1607bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
1608  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1609      Lex.getAPSIntVal().getBitWidth() > 64)
1610    return TokError("expected number in address space");
1611
1612  LocTy SizeLoc = Lex.getLoc();
1613  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1614  Lex.Lex();
1615
1616  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1617      return true;
1618
1619  LocTy TypeLoc = Lex.getLoc();
1620  PATypeHolder EltTy(Type::getVoidTy(Context));
1621  if (ParseTypeRec(EltTy)) return true;
1622
1623  if (EltTy->isVoidTy())
1624    return Error(TypeLoc, "array and vector element type cannot be void");
1625
1626  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1627                 "expected end of sequential type"))
1628    return true;
1629
1630  if (isVector) {
1631    if (Size == 0)
1632      return Error(SizeLoc, "zero element vector is illegal");
1633    if ((unsigned)Size != Size)
1634      return Error(SizeLoc, "size too large for vector");
1635    if (!VectorType::isValidElementType(EltTy))
1636      return Error(TypeLoc, "vector element type must be fp or integer");
1637    Result = VectorType::get(EltTy, unsigned(Size));
1638  } else {
1639    if (!ArrayType::isValidElementType(EltTy))
1640      return Error(TypeLoc, "invalid array element type");
1641    Result = HandleUpRefs(ArrayType::get(EltTy, Size));
1642  }
1643  return false;
1644}
1645
1646//===----------------------------------------------------------------------===//
1647// Function Semantic Analysis.
1648//===----------------------------------------------------------------------===//
1649
1650LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
1651                                             int functionNumber)
1652  : P(p), F(f), FunctionNumber(functionNumber) {
1653
1654  // Insert unnamed arguments into the NumberedVals list.
1655  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1656       AI != E; ++AI)
1657    if (!AI->hasName())
1658      NumberedVals.push_back(AI);
1659}
1660
1661LLParser::PerFunctionState::~PerFunctionState() {
1662  // If there were any forward referenced non-basicblock values, delete them.
1663  for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1664       I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1665    if (!isa<BasicBlock>(I->second.first)) {
1666      I->second.first->replaceAllUsesWith(
1667                           UndefValue::get(I->second.first->getType()));
1668      delete I->second.first;
1669      I->second.first = 0;
1670    }
1671
1672  for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1673       I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1674    if (!isa<BasicBlock>(I->second.first)) {
1675      I->second.first->replaceAllUsesWith(
1676                           UndefValue::get(I->second.first->getType()));
1677      delete I->second.first;
1678      I->second.first = 0;
1679    }
1680}
1681
1682bool LLParser::PerFunctionState::FinishFunction() {
1683  // Check to see if someone took the address of labels in this block.
1684  if (!P.ForwardRefBlockAddresses.empty()) {
1685    ValID FunctionID;
1686    if (!F.getName().empty()) {
1687      FunctionID.Kind = ValID::t_GlobalName;
1688      FunctionID.StrVal = F.getName();
1689    } else {
1690      FunctionID.Kind = ValID::t_GlobalID;
1691      FunctionID.UIntVal = FunctionNumber;
1692    }
1693
1694    std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
1695      FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
1696    if (FRBAI != P.ForwardRefBlockAddresses.end()) {
1697      // Resolve all these references.
1698      if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
1699        return true;
1700
1701      P.ForwardRefBlockAddresses.erase(FRBAI);
1702    }
1703  }
1704
1705  if (!ForwardRefVals.empty())
1706    return P.Error(ForwardRefVals.begin()->second.second,
1707                   "use of undefined value '%" + ForwardRefVals.begin()->first +
1708                   "'");
1709  if (!ForwardRefValIDs.empty())
1710    return P.Error(ForwardRefValIDs.begin()->second.second,
1711                   "use of undefined value '%" +
1712                   utostr(ForwardRefValIDs.begin()->first) + "'");
1713  return false;
1714}
1715
1716
1717/// GetVal - Get a value with the specified name or ID, creating a
1718/// forward reference record if needed.  This can return null if the value
1719/// exists but does not have the right type.
1720Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1721                                          const Type *Ty, LocTy Loc) {
1722  // Look this name up in the normal function symbol table.
1723  Value *Val = F.getValueSymbolTable().lookup(Name);
1724
1725  // If this is a forward reference for the value, see if we already created a
1726  // forward ref record.
1727  if (Val == 0) {
1728    std::map<std::string, std::pair<Value*, LocTy> >::iterator
1729      I = ForwardRefVals.find(Name);
1730    if (I != ForwardRefVals.end())
1731      Val = I->second.first;
1732  }
1733
1734  // If we have the value in the symbol table or fwd-ref table, return it.
1735  if (Val) {
1736    if (Val->getType() == Ty) return Val;
1737    if (Ty->isLabelTy())
1738      P.Error(Loc, "'%" + Name + "' is not a basic block");
1739    else
1740      P.Error(Loc, "'%" + Name + "' defined with type '" +
1741              Val->getType()->getDescription() + "'");
1742    return 0;
1743  }
1744
1745  // Don't make placeholders with invalid type.
1746  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) &&
1747      Ty != Type::getLabelTy(F.getContext())) {
1748    P.Error(Loc, "invalid use of a non-first-class type");
1749    return 0;
1750  }
1751
1752  // Otherwise, create a new forward reference for this value and remember it.
1753  Value *FwdVal;
1754  if (Ty->isLabelTy())
1755    FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
1756  else
1757    FwdVal = new Argument(Ty, Name);
1758
1759  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1760  return FwdVal;
1761}
1762
1763Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
1764                                          LocTy Loc) {
1765  // Look this name up in the normal function symbol table.
1766  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1767
1768  // If this is a forward reference for the value, see if we already created a
1769  // forward ref record.
1770  if (Val == 0) {
1771    std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1772      I = ForwardRefValIDs.find(ID);
1773    if (I != ForwardRefValIDs.end())
1774      Val = I->second.first;
1775  }
1776
1777  // If we have the value in the symbol table or fwd-ref table, return it.
1778  if (Val) {
1779    if (Val->getType() == Ty) return Val;
1780    if (Ty->isLabelTy())
1781      P.Error(Loc, "'%" + utostr(ID) + "' is not a basic block");
1782    else
1783      P.Error(Loc, "'%" + utostr(ID) + "' defined with type '" +
1784              Val->getType()->getDescription() + "'");
1785    return 0;
1786  }
1787
1788  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) &&
1789      Ty != Type::getLabelTy(F.getContext())) {
1790    P.Error(Loc, "invalid use of a non-first-class type");
1791    return 0;
1792  }
1793
1794  // Otherwise, create a new forward reference for this value and remember it.
1795  Value *FwdVal;
1796  if (Ty->isLabelTy())
1797    FwdVal = BasicBlock::Create(F.getContext(), "", &F);
1798  else
1799    FwdVal = new Argument(Ty);
1800
1801  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1802  return FwdVal;
1803}
1804
1805/// SetInstName - After an instruction is parsed and inserted into its
1806/// basic block, this installs its name.
1807bool LLParser::PerFunctionState::SetInstName(int NameID,
1808                                             const std::string &NameStr,
1809                                             LocTy NameLoc, Instruction *Inst) {
1810  // If this instruction has void type, it cannot have a name or ID specified.
1811  if (Inst->getType()->isVoidTy()) {
1812    if (NameID != -1 || !NameStr.empty())
1813      return P.Error(NameLoc, "instructions returning void cannot have a name");
1814    return false;
1815  }
1816
1817  // If this was a numbered instruction, verify that the instruction is the
1818  // expected value and resolve any forward references.
1819  if (NameStr.empty()) {
1820    // If neither a name nor an ID was specified, just use the next ID.
1821    if (NameID == -1)
1822      NameID = NumberedVals.size();
1823
1824    if (unsigned(NameID) != NumberedVals.size())
1825      return P.Error(NameLoc, "instruction expected to be numbered '%" +
1826                     utostr(NumberedVals.size()) + "'");
1827
1828    std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1829      ForwardRefValIDs.find(NameID);
1830    if (FI != ForwardRefValIDs.end()) {
1831      if (FI->second.first->getType() != Inst->getType())
1832        return P.Error(NameLoc, "instruction forward referenced with type '" +
1833                       FI->second.first->getType()->getDescription() + "'");
1834      FI->second.first->replaceAllUsesWith(Inst);
1835      delete FI->second.first;
1836      ForwardRefValIDs.erase(FI);
1837    }
1838
1839    NumberedVals.push_back(Inst);
1840    return false;
1841  }
1842
1843  // Otherwise, the instruction had a name.  Resolve forward refs and set it.
1844  std::map<std::string, std::pair<Value*, LocTy> >::iterator
1845    FI = ForwardRefVals.find(NameStr);
1846  if (FI != ForwardRefVals.end()) {
1847    if (FI->second.first->getType() != Inst->getType())
1848      return P.Error(NameLoc, "instruction forward referenced with type '" +
1849                     FI->second.first->getType()->getDescription() + "'");
1850    FI->second.first->replaceAllUsesWith(Inst);
1851    delete FI->second.first;
1852    ForwardRefVals.erase(FI);
1853  }
1854
1855  // Set the name on the instruction.
1856  Inst->setName(NameStr);
1857
1858  if (Inst->getNameStr() != NameStr)
1859    return P.Error(NameLoc, "multiple definition of local value named '" +
1860                   NameStr + "'");
1861  return false;
1862}
1863
1864/// GetBB - Get a basic block with the specified name or ID, creating a
1865/// forward reference record if needed.
1866BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1867                                              LocTy Loc) {
1868  return cast_or_null<BasicBlock>(GetVal(Name,
1869                                        Type::getLabelTy(F.getContext()), Loc));
1870}
1871
1872BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1873  return cast_or_null<BasicBlock>(GetVal(ID,
1874                                        Type::getLabelTy(F.getContext()), Loc));
1875}
1876
1877/// DefineBB - Define the specified basic block, which is either named or
1878/// unnamed.  If there is an error, this returns null otherwise it returns
1879/// the block being defined.
1880BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1881                                                 LocTy Loc) {
1882  BasicBlock *BB;
1883  if (Name.empty())
1884    BB = GetBB(NumberedVals.size(), Loc);
1885  else
1886    BB = GetBB(Name, Loc);
1887  if (BB == 0) return 0; // Already diagnosed error.
1888
1889  // Move the block to the end of the function.  Forward ref'd blocks are
1890  // inserted wherever they happen to be referenced.
1891  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1892
1893  // Remove the block from forward ref sets.
1894  if (Name.empty()) {
1895    ForwardRefValIDs.erase(NumberedVals.size());
1896    NumberedVals.push_back(BB);
1897  } else {
1898    // BB forward references are already in the function symbol table.
1899    ForwardRefVals.erase(Name);
1900  }
1901
1902  return BB;
1903}
1904
1905//===----------------------------------------------------------------------===//
1906// Constants.
1907//===----------------------------------------------------------------------===//
1908
1909/// ParseValID - Parse an abstract value that doesn't necessarily have a
1910/// type implied.  For example, if we parse "4" we don't know what integer type
1911/// it has.  The value will later be combined with its type and checked for
1912/// sanity.
1913bool LLParser::ParseValID(ValID &ID) {
1914  ID.Loc = Lex.getLoc();
1915  switch (Lex.getKind()) {
1916  default: return TokError("expected value token");
1917  case lltok::GlobalID:  // @42
1918    ID.UIntVal = Lex.getUIntVal();
1919    ID.Kind = ValID::t_GlobalID;
1920    break;
1921  case lltok::GlobalVar:  // @foo
1922    ID.StrVal = Lex.getStrVal();
1923    ID.Kind = ValID::t_GlobalName;
1924    break;
1925  case lltok::LocalVarID:  // %42
1926    ID.UIntVal = Lex.getUIntVal();
1927    ID.Kind = ValID::t_LocalID;
1928    break;
1929  case lltok::LocalVar:  // %foo
1930  case lltok::StringConstant:  // "foo" - FIXME: REMOVE IN LLVM 3.0
1931    ID.StrVal = Lex.getStrVal();
1932    ID.Kind = ValID::t_LocalName;
1933    break;
1934  case lltok::Metadata: {  // !{...} MDNode, !"foo" MDString
1935    ID.Kind = ValID::t_Metadata;
1936    Lex.Lex();
1937    if (Lex.getKind() == lltok::lbrace) {
1938      SmallVector<Value*, 16> Elts;
1939      if (ParseMDNodeVector(Elts) ||
1940          ParseToken(lltok::rbrace, "expected end of metadata node"))
1941        return true;
1942
1943      ID.MetadataVal = MDNode::get(Context, Elts.data(), Elts.size());
1944      return false;
1945    }
1946
1947    // Standalone metadata reference
1948    // !{ ..., !42, ... }
1949    if (!ParseMDNode(ID.MetadataVal))
1950      return false;
1951
1952    // MDString:
1953    //   ::= '!' STRINGCONSTANT
1954    if (ParseMDString(ID.MetadataVal)) return true;
1955    ID.Kind = ValID::t_Metadata;
1956    return false;
1957  }
1958  case lltok::APSInt:
1959    ID.APSIntVal = Lex.getAPSIntVal();
1960    ID.Kind = ValID::t_APSInt;
1961    break;
1962  case lltok::APFloat:
1963    ID.APFloatVal = Lex.getAPFloatVal();
1964    ID.Kind = ValID::t_APFloat;
1965    break;
1966  case lltok::kw_true:
1967    ID.ConstantVal = ConstantInt::getTrue(Context);
1968    ID.Kind = ValID::t_Constant;
1969    break;
1970  case lltok::kw_false:
1971    ID.ConstantVal = ConstantInt::getFalse(Context);
1972    ID.Kind = ValID::t_Constant;
1973    break;
1974  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
1975  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
1976  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
1977
1978  case lltok::lbrace: {
1979    // ValID ::= '{' ConstVector '}'
1980    Lex.Lex();
1981    SmallVector<Constant*, 16> Elts;
1982    if (ParseGlobalValueVector(Elts) ||
1983        ParseToken(lltok::rbrace, "expected end of struct constant"))
1984      return true;
1985
1986    ID.ConstantVal = ConstantStruct::get(Context, Elts.data(),
1987                                         Elts.size(), false);
1988    ID.Kind = ValID::t_Constant;
1989    return false;
1990  }
1991  case lltok::less: {
1992    // ValID ::= '<' ConstVector '>'         --> Vector.
1993    // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1994    Lex.Lex();
1995    bool isPackedStruct = EatIfPresent(lltok::lbrace);
1996
1997    SmallVector<Constant*, 16> Elts;
1998    LocTy FirstEltLoc = Lex.getLoc();
1999    if (ParseGlobalValueVector(Elts) ||
2000        (isPackedStruct &&
2001         ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2002        ParseToken(lltok::greater, "expected end of constant"))
2003      return true;
2004
2005    if (isPackedStruct) {
2006      ID.ConstantVal =
2007        ConstantStruct::get(Context, Elts.data(), Elts.size(), true);
2008      ID.Kind = ValID::t_Constant;
2009      return false;
2010    }
2011
2012    if (Elts.empty())
2013      return Error(ID.Loc, "constant vector must not be empty");
2014
2015    if (!Elts[0]->getType()->isInteger() &&
2016        !Elts[0]->getType()->isFloatingPoint())
2017      return Error(FirstEltLoc,
2018                   "vector elements must have integer or floating point type");
2019
2020    // Verify that all the vector elements have the same type.
2021    for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2022      if (Elts[i]->getType() != Elts[0]->getType())
2023        return Error(FirstEltLoc,
2024                     "vector element #" + utostr(i) +
2025                    " is not of type '" + Elts[0]->getType()->getDescription());
2026
2027    ID.ConstantVal = ConstantVector::get(Elts.data(), Elts.size());
2028    ID.Kind = ValID::t_Constant;
2029    return false;
2030  }
2031  case lltok::lsquare: {   // Array Constant
2032    Lex.Lex();
2033    SmallVector<Constant*, 16> Elts;
2034    LocTy FirstEltLoc = Lex.getLoc();
2035    if (ParseGlobalValueVector(Elts) ||
2036        ParseToken(lltok::rsquare, "expected end of array constant"))
2037      return true;
2038
2039    // Handle empty element.
2040    if (Elts.empty()) {
2041      // Use undef instead of an array because it's inconvenient to determine
2042      // the element type at this point, there being no elements to examine.
2043      ID.Kind = ValID::t_EmptyArray;
2044      return false;
2045    }
2046
2047    if (!Elts[0]->getType()->isFirstClassType())
2048      return Error(FirstEltLoc, "invalid array element type: " +
2049                   Elts[0]->getType()->getDescription());
2050
2051    ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2052
2053    // Verify all elements are correct type!
2054    for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2055      if (Elts[i]->getType() != Elts[0]->getType())
2056        return Error(FirstEltLoc,
2057                     "array element #" + utostr(i) +
2058                     " is not of type '" +Elts[0]->getType()->getDescription());
2059    }
2060
2061    ID.ConstantVal = ConstantArray::get(ATy, Elts.data(), Elts.size());
2062    ID.Kind = ValID::t_Constant;
2063    return false;
2064  }
2065  case lltok::kw_c:  // c "foo"
2066    Lex.Lex();
2067    ID.ConstantVal = ConstantArray::get(Context, Lex.getStrVal(), false);
2068    if (ParseToken(lltok::StringConstant, "expected string")) return true;
2069    ID.Kind = ValID::t_Constant;
2070    return false;
2071
2072  case lltok::kw_asm: {
2073    // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT
2074    bool HasSideEffect, AlignStack;
2075    Lex.Lex();
2076    if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2077        ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2078        ParseStringConstant(ID.StrVal) ||
2079        ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2080        ParseToken(lltok::StringConstant, "expected constraint string"))
2081      return true;
2082    ID.StrVal2 = Lex.getStrVal();
2083    ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1);
2084    ID.Kind = ValID::t_InlineAsm;
2085    return false;
2086  }
2087
2088  case lltok::kw_blockaddress: {
2089    // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2090    Lex.Lex();
2091
2092    ValID Fn, Label;
2093    LocTy FnLoc, LabelLoc;
2094
2095    if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2096        ParseValID(Fn) ||
2097        ParseToken(lltok::comma, "expected comma in block address expression")||
2098        ParseValID(Label) ||
2099        ParseToken(lltok::rparen, "expected ')' in block address expression"))
2100      return true;
2101
2102    if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2103      return Error(Fn.Loc, "expected function name in blockaddress");
2104    if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2105      return Error(Label.Loc, "expected basic block name in blockaddress");
2106
2107    // Make a global variable as a placeholder for this reference.
2108    GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
2109                                           false, GlobalValue::InternalLinkage,
2110                                                0, "");
2111    ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
2112    ID.ConstantVal = FwdRef;
2113    ID.Kind = ValID::t_Constant;
2114    return false;
2115  }
2116
2117  case lltok::kw_trunc:
2118  case lltok::kw_zext:
2119  case lltok::kw_sext:
2120  case lltok::kw_fptrunc:
2121  case lltok::kw_fpext:
2122  case lltok::kw_bitcast:
2123  case lltok::kw_uitofp:
2124  case lltok::kw_sitofp:
2125  case lltok::kw_fptoui:
2126  case lltok::kw_fptosi:
2127  case lltok::kw_inttoptr:
2128  case lltok::kw_ptrtoint: {
2129    unsigned Opc = Lex.getUIntVal();
2130    PATypeHolder DestTy(Type::getVoidTy(Context));
2131    Constant *SrcVal;
2132    Lex.Lex();
2133    if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2134        ParseGlobalTypeAndValue(SrcVal) ||
2135        ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2136        ParseType(DestTy) ||
2137        ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2138      return true;
2139    if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2140      return Error(ID.Loc, "invalid cast opcode for cast from '" +
2141                   SrcVal->getType()->getDescription() + "' to '" +
2142                   DestTy->getDescription() + "'");
2143    ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2144                                                 SrcVal, DestTy);
2145    ID.Kind = ValID::t_Constant;
2146    return false;
2147  }
2148  case lltok::kw_extractvalue: {
2149    Lex.Lex();
2150    Constant *Val;
2151    SmallVector<unsigned, 4> Indices;
2152    if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2153        ParseGlobalTypeAndValue(Val) ||
2154        ParseIndexList(Indices) ||
2155        ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2156      return true;
2157    if (Lex.getKind() == lltok::NamedOrCustomMD)
2158      if (ParseOptionalCustomMetadata()) return true;
2159
2160    if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
2161      return Error(ID.Loc, "extractvalue operand must be array or struct");
2162    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
2163                                          Indices.end()))
2164      return Error(ID.Loc, "invalid indices for extractvalue");
2165    ID.ConstantVal =
2166      ConstantExpr::getExtractValue(Val, Indices.data(), Indices.size());
2167    ID.Kind = ValID::t_Constant;
2168    return false;
2169  }
2170  case lltok::kw_insertvalue: {
2171    Lex.Lex();
2172    Constant *Val0, *Val1;
2173    SmallVector<unsigned, 4> Indices;
2174    if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2175        ParseGlobalTypeAndValue(Val0) ||
2176        ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2177        ParseGlobalTypeAndValue(Val1) ||
2178        ParseIndexList(Indices) ||
2179        ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2180      return true;
2181    if (Lex.getKind() == lltok::NamedOrCustomMD)
2182      if (ParseOptionalCustomMetadata()) return true;
2183    if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
2184      return Error(ID.Loc, "extractvalue operand must be array or struct");
2185    if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
2186                                          Indices.end()))
2187      return Error(ID.Loc, "invalid indices for insertvalue");
2188    ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1,
2189                       Indices.data(), Indices.size());
2190    ID.Kind = ValID::t_Constant;
2191    return false;
2192  }
2193  case lltok::kw_icmp:
2194  case lltok::kw_fcmp: {
2195    unsigned PredVal, Opc = Lex.getUIntVal();
2196    Constant *Val0, *Val1;
2197    Lex.Lex();
2198    if (ParseCmpPredicate(PredVal, Opc) ||
2199        ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2200        ParseGlobalTypeAndValue(Val0) ||
2201        ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2202        ParseGlobalTypeAndValue(Val1) ||
2203        ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2204      return true;
2205
2206    if (Val0->getType() != Val1->getType())
2207      return Error(ID.Loc, "compare operands must have the same type");
2208
2209    CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2210
2211    if (Opc == Instruction::FCmp) {
2212      if (!Val0->getType()->isFPOrFPVector())
2213        return Error(ID.Loc, "fcmp requires floating point operands");
2214      ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2215    } else {
2216      assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2217      if (!Val0->getType()->isIntOrIntVector() &&
2218          !isa<PointerType>(Val0->getType()))
2219        return Error(ID.Loc, "icmp requires pointer or integer operands");
2220      ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2221    }
2222    ID.Kind = ValID::t_Constant;
2223    return false;
2224  }
2225
2226  // Binary Operators.
2227  case lltok::kw_add:
2228  case lltok::kw_fadd:
2229  case lltok::kw_sub:
2230  case lltok::kw_fsub:
2231  case lltok::kw_mul:
2232  case lltok::kw_fmul:
2233  case lltok::kw_udiv:
2234  case lltok::kw_sdiv:
2235  case lltok::kw_fdiv:
2236  case lltok::kw_urem:
2237  case lltok::kw_srem:
2238  case lltok::kw_frem: {
2239    bool NUW = false;
2240    bool NSW = false;
2241    bool Exact = false;
2242    unsigned Opc = Lex.getUIntVal();
2243    Constant *Val0, *Val1;
2244    Lex.Lex();
2245    LocTy ModifierLoc = Lex.getLoc();
2246    if (Opc == Instruction::Add ||
2247        Opc == Instruction::Sub ||
2248        Opc == Instruction::Mul) {
2249      if (EatIfPresent(lltok::kw_nuw))
2250        NUW = true;
2251      if (EatIfPresent(lltok::kw_nsw)) {
2252        NSW = true;
2253        if (EatIfPresent(lltok::kw_nuw))
2254          NUW = true;
2255      }
2256    } else if (Opc == Instruction::SDiv) {
2257      if (EatIfPresent(lltok::kw_exact))
2258        Exact = true;
2259    }
2260    if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2261        ParseGlobalTypeAndValue(Val0) ||
2262        ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2263        ParseGlobalTypeAndValue(Val1) ||
2264        ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2265      return true;
2266    if (Val0->getType() != Val1->getType())
2267      return Error(ID.Loc, "operands of constexpr must have same type");
2268    if (!Val0->getType()->isIntOrIntVector()) {
2269      if (NUW)
2270        return Error(ModifierLoc, "nuw only applies to integer operations");
2271      if (NSW)
2272        return Error(ModifierLoc, "nsw only applies to integer operations");
2273    }
2274    // API compatibility: Accept either integer or floating-point types with
2275    // add, sub, and mul.
2276    if (!Val0->getType()->isIntOrIntVector() &&
2277        !Val0->getType()->isFPOrFPVector())
2278      return Error(ID.Loc,"constexpr requires integer, fp, or vector operands");
2279    unsigned Flags = 0;
2280    if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2281    if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
2282    if (Exact) Flags |= SDivOperator::IsExact;
2283    Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2284    ID.ConstantVal = C;
2285    ID.Kind = ValID::t_Constant;
2286    return false;
2287  }
2288
2289  // Logical Operations
2290  case lltok::kw_shl:
2291  case lltok::kw_lshr:
2292  case lltok::kw_ashr:
2293  case lltok::kw_and:
2294  case lltok::kw_or:
2295  case lltok::kw_xor: {
2296    unsigned Opc = Lex.getUIntVal();
2297    Constant *Val0, *Val1;
2298    Lex.Lex();
2299    if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2300        ParseGlobalTypeAndValue(Val0) ||
2301        ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2302        ParseGlobalTypeAndValue(Val1) ||
2303        ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2304      return true;
2305    if (Val0->getType() != Val1->getType())
2306      return Error(ID.Loc, "operands of constexpr must have same type");
2307    if (!Val0->getType()->isIntOrIntVector())
2308      return Error(ID.Loc,
2309                   "constexpr requires integer or integer vector operands");
2310    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2311    ID.Kind = ValID::t_Constant;
2312    return false;
2313  }
2314
2315  case lltok::kw_getelementptr:
2316  case lltok::kw_shufflevector:
2317  case lltok::kw_insertelement:
2318  case lltok::kw_extractelement:
2319  case lltok::kw_select: {
2320    unsigned Opc = Lex.getUIntVal();
2321    SmallVector<Constant*, 16> Elts;
2322    bool InBounds = false;
2323    Lex.Lex();
2324    if (Opc == Instruction::GetElementPtr)
2325      InBounds = EatIfPresent(lltok::kw_inbounds);
2326    if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2327        ParseGlobalValueVector(Elts) ||
2328        ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2329      return true;
2330
2331    if (Opc == Instruction::GetElementPtr) {
2332      if (Elts.size() == 0 || !isa<PointerType>(Elts[0]->getType()))
2333        return Error(ID.Loc, "getelementptr requires pointer operand");
2334
2335      if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
2336                                             (Value**)(Elts.data() + 1),
2337                                             Elts.size() - 1))
2338        return Error(ID.Loc, "invalid indices for getelementptr");
2339      ID.ConstantVal = InBounds ?
2340        ConstantExpr::getInBoundsGetElementPtr(Elts[0],
2341                                               Elts.data() + 1,
2342                                               Elts.size() - 1) :
2343        ConstantExpr::getGetElementPtr(Elts[0],
2344                                       Elts.data() + 1, Elts.size() - 1);
2345    } else if (Opc == Instruction::Select) {
2346      if (Elts.size() != 3)
2347        return Error(ID.Loc, "expected three operands to select");
2348      if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2349                                                              Elts[2]))
2350        return Error(ID.Loc, Reason);
2351      ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2352    } else if (Opc == Instruction::ShuffleVector) {
2353      if (Elts.size() != 3)
2354        return Error(ID.Loc, "expected three operands to shufflevector");
2355      if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2356        return Error(ID.Loc, "invalid operands to shufflevector");
2357      ID.ConstantVal =
2358                 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2359    } else if (Opc == Instruction::ExtractElement) {
2360      if (Elts.size() != 2)
2361        return Error(ID.Loc, "expected two operands to extractelement");
2362      if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2363        return Error(ID.Loc, "invalid extractelement operands");
2364      ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2365    } else {
2366      assert(Opc == Instruction::InsertElement && "Unknown opcode");
2367      if (Elts.size() != 3)
2368      return Error(ID.Loc, "expected three operands to insertelement");
2369      if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2370        return Error(ID.Loc, "invalid insertelement operands");
2371      ID.ConstantVal =
2372                 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2373    }
2374
2375    ID.Kind = ValID::t_Constant;
2376    return false;
2377  }
2378  }
2379
2380  Lex.Lex();
2381  return false;
2382}
2383
2384/// ParseGlobalValue - Parse a global value with the specified type.
2385bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&V) {
2386  V = 0;
2387  ValID ID;
2388  return ParseValID(ID) ||
2389         ConvertGlobalValIDToValue(Ty, ID, V);
2390}
2391
2392/// ConvertGlobalValIDToValue - Apply a type to a ValID to get a fully resolved
2393/// constant.
2394bool LLParser::ConvertGlobalValIDToValue(const Type *Ty, ValID &ID,
2395                                         Constant *&V) {
2396  if (isa<FunctionType>(Ty))
2397    return Error(ID.Loc, "functions are not values, refer to them as pointers");
2398
2399  switch (ID.Kind) {
2400  default: llvm_unreachable("Unknown ValID!");
2401  case ValID::t_Metadata:
2402    return Error(ID.Loc, "invalid use of metadata");
2403  case ValID::t_LocalID:
2404  case ValID::t_LocalName:
2405    return Error(ID.Loc, "invalid use of function-local name");
2406  case ValID::t_InlineAsm:
2407    return Error(ID.Loc, "inline asm can only be an operand of call/invoke");
2408  case ValID::t_GlobalName:
2409    V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2410    return V == 0;
2411  case ValID::t_GlobalID:
2412    V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2413    return V == 0;
2414  case ValID::t_APSInt:
2415    if (!isa<IntegerType>(Ty))
2416      return Error(ID.Loc, "integer constant must have integer type");
2417    ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2418    V = ConstantInt::get(Context, ID.APSIntVal);
2419    return false;
2420  case ValID::t_APFloat:
2421    if (!Ty->isFloatingPoint() ||
2422        !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2423      return Error(ID.Loc, "floating point constant invalid for type");
2424
2425    // The lexer has no type info, so builds all float and double FP constants
2426    // as double.  Fix this here.  Long double does not need this.
2427    if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
2428        Ty->isFloatTy()) {
2429      bool Ignored;
2430      ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2431                            &Ignored);
2432    }
2433    V = ConstantFP::get(Context, ID.APFloatVal);
2434
2435    if (V->getType() != Ty)
2436      return Error(ID.Loc, "floating point constant does not have type '" +
2437                   Ty->getDescription() + "'");
2438
2439    return false;
2440  case ValID::t_Null:
2441    if (!isa<PointerType>(Ty))
2442      return Error(ID.Loc, "null must be a pointer type");
2443    V = ConstantPointerNull::get(cast<PointerType>(Ty));
2444    return false;
2445  case ValID::t_Undef:
2446    // FIXME: LabelTy should not be a first-class type.
2447    if ((!Ty->isFirstClassType() || Ty->isLabelTy()) &&
2448        !isa<OpaqueType>(Ty))
2449      return Error(ID.Loc, "invalid type for undef constant");
2450    V = UndefValue::get(Ty);
2451    return false;
2452  case ValID::t_EmptyArray:
2453    if (!isa<ArrayType>(Ty) || cast<ArrayType>(Ty)->getNumElements() != 0)
2454      return Error(ID.Loc, "invalid empty array initializer");
2455    V = UndefValue::get(Ty);
2456    return false;
2457  case ValID::t_Zero:
2458    // FIXME: LabelTy should not be a first-class type.
2459    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2460      return Error(ID.Loc, "invalid type for null constant");
2461    V = Constant::getNullValue(Ty);
2462    return false;
2463  case ValID::t_Constant:
2464    if (ID.ConstantVal->getType() != Ty)
2465      return Error(ID.Loc, "constant expression type mismatch");
2466    V = ID.ConstantVal;
2467    return false;
2468  }
2469}
2470
2471bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2472  PATypeHolder Type(Type::getVoidTy(Context));
2473  return ParseType(Type) ||
2474         ParseGlobalValue(Type, V);
2475}
2476
2477/// ParseGlobalValueVector
2478///   ::= /*empty*/
2479///   ::= TypeAndValue (',' TypeAndValue)*
2480bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2481  // Empty list.
2482  if (Lex.getKind() == lltok::rbrace ||
2483      Lex.getKind() == lltok::rsquare ||
2484      Lex.getKind() == lltok::greater ||
2485      Lex.getKind() == lltok::rparen)
2486    return false;
2487
2488  Constant *C;
2489  if (ParseGlobalTypeAndValue(C)) return true;
2490  Elts.push_back(C);
2491
2492  while (EatIfPresent(lltok::comma)) {
2493    if (ParseGlobalTypeAndValue(C)) return true;
2494    Elts.push_back(C);
2495  }
2496
2497  return false;
2498}
2499
2500
2501//===----------------------------------------------------------------------===//
2502// Function Parsing.
2503//===----------------------------------------------------------------------===//
2504
2505bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
2506                                   PerFunctionState &PFS) {
2507  if (ID.Kind == ValID::t_LocalID)
2508    V = PFS.GetVal(ID.UIntVal, Ty, ID.Loc);
2509  else if (ID.Kind == ValID::t_LocalName)
2510    V = PFS.GetVal(ID.StrVal, Ty, ID.Loc);
2511  else if (ID.Kind == ValID::t_InlineAsm) {
2512    const PointerType *PTy = dyn_cast<PointerType>(Ty);
2513    const FunctionType *FTy =
2514      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2515    if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2516      return Error(ID.Loc, "invalid type for inline asm constraint string");
2517    V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, ID.UIntVal>>1);
2518    return false;
2519  } else if (ID.Kind == ValID::t_Metadata) {
2520    V = ID.MetadataVal;
2521  } else {
2522    Constant *C;
2523    if (ConvertGlobalValIDToValue(Ty, ID, C)) return true;
2524    V = C;
2525    return false;
2526  }
2527
2528  return V == 0;
2529}
2530
2531bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
2532  V = 0;
2533  ValID ID;
2534  return ParseValID(ID) ||
2535         ConvertValIDToValue(Ty, ID, V, PFS);
2536}
2537
2538bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
2539  PATypeHolder T(Type::getVoidTy(Context));
2540  return ParseType(T) ||
2541         ParseValue(T, V, PFS);
2542}
2543
2544bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
2545                                      PerFunctionState &PFS) {
2546  Value *V;
2547  Loc = Lex.getLoc();
2548  if (ParseTypeAndValue(V, PFS)) return true;
2549  if (!isa<BasicBlock>(V))
2550    return Error(Loc, "expected a basic block");
2551  BB = cast<BasicBlock>(V);
2552  return false;
2553}
2554
2555
2556/// FunctionHeader
2557///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2558///       Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2559///       OptionalAlign OptGC
2560bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2561  // Parse the linkage.
2562  LocTy LinkageLoc = Lex.getLoc();
2563  unsigned Linkage;
2564
2565  unsigned Visibility, RetAttrs;
2566  CallingConv::ID CC;
2567  PATypeHolder RetType(Type::getVoidTy(Context));
2568  LocTy RetTypeLoc = Lex.getLoc();
2569  if (ParseOptionalLinkage(Linkage) ||
2570      ParseOptionalVisibility(Visibility) ||
2571      ParseOptionalCallingConv(CC) ||
2572      ParseOptionalAttrs(RetAttrs, 1) ||
2573      ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2574    return true;
2575
2576  // Verify that the linkage is ok.
2577  switch ((GlobalValue::LinkageTypes)Linkage) {
2578  case GlobalValue::ExternalLinkage:
2579    break; // always ok.
2580  case GlobalValue::DLLImportLinkage:
2581  case GlobalValue::ExternalWeakLinkage:
2582    if (isDefine)
2583      return Error(LinkageLoc, "invalid linkage for function definition");
2584    break;
2585  case GlobalValue::PrivateLinkage:
2586  case GlobalValue::LinkerPrivateLinkage:
2587  case GlobalValue::InternalLinkage:
2588  case GlobalValue::AvailableExternallyLinkage:
2589  case GlobalValue::LinkOnceAnyLinkage:
2590  case GlobalValue::LinkOnceODRLinkage:
2591  case GlobalValue::WeakAnyLinkage:
2592  case GlobalValue::WeakODRLinkage:
2593  case GlobalValue::DLLExportLinkage:
2594    if (!isDefine)
2595      return Error(LinkageLoc, "invalid linkage for function declaration");
2596    break;
2597  case GlobalValue::AppendingLinkage:
2598  case GlobalValue::GhostLinkage:
2599  case GlobalValue::CommonLinkage:
2600    return Error(LinkageLoc, "invalid function linkage type");
2601  }
2602
2603  if (!FunctionType::isValidReturnType(RetType) ||
2604      isa<OpaqueType>(RetType))
2605    return Error(RetTypeLoc, "invalid function return type");
2606
2607  LocTy NameLoc = Lex.getLoc();
2608
2609  std::string FunctionName;
2610  if (Lex.getKind() == lltok::GlobalVar) {
2611    FunctionName = Lex.getStrVal();
2612  } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
2613    unsigned NameID = Lex.getUIntVal();
2614
2615    if (NameID != NumberedVals.size())
2616      return TokError("function expected to be numbered '%" +
2617                      utostr(NumberedVals.size()) + "'");
2618  } else {
2619    return TokError("expected function name");
2620  }
2621
2622  Lex.Lex();
2623
2624  if (Lex.getKind() != lltok::lparen)
2625    return TokError("expected '(' in function argument list");
2626
2627  std::vector<ArgInfo> ArgList;
2628  bool isVarArg;
2629  unsigned FuncAttrs;
2630  std::string Section;
2631  unsigned Alignment;
2632  std::string GC;
2633
2634  if (ParseArgumentList(ArgList, isVarArg, false) ||
2635      ParseOptionalAttrs(FuncAttrs, 2) ||
2636      (EatIfPresent(lltok::kw_section) &&
2637       ParseStringConstant(Section)) ||
2638      ParseOptionalAlignment(Alignment) ||
2639      (EatIfPresent(lltok::kw_gc) &&
2640       ParseStringConstant(GC)))
2641    return true;
2642
2643  // If the alignment was parsed as an attribute, move to the alignment field.
2644  if (FuncAttrs & Attribute::Alignment) {
2645    Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2646    FuncAttrs &= ~Attribute::Alignment;
2647  }
2648
2649  // Okay, if we got here, the function is syntactically valid.  Convert types
2650  // and do semantic checks.
2651  std::vector<const Type*> ParamTypeList;
2652  SmallVector<AttributeWithIndex, 8> Attrs;
2653  // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2654  // attributes.
2655  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2656  if (FuncAttrs & ObsoleteFuncAttrs) {
2657    RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
2658    FuncAttrs &= ~ObsoleteFuncAttrs;
2659  }
2660
2661  if (RetAttrs != Attribute::None)
2662    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2663
2664  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2665    ParamTypeList.push_back(ArgList[i].Type);
2666    if (ArgList[i].Attrs != Attribute::None)
2667      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2668  }
2669
2670  if (FuncAttrs != Attribute::None)
2671    Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2672
2673  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2674
2675  if (PAL.paramHasAttr(1, Attribute::StructRet) &&
2676      RetType != Type::getVoidTy(Context))
2677    return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2678
2679  const FunctionType *FT =
2680    FunctionType::get(RetType, ParamTypeList, isVarArg);
2681  const PointerType *PFT = PointerType::getUnqual(FT);
2682
2683  Fn = 0;
2684  if (!FunctionName.empty()) {
2685    // If this was a definition of a forward reference, remove the definition
2686    // from the forward reference table and fill in the forward ref.
2687    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2688      ForwardRefVals.find(FunctionName);
2689    if (FRVI != ForwardRefVals.end()) {
2690      Fn = M->getFunction(FunctionName);
2691      ForwardRefVals.erase(FRVI);
2692    } else if ((Fn = M->getFunction(FunctionName))) {
2693      // If this function already exists in the symbol table, then it is
2694      // multiply defined.  We accept a few cases for old backwards compat.
2695      // FIXME: Remove this stuff for LLVM 3.0.
2696      if (Fn->getType() != PFT || Fn->getAttributes() != PAL ||
2697          (!Fn->isDeclaration() && isDefine)) {
2698        // If the redefinition has different type or different attributes,
2699        // reject it.  If both have bodies, reject it.
2700        return Error(NameLoc, "invalid redefinition of function '" +
2701                     FunctionName + "'");
2702      } else if (Fn->isDeclaration()) {
2703        // Make sure to strip off any argument names so we can't get conflicts.
2704        for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2705             AI != AE; ++AI)
2706          AI->setName("");
2707      }
2708    } else if (M->getNamedValue(FunctionName)) {
2709      return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
2710    }
2711
2712  } else {
2713    // If this is a definition of a forward referenced function, make sure the
2714    // types agree.
2715    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2716      = ForwardRefValIDs.find(NumberedVals.size());
2717    if (I != ForwardRefValIDs.end()) {
2718      Fn = cast<Function>(I->second.first);
2719      if (Fn->getType() != PFT)
2720        return Error(NameLoc, "type of definition and forward reference of '@" +
2721                     utostr(NumberedVals.size()) +"' disagree");
2722      ForwardRefValIDs.erase(I);
2723    }
2724  }
2725
2726  if (Fn == 0)
2727    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2728  else // Move the forward-reference to the correct spot in the module.
2729    M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2730
2731  if (FunctionName.empty())
2732    NumberedVals.push_back(Fn);
2733
2734  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2735  Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2736  Fn->setCallingConv(CC);
2737  Fn->setAttributes(PAL);
2738  Fn->setAlignment(Alignment);
2739  Fn->setSection(Section);
2740  if (!GC.empty()) Fn->setGC(GC.c_str());
2741
2742  // Add all of the arguments we parsed to the function.
2743  Function::arg_iterator ArgIt = Fn->arg_begin();
2744  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2745    // If we run out of arguments in the Function prototype, exit early.
2746    // FIXME: REMOVE THIS IN LLVM 3.0, this is just for the mismatch case above.
2747    if (ArgIt == Fn->arg_end()) break;
2748
2749    // If the argument has a name, insert it into the argument symbol table.
2750    if (ArgList[i].Name.empty()) continue;
2751
2752    // Set the name, if it conflicted, it will be auto-renamed.
2753    ArgIt->setName(ArgList[i].Name);
2754
2755    if (ArgIt->getNameStr() != ArgList[i].Name)
2756      return Error(ArgList[i].Loc, "redefinition of argument '%" +
2757                   ArgList[i].Name + "'");
2758  }
2759
2760  return false;
2761}
2762
2763
2764/// ParseFunctionBody
2765///   ::= '{' BasicBlock+ '}'
2766///   ::= 'begin' BasicBlock+ 'end'  // FIXME: remove in LLVM 3.0
2767///
2768bool LLParser::ParseFunctionBody(Function &Fn) {
2769  if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
2770    return TokError("expected '{' in function body");
2771  Lex.Lex();  // eat the {.
2772
2773  int FunctionNumber = -1;
2774  if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
2775
2776  PerFunctionState PFS(*this, Fn, FunctionNumber);
2777
2778  while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
2779    if (ParseBasicBlock(PFS)) return true;
2780
2781  // Eat the }.
2782  Lex.Lex();
2783
2784  // Verify function is ok.
2785  return PFS.FinishFunction();
2786}
2787
2788/// ParseBasicBlock
2789///   ::= LabelStr? Instruction*
2790bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2791  // If this basic block starts out with a name, remember it.
2792  std::string Name;
2793  LocTy NameLoc = Lex.getLoc();
2794  if (Lex.getKind() == lltok::LabelStr) {
2795    Name = Lex.getStrVal();
2796    Lex.Lex();
2797  }
2798
2799  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2800  if (BB == 0) return true;
2801
2802  std::string NameStr;
2803
2804  // Parse the instructions in this block until we get a terminator.
2805  Instruction *Inst;
2806  do {
2807    // This instruction may have three possibilities for a name: a) none
2808    // specified, b) name specified "%foo =", c) number specified: "%4 =".
2809    LocTy NameLoc = Lex.getLoc();
2810    int NameID = -1;
2811    NameStr = "";
2812
2813    if (Lex.getKind() == lltok::LocalVarID) {
2814      NameID = Lex.getUIntVal();
2815      Lex.Lex();
2816      if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2817        return true;
2818    } else if (Lex.getKind() == lltok::LocalVar ||
2819               // FIXME: REMOVE IN LLVM 3.0
2820               Lex.getKind() == lltok::StringConstant) {
2821      NameStr = Lex.getStrVal();
2822      Lex.Lex();
2823      if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2824        return true;
2825    }
2826
2827    if (ParseInstruction(Inst, BB, PFS)) return true;
2828    if (EatIfPresent(lltok::comma))
2829      ParseOptionalCustomMetadata();
2830
2831    // Set metadata attached with this instruction.
2832    MetadataContext &TheMetadata = M->getContext().getMetadata();
2833    for (SmallVector<std::pair<unsigned, MDNode *>, 2>::iterator
2834           MDI = MDsOnInst.begin(), MDE = MDsOnInst.end(); MDI != MDE; ++MDI)
2835      TheMetadata.addMD(MDI->first, MDI->second, Inst);
2836    MDsOnInst.clear();
2837
2838    BB->getInstList().push_back(Inst);
2839
2840    // Set the name on the instruction.
2841    if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2842  } while (!isa<TerminatorInst>(Inst));
2843
2844  return false;
2845}
2846
2847//===----------------------------------------------------------------------===//
2848// Instruction Parsing.
2849//===----------------------------------------------------------------------===//
2850
2851/// ParseInstruction - Parse one of the many different instructions.
2852///
2853bool LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2854                                PerFunctionState &PFS) {
2855  lltok::Kind Token = Lex.getKind();
2856  if (Token == lltok::Eof)
2857    return TokError("found end of file when expecting more instructions");
2858  LocTy Loc = Lex.getLoc();
2859  unsigned KeywordVal = Lex.getUIntVal();
2860  Lex.Lex();  // Eat the keyword.
2861
2862  switch (Token) {
2863  default:                    return Error(Loc, "expected instruction opcode");
2864  // Terminator Instructions.
2865  case lltok::kw_unwind:      Inst = new UnwindInst(Context); return false;
2866  case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
2867  case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
2868  case lltok::kw_br:          return ParseBr(Inst, PFS);
2869  case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
2870  case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
2871  case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
2872  // Binary Operators.
2873  case lltok::kw_add:
2874  case lltok::kw_sub:
2875  case lltok::kw_mul: {
2876    bool NUW = false;
2877    bool NSW = false;
2878    LocTy ModifierLoc = Lex.getLoc();
2879    if (EatIfPresent(lltok::kw_nuw))
2880      NUW = true;
2881    if (EatIfPresent(lltok::kw_nsw)) {
2882      NSW = true;
2883      if (EatIfPresent(lltok::kw_nuw))
2884        NUW = true;
2885    }
2886    // API compatibility: Accept either integer or floating-point types.
2887    bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 0);
2888    if (!Result) {
2889      if (!Inst->getType()->isIntOrIntVector()) {
2890        if (NUW)
2891          return Error(ModifierLoc, "nuw only applies to integer operations");
2892        if (NSW)
2893          return Error(ModifierLoc, "nsw only applies to integer operations");
2894      }
2895      if (NUW)
2896        cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
2897      if (NSW)
2898        cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
2899    }
2900    return Result;
2901  }
2902  case lltok::kw_fadd:
2903  case lltok::kw_fsub:
2904  case lltok::kw_fmul:    return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2905
2906  case lltok::kw_sdiv: {
2907    bool Exact = false;
2908    if (EatIfPresent(lltok::kw_exact))
2909      Exact = true;
2910    bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 1);
2911    if (!Result)
2912      if (Exact)
2913        cast<BinaryOperator>(Inst)->setIsExact(true);
2914    return Result;
2915  }
2916
2917  case lltok::kw_udiv:
2918  case lltok::kw_urem:
2919  case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
2920  case lltok::kw_fdiv:
2921  case lltok::kw_frem:   return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2922  case lltok::kw_shl:
2923  case lltok::kw_lshr:
2924  case lltok::kw_ashr:
2925  case lltok::kw_and:
2926  case lltok::kw_or:
2927  case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
2928  case lltok::kw_icmp:
2929  case lltok::kw_fcmp:   return ParseCompare(Inst, PFS, KeywordVal);
2930  // Casts.
2931  case lltok::kw_trunc:
2932  case lltok::kw_zext:
2933  case lltok::kw_sext:
2934  case lltok::kw_fptrunc:
2935  case lltok::kw_fpext:
2936  case lltok::kw_bitcast:
2937  case lltok::kw_uitofp:
2938  case lltok::kw_sitofp:
2939  case lltok::kw_fptoui:
2940  case lltok::kw_fptosi:
2941  case lltok::kw_inttoptr:
2942  case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
2943  // Other.
2944  case lltok::kw_select:         return ParseSelect(Inst, PFS);
2945  case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
2946  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
2947  case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
2948  case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
2949  case lltok::kw_phi:            return ParsePHI(Inst, PFS);
2950  case lltok::kw_call:           return ParseCall(Inst, PFS, false);
2951  case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
2952  // Memory.
2953  case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
2954  case lltok::kw_malloc:         return ParseAlloc(Inst, PFS, BB, false);
2955  case lltok::kw_free:           return ParseFree(Inst, PFS, BB);
2956  case lltok::kw_load:           return ParseLoad(Inst, PFS, false);
2957  case lltok::kw_store:          return ParseStore(Inst, PFS, false);
2958  case lltok::kw_volatile:
2959    if (EatIfPresent(lltok::kw_load))
2960      return ParseLoad(Inst, PFS, true);
2961    else if (EatIfPresent(lltok::kw_store))
2962      return ParseStore(Inst, PFS, true);
2963    else
2964      return TokError("expected 'load' or 'store'");
2965  case lltok::kw_getresult:     return ParseGetResult(Inst, PFS);
2966  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
2967  case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
2968  case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
2969  }
2970}
2971
2972/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
2973bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
2974  if (Opc == Instruction::FCmp) {
2975    switch (Lex.getKind()) {
2976    default: TokError("expected fcmp predicate (e.g. 'oeq')");
2977    case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
2978    case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
2979    case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
2980    case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
2981    case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
2982    case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
2983    case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
2984    case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
2985    case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
2986    case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
2987    case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
2988    case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
2989    case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
2990    case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
2991    case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
2992    case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
2993    }
2994  } else {
2995    switch (Lex.getKind()) {
2996    default: TokError("expected icmp predicate (e.g. 'eq')");
2997    case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
2998    case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
2999    case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
3000    case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
3001    case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
3002    case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
3003    case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
3004    case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
3005    case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
3006    case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
3007    }
3008  }
3009  Lex.Lex();
3010  return false;
3011}
3012
3013//===----------------------------------------------------------------------===//
3014// Terminator Instructions.
3015//===----------------------------------------------------------------------===//
3016
3017/// ParseRet - Parse a return instruction.
3018///   ::= 'ret' void (',' !dbg, !1)
3019///   ::= 'ret' TypeAndValue (',' !dbg, !1)
3020///   ::= 'ret' TypeAndValue (',' TypeAndValue)+  (',' !dbg, !1)
3021///         [[obsolete: LLVM 3.0]]
3022bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
3023                        PerFunctionState &PFS) {
3024  PATypeHolder Ty(Type::getVoidTy(Context));
3025  if (ParseType(Ty, true /*void allowed*/)) return true;
3026
3027  if (Ty->isVoidTy()) {
3028    Inst = ReturnInst::Create(Context);
3029    return false;
3030  }
3031
3032  Value *RV;
3033  if (ParseValue(Ty, RV, PFS)) return true;
3034
3035  if (EatIfPresent(lltok::comma)) {
3036    // Parse optional custom metadata, e.g. !dbg
3037    if (Lex.getKind() == lltok::NamedOrCustomMD) {
3038      if (ParseOptionalCustomMetadata()) return true;
3039    } else {
3040      // The normal case is one return value.
3041      // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring use
3042      // of 'ret {i32,i32} {i32 1, i32 2}'
3043      SmallVector<Value*, 8> RVs;
3044      RVs.push_back(RV);
3045
3046      do {
3047        // If optional custom metadata, e.g. !dbg is seen then this is the
3048        // end of MRV.
3049        if (Lex.getKind() == lltok::NamedOrCustomMD)
3050          break;
3051        if (ParseTypeAndValue(RV, PFS)) return true;
3052        RVs.push_back(RV);
3053      } while (EatIfPresent(lltok::comma));
3054
3055      RV = UndefValue::get(PFS.getFunction().getReturnType());
3056      for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
3057        Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
3058        BB->getInstList().push_back(I);
3059        RV = I;
3060      }
3061    }
3062  }
3063
3064  Inst = ReturnInst::Create(Context, RV);
3065  return false;
3066}
3067
3068
3069/// ParseBr
3070///   ::= 'br' TypeAndValue
3071///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3072bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
3073  LocTy Loc, Loc2;
3074  Value *Op0;
3075  BasicBlock *Op1, *Op2;
3076  if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
3077
3078  if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
3079    Inst = BranchInst::Create(BB);
3080    return false;
3081  }
3082
3083  if (Op0->getType() != Type::getInt1Ty(Context))
3084    return Error(Loc, "branch condition must have 'i1' type");
3085
3086  if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
3087      ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
3088      ParseToken(lltok::comma, "expected ',' after true destination") ||
3089      ParseTypeAndBasicBlock(Op2, Loc2, PFS))
3090    return true;
3091
3092  Inst = BranchInst::Create(Op1, Op2, Op0);
3093  return false;
3094}
3095
3096/// ParseSwitch
3097///  Instruction
3098///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
3099///  JumpTable
3100///    ::= (TypeAndValue ',' TypeAndValue)*
3101bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
3102  LocTy CondLoc, BBLoc;
3103  Value *Cond;
3104  BasicBlock *DefaultBB;
3105  if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
3106      ParseToken(lltok::comma, "expected ',' after switch condition") ||
3107      ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
3108      ParseToken(lltok::lsquare, "expected '[' with switch table"))
3109    return true;
3110
3111  if (!isa<IntegerType>(Cond->getType()))
3112    return Error(CondLoc, "switch condition must have integer type");
3113
3114  // Parse the jump table pairs.
3115  SmallPtrSet<Value*, 32> SeenCases;
3116  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
3117  while (Lex.getKind() != lltok::rsquare) {
3118    Value *Constant;
3119    BasicBlock *DestBB;
3120
3121    if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
3122        ParseToken(lltok::comma, "expected ',' after case value") ||
3123        ParseTypeAndBasicBlock(DestBB, PFS))
3124      return true;
3125
3126    if (!SeenCases.insert(Constant))
3127      return Error(CondLoc, "duplicate case value in switch");
3128    if (!isa<ConstantInt>(Constant))
3129      return Error(CondLoc, "case value is not a constant integer");
3130
3131    Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
3132  }
3133
3134  Lex.Lex();  // Eat the ']'.
3135
3136  SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
3137  for (unsigned i = 0, e = Table.size(); i != e; ++i)
3138    SI->addCase(Table[i].first, Table[i].second);
3139  Inst = SI;
3140  return false;
3141}
3142
3143/// ParseIndirectBr
3144///  Instruction
3145///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
3146bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
3147  LocTy AddrLoc;
3148  Value *Address;
3149  if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
3150      ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
3151      ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
3152    return true;
3153
3154  if (!isa<PointerType>(Address->getType()))
3155    return Error(AddrLoc, "indirectbr address must have pointer type");
3156
3157  // Parse the destination list.
3158  SmallVector<BasicBlock*, 16> DestList;
3159
3160  if (Lex.getKind() != lltok::rsquare) {
3161    BasicBlock *DestBB;
3162    if (ParseTypeAndBasicBlock(DestBB, PFS))
3163      return true;
3164    DestList.push_back(DestBB);
3165
3166    while (EatIfPresent(lltok::comma)) {
3167      if (ParseTypeAndBasicBlock(DestBB, PFS))
3168        return true;
3169      DestList.push_back(DestBB);
3170    }
3171  }
3172
3173  if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
3174    return true;
3175
3176  IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
3177  for (unsigned i = 0, e = DestList.size(); i != e; ++i)
3178    IBI->addDestination(DestList[i]);
3179  Inst = IBI;
3180  return false;
3181}
3182
3183
3184/// ParseInvoke
3185///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
3186///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
3187bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
3188  LocTy CallLoc = Lex.getLoc();
3189  unsigned RetAttrs, FnAttrs;
3190  CallingConv::ID CC;
3191  PATypeHolder RetType(Type::getVoidTy(Context));
3192  LocTy RetTypeLoc;
3193  ValID CalleeID;
3194  SmallVector<ParamInfo, 16> ArgList;
3195
3196  BasicBlock *NormalBB, *UnwindBB;
3197  if (ParseOptionalCallingConv(CC) ||
3198      ParseOptionalAttrs(RetAttrs, 1) ||
3199      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3200      ParseValID(CalleeID) ||
3201      ParseParameterList(ArgList, PFS) ||
3202      ParseOptionalAttrs(FnAttrs, 2) ||
3203      ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
3204      ParseTypeAndBasicBlock(NormalBB, PFS) ||
3205      ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
3206      ParseTypeAndBasicBlock(UnwindBB, PFS))
3207    return true;
3208
3209  // If RetType is a non-function pointer type, then this is the short syntax
3210  // for the call, which means that RetType is just the return type.  Infer the
3211  // rest of the function argument types from the arguments that are present.
3212  const PointerType *PFTy = 0;
3213  const FunctionType *Ty = 0;
3214  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3215      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3216    // Pull out the types of all of the arguments...
3217    std::vector<const Type*> ParamTypes;
3218    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3219      ParamTypes.push_back(ArgList[i].V->getType());
3220
3221    if (!FunctionType::isValidReturnType(RetType))
3222      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3223
3224    Ty = FunctionType::get(RetType, ParamTypes, false);
3225    PFTy = PointerType::getUnqual(Ty);
3226  }
3227
3228  // Look up the callee.
3229  Value *Callee;
3230  if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
3231
3232  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3233  // function attributes.
3234  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3235  if (FnAttrs & ObsoleteFuncAttrs) {
3236    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3237    FnAttrs &= ~ObsoleteFuncAttrs;
3238  }
3239
3240  // Set up the Attributes for the function.
3241  SmallVector<AttributeWithIndex, 8> Attrs;
3242  if (RetAttrs != Attribute::None)
3243    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3244
3245  SmallVector<Value*, 8> Args;
3246
3247  // Loop through FunctionType's arguments and ensure they are specified
3248  // correctly.  Also, gather any parameter attributes.
3249  FunctionType::param_iterator I = Ty->param_begin();
3250  FunctionType::param_iterator E = Ty->param_end();
3251  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3252    const Type *ExpectedTy = 0;
3253    if (I != E) {
3254      ExpectedTy = *I++;
3255    } else if (!Ty->isVarArg()) {
3256      return Error(ArgList[i].Loc, "too many arguments specified");
3257    }
3258
3259    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3260      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3261                   ExpectedTy->getDescription() + "'");
3262    Args.push_back(ArgList[i].V);
3263    if (ArgList[i].Attrs != Attribute::None)
3264      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3265  }
3266
3267  if (I != E)
3268    return Error(CallLoc, "not enough parameters specified for call");
3269
3270  if (FnAttrs != Attribute::None)
3271    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3272
3273  // Finish off the Attributes and check them
3274  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3275
3276  InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB,
3277                                      Args.begin(), Args.end());
3278  II->setCallingConv(CC);
3279  II->setAttributes(PAL);
3280  Inst = II;
3281  return false;
3282}
3283
3284
3285
3286//===----------------------------------------------------------------------===//
3287// Binary Operators.
3288//===----------------------------------------------------------------------===//
3289
3290/// ParseArithmetic
3291///  ::= ArithmeticOps TypeAndValue ',' Value
3292///
3293/// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
3294/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
3295bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
3296                               unsigned Opc, unsigned OperandType) {
3297  LocTy Loc; Value *LHS, *RHS;
3298  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3299      ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
3300      ParseValue(LHS->getType(), RHS, PFS))
3301    return true;
3302
3303  bool Valid;
3304  switch (OperandType) {
3305  default: llvm_unreachable("Unknown operand type!");
3306  case 0: // int or FP.
3307    Valid = LHS->getType()->isIntOrIntVector() ||
3308            LHS->getType()->isFPOrFPVector();
3309    break;
3310  case 1: Valid = LHS->getType()->isIntOrIntVector(); break;
3311  case 2: Valid = LHS->getType()->isFPOrFPVector(); break;
3312  }
3313
3314  if (!Valid)
3315    return Error(Loc, "invalid operand type for instruction");
3316
3317  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3318  return false;
3319}
3320
3321/// ParseLogical
3322///  ::= ArithmeticOps TypeAndValue ',' Value {
3323bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3324                            unsigned Opc) {
3325  LocTy Loc; Value *LHS, *RHS;
3326  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3327      ParseToken(lltok::comma, "expected ',' in logical operation") ||
3328      ParseValue(LHS->getType(), RHS, PFS))
3329    return true;
3330
3331  if (!LHS->getType()->isIntOrIntVector())
3332    return Error(Loc,"instruction requires integer or integer vector operands");
3333
3334  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3335  return false;
3336}
3337
3338
3339/// ParseCompare
3340///  ::= 'icmp' IPredicates TypeAndValue ',' Value
3341///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
3342bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3343                            unsigned Opc) {
3344  // Parse the integer/fp comparison predicate.
3345  LocTy Loc;
3346  unsigned Pred;
3347  Value *LHS, *RHS;
3348  if (ParseCmpPredicate(Pred, Opc) ||
3349      ParseTypeAndValue(LHS, Loc, PFS) ||
3350      ParseToken(lltok::comma, "expected ',' after compare value") ||
3351      ParseValue(LHS->getType(), RHS, PFS))
3352    return true;
3353
3354  if (Opc == Instruction::FCmp) {
3355    if (!LHS->getType()->isFPOrFPVector())
3356      return Error(Loc, "fcmp requires floating point operands");
3357    Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3358  } else {
3359    assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3360    if (!LHS->getType()->isIntOrIntVector() &&
3361        !isa<PointerType>(LHS->getType()))
3362      return Error(Loc, "icmp requires integer operands");
3363    Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3364  }
3365  return false;
3366}
3367
3368//===----------------------------------------------------------------------===//
3369// Other Instructions.
3370//===----------------------------------------------------------------------===//
3371
3372
3373/// ParseCast
3374///   ::= CastOpc TypeAndValue 'to' Type
3375bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3376                         unsigned Opc) {
3377  LocTy Loc;  Value *Op;
3378  PATypeHolder DestTy(Type::getVoidTy(Context));
3379  if (ParseTypeAndValue(Op, Loc, PFS) ||
3380      ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3381      ParseType(DestTy))
3382    return true;
3383
3384  if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3385    CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3386    return Error(Loc, "invalid cast opcode for cast from '" +
3387                 Op->getType()->getDescription() + "' to '" +
3388                 DestTy->getDescription() + "'");
3389  }
3390  Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3391  return false;
3392}
3393
3394/// ParseSelect
3395///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3396bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3397  LocTy Loc;
3398  Value *Op0, *Op1, *Op2;
3399  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3400      ParseToken(lltok::comma, "expected ',' after select condition") ||
3401      ParseTypeAndValue(Op1, PFS) ||
3402      ParseToken(lltok::comma, "expected ',' after select value") ||
3403      ParseTypeAndValue(Op2, PFS))
3404    return true;
3405
3406  if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3407    return Error(Loc, Reason);
3408
3409  Inst = SelectInst::Create(Op0, Op1, Op2);
3410  return false;
3411}
3412
3413/// ParseVA_Arg
3414///   ::= 'va_arg' TypeAndValue ',' Type
3415bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3416  Value *Op;
3417  PATypeHolder EltTy(Type::getVoidTy(Context));
3418  LocTy TypeLoc;
3419  if (ParseTypeAndValue(Op, PFS) ||
3420      ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3421      ParseType(EltTy, TypeLoc))
3422    return true;
3423
3424  if (!EltTy->isFirstClassType())
3425    return Error(TypeLoc, "va_arg requires operand with first class type");
3426
3427  Inst = new VAArgInst(Op, EltTy);
3428  return false;
3429}
3430
3431/// ParseExtractElement
3432///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
3433bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3434  LocTy Loc;
3435  Value *Op0, *Op1;
3436  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3437      ParseToken(lltok::comma, "expected ',' after extract value") ||
3438      ParseTypeAndValue(Op1, PFS))
3439    return true;
3440
3441  if (!ExtractElementInst::isValidOperands(Op0, Op1))
3442    return Error(Loc, "invalid extractelement operands");
3443
3444  Inst = ExtractElementInst::Create(Op0, Op1);
3445  return false;
3446}
3447
3448/// ParseInsertElement
3449///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3450bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3451  LocTy Loc;
3452  Value *Op0, *Op1, *Op2;
3453  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3454      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3455      ParseTypeAndValue(Op1, PFS) ||
3456      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3457      ParseTypeAndValue(Op2, PFS))
3458    return true;
3459
3460  if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3461    return Error(Loc, "invalid insertelement operands");
3462
3463  Inst = InsertElementInst::Create(Op0, Op1, Op2);
3464  return false;
3465}
3466
3467/// ParseShuffleVector
3468///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3469bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3470  LocTy Loc;
3471  Value *Op0, *Op1, *Op2;
3472  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3473      ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3474      ParseTypeAndValue(Op1, PFS) ||
3475      ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3476      ParseTypeAndValue(Op2, PFS))
3477    return true;
3478
3479  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3480    return Error(Loc, "invalid extractelement operands");
3481
3482  Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3483  return false;
3484}
3485
3486/// ParsePHI
3487///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
3488bool LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3489  PATypeHolder Ty(Type::getVoidTy(Context));
3490  Value *Op0, *Op1;
3491  LocTy TypeLoc = Lex.getLoc();
3492
3493  if (ParseType(Ty) ||
3494      ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3495      ParseValue(Ty, Op0, PFS) ||
3496      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3497      ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3498      ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3499    return true;
3500
3501  SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3502  while (1) {
3503    PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3504
3505    if (!EatIfPresent(lltok::comma))
3506      break;
3507
3508    if (Lex.getKind() == lltok::NamedOrCustomMD)
3509      break;
3510
3511    if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3512        ParseValue(Ty, Op0, PFS) ||
3513        ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3514        ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3515        ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3516      return true;
3517  }
3518
3519  if (Lex.getKind() == lltok::NamedOrCustomMD)
3520    if (ParseOptionalCustomMetadata()) return true;
3521
3522  if (!Ty->isFirstClassType())
3523    return Error(TypeLoc, "phi node must have first class type");
3524
3525  PHINode *PN = PHINode::Create(Ty);
3526  PN->reserveOperandSpace(PHIVals.size());
3527  for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3528    PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3529  Inst = PN;
3530  return false;
3531}
3532
3533/// ParseCall
3534///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3535///       ParameterList OptionalAttrs
3536bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3537                         bool isTail) {
3538  unsigned RetAttrs, FnAttrs;
3539  CallingConv::ID CC;
3540  PATypeHolder RetType(Type::getVoidTy(Context));
3541  LocTy RetTypeLoc;
3542  ValID CalleeID;
3543  SmallVector<ParamInfo, 16> ArgList;
3544  LocTy CallLoc = Lex.getLoc();
3545
3546  if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3547      ParseOptionalCallingConv(CC) ||
3548      ParseOptionalAttrs(RetAttrs, 1) ||
3549      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3550      ParseValID(CalleeID) ||
3551      ParseParameterList(ArgList, PFS) ||
3552      ParseOptionalAttrs(FnAttrs, 2))
3553    return true;
3554
3555  // If RetType is a non-function pointer type, then this is the short syntax
3556  // for the call, which means that RetType is just the return type.  Infer the
3557  // rest of the function argument types from the arguments that are present.
3558  const PointerType *PFTy = 0;
3559  const FunctionType *Ty = 0;
3560  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3561      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3562    // Pull out the types of all of the arguments...
3563    std::vector<const Type*> ParamTypes;
3564    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3565      ParamTypes.push_back(ArgList[i].V->getType());
3566
3567    if (!FunctionType::isValidReturnType(RetType))
3568      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3569
3570    Ty = FunctionType::get(RetType, ParamTypes, false);
3571    PFTy = PointerType::getUnqual(Ty);
3572  }
3573
3574  // Look up the callee.
3575  Value *Callee;
3576  if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
3577
3578  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3579  // function attributes.
3580  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3581  if (FnAttrs & ObsoleteFuncAttrs) {
3582    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3583    FnAttrs &= ~ObsoleteFuncAttrs;
3584  }
3585
3586  // Set up the Attributes for the function.
3587  SmallVector<AttributeWithIndex, 8> Attrs;
3588  if (RetAttrs != Attribute::None)
3589    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3590
3591  SmallVector<Value*, 8> Args;
3592
3593  // Loop through FunctionType's arguments and ensure they are specified
3594  // correctly.  Also, gather any parameter attributes.
3595  FunctionType::param_iterator I = Ty->param_begin();
3596  FunctionType::param_iterator E = Ty->param_end();
3597  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3598    const Type *ExpectedTy = 0;
3599    if (I != E) {
3600      ExpectedTy = *I++;
3601    } else if (!Ty->isVarArg()) {
3602      return Error(ArgList[i].Loc, "too many arguments specified");
3603    }
3604
3605    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3606      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3607                   ExpectedTy->getDescription() + "'");
3608    Args.push_back(ArgList[i].V);
3609    if (ArgList[i].Attrs != Attribute::None)
3610      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3611  }
3612
3613  if (I != E)
3614    return Error(CallLoc, "not enough parameters specified for call");
3615
3616  if (FnAttrs != Attribute::None)
3617    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3618
3619  // Finish off the Attributes and check them
3620  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3621
3622  CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
3623  CI->setTailCall(isTail);
3624  CI->setCallingConv(CC);
3625  CI->setAttributes(PAL);
3626  Inst = CI;
3627  return false;
3628}
3629
3630//===----------------------------------------------------------------------===//
3631// Memory Instructions.
3632//===----------------------------------------------------------------------===//
3633
3634/// ParseAlloc
3635///   ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalInfo)?
3636///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
3637bool LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
3638                          BasicBlock* BB, bool isAlloca) {
3639  PATypeHolder Ty(Type::getVoidTy(Context));
3640  Value *Size = 0;
3641  LocTy SizeLoc;
3642  unsigned Alignment = 0;
3643  if (ParseType(Ty)) return true;
3644
3645  if (EatIfPresent(lltok::comma)) {
3646    if (Lex.getKind() == lltok::kw_align
3647        || Lex.getKind() == lltok::NamedOrCustomMD) {
3648      if (ParseOptionalInfo(Alignment)) return true;
3649    } else {
3650      if (ParseTypeAndValue(Size, SizeLoc, PFS)) return true;
3651      if (EatIfPresent(lltok::comma))
3652        if (ParseOptionalInfo(Alignment)) return true;
3653    }
3654  }
3655
3656  if (Size && Size->getType() != Type::getInt32Ty(Context))
3657    return Error(SizeLoc, "element count must be i32");
3658
3659  if (isAlloca) {
3660    Inst = new AllocaInst(Ty, Size, Alignment);
3661    return false;
3662  }
3663
3664  // Autoupgrade old malloc instruction to malloc call.
3665  // FIXME: Remove in LLVM 3.0.
3666  const Type *IntPtrTy = Type::getInt32Ty(Context);
3667  Constant *AllocSize = ConstantExpr::getSizeOf(Ty);
3668  AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, IntPtrTy);
3669  if (!MallocF)
3670    // Prototype malloc as "void *(int32)".
3671    // This function is renamed as "malloc" in ValidateEndOfModule().
3672    MallocF = cast<Function>(
3673       M->getOrInsertFunction("", Type::getInt8PtrTy(Context), IntPtrTy, NULL));
3674  Inst = CallInst::CreateMalloc(BB, IntPtrTy, Ty, AllocSize, Size, MallocF);
3675  return false;
3676}
3677
3678/// ParseFree
3679///   ::= 'free' TypeAndValue
3680bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS,
3681                         BasicBlock* BB) {
3682  Value *Val; LocTy Loc;
3683  if (ParseTypeAndValue(Val, Loc, PFS)) return true;
3684  if (!isa<PointerType>(Val->getType()))
3685    return Error(Loc, "operand to free must be a pointer");
3686  Inst = CallInst::CreateFree(Val, BB);
3687  return false;
3688}
3689
3690/// ParseLoad
3691///   ::= 'volatile'? 'load' TypeAndValue (',' OptionalInfo)?
3692bool LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
3693                         bool isVolatile) {
3694  Value *Val; LocTy Loc;
3695  unsigned Alignment = 0;
3696  if (ParseTypeAndValue(Val, Loc, PFS)) return true;
3697
3698  if (EatIfPresent(lltok::comma))
3699    if (ParseOptionalInfo(Alignment)) return true;
3700
3701  if (!isa<PointerType>(Val->getType()) ||
3702      !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3703    return Error(Loc, "load operand must be a pointer to a first class type");
3704
3705  Inst = new LoadInst(Val, "", isVolatile, Alignment);
3706  return false;
3707}
3708
3709/// ParseStore
3710///   ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3711bool LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
3712                          bool isVolatile) {
3713  Value *Val, *Ptr; LocTy Loc, PtrLoc;
3714  unsigned Alignment = 0;
3715  if (ParseTypeAndValue(Val, Loc, PFS) ||
3716      ParseToken(lltok::comma, "expected ',' after store operand") ||
3717      ParseTypeAndValue(Ptr, PtrLoc, PFS))
3718    return true;
3719
3720  if (EatIfPresent(lltok::comma))
3721    if (ParseOptionalInfo(Alignment)) return true;
3722
3723  if (!isa<PointerType>(Ptr->getType()))
3724    return Error(PtrLoc, "store operand must be a pointer");
3725  if (!Val->getType()->isFirstClassType())
3726    return Error(Loc, "store operand must be a first class value");
3727  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3728    return Error(Loc, "stored value and pointer type do not match");
3729
3730  Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
3731  return false;
3732}
3733
3734/// ParseGetResult
3735///   ::= 'getresult' TypeAndValue ',' i32
3736/// FIXME: Remove support for getresult in LLVM 3.0
3737bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
3738  Value *Val; LocTy ValLoc, EltLoc;
3739  unsigned Element;
3740  if (ParseTypeAndValue(Val, ValLoc, PFS) ||
3741      ParseToken(lltok::comma, "expected ',' after getresult operand") ||
3742      ParseUInt32(Element, EltLoc))
3743    return true;
3744
3745  if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3746    return Error(ValLoc, "getresult inst requires an aggregate operand");
3747  if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
3748    return Error(EltLoc, "invalid getresult index for value");
3749  Inst = ExtractValueInst::Create(Val, Element);
3750  return false;
3751}
3752
3753/// ParseGetElementPtr
3754///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
3755bool LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3756  Value *Ptr, *Val; LocTy Loc, EltLoc;
3757
3758  bool InBounds = EatIfPresent(lltok::kw_inbounds);
3759
3760  if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3761
3762  if (!isa<PointerType>(Ptr->getType()))
3763    return Error(Loc, "base of getelementptr must be a pointer");
3764
3765  SmallVector<Value*, 16> Indices;
3766  while (EatIfPresent(lltok::comma)) {
3767    if (Lex.getKind() == lltok::NamedOrCustomMD)
3768      break;
3769    if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3770    if (!isa<IntegerType>(Val->getType()))
3771      return Error(EltLoc, "getelementptr index must be an integer");
3772    Indices.push_back(Val);
3773  }
3774  if (Lex.getKind() == lltok::NamedOrCustomMD)
3775    if (ParseOptionalCustomMetadata()) return true;
3776
3777  if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
3778                                         Indices.begin(), Indices.end()))
3779    return Error(Loc, "invalid getelementptr indices");
3780  Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
3781  if (InBounds)
3782    cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
3783  return false;
3784}
3785
3786/// ParseExtractValue
3787///   ::= 'extractvalue' TypeAndValue (',' uint32)+
3788bool LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3789  Value *Val; LocTy Loc;
3790  SmallVector<unsigned, 4> Indices;
3791  if (ParseTypeAndValue(Val, Loc, PFS) ||
3792      ParseIndexList(Indices))
3793    return true;
3794  if (Lex.getKind() == lltok::NamedOrCustomMD)
3795    if (ParseOptionalCustomMetadata()) return true;
3796
3797  if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3798    return Error(Loc, "extractvalue operand must be array or struct");
3799
3800  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
3801                                        Indices.end()))
3802    return Error(Loc, "invalid indices for extractvalue");
3803  Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end());
3804  return false;
3805}
3806
3807/// ParseInsertValue
3808///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3809bool LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3810  Value *Val0, *Val1; LocTy Loc0, Loc1;
3811  SmallVector<unsigned, 4> Indices;
3812  if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3813      ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3814      ParseTypeAndValue(Val1, Loc1, PFS) ||
3815      ParseIndexList(Indices))
3816    return true;
3817  if (Lex.getKind() == lltok::NamedOrCustomMD)
3818    if (ParseOptionalCustomMetadata()) return true;
3819
3820  if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
3821    return Error(Loc0, "extractvalue operand must be array or struct");
3822
3823  if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
3824                                        Indices.end()))
3825    return Error(Loc0, "invalid indices for insertvalue");
3826  Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end());
3827  return false;
3828}
3829
3830//===----------------------------------------------------------------------===//
3831// Embedded metadata.
3832//===----------------------------------------------------------------------===//
3833
3834/// ParseMDNodeVector
3835///   ::= Element (',' Element)*
3836/// Element
3837///   ::= 'null' | TypeAndValue
3838bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts) {
3839  assert(Lex.getKind() == lltok::lbrace);
3840  Lex.Lex();
3841  do {
3842    Value *V = 0;
3843    if (Lex.getKind() == lltok::kw_null) {
3844      Lex.Lex();
3845      V = 0;
3846    } else {
3847      PATypeHolder Ty(Type::getVoidTy(Context));
3848      if (ParseType(Ty)) return true;
3849      if (Lex.getKind() == lltok::Metadata) {
3850        Lex.Lex();
3851        MetadataBase *Node = 0;
3852        if (!ParseMDNode(Node))
3853          V = Node;
3854        else {
3855          MetadataBase *MDS = 0;
3856          if (ParseMDString(MDS)) return true;
3857          V = MDS;
3858        }
3859      } else {
3860        Constant *C;
3861        if (ParseGlobalValue(Ty, C)) return true;
3862        V = C;
3863      }
3864    }
3865    Elts.push_back(V);
3866  } while (EatIfPresent(lltok::comma));
3867
3868  return false;
3869}
3870