LLParser.cpp revision 336ea06493dfa03352d04d94cc8bc2c3c29f8165
1//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/AutoUpgrade.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instructions.h"
21#include "llvm/LLVMContext.h"
22#include "llvm/Metadata.h"
23#include "llvm/Module.h"
24#include "llvm/Operator.h"
25#include "llvm/ValueSymbolTable.h"
26#include "llvm/ADT/SmallPtrSet.h"
27#include "llvm/ADT/StringExtras.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/raw_ostream.h"
30using namespace llvm;
31
32namespace llvm {
33  /// ValID - Represents a reference of a definition of some sort with no type.
34  /// There are several cases where we have to parse the value but where the
35  /// type can depend on later context.  This may either be a numeric reference
36  /// or a symbolic (%var) reference.  This is just a discriminated union.
37  struct ValID {
38    enum {
39      t_LocalID, t_GlobalID,      // ID in UIntVal.
40      t_LocalName, t_GlobalName,  // Name in StrVal.
41      t_APSInt, t_APFloat,        // Value in APSIntVal/APFloatVal.
42      t_Null, t_Undef, t_Zero,    // No value.
43      t_EmptyArray,               // No value:  []
44      t_Constant,                 // Value in ConstantVal.
45      t_InlineAsm,                // Value in StrVal/StrVal2/UIntVal.
46      t_Metadata                  // Value in MetadataVal.
47    } Kind;
48
49    LLParser::LocTy Loc;
50    unsigned UIntVal;
51    std::string StrVal, StrVal2;
52    APSInt APSIntVal;
53    APFloat APFloatVal;
54    Constant *ConstantVal;
55    MetadataBase *MetadataVal;
56    ValID() : APFloatVal(0.0) {}
57  };
58}
59
60/// Run: module ::= toplevelentity*
61bool LLParser::Run() {
62  // Prime the lexer.
63  Lex.Lex();
64
65  return ParseTopLevelEntities() ||
66         ValidateEndOfModule();
67}
68
69/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
70/// module.
71bool LLParser::ValidateEndOfModule() {
72  // Update auto-upgraded malloc calls to "malloc".
73  // FIXME: Remove in LLVM 3.0.
74  if (MallocF) {
75    MallocF->setName("malloc");
76    // If setName() does not set the name to "malloc", then there is already a
77    // declaration of "malloc".  In that case, iterate over all calls to MallocF
78    // and get them to call the declared "malloc" instead.
79    if (MallocF->getName() != "malloc") {
80      Constant* RealMallocF = M->getFunction("malloc");
81      if (RealMallocF->getType() != MallocF->getType())
82        RealMallocF = ConstantExpr::getBitCast(RealMallocF, MallocF->getType());
83      MallocF->replaceAllUsesWith(RealMallocF);
84      MallocF->eraseFromParent();
85      MallocF = NULL;
86    }
87  }
88
89  if (!ForwardRefTypes.empty())
90    return Error(ForwardRefTypes.begin()->second.second,
91                 "use of undefined type named '" +
92                 ForwardRefTypes.begin()->first + "'");
93  if (!ForwardRefTypeIDs.empty())
94    return Error(ForwardRefTypeIDs.begin()->second.second,
95                 "use of undefined type '%" +
96                 utostr(ForwardRefTypeIDs.begin()->first) + "'");
97
98  if (!ForwardRefVals.empty())
99    return Error(ForwardRefVals.begin()->second.second,
100                 "use of undefined value '@" + ForwardRefVals.begin()->first +
101                 "'");
102
103  if (!ForwardRefValIDs.empty())
104    return Error(ForwardRefValIDs.begin()->second.second,
105                 "use of undefined value '@" +
106                 utostr(ForwardRefValIDs.begin()->first) + "'");
107
108  if (!ForwardRefMDNodes.empty())
109    return Error(ForwardRefMDNodes.begin()->second.second,
110                 "use of undefined metadata '!" +
111                 utostr(ForwardRefMDNodes.begin()->first) + "'");
112
113
114  // Look for intrinsic functions and CallInst that need to be upgraded
115  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
116    UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
117
118  // Check debug info intrinsics.
119  CheckDebugInfoIntrinsics(M);
120  return false;
121}
122
123//===----------------------------------------------------------------------===//
124// Top-Level Entities
125//===----------------------------------------------------------------------===//
126
127bool LLParser::ParseTopLevelEntities() {
128  while (1) {
129    switch (Lex.getKind()) {
130    default:         return TokError("expected top-level entity");
131    case lltok::Eof: return false;
132    //case lltok::kw_define:
133    case lltok::kw_declare: if (ParseDeclare()) return true; break;
134    case lltok::kw_define:  if (ParseDefine()) return true; break;
135    case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
136    case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
137    case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
138    case lltok::kw_type:    if (ParseUnnamedType()) return true; break;
139    case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
140    case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
141    case lltok::LocalVar:   if (ParseNamedType()) return true; break;
142    case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
143    case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
144    case lltok::Metadata:   if (ParseStandaloneMetadata()) return true; break;
145    case lltok::NamedOrCustomMD: if (ParseNamedMetadata()) return true; break;
146
147    // The Global variable production with no name can have many different
148    // optional leading prefixes, the production is:
149    // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
150    //               OptionalAddrSpace ('constant'|'global') ...
151    case lltok::kw_private :       // OptionalLinkage
152    case lltok::kw_linker_private: // OptionalLinkage
153    case lltok::kw_internal:       // OptionalLinkage
154    case lltok::kw_weak:           // OptionalLinkage
155    case lltok::kw_weak_odr:       // OptionalLinkage
156    case lltok::kw_linkonce:       // OptionalLinkage
157    case lltok::kw_linkonce_odr:   // OptionalLinkage
158    case lltok::kw_appending:      // OptionalLinkage
159    case lltok::kw_dllexport:      // OptionalLinkage
160    case lltok::kw_common:         // OptionalLinkage
161    case lltok::kw_dllimport:      // OptionalLinkage
162    case lltok::kw_extern_weak:    // OptionalLinkage
163    case lltok::kw_external: {     // OptionalLinkage
164      unsigned Linkage, Visibility;
165      if (ParseOptionalLinkage(Linkage) ||
166          ParseOptionalVisibility(Visibility) ||
167          ParseGlobal("", SMLoc(), Linkage, true, Visibility))
168        return true;
169      break;
170    }
171    case lltok::kw_default:       // OptionalVisibility
172    case lltok::kw_hidden:        // OptionalVisibility
173    case lltok::kw_protected: {   // OptionalVisibility
174      unsigned Visibility;
175      if (ParseOptionalVisibility(Visibility) ||
176          ParseGlobal("", SMLoc(), 0, false, Visibility))
177        return true;
178      break;
179    }
180
181    case lltok::kw_thread_local:  // OptionalThreadLocal
182    case lltok::kw_addrspace:     // OptionalAddrSpace
183    case lltok::kw_constant:      // GlobalType
184    case lltok::kw_global:        // GlobalType
185      if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
186      break;
187    }
188  }
189}
190
191
192/// toplevelentity
193///   ::= 'module' 'asm' STRINGCONSTANT
194bool LLParser::ParseModuleAsm() {
195  assert(Lex.getKind() == lltok::kw_module);
196  Lex.Lex();
197
198  std::string AsmStr;
199  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
200      ParseStringConstant(AsmStr)) return true;
201
202  const std::string &AsmSoFar = M->getModuleInlineAsm();
203  if (AsmSoFar.empty())
204    M->setModuleInlineAsm(AsmStr);
205  else
206    M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr);
207  return false;
208}
209
210/// toplevelentity
211///   ::= 'target' 'triple' '=' STRINGCONSTANT
212///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
213bool LLParser::ParseTargetDefinition() {
214  assert(Lex.getKind() == lltok::kw_target);
215  std::string Str;
216  switch (Lex.Lex()) {
217  default: return TokError("unknown target property");
218  case lltok::kw_triple:
219    Lex.Lex();
220    if (ParseToken(lltok::equal, "expected '=' after target triple") ||
221        ParseStringConstant(Str))
222      return true;
223    M->setTargetTriple(Str);
224    return false;
225  case lltok::kw_datalayout:
226    Lex.Lex();
227    if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
228        ParseStringConstant(Str))
229      return true;
230    M->setDataLayout(Str);
231    return false;
232  }
233}
234
235/// toplevelentity
236///   ::= 'deplibs' '=' '[' ']'
237///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
238bool LLParser::ParseDepLibs() {
239  assert(Lex.getKind() == lltok::kw_deplibs);
240  Lex.Lex();
241  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
242      ParseToken(lltok::lsquare, "expected '=' after deplibs"))
243    return true;
244
245  if (EatIfPresent(lltok::rsquare))
246    return false;
247
248  std::string Str;
249  if (ParseStringConstant(Str)) return true;
250  M->addLibrary(Str);
251
252  while (EatIfPresent(lltok::comma)) {
253    if (ParseStringConstant(Str)) return true;
254    M->addLibrary(Str);
255  }
256
257  return ParseToken(lltok::rsquare, "expected ']' at end of list");
258}
259
260/// ParseUnnamedType:
261///   ::= 'type' type
262///   ::= LocalVarID '=' 'type' type
263bool LLParser::ParseUnnamedType() {
264  unsigned TypeID = NumberedTypes.size();
265
266  // Handle the LocalVarID form.
267  if (Lex.getKind() == lltok::LocalVarID) {
268    if (Lex.getUIntVal() != TypeID)
269      return Error(Lex.getLoc(), "type expected to be numbered '%" +
270                   utostr(TypeID) + "'");
271    Lex.Lex(); // eat LocalVarID;
272
273    if (ParseToken(lltok::equal, "expected '=' after name"))
274      return true;
275  }
276
277  assert(Lex.getKind() == lltok::kw_type);
278  LocTy TypeLoc = Lex.getLoc();
279  Lex.Lex(); // eat kw_type
280
281  PATypeHolder Ty(Type::getVoidTy(Context));
282  if (ParseType(Ty)) return true;
283
284  // See if this type was previously referenced.
285  std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
286    FI = ForwardRefTypeIDs.find(TypeID);
287  if (FI != ForwardRefTypeIDs.end()) {
288    if (FI->second.first.get() == Ty)
289      return Error(TypeLoc, "self referential type is invalid");
290
291    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
292    Ty = FI->second.first.get();
293    ForwardRefTypeIDs.erase(FI);
294  }
295
296  NumberedTypes.push_back(Ty);
297
298  return false;
299}
300
301/// toplevelentity
302///   ::= LocalVar '=' 'type' type
303bool LLParser::ParseNamedType() {
304  std::string Name = Lex.getStrVal();
305  LocTy NameLoc = Lex.getLoc();
306  Lex.Lex();  // eat LocalVar.
307
308  PATypeHolder Ty(Type::getVoidTy(Context));
309
310  if (ParseToken(lltok::equal, "expected '=' after name") ||
311      ParseToken(lltok::kw_type, "expected 'type' after name") ||
312      ParseType(Ty))
313    return true;
314
315  // Set the type name, checking for conflicts as we do so.
316  bool AlreadyExists = M->addTypeName(Name, Ty);
317  if (!AlreadyExists) return false;
318
319  // See if this type is a forward reference.  We need to eagerly resolve
320  // types to allow recursive type redefinitions below.
321  std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator
322  FI = ForwardRefTypes.find(Name);
323  if (FI != ForwardRefTypes.end()) {
324    if (FI->second.first.get() == Ty)
325      return Error(NameLoc, "self referential type is invalid");
326
327    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
328    Ty = FI->second.first.get();
329    ForwardRefTypes.erase(FI);
330  }
331
332  // Inserting a name that is already defined, get the existing name.
333  const Type *Existing = M->getTypeByName(Name);
334  assert(Existing && "Conflict but no matching type?!");
335
336  // Otherwise, this is an attempt to redefine a type. That's okay if
337  // the redefinition is identical to the original.
338  // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
339  if (Existing == Ty) return false;
340
341  // Any other kind of (non-equivalent) redefinition is an error.
342  return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
343               Ty->getDescription() + "'");
344}
345
346
347/// toplevelentity
348///   ::= 'declare' FunctionHeader
349bool LLParser::ParseDeclare() {
350  assert(Lex.getKind() == lltok::kw_declare);
351  Lex.Lex();
352
353  Function *F;
354  return ParseFunctionHeader(F, false);
355}
356
357/// toplevelentity
358///   ::= 'define' FunctionHeader '{' ...
359bool LLParser::ParseDefine() {
360  assert(Lex.getKind() == lltok::kw_define);
361  Lex.Lex();
362
363  Function *F;
364  return ParseFunctionHeader(F, true) ||
365         ParseFunctionBody(*F);
366}
367
368/// ParseGlobalType
369///   ::= 'constant'
370///   ::= 'global'
371bool LLParser::ParseGlobalType(bool &IsConstant) {
372  if (Lex.getKind() == lltok::kw_constant)
373    IsConstant = true;
374  else if (Lex.getKind() == lltok::kw_global)
375    IsConstant = false;
376  else {
377    IsConstant = false;
378    return TokError("expected 'global' or 'constant'");
379  }
380  Lex.Lex();
381  return false;
382}
383
384/// ParseUnnamedGlobal:
385///   OptionalVisibility ALIAS ...
386///   OptionalLinkage OptionalVisibility ...   -> global variable
387///   GlobalID '=' OptionalVisibility ALIAS ...
388///   GlobalID '=' OptionalLinkage OptionalVisibility ...   -> global variable
389bool LLParser::ParseUnnamedGlobal() {
390  unsigned VarID = NumberedVals.size();
391  std::string Name;
392  LocTy NameLoc = Lex.getLoc();
393
394  // Handle the GlobalID form.
395  if (Lex.getKind() == lltok::GlobalID) {
396    if (Lex.getUIntVal() != VarID)
397      return Error(Lex.getLoc(), "variable expected to be numbered '%" +
398                   utostr(VarID) + "'");
399    Lex.Lex(); // eat GlobalID;
400
401    if (ParseToken(lltok::equal, "expected '=' after name"))
402      return true;
403  }
404
405  bool HasLinkage;
406  unsigned Linkage, Visibility;
407  if (ParseOptionalLinkage(Linkage, HasLinkage) ||
408      ParseOptionalVisibility(Visibility))
409    return true;
410
411  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
412    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
413  return ParseAlias(Name, NameLoc, Visibility);
414}
415
416/// ParseNamedGlobal:
417///   GlobalVar '=' OptionalVisibility ALIAS ...
418///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
419bool LLParser::ParseNamedGlobal() {
420  assert(Lex.getKind() == lltok::GlobalVar);
421  LocTy NameLoc = Lex.getLoc();
422  std::string Name = Lex.getStrVal();
423  Lex.Lex();
424
425  bool HasLinkage;
426  unsigned Linkage, Visibility;
427  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
428      ParseOptionalLinkage(Linkage, HasLinkage) ||
429      ParseOptionalVisibility(Visibility))
430    return true;
431
432  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
433    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
434  return ParseAlias(Name, NameLoc, Visibility);
435}
436
437// MDString:
438//   ::= '!' STRINGCONSTANT
439bool LLParser::ParseMDString(MetadataBase *&MDS) {
440  std::string Str;
441  if (ParseStringConstant(Str)) return true;
442  MDS = MDString::get(Context, Str);
443  return false;
444}
445
446// MDNode:
447//   ::= '!' MDNodeNumber
448bool LLParser::ParseMDNode(MetadataBase *&Node) {
449  // !{ ..., !42, ... }
450  unsigned MID = 0;
451  if (ParseUInt32(MID))  return true;
452
453  // Check existing MDNode.
454  std::map<unsigned, MetadataBase *>::iterator I = MetadataCache.find(MID);
455  if (I != MetadataCache.end()) {
456    Node = I->second;
457    return false;
458  }
459
460  // Check known forward references.
461  std::map<unsigned, std::pair<MetadataBase *, LocTy> >::iterator
462    FI = ForwardRefMDNodes.find(MID);
463  if (FI != ForwardRefMDNodes.end()) {
464    Node = FI->second.first;
465    return false;
466  }
467
468  // Create MDNode forward reference
469  SmallVector<Value *, 1> Elts;
470  std::string FwdRefName = "llvm.mdnode.fwdref." + utostr(MID);
471  Elts.push_back(MDString::get(Context, FwdRefName));
472  MDNode *FwdNode = MDNode::get(Context, Elts.data(), Elts.size());
473  ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
474  Node = FwdNode;
475  return false;
476}
477
478///ParseNamedMetadata:
479///   !foo = !{ !1, !2 }
480bool LLParser::ParseNamedMetadata() {
481  assert(Lex.getKind() == lltok::NamedOrCustomMD);
482  Lex.Lex();
483  std::string Name = Lex.getStrVal();
484
485  if (ParseToken(lltok::equal, "expected '=' here"))
486    return true;
487
488  if (Lex.getKind() != lltok::Metadata)
489    return TokError("Expected '!' here");
490  Lex.Lex();
491
492  if (Lex.getKind() != lltok::lbrace)
493    return TokError("Expected '{' here");
494  Lex.Lex();
495  SmallVector<MetadataBase *, 8> Elts;
496  do {
497    if (Lex.getKind() != lltok::Metadata)
498      return TokError("Expected '!' here");
499    Lex.Lex();
500    MetadataBase *N = 0;
501    if (ParseMDNode(N)) return true;
502    Elts.push_back(N);
503  } while (EatIfPresent(lltok::comma));
504
505  if (ParseToken(lltok::rbrace, "expected end of metadata node"))
506    return true;
507
508  NamedMDNode::Create(Context, Name, Elts.data(), Elts.size(), M);
509  return false;
510}
511
512/// ParseStandaloneMetadata:
513///   !42 = !{...}
514bool LLParser::ParseStandaloneMetadata() {
515  assert(Lex.getKind() == lltok::Metadata);
516  Lex.Lex();
517  unsigned MetadataID = 0;
518  if (ParseUInt32(MetadataID))
519    return true;
520  if (MetadataCache.find(MetadataID) != MetadataCache.end())
521    return TokError("Metadata id is already used");
522  if (ParseToken(lltok::equal, "expected '=' here"))
523    return true;
524
525  LocTy TyLoc;
526  PATypeHolder Ty(Type::getVoidTy(Context));
527  if (ParseType(Ty, TyLoc))
528    return true;
529
530  if (Lex.getKind() != lltok::Metadata)
531    return TokError("Expected metadata here");
532
533  Lex.Lex();
534  if (Lex.getKind() != lltok::lbrace)
535    return TokError("Expected '{' here");
536
537  SmallVector<Value *, 16> Elts;
538  if (ParseMDNodeVector(Elts)
539      || ParseToken(lltok::rbrace, "expected end of metadata node"))
540    return true;
541
542  MDNode *Init = MDNode::get(Context, Elts.data(), Elts.size());
543  MetadataCache[MetadataID] = Init;
544  std::map<unsigned, std::pair<MetadataBase *, LocTy> >::iterator
545    FI = ForwardRefMDNodes.find(MetadataID);
546  if (FI != ForwardRefMDNodes.end()) {
547    MDNode *FwdNode = cast<MDNode>(FI->second.first);
548    FwdNode->replaceAllUsesWith(Init);
549    ForwardRefMDNodes.erase(FI);
550  }
551
552  return false;
553}
554
555/// ParseAlias:
556///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
557/// Aliasee
558///   ::= TypeAndValue
559///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
560///   ::= 'getelementptr' 'inbounds'? '(' ... ')'
561///
562/// Everything through visibility has already been parsed.
563///
564bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
565                          unsigned Visibility) {
566  assert(Lex.getKind() == lltok::kw_alias);
567  Lex.Lex();
568  unsigned Linkage;
569  LocTy LinkageLoc = Lex.getLoc();
570  if (ParseOptionalLinkage(Linkage))
571    return true;
572
573  if (Linkage != GlobalValue::ExternalLinkage &&
574      Linkage != GlobalValue::WeakAnyLinkage &&
575      Linkage != GlobalValue::WeakODRLinkage &&
576      Linkage != GlobalValue::InternalLinkage &&
577      Linkage != GlobalValue::PrivateLinkage &&
578      Linkage != GlobalValue::LinkerPrivateLinkage)
579    return Error(LinkageLoc, "invalid linkage type for alias");
580
581  Constant *Aliasee;
582  LocTy AliaseeLoc = Lex.getLoc();
583  if (Lex.getKind() != lltok::kw_bitcast &&
584      Lex.getKind() != lltok::kw_getelementptr) {
585    if (ParseGlobalTypeAndValue(Aliasee)) return true;
586  } else {
587    // The bitcast dest type is not present, it is implied by the dest type.
588    ValID ID;
589    if (ParseValID(ID)) return true;
590    if (ID.Kind != ValID::t_Constant)
591      return Error(AliaseeLoc, "invalid aliasee");
592    Aliasee = ID.ConstantVal;
593  }
594
595  if (!isa<PointerType>(Aliasee->getType()))
596    return Error(AliaseeLoc, "alias must have pointer type");
597
598  // Okay, create the alias but do not insert it into the module yet.
599  GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
600                                    (GlobalValue::LinkageTypes)Linkage, Name,
601                                    Aliasee);
602  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
603
604  // See if this value already exists in the symbol table.  If so, it is either
605  // a redefinition or a definition of a forward reference.
606  if (GlobalValue *Val =
607        cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name))) {
608    // See if this was a redefinition.  If so, there is no entry in
609    // ForwardRefVals.
610    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
611      I = ForwardRefVals.find(Name);
612    if (I == ForwardRefVals.end())
613      return Error(NameLoc, "redefinition of global named '@" + Name + "'");
614
615    // Otherwise, this was a definition of forward ref.  Verify that types
616    // agree.
617    if (Val->getType() != GA->getType())
618      return Error(NameLoc,
619              "forward reference and definition of alias have different types");
620
621    // If they agree, just RAUW the old value with the alias and remove the
622    // forward ref info.
623    Val->replaceAllUsesWith(GA);
624    Val->eraseFromParent();
625    ForwardRefVals.erase(I);
626  }
627
628  // Insert into the module, we know its name won't collide now.
629  M->getAliasList().push_back(GA);
630  assert(GA->getNameStr() == Name && "Should not be a name conflict!");
631
632  return false;
633}
634
635/// ParseGlobal
636///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
637///       OptionalAddrSpace GlobalType Type Const
638///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
639///       OptionalAddrSpace GlobalType Type Const
640///
641/// Everything through visibility has been parsed already.
642///
643bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
644                           unsigned Linkage, bool HasLinkage,
645                           unsigned Visibility) {
646  unsigned AddrSpace;
647  bool ThreadLocal, IsConstant;
648  LocTy TyLoc;
649
650  PATypeHolder Ty(Type::getVoidTy(Context));
651  if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
652      ParseOptionalAddrSpace(AddrSpace) ||
653      ParseGlobalType(IsConstant) ||
654      ParseType(Ty, TyLoc))
655    return true;
656
657  // If the linkage is specified and is external, then no initializer is
658  // present.
659  Constant *Init = 0;
660  if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
661                      Linkage != GlobalValue::ExternalWeakLinkage &&
662                      Linkage != GlobalValue::ExternalLinkage)) {
663    if (ParseGlobalValue(Ty, Init))
664      return true;
665  }
666
667  if (isa<FunctionType>(Ty) || Ty->isLabelTy())
668    return Error(TyLoc, "invalid type for global variable");
669
670  GlobalVariable *GV = 0;
671
672  // See if the global was forward referenced, if so, use the global.
673  if (!Name.empty()) {
674    if ((GV = M->getGlobalVariable(Name, true)) &&
675        !ForwardRefVals.erase(Name))
676      return Error(NameLoc, "redefinition of global '@" + Name + "'");
677  } else {
678    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
679      I = ForwardRefValIDs.find(NumberedVals.size());
680    if (I != ForwardRefValIDs.end()) {
681      GV = cast<GlobalVariable>(I->second.first);
682      ForwardRefValIDs.erase(I);
683    }
684  }
685
686  if (GV == 0) {
687    GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
688                            Name, 0, false, AddrSpace);
689  } else {
690    if (GV->getType()->getElementType() != Ty)
691      return Error(TyLoc,
692            "forward reference and definition of global have different types");
693
694    // Move the forward-reference to the correct spot in the module.
695    M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
696  }
697
698  if (Name.empty())
699    NumberedVals.push_back(GV);
700
701  // Set the parsed properties on the global.
702  if (Init)
703    GV->setInitializer(Init);
704  GV->setConstant(IsConstant);
705  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
706  GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
707  GV->setThreadLocal(ThreadLocal);
708
709  // Parse attributes on the global.
710  while (Lex.getKind() == lltok::comma) {
711    Lex.Lex();
712
713    if (Lex.getKind() == lltok::kw_section) {
714      Lex.Lex();
715      GV->setSection(Lex.getStrVal());
716      if (ParseToken(lltok::StringConstant, "expected global section string"))
717        return true;
718    } else if (Lex.getKind() == lltok::kw_align) {
719      unsigned Alignment;
720      if (ParseOptionalAlignment(Alignment)) return true;
721      GV->setAlignment(Alignment);
722    } else {
723      TokError("unknown global variable property!");
724    }
725  }
726
727  return false;
728}
729
730
731//===----------------------------------------------------------------------===//
732// GlobalValue Reference/Resolution Routines.
733//===----------------------------------------------------------------------===//
734
735/// GetGlobalVal - Get a value with the specified name or ID, creating a
736/// forward reference record if needed.  This can return null if the value
737/// exists but does not have the right type.
738GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
739                                    LocTy Loc) {
740  const PointerType *PTy = dyn_cast<PointerType>(Ty);
741  if (PTy == 0) {
742    Error(Loc, "global variable reference must have pointer type");
743    return 0;
744  }
745
746  // Look this name up in the normal function symbol table.
747  GlobalValue *Val =
748    cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
749
750  // If this is a forward reference for the value, see if we already created a
751  // forward ref record.
752  if (Val == 0) {
753    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
754      I = ForwardRefVals.find(Name);
755    if (I != ForwardRefVals.end())
756      Val = I->second.first;
757  }
758
759  // If we have the value in the symbol table or fwd-ref table, return it.
760  if (Val) {
761    if (Val->getType() == Ty) return Val;
762    Error(Loc, "'@" + Name + "' defined with type '" +
763          Val->getType()->getDescription() + "'");
764    return 0;
765  }
766
767  // Otherwise, create a new forward reference for this value and remember it.
768  GlobalValue *FwdVal;
769  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
770    // Function types can return opaque but functions can't.
771    if (isa<OpaqueType>(FT->getReturnType())) {
772      Error(Loc, "function may not return opaque type");
773      return 0;
774    }
775
776    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
777  } else {
778    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
779                                GlobalValue::ExternalWeakLinkage, 0, Name);
780  }
781
782  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
783  return FwdVal;
784}
785
786GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
787  const PointerType *PTy = dyn_cast<PointerType>(Ty);
788  if (PTy == 0) {
789    Error(Loc, "global variable reference must have pointer type");
790    return 0;
791  }
792
793  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
794
795  // If this is a forward reference for the value, see if we already created a
796  // forward ref record.
797  if (Val == 0) {
798    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
799      I = ForwardRefValIDs.find(ID);
800    if (I != ForwardRefValIDs.end())
801      Val = I->second.first;
802  }
803
804  // If we have the value in the symbol table or fwd-ref table, return it.
805  if (Val) {
806    if (Val->getType() == Ty) return Val;
807    Error(Loc, "'@" + utostr(ID) + "' defined with type '" +
808          Val->getType()->getDescription() + "'");
809    return 0;
810  }
811
812  // Otherwise, create a new forward reference for this value and remember it.
813  GlobalValue *FwdVal;
814  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
815    // Function types can return opaque but functions can't.
816    if (isa<OpaqueType>(FT->getReturnType())) {
817      Error(Loc, "function may not return opaque type");
818      return 0;
819    }
820    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
821  } else {
822    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
823                                GlobalValue::ExternalWeakLinkage, 0, "");
824  }
825
826  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
827  return FwdVal;
828}
829
830
831//===----------------------------------------------------------------------===//
832// Helper Routines.
833//===----------------------------------------------------------------------===//
834
835/// ParseToken - If the current token has the specified kind, eat it and return
836/// success.  Otherwise, emit the specified error and return failure.
837bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
838  if (Lex.getKind() != T)
839    return TokError(ErrMsg);
840  Lex.Lex();
841  return false;
842}
843
844/// ParseStringConstant
845///   ::= StringConstant
846bool LLParser::ParseStringConstant(std::string &Result) {
847  if (Lex.getKind() != lltok::StringConstant)
848    return TokError("expected string constant");
849  Result = Lex.getStrVal();
850  Lex.Lex();
851  return false;
852}
853
854/// ParseUInt32
855///   ::= uint32
856bool LLParser::ParseUInt32(unsigned &Val) {
857  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
858    return TokError("expected integer");
859  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
860  if (Val64 != unsigned(Val64))
861    return TokError("expected 32-bit integer (too large)");
862  Val = Val64;
863  Lex.Lex();
864  return false;
865}
866
867
868/// ParseOptionalAddrSpace
869///   := /*empty*/
870///   := 'addrspace' '(' uint32 ')'
871bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
872  AddrSpace = 0;
873  if (!EatIfPresent(lltok::kw_addrspace))
874    return false;
875  return ParseToken(lltok::lparen, "expected '(' in address space") ||
876         ParseUInt32(AddrSpace) ||
877         ParseToken(lltok::rparen, "expected ')' in address space");
878}
879
880/// ParseOptionalAttrs - Parse a potentially empty attribute list.  AttrKind
881/// indicates what kind of attribute list this is: 0: function arg, 1: result,
882/// 2: function attr.
883/// 3: function arg after value: FIXME: REMOVE IN LLVM 3.0
884bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
885  Attrs = Attribute::None;
886  LocTy AttrLoc = Lex.getLoc();
887
888  while (1) {
889    switch (Lex.getKind()) {
890    case lltok::kw_sext:
891    case lltok::kw_zext:
892      // Treat these as signext/zeroext if they occur in the argument list after
893      // the value, as in "call i8 @foo(i8 10 sext)".  If they occur before the
894      // value, as in "call i8 @foo(i8 sext (" then it is part of a constant
895      // expr.
896      // FIXME: REMOVE THIS IN LLVM 3.0
897      if (AttrKind == 3) {
898        if (Lex.getKind() == lltok::kw_sext)
899          Attrs |= Attribute::SExt;
900        else
901          Attrs |= Attribute::ZExt;
902        break;
903      }
904      // FALL THROUGH.
905    default:  // End of attributes.
906      if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
907        return Error(AttrLoc, "invalid use of function-only attribute");
908
909      if (AttrKind != 0 && AttrKind != 3 && (Attrs & Attribute::ParameterOnly))
910        return Error(AttrLoc, "invalid use of parameter-only attribute");
911
912      return false;
913    case lltok::kw_zeroext:         Attrs |= Attribute::ZExt; break;
914    case lltok::kw_signext:         Attrs |= Attribute::SExt; break;
915    case lltok::kw_inreg:           Attrs |= Attribute::InReg; break;
916    case lltok::kw_sret:            Attrs |= Attribute::StructRet; break;
917    case lltok::kw_noalias:         Attrs |= Attribute::NoAlias; break;
918    case lltok::kw_nocapture:       Attrs |= Attribute::NoCapture; break;
919    case lltok::kw_byval:           Attrs |= Attribute::ByVal; break;
920    case lltok::kw_nest:            Attrs |= Attribute::Nest; break;
921
922    case lltok::kw_noreturn:        Attrs |= Attribute::NoReturn; break;
923    case lltok::kw_nounwind:        Attrs |= Attribute::NoUnwind; break;
924    case lltok::kw_noinline:        Attrs |= Attribute::NoInline; break;
925    case lltok::kw_readnone:        Attrs |= Attribute::ReadNone; break;
926    case lltok::kw_readonly:        Attrs |= Attribute::ReadOnly; break;
927    case lltok::kw_inlinehint:      Attrs |= Attribute::InlineHint; break;
928    case lltok::kw_alwaysinline:    Attrs |= Attribute::AlwaysInline; break;
929    case lltok::kw_optsize:         Attrs |= Attribute::OptimizeForSize; break;
930    case lltok::kw_ssp:             Attrs |= Attribute::StackProtect; break;
931    case lltok::kw_sspreq:          Attrs |= Attribute::StackProtectReq; break;
932    case lltok::kw_noredzone:       Attrs |= Attribute::NoRedZone; break;
933    case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
934    case lltok::kw_naked:           Attrs |= Attribute::Naked; break;
935
936    case lltok::kw_align: {
937      unsigned Alignment;
938      if (ParseOptionalAlignment(Alignment))
939        return true;
940      Attrs |= Attribute::constructAlignmentFromInt(Alignment);
941      continue;
942    }
943    }
944    Lex.Lex();
945  }
946}
947
948/// ParseOptionalLinkage
949///   ::= /*empty*/
950///   ::= 'private'
951///   ::= 'linker_private'
952///   ::= 'internal'
953///   ::= 'weak'
954///   ::= 'weak_odr'
955///   ::= 'linkonce'
956///   ::= 'linkonce_odr'
957///   ::= 'appending'
958///   ::= 'dllexport'
959///   ::= 'common'
960///   ::= 'dllimport'
961///   ::= 'extern_weak'
962///   ::= 'external'
963bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
964  HasLinkage = false;
965  switch (Lex.getKind()) {
966  default:                       Res=GlobalValue::ExternalLinkage; return false;
967  case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
968  case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
969  case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
970  case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
971  case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
972  case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
973  case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
974  case lltok::kw_available_externally:
975    Res = GlobalValue::AvailableExternallyLinkage;
976    break;
977  case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
978  case lltok::kw_dllexport:      Res = GlobalValue::DLLExportLinkage;     break;
979  case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
980  case lltok::kw_dllimport:      Res = GlobalValue::DLLImportLinkage;     break;
981  case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
982  case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
983  }
984  Lex.Lex();
985  HasLinkage = true;
986  return false;
987}
988
989/// ParseOptionalVisibility
990///   ::= /*empty*/
991///   ::= 'default'
992///   ::= 'hidden'
993///   ::= 'protected'
994///
995bool LLParser::ParseOptionalVisibility(unsigned &Res) {
996  switch (Lex.getKind()) {
997  default:                  Res = GlobalValue::DefaultVisibility; return false;
998  case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
999  case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
1000  case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1001  }
1002  Lex.Lex();
1003  return false;
1004}
1005
1006/// ParseOptionalCallingConv
1007///   ::= /*empty*/
1008///   ::= 'ccc'
1009///   ::= 'fastcc'
1010///   ::= 'coldcc'
1011///   ::= 'x86_stdcallcc'
1012///   ::= 'x86_fastcallcc'
1013///   ::= 'arm_apcscc'
1014///   ::= 'arm_aapcscc'
1015///   ::= 'arm_aapcs_vfpcc'
1016///   ::= 'cc' UINT
1017///
1018bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
1019  switch (Lex.getKind()) {
1020  default:                       CC = CallingConv::C; return false;
1021  case lltok::kw_ccc:            CC = CallingConv::C; break;
1022  case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1023  case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1024  case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1025  case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1026  case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1027  case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1028  case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1029  case lltok::kw_cc: {
1030      unsigned ArbitraryCC;
1031      Lex.Lex();
1032      if (ParseUInt32(ArbitraryCC)) {
1033        return true;
1034      } else
1035        CC = static_cast<CallingConv::ID>(ArbitraryCC);
1036        return false;
1037    }
1038    break;
1039  }
1040
1041  Lex.Lex();
1042  return false;
1043}
1044
1045/// ParseOptionalCustomMetadata
1046///   ::= /* empty */
1047///   ::= !dbg !42
1048bool LLParser::ParseOptionalCustomMetadata() {
1049  if (Lex.getKind() != lltok::NamedOrCustomMD)
1050    return false;
1051
1052  std::string Name = Lex.getStrVal();
1053  Lex.Lex();
1054
1055  if (Lex.getKind() != lltok::Metadata)
1056    return TokError("Expected '!' here");
1057  Lex.Lex();
1058
1059  MetadataBase *Node;
1060  if (ParseMDNode(Node)) return true;
1061
1062  MetadataContext &TheMetadata = M->getContext().getMetadata();
1063  unsigned MDK = TheMetadata.getMDKind(Name.c_str());
1064  if (!MDK)
1065    MDK = TheMetadata.registerMDKind(Name.c_str());
1066  MDsOnInst.push_back(std::make_pair(MDK, cast<MDNode>(Node)));
1067
1068  return false;
1069}
1070
1071/// ParseOptionalAlignment
1072///   ::= /* empty */
1073///   ::= 'align' 4
1074bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1075  Alignment = 0;
1076  if (!EatIfPresent(lltok::kw_align))
1077    return false;
1078  LocTy AlignLoc = Lex.getLoc();
1079  if (ParseUInt32(Alignment)) return true;
1080  if (!isPowerOf2_32(Alignment))
1081    return Error(AlignLoc, "alignment is not a power of two");
1082  return false;
1083}
1084
1085/// ParseOptionalInfo
1086///   ::= OptionalInfo (',' OptionalInfo)+
1087bool LLParser::ParseOptionalInfo(unsigned &Alignment) {
1088
1089  // FIXME: Handle customized metadata info attached with an instruction.
1090  do {
1091      if (Lex.getKind() == lltok::NamedOrCustomMD) {
1092      if (ParseOptionalCustomMetadata()) return true;
1093    } else if (Lex.getKind() == lltok::kw_align) {
1094      if (ParseOptionalAlignment(Alignment)) return true;
1095    } else
1096      return true;
1097  } while (EatIfPresent(lltok::comma));
1098
1099  return false;
1100}
1101
1102
1103/// ParseIndexList
1104///    ::=  (',' uint32)+
1105bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices) {
1106  if (Lex.getKind() != lltok::comma)
1107    return TokError("expected ',' as start of index list");
1108
1109  while (EatIfPresent(lltok::comma)) {
1110    unsigned Idx;
1111    if (ParseUInt32(Idx)) return true;
1112    Indices.push_back(Idx);
1113  }
1114
1115  return false;
1116}
1117
1118//===----------------------------------------------------------------------===//
1119// Type Parsing.
1120//===----------------------------------------------------------------------===//
1121
1122/// ParseType - Parse and resolve a full type.
1123bool LLParser::ParseType(PATypeHolder &Result, bool AllowVoid) {
1124  LocTy TypeLoc = Lex.getLoc();
1125  if (ParseTypeRec(Result)) return true;
1126
1127  // Verify no unresolved uprefs.
1128  if (!UpRefs.empty())
1129    return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
1130
1131  if (!AllowVoid && Result.get()->isVoidTy())
1132    return Error(TypeLoc, "void type only allowed for function results");
1133
1134  return false;
1135}
1136
1137/// HandleUpRefs - Every time we finish a new layer of types, this function is
1138/// called.  It loops through the UpRefs vector, which is a list of the
1139/// currently active types.  For each type, if the up-reference is contained in
1140/// the newly completed type, we decrement the level count.  When the level
1141/// count reaches zero, the up-referenced type is the type that is passed in:
1142/// thus we can complete the cycle.
1143///
1144PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
1145  // If Ty isn't abstract, or if there are no up-references in it, then there is
1146  // nothing to resolve here.
1147  if (!ty->isAbstract() || UpRefs.empty()) return ty;
1148
1149  PATypeHolder Ty(ty);
1150#if 0
1151  errs() << "Type '" << Ty->getDescription()
1152         << "' newly formed.  Resolving upreferences.\n"
1153         << UpRefs.size() << " upreferences active!\n";
1154#endif
1155
1156  // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
1157  // to zero), we resolve them all together before we resolve them to Ty.  At
1158  // the end of the loop, if there is anything to resolve to Ty, it will be in
1159  // this variable.
1160  OpaqueType *TypeToResolve = 0;
1161
1162  for (unsigned i = 0; i != UpRefs.size(); ++i) {
1163    // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
1164    bool ContainsType =
1165      std::find(Ty->subtype_begin(), Ty->subtype_end(),
1166                UpRefs[i].LastContainedTy) != Ty->subtype_end();
1167
1168#if 0
1169    errs() << "  UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
1170           << UpRefs[i].LastContainedTy->getDescription() << ") = "
1171           << (ContainsType ? "true" : "false")
1172           << " level=" << UpRefs[i].NestingLevel << "\n";
1173#endif
1174    if (!ContainsType)
1175      continue;
1176
1177    // Decrement level of upreference
1178    unsigned Level = --UpRefs[i].NestingLevel;
1179    UpRefs[i].LastContainedTy = Ty;
1180
1181    // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
1182    if (Level != 0)
1183      continue;
1184
1185#if 0
1186    errs() << "  * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
1187#endif
1188    if (!TypeToResolve)
1189      TypeToResolve = UpRefs[i].UpRefTy;
1190    else
1191      UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
1192    UpRefs.erase(UpRefs.begin()+i);     // Remove from upreference list.
1193    --i;                                // Do not skip the next element.
1194  }
1195
1196  if (TypeToResolve)
1197    TypeToResolve->refineAbstractTypeTo(Ty);
1198
1199  return Ty;
1200}
1201
1202
1203/// ParseTypeRec - The recursive function used to process the internal
1204/// implementation details of types.
1205bool LLParser::ParseTypeRec(PATypeHolder &Result) {
1206  switch (Lex.getKind()) {
1207  default:
1208    return TokError("expected type");
1209  case lltok::Type:
1210    // TypeRec ::= 'float' | 'void' (etc)
1211    Result = Lex.getTyVal();
1212    Lex.Lex();
1213    break;
1214  case lltok::kw_opaque:
1215    // TypeRec ::= 'opaque'
1216    Result = OpaqueType::get(Context);
1217    Lex.Lex();
1218    break;
1219  case lltok::lbrace:
1220    // TypeRec ::= '{' ... '}'
1221    if (ParseStructType(Result, false))
1222      return true;
1223    break;
1224  case lltok::lsquare:
1225    // TypeRec ::= '[' ... ']'
1226    Lex.Lex(); // eat the lsquare.
1227    if (ParseArrayVectorType(Result, false))
1228      return true;
1229    break;
1230  case lltok::less: // Either vector or packed struct.
1231    // TypeRec ::= '<' ... '>'
1232    Lex.Lex();
1233    if (Lex.getKind() == lltok::lbrace) {
1234      if (ParseStructType(Result, true) ||
1235          ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1236        return true;
1237    } else if (ParseArrayVectorType(Result, true))
1238      return true;
1239    break;
1240  case lltok::LocalVar:
1241  case lltok::StringConstant:  // FIXME: REMOVE IN LLVM 3.0
1242    // TypeRec ::= %foo
1243    if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
1244      Result = T;
1245    } else {
1246      Result = OpaqueType::get(Context);
1247      ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
1248                                            std::make_pair(Result,
1249                                                           Lex.getLoc())));
1250      M->addTypeName(Lex.getStrVal(), Result.get());
1251    }
1252    Lex.Lex();
1253    break;
1254
1255  case lltok::LocalVarID:
1256    // TypeRec ::= %4
1257    if (Lex.getUIntVal() < NumberedTypes.size())
1258      Result = NumberedTypes[Lex.getUIntVal()];
1259    else {
1260      std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
1261        I = ForwardRefTypeIDs.find(Lex.getUIntVal());
1262      if (I != ForwardRefTypeIDs.end())
1263        Result = I->second.first;
1264      else {
1265        Result = OpaqueType::get(Context);
1266        ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
1267                                                std::make_pair(Result,
1268                                                               Lex.getLoc())));
1269      }
1270    }
1271    Lex.Lex();
1272    break;
1273  case lltok::backslash: {
1274    // TypeRec ::= '\' 4
1275    Lex.Lex();
1276    unsigned Val;
1277    if (ParseUInt32(Val)) return true;
1278    OpaqueType *OT = OpaqueType::get(Context); //Use temporary placeholder.
1279    UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
1280    Result = OT;
1281    break;
1282  }
1283  }
1284
1285  // Parse the type suffixes.
1286  while (1) {
1287    switch (Lex.getKind()) {
1288    // End of type.
1289    default: return false;
1290
1291    // TypeRec ::= TypeRec '*'
1292    case lltok::star:
1293      if (Result.get()->isLabelTy())
1294        return TokError("basic block pointers are invalid");
1295      if (Result.get()->isVoidTy())
1296        return TokError("pointers to void are invalid; use i8* instead");
1297      if (!PointerType::isValidElementType(Result.get()))
1298        return TokError("pointer to this type is invalid");
1299      Result = HandleUpRefs(PointerType::getUnqual(Result.get()));
1300      Lex.Lex();
1301      break;
1302
1303    // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1304    case lltok::kw_addrspace: {
1305      if (Result.get()->isLabelTy())
1306        return TokError("basic block pointers are invalid");
1307      if (Result.get()->isVoidTy())
1308        return TokError("pointers to void are invalid; use i8* instead");
1309      if (!PointerType::isValidElementType(Result.get()))
1310        return TokError("pointer to this type is invalid");
1311      unsigned AddrSpace;
1312      if (ParseOptionalAddrSpace(AddrSpace) ||
1313          ParseToken(lltok::star, "expected '*' in address space"))
1314        return true;
1315
1316      Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace));
1317      break;
1318    }
1319
1320    /// Types '(' ArgTypeListI ')' OptFuncAttrs
1321    case lltok::lparen:
1322      if (ParseFunctionType(Result))
1323        return true;
1324      break;
1325    }
1326  }
1327}
1328
1329/// ParseParameterList
1330///    ::= '(' ')'
1331///    ::= '(' Arg (',' Arg)* ')'
1332///  Arg
1333///    ::= Type OptionalAttributes Value OptionalAttributes
1334bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1335                                  PerFunctionState &PFS) {
1336  if (ParseToken(lltok::lparen, "expected '(' in call"))
1337    return true;
1338
1339  while (Lex.getKind() != lltok::rparen) {
1340    // If this isn't the first argument, we need a comma.
1341    if (!ArgList.empty() &&
1342        ParseToken(lltok::comma, "expected ',' in argument list"))
1343      return true;
1344
1345    // Parse the argument.
1346    LocTy ArgLoc;
1347    PATypeHolder ArgTy(Type::getVoidTy(Context));
1348    unsigned ArgAttrs1, ArgAttrs2;
1349    Value *V;
1350    if (ParseType(ArgTy, ArgLoc) ||
1351        ParseOptionalAttrs(ArgAttrs1, 0) ||
1352        ParseValue(ArgTy, V, PFS) ||
1353        // FIXME: Should not allow attributes after the argument, remove this in
1354        // LLVM 3.0.
1355        ParseOptionalAttrs(ArgAttrs2, 3))
1356      return true;
1357    ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1358  }
1359
1360  Lex.Lex();  // Lex the ')'.
1361  return false;
1362}
1363
1364
1365
1366/// ParseArgumentList - Parse the argument list for a function type or function
1367/// prototype.  If 'inType' is true then we are parsing a FunctionType.
1368///   ::= '(' ArgTypeListI ')'
1369/// ArgTypeListI
1370///   ::= /*empty*/
1371///   ::= '...'
1372///   ::= ArgTypeList ',' '...'
1373///   ::= ArgType (',' ArgType)*
1374///
1375bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
1376                                 bool &isVarArg, bool inType) {
1377  isVarArg = false;
1378  assert(Lex.getKind() == lltok::lparen);
1379  Lex.Lex(); // eat the (.
1380
1381  if (Lex.getKind() == lltok::rparen) {
1382    // empty
1383  } else if (Lex.getKind() == lltok::dotdotdot) {
1384    isVarArg = true;
1385    Lex.Lex();
1386  } else {
1387    LocTy TypeLoc = Lex.getLoc();
1388    PATypeHolder ArgTy(Type::getVoidTy(Context));
1389    unsigned Attrs;
1390    std::string Name;
1391
1392    // If we're parsing a type, use ParseTypeRec, because we allow recursive
1393    // types (such as a function returning a pointer to itself).  If parsing a
1394    // function prototype, we require fully resolved types.
1395    if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1396        ParseOptionalAttrs(Attrs, 0)) return true;
1397
1398    if (ArgTy->isVoidTy())
1399      return Error(TypeLoc, "argument can not have void type");
1400
1401    if (Lex.getKind() == lltok::LocalVar ||
1402        Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1403      Name = Lex.getStrVal();
1404      Lex.Lex();
1405    }
1406
1407    if (!FunctionType::isValidArgumentType(ArgTy))
1408      return Error(TypeLoc, "invalid type for function argument");
1409
1410    ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1411
1412    while (EatIfPresent(lltok::comma)) {
1413      // Handle ... at end of arg list.
1414      if (EatIfPresent(lltok::dotdotdot)) {
1415        isVarArg = true;
1416        break;
1417      }
1418
1419      // Otherwise must be an argument type.
1420      TypeLoc = Lex.getLoc();
1421      if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1422          ParseOptionalAttrs(Attrs, 0)) return true;
1423
1424      if (ArgTy->isVoidTy())
1425        return Error(TypeLoc, "argument can not have void type");
1426
1427      if (Lex.getKind() == lltok::LocalVar ||
1428          Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1429        Name = Lex.getStrVal();
1430        Lex.Lex();
1431      } else {
1432        Name = "";
1433      }
1434
1435      if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1436        return Error(TypeLoc, "invalid type for function argument");
1437
1438      ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1439    }
1440  }
1441
1442  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1443}
1444
1445/// ParseFunctionType
1446///  ::= Type ArgumentList OptionalAttrs
1447bool LLParser::ParseFunctionType(PATypeHolder &Result) {
1448  assert(Lex.getKind() == lltok::lparen);
1449
1450  if (!FunctionType::isValidReturnType(Result))
1451    return TokError("invalid function return type");
1452
1453  std::vector<ArgInfo> ArgList;
1454  bool isVarArg;
1455  unsigned Attrs;
1456  if (ParseArgumentList(ArgList, isVarArg, true) ||
1457      // FIXME: Allow, but ignore attributes on function types!
1458      // FIXME: Remove in LLVM 3.0
1459      ParseOptionalAttrs(Attrs, 2))
1460    return true;
1461
1462  // Reject names on the arguments lists.
1463  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1464    if (!ArgList[i].Name.empty())
1465      return Error(ArgList[i].Loc, "argument name invalid in function type");
1466    if (!ArgList[i].Attrs != 0) {
1467      // Allow but ignore attributes on function types; this permits
1468      // auto-upgrade.
1469      // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1470    }
1471  }
1472
1473  std::vector<const Type*> ArgListTy;
1474  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1475    ArgListTy.push_back(ArgList[i].Type);
1476
1477  Result = HandleUpRefs(FunctionType::get(Result.get(),
1478                                                ArgListTy, isVarArg));
1479  return false;
1480}
1481
1482/// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1483///   TypeRec
1484///     ::= '{' '}'
1485///     ::= '{' TypeRec (',' TypeRec)* '}'
1486///     ::= '<' '{' '}' '>'
1487///     ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1488bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
1489  assert(Lex.getKind() == lltok::lbrace);
1490  Lex.Lex(); // Consume the '{'
1491
1492  if (EatIfPresent(lltok::rbrace)) {
1493    Result = StructType::get(Context, Packed);
1494    return false;
1495  }
1496
1497  std::vector<PATypeHolder> ParamsList;
1498  LocTy EltTyLoc = Lex.getLoc();
1499  if (ParseTypeRec(Result)) return true;
1500  ParamsList.push_back(Result);
1501
1502  if (Result->isVoidTy())
1503    return Error(EltTyLoc, "struct element can not have void type");
1504  if (!StructType::isValidElementType(Result))
1505    return Error(EltTyLoc, "invalid element type for struct");
1506
1507  while (EatIfPresent(lltok::comma)) {
1508    EltTyLoc = Lex.getLoc();
1509    if (ParseTypeRec(Result)) return true;
1510
1511    if (Result->isVoidTy())
1512      return Error(EltTyLoc, "struct element can not have void type");
1513    if (!StructType::isValidElementType(Result))
1514      return Error(EltTyLoc, "invalid element type for struct");
1515
1516    ParamsList.push_back(Result);
1517  }
1518
1519  if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
1520    return true;
1521
1522  std::vector<const Type*> ParamsListTy;
1523  for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1524    ParamsListTy.push_back(ParamsList[i].get());
1525  Result = HandleUpRefs(StructType::get(Context, ParamsListTy, Packed));
1526  return false;
1527}
1528
1529/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1530/// token has already been consumed.
1531///   TypeRec
1532///     ::= '[' APSINTVAL 'x' Types ']'
1533///     ::= '<' APSINTVAL 'x' Types '>'
1534bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
1535  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1536      Lex.getAPSIntVal().getBitWidth() > 64)
1537    return TokError("expected number in address space");
1538
1539  LocTy SizeLoc = Lex.getLoc();
1540  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1541  Lex.Lex();
1542
1543  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1544      return true;
1545
1546  LocTy TypeLoc = Lex.getLoc();
1547  PATypeHolder EltTy(Type::getVoidTy(Context));
1548  if (ParseTypeRec(EltTy)) return true;
1549
1550  if (EltTy->isVoidTy())
1551    return Error(TypeLoc, "array and vector element type cannot be void");
1552
1553  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1554                 "expected end of sequential type"))
1555    return true;
1556
1557  if (isVector) {
1558    if (Size == 0)
1559      return Error(SizeLoc, "zero element vector is illegal");
1560    if ((unsigned)Size != Size)
1561      return Error(SizeLoc, "size too large for vector");
1562    if (!VectorType::isValidElementType(EltTy))
1563      return Error(TypeLoc, "vector element type must be fp or integer");
1564    Result = VectorType::get(EltTy, unsigned(Size));
1565  } else {
1566    if (!ArrayType::isValidElementType(EltTy))
1567      return Error(TypeLoc, "invalid array element type");
1568    Result = HandleUpRefs(ArrayType::get(EltTy, Size));
1569  }
1570  return false;
1571}
1572
1573//===----------------------------------------------------------------------===//
1574// Function Semantic Analysis.
1575//===----------------------------------------------------------------------===//
1576
1577LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f)
1578  : P(p), F(f) {
1579
1580  // Insert unnamed arguments into the NumberedVals list.
1581  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1582       AI != E; ++AI)
1583    if (!AI->hasName())
1584      NumberedVals.push_back(AI);
1585}
1586
1587LLParser::PerFunctionState::~PerFunctionState() {
1588  // If there were any forward referenced non-basicblock values, delete them.
1589  for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1590       I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1591    if (!isa<BasicBlock>(I->second.first)) {
1592      I->second.first->replaceAllUsesWith(
1593                           UndefValue::get(I->second.first->getType()));
1594      delete I->second.first;
1595      I->second.first = 0;
1596    }
1597
1598  for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1599       I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1600    if (!isa<BasicBlock>(I->second.first)) {
1601      I->second.first->replaceAllUsesWith(
1602                           UndefValue::get(I->second.first->getType()));
1603      delete I->second.first;
1604      I->second.first = 0;
1605    }
1606}
1607
1608bool LLParser::PerFunctionState::VerifyFunctionComplete() {
1609  if (!ForwardRefVals.empty())
1610    return P.Error(ForwardRefVals.begin()->second.second,
1611                   "use of undefined value '%" + ForwardRefVals.begin()->first +
1612                   "'");
1613  if (!ForwardRefValIDs.empty())
1614    return P.Error(ForwardRefValIDs.begin()->second.second,
1615                   "use of undefined value '%" +
1616                   utostr(ForwardRefValIDs.begin()->first) + "'");
1617  return false;
1618}
1619
1620
1621/// GetVal - Get a value with the specified name or ID, creating a
1622/// forward reference record if needed.  This can return null if the value
1623/// exists but does not have the right type.
1624Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1625                                          const Type *Ty, LocTy Loc) {
1626  // Look this name up in the normal function symbol table.
1627  Value *Val = F.getValueSymbolTable().lookup(Name);
1628
1629  // If this is a forward reference for the value, see if we already created a
1630  // forward ref record.
1631  if (Val == 0) {
1632    std::map<std::string, std::pair<Value*, LocTy> >::iterator
1633      I = ForwardRefVals.find(Name);
1634    if (I != ForwardRefVals.end())
1635      Val = I->second.first;
1636  }
1637
1638  // If we have the value in the symbol table or fwd-ref table, return it.
1639  if (Val) {
1640    if (Val->getType() == Ty) return Val;
1641    if (Ty->isLabelTy())
1642      P.Error(Loc, "'%" + Name + "' is not a basic block");
1643    else
1644      P.Error(Loc, "'%" + Name + "' defined with type '" +
1645              Val->getType()->getDescription() + "'");
1646    return 0;
1647  }
1648
1649  // Don't make placeholders with invalid type.
1650  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) &&
1651      Ty != Type::getLabelTy(F.getContext())) {
1652    P.Error(Loc, "invalid use of a non-first-class type");
1653    return 0;
1654  }
1655
1656  // Otherwise, create a new forward reference for this value and remember it.
1657  Value *FwdVal;
1658  if (Ty->isLabelTy())
1659    FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
1660  else
1661    FwdVal = new Argument(Ty, Name);
1662
1663  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1664  return FwdVal;
1665}
1666
1667Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
1668                                          LocTy Loc) {
1669  // Look this name up in the normal function symbol table.
1670  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1671
1672  // If this is a forward reference for the value, see if we already created a
1673  // forward ref record.
1674  if (Val == 0) {
1675    std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1676      I = ForwardRefValIDs.find(ID);
1677    if (I != ForwardRefValIDs.end())
1678      Val = I->second.first;
1679  }
1680
1681  // If we have the value in the symbol table or fwd-ref table, return it.
1682  if (Val) {
1683    if (Val->getType() == Ty) return Val;
1684    if (Ty->isLabelTy())
1685      P.Error(Loc, "'%" + utostr(ID) + "' is not a basic block");
1686    else
1687      P.Error(Loc, "'%" + utostr(ID) + "' defined with type '" +
1688              Val->getType()->getDescription() + "'");
1689    return 0;
1690  }
1691
1692  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) &&
1693      Ty != Type::getLabelTy(F.getContext())) {
1694    P.Error(Loc, "invalid use of a non-first-class type");
1695    return 0;
1696  }
1697
1698  // Otherwise, create a new forward reference for this value and remember it.
1699  Value *FwdVal;
1700  if (Ty->isLabelTy())
1701    FwdVal = BasicBlock::Create(F.getContext(), "", &F);
1702  else
1703    FwdVal = new Argument(Ty);
1704
1705  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1706  return FwdVal;
1707}
1708
1709/// SetInstName - After an instruction is parsed and inserted into its
1710/// basic block, this installs its name.
1711bool LLParser::PerFunctionState::SetInstName(int NameID,
1712                                             const std::string &NameStr,
1713                                             LocTy NameLoc, Instruction *Inst) {
1714  // If this instruction has void type, it cannot have a name or ID specified.
1715  if (Inst->getType()->isVoidTy()) {
1716    if (NameID != -1 || !NameStr.empty())
1717      return P.Error(NameLoc, "instructions returning void cannot have a name");
1718    return false;
1719  }
1720
1721  // If this was a numbered instruction, verify that the instruction is the
1722  // expected value and resolve any forward references.
1723  if (NameStr.empty()) {
1724    // If neither a name nor an ID was specified, just use the next ID.
1725    if (NameID == -1)
1726      NameID = NumberedVals.size();
1727
1728    if (unsigned(NameID) != NumberedVals.size())
1729      return P.Error(NameLoc, "instruction expected to be numbered '%" +
1730                     utostr(NumberedVals.size()) + "'");
1731
1732    std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1733      ForwardRefValIDs.find(NameID);
1734    if (FI != ForwardRefValIDs.end()) {
1735      if (FI->second.first->getType() != Inst->getType())
1736        return P.Error(NameLoc, "instruction forward referenced with type '" +
1737                       FI->second.first->getType()->getDescription() + "'");
1738      FI->second.first->replaceAllUsesWith(Inst);
1739      delete FI->second.first;
1740      ForwardRefValIDs.erase(FI);
1741    }
1742
1743    NumberedVals.push_back(Inst);
1744    return false;
1745  }
1746
1747  // Otherwise, the instruction had a name.  Resolve forward refs and set it.
1748  std::map<std::string, std::pair<Value*, LocTy> >::iterator
1749    FI = ForwardRefVals.find(NameStr);
1750  if (FI != ForwardRefVals.end()) {
1751    if (FI->second.first->getType() != Inst->getType())
1752      return P.Error(NameLoc, "instruction forward referenced with type '" +
1753                     FI->second.first->getType()->getDescription() + "'");
1754    FI->second.first->replaceAllUsesWith(Inst);
1755    delete FI->second.first;
1756    ForwardRefVals.erase(FI);
1757  }
1758
1759  // Set the name on the instruction.
1760  Inst->setName(NameStr);
1761
1762  if (Inst->getNameStr() != NameStr)
1763    return P.Error(NameLoc, "multiple definition of local value named '" +
1764                   NameStr + "'");
1765  return false;
1766}
1767
1768/// GetBB - Get a basic block with the specified name or ID, creating a
1769/// forward reference record if needed.
1770BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1771                                              LocTy Loc) {
1772  return cast_or_null<BasicBlock>(GetVal(Name,
1773                                        Type::getLabelTy(F.getContext()), Loc));
1774}
1775
1776BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1777  return cast_or_null<BasicBlock>(GetVal(ID,
1778                                        Type::getLabelTy(F.getContext()), Loc));
1779}
1780
1781/// DefineBB - Define the specified basic block, which is either named or
1782/// unnamed.  If there is an error, this returns null otherwise it returns
1783/// the block being defined.
1784BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1785                                                 LocTy Loc) {
1786  BasicBlock *BB;
1787  if (Name.empty())
1788    BB = GetBB(NumberedVals.size(), Loc);
1789  else
1790    BB = GetBB(Name, Loc);
1791  if (BB == 0) return 0; // Already diagnosed error.
1792
1793  // Move the block to the end of the function.  Forward ref'd blocks are
1794  // inserted wherever they happen to be referenced.
1795  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1796
1797  // Remove the block from forward ref sets.
1798  if (Name.empty()) {
1799    ForwardRefValIDs.erase(NumberedVals.size());
1800    NumberedVals.push_back(BB);
1801  } else {
1802    // BB forward references are already in the function symbol table.
1803    ForwardRefVals.erase(Name);
1804  }
1805
1806  return BB;
1807}
1808
1809//===----------------------------------------------------------------------===//
1810// Constants.
1811//===----------------------------------------------------------------------===//
1812
1813/// ParseValID - Parse an abstract value that doesn't necessarily have a
1814/// type implied.  For example, if we parse "4" we don't know what integer type
1815/// it has.  The value will later be combined with its type and checked for
1816/// sanity.
1817bool LLParser::ParseValID(ValID &ID) {
1818  ID.Loc = Lex.getLoc();
1819  switch (Lex.getKind()) {
1820  default: return TokError("expected value token");
1821  case lltok::GlobalID:  // @42
1822    ID.UIntVal = Lex.getUIntVal();
1823    ID.Kind = ValID::t_GlobalID;
1824    break;
1825  case lltok::GlobalVar:  // @foo
1826    ID.StrVal = Lex.getStrVal();
1827    ID.Kind = ValID::t_GlobalName;
1828    break;
1829  case lltok::LocalVarID:  // %42
1830    ID.UIntVal = Lex.getUIntVal();
1831    ID.Kind = ValID::t_LocalID;
1832    break;
1833  case lltok::LocalVar:  // %foo
1834  case lltok::StringConstant:  // "foo" - FIXME: REMOVE IN LLVM 3.0
1835    ID.StrVal = Lex.getStrVal();
1836    ID.Kind = ValID::t_LocalName;
1837    break;
1838  case lltok::Metadata: {  // !{...} MDNode, !"foo" MDString
1839    ID.Kind = ValID::t_Metadata;
1840    Lex.Lex();
1841    if (Lex.getKind() == lltok::lbrace) {
1842      SmallVector<Value*, 16> Elts;
1843      if (ParseMDNodeVector(Elts) ||
1844          ParseToken(lltok::rbrace, "expected end of metadata node"))
1845        return true;
1846
1847      ID.MetadataVal = MDNode::get(Context, Elts.data(), Elts.size());
1848      return false;
1849    }
1850
1851    // Standalone metadata reference
1852    // !{ ..., !42, ... }
1853    if (!ParseMDNode(ID.MetadataVal))
1854      return false;
1855
1856    // MDString:
1857    //   ::= '!' STRINGCONSTANT
1858    if (ParseMDString(ID.MetadataVal)) return true;
1859    ID.Kind = ValID::t_Metadata;
1860    return false;
1861  }
1862  case lltok::APSInt:
1863    ID.APSIntVal = Lex.getAPSIntVal();
1864    ID.Kind = ValID::t_APSInt;
1865    break;
1866  case lltok::APFloat:
1867    ID.APFloatVal = Lex.getAPFloatVal();
1868    ID.Kind = ValID::t_APFloat;
1869    break;
1870  case lltok::kw_true:
1871    ID.ConstantVal = ConstantInt::getTrue(Context);
1872    ID.Kind = ValID::t_Constant;
1873    break;
1874  case lltok::kw_false:
1875    ID.ConstantVal = ConstantInt::getFalse(Context);
1876    ID.Kind = ValID::t_Constant;
1877    break;
1878  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
1879  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
1880  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
1881
1882  case lltok::lbrace: {
1883    // ValID ::= '{' ConstVector '}'
1884    Lex.Lex();
1885    SmallVector<Constant*, 16> Elts;
1886    if (ParseGlobalValueVector(Elts) ||
1887        ParseToken(lltok::rbrace, "expected end of struct constant"))
1888      return true;
1889
1890    ID.ConstantVal = ConstantStruct::get(Context, Elts.data(),
1891                                         Elts.size(), false);
1892    ID.Kind = ValID::t_Constant;
1893    return false;
1894  }
1895  case lltok::less: {
1896    // ValID ::= '<' ConstVector '>'         --> Vector.
1897    // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1898    Lex.Lex();
1899    bool isPackedStruct = EatIfPresent(lltok::lbrace);
1900
1901    SmallVector<Constant*, 16> Elts;
1902    LocTy FirstEltLoc = Lex.getLoc();
1903    if (ParseGlobalValueVector(Elts) ||
1904        (isPackedStruct &&
1905         ParseToken(lltok::rbrace, "expected end of packed struct")) ||
1906        ParseToken(lltok::greater, "expected end of constant"))
1907      return true;
1908
1909    if (isPackedStruct) {
1910      ID.ConstantVal =
1911        ConstantStruct::get(Context, Elts.data(), Elts.size(), true);
1912      ID.Kind = ValID::t_Constant;
1913      return false;
1914    }
1915
1916    if (Elts.empty())
1917      return Error(ID.Loc, "constant vector must not be empty");
1918
1919    if (!Elts[0]->getType()->isInteger() &&
1920        !Elts[0]->getType()->isFloatingPoint())
1921      return Error(FirstEltLoc,
1922                   "vector elements must have integer or floating point type");
1923
1924    // Verify that all the vector elements have the same type.
1925    for (unsigned i = 1, e = Elts.size(); i != e; ++i)
1926      if (Elts[i]->getType() != Elts[0]->getType())
1927        return Error(FirstEltLoc,
1928                     "vector element #" + utostr(i) +
1929                    " is not of type '" + Elts[0]->getType()->getDescription());
1930
1931    ID.ConstantVal = ConstantVector::get(Elts.data(), Elts.size());
1932    ID.Kind = ValID::t_Constant;
1933    return false;
1934  }
1935  case lltok::lsquare: {   // Array Constant
1936    Lex.Lex();
1937    SmallVector<Constant*, 16> Elts;
1938    LocTy FirstEltLoc = Lex.getLoc();
1939    if (ParseGlobalValueVector(Elts) ||
1940        ParseToken(lltok::rsquare, "expected end of array constant"))
1941      return true;
1942
1943    // Handle empty element.
1944    if (Elts.empty()) {
1945      // Use undef instead of an array because it's inconvenient to determine
1946      // the element type at this point, there being no elements to examine.
1947      ID.Kind = ValID::t_EmptyArray;
1948      return false;
1949    }
1950
1951    if (!Elts[0]->getType()->isFirstClassType())
1952      return Error(FirstEltLoc, "invalid array element type: " +
1953                   Elts[0]->getType()->getDescription());
1954
1955    ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
1956
1957    // Verify all elements are correct type!
1958    for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
1959      if (Elts[i]->getType() != Elts[0]->getType())
1960        return Error(FirstEltLoc,
1961                     "array element #" + utostr(i) +
1962                     " is not of type '" +Elts[0]->getType()->getDescription());
1963    }
1964
1965    ID.ConstantVal = ConstantArray::get(ATy, Elts.data(), Elts.size());
1966    ID.Kind = ValID::t_Constant;
1967    return false;
1968  }
1969  case lltok::kw_c:  // c "foo"
1970    Lex.Lex();
1971    ID.ConstantVal = ConstantArray::get(Context, Lex.getStrVal(), false);
1972    if (ParseToken(lltok::StringConstant, "expected string")) return true;
1973    ID.Kind = ValID::t_Constant;
1974    return false;
1975
1976  case lltok::kw_asm: {
1977    // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT
1978    bool HasSideEffect, AlignStack;
1979    Lex.Lex();
1980    if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
1981        ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
1982        ParseStringConstant(ID.StrVal) ||
1983        ParseToken(lltok::comma, "expected comma in inline asm expression") ||
1984        ParseToken(lltok::StringConstant, "expected constraint string"))
1985      return true;
1986    ID.StrVal2 = Lex.getStrVal();
1987    ID.UIntVal = HasSideEffect | ((unsigned)AlignStack<<1);
1988    ID.Kind = ValID::t_InlineAsm;
1989    return false;
1990  }
1991
1992  case lltok::kw_trunc:
1993  case lltok::kw_zext:
1994  case lltok::kw_sext:
1995  case lltok::kw_fptrunc:
1996  case lltok::kw_fpext:
1997  case lltok::kw_bitcast:
1998  case lltok::kw_uitofp:
1999  case lltok::kw_sitofp:
2000  case lltok::kw_fptoui:
2001  case lltok::kw_fptosi:
2002  case lltok::kw_inttoptr:
2003  case lltok::kw_ptrtoint: {
2004    unsigned Opc = Lex.getUIntVal();
2005    PATypeHolder DestTy(Type::getVoidTy(Context));
2006    Constant *SrcVal;
2007    Lex.Lex();
2008    if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2009        ParseGlobalTypeAndValue(SrcVal) ||
2010        ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2011        ParseType(DestTy) ||
2012        ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2013      return true;
2014    if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2015      return Error(ID.Loc, "invalid cast opcode for cast from '" +
2016                   SrcVal->getType()->getDescription() + "' to '" +
2017                   DestTy->getDescription() + "'");
2018    ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2019                                                 SrcVal, DestTy);
2020    ID.Kind = ValID::t_Constant;
2021    return false;
2022  }
2023  case lltok::kw_extractvalue: {
2024    Lex.Lex();
2025    Constant *Val;
2026    SmallVector<unsigned, 4> Indices;
2027    if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2028        ParseGlobalTypeAndValue(Val) ||
2029        ParseIndexList(Indices) ||
2030        ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2031      return true;
2032    if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
2033      return Error(ID.Loc, "extractvalue operand must be array or struct");
2034    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
2035                                          Indices.end()))
2036      return Error(ID.Loc, "invalid indices for extractvalue");
2037    ID.ConstantVal =
2038      ConstantExpr::getExtractValue(Val, Indices.data(), Indices.size());
2039    ID.Kind = ValID::t_Constant;
2040    return false;
2041  }
2042  case lltok::kw_insertvalue: {
2043    Lex.Lex();
2044    Constant *Val0, *Val1;
2045    SmallVector<unsigned, 4> Indices;
2046    if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2047        ParseGlobalTypeAndValue(Val0) ||
2048        ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2049        ParseGlobalTypeAndValue(Val1) ||
2050        ParseIndexList(Indices) ||
2051        ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2052      return true;
2053    if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
2054      return Error(ID.Loc, "extractvalue operand must be array or struct");
2055    if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
2056                                          Indices.end()))
2057      return Error(ID.Loc, "invalid indices for insertvalue");
2058    ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1,
2059                       Indices.data(), Indices.size());
2060    ID.Kind = ValID::t_Constant;
2061    return false;
2062  }
2063  case lltok::kw_icmp:
2064  case lltok::kw_fcmp: {
2065    unsigned PredVal, Opc = Lex.getUIntVal();
2066    Constant *Val0, *Val1;
2067    Lex.Lex();
2068    if (ParseCmpPredicate(PredVal, Opc) ||
2069        ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2070        ParseGlobalTypeAndValue(Val0) ||
2071        ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2072        ParseGlobalTypeAndValue(Val1) ||
2073        ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2074      return true;
2075
2076    if (Val0->getType() != Val1->getType())
2077      return Error(ID.Loc, "compare operands must have the same type");
2078
2079    CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2080
2081    if (Opc == Instruction::FCmp) {
2082      if (!Val0->getType()->isFPOrFPVector())
2083        return Error(ID.Loc, "fcmp requires floating point operands");
2084      ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2085    } else {
2086      assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2087      if (!Val0->getType()->isIntOrIntVector() &&
2088          !isa<PointerType>(Val0->getType()))
2089        return Error(ID.Loc, "icmp requires pointer or integer operands");
2090      ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2091    }
2092    ID.Kind = ValID::t_Constant;
2093    return false;
2094  }
2095
2096  // Binary Operators.
2097  case lltok::kw_add:
2098  case lltok::kw_fadd:
2099  case lltok::kw_sub:
2100  case lltok::kw_fsub:
2101  case lltok::kw_mul:
2102  case lltok::kw_fmul:
2103  case lltok::kw_udiv:
2104  case lltok::kw_sdiv:
2105  case lltok::kw_fdiv:
2106  case lltok::kw_urem:
2107  case lltok::kw_srem:
2108  case lltok::kw_frem: {
2109    bool NUW = false;
2110    bool NSW = false;
2111    bool Exact = false;
2112    unsigned Opc = Lex.getUIntVal();
2113    Constant *Val0, *Val1;
2114    Lex.Lex();
2115    LocTy ModifierLoc = Lex.getLoc();
2116    if (Opc == Instruction::Add ||
2117        Opc == Instruction::Sub ||
2118        Opc == Instruction::Mul) {
2119      if (EatIfPresent(lltok::kw_nuw))
2120        NUW = true;
2121      if (EatIfPresent(lltok::kw_nsw)) {
2122        NSW = true;
2123        if (EatIfPresent(lltok::kw_nuw))
2124          NUW = true;
2125      }
2126    } else if (Opc == Instruction::SDiv) {
2127      if (EatIfPresent(lltok::kw_exact))
2128        Exact = true;
2129    }
2130    if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2131        ParseGlobalTypeAndValue(Val0) ||
2132        ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2133        ParseGlobalTypeAndValue(Val1) ||
2134        ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2135      return true;
2136    if (Val0->getType() != Val1->getType())
2137      return Error(ID.Loc, "operands of constexpr must have same type");
2138    if (!Val0->getType()->isIntOrIntVector()) {
2139      if (NUW)
2140        return Error(ModifierLoc, "nuw only applies to integer operations");
2141      if (NSW)
2142        return Error(ModifierLoc, "nsw only applies to integer operations");
2143    }
2144    // API compatibility: Accept either integer or floating-point types with
2145    // add, sub, and mul.
2146    if (!Val0->getType()->isIntOrIntVector() &&
2147        !Val0->getType()->isFPOrFPVector())
2148      return Error(ID.Loc,"constexpr requires integer, fp, or vector operands");
2149    unsigned Flags = 0;
2150    if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2151    if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
2152    if (Exact) Flags |= SDivOperator::IsExact;
2153    Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2154    ID.ConstantVal = C;
2155    ID.Kind = ValID::t_Constant;
2156    return false;
2157  }
2158
2159  // Logical Operations
2160  case lltok::kw_shl:
2161  case lltok::kw_lshr:
2162  case lltok::kw_ashr:
2163  case lltok::kw_and:
2164  case lltok::kw_or:
2165  case lltok::kw_xor: {
2166    unsigned Opc = Lex.getUIntVal();
2167    Constant *Val0, *Val1;
2168    Lex.Lex();
2169    if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2170        ParseGlobalTypeAndValue(Val0) ||
2171        ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2172        ParseGlobalTypeAndValue(Val1) ||
2173        ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2174      return true;
2175    if (Val0->getType() != Val1->getType())
2176      return Error(ID.Loc, "operands of constexpr must have same type");
2177    if (!Val0->getType()->isIntOrIntVector())
2178      return Error(ID.Loc,
2179                   "constexpr requires integer or integer vector operands");
2180    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2181    ID.Kind = ValID::t_Constant;
2182    return false;
2183  }
2184
2185  case lltok::kw_getelementptr:
2186  case lltok::kw_shufflevector:
2187  case lltok::kw_insertelement:
2188  case lltok::kw_extractelement:
2189  case lltok::kw_select: {
2190    unsigned Opc = Lex.getUIntVal();
2191    SmallVector<Constant*, 16> Elts;
2192    bool InBounds = false;
2193    Lex.Lex();
2194    if (Opc == Instruction::GetElementPtr)
2195      InBounds = EatIfPresent(lltok::kw_inbounds);
2196    if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2197        ParseGlobalValueVector(Elts) ||
2198        ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2199      return true;
2200
2201    if (Opc == Instruction::GetElementPtr) {
2202      if (Elts.size() == 0 || !isa<PointerType>(Elts[0]->getType()))
2203        return Error(ID.Loc, "getelementptr requires pointer operand");
2204
2205      if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
2206                                             (Value**)(Elts.data() + 1),
2207                                             Elts.size() - 1))
2208        return Error(ID.Loc, "invalid indices for getelementptr");
2209      ID.ConstantVal = InBounds ?
2210        ConstantExpr::getInBoundsGetElementPtr(Elts[0],
2211                                               Elts.data() + 1,
2212                                               Elts.size() - 1) :
2213        ConstantExpr::getGetElementPtr(Elts[0],
2214                                       Elts.data() + 1, Elts.size() - 1);
2215    } else if (Opc == Instruction::Select) {
2216      if (Elts.size() != 3)
2217        return Error(ID.Loc, "expected three operands to select");
2218      if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2219                                                              Elts[2]))
2220        return Error(ID.Loc, Reason);
2221      ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2222    } else if (Opc == Instruction::ShuffleVector) {
2223      if (Elts.size() != 3)
2224        return Error(ID.Loc, "expected three operands to shufflevector");
2225      if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2226        return Error(ID.Loc, "invalid operands to shufflevector");
2227      ID.ConstantVal =
2228                 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2229    } else if (Opc == Instruction::ExtractElement) {
2230      if (Elts.size() != 2)
2231        return Error(ID.Loc, "expected two operands to extractelement");
2232      if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2233        return Error(ID.Loc, "invalid extractelement operands");
2234      ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2235    } else {
2236      assert(Opc == Instruction::InsertElement && "Unknown opcode");
2237      if (Elts.size() != 3)
2238      return Error(ID.Loc, "expected three operands to insertelement");
2239      if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2240        return Error(ID.Loc, "invalid insertelement operands");
2241      ID.ConstantVal =
2242                 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2243    }
2244
2245    ID.Kind = ValID::t_Constant;
2246    return false;
2247  }
2248  }
2249
2250  Lex.Lex();
2251  return false;
2252}
2253
2254/// ParseGlobalValue - Parse a global value with the specified type.
2255bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&V) {
2256  V = 0;
2257  ValID ID;
2258  return ParseValID(ID) ||
2259         ConvertGlobalValIDToValue(Ty, ID, V);
2260}
2261
2262/// ConvertGlobalValIDToValue - Apply a type to a ValID to get a fully resolved
2263/// constant.
2264bool LLParser::ConvertGlobalValIDToValue(const Type *Ty, ValID &ID,
2265                                         Constant *&V) {
2266  if (isa<FunctionType>(Ty))
2267    return Error(ID.Loc, "functions are not values, refer to them as pointers");
2268
2269  switch (ID.Kind) {
2270  default: llvm_unreachable("Unknown ValID!");
2271  case ValID::t_Metadata:
2272    return Error(ID.Loc, "invalid use of metadata");
2273  case ValID::t_LocalID:
2274  case ValID::t_LocalName:
2275    return Error(ID.Loc, "invalid use of function-local name");
2276  case ValID::t_InlineAsm:
2277    return Error(ID.Loc, "inline asm can only be an operand of call/invoke");
2278  case ValID::t_GlobalName:
2279    V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2280    return V == 0;
2281  case ValID::t_GlobalID:
2282    V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2283    return V == 0;
2284  case ValID::t_APSInt:
2285    if (!isa<IntegerType>(Ty))
2286      return Error(ID.Loc, "integer constant must have integer type");
2287    ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2288    V = ConstantInt::get(Context, ID.APSIntVal);
2289    return false;
2290  case ValID::t_APFloat:
2291    if (!Ty->isFloatingPoint() ||
2292        !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2293      return Error(ID.Loc, "floating point constant invalid for type");
2294
2295    // The lexer has no type info, so builds all float and double FP constants
2296    // as double.  Fix this here.  Long double does not need this.
2297    if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
2298        Ty->isFloatTy()) {
2299      bool Ignored;
2300      ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2301                            &Ignored);
2302    }
2303    V = ConstantFP::get(Context, ID.APFloatVal);
2304
2305    if (V->getType() != Ty)
2306      return Error(ID.Loc, "floating point constant does not have type '" +
2307                   Ty->getDescription() + "'");
2308
2309    return false;
2310  case ValID::t_Null:
2311    if (!isa<PointerType>(Ty))
2312      return Error(ID.Loc, "null must be a pointer type");
2313    V = ConstantPointerNull::get(cast<PointerType>(Ty));
2314    return false;
2315  case ValID::t_Undef:
2316    // FIXME: LabelTy should not be a first-class type.
2317    if ((!Ty->isFirstClassType() || Ty->isLabelTy()) &&
2318        !isa<OpaqueType>(Ty))
2319      return Error(ID.Loc, "invalid type for undef constant");
2320    V = UndefValue::get(Ty);
2321    return false;
2322  case ValID::t_EmptyArray:
2323    if (!isa<ArrayType>(Ty) || cast<ArrayType>(Ty)->getNumElements() != 0)
2324      return Error(ID.Loc, "invalid empty array initializer");
2325    V = UndefValue::get(Ty);
2326    return false;
2327  case ValID::t_Zero:
2328    // FIXME: LabelTy should not be a first-class type.
2329    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2330      return Error(ID.Loc, "invalid type for null constant");
2331    V = Constant::getNullValue(Ty);
2332    return false;
2333  case ValID::t_Constant:
2334    if (ID.ConstantVal->getType() != Ty)
2335      return Error(ID.Loc, "constant expression type mismatch");
2336    V = ID.ConstantVal;
2337    return false;
2338  }
2339}
2340
2341bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2342  PATypeHolder Type(Type::getVoidTy(Context));
2343  return ParseType(Type) ||
2344         ParseGlobalValue(Type, V);
2345}
2346
2347/// ParseGlobalValueVector
2348///   ::= /*empty*/
2349///   ::= TypeAndValue (',' TypeAndValue)*
2350bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2351  // Empty list.
2352  if (Lex.getKind() == lltok::rbrace ||
2353      Lex.getKind() == lltok::rsquare ||
2354      Lex.getKind() == lltok::greater ||
2355      Lex.getKind() == lltok::rparen)
2356    return false;
2357
2358  Constant *C;
2359  if (ParseGlobalTypeAndValue(C)) return true;
2360  Elts.push_back(C);
2361
2362  while (EatIfPresent(lltok::comma)) {
2363    if (ParseGlobalTypeAndValue(C)) return true;
2364    Elts.push_back(C);
2365  }
2366
2367  return false;
2368}
2369
2370
2371//===----------------------------------------------------------------------===//
2372// Function Parsing.
2373//===----------------------------------------------------------------------===//
2374
2375bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
2376                                   PerFunctionState &PFS) {
2377  if (ID.Kind == ValID::t_LocalID)
2378    V = PFS.GetVal(ID.UIntVal, Ty, ID.Loc);
2379  else if (ID.Kind == ValID::t_LocalName)
2380    V = PFS.GetVal(ID.StrVal, Ty, ID.Loc);
2381  else if (ID.Kind == ValID::t_InlineAsm) {
2382    const PointerType *PTy = dyn_cast<PointerType>(Ty);
2383    const FunctionType *FTy =
2384      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2385    if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2386      return Error(ID.Loc, "invalid type for inline asm constraint string");
2387    V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, ID.UIntVal>>1);
2388    return false;
2389  } else if (ID.Kind == ValID::t_Metadata) {
2390    V = ID.MetadataVal;
2391  } else {
2392    Constant *C;
2393    if (ConvertGlobalValIDToValue(Ty, ID, C)) return true;
2394    V = C;
2395    return false;
2396  }
2397
2398  return V == 0;
2399}
2400
2401bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
2402  V = 0;
2403  ValID ID;
2404  return ParseValID(ID) ||
2405         ConvertValIDToValue(Ty, ID, V, PFS);
2406}
2407
2408bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
2409  PATypeHolder T(Type::getVoidTy(Context));
2410  return ParseType(T) ||
2411         ParseValue(T, V, PFS);
2412}
2413
2414/// FunctionHeader
2415///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2416///       Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2417///       OptionalAlign OptGC
2418bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2419  // Parse the linkage.
2420  LocTy LinkageLoc = Lex.getLoc();
2421  unsigned Linkage;
2422
2423  unsigned Visibility, RetAttrs;
2424  CallingConv::ID CC;
2425  PATypeHolder RetType(Type::getVoidTy(Context));
2426  LocTy RetTypeLoc = Lex.getLoc();
2427  if (ParseOptionalLinkage(Linkage) ||
2428      ParseOptionalVisibility(Visibility) ||
2429      ParseOptionalCallingConv(CC) ||
2430      ParseOptionalAttrs(RetAttrs, 1) ||
2431      ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2432    return true;
2433
2434  // Verify that the linkage is ok.
2435  switch ((GlobalValue::LinkageTypes)Linkage) {
2436  case GlobalValue::ExternalLinkage:
2437    break; // always ok.
2438  case GlobalValue::DLLImportLinkage:
2439  case GlobalValue::ExternalWeakLinkage:
2440    if (isDefine)
2441      return Error(LinkageLoc, "invalid linkage for function definition");
2442    break;
2443  case GlobalValue::PrivateLinkage:
2444  case GlobalValue::LinkerPrivateLinkage:
2445  case GlobalValue::InternalLinkage:
2446  case GlobalValue::AvailableExternallyLinkage:
2447  case GlobalValue::LinkOnceAnyLinkage:
2448  case GlobalValue::LinkOnceODRLinkage:
2449  case GlobalValue::WeakAnyLinkage:
2450  case GlobalValue::WeakODRLinkage:
2451  case GlobalValue::DLLExportLinkage:
2452    if (!isDefine)
2453      return Error(LinkageLoc, "invalid linkage for function declaration");
2454    break;
2455  case GlobalValue::AppendingLinkage:
2456  case GlobalValue::GhostLinkage:
2457  case GlobalValue::CommonLinkage:
2458    return Error(LinkageLoc, "invalid function linkage type");
2459  }
2460
2461  if (!FunctionType::isValidReturnType(RetType) ||
2462      isa<OpaqueType>(RetType))
2463    return Error(RetTypeLoc, "invalid function return type");
2464
2465  LocTy NameLoc = Lex.getLoc();
2466
2467  std::string FunctionName;
2468  if (Lex.getKind() == lltok::GlobalVar) {
2469    FunctionName = Lex.getStrVal();
2470  } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
2471    unsigned NameID = Lex.getUIntVal();
2472
2473    if (NameID != NumberedVals.size())
2474      return TokError("function expected to be numbered '%" +
2475                      utostr(NumberedVals.size()) + "'");
2476  } else {
2477    return TokError("expected function name");
2478  }
2479
2480  Lex.Lex();
2481
2482  if (Lex.getKind() != lltok::lparen)
2483    return TokError("expected '(' in function argument list");
2484
2485  std::vector<ArgInfo> ArgList;
2486  bool isVarArg;
2487  unsigned FuncAttrs;
2488  std::string Section;
2489  unsigned Alignment;
2490  std::string GC;
2491
2492  if (ParseArgumentList(ArgList, isVarArg, false) ||
2493      ParseOptionalAttrs(FuncAttrs, 2) ||
2494      (EatIfPresent(lltok::kw_section) &&
2495       ParseStringConstant(Section)) ||
2496      ParseOptionalAlignment(Alignment) ||
2497      (EatIfPresent(lltok::kw_gc) &&
2498       ParseStringConstant(GC)))
2499    return true;
2500
2501  // If the alignment was parsed as an attribute, move to the alignment field.
2502  if (FuncAttrs & Attribute::Alignment) {
2503    Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2504    FuncAttrs &= ~Attribute::Alignment;
2505  }
2506
2507  // Okay, if we got here, the function is syntactically valid.  Convert types
2508  // and do semantic checks.
2509  std::vector<const Type*> ParamTypeList;
2510  SmallVector<AttributeWithIndex, 8> Attrs;
2511  // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2512  // attributes.
2513  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2514  if (FuncAttrs & ObsoleteFuncAttrs) {
2515    RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
2516    FuncAttrs &= ~ObsoleteFuncAttrs;
2517  }
2518
2519  if (RetAttrs != Attribute::None)
2520    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2521
2522  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2523    ParamTypeList.push_back(ArgList[i].Type);
2524    if (ArgList[i].Attrs != Attribute::None)
2525      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2526  }
2527
2528  if (FuncAttrs != Attribute::None)
2529    Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2530
2531  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2532
2533  if (PAL.paramHasAttr(1, Attribute::StructRet) &&
2534      RetType != Type::getVoidTy(Context))
2535    return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2536
2537  const FunctionType *FT =
2538    FunctionType::get(RetType, ParamTypeList, isVarArg);
2539  const PointerType *PFT = PointerType::getUnqual(FT);
2540
2541  Fn = 0;
2542  if (!FunctionName.empty()) {
2543    // If this was a definition of a forward reference, remove the definition
2544    // from the forward reference table and fill in the forward ref.
2545    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2546      ForwardRefVals.find(FunctionName);
2547    if (FRVI != ForwardRefVals.end()) {
2548      Fn = M->getFunction(FunctionName);
2549      ForwardRefVals.erase(FRVI);
2550    } else if ((Fn = M->getFunction(FunctionName))) {
2551      // If this function already exists in the symbol table, then it is
2552      // multiply defined.  We accept a few cases for old backwards compat.
2553      // FIXME: Remove this stuff for LLVM 3.0.
2554      if (Fn->getType() != PFT || Fn->getAttributes() != PAL ||
2555          (!Fn->isDeclaration() && isDefine)) {
2556        // If the redefinition has different type or different attributes,
2557        // reject it.  If both have bodies, reject it.
2558        return Error(NameLoc, "invalid redefinition of function '" +
2559                     FunctionName + "'");
2560      } else if (Fn->isDeclaration()) {
2561        // Make sure to strip off any argument names so we can't get conflicts.
2562        for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2563             AI != AE; ++AI)
2564          AI->setName("");
2565      }
2566    }
2567
2568  } else {
2569    // If this is a definition of a forward referenced function, make sure the
2570    // types agree.
2571    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2572      = ForwardRefValIDs.find(NumberedVals.size());
2573    if (I != ForwardRefValIDs.end()) {
2574      Fn = cast<Function>(I->second.first);
2575      if (Fn->getType() != PFT)
2576        return Error(NameLoc, "type of definition and forward reference of '@" +
2577                     utostr(NumberedVals.size()) +"' disagree");
2578      ForwardRefValIDs.erase(I);
2579    }
2580  }
2581
2582  if (Fn == 0)
2583    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2584  else // Move the forward-reference to the correct spot in the module.
2585    M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2586
2587  if (FunctionName.empty())
2588    NumberedVals.push_back(Fn);
2589
2590  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2591  Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2592  Fn->setCallingConv(CC);
2593  Fn->setAttributes(PAL);
2594  Fn->setAlignment(Alignment);
2595  Fn->setSection(Section);
2596  if (!GC.empty()) Fn->setGC(GC.c_str());
2597
2598  // Add all of the arguments we parsed to the function.
2599  Function::arg_iterator ArgIt = Fn->arg_begin();
2600  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2601    // If the argument has a name, insert it into the argument symbol table.
2602    if (ArgList[i].Name.empty()) continue;
2603
2604    // Set the name, if it conflicted, it will be auto-renamed.
2605    ArgIt->setName(ArgList[i].Name);
2606
2607    if (ArgIt->getNameStr() != ArgList[i].Name)
2608      return Error(ArgList[i].Loc, "redefinition of argument '%" +
2609                   ArgList[i].Name + "'");
2610  }
2611
2612  return false;
2613}
2614
2615
2616/// ParseFunctionBody
2617///   ::= '{' BasicBlock+ '}'
2618///   ::= 'begin' BasicBlock+ 'end'  // FIXME: remove in LLVM 3.0
2619///
2620bool LLParser::ParseFunctionBody(Function &Fn) {
2621  if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
2622    return TokError("expected '{' in function body");
2623  Lex.Lex();  // eat the {.
2624
2625  PerFunctionState PFS(*this, Fn);
2626
2627  while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
2628    if (ParseBasicBlock(PFS)) return true;
2629
2630  // Eat the }.
2631  Lex.Lex();
2632
2633  // Verify function is ok.
2634  return PFS.VerifyFunctionComplete();
2635}
2636
2637/// ParseBasicBlock
2638///   ::= LabelStr? Instruction*
2639bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2640  // If this basic block starts out with a name, remember it.
2641  std::string Name;
2642  LocTy NameLoc = Lex.getLoc();
2643  if (Lex.getKind() == lltok::LabelStr) {
2644    Name = Lex.getStrVal();
2645    Lex.Lex();
2646  }
2647
2648  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2649  if (BB == 0) return true;
2650
2651  std::string NameStr;
2652
2653  // Parse the instructions in this block until we get a terminator.
2654  Instruction *Inst;
2655  do {
2656    // This instruction may have three possibilities for a name: a) none
2657    // specified, b) name specified "%foo =", c) number specified: "%4 =".
2658    LocTy NameLoc = Lex.getLoc();
2659    int NameID = -1;
2660    NameStr = "";
2661
2662    if (Lex.getKind() == lltok::LocalVarID) {
2663      NameID = Lex.getUIntVal();
2664      Lex.Lex();
2665      if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2666        return true;
2667    } else if (Lex.getKind() == lltok::LocalVar ||
2668               // FIXME: REMOVE IN LLVM 3.0
2669               Lex.getKind() == lltok::StringConstant) {
2670      NameStr = Lex.getStrVal();
2671      Lex.Lex();
2672      if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2673        return true;
2674    }
2675
2676    if (ParseInstruction(Inst, BB, PFS)) return true;
2677    if (EatIfPresent(lltok::comma))
2678      ParseOptionalCustomMetadata();
2679
2680    // Set metadata attached with this instruction.
2681    MetadataContext &TheMetadata = M->getContext().getMetadata();
2682    for (SmallVector<std::pair<unsigned, MDNode *>, 2>::iterator
2683           MDI = MDsOnInst.begin(), MDE = MDsOnInst.end(); MDI != MDE; ++MDI)
2684      TheMetadata.addMD(MDI->first, MDI->second, Inst);
2685    MDsOnInst.clear();
2686
2687    BB->getInstList().push_back(Inst);
2688
2689    // Set the name on the instruction.
2690    if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2691  } while (!isa<TerminatorInst>(Inst));
2692
2693  return false;
2694}
2695
2696//===----------------------------------------------------------------------===//
2697// Instruction Parsing.
2698//===----------------------------------------------------------------------===//
2699
2700/// ParseInstruction - Parse one of the many different instructions.
2701///
2702bool LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2703                                PerFunctionState &PFS) {
2704  lltok::Kind Token = Lex.getKind();
2705  if (Token == lltok::Eof)
2706    return TokError("found end of file when expecting more instructions");
2707  LocTy Loc = Lex.getLoc();
2708  unsigned KeywordVal = Lex.getUIntVal();
2709  Lex.Lex();  // Eat the keyword.
2710
2711  switch (Token) {
2712  default:                    return Error(Loc, "expected instruction opcode");
2713  // Terminator Instructions.
2714  case lltok::kw_unwind:      Inst = new UnwindInst(Context); return false;
2715  case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
2716  case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
2717  case lltok::kw_br:          return ParseBr(Inst, PFS);
2718  case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
2719  case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
2720  // Binary Operators.
2721  case lltok::kw_add:
2722  case lltok::kw_sub:
2723  case lltok::kw_mul: {
2724    bool NUW = false;
2725    bool NSW = false;
2726    LocTy ModifierLoc = Lex.getLoc();
2727    if (EatIfPresent(lltok::kw_nuw))
2728      NUW = true;
2729    if (EatIfPresent(lltok::kw_nsw)) {
2730      NSW = true;
2731      if (EatIfPresent(lltok::kw_nuw))
2732        NUW = true;
2733    }
2734    // API compatibility: Accept either integer or floating-point types.
2735    bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 0);
2736    if (!Result) {
2737      if (!Inst->getType()->isIntOrIntVector()) {
2738        if (NUW)
2739          return Error(ModifierLoc, "nuw only applies to integer operations");
2740        if (NSW)
2741          return Error(ModifierLoc, "nsw only applies to integer operations");
2742      }
2743      if (NUW)
2744        cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
2745      if (NSW)
2746        cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
2747    }
2748    return Result;
2749  }
2750  case lltok::kw_fadd:
2751  case lltok::kw_fsub:
2752  case lltok::kw_fmul:    return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2753
2754  case lltok::kw_sdiv: {
2755    bool Exact = false;
2756    if (EatIfPresent(lltok::kw_exact))
2757      Exact = true;
2758    bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 1);
2759    if (!Result)
2760      if (Exact)
2761        cast<BinaryOperator>(Inst)->setIsExact(true);
2762    return Result;
2763  }
2764
2765  case lltok::kw_udiv:
2766  case lltok::kw_urem:
2767  case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
2768  case lltok::kw_fdiv:
2769  case lltok::kw_frem:   return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2770  case lltok::kw_shl:
2771  case lltok::kw_lshr:
2772  case lltok::kw_ashr:
2773  case lltok::kw_and:
2774  case lltok::kw_or:
2775  case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
2776  case lltok::kw_icmp:
2777  case lltok::kw_fcmp:   return ParseCompare(Inst, PFS, KeywordVal);
2778  // Casts.
2779  case lltok::kw_trunc:
2780  case lltok::kw_zext:
2781  case lltok::kw_sext:
2782  case lltok::kw_fptrunc:
2783  case lltok::kw_fpext:
2784  case lltok::kw_bitcast:
2785  case lltok::kw_uitofp:
2786  case lltok::kw_sitofp:
2787  case lltok::kw_fptoui:
2788  case lltok::kw_fptosi:
2789  case lltok::kw_inttoptr:
2790  case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
2791  // Other.
2792  case lltok::kw_select:         return ParseSelect(Inst, PFS);
2793  case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
2794  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
2795  case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
2796  case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
2797  case lltok::kw_phi:            return ParsePHI(Inst, PFS);
2798  case lltok::kw_call:           return ParseCall(Inst, PFS, false);
2799  case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
2800  // Memory.
2801  case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
2802  case lltok::kw_malloc:         return ParseAlloc(Inst, PFS, BB, false);
2803  case lltok::kw_free:           return ParseFree(Inst, PFS);
2804  case lltok::kw_load:           return ParseLoad(Inst, PFS, false);
2805  case lltok::kw_store:          return ParseStore(Inst, PFS, false);
2806  case lltok::kw_volatile:
2807    if (EatIfPresent(lltok::kw_load))
2808      return ParseLoad(Inst, PFS, true);
2809    else if (EatIfPresent(lltok::kw_store))
2810      return ParseStore(Inst, PFS, true);
2811    else
2812      return TokError("expected 'load' or 'store'");
2813  case lltok::kw_getresult:     return ParseGetResult(Inst, PFS);
2814  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
2815  case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
2816  case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
2817  }
2818}
2819
2820/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
2821bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
2822  if (Opc == Instruction::FCmp) {
2823    switch (Lex.getKind()) {
2824    default: TokError("expected fcmp predicate (e.g. 'oeq')");
2825    case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
2826    case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
2827    case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
2828    case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
2829    case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
2830    case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
2831    case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
2832    case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
2833    case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
2834    case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
2835    case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
2836    case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
2837    case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
2838    case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
2839    case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
2840    case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
2841    }
2842  } else {
2843    switch (Lex.getKind()) {
2844    default: TokError("expected icmp predicate (e.g. 'eq')");
2845    case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
2846    case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
2847    case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
2848    case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
2849    case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
2850    case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
2851    case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
2852    case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
2853    case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
2854    case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
2855    }
2856  }
2857  Lex.Lex();
2858  return false;
2859}
2860
2861//===----------------------------------------------------------------------===//
2862// Terminator Instructions.
2863//===----------------------------------------------------------------------===//
2864
2865/// ParseRet - Parse a return instruction.
2866///   ::= 'ret' void (',' !dbg, !1)
2867///   ::= 'ret' TypeAndValue (',' !dbg, !1)
2868///   ::= 'ret' TypeAndValue (',' TypeAndValue)+  (',' !dbg, !1)
2869///         [[obsolete: LLVM 3.0]]
2870bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
2871                        PerFunctionState &PFS) {
2872  PATypeHolder Ty(Type::getVoidTy(Context));
2873  if (ParseType(Ty, true /*void allowed*/)) return true;
2874
2875  if (Ty->isVoidTy()) {
2876    Inst = ReturnInst::Create(Context);
2877    return false;
2878  }
2879
2880  Value *RV;
2881  if (ParseValue(Ty, RV, PFS)) return true;
2882
2883  if (EatIfPresent(lltok::comma)) {
2884    // Parse optional custom metadata, e.g. !dbg
2885    if (Lex.getKind() == lltok::NamedOrCustomMD) {
2886      if (ParseOptionalCustomMetadata()) return true;
2887    } else {
2888      // The normal case is one return value.
2889      // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring use
2890      // of 'ret {i32,i32} {i32 1, i32 2}'
2891      SmallVector<Value*, 8> RVs;
2892      RVs.push_back(RV);
2893
2894      do {
2895        // If optional custom metadata, e.g. !dbg is seen then this is the
2896        // end of MRV.
2897        if (Lex.getKind() == lltok::NamedOrCustomMD)
2898          break;
2899        if (ParseTypeAndValue(RV, PFS)) return true;
2900        RVs.push_back(RV);
2901      } while (EatIfPresent(lltok::comma));
2902
2903      RV = UndefValue::get(PFS.getFunction().getReturnType());
2904      for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
2905        Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
2906        BB->getInstList().push_back(I);
2907        RV = I;
2908      }
2909    }
2910  }
2911
2912  Inst = ReturnInst::Create(Context, RV);
2913  return false;
2914}
2915
2916
2917/// ParseBr
2918///   ::= 'br' TypeAndValue
2919///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2920bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
2921  LocTy Loc, Loc2;
2922  Value *Op0, *Op1, *Op2;
2923  if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
2924
2925  if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
2926    Inst = BranchInst::Create(BB);
2927    return false;
2928  }
2929
2930  if (Op0->getType() != Type::getInt1Ty(Context))
2931    return Error(Loc, "branch condition must have 'i1' type");
2932
2933  if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
2934      ParseTypeAndValue(Op1, Loc, PFS) ||
2935      ParseToken(lltok::comma, "expected ',' after true destination") ||
2936      ParseTypeAndValue(Op2, Loc2, PFS))
2937    return true;
2938
2939  if (!isa<BasicBlock>(Op1))
2940    return Error(Loc, "true destination of branch must be a basic block");
2941  if (!isa<BasicBlock>(Op2))
2942    return Error(Loc2, "true destination of branch must be a basic block");
2943
2944  Inst = BranchInst::Create(cast<BasicBlock>(Op1), cast<BasicBlock>(Op2), Op0);
2945  return false;
2946}
2947
2948/// ParseSwitch
2949///  Instruction
2950///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
2951///  JumpTable
2952///    ::= (TypeAndValue ',' TypeAndValue)*
2953bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
2954  LocTy CondLoc, BBLoc;
2955  Value *Cond, *DefaultBB;
2956  if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
2957      ParseToken(lltok::comma, "expected ',' after switch condition") ||
2958      ParseTypeAndValue(DefaultBB, BBLoc, PFS) ||
2959      ParseToken(lltok::lsquare, "expected '[' with switch table"))
2960    return true;
2961
2962  if (!isa<IntegerType>(Cond->getType()))
2963    return Error(CondLoc, "switch condition must have integer type");
2964  if (!isa<BasicBlock>(DefaultBB))
2965    return Error(BBLoc, "default destination must be a basic block");
2966
2967  // Parse the jump table pairs.
2968  SmallPtrSet<Value*, 32> SeenCases;
2969  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
2970  while (Lex.getKind() != lltok::rsquare) {
2971    Value *Constant, *DestBB;
2972
2973    if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
2974        ParseToken(lltok::comma, "expected ',' after case value") ||
2975        ParseTypeAndValue(DestBB, BBLoc, PFS))
2976      return true;
2977
2978    if (!SeenCases.insert(Constant))
2979      return Error(CondLoc, "duplicate case value in switch");
2980    if (!isa<ConstantInt>(Constant))
2981      return Error(CondLoc, "case value is not a constant integer");
2982    if (!isa<BasicBlock>(DestBB))
2983      return Error(BBLoc, "case destination is not a basic block");
2984
2985    Table.push_back(std::make_pair(cast<ConstantInt>(Constant),
2986                                   cast<BasicBlock>(DestBB)));
2987  }
2988
2989  Lex.Lex();  // Eat the ']'.
2990
2991  SwitchInst *SI = SwitchInst::Create(Cond, cast<BasicBlock>(DefaultBB),
2992                                      Table.size());
2993  for (unsigned i = 0, e = Table.size(); i != e; ++i)
2994    SI->addCase(Table[i].first, Table[i].second);
2995  Inst = SI;
2996  return false;
2997}
2998
2999/// ParseInvoke
3000///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
3001///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
3002bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
3003  LocTy CallLoc = Lex.getLoc();
3004  unsigned RetAttrs, FnAttrs;
3005  CallingConv::ID CC;
3006  PATypeHolder RetType(Type::getVoidTy(Context));
3007  LocTy RetTypeLoc;
3008  ValID CalleeID;
3009  SmallVector<ParamInfo, 16> ArgList;
3010
3011  Value *NormalBB, *UnwindBB;
3012  if (ParseOptionalCallingConv(CC) ||
3013      ParseOptionalAttrs(RetAttrs, 1) ||
3014      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3015      ParseValID(CalleeID) ||
3016      ParseParameterList(ArgList, PFS) ||
3017      ParseOptionalAttrs(FnAttrs, 2) ||
3018      ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
3019      ParseTypeAndValue(NormalBB, PFS) ||
3020      ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
3021      ParseTypeAndValue(UnwindBB, PFS))
3022    return true;
3023
3024  if (!isa<BasicBlock>(NormalBB))
3025    return Error(CallLoc, "normal destination is not a basic block");
3026  if (!isa<BasicBlock>(UnwindBB))
3027    return Error(CallLoc, "unwind destination is not a basic block");
3028
3029  // If RetType is a non-function pointer type, then this is the short syntax
3030  // for the call, which means that RetType is just the return type.  Infer the
3031  // rest of the function argument types from the arguments that are present.
3032  const PointerType *PFTy = 0;
3033  const FunctionType *Ty = 0;
3034  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3035      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3036    // Pull out the types of all of the arguments...
3037    std::vector<const Type*> ParamTypes;
3038    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3039      ParamTypes.push_back(ArgList[i].V->getType());
3040
3041    if (!FunctionType::isValidReturnType(RetType))
3042      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3043
3044    Ty = FunctionType::get(RetType, ParamTypes, false);
3045    PFTy = PointerType::getUnqual(Ty);
3046  }
3047
3048  // Look up the callee.
3049  Value *Callee;
3050  if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
3051
3052  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3053  // function attributes.
3054  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3055  if (FnAttrs & ObsoleteFuncAttrs) {
3056    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3057    FnAttrs &= ~ObsoleteFuncAttrs;
3058  }
3059
3060  // Set up the Attributes for the function.
3061  SmallVector<AttributeWithIndex, 8> Attrs;
3062  if (RetAttrs != Attribute::None)
3063    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3064
3065  SmallVector<Value*, 8> Args;
3066
3067  // Loop through FunctionType's arguments and ensure they are specified
3068  // correctly.  Also, gather any parameter attributes.
3069  FunctionType::param_iterator I = Ty->param_begin();
3070  FunctionType::param_iterator E = Ty->param_end();
3071  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3072    const Type *ExpectedTy = 0;
3073    if (I != E) {
3074      ExpectedTy = *I++;
3075    } else if (!Ty->isVarArg()) {
3076      return Error(ArgList[i].Loc, "too many arguments specified");
3077    }
3078
3079    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3080      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3081                   ExpectedTy->getDescription() + "'");
3082    Args.push_back(ArgList[i].V);
3083    if (ArgList[i].Attrs != Attribute::None)
3084      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3085  }
3086
3087  if (I != E)
3088    return Error(CallLoc, "not enough parameters specified for call");
3089
3090  if (FnAttrs != Attribute::None)
3091    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3092
3093  // Finish off the Attributes and check them
3094  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3095
3096  InvokeInst *II = InvokeInst::Create(Callee, cast<BasicBlock>(NormalBB),
3097                                      cast<BasicBlock>(UnwindBB),
3098                                      Args.begin(), Args.end());
3099  II->setCallingConv(CC);
3100  II->setAttributes(PAL);
3101  Inst = II;
3102  return false;
3103}
3104
3105
3106
3107//===----------------------------------------------------------------------===//
3108// Binary Operators.
3109//===----------------------------------------------------------------------===//
3110
3111/// ParseArithmetic
3112///  ::= ArithmeticOps TypeAndValue ',' Value
3113///
3114/// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
3115/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
3116bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
3117                               unsigned Opc, unsigned OperandType) {
3118  LocTy Loc; Value *LHS, *RHS;
3119  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3120      ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
3121      ParseValue(LHS->getType(), RHS, PFS))
3122    return true;
3123
3124  bool Valid;
3125  switch (OperandType) {
3126  default: llvm_unreachable("Unknown operand type!");
3127  case 0: // int or FP.
3128    Valid = LHS->getType()->isIntOrIntVector() ||
3129            LHS->getType()->isFPOrFPVector();
3130    break;
3131  case 1: Valid = LHS->getType()->isIntOrIntVector(); break;
3132  case 2: Valid = LHS->getType()->isFPOrFPVector(); break;
3133  }
3134
3135  if (!Valid)
3136    return Error(Loc, "invalid operand type for instruction");
3137
3138  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3139  return false;
3140}
3141
3142/// ParseLogical
3143///  ::= ArithmeticOps TypeAndValue ',' Value {
3144bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3145                            unsigned Opc) {
3146  LocTy Loc; Value *LHS, *RHS;
3147  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3148      ParseToken(lltok::comma, "expected ',' in logical operation") ||
3149      ParseValue(LHS->getType(), RHS, PFS))
3150    return true;
3151
3152  if (!LHS->getType()->isIntOrIntVector())
3153    return Error(Loc,"instruction requires integer or integer vector operands");
3154
3155  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3156  return false;
3157}
3158
3159
3160/// ParseCompare
3161///  ::= 'icmp' IPredicates TypeAndValue ',' Value
3162///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
3163bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3164                            unsigned Opc) {
3165  // Parse the integer/fp comparison predicate.
3166  LocTy Loc;
3167  unsigned Pred;
3168  Value *LHS, *RHS;
3169  if (ParseCmpPredicate(Pred, Opc) ||
3170      ParseTypeAndValue(LHS, Loc, PFS) ||
3171      ParseToken(lltok::comma, "expected ',' after compare value") ||
3172      ParseValue(LHS->getType(), RHS, PFS))
3173    return true;
3174
3175  if (Opc == Instruction::FCmp) {
3176    if (!LHS->getType()->isFPOrFPVector())
3177      return Error(Loc, "fcmp requires floating point operands");
3178    Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3179  } else {
3180    assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3181    if (!LHS->getType()->isIntOrIntVector() &&
3182        !isa<PointerType>(LHS->getType()))
3183      return Error(Loc, "icmp requires integer operands");
3184    Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3185  }
3186  return false;
3187}
3188
3189//===----------------------------------------------------------------------===//
3190// Other Instructions.
3191//===----------------------------------------------------------------------===//
3192
3193
3194/// ParseCast
3195///   ::= CastOpc TypeAndValue 'to' Type
3196bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3197                         unsigned Opc) {
3198  LocTy Loc;  Value *Op;
3199  PATypeHolder DestTy(Type::getVoidTy(Context));
3200  if (ParseTypeAndValue(Op, Loc, PFS) ||
3201      ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3202      ParseType(DestTy))
3203    return true;
3204
3205  if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3206    CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3207    return Error(Loc, "invalid cast opcode for cast from '" +
3208                 Op->getType()->getDescription() + "' to '" +
3209                 DestTy->getDescription() + "'");
3210  }
3211  Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3212  return false;
3213}
3214
3215/// ParseSelect
3216///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3217bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3218  LocTy Loc;
3219  Value *Op0, *Op1, *Op2;
3220  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3221      ParseToken(lltok::comma, "expected ',' after select condition") ||
3222      ParseTypeAndValue(Op1, PFS) ||
3223      ParseToken(lltok::comma, "expected ',' after select value") ||
3224      ParseTypeAndValue(Op2, PFS))
3225    return true;
3226
3227  if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3228    return Error(Loc, Reason);
3229
3230  Inst = SelectInst::Create(Op0, Op1, Op2);
3231  return false;
3232}
3233
3234/// ParseVA_Arg
3235///   ::= 'va_arg' TypeAndValue ',' Type
3236bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3237  Value *Op;
3238  PATypeHolder EltTy(Type::getVoidTy(Context));
3239  LocTy TypeLoc;
3240  if (ParseTypeAndValue(Op, PFS) ||
3241      ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3242      ParseType(EltTy, TypeLoc))
3243    return true;
3244
3245  if (!EltTy->isFirstClassType())
3246    return Error(TypeLoc, "va_arg requires operand with first class type");
3247
3248  Inst = new VAArgInst(Op, EltTy);
3249  return false;
3250}
3251
3252/// ParseExtractElement
3253///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
3254bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3255  LocTy Loc;
3256  Value *Op0, *Op1;
3257  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3258      ParseToken(lltok::comma, "expected ',' after extract value") ||
3259      ParseTypeAndValue(Op1, PFS))
3260    return true;
3261
3262  if (!ExtractElementInst::isValidOperands(Op0, Op1))
3263    return Error(Loc, "invalid extractelement operands");
3264
3265  Inst = ExtractElementInst::Create(Op0, Op1);
3266  return false;
3267}
3268
3269/// ParseInsertElement
3270///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3271bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3272  LocTy Loc;
3273  Value *Op0, *Op1, *Op2;
3274  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3275      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3276      ParseTypeAndValue(Op1, PFS) ||
3277      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3278      ParseTypeAndValue(Op2, PFS))
3279    return true;
3280
3281  if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3282    return Error(Loc, "invalid insertelement operands");
3283
3284  Inst = InsertElementInst::Create(Op0, Op1, Op2);
3285  return false;
3286}
3287
3288/// ParseShuffleVector
3289///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3290bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3291  LocTy Loc;
3292  Value *Op0, *Op1, *Op2;
3293  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3294      ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3295      ParseTypeAndValue(Op1, PFS) ||
3296      ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3297      ParseTypeAndValue(Op2, PFS))
3298    return true;
3299
3300  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3301    return Error(Loc, "invalid extractelement operands");
3302
3303  Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3304  return false;
3305}
3306
3307/// ParsePHI
3308///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
3309bool LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3310  PATypeHolder Ty(Type::getVoidTy(Context));
3311  Value *Op0, *Op1;
3312  LocTy TypeLoc = Lex.getLoc();
3313
3314  if (ParseType(Ty) ||
3315      ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3316      ParseValue(Ty, Op0, PFS) ||
3317      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3318      ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3319      ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3320    return true;
3321
3322  SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3323  while (1) {
3324    PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3325
3326    if (!EatIfPresent(lltok::comma))
3327      break;
3328
3329    if (Lex.getKind() == lltok::NamedOrCustomMD)
3330      break;
3331
3332    if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3333        ParseValue(Ty, Op0, PFS) ||
3334        ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3335        ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3336        ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3337      return true;
3338  }
3339
3340  if (Lex.getKind() == lltok::NamedOrCustomMD)
3341    if (ParseOptionalCustomMetadata()) return true;
3342
3343  if (!Ty->isFirstClassType())
3344    return Error(TypeLoc, "phi node must have first class type");
3345
3346  PHINode *PN = PHINode::Create(Ty);
3347  PN->reserveOperandSpace(PHIVals.size());
3348  for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3349    PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3350  Inst = PN;
3351  return false;
3352}
3353
3354/// ParseCall
3355///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3356///       ParameterList OptionalAttrs
3357bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3358                         bool isTail) {
3359  unsigned RetAttrs, FnAttrs;
3360  CallingConv::ID CC;
3361  PATypeHolder RetType(Type::getVoidTy(Context));
3362  LocTy RetTypeLoc;
3363  ValID CalleeID;
3364  SmallVector<ParamInfo, 16> ArgList;
3365  LocTy CallLoc = Lex.getLoc();
3366
3367  if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3368      ParseOptionalCallingConv(CC) ||
3369      ParseOptionalAttrs(RetAttrs, 1) ||
3370      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3371      ParseValID(CalleeID) ||
3372      ParseParameterList(ArgList, PFS) ||
3373      ParseOptionalAttrs(FnAttrs, 2))
3374    return true;
3375
3376  // If RetType is a non-function pointer type, then this is the short syntax
3377  // for the call, which means that RetType is just the return type.  Infer the
3378  // rest of the function argument types from the arguments that are present.
3379  const PointerType *PFTy = 0;
3380  const FunctionType *Ty = 0;
3381  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3382      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3383    // Pull out the types of all of the arguments...
3384    std::vector<const Type*> ParamTypes;
3385    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3386      ParamTypes.push_back(ArgList[i].V->getType());
3387
3388    if (!FunctionType::isValidReturnType(RetType))
3389      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3390
3391    Ty = FunctionType::get(RetType, ParamTypes, false);
3392    PFTy = PointerType::getUnqual(Ty);
3393  }
3394
3395  // Look up the callee.
3396  Value *Callee;
3397  if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
3398
3399  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3400  // function attributes.
3401  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3402  if (FnAttrs & ObsoleteFuncAttrs) {
3403    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3404    FnAttrs &= ~ObsoleteFuncAttrs;
3405  }
3406
3407  // Set up the Attributes for the function.
3408  SmallVector<AttributeWithIndex, 8> Attrs;
3409  if (RetAttrs != Attribute::None)
3410    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3411
3412  SmallVector<Value*, 8> Args;
3413
3414  // Loop through FunctionType's arguments and ensure they are specified
3415  // correctly.  Also, gather any parameter attributes.
3416  FunctionType::param_iterator I = Ty->param_begin();
3417  FunctionType::param_iterator E = Ty->param_end();
3418  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3419    const Type *ExpectedTy = 0;
3420    if (I != E) {
3421      ExpectedTy = *I++;
3422    } else if (!Ty->isVarArg()) {
3423      return Error(ArgList[i].Loc, "too many arguments specified");
3424    }
3425
3426    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3427      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3428                   ExpectedTy->getDescription() + "'");
3429    Args.push_back(ArgList[i].V);
3430    if (ArgList[i].Attrs != Attribute::None)
3431      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3432  }
3433
3434  if (I != E)
3435    return Error(CallLoc, "not enough parameters specified for call");
3436
3437  if (FnAttrs != Attribute::None)
3438    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3439
3440  // Finish off the Attributes and check them
3441  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3442
3443  CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
3444  CI->setTailCall(isTail);
3445  CI->setCallingConv(CC);
3446  CI->setAttributes(PAL);
3447  Inst = CI;
3448  return false;
3449}
3450
3451//===----------------------------------------------------------------------===//
3452// Memory Instructions.
3453//===----------------------------------------------------------------------===//
3454
3455/// ParseAlloc
3456///   ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalInfo)?
3457///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
3458bool LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
3459                          BasicBlock* BB, bool isAlloca) {
3460  PATypeHolder Ty(Type::getVoidTy(Context));
3461  Value *Size = 0;
3462  LocTy SizeLoc;
3463  unsigned Alignment = 0;
3464  if (ParseType(Ty)) return true;
3465
3466  if (EatIfPresent(lltok::comma)) {
3467    if (Lex.getKind() == lltok::kw_align
3468        || Lex.getKind() == lltok::NamedOrCustomMD) {
3469      if (ParseOptionalInfo(Alignment)) return true;
3470    } else {
3471      if (ParseTypeAndValue(Size, SizeLoc, PFS)) return true;
3472      if (EatIfPresent(lltok::comma))
3473        if (ParseOptionalInfo(Alignment)) return true;
3474    }
3475  }
3476
3477  if (Size && Size->getType() != Type::getInt32Ty(Context))
3478    return Error(SizeLoc, "element count must be i32");
3479
3480  if (isAlloca) {
3481    Inst = new AllocaInst(Ty, Size, Alignment);
3482    return false;
3483  }
3484
3485  // Autoupgrade old malloc instruction to malloc call.
3486  // FIXME: Remove in LLVM 3.0.
3487  const Type *IntPtrTy = Type::getInt32Ty(Context);
3488  if (!MallocF)
3489    // Prototype malloc as "void *(int32)".
3490    // This function is renamed as "malloc" in ValidateEndOfModule().
3491    MallocF = cast<Function>(
3492       M->getOrInsertFunction("", Type::getInt8PtrTy(Context), IntPtrTy, NULL));
3493  Inst = CallInst::CreateMalloc(BB, IntPtrTy, Ty, Size, MallocF);
3494  return false;
3495}
3496
3497/// ParseFree
3498///   ::= 'free' TypeAndValue
3499bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS) {
3500  Value *Val; LocTy Loc;
3501  if (ParseTypeAndValue(Val, Loc, PFS)) return true;
3502  if (!isa<PointerType>(Val->getType()))
3503    return Error(Loc, "operand to free must be a pointer");
3504  Inst = new FreeInst(Val);
3505  return false;
3506}
3507
3508/// ParseLoad
3509///   ::= 'volatile'? 'load' TypeAndValue (',' OptionalInfo)?
3510bool LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
3511                         bool isVolatile) {
3512  Value *Val; LocTy Loc;
3513  unsigned Alignment = 0;
3514  if (ParseTypeAndValue(Val, Loc, PFS)) return true;
3515
3516  if (EatIfPresent(lltok::comma))
3517    if (ParseOptionalInfo(Alignment)) return true;
3518
3519  if (!isa<PointerType>(Val->getType()) ||
3520      !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3521    return Error(Loc, "load operand must be a pointer to a first class type");
3522
3523  Inst = new LoadInst(Val, "", isVolatile, Alignment);
3524  return false;
3525}
3526
3527/// ParseStore
3528///   ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3529bool LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
3530                          bool isVolatile) {
3531  Value *Val, *Ptr; LocTy Loc, PtrLoc;
3532  unsigned Alignment = 0;
3533  if (ParseTypeAndValue(Val, Loc, PFS) ||
3534      ParseToken(lltok::comma, "expected ',' after store operand") ||
3535      ParseTypeAndValue(Ptr, PtrLoc, PFS))
3536    return true;
3537
3538  if (EatIfPresent(lltok::comma))
3539    if (ParseOptionalInfo(Alignment)) return true;
3540
3541  if (!isa<PointerType>(Ptr->getType()))
3542    return Error(PtrLoc, "store operand must be a pointer");
3543  if (!Val->getType()->isFirstClassType())
3544    return Error(Loc, "store operand must be a first class value");
3545  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3546    return Error(Loc, "stored value and pointer type do not match");
3547
3548  Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
3549  return false;
3550}
3551
3552/// ParseGetResult
3553///   ::= 'getresult' TypeAndValue ',' i32
3554/// FIXME: Remove support for getresult in LLVM 3.0
3555bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
3556  Value *Val; LocTy ValLoc, EltLoc;
3557  unsigned Element;
3558  if (ParseTypeAndValue(Val, ValLoc, PFS) ||
3559      ParseToken(lltok::comma, "expected ',' after getresult operand") ||
3560      ParseUInt32(Element, EltLoc))
3561    return true;
3562
3563  if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3564    return Error(ValLoc, "getresult inst requires an aggregate operand");
3565  if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
3566    return Error(EltLoc, "invalid getresult index for value");
3567  Inst = ExtractValueInst::Create(Val, Element);
3568  return false;
3569}
3570
3571/// ParseGetElementPtr
3572///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
3573bool LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3574  Value *Ptr, *Val; LocTy Loc, EltLoc;
3575
3576  bool InBounds = EatIfPresent(lltok::kw_inbounds);
3577
3578  if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3579
3580  if (!isa<PointerType>(Ptr->getType()))
3581    return Error(Loc, "base of getelementptr must be a pointer");
3582
3583  SmallVector<Value*, 16> Indices;
3584  while (EatIfPresent(lltok::comma)) {
3585    if (Lex.getKind() == lltok::NamedOrCustomMD)
3586      break;
3587    if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3588    if (!isa<IntegerType>(Val->getType()))
3589      return Error(EltLoc, "getelementptr index must be an integer");
3590    Indices.push_back(Val);
3591  }
3592  if (Lex.getKind() == lltok::NamedOrCustomMD)
3593    if (ParseOptionalCustomMetadata()) return true;
3594
3595  if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
3596                                         Indices.begin(), Indices.end()))
3597    return Error(Loc, "invalid getelementptr indices");
3598  Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
3599  if (InBounds)
3600    cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
3601  return false;
3602}
3603
3604/// ParseExtractValue
3605///   ::= 'extractvalue' TypeAndValue (',' uint32)+
3606bool LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3607  Value *Val; LocTy Loc;
3608  SmallVector<unsigned, 4> Indices;
3609  if (ParseTypeAndValue(Val, Loc, PFS) ||
3610      ParseIndexList(Indices))
3611    return true;
3612
3613  if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3614    return Error(Loc, "extractvalue operand must be array or struct");
3615
3616  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
3617                                        Indices.end()))
3618    return Error(Loc, "invalid indices for extractvalue");
3619  Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end());
3620  return false;
3621}
3622
3623/// ParseInsertValue
3624///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3625bool LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3626  Value *Val0, *Val1; LocTy Loc0, Loc1;
3627  SmallVector<unsigned, 4> Indices;
3628  if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3629      ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3630      ParseTypeAndValue(Val1, Loc1, PFS) ||
3631      ParseIndexList(Indices))
3632    return true;
3633
3634  if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
3635    return Error(Loc0, "extractvalue operand must be array or struct");
3636
3637  if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
3638                                        Indices.end()))
3639    return Error(Loc0, "invalid indices for insertvalue");
3640  Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end());
3641  return false;
3642}
3643
3644//===----------------------------------------------------------------------===//
3645// Embedded metadata.
3646//===----------------------------------------------------------------------===//
3647
3648/// ParseMDNodeVector
3649///   ::= Element (',' Element)*
3650/// Element
3651///   ::= 'null' | TypeAndValue
3652bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts) {
3653  assert(Lex.getKind() == lltok::lbrace);
3654  Lex.Lex();
3655  do {
3656    Value *V = 0;
3657    if (Lex.getKind() == lltok::kw_null) {
3658      Lex.Lex();
3659      V = 0;
3660    } else {
3661      PATypeHolder Ty(Type::getVoidTy(Context));
3662      if (ParseType(Ty)) return true;
3663      if (Lex.getKind() == lltok::Metadata) {
3664        Lex.Lex();
3665        MetadataBase *Node = 0;
3666        if (!ParseMDNode(Node))
3667          V = Node;
3668        else {
3669          MetadataBase *MDS = 0;
3670          if (ParseMDString(MDS)) return true;
3671          V = MDS;
3672        }
3673      } else {
3674        Constant *C;
3675        if (ParseGlobalValue(Ty, C)) return true;
3676        V = C;
3677      }
3678    }
3679    Elts.push_back(V);
3680  } while (EatIfPresent(lltok::comma));
3681
3682  return false;
3683}
3684