LLParser.cpp revision 32811bef956e0fae4329e6515420d85f7e510660
1//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/AutoUpgrade.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instructions.h"
21#include "llvm/Module.h"
22#include "llvm/Operator.h"
23#include "llvm/ValueSymbolTable.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/raw_ostream.h"
27using namespace llvm;
28
29static std::string getTypeString(Type *T) {
30  std::string Result;
31  raw_string_ostream Tmp(Result);
32  Tmp << *T;
33  return Tmp.str();
34}
35
36/// Run: module ::= toplevelentity*
37bool LLParser::Run() {
38  // Prime the lexer.
39  Lex.Lex();
40
41  return ParseTopLevelEntities() ||
42         ValidateEndOfModule();
43}
44
45/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
46/// module.
47bool LLParser::ValidateEndOfModule() {
48  // Handle any instruction metadata forward references.
49  if (!ForwardRefInstMetadata.empty()) {
50    for (DenseMap<Instruction*, std::vector<MDRef> >::iterator
51         I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end();
52         I != E; ++I) {
53      Instruction *Inst = I->first;
54      const std::vector<MDRef> &MDList = I->second;
55
56      for (unsigned i = 0, e = MDList.size(); i != e; ++i) {
57        unsigned SlotNo = MDList[i].MDSlot;
58
59        if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0)
60          return Error(MDList[i].Loc, "use of undefined metadata '!" +
61                       Twine(SlotNo) + "'");
62        Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]);
63      }
64    }
65    ForwardRefInstMetadata.clear();
66  }
67
68
69  // If there are entries in ForwardRefBlockAddresses at this point, they are
70  // references after the function was defined.  Resolve those now.
71  while (!ForwardRefBlockAddresses.empty()) {
72    // Okay, we are referencing an already-parsed function, resolve them now.
73    Function *TheFn = 0;
74    const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
75    if (Fn.Kind == ValID::t_GlobalName)
76      TheFn = M->getFunction(Fn.StrVal);
77    else if (Fn.UIntVal < NumberedVals.size())
78      TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
79
80    if (TheFn == 0)
81      return Error(Fn.Loc, "unknown function referenced by blockaddress");
82
83    // Resolve all these references.
84    if (ResolveForwardRefBlockAddresses(TheFn,
85                                      ForwardRefBlockAddresses.begin()->second,
86                                        0))
87      return true;
88
89    ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
90  }
91
92  for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i)
93    if (NumberedTypes[i].second.isValid())
94      return Error(NumberedTypes[i].second,
95                   "use of undefined type '%" + Twine(i) + "'");
96
97  for (StringMap<std::pair<Type*, LocTy> >::iterator I =
98       NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
99    if (I->second.second.isValid())
100      return Error(I->second.second,
101                   "use of undefined type named '" + I->getKey() + "'");
102
103  if (!ForwardRefVals.empty())
104    return Error(ForwardRefVals.begin()->second.second,
105                 "use of undefined value '@" + ForwardRefVals.begin()->first +
106                 "'");
107
108  if (!ForwardRefValIDs.empty())
109    return Error(ForwardRefValIDs.begin()->second.second,
110                 "use of undefined value '@" +
111                 Twine(ForwardRefValIDs.begin()->first) + "'");
112
113  if (!ForwardRefMDNodes.empty())
114    return Error(ForwardRefMDNodes.begin()->second.second,
115                 "use of undefined metadata '!" +
116                 Twine(ForwardRefMDNodes.begin()->first) + "'");
117
118
119  // Look for intrinsic functions and CallInst that need to be upgraded
120  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
121    UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
122
123  return false;
124}
125
126bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn,
127                             std::vector<std::pair<ValID, GlobalValue*> > &Refs,
128                                               PerFunctionState *PFS) {
129  // Loop over all the references, resolving them.
130  for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
131    BasicBlock *Res;
132    if (PFS) {
133      if (Refs[i].first.Kind == ValID::t_LocalName)
134        Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
135      else
136        Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
137    } else if (Refs[i].first.Kind == ValID::t_LocalID) {
138      return Error(Refs[i].first.Loc,
139       "cannot take address of numeric label after the function is defined");
140    } else {
141      Res = dyn_cast_or_null<BasicBlock>(
142                     TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
143    }
144
145    if (Res == 0)
146      return Error(Refs[i].first.Loc,
147                   "referenced value is not a basic block");
148
149    // Get the BlockAddress for this and update references to use it.
150    BlockAddress *BA = BlockAddress::get(TheFn, Res);
151    Refs[i].second->replaceAllUsesWith(BA);
152    Refs[i].second->eraseFromParent();
153  }
154  return false;
155}
156
157
158//===----------------------------------------------------------------------===//
159// Top-Level Entities
160//===----------------------------------------------------------------------===//
161
162bool LLParser::ParseTopLevelEntities() {
163  while (1) {
164    switch (Lex.getKind()) {
165    default:         return TokError("expected top-level entity");
166    case lltok::Eof: return false;
167    case lltok::kw_declare: if (ParseDeclare()) return true; break;
168    case lltok::kw_define:  if (ParseDefine()) return true; break;
169    case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
170    case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
171    case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
172    case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
173    case lltok::LocalVar:   if (ParseNamedType()) return true; break;
174    case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
175    case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
176    case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
177    case lltok::MetadataVar: if (ParseNamedMetadata()) return true; break;
178
179    // The Global variable production with no name can have many different
180    // optional leading prefixes, the production is:
181    // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
182    //               OptionalAddrSpace OptionalUnNammedAddr
183    //               ('constant'|'global') ...
184    case lltok::kw_private:             // OptionalLinkage
185    case lltok::kw_linker_private:      // OptionalLinkage
186    case lltok::kw_linker_private_weak: // OptionalLinkage
187    case lltok::kw_linker_private_weak_def_auto: // FIXME: backwards compat.
188    case lltok::kw_internal:            // OptionalLinkage
189    case lltok::kw_weak:                // OptionalLinkage
190    case lltok::kw_weak_odr:            // OptionalLinkage
191    case lltok::kw_linkonce:            // OptionalLinkage
192    case lltok::kw_linkonce_odr:        // OptionalLinkage
193    case lltok::kw_linkonce_odr_auto_hide: // OptionalLinkage
194    case lltok::kw_appending:           // OptionalLinkage
195    case lltok::kw_dllexport:           // OptionalLinkage
196    case lltok::kw_common:              // OptionalLinkage
197    case lltok::kw_dllimport:           // OptionalLinkage
198    case lltok::kw_extern_weak:         // OptionalLinkage
199    case lltok::kw_external: {          // OptionalLinkage
200      unsigned Linkage, Visibility;
201      if (ParseOptionalLinkage(Linkage) ||
202          ParseOptionalVisibility(Visibility) ||
203          ParseGlobal("", SMLoc(), Linkage, true, Visibility))
204        return true;
205      break;
206    }
207    case lltok::kw_default:       // OptionalVisibility
208    case lltok::kw_hidden:        // OptionalVisibility
209    case lltok::kw_protected: {   // OptionalVisibility
210      unsigned Visibility;
211      if (ParseOptionalVisibility(Visibility) ||
212          ParseGlobal("", SMLoc(), 0, false, Visibility))
213        return true;
214      break;
215    }
216
217    case lltok::kw_thread_local:  // OptionalThreadLocal
218    case lltok::kw_addrspace:     // OptionalAddrSpace
219    case lltok::kw_constant:      // GlobalType
220    case lltok::kw_global:        // GlobalType
221      if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
222      break;
223    }
224  }
225}
226
227
228/// toplevelentity
229///   ::= 'module' 'asm' STRINGCONSTANT
230bool LLParser::ParseModuleAsm() {
231  assert(Lex.getKind() == lltok::kw_module);
232  Lex.Lex();
233
234  std::string AsmStr;
235  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
236      ParseStringConstant(AsmStr)) return true;
237
238  M->appendModuleInlineAsm(AsmStr);
239  return false;
240}
241
242/// toplevelentity
243///   ::= 'target' 'triple' '=' STRINGCONSTANT
244///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
245bool LLParser::ParseTargetDefinition() {
246  assert(Lex.getKind() == lltok::kw_target);
247  std::string Str;
248  switch (Lex.Lex()) {
249  default: return TokError("unknown target property");
250  case lltok::kw_triple:
251    Lex.Lex();
252    if (ParseToken(lltok::equal, "expected '=' after target triple") ||
253        ParseStringConstant(Str))
254      return true;
255    M->setTargetTriple(Str);
256    return false;
257  case lltok::kw_datalayout:
258    Lex.Lex();
259    if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
260        ParseStringConstant(Str))
261      return true;
262    M->setDataLayout(Str);
263    return false;
264  }
265}
266
267/// toplevelentity
268///   ::= 'deplibs' '=' '[' ']'
269///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
270bool LLParser::ParseDepLibs() {
271  assert(Lex.getKind() == lltok::kw_deplibs);
272  Lex.Lex();
273  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
274      ParseToken(lltok::lsquare, "expected '=' after deplibs"))
275    return true;
276
277  if (EatIfPresent(lltok::rsquare))
278    return false;
279
280  std::string Str;
281  if (ParseStringConstant(Str)) return true;
282  M->addLibrary(Str);
283
284  while (EatIfPresent(lltok::comma)) {
285    if (ParseStringConstant(Str)) return true;
286    M->addLibrary(Str);
287  }
288
289  return ParseToken(lltok::rsquare, "expected ']' at end of list");
290}
291
292/// ParseUnnamedType:
293///   ::= LocalVarID '=' 'type' type
294bool LLParser::ParseUnnamedType() {
295  LocTy TypeLoc = Lex.getLoc();
296  unsigned TypeID = Lex.getUIntVal();
297  Lex.Lex(); // eat LocalVarID;
298
299  if (ParseToken(lltok::equal, "expected '=' after name") ||
300      ParseToken(lltok::kw_type, "expected 'type' after '='"))
301    return true;
302
303  if (TypeID >= NumberedTypes.size())
304    NumberedTypes.resize(TypeID+1);
305
306  Type *Result = 0;
307  if (ParseStructDefinition(TypeLoc, "",
308                            NumberedTypes[TypeID], Result)) return true;
309
310  if (!isa<StructType>(Result)) {
311    std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
312    if (Entry.first)
313      return Error(TypeLoc, "non-struct types may not be recursive");
314    Entry.first = Result;
315    Entry.second = SMLoc();
316  }
317
318  return false;
319}
320
321
322/// toplevelentity
323///   ::= LocalVar '=' 'type' type
324bool LLParser::ParseNamedType() {
325  std::string Name = Lex.getStrVal();
326  LocTy NameLoc = Lex.getLoc();
327  Lex.Lex();  // eat LocalVar.
328
329  if (ParseToken(lltok::equal, "expected '=' after name") ||
330      ParseToken(lltok::kw_type, "expected 'type' after name"))
331    return true;
332
333  Type *Result = 0;
334  if (ParseStructDefinition(NameLoc, Name,
335                            NamedTypes[Name], Result)) return true;
336
337  if (!isa<StructType>(Result)) {
338    std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
339    if (Entry.first)
340      return Error(NameLoc, "non-struct types may not be recursive");
341    Entry.first = Result;
342    Entry.second = SMLoc();
343  }
344
345  return false;
346}
347
348
349/// toplevelentity
350///   ::= 'declare' FunctionHeader
351bool LLParser::ParseDeclare() {
352  assert(Lex.getKind() == lltok::kw_declare);
353  Lex.Lex();
354
355  Function *F;
356  return ParseFunctionHeader(F, false);
357}
358
359/// toplevelentity
360///   ::= 'define' FunctionHeader '{' ...
361bool LLParser::ParseDefine() {
362  assert(Lex.getKind() == lltok::kw_define);
363  Lex.Lex();
364
365  Function *F;
366  return ParseFunctionHeader(F, true) ||
367         ParseFunctionBody(*F);
368}
369
370/// ParseGlobalType
371///   ::= 'constant'
372///   ::= 'global'
373bool LLParser::ParseGlobalType(bool &IsConstant) {
374  if (Lex.getKind() == lltok::kw_constant)
375    IsConstant = true;
376  else if (Lex.getKind() == lltok::kw_global)
377    IsConstant = false;
378  else {
379    IsConstant = false;
380    return TokError("expected 'global' or 'constant'");
381  }
382  Lex.Lex();
383  return false;
384}
385
386/// ParseUnnamedGlobal:
387///   OptionalVisibility ALIAS ...
388///   OptionalLinkage OptionalVisibility ...   -> global variable
389///   GlobalID '=' OptionalVisibility ALIAS ...
390///   GlobalID '=' OptionalLinkage OptionalVisibility ...   -> global variable
391bool LLParser::ParseUnnamedGlobal() {
392  unsigned VarID = NumberedVals.size();
393  std::string Name;
394  LocTy NameLoc = Lex.getLoc();
395
396  // Handle the GlobalID form.
397  if (Lex.getKind() == lltok::GlobalID) {
398    if (Lex.getUIntVal() != VarID)
399      return Error(Lex.getLoc(), "variable expected to be numbered '%" +
400                   Twine(VarID) + "'");
401    Lex.Lex(); // eat GlobalID;
402
403    if (ParseToken(lltok::equal, "expected '=' after name"))
404      return true;
405  }
406
407  bool HasLinkage;
408  unsigned Linkage, Visibility;
409  if (ParseOptionalLinkage(Linkage, HasLinkage) ||
410      ParseOptionalVisibility(Visibility))
411    return true;
412
413  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
414    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
415  return ParseAlias(Name, NameLoc, Visibility);
416}
417
418/// ParseNamedGlobal:
419///   GlobalVar '=' OptionalVisibility ALIAS ...
420///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
421bool LLParser::ParseNamedGlobal() {
422  assert(Lex.getKind() == lltok::GlobalVar);
423  LocTy NameLoc = Lex.getLoc();
424  std::string Name = Lex.getStrVal();
425  Lex.Lex();
426
427  bool HasLinkage;
428  unsigned Linkage, Visibility;
429  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
430      ParseOptionalLinkage(Linkage, HasLinkage) ||
431      ParseOptionalVisibility(Visibility))
432    return true;
433
434  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
435    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
436  return ParseAlias(Name, NameLoc, Visibility);
437}
438
439// MDString:
440//   ::= '!' STRINGCONSTANT
441bool LLParser::ParseMDString(MDString *&Result) {
442  std::string Str;
443  if (ParseStringConstant(Str)) return true;
444  Result = MDString::get(Context, Str);
445  return false;
446}
447
448// MDNode:
449//   ::= '!' MDNodeNumber
450//
451/// This version of ParseMDNodeID returns the slot number and null in the case
452/// of a forward reference.
453bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) {
454  // !{ ..., !42, ... }
455  if (ParseUInt32(SlotNo)) return true;
456
457  // Check existing MDNode.
458  if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0)
459    Result = NumberedMetadata[SlotNo];
460  else
461    Result = 0;
462  return false;
463}
464
465bool LLParser::ParseMDNodeID(MDNode *&Result) {
466  // !{ ..., !42, ... }
467  unsigned MID = 0;
468  if (ParseMDNodeID(Result, MID)) return true;
469
470  // If not a forward reference, just return it now.
471  if (Result) return false;
472
473  // Otherwise, create MDNode forward reference.
474  MDNode *FwdNode = MDNode::getTemporary(Context, ArrayRef<Value*>());
475  ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
476
477  if (NumberedMetadata.size() <= MID)
478    NumberedMetadata.resize(MID+1);
479  NumberedMetadata[MID] = FwdNode;
480  Result = FwdNode;
481  return false;
482}
483
484/// ParseNamedMetadata:
485///   !foo = !{ !1, !2 }
486bool LLParser::ParseNamedMetadata() {
487  assert(Lex.getKind() == lltok::MetadataVar);
488  std::string Name = Lex.getStrVal();
489  Lex.Lex();
490
491  if (ParseToken(lltok::equal, "expected '=' here") ||
492      ParseToken(lltok::exclaim, "Expected '!' here") ||
493      ParseToken(lltok::lbrace, "Expected '{' here"))
494    return true;
495
496  NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
497  if (Lex.getKind() != lltok::rbrace)
498    do {
499      if (ParseToken(lltok::exclaim, "Expected '!' here"))
500        return true;
501
502      MDNode *N = 0;
503      if (ParseMDNodeID(N)) return true;
504      NMD->addOperand(N);
505    } while (EatIfPresent(lltok::comma));
506
507  if (ParseToken(lltok::rbrace, "expected end of metadata node"))
508    return true;
509
510  return false;
511}
512
513/// ParseStandaloneMetadata:
514///   !42 = !{...}
515bool LLParser::ParseStandaloneMetadata() {
516  assert(Lex.getKind() == lltok::exclaim);
517  Lex.Lex();
518  unsigned MetadataID = 0;
519
520  LocTy TyLoc;
521  Type *Ty = 0;
522  SmallVector<Value *, 16> Elts;
523  if (ParseUInt32(MetadataID) ||
524      ParseToken(lltok::equal, "expected '=' here") ||
525      ParseType(Ty, TyLoc) ||
526      ParseToken(lltok::exclaim, "Expected '!' here") ||
527      ParseToken(lltok::lbrace, "Expected '{' here") ||
528      ParseMDNodeVector(Elts, NULL) ||
529      ParseToken(lltok::rbrace, "expected end of metadata node"))
530    return true;
531
532  MDNode *Init = MDNode::get(Context, Elts);
533
534  // See if this was forward referenced, if so, handle it.
535  std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
536    FI = ForwardRefMDNodes.find(MetadataID);
537  if (FI != ForwardRefMDNodes.end()) {
538    MDNode *Temp = FI->second.first;
539    Temp->replaceAllUsesWith(Init);
540    MDNode::deleteTemporary(Temp);
541    ForwardRefMDNodes.erase(FI);
542
543    assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
544  } else {
545    if (MetadataID >= NumberedMetadata.size())
546      NumberedMetadata.resize(MetadataID+1);
547
548    if (NumberedMetadata[MetadataID] != 0)
549      return TokError("Metadata id is already used");
550    NumberedMetadata[MetadataID] = Init;
551  }
552
553  return false;
554}
555
556/// ParseAlias:
557///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
558/// Aliasee
559///   ::= TypeAndValue
560///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
561///   ::= 'getelementptr' 'inbounds'? '(' ... ')'
562///
563/// Everything through visibility has already been parsed.
564///
565bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
566                          unsigned Visibility) {
567  assert(Lex.getKind() == lltok::kw_alias);
568  Lex.Lex();
569  unsigned Linkage;
570  LocTy LinkageLoc = Lex.getLoc();
571  if (ParseOptionalLinkage(Linkage))
572    return true;
573
574  if (Linkage != GlobalValue::ExternalLinkage &&
575      Linkage != GlobalValue::WeakAnyLinkage &&
576      Linkage != GlobalValue::WeakODRLinkage &&
577      Linkage != GlobalValue::InternalLinkage &&
578      Linkage != GlobalValue::PrivateLinkage &&
579      Linkage != GlobalValue::LinkerPrivateLinkage &&
580      Linkage != GlobalValue::LinkerPrivateWeakLinkage)
581    return Error(LinkageLoc, "invalid linkage type for alias");
582
583  Constant *Aliasee;
584  LocTy AliaseeLoc = Lex.getLoc();
585  if (Lex.getKind() != lltok::kw_bitcast &&
586      Lex.getKind() != lltok::kw_getelementptr) {
587    if (ParseGlobalTypeAndValue(Aliasee)) return true;
588  } else {
589    // The bitcast dest type is not present, it is implied by the dest type.
590    ValID ID;
591    if (ParseValID(ID)) return true;
592    if (ID.Kind != ValID::t_Constant)
593      return Error(AliaseeLoc, "invalid aliasee");
594    Aliasee = ID.ConstantVal;
595  }
596
597  if (!Aliasee->getType()->isPointerTy())
598    return Error(AliaseeLoc, "alias must have pointer type");
599
600  // Okay, create the alias but do not insert it into the module yet.
601  GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
602                                    (GlobalValue::LinkageTypes)Linkage, Name,
603                                    Aliasee);
604  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
605
606  // See if this value already exists in the symbol table.  If so, it is either
607  // a redefinition or a definition of a forward reference.
608  if (GlobalValue *Val = M->getNamedValue(Name)) {
609    // See if this was a redefinition.  If so, there is no entry in
610    // ForwardRefVals.
611    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
612      I = ForwardRefVals.find(Name);
613    if (I == ForwardRefVals.end())
614      return Error(NameLoc, "redefinition of global named '@" + Name + "'");
615
616    // Otherwise, this was a definition of forward ref.  Verify that types
617    // agree.
618    if (Val->getType() != GA->getType())
619      return Error(NameLoc,
620              "forward reference and definition of alias have different types");
621
622    // If they agree, just RAUW the old value with the alias and remove the
623    // forward ref info.
624    Val->replaceAllUsesWith(GA);
625    Val->eraseFromParent();
626    ForwardRefVals.erase(I);
627  }
628
629  // Insert into the module, we know its name won't collide now.
630  M->getAliasList().push_back(GA);
631  assert(GA->getName() == Name && "Should not be a name conflict!");
632
633  return false;
634}
635
636/// ParseGlobal
637///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
638///       OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const
639///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
640///       OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const
641///
642/// Everything through visibility has been parsed already.
643///
644bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
645                           unsigned Linkage, bool HasLinkage,
646                           unsigned Visibility) {
647  unsigned AddrSpace;
648  bool IsConstant, UnnamedAddr;
649  GlobalVariable::ThreadLocalMode TLM;
650  LocTy UnnamedAddrLoc;
651  LocTy TyLoc;
652
653  Type *Ty = 0;
654  if (ParseOptionalThreadLocal(TLM) ||
655      ParseOptionalAddrSpace(AddrSpace) ||
656      ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
657                         &UnnamedAddrLoc) ||
658      ParseGlobalType(IsConstant) ||
659      ParseType(Ty, TyLoc))
660    return true;
661
662  // If the linkage is specified and is external, then no initializer is
663  // present.
664  Constant *Init = 0;
665  if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
666                      Linkage != GlobalValue::ExternalWeakLinkage &&
667                      Linkage != GlobalValue::ExternalLinkage)) {
668    if (ParseGlobalValue(Ty, Init))
669      return true;
670  }
671
672  if (Ty->isFunctionTy() || Ty->isLabelTy())
673    return Error(TyLoc, "invalid type for global variable");
674
675  GlobalVariable *GV = 0;
676
677  // See if the global was forward referenced, if so, use the global.
678  if (!Name.empty()) {
679    if (GlobalValue *GVal = M->getNamedValue(Name)) {
680      if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
681        return Error(NameLoc, "redefinition of global '@" + Name + "'");
682      GV = cast<GlobalVariable>(GVal);
683    }
684  } else {
685    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
686      I = ForwardRefValIDs.find(NumberedVals.size());
687    if (I != ForwardRefValIDs.end()) {
688      GV = cast<GlobalVariable>(I->second.first);
689      ForwardRefValIDs.erase(I);
690    }
691  }
692
693  if (GV == 0) {
694    GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
695                            Name, 0, GlobalVariable::NotThreadLocal,
696                            AddrSpace);
697  } else {
698    if (GV->getType()->getElementType() != Ty)
699      return Error(TyLoc,
700            "forward reference and definition of global have different types");
701
702    // Move the forward-reference to the correct spot in the module.
703    M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
704  }
705
706  if (Name.empty())
707    NumberedVals.push_back(GV);
708
709  // Set the parsed properties on the global.
710  if (Init)
711    GV->setInitializer(Init);
712  GV->setConstant(IsConstant);
713  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
714  GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
715  GV->setThreadLocalMode(TLM);
716  GV->setUnnamedAddr(UnnamedAddr);
717
718  // Parse attributes on the global.
719  while (Lex.getKind() == lltok::comma) {
720    Lex.Lex();
721
722    if (Lex.getKind() == lltok::kw_section) {
723      Lex.Lex();
724      GV->setSection(Lex.getStrVal());
725      if (ParseToken(lltok::StringConstant, "expected global section string"))
726        return true;
727    } else if (Lex.getKind() == lltok::kw_align) {
728      unsigned Alignment;
729      if (ParseOptionalAlignment(Alignment)) return true;
730      GV->setAlignment(Alignment);
731    } else {
732      TokError("unknown global variable property!");
733    }
734  }
735
736  return false;
737}
738
739
740//===----------------------------------------------------------------------===//
741// GlobalValue Reference/Resolution Routines.
742//===----------------------------------------------------------------------===//
743
744/// GetGlobalVal - Get a value with the specified name or ID, creating a
745/// forward reference record if needed.  This can return null if the value
746/// exists but does not have the right type.
747GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
748                                    LocTy Loc) {
749  PointerType *PTy = dyn_cast<PointerType>(Ty);
750  if (PTy == 0) {
751    Error(Loc, "global variable reference must have pointer type");
752    return 0;
753  }
754
755  // Look this name up in the normal function symbol table.
756  GlobalValue *Val =
757    cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
758
759  // If this is a forward reference for the value, see if we already created a
760  // forward ref record.
761  if (Val == 0) {
762    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
763      I = ForwardRefVals.find(Name);
764    if (I != ForwardRefVals.end())
765      Val = I->second.first;
766  }
767
768  // If we have the value in the symbol table or fwd-ref table, return it.
769  if (Val) {
770    if (Val->getType() == Ty) return Val;
771    Error(Loc, "'@" + Name + "' defined with type '" +
772          getTypeString(Val->getType()) + "'");
773    return 0;
774  }
775
776  // Otherwise, create a new forward reference for this value and remember it.
777  GlobalValue *FwdVal;
778  if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
779    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
780  else
781    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
782                                GlobalValue::ExternalWeakLinkage, 0, Name);
783
784  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
785  return FwdVal;
786}
787
788GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
789  PointerType *PTy = dyn_cast<PointerType>(Ty);
790  if (PTy == 0) {
791    Error(Loc, "global variable reference must have pointer type");
792    return 0;
793  }
794
795  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
796
797  // If this is a forward reference for the value, see if we already created a
798  // forward ref record.
799  if (Val == 0) {
800    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
801      I = ForwardRefValIDs.find(ID);
802    if (I != ForwardRefValIDs.end())
803      Val = I->second.first;
804  }
805
806  // If we have the value in the symbol table or fwd-ref table, return it.
807  if (Val) {
808    if (Val->getType() == Ty) return Val;
809    Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
810          getTypeString(Val->getType()) + "'");
811    return 0;
812  }
813
814  // Otherwise, create a new forward reference for this value and remember it.
815  GlobalValue *FwdVal;
816  if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
817    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
818  else
819    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
820                                GlobalValue::ExternalWeakLinkage, 0, "");
821
822  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
823  return FwdVal;
824}
825
826
827//===----------------------------------------------------------------------===//
828// Helper Routines.
829//===----------------------------------------------------------------------===//
830
831/// ParseToken - If the current token has the specified kind, eat it and return
832/// success.  Otherwise, emit the specified error and return failure.
833bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
834  if (Lex.getKind() != T)
835    return TokError(ErrMsg);
836  Lex.Lex();
837  return false;
838}
839
840/// ParseStringConstant
841///   ::= StringConstant
842bool LLParser::ParseStringConstant(std::string &Result) {
843  if (Lex.getKind() != lltok::StringConstant)
844    return TokError("expected string constant");
845  Result = Lex.getStrVal();
846  Lex.Lex();
847  return false;
848}
849
850/// ParseUInt32
851///   ::= uint32
852bool LLParser::ParseUInt32(unsigned &Val) {
853  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
854    return TokError("expected integer");
855  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
856  if (Val64 != unsigned(Val64))
857    return TokError("expected 32-bit integer (too large)");
858  Val = Val64;
859  Lex.Lex();
860  return false;
861}
862
863/// ParseTLSModel
864///   := 'localdynamic'
865///   := 'initialexec'
866///   := 'localexec'
867bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
868  switch (Lex.getKind()) {
869    default:
870      return TokError("expected localdynamic, initialexec or localexec");
871    case lltok::kw_localdynamic:
872      TLM = GlobalVariable::LocalDynamicTLSModel;
873      break;
874    case lltok::kw_initialexec:
875      TLM = GlobalVariable::InitialExecTLSModel;
876      break;
877    case lltok::kw_localexec:
878      TLM = GlobalVariable::LocalExecTLSModel;
879      break;
880  }
881
882  Lex.Lex();
883  return false;
884}
885
886/// ParseOptionalThreadLocal
887///   := /*empty*/
888///   := 'thread_local'
889///   := 'thread_local' '(' tlsmodel ')'
890bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
891  TLM = GlobalVariable::NotThreadLocal;
892  if (!EatIfPresent(lltok::kw_thread_local))
893    return false;
894
895  TLM = GlobalVariable::GeneralDynamicTLSModel;
896  if (Lex.getKind() == lltok::lparen) {
897    Lex.Lex();
898    return ParseTLSModel(TLM) ||
899      ParseToken(lltok::rparen, "expected ')' after thread local model");
900  }
901  return false;
902}
903
904/// ParseOptionalAddrSpace
905///   := /*empty*/
906///   := 'addrspace' '(' uint32 ')'
907bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
908  AddrSpace = 0;
909  if (!EatIfPresent(lltok::kw_addrspace))
910    return false;
911  return ParseToken(lltok::lparen, "expected '(' in address space") ||
912         ParseUInt32(AddrSpace) ||
913         ParseToken(lltok::rparen, "expected ')' in address space");
914}
915
916/// ParseOptionalAttrs - Parse a potentially empty attribute list.  AttrKind
917/// indicates what kind of attribute list this is: 0: function arg, 1: result,
918/// 2: function attr.
919bool LLParser::ParseOptionalAttrs(Attributes &Attrs, unsigned AttrKind) {
920  Attrs = Attribute::None;
921  LocTy AttrLoc = Lex.getLoc();
922
923  while (1) {
924    switch (Lex.getKind()) {
925    default:  // End of attributes.
926      if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
927        return Error(AttrLoc, "invalid use of function-only attribute");
928
929      // As a hack, we allow "align 2" on functions as a synonym for
930      // "alignstack 2".
931      if (AttrKind == 2 &&
932          (Attrs & ~(Attribute::FunctionOnly | Attribute::Alignment)))
933        return Error(AttrLoc, "invalid use of attribute on a function");
934
935      if (AttrKind != 0 && (Attrs & Attribute::ParameterOnly))
936        return Error(AttrLoc, "invalid use of parameter-only attribute");
937
938      return false;
939    case lltok::kw_zeroext:         Attrs |= Attribute::ZExt; break;
940    case lltok::kw_signext:         Attrs |= Attribute::SExt; break;
941    case lltok::kw_inreg:           Attrs |= Attribute::InReg; break;
942    case lltok::kw_sret:            Attrs |= Attribute::StructRet; break;
943    case lltok::kw_noalias:         Attrs |= Attribute::NoAlias; break;
944    case lltok::kw_nocapture:       Attrs |= Attribute::NoCapture; break;
945    case lltok::kw_byval:           Attrs |= Attribute::ByVal; break;
946    case lltok::kw_nest:            Attrs |= Attribute::Nest; break;
947
948    case lltok::kw_noreturn:        Attrs |= Attribute::NoReturn; break;
949    case lltok::kw_nounwind:        Attrs |= Attribute::NoUnwind; break;
950    case lltok::kw_uwtable:         Attrs |= Attribute::UWTable; break;
951    case lltok::kw_returns_twice:   Attrs |= Attribute::ReturnsTwice; break;
952    case lltok::kw_noinline:        Attrs |= Attribute::NoInline; break;
953    case lltok::kw_readnone:        Attrs |= Attribute::ReadNone; break;
954    case lltok::kw_readonly:        Attrs |= Attribute::ReadOnly; break;
955    case lltok::kw_inlinehint:      Attrs |= Attribute::InlineHint; break;
956    case lltok::kw_alwaysinline:    Attrs |= Attribute::AlwaysInline; break;
957    case lltok::kw_optsize:         Attrs |= Attribute::OptimizeForSize; break;
958    case lltok::kw_ssp:             Attrs |= Attribute::StackProtect; break;
959    case lltok::kw_sspreq:          Attrs |= Attribute::StackProtectReq; break;
960    case lltok::kw_noredzone:       Attrs |= Attribute::NoRedZone; break;
961    case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
962    case lltok::kw_naked:           Attrs |= Attribute::Naked; break;
963    case lltok::kw_nonlazybind:     Attrs |= Attribute::NonLazyBind; break;
964    case lltok::kw_address_safety:  Attrs |= Attribute::AddressSafety; break;
965    case lltok::kw_ia_nsdialect:    Attrs |= Attribute::IANSDialect; break;
966
967    case lltok::kw_alignstack: {
968      unsigned Alignment;
969      if (ParseOptionalStackAlignment(Alignment))
970        return true;
971      Attrs |= Attribute::constructStackAlignmentFromInt(Alignment);
972      continue;
973    }
974
975    case lltok::kw_align: {
976      unsigned Alignment;
977      if (ParseOptionalAlignment(Alignment))
978        return true;
979      Attrs |= Attribute::constructAlignmentFromInt(Alignment);
980      continue;
981    }
982
983    }
984    Lex.Lex();
985  }
986}
987
988/// ParseOptionalLinkage
989///   ::= /*empty*/
990///   ::= 'private'
991///   ::= 'linker_private'
992///   ::= 'linker_private_weak'
993///   ::= 'internal'
994///   ::= 'weak'
995///   ::= 'weak_odr'
996///   ::= 'linkonce'
997///   ::= 'linkonce_odr'
998///   ::= 'linkonce_odr_auto_hide'
999///   ::= 'available_externally'
1000///   ::= 'appending'
1001///   ::= 'dllexport'
1002///   ::= 'common'
1003///   ::= 'dllimport'
1004///   ::= 'extern_weak'
1005///   ::= 'external'
1006bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
1007  HasLinkage = false;
1008  switch (Lex.getKind()) {
1009  default:                       Res=GlobalValue::ExternalLinkage; return false;
1010  case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
1011  case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
1012  case lltok::kw_linker_private_weak:
1013    Res = GlobalValue::LinkerPrivateWeakLinkage;
1014    break;
1015  case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
1016  case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
1017  case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
1018  case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
1019  case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
1020  case lltok::kw_linkonce_odr_auto_hide:
1021  case lltok::kw_linker_private_weak_def_auto: // FIXME: For backwards compat.
1022    Res = GlobalValue::LinkOnceODRAutoHideLinkage;
1023    break;
1024  case lltok::kw_available_externally:
1025    Res = GlobalValue::AvailableExternallyLinkage;
1026    break;
1027  case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
1028  case lltok::kw_dllexport:      Res = GlobalValue::DLLExportLinkage;     break;
1029  case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
1030  case lltok::kw_dllimport:      Res = GlobalValue::DLLImportLinkage;     break;
1031  case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
1032  case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
1033  }
1034  Lex.Lex();
1035  HasLinkage = true;
1036  return false;
1037}
1038
1039/// ParseOptionalVisibility
1040///   ::= /*empty*/
1041///   ::= 'default'
1042///   ::= 'hidden'
1043///   ::= 'protected'
1044///
1045bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1046  switch (Lex.getKind()) {
1047  default:                  Res = GlobalValue::DefaultVisibility; return false;
1048  case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
1049  case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
1050  case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1051  }
1052  Lex.Lex();
1053  return false;
1054}
1055
1056/// ParseOptionalCallingConv
1057///   ::= /*empty*/
1058///   ::= 'ccc'
1059///   ::= 'fastcc'
1060///   ::= 'coldcc'
1061///   ::= 'x86_stdcallcc'
1062///   ::= 'x86_fastcallcc'
1063///   ::= 'x86_thiscallcc'
1064///   ::= 'arm_apcscc'
1065///   ::= 'arm_aapcscc'
1066///   ::= 'arm_aapcs_vfpcc'
1067///   ::= 'msp430_intrcc'
1068///   ::= 'ptx_kernel'
1069///   ::= 'ptx_device'
1070///   ::= 'cc' UINT
1071///
1072bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
1073  switch (Lex.getKind()) {
1074  default:                       CC = CallingConv::C; return false;
1075  case lltok::kw_ccc:            CC = CallingConv::C; break;
1076  case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1077  case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1078  case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1079  case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1080  case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1081  case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1082  case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1083  case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1084  case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1085  case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1086  case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1087  case lltok::kw_cc: {
1088      unsigned ArbitraryCC;
1089      Lex.Lex();
1090      if (ParseUInt32(ArbitraryCC))
1091        return true;
1092      CC = static_cast<CallingConv::ID>(ArbitraryCC);
1093      return false;
1094    }
1095  }
1096
1097  Lex.Lex();
1098  return false;
1099}
1100
1101/// ParseInstructionMetadata
1102///   ::= !dbg !42 (',' !dbg !57)*
1103bool LLParser::ParseInstructionMetadata(Instruction *Inst,
1104                                        PerFunctionState *PFS) {
1105  do {
1106    if (Lex.getKind() != lltok::MetadataVar)
1107      return TokError("expected metadata after comma");
1108
1109    std::string Name = Lex.getStrVal();
1110    unsigned MDK = M->getMDKindID(Name);
1111    Lex.Lex();
1112
1113    MDNode *Node;
1114    SMLoc Loc = Lex.getLoc();
1115
1116    if (ParseToken(lltok::exclaim, "expected '!' here"))
1117      return true;
1118
1119    // This code is similar to that of ParseMetadataValue, however it needs to
1120    // have special-case code for a forward reference; see the comments on
1121    // ForwardRefInstMetadata for details. Also, MDStrings are not supported
1122    // at the top level here.
1123    if (Lex.getKind() == lltok::lbrace) {
1124      ValID ID;
1125      if (ParseMetadataListValue(ID, PFS))
1126        return true;
1127      assert(ID.Kind == ValID::t_MDNode);
1128      Inst->setMetadata(MDK, ID.MDNodeVal);
1129    } else {
1130      unsigned NodeID = 0;
1131      if (ParseMDNodeID(Node, NodeID))
1132        return true;
1133      if (Node) {
1134        // If we got the node, add it to the instruction.
1135        Inst->setMetadata(MDK, Node);
1136      } else {
1137        MDRef R = { Loc, MDK, NodeID };
1138        // Otherwise, remember that this should be resolved later.
1139        ForwardRefInstMetadata[Inst].push_back(R);
1140      }
1141    }
1142
1143    // If this is the end of the list, we're done.
1144  } while (EatIfPresent(lltok::comma));
1145  return false;
1146}
1147
1148/// ParseOptionalAlignment
1149///   ::= /* empty */
1150///   ::= 'align' 4
1151bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1152  Alignment = 0;
1153  if (!EatIfPresent(lltok::kw_align))
1154    return false;
1155  LocTy AlignLoc = Lex.getLoc();
1156  if (ParseUInt32(Alignment)) return true;
1157  if (!isPowerOf2_32(Alignment))
1158    return Error(AlignLoc, "alignment is not a power of two");
1159  if (Alignment > Value::MaximumAlignment)
1160    return Error(AlignLoc, "huge alignments are not supported yet");
1161  return false;
1162}
1163
1164/// ParseOptionalCommaAlign
1165///   ::=
1166///   ::= ',' align 4
1167///
1168/// This returns with AteExtraComma set to true if it ate an excess comma at the
1169/// end.
1170bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1171                                       bool &AteExtraComma) {
1172  AteExtraComma = false;
1173  while (EatIfPresent(lltok::comma)) {
1174    // Metadata at the end is an early exit.
1175    if (Lex.getKind() == lltok::MetadataVar) {
1176      AteExtraComma = true;
1177      return false;
1178    }
1179
1180    if (Lex.getKind() != lltok::kw_align)
1181      return Error(Lex.getLoc(), "expected metadata or 'align'");
1182
1183    if (ParseOptionalAlignment(Alignment)) return true;
1184  }
1185
1186  return false;
1187}
1188
1189/// ParseScopeAndOrdering
1190///   if isAtomic: ::= 'singlethread'? AtomicOrdering
1191///   else: ::=
1192///
1193/// This sets Scope and Ordering to the parsed values.
1194bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
1195                                     AtomicOrdering &Ordering) {
1196  if (!isAtomic)
1197    return false;
1198
1199  Scope = CrossThread;
1200  if (EatIfPresent(lltok::kw_singlethread))
1201    Scope = SingleThread;
1202  switch (Lex.getKind()) {
1203  default: return TokError("Expected ordering on atomic instruction");
1204  case lltok::kw_unordered: Ordering = Unordered; break;
1205  case lltok::kw_monotonic: Ordering = Monotonic; break;
1206  case lltok::kw_acquire: Ordering = Acquire; break;
1207  case lltok::kw_release: Ordering = Release; break;
1208  case lltok::kw_acq_rel: Ordering = AcquireRelease; break;
1209  case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break;
1210  }
1211  Lex.Lex();
1212  return false;
1213}
1214
1215/// ParseOptionalStackAlignment
1216///   ::= /* empty */
1217///   ::= 'alignstack' '(' 4 ')'
1218bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1219  Alignment = 0;
1220  if (!EatIfPresent(lltok::kw_alignstack))
1221    return false;
1222  LocTy ParenLoc = Lex.getLoc();
1223  if (!EatIfPresent(lltok::lparen))
1224    return Error(ParenLoc, "expected '('");
1225  LocTy AlignLoc = Lex.getLoc();
1226  if (ParseUInt32(Alignment)) return true;
1227  ParenLoc = Lex.getLoc();
1228  if (!EatIfPresent(lltok::rparen))
1229    return Error(ParenLoc, "expected ')'");
1230  if (!isPowerOf2_32(Alignment))
1231    return Error(AlignLoc, "stack alignment is not a power of two");
1232  return false;
1233}
1234
1235/// ParseIndexList - This parses the index list for an insert/extractvalue
1236/// instruction.  This sets AteExtraComma in the case where we eat an extra
1237/// comma at the end of the line and find that it is followed by metadata.
1238/// Clients that don't allow metadata can call the version of this function that
1239/// only takes one argument.
1240///
1241/// ParseIndexList
1242///    ::=  (',' uint32)+
1243///
1244bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1245                              bool &AteExtraComma) {
1246  AteExtraComma = false;
1247
1248  if (Lex.getKind() != lltok::comma)
1249    return TokError("expected ',' as start of index list");
1250
1251  while (EatIfPresent(lltok::comma)) {
1252    if (Lex.getKind() == lltok::MetadataVar) {
1253      AteExtraComma = true;
1254      return false;
1255    }
1256    unsigned Idx = 0;
1257    if (ParseUInt32(Idx)) return true;
1258    Indices.push_back(Idx);
1259  }
1260
1261  return false;
1262}
1263
1264//===----------------------------------------------------------------------===//
1265// Type Parsing.
1266//===----------------------------------------------------------------------===//
1267
1268/// ParseType - Parse a type.
1269bool LLParser::ParseType(Type *&Result, bool AllowVoid) {
1270  SMLoc TypeLoc = Lex.getLoc();
1271  switch (Lex.getKind()) {
1272  default:
1273    return TokError("expected type");
1274  case lltok::Type:
1275    // Type ::= 'float' | 'void' (etc)
1276    Result = Lex.getTyVal();
1277    Lex.Lex();
1278    break;
1279  case lltok::lbrace:
1280    // Type ::= StructType
1281    if (ParseAnonStructType(Result, false))
1282      return true;
1283    break;
1284  case lltok::lsquare:
1285    // Type ::= '[' ... ']'
1286    Lex.Lex(); // eat the lsquare.
1287    if (ParseArrayVectorType(Result, false))
1288      return true;
1289    break;
1290  case lltok::less: // Either vector or packed struct.
1291    // Type ::= '<' ... '>'
1292    Lex.Lex();
1293    if (Lex.getKind() == lltok::lbrace) {
1294      if (ParseAnonStructType(Result, true) ||
1295          ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1296        return true;
1297    } else if (ParseArrayVectorType(Result, true))
1298      return true;
1299    break;
1300  case lltok::LocalVar: {
1301    // Type ::= %foo
1302    std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
1303
1304    // If the type hasn't been defined yet, create a forward definition and
1305    // remember where that forward def'n was seen (in case it never is defined).
1306    if (Entry.first == 0) {
1307      Entry.first = StructType::create(Context, Lex.getStrVal());
1308      Entry.second = Lex.getLoc();
1309    }
1310    Result = Entry.first;
1311    Lex.Lex();
1312    break;
1313  }
1314
1315  case lltok::LocalVarID: {
1316    // Type ::= %4
1317    if (Lex.getUIntVal() >= NumberedTypes.size())
1318      NumberedTypes.resize(Lex.getUIntVal()+1);
1319    std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
1320
1321    // If the type hasn't been defined yet, create a forward definition and
1322    // remember where that forward def'n was seen (in case it never is defined).
1323    if (Entry.first == 0) {
1324      Entry.first = StructType::create(Context);
1325      Entry.second = Lex.getLoc();
1326    }
1327    Result = Entry.first;
1328    Lex.Lex();
1329    break;
1330  }
1331  }
1332
1333  // Parse the type suffixes.
1334  while (1) {
1335    switch (Lex.getKind()) {
1336    // End of type.
1337    default:
1338      if (!AllowVoid && Result->isVoidTy())
1339        return Error(TypeLoc, "void type only allowed for function results");
1340      return false;
1341
1342    // Type ::= Type '*'
1343    case lltok::star:
1344      if (Result->isLabelTy())
1345        return TokError("basic block pointers are invalid");
1346      if (Result->isVoidTy())
1347        return TokError("pointers to void are invalid - use i8* instead");
1348      if (!PointerType::isValidElementType(Result))
1349        return TokError("pointer to this type is invalid");
1350      Result = PointerType::getUnqual(Result);
1351      Lex.Lex();
1352      break;
1353
1354    // Type ::= Type 'addrspace' '(' uint32 ')' '*'
1355    case lltok::kw_addrspace: {
1356      if (Result->isLabelTy())
1357        return TokError("basic block pointers are invalid");
1358      if (Result->isVoidTy())
1359        return TokError("pointers to void are invalid; use i8* instead");
1360      if (!PointerType::isValidElementType(Result))
1361        return TokError("pointer to this type is invalid");
1362      unsigned AddrSpace;
1363      if (ParseOptionalAddrSpace(AddrSpace) ||
1364          ParseToken(lltok::star, "expected '*' in address space"))
1365        return true;
1366
1367      Result = PointerType::get(Result, AddrSpace);
1368      break;
1369    }
1370
1371    /// Types '(' ArgTypeListI ')' OptFuncAttrs
1372    case lltok::lparen:
1373      if (ParseFunctionType(Result))
1374        return true;
1375      break;
1376    }
1377  }
1378}
1379
1380/// ParseParameterList
1381///    ::= '(' ')'
1382///    ::= '(' Arg (',' Arg)* ')'
1383///  Arg
1384///    ::= Type OptionalAttributes Value OptionalAttributes
1385bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1386                                  PerFunctionState &PFS) {
1387  if (ParseToken(lltok::lparen, "expected '(' in call"))
1388    return true;
1389
1390  while (Lex.getKind() != lltok::rparen) {
1391    // If this isn't the first argument, we need a comma.
1392    if (!ArgList.empty() &&
1393        ParseToken(lltok::comma, "expected ',' in argument list"))
1394      return true;
1395
1396    // Parse the argument.
1397    LocTy ArgLoc;
1398    Type *ArgTy = 0;
1399    Attributes ArgAttrs1;
1400    Attributes ArgAttrs2;
1401    Value *V;
1402    if (ParseType(ArgTy, ArgLoc))
1403      return true;
1404
1405    // Otherwise, handle normal operands.
1406    if (ParseOptionalAttrs(ArgAttrs1, 0) || ParseValue(ArgTy, V, PFS))
1407      return true;
1408    ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1409  }
1410
1411  Lex.Lex();  // Lex the ')'.
1412  return false;
1413}
1414
1415
1416
1417/// ParseArgumentList - Parse the argument list for a function type or function
1418/// prototype.
1419///   ::= '(' ArgTypeListI ')'
1420/// ArgTypeListI
1421///   ::= /*empty*/
1422///   ::= '...'
1423///   ::= ArgTypeList ',' '...'
1424///   ::= ArgType (',' ArgType)*
1425///
1426bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
1427                                 bool &isVarArg){
1428  isVarArg = false;
1429  assert(Lex.getKind() == lltok::lparen);
1430  Lex.Lex(); // eat the (.
1431
1432  if (Lex.getKind() == lltok::rparen) {
1433    // empty
1434  } else if (Lex.getKind() == lltok::dotdotdot) {
1435    isVarArg = true;
1436    Lex.Lex();
1437  } else {
1438    LocTy TypeLoc = Lex.getLoc();
1439    Type *ArgTy = 0;
1440    Attributes Attrs;
1441    std::string Name;
1442
1443    if (ParseType(ArgTy) ||
1444        ParseOptionalAttrs(Attrs, 0)) return true;
1445
1446    if (ArgTy->isVoidTy())
1447      return Error(TypeLoc, "argument can not have void type");
1448
1449    if (Lex.getKind() == lltok::LocalVar) {
1450      Name = Lex.getStrVal();
1451      Lex.Lex();
1452    }
1453
1454    if (!FunctionType::isValidArgumentType(ArgTy))
1455      return Error(TypeLoc, "invalid type for function argument");
1456
1457    ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1458
1459    while (EatIfPresent(lltok::comma)) {
1460      // Handle ... at end of arg list.
1461      if (EatIfPresent(lltok::dotdotdot)) {
1462        isVarArg = true;
1463        break;
1464      }
1465
1466      // Otherwise must be an argument type.
1467      TypeLoc = Lex.getLoc();
1468      if (ParseType(ArgTy) || ParseOptionalAttrs(Attrs, 0)) return true;
1469
1470      if (ArgTy->isVoidTy())
1471        return Error(TypeLoc, "argument can not have void type");
1472
1473      if (Lex.getKind() == lltok::LocalVar) {
1474        Name = Lex.getStrVal();
1475        Lex.Lex();
1476      } else {
1477        Name = "";
1478      }
1479
1480      if (!ArgTy->isFirstClassType())
1481        return Error(TypeLoc, "invalid type for function argument");
1482
1483      ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1484    }
1485  }
1486
1487  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1488}
1489
1490/// ParseFunctionType
1491///  ::= Type ArgumentList OptionalAttrs
1492bool LLParser::ParseFunctionType(Type *&Result) {
1493  assert(Lex.getKind() == lltok::lparen);
1494
1495  if (!FunctionType::isValidReturnType(Result))
1496    return TokError("invalid function return type");
1497
1498  SmallVector<ArgInfo, 8> ArgList;
1499  bool isVarArg;
1500  if (ParseArgumentList(ArgList, isVarArg))
1501    return true;
1502
1503  // Reject names on the arguments lists.
1504  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1505    if (!ArgList[i].Name.empty())
1506      return Error(ArgList[i].Loc, "argument name invalid in function type");
1507    if (ArgList[i].Attrs)
1508      return Error(ArgList[i].Loc,
1509                   "argument attributes invalid in function type");
1510  }
1511
1512  SmallVector<Type*, 16> ArgListTy;
1513  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1514    ArgListTy.push_back(ArgList[i].Ty);
1515
1516  Result = FunctionType::get(Result, ArgListTy, isVarArg);
1517  return false;
1518}
1519
1520/// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
1521/// other structs.
1522bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
1523  SmallVector<Type*, 8> Elts;
1524  if (ParseStructBody(Elts)) return true;
1525
1526  Result = StructType::get(Context, Elts, Packed);
1527  return false;
1528}
1529
1530/// ParseStructDefinition - Parse a struct in a 'type' definition.
1531bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
1532                                     std::pair<Type*, LocTy> &Entry,
1533                                     Type *&ResultTy) {
1534  // If the type was already defined, diagnose the redefinition.
1535  if (Entry.first && !Entry.second.isValid())
1536    return Error(TypeLoc, "redefinition of type");
1537
1538  // If we have opaque, just return without filling in the definition for the
1539  // struct.  This counts as a definition as far as the .ll file goes.
1540  if (EatIfPresent(lltok::kw_opaque)) {
1541    // This type is being defined, so clear the location to indicate this.
1542    Entry.second = SMLoc();
1543
1544    // If this type number has never been uttered, create it.
1545    if (Entry.first == 0)
1546      Entry.first = StructType::create(Context, Name);
1547    ResultTy = Entry.first;
1548    return false;
1549  }
1550
1551  // If the type starts with '<', then it is either a packed struct or a vector.
1552  bool isPacked = EatIfPresent(lltok::less);
1553
1554  // If we don't have a struct, then we have a random type alias, which we
1555  // accept for compatibility with old files.  These types are not allowed to be
1556  // forward referenced and not allowed to be recursive.
1557  if (Lex.getKind() != lltok::lbrace) {
1558    if (Entry.first)
1559      return Error(TypeLoc, "forward references to non-struct type");
1560
1561    ResultTy = 0;
1562    if (isPacked)
1563      return ParseArrayVectorType(ResultTy, true);
1564    return ParseType(ResultTy);
1565  }
1566
1567  // This type is being defined, so clear the location to indicate this.
1568  Entry.second = SMLoc();
1569
1570  // If this type number has never been uttered, create it.
1571  if (Entry.first == 0)
1572    Entry.first = StructType::create(Context, Name);
1573
1574  StructType *STy = cast<StructType>(Entry.first);
1575
1576  SmallVector<Type*, 8> Body;
1577  if (ParseStructBody(Body) ||
1578      (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
1579    return true;
1580
1581  STy->setBody(Body, isPacked);
1582  ResultTy = STy;
1583  return false;
1584}
1585
1586
1587/// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1588///   StructType
1589///     ::= '{' '}'
1590///     ::= '{' Type (',' Type)* '}'
1591///     ::= '<' '{' '}' '>'
1592///     ::= '<' '{' Type (',' Type)* '}' '>'
1593bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
1594  assert(Lex.getKind() == lltok::lbrace);
1595  Lex.Lex(); // Consume the '{'
1596
1597  // Handle the empty struct.
1598  if (EatIfPresent(lltok::rbrace))
1599    return false;
1600
1601  LocTy EltTyLoc = Lex.getLoc();
1602  Type *Ty = 0;
1603  if (ParseType(Ty)) return true;
1604  Body.push_back(Ty);
1605
1606  if (!StructType::isValidElementType(Ty))
1607    return Error(EltTyLoc, "invalid element type for struct");
1608
1609  while (EatIfPresent(lltok::comma)) {
1610    EltTyLoc = Lex.getLoc();
1611    if (ParseType(Ty)) return true;
1612
1613    if (!StructType::isValidElementType(Ty))
1614      return Error(EltTyLoc, "invalid element type for struct");
1615
1616    Body.push_back(Ty);
1617  }
1618
1619  return ParseToken(lltok::rbrace, "expected '}' at end of struct");
1620}
1621
1622/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1623/// token has already been consumed.
1624///   Type
1625///     ::= '[' APSINTVAL 'x' Types ']'
1626///     ::= '<' APSINTVAL 'x' Types '>'
1627bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
1628  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1629      Lex.getAPSIntVal().getBitWidth() > 64)
1630    return TokError("expected number in address space");
1631
1632  LocTy SizeLoc = Lex.getLoc();
1633  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1634  Lex.Lex();
1635
1636  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1637      return true;
1638
1639  LocTy TypeLoc = Lex.getLoc();
1640  Type *EltTy = 0;
1641  if (ParseType(EltTy)) return true;
1642
1643  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1644                 "expected end of sequential type"))
1645    return true;
1646
1647  if (isVector) {
1648    if (Size == 0)
1649      return Error(SizeLoc, "zero element vector is illegal");
1650    if ((unsigned)Size != Size)
1651      return Error(SizeLoc, "size too large for vector");
1652    if (!VectorType::isValidElementType(EltTy))
1653      return Error(TypeLoc,
1654       "vector element type must be fp, integer or a pointer to these types");
1655    Result = VectorType::get(EltTy, unsigned(Size));
1656  } else {
1657    if (!ArrayType::isValidElementType(EltTy))
1658      return Error(TypeLoc, "invalid array element type");
1659    Result = ArrayType::get(EltTy, Size);
1660  }
1661  return false;
1662}
1663
1664//===----------------------------------------------------------------------===//
1665// Function Semantic Analysis.
1666//===----------------------------------------------------------------------===//
1667
1668LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
1669                                             int functionNumber)
1670  : P(p), F(f), FunctionNumber(functionNumber) {
1671
1672  // Insert unnamed arguments into the NumberedVals list.
1673  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1674       AI != E; ++AI)
1675    if (!AI->hasName())
1676      NumberedVals.push_back(AI);
1677}
1678
1679LLParser::PerFunctionState::~PerFunctionState() {
1680  // If there were any forward referenced non-basicblock values, delete them.
1681  for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1682       I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1683    if (!isa<BasicBlock>(I->second.first)) {
1684      I->second.first->replaceAllUsesWith(
1685                           UndefValue::get(I->second.first->getType()));
1686      delete I->second.first;
1687      I->second.first = 0;
1688    }
1689
1690  for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1691       I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1692    if (!isa<BasicBlock>(I->second.first)) {
1693      I->second.first->replaceAllUsesWith(
1694                           UndefValue::get(I->second.first->getType()));
1695      delete I->second.first;
1696      I->second.first = 0;
1697    }
1698}
1699
1700bool LLParser::PerFunctionState::FinishFunction() {
1701  // Check to see if someone took the address of labels in this block.
1702  if (!P.ForwardRefBlockAddresses.empty()) {
1703    ValID FunctionID;
1704    if (!F.getName().empty()) {
1705      FunctionID.Kind = ValID::t_GlobalName;
1706      FunctionID.StrVal = F.getName();
1707    } else {
1708      FunctionID.Kind = ValID::t_GlobalID;
1709      FunctionID.UIntVal = FunctionNumber;
1710    }
1711
1712    std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
1713      FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
1714    if (FRBAI != P.ForwardRefBlockAddresses.end()) {
1715      // Resolve all these references.
1716      if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
1717        return true;
1718
1719      P.ForwardRefBlockAddresses.erase(FRBAI);
1720    }
1721  }
1722
1723  if (!ForwardRefVals.empty())
1724    return P.Error(ForwardRefVals.begin()->second.second,
1725                   "use of undefined value '%" + ForwardRefVals.begin()->first +
1726                   "'");
1727  if (!ForwardRefValIDs.empty())
1728    return P.Error(ForwardRefValIDs.begin()->second.second,
1729                   "use of undefined value '%" +
1730                   Twine(ForwardRefValIDs.begin()->first) + "'");
1731  return false;
1732}
1733
1734
1735/// GetVal - Get a value with the specified name or ID, creating a
1736/// forward reference record if needed.  This can return null if the value
1737/// exists but does not have the right type.
1738Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1739                                          Type *Ty, LocTy Loc) {
1740  // Look this name up in the normal function symbol table.
1741  Value *Val = F.getValueSymbolTable().lookup(Name);
1742
1743  // If this is a forward reference for the value, see if we already created a
1744  // forward ref record.
1745  if (Val == 0) {
1746    std::map<std::string, std::pair<Value*, LocTy> >::iterator
1747      I = ForwardRefVals.find(Name);
1748    if (I != ForwardRefVals.end())
1749      Val = I->second.first;
1750  }
1751
1752  // If we have the value in the symbol table or fwd-ref table, return it.
1753  if (Val) {
1754    if (Val->getType() == Ty) return Val;
1755    if (Ty->isLabelTy())
1756      P.Error(Loc, "'%" + Name + "' is not a basic block");
1757    else
1758      P.Error(Loc, "'%" + Name + "' defined with type '" +
1759              getTypeString(Val->getType()) + "'");
1760    return 0;
1761  }
1762
1763  // Don't make placeholders with invalid type.
1764  if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
1765    P.Error(Loc, "invalid use of a non-first-class type");
1766    return 0;
1767  }
1768
1769  // Otherwise, create a new forward reference for this value and remember it.
1770  Value *FwdVal;
1771  if (Ty->isLabelTy())
1772    FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
1773  else
1774    FwdVal = new Argument(Ty, Name);
1775
1776  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1777  return FwdVal;
1778}
1779
1780Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty,
1781                                          LocTy Loc) {
1782  // Look this name up in the normal function symbol table.
1783  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1784
1785  // If this is a forward reference for the value, see if we already created a
1786  // forward ref record.
1787  if (Val == 0) {
1788    std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1789      I = ForwardRefValIDs.find(ID);
1790    if (I != ForwardRefValIDs.end())
1791      Val = I->second.first;
1792  }
1793
1794  // If we have the value in the symbol table or fwd-ref table, return it.
1795  if (Val) {
1796    if (Val->getType() == Ty) return Val;
1797    if (Ty->isLabelTy())
1798      P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
1799    else
1800      P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
1801              getTypeString(Val->getType()) + "'");
1802    return 0;
1803  }
1804
1805  if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
1806    P.Error(Loc, "invalid use of a non-first-class type");
1807    return 0;
1808  }
1809
1810  // Otherwise, create a new forward reference for this value and remember it.
1811  Value *FwdVal;
1812  if (Ty->isLabelTy())
1813    FwdVal = BasicBlock::Create(F.getContext(), "", &F);
1814  else
1815    FwdVal = new Argument(Ty);
1816
1817  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1818  return FwdVal;
1819}
1820
1821/// SetInstName - After an instruction is parsed and inserted into its
1822/// basic block, this installs its name.
1823bool LLParser::PerFunctionState::SetInstName(int NameID,
1824                                             const std::string &NameStr,
1825                                             LocTy NameLoc, Instruction *Inst) {
1826  // If this instruction has void type, it cannot have a name or ID specified.
1827  if (Inst->getType()->isVoidTy()) {
1828    if (NameID != -1 || !NameStr.empty())
1829      return P.Error(NameLoc, "instructions returning void cannot have a name");
1830    return false;
1831  }
1832
1833  // If this was a numbered instruction, verify that the instruction is the
1834  // expected value and resolve any forward references.
1835  if (NameStr.empty()) {
1836    // If neither a name nor an ID was specified, just use the next ID.
1837    if (NameID == -1)
1838      NameID = NumberedVals.size();
1839
1840    if (unsigned(NameID) != NumberedVals.size())
1841      return P.Error(NameLoc, "instruction expected to be numbered '%" +
1842                     Twine(NumberedVals.size()) + "'");
1843
1844    std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1845      ForwardRefValIDs.find(NameID);
1846    if (FI != ForwardRefValIDs.end()) {
1847      if (FI->second.first->getType() != Inst->getType())
1848        return P.Error(NameLoc, "instruction forward referenced with type '" +
1849                       getTypeString(FI->second.first->getType()) + "'");
1850      FI->second.first->replaceAllUsesWith(Inst);
1851      delete FI->second.first;
1852      ForwardRefValIDs.erase(FI);
1853    }
1854
1855    NumberedVals.push_back(Inst);
1856    return false;
1857  }
1858
1859  // Otherwise, the instruction had a name.  Resolve forward refs and set it.
1860  std::map<std::string, std::pair<Value*, LocTy> >::iterator
1861    FI = ForwardRefVals.find(NameStr);
1862  if (FI != ForwardRefVals.end()) {
1863    if (FI->second.first->getType() != Inst->getType())
1864      return P.Error(NameLoc, "instruction forward referenced with type '" +
1865                     getTypeString(FI->second.first->getType()) + "'");
1866    FI->second.first->replaceAllUsesWith(Inst);
1867    delete FI->second.first;
1868    ForwardRefVals.erase(FI);
1869  }
1870
1871  // Set the name on the instruction.
1872  Inst->setName(NameStr);
1873
1874  if (Inst->getName() != NameStr)
1875    return P.Error(NameLoc, "multiple definition of local value named '" +
1876                   NameStr + "'");
1877  return false;
1878}
1879
1880/// GetBB - Get a basic block with the specified name or ID, creating a
1881/// forward reference record if needed.
1882BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1883                                              LocTy Loc) {
1884  return cast_or_null<BasicBlock>(GetVal(Name,
1885                                        Type::getLabelTy(F.getContext()), Loc));
1886}
1887
1888BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1889  return cast_or_null<BasicBlock>(GetVal(ID,
1890                                        Type::getLabelTy(F.getContext()), Loc));
1891}
1892
1893/// DefineBB - Define the specified basic block, which is either named or
1894/// unnamed.  If there is an error, this returns null otherwise it returns
1895/// the block being defined.
1896BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1897                                                 LocTy Loc) {
1898  BasicBlock *BB;
1899  if (Name.empty())
1900    BB = GetBB(NumberedVals.size(), Loc);
1901  else
1902    BB = GetBB(Name, Loc);
1903  if (BB == 0) return 0; // Already diagnosed error.
1904
1905  // Move the block to the end of the function.  Forward ref'd blocks are
1906  // inserted wherever they happen to be referenced.
1907  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1908
1909  // Remove the block from forward ref sets.
1910  if (Name.empty()) {
1911    ForwardRefValIDs.erase(NumberedVals.size());
1912    NumberedVals.push_back(BB);
1913  } else {
1914    // BB forward references are already in the function symbol table.
1915    ForwardRefVals.erase(Name);
1916  }
1917
1918  return BB;
1919}
1920
1921//===----------------------------------------------------------------------===//
1922// Constants.
1923//===----------------------------------------------------------------------===//
1924
1925/// ParseValID - Parse an abstract value that doesn't necessarily have a
1926/// type implied.  For example, if we parse "4" we don't know what integer type
1927/// it has.  The value will later be combined with its type and checked for
1928/// sanity.  PFS is used to convert function-local operands of metadata (since
1929/// metadata operands are not just parsed here but also converted to values).
1930/// PFS can be null when we are not parsing metadata values inside a function.
1931bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
1932  ID.Loc = Lex.getLoc();
1933  switch (Lex.getKind()) {
1934  default: return TokError("expected value token");
1935  case lltok::GlobalID:  // @42
1936    ID.UIntVal = Lex.getUIntVal();
1937    ID.Kind = ValID::t_GlobalID;
1938    break;
1939  case lltok::GlobalVar:  // @foo
1940    ID.StrVal = Lex.getStrVal();
1941    ID.Kind = ValID::t_GlobalName;
1942    break;
1943  case lltok::LocalVarID:  // %42
1944    ID.UIntVal = Lex.getUIntVal();
1945    ID.Kind = ValID::t_LocalID;
1946    break;
1947  case lltok::LocalVar:  // %foo
1948    ID.StrVal = Lex.getStrVal();
1949    ID.Kind = ValID::t_LocalName;
1950    break;
1951  case lltok::exclaim:   // !42, !{...}, or !"foo"
1952    return ParseMetadataValue(ID, PFS);
1953  case lltok::APSInt:
1954    ID.APSIntVal = Lex.getAPSIntVal();
1955    ID.Kind = ValID::t_APSInt;
1956    break;
1957  case lltok::APFloat:
1958    ID.APFloatVal = Lex.getAPFloatVal();
1959    ID.Kind = ValID::t_APFloat;
1960    break;
1961  case lltok::kw_true:
1962    ID.ConstantVal = ConstantInt::getTrue(Context);
1963    ID.Kind = ValID::t_Constant;
1964    break;
1965  case lltok::kw_false:
1966    ID.ConstantVal = ConstantInt::getFalse(Context);
1967    ID.Kind = ValID::t_Constant;
1968    break;
1969  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
1970  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
1971  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
1972
1973  case lltok::lbrace: {
1974    // ValID ::= '{' ConstVector '}'
1975    Lex.Lex();
1976    SmallVector<Constant*, 16> Elts;
1977    if (ParseGlobalValueVector(Elts) ||
1978        ParseToken(lltok::rbrace, "expected end of struct constant"))
1979      return true;
1980
1981    ID.ConstantStructElts = new Constant*[Elts.size()];
1982    ID.UIntVal = Elts.size();
1983    memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
1984    ID.Kind = ValID::t_ConstantStruct;
1985    return false;
1986  }
1987  case lltok::less: {
1988    // ValID ::= '<' ConstVector '>'         --> Vector.
1989    // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1990    Lex.Lex();
1991    bool isPackedStruct = EatIfPresent(lltok::lbrace);
1992
1993    SmallVector<Constant*, 16> Elts;
1994    LocTy FirstEltLoc = Lex.getLoc();
1995    if (ParseGlobalValueVector(Elts) ||
1996        (isPackedStruct &&
1997         ParseToken(lltok::rbrace, "expected end of packed struct")) ||
1998        ParseToken(lltok::greater, "expected end of constant"))
1999      return true;
2000
2001    if (isPackedStruct) {
2002      ID.ConstantStructElts = new Constant*[Elts.size()];
2003      memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
2004      ID.UIntVal = Elts.size();
2005      ID.Kind = ValID::t_PackedConstantStruct;
2006      return false;
2007    }
2008
2009    if (Elts.empty())
2010      return Error(ID.Loc, "constant vector must not be empty");
2011
2012    if (!Elts[0]->getType()->isIntegerTy() &&
2013        !Elts[0]->getType()->isFloatingPointTy() &&
2014        !Elts[0]->getType()->isPointerTy())
2015      return Error(FirstEltLoc,
2016            "vector elements must have integer, pointer or floating point type");
2017
2018    // Verify that all the vector elements have the same type.
2019    for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2020      if (Elts[i]->getType() != Elts[0]->getType())
2021        return Error(FirstEltLoc,
2022                     "vector element #" + Twine(i) +
2023                    " is not of type '" + getTypeString(Elts[0]->getType()));
2024
2025    ID.ConstantVal = ConstantVector::get(Elts);
2026    ID.Kind = ValID::t_Constant;
2027    return false;
2028  }
2029  case lltok::lsquare: {   // Array Constant
2030    Lex.Lex();
2031    SmallVector<Constant*, 16> Elts;
2032    LocTy FirstEltLoc = Lex.getLoc();
2033    if (ParseGlobalValueVector(Elts) ||
2034        ParseToken(lltok::rsquare, "expected end of array constant"))
2035      return true;
2036
2037    // Handle empty element.
2038    if (Elts.empty()) {
2039      // Use undef instead of an array because it's inconvenient to determine
2040      // the element type at this point, there being no elements to examine.
2041      ID.Kind = ValID::t_EmptyArray;
2042      return false;
2043    }
2044
2045    if (!Elts[0]->getType()->isFirstClassType())
2046      return Error(FirstEltLoc, "invalid array element type: " +
2047                   getTypeString(Elts[0]->getType()));
2048
2049    ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2050
2051    // Verify all elements are correct type!
2052    for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2053      if (Elts[i]->getType() != Elts[0]->getType())
2054        return Error(FirstEltLoc,
2055                     "array element #" + Twine(i) +
2056                     " is not of type '" + getTypeString(Elts[0]->getType()));
2057    }
2058
2059    ID.ConstantVal = ConstantArray::get(ATy, Elts);
2060    ID.Kind = ValID::t_Constant;
2061    return false;
2062  }
2063  case lltok::kw_c:  // c "foo"
2064    Lex.Lex();
2065    ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
2066                                                  false);
2067    if (ParseToken(lltok::StringConstant, "expected string")) return true;
2068    ID.Kind = ValID::t_Constant;
2069    return false;
2070
2071  case lltok::kw_asm: {
2072    // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT
2073    bool HasSideEffect, AlignStack;
2074    Lex.Lex();
2075    if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2076        ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2077        ParseStringConstant(ID.StrVal) ||
2078        ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2079        ParseToken(lltok::StringConstant, "expected constraint string"))
2080      return true;
2081    ID.StrVal2 = Lex.getStrVal();
2082    ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1);
2083    ID.Kind = ValID::t_InlineAsm;
2084    return false;
2085  }
2086
2087  case lltok::kw_blockaddress: {
2088    // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2089    Lex.Lex();
2090
2091    ValID Fn, Label;
2092    LocTy FnLoc, LabelLoc;
2093
2094    if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2095        ParseValID(Fn) ||
2096        ParseToken(lltok::comma, "expected comma in block address expression")||
2097        ParseValID(Label) ||
2098        ParseToken(lltok::rparen, "expected ')' in block address expression"))
2099      return true;
2100
2101    if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2102      return Error(Fn.Loc, "expected function name in blockaddress");
2103    if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2104      return Error(Label.Loc, "expected basic block name in blockaddress");
2105
2106    // Make a global variable as a placeholder for this reference.
2107    GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
2108                                           false, GlobalValue::InternalLinkage,
2109                                                0, "");
2110    ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
2111    ID.ConstantVal = FwdRef;
2112    ID.Kind = ValID::t_Constant;
2113    return false;
2114  }
2115
2116  case lltok::kw_trunc:
2117  case lltok::kw_zext:
2118  case lltok::kw_sext:
2119  case lltok::kw_fptrunc:
2120  case lltok::kw_fpext:
2121  case lltok::kw_bitcast:
2122  case lltok::kw_uitofp:
2123  case lltok::kw_sitofp:
2124  case lltok::kw_fptoui:
2125  case lltok::kw_fptosi:
2126  case lltok::kw_inttoptr:
2127  case lltok::kw_ptrtoint: {
2128    unsigned Opc = Lex.getUIntVal();
2129    Type *DestTy = 0;
2130    Constant *SrcVal;
2131    Lex.Lex();
2132    if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2133        ParseGlobalTypeAndValue(SrcVal) ||
2134        ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2135        ParseType(DestTy) ||
2136        ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2137      return true;
2138    if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2139      return Error(ID.Loc, "invalid cast opcode for cast from '" +
2140                   getTypeString(SrcVal->getType()) + "' to '" +
2141                   getTypeString(DestTy) + "'");
2142    ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2143                                                 SrcVal, DestTy);
2144    ID.Kind = ValID::t_Constant;
2145    return false;
2146  }
2147  case lltok::kw_extractvalue: {
2148    Lex.Lex();
2149    Constant *Val;
2150    SmallVector<unsigned, 4> Indices;
2151    if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2152        ParseGlobalTypeAndValue(Val) ||
2153        ParseIndexList(Indices) ||
2154        ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2155      return true;
2156
2157    if (!Val->getType()->isAggregateType())
2158      return Error(ID.Loc, "extractvalue operand must be aggregate type");
2159    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
2160      return Error(ID.Loc, "invalid indices for extractvalue");
2161    ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
2162    ID.Kind = ValID::t_Constant;
2163    return false;
2164  }
2165  case lltok::kw_insertvalue: {
2166    Lex.Lex();
2167    Constant *Val0, *Val1;
2168    SmallVector<unsigned, 4> Indices;
2169    if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2170        ParseGlobalTypeAndValue(Val0) ||
2171        ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2172        ParseGlobalTypeAndValue(Val1) ||
2173        ParseIndexList(Indices) ||
2174        ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2175      return true;
2176    if (!Val0->getType()->isAggregateType())
2177      return Error(ID.Loc, "insertvalue operand must be aggregate type");
2178    if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
2179      return Error(ID.Loc, "invalid indices for insertvalue");
2180    ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
2181    ID.Kind = ValID::t_Constant;
2182    return false;
2183  }
2184  case lltok::kw_icmp:
2185  case lltok::kw_fcmp: {
2186    unsigned PredVal, Opc = Lex.getUIntVal();
2187    Constant *Val0, *Val1;
2188    Lex.Lex();
2189    if (ParseCmpPredicate(PredVal, Opc) ||
2190        ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2191        ParseGlobalTypeAndValue(Val0) ||
2192        ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2193        ParseGlobalTypeAndValue(Val1) ||
2194        ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2195      return true;
2196
2197    if (Val0->getType() != Val1->getType())
2198      return Error(ID.Loc, "compare operands must have the same type");
2199
2200    CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2201
2202    if (Opc == Instruction::FCmp) {
2203      if (!Val0->getType()->isFPOrFPVectorTy())
2204        return Error(ID.Loc, "fcmp requires floating point operands");
2205      ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2206    } else {
2207      assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2208      if (!Val0->getType()->isIntOrIntVectorTy() &&
2209          !Val0->getType()->getScalarType()->isPointerTy())
2210        return Error(ID.Loc, "icmp requires pointer or integer operands");
2211      ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2212    }
2213    ID.Kind = ValID::t_Constant;
2214    return false;
2215  }
2216
2217  // Binary Operators.
2218  case lltok::kw_add:
2219  case lltok::kw_fadd:
2220  case lltok::kw_sub:
2221  case lltok::kw_fsub:
2222  case lltok::kw_mul:
2223  case lltok::kw_fmul:
2224  case lltok::kw_udiv:
2225  case lltok::kw_sdiv:
2226  case lltok::kw_fdiv:
2227  case lltok::kw_urem:
2228  case lltok::kw_srem:
2229  case lltok::kw_frem:
2230  case lltok::kw_shl:
2231  case lltok::kw_lshr:
2232  case lltok::kw_ashr: {
2233    bool NUW = false;
2234    bool NSW = false;
2235    bool Exact = false;
2236    unsigned Opc = Lex.getUIntVal();
2237    Constant *Val0, *Val1;
2238    Lex.Lex();
2239    LocTy ModifierLoc = Lex.getLoc();
2240    if (Opc == Instruction::Add || Opc == Instruction::Sub ||
2241        Opc == Instruction::Mul || Opc == Instruction::Shl) {
2242      if (EatIfPresent(lltok::kw_nuw))
2243        NUW = true;
2244      if (EatIfPresent(lltok::kw_nsw)) {
2245        NSW = true;
2246        if (EatIfPresent(lltok::kw_nuw))
2247          NUW = true;
2248      }
2249    } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
2250               Opc == Instruction::LShr || Opc == Instruction::AShr) {
2251      if (EatIfPresent(lltok::kw_exact))
2252        Exact = true;
2253    }
2254    if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2255        ParseGlobalTypeAndValue(Val0) ||
2256        ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2257        ParseGlobalTypeAndValue(Val1) ||
2258        ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2259      return true;
2260    if (Val0->getType() != Val1->getType())
2261      return Error(ID.Loc, "operands of constexpr must have same type");
2262    if (!Val0->getType()->isIntOrIntVectorTy()) {
2263      if (NUW)
2264        return Error(ModifierLoc, "nuw only applies to integer operations");
2265      if (NSW)
2266        return Error(ModifierLoc, "nsw only applies to integer operations");
2267    }
2268    // Check that the type is valid for the operator.
2269    switch (Opc) {
2270    case Instruction::Add:
2271    case Instruction::Sub:
2272    case Instruction::Mul:
2273    case Instruction::UDiv:
2274    case Instruction::SDiv:
2275    case Instruction::URem:
2276    case Instruction::SRem:
2277    case Instruction::Shl:
2278    case Instruction::AShr:
2279    case Instruction::LShr:
2280      if (!Val0->getType()->isIntOrIntVectorTy())
2281        return Error(ID.Loc, "constexpr requires integer operands");
2282      break;
2283    case Instruction::FAdd:
2284    case Instruction::FSub:
2285    case Instruction::FMul:
2286    case Instruction::FDiv:
2287    case Instruction::FRem:
2288      if (!Val0->getType()->isFPOrFPVectorTy())
2289        return Error(ID.Loc, "constexpr requires fp operands");
2290      break;
2291    default: llvm_unreachable("Unknown binary operator!");
2292    }
2293    unsigned Flags = 0;
2294    if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2295    if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
2296    if (Exact) Flags |= PossiblyExactOperator::IsExact;
2297    Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2298    ID.ConstantVal = C;
2299    ID.Kind = ValID::t_Constant;
2300    return false;
2301  }
2302
2303  // Logical Operations
2304  case lltok::kw_and:
2305  case lltok::kw_or:
2306  case lltok::kw_xor: {
2307    unsigned Opc = Lex.getUIntVal();
2308    Constant *Val0, *Val1;
2309    Lex.Lex();
2310    if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2311        ParseGlobalTypeAndValue(Val0) ||
2312        ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2313        ParseGlobalTypeAndValue(Val1) ||
2314        ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2315      return true;
2316    if (Val0->getType() != Val1->getType())
2317      return Error(ID.Loc, "operands of constexpr must have same type");
2318    if (!Val0->getType()->isIntOrIntVectorTy())
2319      return Error(ID.Loc,
2320                   "constexpr requires integer or integer vector operands");
2321    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2322    ID.Kind = ValID::t_Constant;
2323    return false;
2324  }
2325
2326  case lltok::kw_getelementptr:
2327  case lltok::kw_shufflevector:
2328  case lltok::kw_insertelement:
2329  case lltok::kw_extractelement:
2330  case lltok::kw_select: {
2331    unsigned Opc = Lex.getUIntVal();
2332    SmallVector<Constant*, 16> Elts;
2333    bool InBounds = false;
2334    Lex.Lex();
2335    if (Opc == Instruction::GetElementPtr)
2336      InBounds = EatIfPresent(lltok::kw_inbounds);
2337    if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2338        ParseGlobalValueVector(Elts) ||
2339        ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2340      return true;
2341
2342    if (Opc == Instruction::GetElementPtr) {
2343      if (Elts.size() == 0 ||
2344          !Elts[0]->getType()->getScalarType()->isPointerTy())
2345        return Error(ID.Loc, "getelementptr requires pointer operand");
2346
2347      ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2348      if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), Indices))
2349        return Error(ID.Loc, "invalid indices for getelementptr");
2350      ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0], Indices,
2351                                                      InBounds);
2352    } else if (Opc == Instruction::Select) {
2353      if (Elts.size() != 3)
2354        return Error(ID.Loc, "expected three operands to select");
2355      if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2356                                                              Elts[2]))
2357        return Error(ID.Loc, Reason);
2358      ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2359    } else if (Opc == Instruction::ShuffleVector) {
2360      if (Elts.size() != 3)
2361        return Error(ID.Loc, "expected three operands to shufflevector");
2362      if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2363        return Error(ID.Loc, "invalid operands to shufflevector");
2364      ID.ConstantVal =
2365                 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2366    } else if (Opc == Instruction::ExtractElement) {
2367      if (Elts.size() != 2)
2368        return Error(ID.Loc, "expected two operands to extractelement");
2369      if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2370        return Error(ID.Loc, "invalid extractelement operands");
2371      ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2372    } else {
2373      assert(Opc == Instruction::InsertElement && "Unknown opcode");
2374      if (Elts.size() != 3)
2375      return Error(ID.Loc, "expected three operands to insertelement");
2376      if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2377        return Error(ID.Loc, "invalid insertelement operands");
2378      ID.ConstantVal =
2379                 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2380    }
2381
2382    ID.Kind = ValID::t_Constant;
2383    return false;
2384  }
2385  }
2386
2387  Lex.Lex();
2388  return false;
2389}
2390
2391/// ParseGlobalValue - Parse a global value with the specified type.
2392bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
2393  C = 0;
2394  ValID ID;
2395  Value *V = NULL;
2396  bool Parsed = ParseValID(ID) ||
2397                ConvertValIDToValue(Ty, ID, V, NULL);
2398  if (V && !(C = dyn_cast<Constant>(V)))
2399    return Error(ID.Loc, "global values must be constants");
2400  return Parsed;
2401}
2402
2403bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2404  Type *Ty = 0;
2405  return ParseType(Ty) ||
2406         ParseGlobalValue(Ty, V);
2407}
2408
2409/// ParseGlobalValueVector
2410///   ::= /*empty*/
2411///   ::= TypeAndValue (',' TypeAndValue)*
2412bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2413  // Empty list.
2414  if (Lex.getKind() == lltok::rbrace ||
2415      Lex.getKind() == lltok::rsquare ||
2416      Lex.getKind() == lltok::greater ||
2417      Lex.getKind() == lltok::rparen)
2418    return false;
2419
2420  Constant *C;
2421  if (ParseGlobalTypeAndValue(C)) return true;
2422  Elts.push_back(C);
2423
2424  while (EatIfPresent(lltok::comma)) {
2425    if (ParseGlobalTypeAndValue(C)) return true;
2426    Elts.push_back(C);
2427  }
2428
2429  return false;
2430}
2431
2432bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) {
2433  assert(Lex.getKind() == lltok::lbrace);
2434  Lex.Lex();
2435
2436  SmallVector<Value*, 16> Elts;
2437  if (ParseMDNodeVector(Elts, PFS) ||
2438      ParseToken(lltok::rbrace, "expected end of metadata node"))
2439    return true;
2440
2441  ID.MDNodeVal = MDNode::get(Context, Elts);
2442  ID.Kind = ValID::t_MDNode;
2443  return false;
2444}
2445
2446/// ParseMetadataValue
2447///  ::= !42
2448///  ::= !{...}
2449///  ::= !"string"
2450bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) {
2451  assert(Lex.getKind() == lltok::exclaim);
2452  Lex.Lex();
2453
2454  // MDNode:
2455  // !{ ... }
2456  if (Lex.getKind() == lltok::lbrace)
2457    return ParseMetadataListValue(ID, PFS);
2458
2459  // Standalone metadata reference
2460  // !42
2461  if (Lex.getKind() == lltok::APSInt) {
2462    if (ParseMDNodeID(ID.MDNodeVal)) return true;
2463    ID.Kind = ValID::t_MDNode;
2464    return false;
2465  }
2466
2467  // MDString:
2468  //   ::= '!' STRINGCONSTANT
2469  if (ParseMDString(ID.MDStringVal)) return true;
2470  ID.Kind = ValID::t_MDString;
2471  return false;
2472}
2473
2474
2475//===----------------------------------------------------------------------===//
2476// Function Parsing.
2477//===----------------------------------------------------------------------===//
2478
2479bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
2480                                   PerFunctionState *PFS) {
2481  if (Ty->isFunctionTy())
2482    return Error(ID.Loc, "functions are not values, refer to them as pointers");
2483
2484  switch (ID.Kind) {
2485  case ValID::t_LocalID:
2486    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2487    V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
2488    return (V == 0);
2489  case ValID::t_LocalName:
2490    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2491    V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
2492    return (V == 0);
2493  case ValID::t_InlineAsm: {
2494    PointerType *PTy = dyn_cast<PointerType>(Ty);
2495    FunctionType *FTy =
2496      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2497    if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2498      return Error(ID.Loc, "invalid type for inline asm constraint string");
2499    V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, ID.UIntVal>>1);
2500    return false;
2501  }
2502  case ValID::t_MDNode:
2503    if (!Ty->isMetadataTy())
2504      return Error(ID.Loc, "metadata value must have metadata type");
2505    V = ID.MDNodeVal;
2506    return false;
2507  case ValID::t_MDString:
2508    if (!Ty->isMetadataTy())
2509      return Error(ID.Loc, "metadata value must have metadata type");
2510    V = ID.MDStringVal;
2511    return false;
2512  case ValID::t_GlobalName:
2513    V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2514    return V == 0;
2515  case ValID::t_GlobalID:
2516    V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2517    return V == 0;
2518  case ValID::t_APSInt:
2519    if (!Ty->isIntegerTy())
2520      return Error(ID.Loc, "integer constant must have integer type");
2521    ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2522    V = ConstantInt::get(Context, ID.APSIntVal);
2523    return false;
2524  case ValID::t_APFloat:
2525    if (!Ty->isFloatingPointTy() ||
2526        !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2527      return Error(ID.Loc, "floating point constant invalid for type");
2528
2529    // The lexer has no type info, so builds all half, float, and double FP
2530    // constants as double.  Fix this here.  Long double does not need this.
2531    if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) {
2532      bool Ignored;
2533      if (Ty->isHalfTy())
2534        ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven,
2535                              &Ignored);
2536      else if (Ty->isFloatTy())
2537        ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2538                              &Ignored);
2539    }
2540    V = ConstantFP::get(Context, ID.APFloatVal);
2541
2542    if (V->getType() != Ty)
2543      return Error(ID.Loc, "floating point constant does not have type '" +
2544                   getTypeString(Ty) + "'");
2545
2546    return false;
2547  case ValID::t_Null:
2548    if (!Ty->isPointerTy())
2549      return Error(ID.Loc, "null must be a pointer type");
2550    V = ConstantPointerNull::get(cast<PointerType>(Ty));
2551    return false;
2552  case ValID::t_Undef:
2553    // FIXME: LabelTy should not be a first-class type.
2554    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2555      return Error(ID.Loc, "invalid type for undef constant");
2556    V = UndefValue::get(Ty);
2557    return false;
2558  case ValID::t_EmptyArray:
2559    if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
2560      return Error(ID.Loc, "invalid empty array initializer");
2561    V = UndefValue::get(Ty);
2562    return false;
2563  case ValID::t_Zero:
2564    // FIXME: LabelTy should not be a first-class type.
2565    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2566      return Error(ID.Loc, "invalid type for null constant");
2567    V = Constant::getNullValue(Ty);
2568    return false;
2569  case ValID::t_Constant:
2570    if (ID.ConstantVal->getType() != Ty)
2571      return Error(ID.Loc, "constant expression type mismatch");
2572
2573    V = ID.ConstantVal;
2574    return false;
2575  case ValID::t_ConstantStruct:
2576  case ValID::t_PackedConstantStruct:
2577    if (StructType *ST = dyn_cast<StructType>(Ty)) {
2578      if (ST->getNumElements() != ID.UIntVal)
2579        return Error(ID.Loc,
2580                     "initializer with struct type has wrong # elements");
2581      if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
2582        return Error(ID.Loc, "packed'ness of initializer and type don't match");
2583
2584      // Verify that the elements are compatible with the structtype.
2585      for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
2586        if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
2587          return Error(ID.Loc, "element " + Twine(i) +
2588                    " of struct initializer doesn't match struct element type");
2589
2590      V = ConstantStruct::get(ST, makeArrayRef(ID.ConstantStructElts,
2591                                               ID.UIntVal));
2592    } else
2593      return Error(ID.Loc, "constant expression type mismatch");
2594    return false;
2595  }
2596  llvm_unreachable("Invalid ValID");
2597}
2598
2599bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
2600  V = 0;
2601  ValID ID;
2602  return ParseValID(ID, PFS) ||
2603         ConvertValIDToValue(Ty, ID, V, PFS);
2604}
2605
2606bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
2607  Type *Ty = 0;
2608  return ParseType(Ty) ||
2609         ParseValue(Ty, V, PFS);
2610}
2611
2612bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
2613                                      PerFunctionState &PFS) {
2614  Value *V;
2615  Loc = Lex.getLoc();
2616  if (ParseTypeAndValue(V, PFS)) return true;
2617  if (!isa<BasicBlock>(V))
2618    return Error(Loc, "expected a basic block");
2619  BB = cast<BasicBlock>(V);
2620  return false;
2621}
2622
2623
2624/// FunctionHeader
2625///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2626///       OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2627///       OptionalAlign OptGC
2628bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2629  // Parse the linkage.
2630  LocTy LinkageLoc = Lex.getLoc();
2631  unsigned Linkage;
2632
2633  unsigned Visibility;
2634  Attributes RetAttrs;
2635  CallingConv::ID CC;
2636  Type *RetType = 0;
2637  LocTy RetTypeLoc = Lex.getLoc();
2638  if (ParseOptionalLinkage(Linkage) ||
2639      ParseOptionalVisibility(Visibility) ||
2640      ParseOptionalCallingConv(CC) ||
2641      ParseOptionalAttrs(RetAttrs, 1) ||
2642      ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2643    return true;
2644
2645  // Verify that the linkage is ok.
2646  switch ((GlobalValue::LinkageTypes)Linkage) {
2647  case GlobalValue::ExternalLinkage:
2648    break; // always ok.
2649  case GlobalValue::DLLImportLinkage:
2650  case GlobalValue::ExternalWeakLinkage:
2651    if (isDefine)
2652      return Error(LinkageLoc, "invalid linkage for function definition");
2653    break;
2654  case GlobalValue::PrivateLinkage:
2655  case GlobalValue::LinkerPrivateLinkage:
2656  case GlobalValue::LinkerPrivateWeakLinkage:
2657  case GlobalValue::InternalLinkage:
2658  case GlobalValue::AvailableExternallyLinkage:
2659  case GlobalValue::LinkOnceAnyLinkage:
2660  case GlobalValue::LinkOnceODRLinkage:
2661  case GlobalValue::LinkOnceODRAutoHideLinkage:
2662  case GlobalValue::WeakAnyLinkage:
2663  case GlobalValue::WeakODRLinkage:
2664  case GlobalValue::DLLExportLinkage:
2665    if (!isDefine)
2666      return Error(LinkageLoc, "invalid linkage for function declaration");
2667    break;
2668  case GlobalValue::AppendingLinkage:
2669  case GlobalValue::CommonLinkage:
2670    return Error(LinkageLoc, "invalid function linkage type");
2671  }
2672
2673  if (!FunctionType::isValidReturnType(RetType))
2674    return Error(RetTypeLoc, "invalid function return type");
2675
2676  LocTy NameLoc = Lex.getLoc();
2677
2678  std::string FunctionName;
2679  if (Lex.getKind() == lltok::GlobalVar) {
2680    FunctionName = Lex.getStrVal();
2681  } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
2682    unsigned NameID = Lex.getUIntVal();
2683
2684    if (NameID != NumberedVals.size())
2685      return TokError("function expected to be numbered '%" +
2686                      Twine(NumberedVals.size()) + "'");
2687  } else {
2688    return TokError("expected function name");
2689  }
2690
2691  Lex.Lex();
2692
2693  if (Lex.getKind() != lltok::lparen)
2694    return TokError("expected '(' in function argument list");
2695
2696  SmallVector<ArgInfo, 8> ArgList;
2697  bool isVarArg;
2698  Attributes FuncAttrs;
2699  std::string Section;
2700  unsigned Alignment;
2701  std::string GC;
2702  bool UnnamedAddr;
2703  LocTy UnnamedAddrLoc;
2704
2705  if (ParseArgumentList(ArgList, isVarArg) ||
2706      ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
2707                         &UnnamedAddrLoc) ||
2708      ParseOptionalAttrs(FuncAttrs, 2) ||
2709      (EatIfPresent(lltok::kw_section) &&
2710       ParseStringConstant(Section)) ||
2711      ParseOptionalAlignment(Alignment) ||
2712      (EatIfPresent(lltok::kw_gc) &&
2713       ParseStringConstant(GC)))
2714    return true;
2715
2716  // If the alignment was parsed as an attribute, move to the alignment field.
2717  if (FuncAttrs & Attribute::Alignment) {
2718    Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2719    FuncAttrs &= ~Attribute::Alignment;
2720  }
2721
2722  // Okay, if we got here, the function is syntactically valid.  Convert types
2723  // and do semantic checks.
2724  std::vector<Type*> ParamTypeList;
2725  SmallVector<AttributeWithIndex, 8> Attrs;
2726
2727  if (RetAttrs != Attribute::None)
2728    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2729
2730  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2731    ParamTypeList.push_back(ArgList[i].Ty);
2732    if (ArgList[i].Attrs != Attribute::None)
2733      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2734  }
2735
2736  if (FuncAttrs != Attribute::None)
2737    Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2738
2739  AttrListPtr PAL = AttrListPtr::get(Attrs);
2740
2741  if (PAL.paramHasAttr(1, Attribute::StructRet) && !RetType->isVoidTy())
2742    return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2743
2744  FunctionType *FT =
2745    FunctionType::get(RetType, ParamTypeList, isVarArg);
2746  PointerType *PFT = PointerType::getUnqual(FT);
2747
2748  Fn = 0;
2749  if (!FunctionName.empty()) {
2750    // If this was a definition of a forward reference, remove the definition
2751    // from the forward reference table and fill in the forward ref.
2752    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2753      ForwardRefVals.find(FunctionName);
2754    if (FRVI != ForwardRefVals.end()) {
2755      Fn = M->getFunction(FunctionName);
2756      if (Fn->getType() != PFT)
2757        return Error(FRVI->second.second, "invalid forward reference to "
2758                     "function '" + FunctionName + "' with wrong type!");
2759
2760      ForwardRefVals.erase(FRVI);
2761    } else if ((Fn = M->getFunction(FunctionName))) {
2762      // Reject redefinitions.
2763      return Error(NameLoc, "invalid redefinition of function '" +
2764                   FunctionName + "'");
2765    } else if (M->getNamedValue(FunctionName)) {
2766      return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
2767    }
2768
2769  } else {
2770    // If this is a definition of a forward referenced function, make sure the
2771    // types agree.
2772    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2773      = ForwardRefValIDs.find(NumberedVals.size());
2774    if (I != ForwardRefValIDs.end()) {
2775      Fn = cast<Function>(I->second.first);
2776      if (Fn->getType() != PFT)
2777        return Error(NameLoc, "type of definition and forward reference of '@" +
2778                     Twine(NumberedVals.size()) + "' disagree");
2779      ForwardRefValIDs.erase(I);
2780    }
2781  }
2782
2783  if (Fn == 0)
2784    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2785  else // Move the forward-reference to the correct spot in the module.
2786    M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2787
2788  if (FunctionName.empty())
2789    NumberedVals.push_back(Fn);
2790
2791  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2792  Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2793  Fn->setCallingConv(CC);
2794  Fn->setAttributes(PAL);
2795  Fn->setUnnamedAddr(UnnamedAddr);
2796  Fn->setAlignment(Alignment);
2797  Fn->setSection(Section);
2798  if (!GC.empty()) Fn->setGC(GC.c_str());
2799
2800  // Add all of the arguments we parsed to the function.
2801  Function::arg_iterator ArgIt = Fn->arg_begin();
2802  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2803    // If the argument has a name, insert it into the argument symbol table.
2804    if (ArgList[i].Name.empty()) continue;
2805
2806    // Set the name, if it conflicted, it will be auto-renamed.
2807    ArgIt->setName(ArgList[i].Name);
2808
2809    if (ArgIt->getName() != ArgList[i].Name)
2810      return Error(ArgList[i].Loc, "redefinition of argument '%" +
2811                   ArgList[i].Name + "'");
2812  }
2813
2814  return false;
2815}
2816
2817
2818/// ParseFunctionBody
2819///   ::= '{' BasicBlock+ '}'
2820///
2821bool LLParser::ParseFunctionBody(Function &Fn) {
2822  if (Lex.getKind() != lltok::lbrace)
2823    return TokError("expected '{' in function body");
2824  Lex.Lex();  // eat the {.
2825
2826  int FunctionNumber = -1;
2827  if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
2828
2829  PerFunctionState PFS(*this, Fn, FunctionNumber);
2830
2831  // We need at least one basic block.
2832  if (Lex.getKind() == lltok::rbrace)
2833    return TokError("function body requires at least one basic block");
2834
2835  while (Lex.getKind() != lltok::rbrace)
2836    if (ParseBasicBlock(PFS)) return true;
2837
2838  // Eat the }.
2839  Lex.Lex();
2840
2841  // Verify function is ok.
2842  return PFS.FinishFunction();
2843}
2844
2845/// ParseBasicBlock
2846///   ::= LabelStr? Instruction*
2847bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2848  // If this basic block starts out with a name, remember it.
2849  std::string Name;
2850  LocTy NameLoc = Lex.getLoc();
2851  if (Lex.getKind() == lltok::LabelStr) {
2852    Name = Lex.getStrVal();
2853    Lex.Lex();
2854  }
2855
2856  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2857  if (BB == 0) return true;
2858
2859  std::string NameStr;
2860
2861  // Parse the instructions in this block until we get a terminator.
2862  Instruction *Inst;
2863  SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst;
2864  do {
2865    // This instruction may have three possibilities for a name: a) none
2866    // specified, b) name specified "%foo =", c) number specified: "%4 =".
2867    LocTy NameLoc = Lex.getLoc();
2868    int NameID = -1;
2869    NameStr = "";
2870
2871    if (Lex.getKind() == lltok::LocalVarID) {
2872      NameID = Lex.getUIntVal();
2873      Lex.Lex();
2874      if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2875        return true;
2876    } else if (Lex.getKind() == lltok::LocalVar) {
2877      NameStr = Lex.getStrVal();
2878      Lex.Lex();
2879      if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2880        return true;
2881    }
2882
2883    switch (ParseInstruction(Inst, BB, PFS)) {
2884    default: llvm_unreachable("Unknown ParseInstruction result!");
2885    case InstError: return true;
2886    case InstNormal:
2887      BB->getInstList().push_back(Inst);
2888
2889      // With a normal result, we check to see if the instruction is followed by
2890      // a comma and metadata.
2891      if (EatIfPresent(lltok::comma))
2892        if (ParseInstructionMetadata(Inst, &PFS))
2893          return true;
2894      break;
2895    case InstExtraComma:
2896      BB->getInstList().push_back(Inst);
2897
2898      // If the instruction parser ate an extra comma at the end of it, it
2899      // *must* be followed by metadata.
2900      if (ParseInstructionMetadata(Inst, &PFS))
2901        return true;
2902      break;
2903    }
2904
2905    // Set the name on the instruction.
2906    if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2907  } while (!isa<TerminatorInst>(Inst));
2908
2909  return false;
2910}
2911
2912//===----------------------------------------------------------------------===//
2913// Instruction Parsing.
2914//===----------------------------------------------------------------------===//
2915
2916/// ParseInstruction - Parse one of the many different instructions.
2917///
2918int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2919                               PerFunctionState &PFS) {
2920  lltok::Kind Token = Lex.getKind();
2921  if (Token == lltok::Eof)
2922    return TokError("found end of file when expecting more instructions");
2923  LocTy Loc = Lex.getLoc();
2924  unsigned KeywordVal = Lex.getUIntVal();
2925  Lex.Lex();  // Eat the keyword.
2926
2927  switch (Token) {
2928  default:                    return Error(Loc, "expected instruction opcode");
2929  // Terminator Instructions.
2930  case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
2931  case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
2932  case lltok::kw_br:          return ParseBr(Inst, PFS);
2933  case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
2934  case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
2935  case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
2936  case lltok::kw_resume:      return ParseResume(Inst, PFS);
2937  // Binary Operators.
2938  case lltok::kw_add:
2939  case lltok::kw_sub:
2940  case lltok::kw_mul:
2941  case lltok::kw_shl: {
2942    bool NUW = EatIfPresent(lltok::kw_nuw);
2943    bool NSW = EatIfPresent(lltok::kw_nsw);
2944    if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
2945
2946    if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
2947
2948    if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
2949    if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
2950    return false;
2951  }
2952  case lltok::kw_fadd:
2953  case lltok::kw_fsub:
2954  case lltok::kw_fmul:    return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2955
2956  case lltok::kw_sdiv:
2957  case lltok::kw_udiv:
2958  case lltok::kw_lshr:
2959  case lltok::kw_ashr: {
2960    bool Exact = EatIfPresent(lltok::kw_exact);
2961
2962    if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
2963    if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
2964    return false;
2965  }
2966
2967  case lltok::kw_urem:
2968  case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
2969  case lltok::kw_fdiv:
2970  case lltok::kw_frem:   return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2971  case lltok::kw_and:
2972  case lltok::kw_or:
2973  case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
2974  case lltok::kw_icmp:
2975  case lltok::kw_fcmp:   return ParseCompare(Inst, PFS, KeywordVal);
2976  // Casts.
2977  case lltok::kw_trunc:
2978  case lltok::kw_zext:
2979  case lltok::kw_sext:
2980  case lltok::kw_fptrunc:
2981  case lltok::kw_fpext:
2982  case lltok::kw_bitcast:
2983  case lltok::kw_uitofp:
2984  case lltok::kw_sitofp:
2985  case lltok::kw_fptoui:
2986  case lltok::kw_fptosi:
2987  case lltok::kw_inttoptr:
2988  case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
2989  // Other.
2990  case lltok::kw_select:         return ParseSelect(Inst, PFS);
2991  case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
2992  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
2993  case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
2994  case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
2995  case lltok::kw_phi:            return ParsePHI(Inst, PFS);
2996  case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
2997  case lltok::kw_call:           return ParseCall(Inst, PFS, false);
2998  case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
2999  // Memory.
3000  case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
3001  case lltok::kw_load:           return ParseLoad(Inst, PFS);
3002  case lltok::kw_store:          return ParseStore(Inst, PFS);
3003  case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
3004  case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
3005  case lltok::kw_fence:          return ParseFence(Inst, PFS);
3006  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
3007  case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
3008  case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
3009  }
3010}
3011
3012/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
3013bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
3014  if (Opc == Instruction::FCmp) {
3015    switch (Lex.getKind()) {
3016    default: TokError("expected fcmp predicate (e.g. 'oeq')");
3017    case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
3018    case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
3019    case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
3020    case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
3021    case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
3022    case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
3023    case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
3024    case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
3025    case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
3026    case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
3027    case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
3028    case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
3029    case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
3030    case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
3031    case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
3032    case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
3033    }
3034  } else {
3035    switch (Lex.getKind()) {
3036    default: TokError("expected icmp predicate (e.g. 'eq')");
3037    case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
3038    case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
3039    case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
3040    case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
3041    case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
3042    case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
3043    case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
3044    case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
3045    case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
3046    case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
3047    }
3048  }
3049  Lex.Lex();
3050  return false;
3051}
3052
3053//===----------------------------------------------------------------------===//
3054// Terminator Instructions.
3055//===----------------------------------------------------------------------===//
3056
3057/// ParseRet - Parse a return instruction.
3058///   ::= 'ret' void (',' !dbg, !1)*
3059///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
3060bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
3061                        PerFunctionState &PFS) {
3062  SMLoc TypeLoc = Lex.getLoc();
3063  Type *Ty = 0;
3064  if (ParseType(Ty, true /*void allowed*/)) return true;
3065
3066  Type *ResType = PFS.getFunction().getReturnType();
3067
3068  if (Ty->isVoidTy()) {
3069    if (!ResType->isVoidTy())
3070      return Error(TypeLoc, "value doesn't match function result type '" +
3071                   getTypeString(ResType) + "'");
3072
3073    Inst = ReturnInst::Create(Context);
3074    return false;
3075  }
3076
3077  Value *RV;
3078  if (ParseValue(Ty, RV, PFS)) return true;
3079
3080  if (ResType != RV->getType())
3081    return Error(TypeLoc, "value doesn't match function result type '" +
3082                 getTypeString(ResType) + "'");
3083
3084  Inst = ReturnInst::Create(Context, RV);
3085  return false;
3086}
3087
3088
3089/// ParseBr
3090///   ::= 'br' TypeAndValue
3091///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3092bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
3093  LocTy Loc, Loc2;
3094  Value *Op0;
3095  BasicBlock *Op1, *Op2;
3096  if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
3097
3098  if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
3099    Inst = BranchInst::Create(BB);
3100    return false;
3101  }
3102
3103  if (Op0->getType() != Type::getInt1Ty(Context))
3104    return Error(Loc, "branch condition must have 'i1' type");
3105
3106  if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
3107      ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
3108      ParseToken(lltok::comma, "expected ',' after true destination") ||
3109      ParseTypeAndBasicBlock(Op2, Loc2, PFS))
3110    return true;
3111
3112  Inst = BranchInst::Create(Op1, Op2, Op0);
3113  return false;
3114}
3115
3116/// ParseSwitch
3117///  Instruction
3118///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
3119///  JumpTable
3120///    ::= (TypeAndValue ',' TypeAndValue)*
3121bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
3122  LocTy CondLoc, BBLoc;
3123  Value *Cond;
3124  BasicBlock *DefaultBB;
3125  if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
3126      ParseToken(lltok::comma, "expected ',' after switch condition") ||
3127      ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
3128      ParseToken(lltok::lsquare, "expected '[' with switch table"))
3129    return true;
3130
3131  if (!Cond->getType()->isIntegerTy())
3132    return Error(CondLoc, "switch condition must have integer type");
3133
3134  // Parse the jump table pairs.
3135  SmallPtrSet<Value*, 32> SeenCases;
3136  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
3137  while (Lex.getKind() != lltok::rsquare) {
3138    Value *Constant;
3139    BasicBlock *DestBB;
3140
3141    if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
3142        ParseToken(lltok::comma, "expected ',' after case value") ||
3143        ParseTypeAndBasicBlock(DestBB, PFS))
3144      return true;
3145
3146    if (!SeenCases.insert(Constant))
3147      return Error(CondLoc, "duplicate case value in switch");
3148    if (!isa<ConstantInt>(Constant))
3149      return Error(CondLoc, "case value is not a constant integer");
3150
3151    Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
3152  }
3153
3154  Lex.Lex();  // Eat the ']'.
3155
3156  SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
3157  for (unsigned i = 0, e = Table.size(); i != e; ++i)
3158    SI->addCase(Table[i].first, Table[i].second);
3159  Inst = SI;
3160  return false;
3161}
3162
3163/// ParseIndirectBr
3164///  Instruction
3165///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
3166bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
3167  LocTy AddrLoc;
3168  Value *Address;
3169  if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
3170      ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
3171      ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
3172    return true;
3173
3174  if (!Address->getType()->isPointerTy())
3175    return Error(AddrLoc, "indirectbr address must have pointer type");
3176
3177  // Parse the destination list.
3178  SmallVector<BasicBlock*, 16> DestList;
3179
3180  if (Lex.getKind() != lltok::rsquare) {
3181    BasicBlock *DestBB;
3182    if (ParseTypeAndBasicBlock(DestBB, PFS))
3183      return true;
3184    DestList.push_back(DestBB);
3185
3186    while (EatIfPresent(lltok::comma)) {
3187      if (ParseTypeAndBasicBlock(DestBB, PFS))
3188        return true;
3189      DestList.push_back(DestBB);
3190    }
3191  }
3192
3193  if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
3194    return true;
3195
3196  IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
3197  for (unsigned i = 0, e = DestList.size(); i != e; ++i)
3198    IBI->addDestination(DestList[i]);
3199  Inst = IBI;
3200  return false;
3201}
3202
3203
3204/// ParseInvoke
3205///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
3206///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
3207bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
3208  LocTy CallLoc = Lex.getLoc();
3209  Attributes RetAttrs, FnAttrs;
3210  CallingConv::ID CC;
3211  Type *RetType = 0;
3212  LocTy RetTypeLoc;
3213  ValID CalleeID;
3214  SmallVector<ParamInfo, 16> ArgList;
3215
3216  BasicBlock *NormalBB, *UnwindBB;
3217  if (ParseOptionalCallingConv(CC) ||
3218      ParseOptionalAttrs(RetAttrs, 1) ||
3219      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3220      ParseValID(CalleeID) ||
3221      ParseParameterList(ArgList, PFS) ||
3222      ParseOptionalAttrs(FnAttrs, 2) ||
3223      ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
3224      ParseTypeAndBasicBlock(NormalBB, PFS) ||
3225      ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
3226      ParseTypeAndBasicBlock(UnwindBB, PFS))
3227    return true;
3228
3229  // If RetType is a non-function pointer type, then this is the short syntax
3230  // for the call, which means that RetType is just the return type.  Infer the
3231  // rest of the function argument types from the arguments that are present.
3232  PointerType *PFTy = 0;
3233  FunctionType *Ty = 0;
3234  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3235      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3236    // Pull out the types of all of the arguments...
3237    std::vector<Type*> ParamTypes;
3238    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3239      ParamTypes.push_back(ArgList[i].V->getType());
3240
3241    if (!FunctionType::isValidReturnType(RetType))
3242      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3243
3244    Ty = FunctionType::get(RetType, ParamTypes, false);
3245    PFTy = PointerType::getUnqual(Ty);
3246  }
3247
3248  // Look up the callee.
3249  Value *Callee;
3250  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3251
3252  // Set up the Attributes for the function.
3253  SmallVector<AttributeWithIndex, 8> Attrs;
3254  if (RetAttrs != Attribute::None)
3255    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3256
3257  SmallVector<Value*, 8> Args;
3258
3259  // Loop through FunctionType's arguments and ensure they are specified
3260  // correctly.  Also, gather any parameter attributes.
3261  FunctionType::param_iterator I = Ty->param_begin();
3262  FunctionType::param_iterator E = Ty->param_end();
3263  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3264    Type *ExpectedTy = 0;
3265    if (I != E) {
3266      ExpectedTy = *I++;
3267    } else if (!Ty->isVarArg()) {
3268      return Error(ArgList[i].Loc, "too many arguments specified");
3269    }
3270
3271    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3272      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3273                   getTypeString(ExpectedTy) + "'");
3274    Args.push_back(ArgList[i].V);
3275    if (ArgList[i].Attrs != Attribute::None)
3276      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3277  }
3278
3279  if (I != E)
3280    return Error(CallLoc, "not enough parameters specified for call");
3281
3282  if (FnAttrs != Attribute::None)
3283    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3284
3285  // Finish off the Attributes and check them
3286  AttrListPtr PAL = AttrListPtr::get(Attrs);
3287
3288  InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, Args);
3289  II->setCallingConv(CC);
3290  II->setAttributes(PAL);
3291  Inst = II;
3292  return false;
3293}
3294
3295/// ParseResume
3296///   ::= 'resume' TypeAndValue
3297bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
3298  Value *Exn; LocTy ExnLoc;
3299  if (ParseTypeAndValue(Exn, ExnLoc, PFS))
3300    return true;
3301
3302  ResumeInst *RI = ResumeInst::Create(Exn);
3303  Inst = RI;
3304  return false;
3305}
3306
3307//===----------------------------------------------------------------------===//
3308// Binary Operators.
3309//===----------------------------------------------------------------------===//
3310
3311/// ParseArithmetic
3312///  ::= ArithmeticOps TypeAndValue ',' Value
3313///
3314/// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
3315/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
3316bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
3317                               unsigned Opc, unsigned OperandType) {
3318  LocTy Loc; Value *LHS, *RHS;
3319  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3320      ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
3321      ParseValue(LHS->getType(), RHS, PFS))
3322    return true;
3323
3324  bool Valid;
3325  switch (OperandType) {
3326  default: llvm_unreachable("Unknown operand type!");
3327  case 0: // int or FP.
3328    Valid = LHS->getType()->isIntOrIntVectorTy() ||
3329            LHS->getType()->isFPOrFPVectorTy();
3330    break;
3331  case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
3332  case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
3333  }
3334
3335  if (!Valid)
3336    return Error(Loc, "invalid operand type for instruction");
3337
3338  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3339  return false;
3340}
3341
3342/// ParseLogical
3343///  ::= ArithmeticOps TypeAndValue ',' Value {
3344bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3345                            unsigned Opc) {
3346  LocTy Loc; Value *LHS, *RHS;
3347  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3348      ParseToken(lltok::comma, "expected ',' in logical operation") ||
3349      ParseValue(LHS->getType(), RHS, PFS))
3350    return true;
3351
3352  if (!LHS->getType()->isIntOrIntVectorTy())
3353    return Error(Loc,"instruction requires integer or integer vector operands");
3354
3355  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3356  return false;
3357}
3358
3359
3360/// ParseCompare
3361///  ::= 'icmp' IPredicates TypeAndValue ',' Value
3362///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
3363bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3364                            unsigned Opc) {
3365  // Parse the integer/fp comparison predicate.
3366  LocTy Loc;
3367  unsigned Pred;
3368  Value *LHS, *RHS;
3369  if (ParseCmpPredicate(Pred, Opc) ||
3370      ParseTypeAndValue(LHS, Loc, PFS) ||
3371      ParseToken(lltok::comma, "expected ',' after compare value") ||
3372      ParseValue(LHS->getType(), RHS, PFS))
3373    return true;
3374
3375  if (Opc == Instruction::FCmp) {
3376    if (!LHS->getType()->isFPOrFPVectorTy())
3377      return Error(Loc, "fcmp requires floating point operands");
3378    Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3379  } else {
3380    assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3381    if (!LHS->getType()->isIntOrIntVectorTy() &&
3382        !LHS->getType()->getScalarType()->isPointerTy())
3383      return Error(Loc, "icmp requires integer operands");
3384    Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3385  }
3386  return false;
3387}
3388
3389//===----------------------------------------------------------------------===//
3390// Other Instructions.
3391//===----------------------------------------------------------------------===//
3392
3393
3394/// ParseCast
3395///   ::= CastOpc TypeAndValue 'to' Type
3396bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3397                         unsigned Opc) {
3398  LocTy Loc;
3399  Value *Op;
3400  Type *DestTy = 0;
3401  if (ParseTypeAndValue(Op, Loc, PFS) ||
3402      ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3403      ParseType(DestTy))
3404    return true;
3405
3406  if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3407    CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3408    return Error(Loc, "invalid cast opcode for cast from '" +
3409                 getTypeString(Op->getType()) + "' to '" +
3410                 getTypeString(DestTy) + "'");
3411  }
3412  Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3413  return false;
3414}
3415
3416/// ParseSelect
3417///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3418bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3419  LocTy Loc;
3420  Value *Op0, *Op1, *Op2;
3421  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3422      ParseToken(lltok::comma, "expected ',' after select condition") ||
3423      ParseTypeAndValue(Op1, PFS) ||
3424      ParseToken(lltok::comma, "expected ',' after select value") ||
3425      ParseTypeAndValue(Op2, PFS))
3426    return true;
3427
3428  if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3429    return Error(Loc, Reason);
3430
3431  Inst = SelectInst::Create(Op0, Op1, Op2);
3432  return false;
3433}
3434
3435/// ParseVA_Arg
3436///   ::= 'va_arg' TypeAndValue ',' Type
3437bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3438  Value *Op;
3439  Type *EltTy = 0;
3440  LocTy TypeLoc;
3441  if (ParseTypeAndValue(Op, PFS) ||
3442      ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3443      ParseType(EltTy, TypeLoc))
3444    return true;
3445
3446  if (!EltTy->isFirstClassType())
3447    return Error(TypeLoc, "va_arg requires operand with first class type");
3448
3449  Inst = new VAArgInst(Op, EltTy);
3450  return false;
3451}
3452
3453/// ParseExtractElement
3454///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
3455bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3456  LocTy Loc;
3457  Value *Op0, *Op1;
3458  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3459      ParseToken(lltok::comma, "expected ',' after extract value") ||
3460      ParseTypeAndValue(Op1, PFS))
3461    return true;
3462
3463  if (!ExtractElementInst::isValidOperands(Op0, Op1))
3464    return Error(Loc, "invalid extractelement operands");
3465
3466  Inst = ExtractElementInst::Create(Op0, Op1);
3467  return false;
3468}
3469
3470/// ParseInsertElement
3471///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3472bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3473  LocTy Loc;
3474  Value *Op0, *Op1, *Op2;
3475  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3476      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3477      ParseTypeAndValue(Op1, PFS) ||
3478      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3479      ParseTypeAndValue(Op2, PFS))
3480    return true;
3481
3482  if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3483    return Error(Loc, "invalid insertelement operands");
3484
3485  Inst = InsertElementInst::Create(Op0, Op1, Op2);
3486  return false;
3487}
3488
3489/// ParseShuffleVector
3490///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3491bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3492  LocTy Loc;
3493  Value *Op0, *Op1, *Op2;
3494  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3495      ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3496      ParseTypeAndValue(Op1, PFS) ||
3497      ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3498      ParseTypeAndValue(Op2, PFS))
3499    return true;
3500
3501  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3502    return Error(Loc, "invalid shufflevector operands");
3503
3504  Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3505  return false;
3506}
3507
3508/// ParsePHI
3509///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
3510int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3511  Type *Ty = 0;  LocTy TypeLoc;
3512  Value *Op0, *Op1;
3513
3514  if (ParseType(Ty, TypeLoc) ||
3515      ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3516      ParseValue(Ty, Op0, PFS) ||
3517      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3518      ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3519      ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3520    return true;
3521
3522  bool AteExtraComma = false;
3523  SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3524  while (1) {
3525    PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3526
3527    if (!EatIfPresent(lltok::comma))
3528      break;
3529
3530    if (Lex.getKind() == lltok::MetadataVar) {
3531      AteExtraComma = true;
3532      break;
3533    }
3534
3535    if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3536        ParseValue(Ty, Op0, PFS) ||
3537        ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3538        ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3539        ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3540      return true;
3541  }
3542
3543  if (!Ty->isFirstClassType())
3544    return Error(TypeLoc, "phi node must have first class type");
3545
3546  PHINode *PN = PHINode::Create(Ty, PHIVals.size());
3547  for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3548    PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3549  Inst = PN;
3550  return AteExtraComma ? InstExtraComma : InstNormal;
3551}
3552
3553/// ParseLandingPad
3554///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
3555/// Clause
3556///   ::= 'catch' TypeAndValue
3557///   ::= 'filter'
3558///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
3559bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
3560  Type *Ty = 0; LocTy TyLoc;
3561  Value *PersFn; LocTy PersFnLoc;
3562
3563  if (ParseType(Ty, TyLoc) ||
3564      ParseToken(lltok::kw_personality, "expected 'personality'") ||
3565      ParseTypeAndValue(PersFn, PersFnLoc, PFS))
3566    return true;
3567
3568  LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, 0);
3569  LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
3570
3571  while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
3572    LandingPadInst::ClauseType CT;
3573    if (EatIfPresent(lltok::kw_catch))
3574      CT = LandingPadInst::Catch;
3575    else if (EatIfPresent(lltok::kw_filter))
3576      CT = LandingPadInst::Filter;
3577    else
3578      return TokError("expected 'catch' or 'filter' clause type");
3579
3580    Value *V; LocTy VLoc;
3581    if (ParseTypeAndValue(V, VLoc, PFS)) {
3582      delete LP;
3583      return true;
3584    }
3585
3586    // A 'catch' type expects a non-array constant. A filter clause expects an
3587    // array constant.
3588    if (CT == LandingPadInst::Catch) {
3589      if (isa<ArrayType>(V->getType()))
3590        Error(VLoc, "'catch' clause has an invalid type");
3591    } else {
3592      if (!isa<ArrayType>(V->getType()))
3593        Error(VLoc, "'filter' clause has an invalid type");
3594    }
3595
3596    LP->addClause(V);
3597  }
3598
3599  Inst = LP;
3600  return false;
3601}
3602
3603/// ParseCall
3604///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3605///       ParameterList OptionalAttrs
3606bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3607                         bool isTail) {
3608  Attributes RetAttrs, FnAttrs;
3609  CallingConv::ID CC;
3610  Type *RetType = 0;
3611  LocTy RetTypeLoc;
3612  ValID CalleeID;
3613  SmallVector<ParamInfo, 16> ArgList;
3614  LocTy CallLoc = Lex.getLoc();
3615
3616  if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3617      ParseOptionalCallingConv(CC) ||
3618      ParseOptionalAttrs(RetAttrs, 1) ||
3619      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3620      ParseValID(CalleeID) ||
3621      ParseParameterList(ArgList, PFS) ||
3622      ParseOptionalAttrs(FnAttrs, 2))
3623    return true;
3624
3625  // If RetType is a non-function pointer type, then this is the short syntax
3626  // for the call, which means that RetType is just the return type.  Infer the
3627  // rest of the function argument types from the arguments that are present.
3628  PointerType *PFTy = 0;
3629  FunctionType *Ty = 0;
3630  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3631      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3632    // Pull out the types of all of the arguments...
3633    std::vector<Type*> ParamTypes;
3634    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3635      ParamTypes.push_back(ArgList[i].V->getType());
3636
3637    if (!FunctionType::isValidReturnType(RetType))
3638      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3639
3640    Ty = FunctionType::get(RetType, ParamTypes, false);
3641    PFTy = PointerType::getUnqual(Ty);
3642  }
3643
3644  // Look up the callee.
3645  Value *Callee;
3646  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3647
3648  // Set up the Attributes for the function.
3649  SmallVector<AttributeWithIndex, 8> Attrs;
3650  if (RetAttrs != Attribute::None)
3651    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3652
3653  SmallVector<Value*, 8> Args;
3654
3655  // Loop through FunctionType's arguments and ensure they are specified
3656  // correctly.  Also, gather any parameter attributes.
3657  FunctionType::param_iterator I = Ty->param_begin();
3658  FunctionType::param_iterator E = Ty->param_end();
3659  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3660    Type *ExpectedTy = 0;
3661    if (I != E) {
3662      ExpectedTy = *I++;
3663    } else if (!Ty->isVarArg()) {
3664      return Error(ArgList[i].Loc, "too many arguments specified");
3665    }
3666
3667    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3668      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3669                   getTypeString(ExpectedTy) + "'");
3670    Args.push_back(ArgList[i].V);
3671    if (ArgList[i].Attrs != Attribute::None)
3672      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3673  }
3674
3675  if (I != E)
3676    return Error(CallLoc, "not enough parameters specified for call");
3677
3678  if (FnAttrs != Attribute::None)
3679    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3680
3681  // Finish off the Attributes and check them
3682  AttrListPtr PAL = AttrListPtr::get(Attrs);
3683
3684  CallInst *CI = CallInst::Create(Callee, Args);
3685  CI->setTailCall(isTail);
3686  CI->setCallingConv(CC);
3687  CI->setAttributes(PAL);
3688  Inst = CI;
3689  return false;
3690}
3691
3692//===----------------------------------------------------------------------===//
3693// Memory Instructions.
3694//===----------------------------------------------------------------------===//
3695
3696/// ParseAlloc
3697///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
3698int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
3699  Value *Size = 0;
3700  LocTy SizeLoc;
3701  unsigned Alignment = 0;
3702  Type *Ty = 0;
3703  if (ParseType(Ty)) return true;
3704
3705  bool AteExtraComma = false;
3706  if (EatIfPresent(lltok::comma)) {
3707    if (Lex.getKind() == lltok::kw_align) {
3708      if (ParseOptionalAlignment(Alignment)) return true;
3709    } else if (Lex.getKind() == lltok::MetadataVar) {
3710      AteExtraComma = true;
3711    } else {
3712      if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
3713          ParseOptionalCommaAlign(Alignment, AteExtraComma))
3714        return true;
3715    }
3716  }
3717
3718  if (Size && !Size->getType()->isIntegerTy())
3719    return Error(SizeLoc, "element count must have integer type");
3720
3721  Inst = new AllocaInst(Ty, Size, Alignment);
3722  return AteExtraComma ? InstExtraComma : InstNormal;
3723}
3724
3725/// ParseLoad
3726///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
3727///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
3728///       'singlethread'? AtomicOrdering (',' 'align' i32)?
3729int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
3730  Value *Val; LocTy Loc;
3731  unsigned Alignment = 0;
3732  bool AteExtraComma = false;
3733  bool isAtomic = false;
3734  AtomicOrdering Ordering = NotAtomic;
3735  SynchronizationScope Scope = CrossThread;
3736
3737  if (Lex.getKind() == lltok::kw_atomic) {
3738    isAtomic = true;
3739    Lex.Lex();
3740  }
3741
3742  bool isVolatile = false;
3743  if (Lex.getKind() == lltok::kw_volatile) {
3744    isVolatile = true;
3745    Lex.Lex();
3746  }
3747
3748  if (ParseTypeAndValue(Val, Loc, PFS) ||
3749      ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
3750      ParseOptionalCommaAlign(Alignment, AteExtraComma))
3751    return true;
3752
3753  if (!Val->getType()->isPointerTy() ||
3754      !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3755    return Error(Loc, "load operand must be a pointer to a first class type");
3756  if (isAtomic && !Alignment)
3757    return Error(Loc, "atomic load must have explicit non-zero alignment");
3758  if (Ordering == Release || Ordering == AcquireRelease)
3759    return Error(Loc, "atomic load cannot use Release ordering");
3760
3761  Inst = new LoadInst(Val, "", isVolatile, Alignment, Ordering, Scope);
3762  return AteExtraComma ? InstExtraComma : InstNormal;
3763}
3764
3765/// ParseStore
3766
3767///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3768///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
3769///       'singlethread'? AtomicOrdering (',' 'align' i32)?
3770int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
3771  Value *Val, *Ptr; LocTy Loc, PtrLoc;
3772  unsigned Alignment = 0;
3773  bool AteExtraComma = false;
3774  bool isAtomic = false;
3775  AtomicOrdering Ordering = NotAtomic;
3776  SynchronizationScope Scope = CrossThread;
3777
3778  if (Lex.getKind() == lltok::kw_atomic) {
3779    isAtomic = true;
3780    Lex.Lex();
3781  }
3782
3783  bool isVolatile = false;
3784  if (Lex.getKind() == lltok::kw_volatile) {
3785    isVolatile = true;
3786    Lex.Lex();
3787  }
3788
3789  if (ParseTypeAndValue(Val, Loc, PFS) ||
3790      ParseToken(lltok::comma, "expected ',' after store operand") ||
3791      ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3792      ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
3793      ParseOptionalCommaAlign(Alignment, AteExtraComma))
3794    return true;
3795
3796  if (!Ptr->getType()->isPointerTy())
3797    return Error(PtrLoc, "store operand must be a pointer");
3798  if (!Val->getType()->isFirstClassType())
3799    return Error(Loc, "store operand must be a first class value");
3800  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3801    return Error(Loc, "stored value and pointer type do not match");
3802  if (isAtomic && !Alignment)
3803    return Error(Loc, "atomic store must have explicit non-zero alignment");
3804  if (Ordering == Acquire || Ordering == AcquireRelease)
3805    return Error(Loc, "atomic store cannot use Acquire ordering");
3806
3807  Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
3808  return AteExtraComma ? InstExtraComma : InstNormal;
3809}
3810
3811/// ParseCmpXchg
3812///   ::= 'cmpxchg' 'volatile'? TypeAndValue ',' TypeAndValue ',' TypeAndValue
3813///       'singlethread'? AtomicOrdering
3814int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
3815  Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
3816  bool AteExtraComma = false;
3817  AtomicOrdering Ordering = NotAtomic;
3818  SynchronizationScope Scope = CrossThread;
3819  bool isVolatile = false;
3820
3821  if (EatIfPresent(lltok::kw_volatile))
3822    isVolatile = true;
3823
3824  if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3825      ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
3826      ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
3827      ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
3828      ParseTypeAndValue(New, NewLoc, PFS) ||
3829      ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
3830    return true;
3831
3832  if (Ordering == Unordered)
3833    return TokError("cmpxchg cannot be unordered");
3834  if (!Ptr->getType()->isPointerTy())
3835    return Error(PtrLoc, "cmpxchg operand must be a pointer");
3836  if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
3837    return Error(CmpLoc, "compare value and pointer type do not match");
3838  if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
3839    return Error(NewLoc, "new value and pointer type do not match");
3840  if (!New->getType()->isIntegerTy())
3841    return Error(NewLoc, "cmpxchg operand must be an integer");
3842  unsigned Size = New->getType()->getPrimitiveSizeInBits();
3843  if (Size < 8 || (Size & (Size - 1)))
3844    return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized"
3845                         " integer");
3846
3847  AtomicCmpXchgInst *CXI =
3848    new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Scope);
3849  CXI->setVolatile(isVolatile);
3850  Inst = CXI;
3851  return AteExtraComma ? InstExtraComma : InstNormal;
3852}
3853
3854/// ParseAtomicRMW
3855///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
3856///       'singlethread'? AtomicOrdering
3857int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
3858  Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
3859  bool AteExtraComma = false;
3860  AtomicOrdering Ordering = NotAtomic;
3861  SynchronizationScope Scope = CrossThread;
3862  bool isVolatile = false;
3863  AtomicRMWInst::BinOp Operation;
3864
3865  if (EatIfPresent(lltok::kw_volatile))
3866    isVolatile = true;
3867
3868  switch (Lex.getKind()) {
3869  default: return TokError("expected binary operation in atomicrmw");
3870  case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
3871  case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
3872  case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
3873  case lltok::kw_and: Operation = AtomicRMWInst::And; break;
3874  case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
3875  case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
3876  case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
3877  case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
3878  case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
3879  case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
3880  case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
3881  }
3882  Lex.Lex();  // Eat the operation.
3883
3884  if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3885      ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
3886      ParseTypeAndValue(Val, ValLoc, PFS) ||
3887      ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
3888    return true;
3889
3890  if (Ordering == Unordered)
3891    return TokError("atomicrmw cannot be unordered");
3892  if (!Ptr->getType()->isPointerTy())
3893    return Error(PtrLoc, "atomicrmw operand must be a pointer");
3894  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3895    return Error(ValLoc, "atomicrmw value and pointer type do not match");
3896  if (!Val->getType()->isIntegerTy())
3897    return Error(ValLoc, "atomicrmw operand must be an integer");
3898  unsigned Size = Val->getType()->getPrimitiveSizeInBits();
3899  if (Size < 8 || (Size & (Size - 1)))
3900    return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
3901                         " integer");
3902
3903  AtomicRMWInst *RMWI =
3904    new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
3905  RMWI->setVolatile(isVolatile);
3906  Inst = RMWI;
3907  return AteExtraComma ? InstExtraComma : InstNormal;
3908}
3909
3910/// ParseFence
3911///   ::= 'fence' 'singlethread'? AtomicOrdering
3912int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
3913  AtomicOrdering Ordering = NotAtomic;
3914  SynchronizationScope Scope = CrossThread;
3915  if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
3916    return true;
3917
3918  if (Ordering == Unordered)
3919    return TokError("fence cannot be unordered");
3920  if (Ordering == Monotonic)
3921    return TokError("fence cannot be monotonic");
3922
3923  Inst = new FenceInst(Context, Ordering, Scope);
3924  return InstNormal;
3925}
3926
3927/// ParseGetElementPtr
3928///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
3929int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3930  Value *Ptr = 0;
3931  Value *Val = 0;
3932  LocTy Loc, EltLoc;
3933
3934  bool InBounds = EatIfPresent(lltok::kw_inbounds);
3935
3936  if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3937
3938  if (!Ptr->getType()->getScalarType()->isPointerTy())
3939    return Error(Loc, "base of getelementptr must be a pointer");
3940
3941  SmallVector<Value*, 16> Indices;
3942  bool AteExtraComma = false;
3943  while (EatIfPresent(lltok::comma)) {
3944    if (Lex.getKind() == lltok::MetadataVar) {
3945      AteExtraComma = true;
3946      break;
3947    }
3948    if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3949    if (!Val->getType()->getScalarType()->isIntegerTy())
3950      return Error(EltLoc, "getelementptr index must be an integer");
3951    if (Val->getType()->isVectorTy() != Ptr->getType()->isVectorTy())
3952      return Error(EltLoc, "getelementptr index type missmatch");
3953    if (Val->getType()->isVectorTy()) {
3954      unsigned ValNumEl = cast<VectorType>(Val->getType())->getNumElements();
3955      unsigned PtrNumEl = cast<VectorType>(Ptr->getType())->getNumElements();
3956      if (ValNumEl != PtrNumEl)
3957        return Error(EltLoc,
3958          "getelementptr vector index has a wrong number of elements");
3959    }
3960    Indices.push_back(Val);
3961  }
3962
3963  if (Val && Val->getType()->isVectorTy() && Indices.size() != 1)
3964    return Error(EltLoc, "vector getelementptrs must have a single index");
3965
3966  if (!GetElementPtrInst::getIndexedType(Ptr->getType(), Indices))
3967    return Error(Loc, "invalid getelementptr indices");
3968  Inst = GetElementPtrInst::Create(Ptr, Indices);
3969  if (InBounds)
3970    cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
3971  return AteExtraComma ? InstExtraComma : InstNormal;
3972}
3973
3974/// ParseExtractValue
3975///   ::= 'extractvalue' TypeAndValue (',' uint32)+
3976int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3977  Value *Val; LocTy Loc;
3978  SmallVector<unsigned, 4> Indices;
3979  bool AteExtraComma;
3980  if (ParseTypeAndValue(Val, Loc, PFS) ||
3981      ParseIndexList(Indices, AteExtraComma))
3982    return true;
3983
3984  if (!Val->getType()->isAggregateType())
3985    return Error(Loc, "extractvalue operand must be aggregate type");
3986
3987  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3988    return Error(Loc, "invalid indices for extractvalue");
3989  Inst = ExtractValueInst::Create(Val, Indices);
3990  return AteExtraComma ? InstExtraComma : InstNormal;
3991}
3992
3993/// ParseInsertValue
3994///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3995int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3996  Value *Val0, *Val1; LocTy Loc0, Loc1;
3997  SmallVector<unsigned, 4> Indices;
3998  bool AteExtraComma;
3999  if (ParseTypeAndValue(Val0, Loc0, PFS) ||
4000      ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
4001      ParseTypeAndValue(Val1, Loc1, PFS) ||
4002      ParseIndexList(Indices, AteExtraComma))
4003    return true;
4004
4005  if (!Val0->getType()->isAggregateType())
4006    return Error(Loc0, "insertvalue operand must be aggregate type");
4007
4008  if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
4009    return Error(Loc0, "invalid indices for insertvalue");
4010  Inst = InsertValueInst::Create(Val0, Val1, Indices);
4011  return AteExtraComma ? InstExtraComma : InstNormal;
4012}
4013
4014//===----------------------------------------------------------------------===//
4015// Embedded metadata.
4016//===----------------------------------------------------------------------===//
4017
4018/// ParseMDNodeVector
4019///   ::= Element (',' Element)*
4020/// Element
4021///   ::= 'null' | TypeAndValue
4022bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts,
4023                                 PerFunctionState *PFS) {
4024  // Check for an empty list.
4025  if (Lex.getKind() == lltok::rbrace)
4026    return false;
4027
4028  do {
4029    // Null is a special case since it is typeless.
4030    if (EatIfPresent(lltok::kw_null)) {
4031      Elts.push_back(0);
4032      continue;
4033    }
4034
4035    Value *V = 0;
4036    if (ParseTypeAndValue(V, PFS)) return true;
4037    Elts.push_back(V);
4038  } while (EatIfPresent(lltok::comma));
4039
4040  return false;
4041}
4042