LLParser.cpp revision 96b930ddc7f0df9e278a5cb65ad77a559a20964e
1//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/AutoUpgrade.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instructions.h"
21#include "llvm/LLVMContext.h"
22#include "llvm/Metadata.h"
23#include "llvm/Module.h"
24#include "llvm/Operator.h"
25#include "llvm/ValueSymbolTable.h"
26#include "llvm/ADT/SmallPtrSet.h"
27#include "llvm/ADT/StringExtras.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/raw_ostream.h"
30using namespace llvm;
31
32namespace llvm {
33  /// ValID - Represents a reference of a definition of some sort with no type.
34  /// There are several cases where we have to parse the value but where the
35  /// type can depend on later context.  This may either be a numeric reference
36  /// or a symbolic (%var) reference.  This is just a discriminated union.
37  struct ValID {
38    enum {
39      t_LocalID, t_GlobalID,      // ID in UIntVal.
40      t_LocalName, t_GlobalName,  // Name in StrVal.
41      t_APSInt, t_APFloat,        // Value in APSIntVal/APFloatVal.
42      t_Null, t_Undef, t_Zero,    // No value.
43      t_EmptyArray,               // No value:  []
44      t_Constant,                 // Value in ConstantVal.
45      t_InlineAsm,                // Value in StrVal/StrVal2/UIntVal.
46      t_Metadata                  // Value in MetadataVal.
47    } Kind;
48
49    LLParser::LocTy Loc;
50    unsigned UIntVal;
51    std::string StrVal, StrVal2;
52    APSInt APSIntVal;
53    APFloat APFloatVal;
54    Constant *ConstantVal;
55    MetadataBase *MetadataVal;
56    ValID() : APFloatVal(0.0) {}
57  };
58}
59
60/// Run: module ::= toplevelentity*
61bool LLParser::Run() {
62  // Prime the lexer.
63  Lex.Lex();
64
65  return ParseTopLevelEntities() ||
66         ValidateEndOfModule();
67}
68
69/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
70/// module.
71bool LLParser::ValidateEndOfModule() {
72  // Update auto-upgraded malloc calls from "autoupgrade_malloc" to "malloc".
73  if (MallocF) {
74    MallocF->setName("malloc");
75    // If setName() does not set the name to "malloc", then there is already a
76    // declaration of "malloc".  In that case, iterate over all calls to MallocF
77    // and get them to call the declared "malloc" instead.
78    if (MallocF->getName() != "malloc") {
79      Function* realMallocF = M->getFunction("malloc");
80      for (User::use_iterator UI = MallocF->use_begin(), UE= MallocF->use_end();
81           UI != UE; ) {
82        User* user = *UI;
83        UI++;
84        if (CallInst *Call = dyn_cast<CallInst>(user))
85          Call->setCalledFunction(realMallocF);
86      }
87      if (!realMallocF->doesNotAlias(0)) realMallocF->setDoesNotAlias(0);
88      MallocF->eraseFromParent();
89      MallocF = NULL;
90    }
91  }
92
93  if (!ForwardRefTypes.empty())
94    return Error(ForwardRefTypes.begin()->second.second,
95                 "use of undefined type named '" +
96                 ForwardRefTypes.begin()->first + "'");
97  if (!ForwardRefTypeIDs.empty())
98    return Error(ForwardRefTypeIDs.begin()->second.second,
99                 "use of undefined type '%" +
100                 utostr(ForwardRefTypeIDs.begin()->first) + "'");
101
102  if (!ForwardRefVals.empty())
103    return Error(ForwardRefVals.begin()->second.second,
104                 "use of undefined value '@" + ForwardRefVals.begin()->first +
105                 "'");
106
107  if (!ForwardRefValIDs.empty())
108    return Error(ForwardRefValIDs.begin()->second.second,
109                 "use of undefined value '@" +
110                 utostr(ForwardRefValIDs.begin()->first) + "'");
111
112  if (!ForwardRefMDNodes.empty())
113    return Error(ForwardRefMDNodes.begin()->second.second,
114                 "use of undefined metadata '!" +
115                 utostr(ForwardRefMDNodes.begin()->first) + "'");
116
117
118  // Look for intrinsic functions and CallInst that need to be upgraded
119  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
120    UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
121
122  // Check debug info intrinsics.
123  CheckDebugInfoIntrinsics(M);
124  return false;
125}
126
127//===----------------------------------------------------------------------===//
128// Top-Level Entities
129//===----------------------------------------------------------------------===//
130
131bool LLParser::ParseTopLevelEntities() {
132  while (1) {
133    switch (Lex.getKind()) {
134    default:         return TokError("expected top-level entity");
135    case lltok::Eof: return false;
136    //case lltok::kw_define:
137    case lltok::kw_declare: if (ParseDeclare()) return true; break;
138    case lltok::kw_define:  if (ParseDefine()) return true; break;
139    case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
140    case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
141    case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
142    case lltok::kw_type:    if (ParseUnnamedType()) return true; break;
143    case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
144    case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
145    case lltok::LocalVar:   if (ParseNamedType()) return true; break;
146    case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
147    case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
148    case lltok::Metadata:   if (ParseStandaloneMetadata()) return true; break;
149    case lltok::NamedMD:    if (ParseNamedMetadata()) return true; break;
150
151    // The Global variable production with no name can have many different
152    // optional leading prefixes, the production is:
153    // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
154    //               OptionalAddrSpace ('constant'|'global') ...
155    case lltok::kw_private :       // OptionalLinkage
156    case lltok::kw_linker_private: // OptionalLinkage
157    case lltok::kw_internal:       // OptionalLinkage
158    case lltok::kw_weak:           // OptionalLinkage
159    case lltok::kw_weak_odr:       // OptionalLinkage
160    case lltok::kw_linkonce:       // OptionalLinkage
161    case lltok::kw_linkonce_odr:   // OptionalLinkage
162    case lltok::kw_appending:      // OptionalLinkage
163    case lltok::kw_dllexport:      // OptionalLinkage
164    case lltok::kw_common:         // OptionalLinkage
165    case lltok::kw_dllimport:      // OptionalLinkage
166    case lltok::kw_extern_weak:    // OptionalLinkage
167    case lltok::kw_external: {     // OptionalLinkage
168      unsigned Linkage, Visibility;
169      if (ParseOptionalLinkage(Linkage) ||
170          ParseOptionalVisibility(Visibility) ||
171          ParseGlobal("", SMLoc(), Linkage, true, Visibility))
172        return true;
173      break;
174    }
175    case lltok::kw_default:       // OptionalVisibility
176    case lltok::kw_hidden:        // OptionalVisibility
177    case lltok::kw_protected: {   // OptionalVisibility
178      unsigned Visibility;
179      if (ParseOptionalVisibility(Visibility) ||
180          ParseGlobal("", SMLoc(), 0, false, Visibility))
181        return true;
182      break;
183    }
184
185    case lltok::kw_thread_local:  // OptionalThreadLocal
186    case lltok::kw_addrspace:     // OptionalAddrSpace
187    case lltok::kw_constant:      // GlobalType
188    case lltok::kw_global:        // GlobalType
189      if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
190      break;
191    }
192  }
193}
194
195
196/// toplevelentity
197///   ::= 'module' 'asm' STRINGCONSTANT
198bool LLParser::ParseModuleAsm() {
199  assert(Lex.getKind() == lltok::kw_module);
200  Lex.Lex();
201
202  std::string AsmStr;
203  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
204      ParseStringConstant(AsmStr)) return true;
205
206  const std::string &AsmSoFar = M->getModuleInlineAsm();
207  if (AsmSoFar.empty())
208    M->setModuleInlineAsm(AsmStr);
209  else
210    M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr);
211  return false;
212}
213
214/// toplevelentity
215///   ::= 'target' 'triple' '=' STRINGCONSTANT
216///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
217bool LLParser::ParseTargetDefinition() {
218  assert(Lex.getKind() == lltok::kw_target);
219  std::string Str;
220  switch (Lex.Lex()) {
221  default: return TokError("unknown target property");
222  case lltok::kw_triple:
223    Lex.Lex();
224    if (ParseToken(lltok::equal, "expected '=' after target triple") ||
225        ParseStringConstant(Str))
226      return true;
227    M->setTargetTriple(Str);
228    return false;
229  case lltok::kw_datalayout:
230    Lex.Lex();
231    if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
232        ParseStringConstant(Str))
233      return true;
234    M->setDataLayout(Str);
235    return false;
236  }
237}
238
239/// toplevelentity
240///   ::= 'deplibs' '=' '[' ']'
241///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
242bool LLParser::ParseDepLibs() {
243  assert(Lex.getKind() == lltok::kw_deplibs);
244  Lex.Lex();
245  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
246      ParseToken(lltok::lsquare, "expected '=' after deplibs"))
247    return true;
248
249  if (EatIfPresent(lltok::rsquare))
250    return false;
251
252  std::string Str;
253  if (ParseStringConstant(Str)) return true;
254  M->addLibrary(Str);
255
256  while (EatIfPresent(lltok::comma)) {
257    if (ParseStringConstant(Str)) return true;
258    M->addLibrary(Str);
259  }
260
261  return ParseToken(lltok::rsquare, "expected ']' at end of list");
262}
263
264/// ParseUnnamedType:
265///   ::= 'type' type
266///   ::= LocalVarID '=' 'type' type
267bool LLParser::ParseUnnamedType() {
268  unsigned TypeID = NumberedTypes.size();
269
270  // Handle the LocalVarID form.
271  if (Lex.getKind() == lltok::LocalVarID) {
272    if (Lex.getUIntVal() != TypeID)
273      return Error(Lex.getLoc(), "type expected to be numbered '%" +
274                   utostr(TypeID) + "'");
275    Lex.Lex(); // eat LocalVarID;
276
277    if (ParseToken(lltok::equal, "expected '=' after name"))
278      return true;
279  }
280
281  assert(Lex.getKind() == lltok::kw_type);
282  LocTy TypeLoc = Lex.getLoc();
283  Lex.Lex(); // eat kw_type
284
285  PATypeHolder Ty(Type::getVoidTy(Context));
286  if (ParseType(Ty)) return true;
287
288  // See if this type was previously referenced.
289  std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
290    FI = ForwardRefTypeIDs.find(TypeID);
291  if (FI != ForwardRefTypeIDs.end()) {
292    if (FI->second.first.get() == Ty)
293      return Error(TypeLoc, "self referential type is invalid");
294
295    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
296    Ty = FI->second.first.get();
297    ForwardRefTypeIDs.erase(FI);
298  }
299
300  NumberedTypes.push_back(Ty);
301
302  return false;
303}
304
305/// toplevelentity
306///   ::= LocalVar '=' 'type' type
307bool LLParser::ParseNamedType() {
308  std::string Name = Lex.getStrVal();
309  LocTy NameLoc = Lex.getLoc();
310  Lex.Lex();  // eat LocalVar.
311
312  PATypeHolder Ty(Type::getVoidTy(Context));
313
314  if (ParseToken(lltok::equal, "expected '=' after name") ||
315      ParseToken(lltok::kw_type, "expected 'type' after name") ||
316      ParseType(Ty))
317    return true;
318
319  // Set the type name, checking for conflicts as we do so.
320  bool AlreadyExists = M->addTypeName(Name, Ty);
321  if (!AlreadyExists) return false;
322
323  // See if this type is a forward reference.  We need to eagerly resolve
324  // types to allow recursive type redefinitions below.
325  std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator
326  FI = ForwardRefTypes.find(Name);
327  if (FI != ForwardRefTypes.end()) {
328    if (FI->second.first.get() == Ty)
329      return Error(NameLoc, "self referential type is invalid");
330
331    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
332    Ty = FI->second.first.get();
333    ForwardRefTypes.erase(FI);
334  }
335
336  // Inserting a name that is already defined, get the existing name.
337  const Type *Existing = M->getTypeByName(Name);
338  assert(Existing && "Conflict but no matching type?!");
339
340  // Otherwise, this is an attempt to redefine a type. That's okay if
341  // the redefinition is identical to the original.
342  // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
343  if (Existing == Ty) return false;
344
345  // Any other kind of (non-equivalent) redefinition is an error.
346  return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
347               Ty->getDescription() + "'");
348}
349
350
351/// toplevelentity
352///   ::= 'declare' FunctionHeader
353bool LLParser::ParseDeclare() {
354  assert(Lex.getKind() == lltok::kw_declare);
355  Lex.Lex();
356
357  Function *F;
358  return ParseFunctionHeader(F, false);
359}
360
361/// toplevelentity
362///   ::= 'define' FunctionHeader '{' ...
363bool LLParser::ParseDefine() {
364  assert(Lex.getKind() == lltok::kw_define);
365  Lex.Lex();
366
367  Function *F;
368  return ParseFunctionHeader(F, true) ||
369         ParseFunctionBody(*F);
370}
371
372/// ParseGlobalType
373///   ::= 'constant'
374///   ::= 'global'
375bool LLParser::ParseGlobalType(bool &IsConstant) {
376  if (Lex.getKind() == lltok::kw_constant)
377    IsConstant = true;
378  else if (Lex.getKind() == lltok::kw_global)
379    IsConstant = false;
380  else {
381    IsConstant = false;
382    return TokError("expected 'global' or 'constant'");
383  }
384  Lex.Lex();
385  return false;
386}
387
388/// ParseUnnamedGlobal:
389///   OptionalVisibility ALIAS ...
390///   OptionalLinkage OptionalVisibility ...   -> global variable
391///   GlobalID '=' OptionalVisibility ALIAS ...
392///   GlobalID '=' OptionalLinkage OptionalVisibility ...   -> global variable
393bool LLParser::ParseUnnamedGlobal() {
394  unsigned VarID = NumberedVals.size();
395  std::string Name;
396  LocTy NameLoc = Lex.getLoc();
397
398  // Handle the GlobalID form.
399  if (Lex.getKind() == lltok::GlobalID) {
400    if (Lex.getUIntVal() != VarID)
401      return Error(Lex.getLoc(), "variable expected to be numbered '%" +
402                   utostr(VarID) + "'");
403    Lex.Lex(); // eat GlobalID;
404
405    if (ParseToken(lltok::equal, "expected '=' after name"))
406      return true;
407  }
408
409  bool HasLinkage;
410  unsigned Linkage, Visibility;
411  if (ParseOptionalLinkage(Linkage, HasLinkage) ||
412      ParseOptionalVisibility(Visibility))
413    return true;
414
415  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
416    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
417  return ParseAlias(Name, NameLoc, Visibility);
418}
419
420/// ParseNamedGlobal:
421///   GlobalVar '=' OptionalVisibility ALIAS ...
422///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
423bool LLParser::ParseNamedGlobal() {
424  assert(Lex.getKind() == lltok::GlobalVar);
425  LocTy NameLoc = Lex.getLoc();
426  std::string Name = Lex.getStrVal();
427  Lex.Lex();
428
429  bool HasLinkage;
430  unsigned Linkage, Visibility;
431  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
432      ParseOptionalLinkage(Linkage, HasLinkage) ||
433      ParseOptionalVisibility(Visibility))
434    return true;
435
436  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
437    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
438  return ParseAlias(Name, NameLoc, Visibility);
439}
440
441// MDString:
442//   ::= '!' STRINGCONSTANT
443bool LLParser::ParseMDString(MetadataBase *&MDS) {
444  std::string Str;
445  if (ParseStringConstant(Str)) return true;
446  MDS = MDString::get(Context, Str);
447  return false;
448}
449
450// MDNode:
451//   ::= '!' MDNodeNumber
452bool LLParser::ParseMDNode(MetadataBase *&Node) {
453  // !{ ..., !42, ... }
454  unsigned MID = 0;
455  if (ParseUInt32(MID))  return true;
456
457  // Check existing MDNode.
458  std::map<unsigned, MetadataBase *>::iterator I = MetadataCache.find(MID);
459  if (I != MetadataCache.end()) {
460    Node = I->second;
461    return false;
462  }
463
464  // Check known forward references.
465  std::map<unsigned, std::pair<MetadataBase *, LocTy> >::iterator
466    FI = ForwardRefMDNodes.find(MID);
467  if (FI != ForwardRefMDNodes.end()) {
468    Node = FI->second.first;
469    return false;
470  }
471
472  // Create MDNode forward reference
473  SmallVector<Value *, 1> Elts;
474  std::string FwdRefName = "llvm.mdnode.fwdref." + utostr(MID);
475  Elts.push_back(MDString::get(Context, FwdRefName));
476  MDNode *FwdNode = MDNode::get(Context, Elts.data(), Elts.size());
477  ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
478  Node = FwdNode;
479  return false;
480}
481
482///ParseNamedMetadata:
483///   !foo = !{ !1, !2 }
484bool LLParser::ParseNamedMetadata() {
485  assert(Lex.getKind() == lltok::NamedMD);
486  Lex.Lex();
487  std::string Name = Lex.getStrVal();
488
489  if (ParseToken(lltok::equal, "expected '=' here"))
490    return true;
491
492  if (Lex.getKind() != lltok::Metadata)
493    return TokError("Expected '!' here");
494  Lex.Lex();
495
496  if (Lex.getKind() != lltok::lbrace)
497    return TokError("Expected '{' here");
498  Lex.Lex();
499  SmallVector<MetadataBase *, 8> Elts;
500  do {
501    if (Lex.getKind() != lltok::Metadata)
502      return TokError("Expected '!' here");
503    Lex.Lex();
504    MetadataBase *N = 0;
505    if (ParseMDNode(N)) return true;
506    Elts.push_back(N);
507  } while (EatIfPresent(lltok::comma));
508
509  if (ParseToken(lltok::rbrace, "expected end of metadata node"))
510    return true;
511
512  NamedMDNode::Create(Context, Name, Elts.data(), Elts.size(), M);
513  return false;
514}
515
516/// ParseStandaloneMetadata:
517///   !42 = !{...}
518bool LLParser::ParseStandaloneMetadata() {
519  assert(Lex.getKind() == lltok::Metadata);
520  Lex.Lex();
521  unsigned MetadataID = 0;
522  if (ParseUInt32(MetadataID))
523    return true;
524  if (MetadataCache.find(MetadataID) != MetadataCache.end())
525    return TokError("Metadata id is already used");
526  if (ParseToken(lltok::equal, "expected '=' here"))
527    return true;
528
529  LocTy TyLoc;
530  PATypeHolder Ty(Type::getVoidTy(Context));
531  if (ParseType(Ty, TyLoc))
532    return true;
533
534  if (Lex.getKind() != lltok::Metadata)
535    return TokError("Expected metadata here");
536
537  Lex.Lex();
538  if (Lex.getKind() != lltok::lbrace)
539    return TokError("Expected '{' here");
540
541  SmallVector<Value *, 16> Elts;
542  if (ParseMDNodeVector(Elts)
543      || ParseToken(lltok::rbrace, "expected end of metadata node"))
544    return true;
545
546  MDNode *Init = MDNode::get(Context, Elts.data(), Elts.size());
547  MetadataCache[MetadataID] = Init;
548  std::map<unsigned, std::pair<MetadataBase *, LocTy> >::iterator
549    FI = ForwardRefMDNodes.find(MetadataID);
550  if (FI != ForwardRefMDNodes.end()) {
551    MDNode *FwdNode = cast<MDNode>(FI->second.first);
552    FwdNode->replaceAllUsesWith(Init);
553    ForwardRefMDNodes.erase(FI);
554  }
555
556  return false;
557}
558
559/// ParseAlias:
560///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
561/// Aliasee
562///   ::= TypeAndValue
563///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
564///   ::= 'getelementptr' 'inbounds'? '(' ... ')'
565///
566/// Everything through visibility has already been parsed.
567///
568bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
569                          unsigned Visibility) {
570  assert(Lex.getKind() == lltok::kw_alias);
571  Lex.Lex();
572  unsigned Linkage;
573  LocTy LinkageLoc = Lex.getLoc();
574  if (ParseOptionalLinkage(Linkage))
575    return true;
576
577  if (Linkage != GlobalValue::ExternalLinkage &&
578      Linkage != GlobalValue::WeakAnyLinkage &&
579      Linkage != GlobalValue::WeakODRLinkage &&
580      Linkage != GlobalValue::InternalLinkage &&
581      Linkage != GlobalValue::PrivateLinkage &&
582      Linkage != GlobalValue::LinkerPrivateLinkage)
583    return Error(LinkageLoc, "invalid linkage type for alias");
584
585  Constant *Aliasee;
586  LocTy AliaseeLoc = Lex.getLoc();
587  if (Lex.getKind() != lltok::kw_bitcast &&
588      Lex.getKind() != lltok::kw_getelementptr) {
589    if (ParseGlobalTypeAndValue(Aliasee)) return true;
590  } else {
591    // The bitcast dest type is not present, it is implied by the dest type.
592    ValID ID;
593    if (ParseValID(ID)) return true;
594    if (ID.Kind != ValID::t_Constant)
595      return Error(AliaseeLoc, "invalid aliasee");
596    Aliasee = ID.ConstantVal;
597  }
598
599  if (!isa<PointerType>(Aliasee->getType()))
600    return Error(AliaseeLoc, "alias must have pointer type");
601
602  // Okay, create the alias but do not insert it into the module yet.
603  GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
604                                    (GlobalValue::LinkageTypes)Linkage, Name,
605                                    Aliasee);
606  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
607
608  // See if this value already exists in the symbol table.  If so, it is either
609  // a redefinition or a definition of a forward reference.
610  if (GlobalValue *Val =
611        cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name))) {
612    // See if this was a redefinition.  If so, there is no entry in
613    // ForwardRefVals.
614    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
615      I = ForwardRefVals.find(Name);
616    if (I == ForwardRefVals.end())
617      return Error(NameLoc, "redefinition of global named '@" + Name + "'");
618
619    // Otherwise, this was a definition of forward ref.  Verify that types
620    // agree.
621    if (Val->getType() != GA->getType())
622      return Error(NameLoc,
623              "forward reference and definition of alias have different types");
624
625    // If they agree, just RAUW the old value with the alias and remove the
626    // forward ref info.
627    Val->replaceAllUsesWith(GA);
628    Val->eraseFromParent();
629    ForwardRefVals.erase(I);
630  }
631
632  // Insert into the module, we know its name won't collide now.
633  M->getAliasList().push_back(GA);
634  assert(GA->getNameStr() == Name && "Should not be a name conflict!");
635
636  return false;
637}
638
639/// ParseGlobal
640///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
641///       OptionalAddrSpace GlobalType Type Const
642///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
643///       OptionalAddrSpace GlobalType Type Const
644///
645/// Everything through visibility has been parsed already.
646///
647bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
648                           unsigned Linkage, bool HasLinkage,
649                           unsigned Visibility) {
650  unsigned AddrSpace;
651  bool ThreadLocal, IsConstant;
652  LocTy TyLoc;
653
654  PATypeHolder Ty(Type::getVoidTy(Context));
655  if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
656      ParseOptionalAddrSpace(AddrSpace) ||
657      ParseGlobalType(IsConstant) ||
658      ParseType(Ty, TyLoc))
659    return true;
660
661  // If the linkage is specified and is external, then no initializer is
662  // present.
663  Constant *Init = 0;
664  if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
665                      Linkage != GlobalValue::ExternalWeakLinkage &&
666                      Linkage != GlobalValue::ExternalLinkage)) {
667    if (ParseGlobalValue(Ty, Init))
668      return true;
669  }
670
671  if (isa<FunctionType>(Ty) || Ty == Type::getLabelTy(Context))
672    return Error(TyLoc, "invalid type for global variable");
673
674  GlobalVariable *GV = 0;
675
676  // See if the global was forward referenced, if so, use the global.
677  if (!Name.empty()) {
678    if ((GV = M->getGlobalVariable(Name, true)) &&
679        !ForwardRefVals.erase(Name))
680      return Error(NameLoc, "redefinition of global '@" + Name + "'");
681  } else {
682    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
683      I = ForwardRefValIDs.find(NumberedVals.size());
684    if (I != ForwardRefValIDs.end()) {
685      GV = cast<GlobalVariable>(I->second.first);
686      ForwardRefValIDs.erase(I);
687    }
688  }
689
690  if (GV == 0) {
691    GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
692                            Name, 0, false, AddrSpace);
693  } else {
694    if (GV->getType()->getElementType() != Ty)
695      return Error(TyLoc,
696            "forward reference and definition of global have different types");
697
698    // Move the forward-reference to the correct spot in the module.
699    M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
700  }
701
702  if (Name.empty())
703    NumberedVals.push_back(GV);
704
705  // Set the parsed properties on the global.
706  if (Init)
707    GV->setInitializer(Init);
708  GV->setConstant(IsConstant);
709  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
710  GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
711  GV->setThreadLocal(ThreadLocal);
712
713  // Parse attributes on the global.
714  while (Lex.getKind() == lltok::comma) {
715    Lex.Lex();
716
717    if (Lex.getKind() == lltok::kw_section) {
718      Lex.Lex();
719      GV->setSection(Lex.getStrVal());
720      if (ParseToken(lltok::StringConstant, "expected global section string"))
721        return true;
722    } else if (Lex.getKind() == lltok::kw_align) {
723      unsigned Alignment;
724      if (ParseOptionalAlignment(Alignment)) return true;
725      GV->setAlignment(Alignment);
726    } else {
727      TokError("unknown global variable property!");
728    }
729  }
730
731  return false;
732}
733
734
735//===----------------------------------------------------------------------===//
736// GlobalValue Reference/Resolution Routines.
737//===----------------------------------------------------------------------===//
738
739/// GetGlobalVal - Get a value with the specified name or ID, creating a
740/// forward reference record if needed.  This can return null if the value
741/// exists but does not have the right type.
742GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
743                                    LocTy Loc) {
744  const PointerType *PTy = dyn_cast<PointerType>(Ty);
745  if (PTy == 0) {
746    Error(Loc, "global variable reference must have pointer type");
747    return 0;
748  }
749
750  // Look this name up in the normal function symbol table.
751  GlobalValue *Val =
752    cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
753
754  // If this is a forward reference for the value, see if we already created a
755  // forward ref record.
756  if (Val == 0) {
757    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
758      I = ForwardRefVals.find(Name);
759    if (I != ForwardRefVals.end())
760      Val = I->second.first;
761  }
762
763  // If we have the value in the symbol table or fwd-ref table, return it.
764  if (Val) {
765    if (Val->getType() == Ty) return Val;
766    Error(Loc, "'@" + Name + "' defined with type '" +
767          Val->getType()->getDescription() + "'");
768    return 0;
769  }
770
771  // Otherwise, create a new forward reference for this value and remember it.
772  GlobalValue *FwdVal;
773  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
774    // Function types can return opaque but functions can't.
775    if (isa<OpaqueType>(FT->getReturnType())) {
776      Error(Loc, "function may not return opaque type");
777      return 0;
778    }
779
780    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
781  } else {
782    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
783                                GlobalValue::ExternalWeakLinkage, 0, Name);
784  }
785
786  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
787  return FwdVal;
788}
789
790GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
791  const PointerType *PTy = dyn_cast<PointerType>(Ty);
792  if (PTy == 0) {
793    Error(Loc, "global variable reference must have pointer type");
794    return 0;
795  }
796
797  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
798
799  // If this is a forward reference for the value, see if we already created a
800  // forward ref record.
801  if (Val == 0) {
802    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
803      I = ForwardRefValIDs.find(ID);
804    if (I != ForwardRefValIDs.end())
805      Val = I->second.first;
806  }
807
808  // If we have the value in the symbol table or fwd-ref table, return it.
809  if (Val) {
810    if (Val->getType() == Ty) return Val;
811    Error(Loc, "'@" + utostr(ID) + "' defined with type '" +
812          Val->getType()->getDescription() + "'");
813    return 0;
814  }
815
816  // Otherwise, create a new forward reference for this value and remember it.
817  GlobalValue *FwdVal;
818  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
819    // Function types can return opaque but functions can't.
820    if (isa<OpaqueType>(FT->getReturnType())) {
821      Error(Loc, "function may not return opaque type");
822      return 0;
823    }
824    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
825  } else {
826    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
827                                GlobalValue::ExternalWeakLinkage, 0, "");
828  }
829
830  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
831  return FwdVal;
832}
833
834
835//===----------------------------------------------------------------------===//
836// Helper Routines.
837//===----------------------------------------------------------------------===//
838
839/// ParseToken - If the current token has the specified kind, eat it and return
840/// success.  Otherwise, emit the specified error and return failure.
841bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
842  if (Lex.getKind() != T)
843    return TokError(ErrMsg);
844  Lex.Lex();
845  return false;
846}
847
848/// ParseStringConstant
849///   ::= StringConstant
850bool LLParser::ParseStringConstant(std::string &Result) {
851  if (Lex.getKind() != lltok::StringConstant)
852    return TokError("expected string constant");
853  Result = Lex.getStrVal();
854  Lex.Lex();
855  return false;
856}
857
858/// ParseUInt32
859///   ::= uint32
860bool LLParser::ParseUInt32(unsigned &Val) {
861  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
862    return TokError("expected integer");
863  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
864  if (Val64 != unsigned(Val64))
865    return TokError("expected 32-bit integer (too large)");
866  Val = Val64;
867  Lex.Lex();
868  return false;
869}
870
871
872/// ParseOptionalAddrSpace
873///   := /*empty*/
874///   := 'addrspace' '(' uint32 ')'
875bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
876  AddrSpace = 0;
877  if (!EatIfPresent(lltok::kw_addrspace))
878    return false;
879  return ParseToken(lltok::lparen, "expected '(' in address space") ||
880         ParseUInt32(AddrSpace) ||
881         ParseToken(lltok::rparen, "expected ')' in address space");
882}
883
884/// ParseOptionalAttrs - Parse a potentially empty attribute list.  AttrKind
885/// indicates what kind of attribute list this is: 0: function arg, 1: result,
886/// 2: function attr.
887/// 3: function arg after value: FIXME: REMOVE IN LLVM 3.0
888bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
889  Attrs = Attribute::None;
890  LocTy AttrLoc = Lex.getLoc();
891
892  while (1) {
893    switch (Lex.getKind()) {
894    case lltok::kw_sext:
895    case lltok::kw_zext:
896      // Treat these as signext/zeroext if they occur in the argument list after
897      // the value, as in "call i8 @foo(i8 10 sext)".  If they occur before the
898      // value, as in "call i8 @foo(i8 sext (" then it is part of a constant
899      // expr.
900      // FIXME: REMOVE THIS IN LLVM 3.0
901      if (AttrKind == 3) {
902        if (Lex.getKind() == lltok::kw_sext)
903          Attrs |= Attribute::SExt;
904        else
905          Attrs |= Attribute::ZExt;
906        break;
907      }
908      // FALL THROUGH.
909    default:  // End of attributes.
910      if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
911        return Error(AttrLoc, "invalid use of function-only attribute");
912
913      if (AttrKind != 0 && AttrKind != 3 && (Attrs & Attribute::ParameterOnly))
914        return Error(AttrLoc, "invalid use of parameter-only attribute");
915
916      return false;
917    case lltok::kw_zeroext:         Attrs |= Attribute::ZExt; break;
918    case lltok::kw_signext:         Attrs |= Attribute::SExt; break;
919    case lltok::kw_inreg:           Attrs |= Attribute::InReg; break;
920    case lltok::kw_sret:            Attrs |= Attribute::StructRet; break;
921    case lltok::kw_noalias:         Attrs |= Attribute::NoAlias; break;
922    case lltok::kw_nocapture:       Attrs |= Attribute::NoCapture; break;
923    case lltok::kw_byval:           Attrs |= Attribute::ByVal; break;
924    case lltok::kw_nest:            Attrs |= Attribute::Nest; break;
925
926    case lltok::kw_noreturn:        Attrs |= Attribute::NoReturn; break;
927    case lltok::kw_nounwind:        Attrs |= Attribute::NoUnwind; break;
928    case lltok::kw_noinline:        Attrs |= Attribute::NoInline; break;
929    case lltok::kw_readnone:        Attrs |= Attribute::ReadNone; break;
930    case lltok::kw_readonly:        Attrs |= Attribute::ReadOnly; break;
931    case lltok::kw_inlinehint:      Attrs |= Attribute::InlineHint; break;
932    case lltok::kw_alwaysinline:    Attrs |= Attribute::AlwaysInline; break;
933    case lltok::kw_optsize:         Attrs |= Attribute::OptimizeForSize; break;
934    case lltok::kw_ssp:             Attrs |= Attribute::StackProtect; break;
935    case lltok::kw_sspreq:          Attrs |= Attribute::StackProtectReq; break;
936    case lltok::kw_noredzone:       Attrs |= Attribute::NoRedZone; break;
937    case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
938    case lltok::kw_naked:           Attrs |= Attribute::Naked; break;
939
940    case lltok::kw_align: {
941      unsigned Alignment;
942      if (ParseOptionalAlignment(Alignment))
943        return true;
944      Attrs |= Attribute::constructAlignmentFromInt(Alignment);
945      continue;
946    }
947    }
948    Lex.Lex();
949  }
950}
951
952/// ParseOptionalLinkage
953///   ::= /*empty*/
954///   ::= 'private'
955///   ::= 'linker_private'
956///   ::= 'internal'
957///   ::= 'weak'
958///   ::= 'weak_odr'
959///   ::= 'linkonce'
960///   ::= 'linkonce_odr'
961///   ::= 'appending'
962///   ::= 'dllexport'
963///   ::= 'common'
964///   ::= 'dllimport'
965///   ::= 'extern_weak'
966///   ::= 'external'
967bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
968  HasLinkage = false;
969  switch (Lex.getKind()) {
970  default:                       Res=GlobalValue::ExternalLinkage; return false;
971  case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
972  case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
973  case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
974  case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
975  case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
976  case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
977  case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
978  case lltok::kw_available_externally:
979    Res = GlobalValue::AvailableExternallyLinkage;
980    break;
981  case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
982  case lltok::kw_dllexport:      Res = GlobalValue::DLLExportLinkage;     break;
983  case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
984  case lltok::kw_dllimport:      Res = GlobalValue::DLLImportLinkage;     break;
985  case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
986  case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
987  }
988  Lex.Lex();
989  HasLinkage = true;
990  return false;
991}
992
993/// ParseOptionalVisibility
994///   ::= /*empty*/
995///   ::= 'default'
996///   ::= 'hidden'
997///   ::= 'protected'
998///
999bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1000  switch (Lex.getKind()) {
1001  default:                  Res = GlobalValue::DefaultVisibility; return false;
1002  case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
1003  case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
1004  case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1005  }
1006  Lex.Lex();
1007  return false;
1008}
1009
1010/// ParseOptionalCallingConv
1011///   ::= /*empty*/
1012///   ::= 'ccc'
1013///   ::= 'fastcc'
1014///   ::= 'coldcc'
1015///   ::= 'x86_stdcallcc'
1016///   ::= 'x86_fastcallcc'
1017///   ::= 'arm_apcscc'
1018///   ::= 'arm_aapcscc'
1019///   ::= 'arm_aapcs_vfpcc'
1020///   ::= 'cc' UINT
1021///
1022bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
1023  switch (Lex.getKind()) {
1024  default:                       CC = CallingConv::C; return false;
1025  case lltok::kw_ccc:            CC = CallingConv::C; break;
1026  case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1027  case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1028  case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1029  case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1030  case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1031  case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1032  case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1033  case lltok::kw_cc: {
1034      unsigned ArbitraryCC;
1035      Lex.Lex();
1036      if (ParseUInt32(ArbitraryCC)) {
1037        return true;
1038      } else
1039        CC = static_cast<CallingConv::ID>(ArbitraryCC);
1040        return false;
1041    }
1042    break;
1043  }
1044
1045  Lex.Lex();
1046  return false;
1047}
1048
1049/// ParseOptionalDbgInfo
1050///   ::= /* empty */
1051///   ::= 'dbg' !42
1052bool LLParser::ParseOptionalDbgInfo() {
1053
1054  if (!EatIfPresent(lltok::kw_dbg))
1055    return false;
1056  if (Lex.getKind() != lltok::Metadata)
1057    return TokError("Expected '!' here");
1058  Lex.Lex();
1059  MetadataBase *Node;
1060  if (ParseMDNode(Node)) return true;
1061
1062  Metadata &TheMetadata = M->getContext().getMetadata();
1063  unsigned MDDbgKind = TheMetadata.getMDKind("dbg");
1064  if (!MDDbgKind)
1065    MDDbgKind = TheMetadata.RegisterMDKind("dbg");
1066  MDsOnInst.push_back(std::make_pair(MDDbgKind, cast<MDNode>(Node)));
1067
1068  return false;
1069}
1070
1071/// ParseOptionalAlignment
1072///   ::= /* empty */
1073///   ::= 'align' 4
1074bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1075  Alignment = 0;
1076  if (!EatIfPresent(lltok::kw_align))
1077    return false;
1078  LocTy AlignLoc = Lex.getLoc();
1079  if (ParseUInt32(Alignment)) return true;
1080  if (!isPowerOf2_32(Alignment))
1081    return Error(AlignLoc, "alignment is not a power of two");
1082  return false;
1083}
1084
1085/// ParseOptionalInfo
1086///   ::= OptionalInfo (',' OptionalInfo)+
1087bool LLParser::ParseOptionalInfo(unsigned &Alignment) {
1088
1089  // FIXME: Handle customized metadata info attached with an instruction.
1090  do {
1091    if (Lex.getKind() == lltok::kw_dbg) {
1092      if (ParseOptionalDbgInfo()) return true;
1093    } else if (Lex.getKind() == lltok::kw_align) {
1094      if (ParseOptionalAlignment(Alignment)) return true;
1095    } else
1096      return true;
1097  } while (EatIfPresent(lltok::comma));
1098
1099  return false;
1100}
1101
1102
1103/// ParseIndexList
1104///    ::=  (',' uint32)+
1105bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices) {
1106  if (Lex.getKind() != lltok::comma)
1107    return TokError("expected ',' as start of index list");
1108
1109  while (EatIfPresent(lltok::comma)) {
1110    unsigned Idx;
1111    if (ParseUInt32(Idx)) return true;
1112    Indices.push_back(Idx);
1113  }
1114
1115  return false;
1116}
1117
1118//===----------------------------------------------------------------------===//
1119// Type Parsing.
1120//===----------------------------------------------------------------------===//
1121
1122/// ParseType - Parse and resolve a full type.
1123bool LLParser::ParseType(PATypeHolder &Result, bool AllowVoid) {
1124  LocTy TypeLoc = Lex.getLoc();
1125  if (ParseTypeRec(Result)) return true;
1126
1127  // Verify no unresolved uprefs.
1128  if (!UpRefs.empty())
1129    return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
1130
1131  if (!AllowVoid && Result.get() == Type::getVoidTy(Context))
1132    return Error(TypeLoc, "void type only allowed for function results");
1133
1134  return false;
1135}
1136
1137/// HandleUpRefs - Every time we finish a new layer of types, this function is
1138/// called.  It loops through the UpRefs vector, which is a list of the
1139/// currently active types.  For each type, if the up-reference is contained in
1140/// the newly completed type, we decrement the level count.  When the level
1141/// count reaches zero, the up-referenced type is the type that is passed in:
1142/// thus we can complete the cycle.
1143///
1144PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
1145  // If Ty isn't abstract, or if there are no up-references in it, then there is
1146  // nothing to resolve here.
1147  if (!ty->isAbstract() || UpRefs.empty()) return ty;
1148
1149  PATypeHolder Ty(ty);
1150#if 0
1151  errs() << "Type '" << Ty->getDescription()
1152         << "' newly formed.  Resolving upreferences.\n"
1153         << UpRefs.size() << " upreferences active!\n";
1154#endif
1155
1156  // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
1157  // to zero), we resolve them all together before we resolve them to Ty.  At
1158  // the end of the loop, if there is anything to resolve to Ty, it will be in
1159  // this variable.
1160  OpaqueType *TypeToResolve = 0;
1161
1162  for (unsigned i = 0; i != UpRefs.size(); ++i) {
1163    // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
1164    bool ContainsType =
1165      std::find(Ty->subtype_begin(), Ty->subtype_end(),
1166                UpRefs[i].LastContainedTy) != Ty->subtype_end();
1167
1168#if 0
1169    errs() << "  UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
1170           << UpRefs[i].LastContainedTy->getDescription() << ") = "
1171           << (ContainsType ? "true" : "false")
1172           << " level=" << UpRefs[i].NestingLevel << "\n";
1173#endif
1174    if (!ContainsType)
1175      continue;
1176
1177    // Decrement level of upreference
1178    unsigned Level = --UpRefs[i].NestingLevel;
1179    UpRefs[i].LastContainedTy = Ty;
1180
1181    // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
1182    if (Level != 0)
1183      continue;
1184
1185#if 0
1186    errs() << "  * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
1187#endif
1188    if (!TypeToResolve)
1189      TypeToResolve = UpRefs[i].UpRefTy;
1190    else
1191      UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
1192    UpRefs.erase(UpRefs.begin()+i);     // Remove from upreference list.
1193    --i;                                // Do not skip the next element.
1194  }
1195
1196  if (TypeToResolve)
1197    TypeToResolve->refineAbstractTypeTo(Ty);
1198
1199  return Ty;
1200}
1201
1202
1203/// ParseTypeRec - The recursive function used to process the internal
1204/// implementation details of types.
1205bool LLParser::ParseTypeRec(PATypeHolder &Result) {
1206  switch (Lex.getKind()) {
1207  default:
1208    return TokError("expected type");
1209  case lltok::Type:
1210    // TypeRec ::= 'float' | 'void' (etc)
1211    Result = Lex.getTyVal();
1212    Lex.Lex();
1213    break;
1214  case lltok::kw_opaque:
1215    // TypeRec ::= 'opaque'
1216    Result = OpaqueType::get(Context);
1217    Lex.Lex();
1218    break;
1219  case lltok::lbrace:
1220    // TypeRec ::= '{' ... '}'
1221    if (ParseStructType(Result, false))
1222      return true;
1223    break;
1224  case lltok::lsquare:
1225    // TypeRec ::= '[' ... ']'
1226    Lex.Lex(); // eat the lsquare.
1227    if (ParseArrayVectorType(Result, false))
1228      return true;
1229    break;
1230  case lltok::less: // Either vector or packed struct.
1231    // TypeRec ::= '<' ... '>'
1232    Lex.Lex();
1233    if (Lex.getKind() == lltok::lbrace) {
1234      if (ParseStructType(Result, true) ||
1235          ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1236        return true;
1237    } else if (ParseArrayVectorType(Result, true))
1238      return true;
1239    break;
1240  case lltok::LocalVar:
1241  case lltok::StringConstant:  // FIXME: REMOVE IN LLVM 3.0
1242    // TypeRec ::= %foo
1243    if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
1244      Result = T;
1245    } else {
1246      Result = OpaqueType::get(Context);
1247      ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
1248                                            std::make_pair(Result,
1249                                                           Lex.getLoc())));
1250      M->addTypeName(Lex.getStrVal(), Result.get());
1251    }
1252    Lex.Lex();
1253    break;
1254
1255  case lltok::LocalVarID:
1256    // TypeRec ::= %4
1257    if (Lex.getUIntVal() < NumberedTypes.size())
1258      Result = NumberedTypes[Lex.getUIntVal()];
1259    else {
1260      std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
1261        I = ForwardRefTypeIDs.find(Lex.getUIntVal());
1262      if (I != ForwardRefTypeIDs.end())
1263        Result = I->second.first;
1264      else {
1265        Result = OpaqueType::get(Context);
1266        ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
1267                                                std::make_pair(Result,
1268                                                               Lex.getLoc())));
1269      }
1270    }
1271    Lex.Lex();
1272    break;
1273  case lltok::backslash: {
1274    // TypeRec ::= '\' 4
1275    Lex.Lex();
1276    unsigned Val;
1277    if (ParseUInt32(Val)) return true;
1278    OpaqueType *OT = OpaqueType::get(Context); //Use temporary placeholder.
1279    UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
1280    Result = OT;
1281    break;
1282  }
1283  }
1284
1285  // Parse the type suffixes.
1286  while (1) {
1287    switch (Lex.getKind()) {
1288    // End of type.
1289    default: return false;
1290
1291    // TypeRec ::= TypeRec '*'
1292    case lltok::star:
1293      if (Result.get() == Type::getLabelTy(Context))
1294        return TokError("basic block pointers are invalid");
1295      if (Result.get() == Type::getVoidTy(Context))
1296        return TokError("pointers to void are invalid; use i8* instead");
1297      if (!PointerType::isValidElementType(Result.get()))
1298        return TokError("pointer to this type is invalid");
1299      Result = HandleUpRefs(PointerType::getUnqual(Result.get()));
1300      Lex.Lex();
1301      break;
1302
1303    // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1304    case lltok::kw_addrspace: {
1305      if (Result.get() == Type::getLabelTy(Context))
1306        return TokError("basic block pointers are invalid");
1307      if (Result.get() == Type::getVoidTy(Context))
1308        return TokError("pointers to void are invalid; use i8* instead");
1309      if (!PointerType::isValidElementType(Result.get()))
1310        return TokError("pointer to this type is invalid");
1311      unsigned AddrSpace;
1312      if (ParseOptionalAddrSpace(AddrSpace) ||
1313          ParseToken(lltok::star, "expected '*' in address space"))
1314        return true;
1315
1316      Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace));
1317      break;
1318    }
1319
1320    /// Types '(' ArgTypeListI ')' OptFuncAttrs
1321    case lltok::lparen:
1322      if (ParseFunctionType(Result))
1323        return true;
1324      break;
1325    }
1326  }
1327}
1328
1329/// ParseParameterList
1330///    ::= '(' ')'
1331///    ::= '(' Arg (',' Arg)* ')'
1332///  Arg
1333///    ::= Type OptionalAttributes Value OptionalAttributes
1334bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1335                                  PerFunctionState &PFS) {
1336  if (ParseToken(lltok::lparen, "expected '(' in call"))
1337    return true;
1338
1339  while (Lex.getKind() != lltok::rparen) {
1340    // If this isn't the first argument, we need a comma.
1341    if (!ArgList.empty() &&
1342        ParseToken(lltok::comma, "expected ',' in argument list"))
1343      return true;
1344
1345    // Parse the argument.
1346    LocTy ArgLoc;
1347    PATypeHolder ArgTy(Type::getVoidTy(Context));
1348    unsigned ArgAttrs1, ArgAttrs2;
1349    Value *V;
1350    if (ParseType(ArgTy, ArgLoc) ||
1351        ParseOptionalAttrs(ArgAttrs1, 0) ||
1352        ParseValue(ArgTy, V, PFS) ||
1353        // FIXME: Should not allow attributes after the argument, remove this in
1354        // LLVM 3.0.
1355        ParseOptionalAttrs(ArgAttrs2, 3))
1356      return true;
1357    ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1358  }
1359
1360  Lex.Lex();  // Lex the ')'.
1361  return false;
1362}
1363
1364
1365
1366/// ParseArgumentList - Parse the argument list for a function type or function
1367/// prototype.  If 'inType' is true then we are parsing a FunctionType.
1368///   ::= '(' ArgTypeListI ')'
1369/// ArgTypeListI
1370///   ::= /*empty*/
1371///   ::= '...'
1372///   ::= ArgTypeList ',' '...'
1373///   ::= ArgType (',' ArgType)*
1374///
1375bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
1376                                 bool &isVarArg, bool inType) {
1377  isVarArg = false;
1378  assert(Lex.getKind() == lltok::lparen);
1379  Lex.Lex(); // eat the (.
1380
1381  if (Lex.getKind() == lltok::rparen) {
1382    // empty
1383  } else if (Lex.getKind() == lltok::dotdotdot) {
1384    isVarArg = true;
1385    Lex.Lex();
1386  } else {
1387    LocTy TypeLoc = Lex.getLoc();
1388    PATypeHolder ArgTy(Type::getVoidTy(Context));
1389    unsigned Attrs;
1390    std::string Name;
1391
1392    // If we're parsing a type, use ParseTypeRec, because we allow recursive
1393    // types (such as a function returning a pointer to itself).  If parsing a
1394    // function prototype, we require fully resolved types.
1395    if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1396        ParseOptionalAttrs(Attrs, 0)) return true;
1397
1398    if (ArgTy == Type::getVoidTy(Context))
1399      return Error(TypeLoc, "argument can not have void type");
1400
1401    if (Lex.getKind() == lltok::LocalVar ||
1402        Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1403      Name = Lex.getStrVal();
1404      Lex.Lex();
1405    }
1406
1407    if (!FunctionType::isValidArgumentType(ArgTy))
1408      return Error(TypeLoc, "invalid type for function argument");
1409
1410    ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1411
1412    while (EatIfPresent(lltok::comma)) {
1413      // Handle ... at end of arg list.
1414      if (EatIfPresent(lltok::dotdotdot)) {
1415        isVarArg = true;
1416        break;
1417      }
1418
1419      // Otherwise must be an argument type.
1420      TypeLoc = Lex.getLoc();
1421      if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1422          ParseOptionalAttrs(Attrs, 0)) return true;
1423
1424      if (ArgTy == Type::getVoidTy(Context))
1425        return Error(TypeLoc, "argument can not have void type");
1426
1427      if (Lex.getKind() == lltok::LocalVar ||
1428          Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1429        Name = Lex.getStrVal();
1430        Lex.Lex();
1431      } else {
1432        Name = "";
1433      }
1434
1435      if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1436        return Error(TypeLoc, "invalid type for function argument");
1437
1438      ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1439    }
1440  }
1441
1442  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1443}
1444
1445/// ParseFunctionType
1446///  ::= Type ArgumentList OptionalAttrs
1447bool LLParser::ParseFunctionType(PATypeHolder &Result) {
1448  assert(Lex.getKind() == lltok::lparen);
1449
1450  if (!FunctionType::isValidReturnType(Result))
1451    return TokError("invalid function return type");
1452
1453  std::vector<ArgInfo> ArgList;
1454  bool isVarArg;
1455  unsigned Attrs;
1456  if (ParseArgumentList(ArgList, isVarArg, true) ||
1457      // FIXME: Allow, but ignore attributes on function types!
1458      // FIXME: Remove in LLVM 3.0
1459      ParseOptionalAttrs(Attrs, 2))
1460    return true;
1461
1462  // Reject names on the arguments lists.
1463  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1464    if (!ArgList[i].Name.empty())
1465      return Error(ArgList[i].Loc, "argument name invalid in function type");
1466    if (!ArgList[i].Attrs != 0) {
1467      // Allow but ignore attributes on function types; this permits
1468      // auto-upgrade.
1469      // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1470    }
1471  }
1472
1473  std::vector<const Type*> ArgListTy;
1474  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1475    ArgListTy.push_back(ArgList[i].Type);
1476
1477  Result = HandleUpRefs(FunctionType::get(Result.get(),
1478                                                ArgListTy, isVarArg));
1479  return false;
1480}
1481
1482/// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1483///   TypeRec
1484///     ::= '{' '}'
1485///     ::= '{' TypeRec (',' TypeRec)* '}'
1486///     ::= '<' '{' '}' '>'
1487///     ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1488bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
1489  assert(Lex.getKind() == lltok::lbrace);
1490  Lex.Lex(); // Consume the '{'
1491
1492  if (EatIfPresent(lltok::rbrace)) {
1493    Result = StructType::get(Context, Packed);
1494    return false;
1495  }
1496
1497  std::vector<PATypeHolder> ParamsList;
1498  LocTy EltTyLoc = Lex.getLoc();
1499  if (ParseTypeRec(Result)) return true;
1500  ParamsList.push_back(Result);
1501
1502  if (Result == Type::getVoidTy(Context))
1503    return Error(EltTyLoc, "struct element can not have void type");
1504  if (!StructType::isValidElementType(Result))
1505    return Error(EltTyLoc, "invalid element type for struct");
1506
1507  while (EatIfPresent(lltok::comma)) {
1508    EltTyLoc = Lex.getLoc();
1509    if (ParseTypeRec(Result)) return true;
1510
1511    if (Result == Type::getVoidTy(Context))
1512      return Error(EltTyLoc, "struct element can not have void type");
1513    if (!StructType::isValidElementType(Result))
1514      return Error(EltTyLoc, "invalid element type for struct");
1515
1516    ParamsList.push_back(Result);
1517  }
1518
1519  if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
1520    return true;
1521
1522  std::vector<const Type*> ParamsListTy;
1523  for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1524    ParamsListTy.push_back(ParamsList[i].get());
1525  Result = HandleUpRefs(StructType::get(Context, ParamsListTy, Packed));
1526  return false;
1527}
1528
1529/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1530/// token has already been consumed.
1531///   TypeRec
1532///     ::= '[' APSINTVAL 'x' Types ']'
1533///     ::= '<' APSINTVAL 'x' Types '>'
1534bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
1535  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1536      Lex.getAPSIntVal().getBitWidth() > 64)
1537    return TokError("expected number in address space");
1538
1539  LocTy SizeLoc = Lex.getLoc();
1540  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1541  Lex.Lex();
1542
1543  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1544      return true;
1545
1546  LocTy TypeLoc = Lex.getLoc();
1547  PATypeHolder EltTy(Type::getVoidTy(Context));
1548  if (ParseTypeRec(EltTy)) return true;
1549
1550  if (EltTy == Type::getVoidTy(Context))
1551    return Error(TypeLoc, "array and vector element type cannot be void");
1552
1553  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1554                 "expected end of sequential type"))
1555    return true;
1556
1557  if (isVector) {
1558    if (Size == 0)
1559      return Error(SizeLoc, "zero element vector is illegal");
1560    if ((unsigned)Size != Size)
1561      return Error(SizeLoc, "size too large for vector");
1562    if (!VectorType::isValidElementType(EltTy))
1563      return Error(TypeLoc, "vector element type must be fp or integer");
1564    Result = VectorType::get(EltTy, unsigned(Size));
1565  } else {
1566    if (!ArrayType::isValidElementType(EltTy))
1567      return Error(TypeLoc, "invalid array element type");
1568    Result = HandleUpRefs(ArrayType::get(EltTy, Size));
1569  }
1570  return false;
1571}
1572
1573//===----------------------------------------------------------------------===//
1574// Function Semantic Analysis.
1575//===----------------------------------------------------------------------===//
1576
1577LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f)
1578  : P(p), F(f) {
1579
1580  // Insert unnamed arguments into the NumberedVals list.
1581  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1582       AI != E; ++AI)
1583    if (!AI->hasName())
1584      NumberedVals.push_back(AI);
1585}
1586
1587LLParser::PerFunctionState::~PerFunctionState() {
1588  // If there were any forward referenced non-basicblock values, delete them.
1589  for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1590       I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1591    if (!isa<BasicBlock>(I->second.first)) {
1592      I->second.first->replaceAllUsesWith(
1593                           UndefValue::get(I->second.first->getType()));
1594      delete I->second.first;
1595      I->second.first = 0;
1596    }
1597
1598  for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1599       I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1600    if (!isa<BasicBlock>(I->second.first)) {
1601      I->second.first->replaceAllUsesWith(
1602                           UndefValue::get(I->second.first->getType()));
1603      delete I->second.first;
1604      I->second.first = 0;
1605    }
1606}
1607
1608bool LLParser::PerFunctionState::VerifyFunctionComplete() {
1609  if (!ForwardRefVals.empty())
1610    return P.Error(ForwardRefVals.begin()->second.second,
1611                   "use of undefined value '%" + ForwardRefVals.begin()->first +
1612                   "'");
1613  if (!ForwardRefValIDs.empty())
1614    return P.Error(ForwardRefValIDs.begin()->second.second,
1615                   "use of undefined value '%" +
1616                   utostr(ForwardRefValIDs.begin()->first) + "'");
1617  return false;
1618}
1619
1620
1621/// GetVal - Get a value with the specified name or ID, creating a
1622/// forward reference record if needed.  This can return null if the value
1623/// exists but does not have the right type.
1624Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1625                                          const Type *Ty, LocTy Loc) {
1626  // Look this name up in the normal function symbol table.
1627  Value *Val = F.getValueSymbolTable().lookup(Name);
1628
1629  // If this is a forward reference for the value, see if we already created a
1630  // forward ref record.
1631  if (Val == 0) {
1632    std::map<std::string, std::pair<Value*, LocTy> >::iterator
1633      I = ForwardRefVals.find(Name);
1634    if (I != ForwardRefVals.end())
1635      Val = I->second.first;
1636  }
1637
1638  // If we have the value in the symbol table or fwd-ref table, return it.
1639  if (Val) {
1640    if (Val->getType() == Ty) return Val;
1641    if (Ty == Type::getLabelTy(F.getContext()))
1642      P.Error(Loc, "'%" + Name + "' is not a basic block");
1643    else
1644      P.Error(Loc, "'%" + Name + "' defined with type '" +
1645              Val->getType()->getDescription() + "'");
1646    return 0;
1647  }
1648
1649  // Don't make placeholders with invalid type.
1650  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) &&
1651      Ty != Type::getLabelTy(F.getContext())) {
1652    P.Error(Loc, "invalid use of a non-first-class type");
1653    return 0;
1654  }
1655
1656  // Otherwise, create a new forward reference for this value and remember it.
1657  Value *FwdVal;
1658  if (Ty == Type::getLabelTy(F.getContext()))
1659    FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
1660  else
1661    FwdVal = new Argument(Ty, Name);
1662
1663  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1664  return FwdVal;
1665}
1666
1667Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
1668                                          LocTy Loc) {
1669  // Look this name up in the normal function symbol table.
1670  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1671
1672  // If this is a forward reference for the value, see if we already created a
1673  // forward ref record.
1674  if (Val == 0) {
1675    std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1676      I = ForwardRefValIDs.find(ID);
1677    if (I != ForwardRefValIDs.end())
1678      Val = I->second.first;
1679  }
1680
1681  // If we have the value in the symbol table or fwd-ref table, return it.
1682  if (Val) {
1683    if (Val->getType() == Ty) return Val;
1684    if (Ty == Type::getLabelTy(F.getContext()))
1685      P.Error(Loc, "'%" + utostr(ID) + "' is not a basic block");
1686    else
1687      P.Error(Loc, "'%" + utostr(ID) + "' defined with type '" +
1688              Val->getType()->getDescription() + "'");
1689    return 0;
1690  }
1691
1692  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) &&
1693      Ty != Type::getLabelTy(F.getContext())) {
1694    P.Error(Loc, "invalid use of a non-first-class type");
1695    return 0;
1696  }
1697
1698  // Otherwise, create a new forward reference for this value and remember it.
1699  Value *FwdVal;
1700  if (Ty == Type::getLabelTy(F.getContext()))
1701    FwdVal = BasicBlock::Create(F.getContext(), "", &F);
1702  else
1703    FwdVal = new Argument(Ty);
1704
1705  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1706  return FwdVal;
1707}
1708
1709/// SetInstName - After an instruction is parsed and inserted into its
1710/// basic block, this installs its name.
1711bool LLParser::PerFunctionState::SetInstName(int NameID,
1712                                             const std::string &NameStr,
1713                                             LocTy NameLoc, Instruction *Inst) {
1714  // If this instruction has void type, it cannot have a name or ID specified.
1715  if (Inst->getType() == Type::getVoidTy(F.getContext())) {
1716    if (NameID != -1 || !NameStr.empty())
1717      return P.Error(NameLoc, "instructions returning void cannot have a name");
1718    return false;
1719  }
1720
1721  // If this was a numbered instruction, verify that the instruction is the
1722  // expected value and resolve any forward references.
1723  if (NameStr.empty()) {
1724    // If neither a name nor an ID was specified, just use the next ID.
1725    if (NameID == -1)
1726      NameID = NumberedVals.size();
1727
1728    if (unsigned(NameID) != NumberedVals.size())
1729      return P.Error(NameLoc, "instruction expected to be numbered '%" +
1730                     utostr(NumberedVals.size()) + "'");
1731
1732    std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1733      ForwardRefValIDs.find(NameID);
1734    if (FI != ForwardRefValIDs.end()) {
1735      if (FI->second.first->getType() != Inst->getType())
1736        return P.Error(NameLoc, "instruction forward referenced with type '" +
1737                       FI->second.first->getType()->getDescription() + "'");
1738      FI->second.first->replaceAllUsesWith(Inst);
1739      delete FI->second.first;
1740      ForwardRefValIDs.erase(FI);
1741    }
1742
1743    NumberedVals.push_back(Inst);
1744    return false;
1745  }
1746
1747  // Otherwise, the instruction had a name.  Resolve forward refs and set it.
1748  std::map<std::string, std::pair<Value*, LocTy> >::iterator
1749    FI = ForwardRefVals.find(NameStr);
1750  if (FI != ForwardRefVals.end()) {
1751    if (FI->second.first->getType() != Inst->getType())
1752      return P.Error(NameLoc, "instruction forward referenced with type '" +
1753                     FI->second.first->getType()->getDescription() + "'");
1754    FI->second.first->replaceAllUsesWith(Inst);
1755    delete FI->second.first;
1756    ForwardRefVals.erase(FI);
1757  }
1758
1759  // Set the name on the instruction.
1760  Inst->setName(NameStr);
1761
1762  if (Inst->getNameStr() != NameStr)
1763    return P.Error(NameLoc, "multiple definition of local value named '" +
1764                   NameStr + "'");
1765  return false;
1766}
1767
1768/// GetBB - Get a basic block with the specified name or ID, creating a
1769/// forward reference record if needed.
1770BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1771                                              LocTy Loc) {
1772  return cast_or_null<BasicBlock>(GetVal(Name,
1773                                        Type::getLabelTy(F.getContext()), Loc));
1774}
1775
1776BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1777  return cast_or_null<BasicBlock>(GetVal(ID,
1778                                        Type::getLabelTy(F.getContext()), Loc));
1779}
1780
1781/// DefineBB - Define the specified basic block, which is either named or
1782/// unnamed.  If there is an error, this returns null otherwise it returns
1783/// the block being defined.
1784BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1785                                                 LocTy Loc) {
1786  BasicBlock *BB;
1787  if (Name.empty())
1788    BB = GetBB(NumberedVals.size(), Loc);
1789  else
1790    BB = GetBB(Name, Loc);
1791  if (BB == 0) return 0; // Already diagnosed error.
1792
1793  // Move the block to the end of the function.  Forward ref'd blocks are
1794  // inserted wherever they happen to be referenced.
1795  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1796
1797  // Remove the block from forward ref sets.
1798  if (Name.empty()) {
1799    ForwardRefValIDs.erase(NumberedVals.size());
1800    NumberedVals.push_back(BB);
1801  } else {
1802    // BB forward references are already in the function symbol table.
1803    ForwardRefVals.erase(Name);
1804  }
1805
1806  return BB;
1807}
1808
1809//===----------------------------------------------------------------------===//
1810// Constants.
1811//===----------------------------------------------------------------------===//
1812
1813/// ParseValID - Parse an abstract value that doesn't necessarily have a
1814/// type implied.  For example, if we parse "4" we don't know what integer type
1815/// it has.  The value will later be combined with its type and checked for
1816/// sanity.
1817bool LLParser::ParseValID(ValID &ID) {
1818  ID.Loc = Lex.getLoc();
1819  switch (Lex.getKind()) {
1820  default: return TokError("expected value token");
1821  case lltok::GlobalID:  // @42
1822    ID.UIntVal = Lex.getUIntVal();
1823    ID.Kind = ValID::t_GlobalID;
1824    break;
1825  case lltok::GlobalVar:  // @foo
1826    ID.StrVal = Lex.getStrVal();
1827    ID.Kind = ValID::t_GlobalName;
1828    break;
1829  case lltok::LocalVarID:  // %42
1830    ID.UIntVal = Lex.getUIntVal();
1831    ID.Kind = ValID::t_LocalID;
1832    break;
1833  case lltok::LocalVar:  // %foo
1834  case lltok::StringConstant:  // "foo" - FIXME: REMOVE IN LLVM 3.0
1835    ID.StrVal = Lex.getStrVal();
1836    ID.Kind = ValID::t_LocalName;
1837    break;
1838  case lltok::Metadata: {  // !{...} MDNode, !"foo" MDString
1839    ID.Kind = ValID::t_Metadata;
1840    Lex.Lex();
1841    if (Lex.getKind() == lltok::lbrace) {
1842      SmallVector<Value*, 16> Elts;
1843      if (ParseMDNodeVector(Elts) ||
1844          ParseToken(lltok::rbrace, "expected end of metadata node"))
1845        return true;
1846
1847      ID.MetadataVal = MDNode::get(Context, Elts.data(), Elts.size());
1848      return false;
1849    }
1850
1851    // Standalone metadata reference
1852    // !{ ..., !42, ... }
1853    if (!ParseMDNode(ID.MetadataVal))
1854      return false;
1855
1856    // MDString:
1857    //   ::= '!' STRINGCONSTANT
1858    if (ParseMDString(ID.MetadataVal)) return true;
1859    ID.Kind = ValID::t_Metadata;
1860    return false;
1861  }
1862  case lltok::APSInt:
1863    ID.APSIntVal = Lex.getAPSIntVal();
1864    ID.Kind = ValID::t_APSInt;
1865    break;
1866  case lltok::APFloat:
1867    ID.APFloatVal = Lex.getAPFloatVal();
1868    ID.Kind = ValID::t_APFloat;
1869    break;
1870  case lltok::kw_true:
1871    ID.ConstantVal = ConstantInt::getTrue(Context);
1872    ID.Kind = ValID::t_Constant;
1873    break;
1874  case lltok::kw_false:
1875    ID.ConstantVal = ConstantInt::getFalse(Context);
1876    ID.Kind = ValID::t_Constant;
1877    break;
1878  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
1879  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
1880  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
1881
1882  case lltok::lbrace: {
1883    // ValID ::= '{' ConstVector '}'
1884    Lex.Lex();
1885    SmallVector<Constant*, 16> Elts;
1886    if (ParseGlobalValueVector(Elts) ||
1887        ParseToken(lltok::rbrace, "expected end of struct constant"))
1888      return true;
1889
1890    ID.ConstantVal = ConstantStruct::get(Context, Elts.data(),
1891                                         Elts.size(), false);
1892    ID.Kind = ValID::t_Constant;
1893    return false;
1894  }
1895  case lltok::less: {
1896    // ValID ::= '<' ConstVector '>'         --> Vector.
1897    // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1898    Lex.Lex();
1899    bool isPackedStruct = EatIfPresent(lltok::lbrace);
1900
1901    SmallVector<Constant*, 16> Elts;
1902    LocTy FirstEltLoc = Lex.getLoc();
1903    if (ParseGlobalValueVector(Elts) ||
1904        (isPackedStruct &&
1905         ParseToken(lltok::rbrace, "expected end of packed struct")) ||
1906        ParseToken(lltok::greater, "expected end of constant"))
1907      return true;
1908
1909    if (isPackedStruct) {
1910      ID.ConstantVal =
1911        ConstantStruct::get(Context, Elts.data(), Elts.size(), true);
1912      ID.Kind = ValID::t_Constant;
1913      return false;
1914    }
1915
1916    if (Elts.empty())
1917      return Error(ID.Loc, "constant vector must not be empty");
1918
1919    if (!Elts[0]->getType()->isInteger() &&
1920        !Elts[0]->getType()->isFloatingPoint())
1921      return Error(FirstEltLoc,
1922                   "vector elements must have integer or floating point type");
1923
1924    // Verify that all the vector elements have the same type.
1925    for (unsigned i = 1, e = Elts.size(); i != e; ++i)
1926      if (Elts[i]->getType() != Elts[0]->getType())
1927        return Error(FirstEltLoc,
1928                     "vector element #" + utostr(i) +
1929                    " is not of type '" + Elts[0]->getType()->getDescription());
1930
1931    ID.ConstantVal = ConstantVector::get(Elts.data(), Elts.size());
1932    ID.Kind = ValID::t_Constant;
1933    return false;
1934  }
1935  case lltok::lsquare: {   // Array Constant
1936    Lex.Lex();
1937    SmallVector<Constant*, 16> Elts;
1938    LocTy FirstEltLoc = Lex.getLoc();
1939    if (ParseGlobalValueVector(Elts) ||
1940        ParseToken(lltok::rsquare, "expected end of array constant"))
1941      return true;
1942
1943    // Handle empty element.
1944    if (Elts.empty()) {
1945      // Use undef instead of an array because it's inconvenient to determine
1946      // the element type at this point, there being no elements to examine.
1947      ID.Kind = ValID::t_EmptyArray;
1948      return false;
1949    }
1950
1951    if (!Elts[0]->getType()->isFirstClassType())
1952      return Error(FirstEltLoc, "invalid array element type: " +
1953                   Elts[0]->getType()->getDescription());
1954
1955    ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
1956
1957    // Verify all elements are correct type!
1958    for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
1959      if (Elts[i]->getType() != Elts[0]->getType())
1960        return Error(FirstEltLoc,
1961                     "array element #" + utostr(i) +
1962                     " is not of type '" +Elts[0]->getType()->getDescription());
1963    }
1964
1965    ID.ConstantVal = ConstantArray::get(ATy, Elts.data(), Elts.size());
1966    ID.Kind = ValID::t_Constant;
1967    return false;
1968  }
1969  case lltok::kw_c:  // c "foo"
1970    Lex.Lex();
1971    ID.ConstantVal = ConstantArray::get(Context, Lex.getStrVal(), false);
1972    if (ParseToken(lltok::StringConstant, "expected string")) return true;
1973    ID.Kind = ValID::t_Constant;
1974    return false;
1975
1976  case lltok::kw_asm: {
1977    // ValID ::= 'asm' SideEffect? STRINGCONSTANT ',' STRINGCONSTANT
1978    bool HasSideEffect;
1979    Lex.Lex();
1980    if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
1981        ParseStringConstant(ID.StrVal) ||
1982        ParseToken(lltok::comma, "expected comma in inline asm expression") ||
1983        ParseToken(lltok::StringConstant, "expected constraint string"))
1984      return true;
1985    ID.StrVal2 = Lex.getStrVal();
1986    ID.UIntVal = HasSideEffect;
1987    ID.Kind = ValID::t_InlineAsm;
1988    return false;
1989  }
1990
1991  case lltok::kw_trunc:
1992  case lltok::kw_zext:
1993  case lltok::kw_sext:
1994  case lltok::kw_fptrunc:
1995  case lltok::kw_fpext:
1996  case lltok::kw_bitcast:
1997  case lltok::kw_uitofp:
1998  case lltok::kw_sitofp:
1999  case lltok::kw_fptoui:
2000  case lltok::kw_fptosi:
2001  case lltok::kw_inttoptr:
2002  case lltok::kw_ptrtoint: {
2003    unsigned Opc = Lex.getUIntVal();
2004    PATypeHolder DestTy(Type::getVoidTy(Context));
2005    Constant *SrcVal;
2006    Lex.Lex();
2007    if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2008        ParseGlobalTypeAndValue(SrcVal) ||
2009        ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2010        ParseType(DestTy) ||
2011        ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2012      return true;
2013    if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2014      return Error(ID.Loc, "invalid cast opcode for cast from '" +
2015                   SrcVal->getType()->getDescription() + "' to '" +
2016                   DestTy->getDescription() + "'");
2017    ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2018                                                 SrcVal, DestTy);
2019    ID.Kind = ValID::t_Constant;
2020    return false;
2021  }
2022  case lltok::kw_extractvalue: {
2023    Lex.Lex();
2024    Constant *Val;
2025    SmallVector<unsigned, 4> Indices;
2026    if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2027        ParseGlobalTypeAndValue(Val) ||
2028        ParseIndexList(Indices) ||
2029        ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2030      return true;
2031    if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
2032      return Error(ID.Loc, "extractvalue operand must be array or struct");
2033    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
2034                                          Indices.end()))
2035      return Error(ID.Loc, "invalid indices for extractvalue");
2036    ID.ConstantVal =
2037      ConstantExpr::getExtractValue(Val, Indices.data(), Indices.size());
2038    ID.Kind = ValID::t_Constant;
2039    return false;
2040  }
2041  case lltok::kw_insertvalue: {
2042    Lex.Lex();
2043    Constant *Val0, *Val1;
2044    SmallVector<unsigned, 4> Indices;
2045    if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2046        ParseGlobalTypeAndValue(Val0) ||
2047        ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2048        ParseGlobalTypeAndValue(Val1) ||
2049        ParseIndexList(Indices) ||
2050        ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2051      return true;
2052    if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
2053      return Error(ID.Loc, "extractvalue operand must be array or struct");
2054    if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
2055                                          Indices.end()))
2056      return Error(ID.Loc, "invalid indices for insertvalue");
2057    ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1,
2058                       Indices.data(), Indices.size());
2059    ID.Kind = ValID::t_Constant;
2060    return false;
2061  }
2062  case lltok::kw_icmp:
2063  case lltok::kw_fcmp: {
2064    unsigned PredVal, Opc = Lex.getUIntVal();
2065    Constant *Val0, *Val1;
2066    Lex.Lex();
2067    if (ParseCmpPredicate(PredVal, Opc) ||
2068        ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2069        ParseGlobalTypeAndValue(Val0) ||
2070        ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2071        ParseGlobalTypeAndValue(Val1) ||
2072        ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2073      return true;
2074
2075    if (Val0->getType() != Val1->getType())
2076      return Error(ID.Loc, "compare operands must have the same type");
2077
2078    CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2079
2080    if (Opc == Instruction::FCmp) {
2081      if (!Val0->getType()->isFPOrFPVector())
2082        return Error(ID.Loc, "fcmp requires floating point operands");
2083      ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2084    } else {
2085      assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2086      if (!Val0->getType()->isIntOrIntVector() &&
2087          !isa<PointerType>(Val0->getType()))
2088        return Error(ID.Loc, "icmp requires pointer or integer operands");
2089      ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2090    }
2091    ID.Kind = ValID::t_Constant;
2092    return false;
2093  }
2094
2095  // Binary Operators.
2096  case lltok::kw_add:
2097  case lltok::kw_fadd:
2098  case lltok::kw_sub:
2099  case lltok::kw_fsub:
2100  case lltok::kw_mul:
2101  case lltok::kw_fmul:
2102  case lltok::kw_udiv:
2103  case lltok::kw_sdiv:
2104  case lltok::kw_fdiv:
2105  case lltok::kw_urem:
2106  case lltok::kw_srem:
2107  case lltok::kw_frem: {
2108    bool NUW = false;
2109    bool NSW = false;
2110    bool Exact = false;
2111    unsigned Opc = Lex.getUIntVal();
2112    Constant *Val0, *Val1;
2113    Lex.Lex();
2114    LocTy ModifierLoc = Lex.getLoc();
2115    if (Opc == Instruction::Add ||
2116        Opc == Instruction::Sub ||
2117        Opc == Instruction::Mul) {
2118      if (EatIfPresent(lltok::kw_nuw))
2119        NUW = true;
2120      if (EatIfPresent(lltok::kw_nsw)) {
2121        NSW = true;
2122        if (EatIfPresent(lltok::kw_nuw))
2123          NUW = true;
2124      }
2125    } else if (Opc == Instruction::SDiv) {
2126      if (EatIfPresent(lltok::kw_exact))
2127        Exact = true;
2128    }
2129    if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2130        ParseGlobalTypeAndValue(Val0) ||
2131        ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2132        ParseGlobalTypeAndValue(Val1) ||
2133        ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2134      return true;
2135    if (Val0->getType() != Val1->getType())
2136      return Error(ID.Loc, "operands of constexpr must have same type");
2137    if (!Val0->getType()->isIntOrIntVector()) {
2138      if (NUW)
2139        return Error(ModifierLoc, "nuw only applies to integer operations");
2140      if (NSW)
2141        return Error(ModifierLoc, "nsw only applies to integer operations");
2142    }
2143    // API compatibility: Accept either integer or floating-point types with
2144    // add, sub, and mul.
2145    if (!Val0->getType()->isIntOrIntVector() &&
2146        !Val0->getType()->isFPOrFPVector())
2147      return Error(ID.Loc,"constexpr requires integer, fp, or vector operands");
2148    unsigned Flags = 0;
2149    if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2150    if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
2151    if (Exact) Flags |= SDivOperator::IsExact;
2152    Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2153    ID.ConstantVal = C;
2154    ID.Kind = ValID::t_Constant;
2155    return false;
2156  }
2157
2158  // Logical Operations
2159  case lltok::kw_shl:
2160  case lltok::kw_lshr:
2161  case lltok::kw_ashr:
2162  case lltok::kw_and:
2163  case lltok::kw_or:
2164  case lltok::kw_xor: {
2165    unsigned Opc = Lex.getUIntVal();
2166    Constant *Val0, *Val1;
2167    Lex.Lex();
2168    if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2169        ParseGlobalTypeAndValue(Val0) ||
2170        ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2171        ParseGlobalTypeAndValue(Val1) ||
2172        ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2173      return true;
2174    if (Val0->getType() != Val1->getType())
2175      return Error(ID.Loc, "operands of constexpr must have same type");
2176    if (!Val0->getType()->isIntOrIntVector())
2177      return Error(ID.Loc,
2178                   "constexpr requires integer or integer vector operands");
2179    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2180    ID.Kind = ValID::t_Constant;
2181    return false;
2182  }
2183
2184  case lltok::kw_getelementptr:
2185  case lltok::kw_shufflevector:
2186  case lltok::kw_insertelement:
2187  case lltok::kw_extractelement:
2188  case lltok::kw_select: {
2189    unsigned Opc = Lex.getUIntVal();
2190    SmallVector<Constant*, 16> Elts;
2191    bool InBounds = false;
2192    Lex.Lex();
2193    if (Opc == Instruction::GetElementPtr)
2194      InBounds = EatIfPresent(lltok::kw_inbounds);
2195    if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2196        ParseGlobalValueVector(Elts) ||
2197        ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2198      return true;
2199
2200    if (Opc == Instruction::GetElementPtr) {
2201      if (Elts.size() == 0 || !isa<PointerType>(Elts[0]->getType()))
2202        return Error(ID.Loc, "getelementptr requires pointer operand");
2203
2204      if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
2205                                             (Value**)(Elts.data() + 1),
2206                                             Elts.size() - 1))
2207        return Error(ID.Loc, "invalid indices for getelementptr");
2208      ID.ConstantVal = InBounds ?
2209        ConstantExpr::getInBoundsGetElementPtr(Elts[0],
2210                                               Elts.data() + 1,
2211                                               Elts.size() - 1) :
2212        ConstantExpr::getGetElementPtr(Elts[0],
2213                                       Elts.data() + 1, Elts.size() - 1);
2214    } else if (Opc == Instruction::Select) {
2215      if (Elts.size() != 3)
2216        return Error(ID.Loc, "expected three operands to select");
2217      if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2218                                                              Elts[2]))
2219        return Error(ID.Loc, Reason);
2220      ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2221    } else if (Opc == Instruction::ShuffleVector) {
2222      if (Elts.size() != 3)
2223        return Error(ID.Loc, "expected three operands to shufflevector");
2224      if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2225        return Error(ID.Loc, "invalid operands to shufflevector");
2226      ID.ConstantVal =
2227                 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2228    } else if (Opc == Instruction::ExtractElement) {
2229      if (Elts.size() != 2)
2230        return Error(ID.Loc, "expected two operands to extractelement");
2231      if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2232        return Error(ID.Loc, "invalid extractelement operands");
2233      ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2234    } else {
2235      assert(Opc == Instruction::InsertElement && "Unknown opcode");
2236      if (Elts.size() != 3)
2237      return Error(ID.Loc, "expected three operands to insertelement");
2238      if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2239        return Error(ID.Loc, "invalid insertelement operands");
2240      ID.ConstantVal =
2241                 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2242    }
2243
2244    ID.Kind = ValID::t_Constant;
2245    return false;
2246  }
2247  }
2248
2249  Lex.Lex();
2250  return false;
2251}
2252
2253/// ParseGlobalValue - Parse a global value with the specified type.
2254bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&V) {
2255  V = 0;
2256  ValID ID;
2257  return ParseValID(ID) ||
2258         ConvertGlobalValIDToValue(Ty, ID, V);
2259}
2260
2261/// ConvertGlobalValIDToValue - Apply a type to a ValID to get a fully resolved
2262/// constant.
2263bool LLParser::ConvertGlobalValIDToValue(const Type *Ty, ValID &ID,
2264                                         Constant *&V) {
2265  if (isa<FunctionType>(Ty))
2266    return Error(ID.Loc, "functions are not values, refer to them as pointers");
2267
2268  switch (ID.Kind) {
2269  default: llvm_unreachable("Unknown ValID!");
2270  case ValID::t_Metadata:
2271    return Error(ID.Loc, "invalid use of metadata");
2272  case ValID::t_LocalID:
2273  case ValID::t_LocalName:
2274    return Error(ID.Loc, "invalid use of function-local name");
2275  case ValID::t_InlineAsm:
2276    return Error(ID.Loc, "inline asm can only be an operand of call/invoke");
2277  case ValID::t_GlobalName:
2278    V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2279    return V == 0;
2280  case ValID::t_GlobalID:
2281    V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2282    return V == 0;
2283  case ValID::t_APSInt:
2284    if (!isa<IntegerType>(Ty))
2285      return Error(ID.Loc, "integer constant must have integer type");
2286    ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2287    V = ConstantInt::get(Context, ID.APSIntVal);
2288    return false;
2289  case ValID::t_APFloat:
2290    if (!Ty->isFloatingPoint() ||
2291        !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2292      return Error(ID.Loc, "floating point constant invalid for type");
2293
2294    // The lexer has no type info, so builds all float and double FP constants
2295    // as double.  Fix this here.  Long double does not need this.
2296    if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
2297        Ty == Type::getFloatTy(Context)) {
2298      bool Ignored;
2299      ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2300                            &Ignored);
2301    }
2302    V = ConstantFP::get(Context, ID.APFloatVal);
2303
2304    if (V->getType() != Ty)
2305      return Error(ID.Loc, "floating point constant does not have type '" +
2306                   Ty->getDescription() + "'");
2307
2308    return false;
2309  case ValID::t_Null:
2310    if (!isa<PointerType>(Ty))
2311      return Error(ID.Loc, "null must be a pointer type");
2312    V = ConstantPointerNull::get(cast<PointerType>(Ty));
2313    return false;
2314  case ValID::t_Undef:
2315    // FIXME: LabelTy should not be a first-class type.
2316    if ((!Ty->isFirstClassType() || Ty == Type::getLabelTy(Context)) &&
2317        !isa<OpaqueType>(Ty))
2318      return Error(ID.Loc, "invalid type for undef constant");
2319    V = UndefValue::get(Ty);
2320    return false;
2321  case ValID::t_EmptyArray:
2322    if (!isa<ArrayType>(Ty) || cast<ArrayType>(Ty)->getNumElements() != 0)
2323      return Error(ID.Loc, "invalid empty array initializer");
2324    V = UndefValue::get(Ty);
2325    return false;
2326  case ValID::t_Zero:
2327    // FIXME: LabelTy should not be a first-class type.
2328    if (!Ty->isFirstClassType() || Ty == Type::getLabelTy(Context))
2329      return Error(ID.Loc, "invalid type for null constant");
2330    V = Constant::getNullValue(Ty);
2331    return false;
2332  case ValID::t_Constant:
2333    if (ID.ConstantVal->getType() != Ty)
2334      return Error(ID.Loc, "constant expression type mismatch");
2335    V = ID.ConstantVal;
2336    return false;
2337  }
2338}
2339
2340bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2341  PATypeHolder Type(Type::getVoidTy(Context));
2342  return ParseType(Type) ||
2343         ParseGlobalValue(Type, V);
2344}
2345
2346/// ParseGlobalValueVector
2347///   ::= /*empty*/
2348///   ::= TypeAndValue (',' TypeAndValue)*
2349bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2350  // Empty list.
2351  if (Lex.getKind() == lltok::rbrace ||
2352      Lex.getKind() == lltok::rsquare ||
2353      Lex.getKind() == lltok::greater ||
2354      Lex.getKind() == lltok::rparen)
2355    return false;
2356
2357  Constant *C;
2358  if (ParseGlobalTypeAndValue(C)) return true;
2359  Elts.push_back(C);
2360
2361  while (EatIfPresent(lltok::comma)) {
2362    if (ParseGlobalTypeAndValue(C)) return true;
2363    Elts.push_back(C);
2364  }
2365
2366  return false;
2367}
2368
2369
2370//===----------------------------------------------------------------------===//
2371// Function Parsing.
2372//===----------------------------------------------------------------------===//
2373
2374bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
2375                                   PerFunctionState &PFS) {
2376  if (ID.Kind == ValID::t_LocalID)
2377    V = PFS.GetVal(ID.UIntVal, Ty, ID.Loc);
2378  else if (ID.Kind == ValID::t_LocalName)
2379    V = PFS.GetVal(ID.StrVal, Ty, ID.Loc);
2380  else if (ID.Kind == ValID::t_InlineAsm) {
2381    const PointerType *PTy = dyn_cast<PointerType>(Ty);
2382    const FunctionType *FTy =
2383      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2384    if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2385      return Error(ID.Loc, "invalid type for inline asm constraint string");
2386    V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal);
2387    return false;
2388  } else if (ID.Kind == ValID::t_Metadata) {
2389    V = ID.MetadataVal;
2390  } else {
2391    Constant *C;
2392    if (ConvertGlobalValIDToValue(Ty, ID, C)) return true;
2393    V = C;
2394    return false;
2395  }
2396
2397  return V == 0;
2398}
2399
2400bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
2401  V = 0;
2402  ValID ID;
2403  return ParseValID(ID) ||
2404         ConvertValIDToValue(Ty, ID, V, PFS);
2405}
2406
2407bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
2408  PATypeHolder T(Type::getVoidTy(Context));
2409  return ParseType(T) ||
2410         ParseValue(T, V, PFS);
2411}
2412
2413/// FunctionHeader
2414///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2415///       Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2416///       OptionalAlign OptGC
2417bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2418  // Parse the linkage.
2419  LocTy LinkageLoc = Lex.getLoc();
2420  unsigned Linkage;
2421
2422  unsigned Visibility, RetAttrs;
2423  CallingConv::ID CC;
2424  PATypeHolder RetType(Type::getVoidTy(Context));
2425  LocTy RetTypeLoc = Lex.getLoc();
2426  if (ParseOptionalLinkage(Linkage) ||
2427      ParseOptionalVisibility(Visibility) ||
2428      ParseOptionalCallingConv(CC) ||
2429      ParseOptionalAttrs(RetAttrs, 1) ||
2430      ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2431    return true;
2432
2433  // Verify that the linkage is ok.
2434  switch ((GlobalValue::LinkageTypes)Linkage) {
2435  case GlobalValue::ExternalLinkage:
2436    break; // always ok.
2437  case GlobalValue::DLLImportLinkage:
2438  case GlobalValue::ExternalWeakLinkage:
2439    if (isDefine)
2440      return Error(LinkageLoc, "invalid linkage for function definition");
2441    break;
2442  case GlobalValue::PrivateLinkage:
2443  case GlobalValue::LinkerPrivateLinkage:
2444  case GlobalValue::InternalLinkage:
2445  case GlobalValue::AvailableExternallyLinkage:
2446  case GlobalValue::LinkOnceAnyLinkage:
2447  case GlobalValue::LinkOnceODRLinkage:
2448  case GlobalValue::WeakAnyLinkage:
2449  case GlobalValue::WeakODRLinkage:
2450  case GlobalValue::DLLExportLinkage:
2451    if (!isDefine)
2452      return Error(LinkageLoc, "invalid linkage for function declaration");
2453    break;
2454  case GlobalValue::AppendingLinkage:
2455  case GlobalValue::GhostLinkage:
2456  case GlobalValue::CommonLinkage:
2457    return Error(LinkageLoc, "invalid function linkage type");
2458  }
2459
2460  if (!FunctionType::isValidReturnType(RetType) ||
2461      isa<OpaqueType>(RetType))
2462    return Error(RetTypeLoc, "invalid function return type");
2463
2464  LocTy NameLoc = Lex.getLoc();
2465
2466  std::string FunctionName;
2467  if (Lex.getKind() == lltok::GlobalVar) {
2468    FunctionName = Lex.getStrVal();
2469  } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
2470    unsigned NameID = Lex.getUIntVal();
2471
2472    if (NameID != NumberedVals.size())
2473      return TokError("function expected to be numbered '%" +
2474                      utostr(NumberedVals.size()) + "'");
2475  } else {
2476    return TokError("expected function name");
2477  }
2478
2479  Lex.Lex();
2480
2481  if (Lex.getKind() != lltok::lparen)
2482    return TokError("expected '(' in function argument list");
2483
2484  std::vector<ArgInfo> ArgList;
2485  bool isVarArg;
2486  unsigned FuncAttrs;
2487  std::string Section;
2488  unsigned Alignment;
2489  std::string GC;
2490
2491  if (ParseArgumentList(ArgList, isVarArg, false) ||
2492      ParseOptionalAttrs(FuncAttrs, 2) ||
2493      (EatIfPresent(lltok::kw_section) &&
2494       ParseStringConstant(Section)) ||
2495      ParseOptionalAlignment(Alignment) ||
2496      (EatIfPresent(lltok::kw_gc) &&
2497       ParseStringConstant(GC)))
2498    return true;
2499
2500  // If the alignment was parsed as an attribute, move to the alignment field.
2501  if (FuncAttrs & Attribute::Alignment) {
2502    Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2503    FuncAttrs &= ~Attribute::Alignment;
2504  }
2505
2506  // Okay, if we got here, the function is syntactically valid.  Convert types
2507  // and do semantic checks.
2508  std::vector<const Type*> ParamTypeList;
2509  SmallVector<AttributeWithIndex, 8> Attrs;
2510  // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2511  // attributes.
2512  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2513  if (FuncAttrs & ObsoleteFuncAttrs) {
2514    RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
2515    FuncAttrs &= ~ObsoleteFuncAttrs;
2516  }
2517
2518  if (RetAttrs != Attribute::None)
2519    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2520
2521  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2522    ParamTypeList.push_back(ArgList[i].Type);
2523    if (ArgList[i].Attrs != Attribute::None)
2524      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2525  }
2526
2527  if (FuncAttrs != Attribute::None)
2528    Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2529
2530  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2531
2532  if (PAL.paramHasAttr(1, Attribute::StructRet) &&
2533      RetType != Type::getVoidTy(Context))
2534    return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2535
2536  const FunctionType *FT =
2537    FunctionType::get(RetType, ParamTypeList, isVarArg);
2538  const PointerType *PFT = PointerType::getUnqual(FT);
2539
2540  Fn = 0;
2541  if (!FunctionName.empty()) {
2542    // If this was a definition of a forward reference, remove the definition
2543    // from the forward reference table and fill in the forward ref.
2544    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2545      ForwardRefVals.find(FunctionName);
2546    if (FRVI != ForwardRefVals.end()) {
2547      Fn = M->getFunction(FunctionName);
2548      ForwardRefVals.erase(FRVI);
2549    } else if ((Fn = M->getFunction(FunctionName))) {
2550      // If this function already exists in the symbol table, then it is
2551      // multiply defined.  We accept a few cases for old backwards compat.
2552      // FIXME: Remove this stuff for LLVM 3.0.
2553      if (Fn->getType() != PFT || Fn->getAttributes() != PAL ||
2554          (!Fn->isDeclaration() && isDefine)) {
2555        // If the redefinition has different type or different attributes,
2556        // reject it.  If both have bodies, reject it.
2557        return Error(NameLoc, "invalid redefinition of function '" +
2558                     FunctionName + "'");
2559      } else if (Fn->isDeclaration()) {
2560        // Make sure to strip off any argument names so we can't get conflicts.
2561        for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2562             AI != AE; ++AI)
2563          AI->setName("");
2564      }
2565    }
2566
2567  } else {
2568    // If this is a definition of a forward referenced function, make sure the
2569    // types agree.
2570    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2571      = ForwardRefValIDs.find(NumberedVals.size());
2572    if (I != ForwardRefValIDs.end()) {
2573      Fn = cast<Function>(I->second.first);
2574      if (Fn->getType() != PFT)
2575        return Error(NameLoc, "type of definition and forward reference of '@" +
2576                     utostr(NumberedVals.size()) +"' disagree");
2577      ForwardRefValIDs.erase(I);
2578    }
2579  }
2580
2581  if (Fn == 0)
2582    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2583  else // Move the forward-reference to the correct spot in the module.
2584    M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2585
2586  if (FunctionName.empty())
2587    NumberedVals.push_back(Fn);
2588
2589  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2590  Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2591  Fn->setCallingConv(CC);
2592  Fn->setAttributes(PAL);
2593  Fn->setAlignment(Alignment);
2594  Fn->setSection(Section);
2595  if (!GC.empty()) Fn->setGC(GC.c_str());
2596
2597  // Add all of the arguments we parsed to the function.
2598  Function::arg_iterator ArgIt = Fn->arg_begin();
2599  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2600    // If the argument has a name, insert it into the argument symbol table.
2601    if (ArgList[i].Name.empty()) continue;
2602
2603    // Set the name, if it conflicted, it will be auto-renamed.
2604    ArgIt->setName(ArgList[i].Name);
2605
2606    if (ArgIt->getNameStr() != ArgList[i].Name)
2607      return Error(ArgList[i].Loc, "redefinition of argument '%" +
2608                   ArgList[i].Name + "'");
2609  }
2610
2611  return false;
2612}
2613
2614
2615/// ParseFunctionBody
2616///   ::= '{' BasicBlock+ '}'
2617///   ::= 'begin' BasicBlock+ 'end'  // FIXME: remove in LLVM 3.0
2618///
2619bool LLParser::ParseFunctionBody(Function &Fn) {
2620  if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
2621    return TokError("expected '{' in function body");
2622  Lex.Lex();  // eat the {.
2623
2624  PerFunctionState PFS(*this, Fn);
2625
2626  while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
2627    if (ParseBasicBlock(PFS)) return true;
2628
2629  // Eat the }.
2630  Lex.Lex();
2631
2632  // Verify function is ok.
2633  return PFS.VerifyFunctionComplete();
2634}
2635
2636/// ParseBasicBlock
2637///   ::= LabelStr? Instruction*
2638bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2639  // If this basic block starts out with a name, remember it.
2640  std::string Name;
2641  LocTy NameLoc = Lex.getLoc();
2642  if (Lex.getKind() == lltok::LabelStr) {
2643    Name = Lex.getStrVal();
2644    Lex.Lex();
2645  }
2646
2647  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2648  if (BB == 0) return true;
2649
2650  std::string NameStr;
2651
2652  // Parse the instructions in this block until we get a terminator.
2653  Instruction *Inst;
2654  do {
2655    // This instruction may have three possibilities for a name: a) none
2656    // specified, b) name specified "%foo =", c) number specified: "%4 =".
2657    LocTy NameLoc = Lex.getLoc();
2658    int NameID = -1;
2659    NameStr = "";
2660
2661    if (Lex.getKind() == lltok::LocalVarID) {
2662      NameID = Lex.getUIntVal();
2663      Lex.Lex();
2664      if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2665        return true;
2666    } else if (Lex.getKind() == lltok::LocalVar ||
2667               // FIXME: REMOVE IN LLVM 3.0
2668               Lex.getKind() == lltok::StringConstant) {
2669      NameStr = Lex.getStrVal();
2670      Lex.Lex();
2671      if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2672        return true;
2673    }
2674
2675    if (ParseInstruction(Inst, BB, PFS)) return true;
2676    if (EatIfPresent(lltok::comma))
2677      ParseOptionalDbgInfo();
2678
2679    // Set metadata attached with this instruction.
2680    Metadata &TheMetadata = M->getContext().getMetadata();
2681    for (SmallVector<std::pair<MDKindID, MDNode *>, 2>::iterator
2682           MDI = MDsOnInst.begin(), MDE = MDsOnInst.end(); MDI != MDE; ++MDI)
2683      TheMetadata.setMD(MDI->first, MDI->second, Inst);
2684    MDsOnInst.clear();
2685
2686    BB->getInstList().push_back(Inst);
2687
2688    // Set the name on the instruction.
2689    if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2690  } while (!isa<TerminatorInst>(Inst));
2691
2692  return false;
2693}
2694
2695//===----------------------------------------------------------------------===//
2696// Instruction Parsing.
2697//===----------------------------------------------------------------------===//
2698
2699/// ParseInstruction - Parse one of the many different instructions.
2700///
2701bool LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2702                                PerFunctionState &PFS) {
2703  lltok::Kind Token = Lex.getKind();
2704  if (Token == lltok::Eof)
2705    return TokError("found end of file when expecting more instructions");
2706  LocTy Loc = Lex.getLoc();
2707  unsigned KeywordVal = Lex.getUIntVal();
2708  Lex.Lex();  // Eat the keyword.
2709
2710  switch (Token) {
2711  default:                    return Error(Loc, "expected instruction opcode");
2712  // Terminator Instructions.
2713  case lltok::kw_unwind:      Inst = new UnwindInst(Context); return false;
2714  case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
2715  case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
2716  case lltok::kw_br:          return ParseBr(Inst, PFS);
2717  case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
2718  case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
2719  // Binary Operators.
2720  case lltok::kw_add:
2721  case lltok::kw_sub:
2722  case lltok::kw_mul: {
2723    bool NUW = false;
2724    bool NSW = false;
2725    LocTy ModifierLoc = Lex.getLoc();
2726    if (EatIfPresent(lltok::kw_nuw))
2727      NUW = true;
2728    if (EatIfPresent(lltok::kw_nsw)) {
2729      NSW = true;
2730      if (EatIfPresent(lltok::kw_nuw))
2731        NUW = true;
2732    }
2733    // API compatibility: Accept either integer or floating-point types.
2734    bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 0);
2735    if (!Result) {
2736      if (!Inst->getType()->isIntOrIntVector()) {
2737        if (NUW)
2738          return Error(ModifierLoc, "nuw only applies to integer operations");
2739        if (NSW)
2740          return Error(ModifierLoc, "nsw only applies to integer operations");
2741      }
2742      if (NUW)
2743        cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
2744      if (NSW)
2745        cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
2746    }
2747    return Result;
2748  }
2749  case lltok::kw_fadd:
2750  case lltok::kw_fsub:
2751  case lltok::kw_fmul:    return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2752
2753  case lltok::kw_sdiv: {
2754    bool Exact = false;
2755    if (EatIfPresent(lltok::kw_exact))
2756      Exact = true;
2757    bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 1);
2758    if (!Result)
2759      if (Exact)
2760        cast<BinaryOperator>(Inst)->setIsExact(true);
2761    return Result;
2762  }
2763
2764  case lltok::kw_udiv:
2765  case lltok::kw_urem:
2766  case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
2767  case lltok::kw_fdiv:
2768  case lltok::kw_frem:   return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2769  case lltok::kw_shl:
2770  case lltok::kw_lshr:
2771  case lltok::kw_ashr:
2772  case lltok::kw_and:
2773  case lltok::kw_or:
2774  case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
2775  case lltok::kw_icmp:
2776  case lltok::kw_fcmp:   return ParseCompare(Inst, PFS, KeywordVal);
2777  // Casts.
2778  case lltok::kw_trunc:
2779  case lltok::kw_zext:
2780  case lltok::kw_sext:
2781  case lltok::kw_fptrunc:
2782  case lltok::kw_fpext:
2783  case lltok::kw_bitcast:
2784  case lltok::kw_uitofp:
2785  case lltok::kw_sitofp:
2786  case lltok::kw_fptoui:
2787  case lltok::kw_fptosi:
2788  case lltok::kw_inttoptr:
2789  case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
2790  // Other.
2791  case lltok::kw_select:         return ParseSelect(Inst, PFS);
2792  case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
2793  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
2794  case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
2795  case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
2796  case lltok::kw_phi:            return ParsePHI(Inst, PFS);
2797  case lltok::kw_call:           return ParseCall(Inst, PFS, false);
2798  case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
2799  // Memory.
2800  case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
2801  case lltok::kw_malloc:         return ParseAlloc(Inst, PFS, BB, false);
2802  case lltok::kw_free:           return ParseFree(Inst, PFS);
2803  case lltok::kw_load:           return ParseLoad(Inst, PFS, false);
2804  case lltok::kw_store:          return ParseStore(Inst, PFS, false);
2805  case lltok::kw_volatile:
2806    if (EatIfPresent(lltok::kw_load))
2807      return ParseLoad(Inst, PFS, true);
2808    else if (EatIfPresent(lltok::kw_store))
2809      return ParseStore(Inst, PFS, true);
2810    else
2811      return TokError("expected 'load' or 'store'");
2812  case lltok::kw_getresult:     return ParseGetResult(Inst, PFS);
2813  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
2814  case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
2815  case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
2816  }
2817}
2818
2819/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
2820bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
2821  if (Opc == Instruction::FCmp) {
2822    switch (Lex.getKind()) {
2823    default: TokError("expected fcmp predicate (e.g. 'oeq')");
2824    case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
2825    case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
2826    case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
2827    case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
2828    case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
2829    case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
2830    case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
2831    case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
2832    case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
2833    case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
2834    case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
2835    case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
2836    case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
2837    case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
2838    case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
2839    case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
2840    }
2841  } else {
2842    switch (Lex.getKind()) {
2843    default: TokError("expected icmp predicate (e.g. 'eq')");
2844    case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
2845    case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
2846    case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
2847    case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
2848    case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
2849    case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
2850    case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
2851    case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
2852    case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
2853    case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
2854    }
2855  }
2856  Lex.Lex();
2857  return false;
2858}
2859
2860//===----------------------------------------------------------------------===//
2861// Terminator Instructions.
2862//===----------------------------------------------------------------------===//
2863
2864/// ParseRet - Parse a return instruction.
2865///   ::= 'ret' void (',' 'dbg' !1)
2866///   ::= 'ret' TypeAndValue (',' 'dbg' !1)
2867///   ::= 'ret' TypeAndValue (',' TypeAndValue)+  (',' 'dbg' !1)
2868///         [[obsolete: LLVM 3.0]]
2869bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
2870                        PerFunctionState &PFS) {
2871  PATypeHolder Ty(Type::getVoidTy(Context));
2872  if (ParseType(Ty, true /*void allowed*/)) return true;
2873
2874  if (Ty == Type::getVoidTy(Context)) {
2875    if (EatIfPresent(lltok::comma))
2876      if (ParseOptionalDbgInfo()) return true;
2877    Inst = ReturnInst::Create(Context);
2878    return false;
2879  }
2880
2881  Value *RV;
2882  if (ParseValue(Ty, RV, PFS)) return true;
2883
2884  if (EatIfPresent(lltok::comma)) {
2885    // Parse optional 'dbg'
2886    if (Lex.getKind() == lltok::kw_dbg) {
2887      if (ParseOptionalDbgInfo()) return true;
2888    } else {
2889      // The normal case is one return value.
2890      // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring use
2891      // of 'ret {i32,i32} {i32 1, i32 2}'
2892      SmallVector<Value*, 8> RVs;
2893      RVs.push_back(RV);
2894
2895      do {
2896        // If optional 'dbg' is seen then this is the end of MRV.
2897        if (Lex.getKind() == lltok::kw_dbg)
2898          break;
2899        if (ParseTypeAndValue(RV, PFS)) return true;
2900        RVs.push_back(RV);
2901      } while (EatIfPresent(lltok::comma));
2902
2903      RV = UndefValue::get(PFS.getFunction().getReturnType());
2904      for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
2905        Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
2906        BB->getInstList().push_back(I);
2907        RV = I;
2908      }
2909    }
2910  }
2911  if (EatIfPresent(lltok::comma))
2912    if (ParseOptionalDbgInfo()) return true;
2913
2914  Inst = ReturnInst::Create(Context, RV);
2915  return false;
2916}
2917
2918
2919/// ParseBr
2920///   ::= 'br' TypeAndValue
2921///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2922bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
2923  LocTy Loc, Loc2;
2924  Value *Op0, *Op1, *Op2;
2925  if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
2926
2927  if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
2928    Inst = BranchInst::Create(BB);
2929    return false;
2930  }
2931
2932  if (Op0->getType() != Type::getInt1Ty(Context))
2933    return Error(Loc, "branch condition must have 'i1' type");
2934
2935  if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
2936      ParseTypeAndValue(Op1, Loc, PFS) ||
2937      ParseToken(lltok::comma, "expected ',' after true destination") ||
2938      ParseTypeAndValue(Op2, Loc2, PFS))
2939    return true;
2940
2941  if (!isa<BasicBlock>(Op1))
2942    return Error(Loc, "true destination of branch must be a basic block");
2943  if (!isa<BasicBlock>(Op2))
2944    return Error(Loc2, "true destination of branch must be a basic block");
2945
2946  Inst = BranchInst::Create(cast<BasicBlock>(Op1), cast<BasicBlock>(Op2), Op0);
2947  return false;
2948}
2949
2950/// ParseSwitch
2951///  Instruction
2952///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
2953///  JumpTable
2954///    ::= (TypeAndValue ',' TypeAndValue)*
2955bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
2956  LocTy CondLoc, BBLoc;
2957  Value *Cond, *DefaultBB;
2958  if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
2959      ParseToken(lltok::comma, "expected ',' after switch condition") ||
2960      ParseTypeAndValue(DefaultBB, BBLoc, PFS) ||
2961      ParseToken(lltok::lsquare, "expected '[' with switch table"))
2962    return true;
2963
2964  if (!isa<IntegerType>(Cond->getType()))
2965    return Error(CondLoc, "switch condition must have integer type");
2966  if (!isa<BasicBlock>(DefaultBB))
2967    return Error(BBLoc, "default destination must be a basic block");
2968
2969  // Parse the jump table pairs.
2970  SmallPtrSet<Value*, 32> SeenCases;
2971  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
2972  while (Lex.getKind() != lltok::rsquare) {
2973    Value *Constant, *DestBB;
2974
2975    if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
2976        ParseToken(lltok::comma, "expected ',' after case value") ||
2977        ParseTypeAndValue(DestBB, BBLoc, PFS))
2978      return true;
2979
2980    if (!SeenCases.insert(Constant))
2981      return Error(CondLoc, "duplicate case value in switch");
2982    if (!isa<ConstantInt>(Constant))
2983      return Error(CondLoc, "case value is not a constant integer");
2984    if (!isa<BasicBlock>(DestBB))
2985      return Error(BBLoc, "case destination is not a basic block");
2986
2987    Table.push_back(std::make_pair(cast<ConstantInt>(Constant),
2988                                   cast<BasicBlock>(DestBB)));
2989  }
2990
2991  Lex.Lex();  // Eat the ']'.
2992
2993  SwitchInst *SI = SwitchInst::Create(Cond, cast<BasicBlock>(DefaultBB),
2994                                      Table.size());
2995  for (unsigned i = 0, e = Table.size(); i != e; ++i)
2996    SI->addCase(Table[i].first, Table[i].second);
2997  Inst = SI;
2998  return false;
2999}
3000
3001/// ParseInvoke
3002///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
3003///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
3004bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
3005  LocTy CallLoc = Lex.getLoc();
3006  unsigned RetAttrs, FnAttrs;
3007  CallingConv::ID CC;
3008  PATypeHolder RetType(Type::getVoidTy(Context));
3009  LocTy RetTypeLoc;
3010  ValID CalleeID;
3011  SmallVector<ParamInfo, 16> ArgList;
3012
3013  Value *NormalBB, *UnwindBB;
3014  if (ParseOptionalCallingConv(CC) ||
3015      ParseOptionalAttrs(RetAttrs, 1) ||
3016      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3017      ParseValID(CalleeID) ||
3018      ParseParameterList(ArgList, PFS) ||
3019      ParseOptionalAttrs(FnAttrs, 2) ||
3020      ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
3021      ParseTypeAndValue(NormalBB, PFS) ||
3022      ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
3023      ParseTypeAndValue(UnwindBB, PFS))
3024    return true;
3025
3026  if (!isa<BasicBlock>(NormalBB))
3027    return Error(CallLoc, "normal destination is not a basic block");
3028  if (!isa<BasicBlock>(UnwindBB))
3029    return Error(CallLoc, "unwind destination is not a basic block");
3030
3031  // If RetType is a non-function pointer type, then this is the short syntax
3032  // for the call, which means that RetType is just the return type.  Infer the
3033  // rest of the function argument types from the arguments that are present.
3034  const PointerType *PFTy = 0;
3035  const FunctionType *Ty = 0;
3036  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3037      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3038    // Pull out the types of all of the arguments...
3039    std::vector<const Type*> ParamTypes;
3040    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3041      ParamTypes.push_back(ArgList[i].V->getType());
3042
3043    if (!FunctionType::isValidReturnType(RetType))
3044      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3045
3046    Ty = FunctionType::get(RetType, ParamTypes, false);
3047    PFTy = PointerType::getUnqual(Ty);
3048  }
3049
3050  // Look up the callee.
3051  Value *Callee;
3052  if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
3053
3054  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3055  // function attributes.
3056  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3057  if (FnAttrs & ObsoleteFuncAttrs) {
3058    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3059    FnAttrs &= ~ObsoleteFuncAttrs;
3060  }
3061
3062  // Set up the Attributes for the function.
3063  SmallVector<AttributeWithIndex, 8> Attrs;
3064  if (RetAttrs != Attribute::None)
3065    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3066
3067  SmallVector<Value*, 8> Args;
3068
3069  // Loop through FunctionType's arguments and ensure they are specified
3070  // correctly.  Also, gather any parameter attributes.
3071  FunctionType::param_iterator I = Ty->param_begin();
3072  FunctionType::param_iterator E = Ty->param_end();
3073  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3074    const Type *ExpectedTy = 0;
3075    if (I != E) {
3076      ExpectedTy = *I++;
3077    } else if (!Ty->isVarArg()) {
3078      return Error(ArgList[i].Loc, "too many arguments specified");
3079    }
3080
3081    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3082      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3083                   ExpectedTy->getDescription() + "'");
3084    Args.push_back(ArgList[i].V);
3085    if (ArgList[i].Attrs != Attribute::None)
3086      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3087  }
3088
3089  if (I != E)
3090    return Error(CallLoc, "not enough parameters specified for call");
3091
3092  if (FnAttrs != Attribute::None)
3093    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3094
3095  // Finish off the Attributes and check them
3096  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3097
3098  InvokeInst *II = InvokeInst::Create(Callee, cast<BasicBlock>(NormalBB),
3099                                      cast<BasicBlock>(UnwindBB),
3100                                      Args.begin(), Args.end());
3101  II->setCallingConv(CC);
3102  II->setAttributes(PAL);
3103  Inst = II;
3104  return false;
3105}
3106
3107
3108
3109//===----------------------------------------------------------------------===//
3110// Binary Operators.
3111//===----------------------------------------------------------------------===//
3112
3113/// ParseArithmetic
3114///  ::= ArithmeticOps TypeAndValue ',' Value
3115///
3116/// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
3117/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
3118bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
3119                               unsigned Opc, unsigned OperandType) {
3120  LocTy Loc; Value *LHS, *RHS;
3121  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3122      ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
3123      ParseValue(LHS->getType(), RHS, PFS))
3124    return true;
3125
3126  bool Valid;
3127  switch (OperandType) {
3128  default: llvm_unreachable("Unknown operand type!");
3129  case 0: // int or FP.
3130    Valid = LHS->getType()->isIntOrIntVector() ||
3131            LHS->getType()->isFPOrFPVector();
3132    break;
3133  case 1: Valid = LHS->getType()->isIntOrIntVector(); break;
3134  case 2: Valid = LHS->getType()->isFPOrFPVector(); break;
3135  }
3136
3137  if (!Valid)
3138    return Error(Loc, "invalid operand type for instruction");
3139
3140  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3141  return false;
3142}
3143
3144/// ParseLogical
3145///  ::= ArithmeticOps TypeAndValue ',' Value {
3146bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3147                            unsigned Opc) {
3148  LocTy Loc; Value *LHS, *RHS;
3149  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3150      ParseToken(lltok::comma, "expected ',' in logical operation") ||
3151      ParseValue(LHS->getType(), RHS, PFS))
3152    return true;
3153
3154  if (!LHS->getType()->isIntOrIntVector())
3155    return Error(Loc,"instruction requires integer or integer vector operands");
3156
3157  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3158  return false;
3159}
3160
3161
3162/// ParseCompare
3163///  ::= 'icmp' IPredicates TypeAndValue ',' Value
3164///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
3165bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3166                            unsigned Opc) {
3167  // Parse the integer/fp comparison predicate.
3168  LocTy Loc;
3169  unsigned Pred;
3170  Value *LHS, *RHS;
3171  if (ParseCmpPredicate(Pred, Opc) ||
3172      ParseTypeAndValue(LHS, Loc, PFS) ||
3173      ParseToken(lltok::comma, "expected ',' after compare value") ||
3174      ParseValue(LHS->getType(), RHS, PFS))
3175    return true;
3176
3177  if (Opc == Instruction::FCmp) {
3178    if (!LHS->getType()->isFPOrFPVector())
3179      return Error(Loc, "fcmp requires floating point operands");
3180    Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3181  } else {
3182    assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3183    if (!LHS->getType()->isIntOrIntVector() &&
3184        !isa<PointerType>(LHS->getType()))
3185      return Error(Loc, "icmp requires integer operands");
3186    Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3187  }
3188  return false;
3189}
3190
3191//===----------------------------------------------------------------------===//
3192// Other Instructions.
3193//===----------------------------------------------------------------------===//
3194
3195
3196/// ParseCast
3197///   ::= CastOpc TypeAndValue 'to' Type
3198bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3199                         unsigned Opc) {
3200  LocTy Loc;  Value *Op;
3201  PATypeHolder DestTy(Type::getVoidTy(Context));
3202  if (ParseTypeAndValue(Op, Loc, PFS) ||
3203      ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3204      ParseType(DestTy))
3205    return true;
3206
3207  if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3208    CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3209    return Error(Loc, "invalid cast opcode for cast from '" +
3210                 Op->getType()->getDescription() + "' to '" +
3211                 DestTy->getDescription() + "'");
3212  }
3213  Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3214  return false;
3215}
3216
3217/// ParseSelect
3218///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3219bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3220  LocTy Loc;
3221  Value *Op0, *Op1, *Op2;
3222  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3223      ParseToken(lltok::comma, "expected ',' after select condition") ||
3224      ParseTypeAndValue(Op1, PFS) ||
3225      ParseToken(lltok::comma, "expected ',' after select value") ||
3226      ParseTypeAndValue(Op2, PFS))
3227    return true;
3228
3229  if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3230    return Error(Loc, Reason);
3231
3232  Inst = SelectInst::Create(Op0, Op1, Op2);
3233  return false;
3234}
3235
3236/// ParseVA_Arg
3237///   ::= 'va_arg' TypeAndValue ',' Type
3238bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3239  Value *Op;
3240  PATypeHolder EltTy(Type::getVoidTy(Context));
3241  LocTy TypeLoc;
3242  if (ParseTypeAndValue(Op, PFS) ||
3243      ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3244      ParseType(EltTy, TypeLoc))
3245    return true;
3246
3247  if (!EltTy->isFirstClassType())
3248    return Error(TypeLoc, "va_arg requires operand with first class type");
3249
3250  Inst = new VAArgInst(Op, EltTy);
3251  return false;
3252}
3253
3254/// ParseExtractElement
3255///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
3256bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3257  LocTy Loc;
3258  Value *Op0, *Op1;
3259  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3260      ParseToken(lltok::comma, "expected ',' after extract value") ||
3261      ParseTypeAndValue(Op1, PFS))
3262    return true;
3263
3264  if (!ExtractElementInst::isValidOperands(Op0, Op1))
3265    return Error(Loc, "invalid extractelement operands");
3266
3267  Inst = ExtractElementInst::Create(Op0, Op1);
3268  return false;
3269}
3270
3271/// ParseInsertElement
3272///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3273bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3274  LocTy Loc;
3275  Value *Op0, *Op1, *Op2;
3276  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3277      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3278      ParseTypeAndValue(Op1, PFS) ||
3279      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3280      ParseTypeAndValue(Op2, PFS))
3281    return true;
3282
3283  if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3284    return Error(Loc, "invalid insertelement operands");
3285
3286  Inst = InsertElementInst::Create(Op0, Op1, Op2);
3287  return false;
3288}
3289
3290/// ParseShuffleVector
3291///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3292bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3293  LocTy Loc;
3294  Value *Op0, *Op1, *Op2;
3295  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3296      ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3297      ParseTypeAndValue(Op1, PFS) ||
3298      ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3299      ParseTypeAndValue(Op2, PFS))
3300    return true;
3301
3302  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3303    return Error(Loc, "invalid extractelement operands");
3304
3305  Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3306  return false;
3307}
3308
3309/// ParsePHI
3310///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Valueß ']')*
3311bool LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3312  PATypeHolder Ty(Type::getVoidTy(Context));
3313  Value *Op0, *Op1;
3314  LocTy TypeLoc = Lex.getLoc();
3315
3316  if (ParseType(Ty) ||
3317      ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3318      ParseValue(Ty, Op0, PFS) ||
3319      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3320      ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3321      ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3322    return true;
3323
3324  SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3325  while (1) {
3326    PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3327
3328    if (!EatIfPresent(lltok::comma))
3329      break;
3330
3331    if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3332        ParseValue(Ty, Op0, PFS) ||
3333        ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3334        ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3335        ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3336      return true;
3337  }
3338
3339  if (!Ty->isFirstClassType())
3340    return Error(TypeLoc, "phi node must have first class type");
3341
3342  PHINode *PN = PHINode::Create(Ty);
3343  PN->reserveOperandSpace(PHIVals.size());
3344  for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3345    PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3346  Inst = PN;
3347  return false;
3348}
3349
3350/// ParseCall
3351///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3352///       ParameterList OptionalAttrs
3353bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3354                         bool isTail) {
3355  unsigned RetAttrs, FnAttrs;
3356  CallingConv::ID CC;
3357  PATypeHolder RetType(Type::getVoidTy(Context));
3358  LocTy RetTypeLoc;
3359  ValID CalleeID;
3360  SmallVector<ParamInfo, 16> ArgList;
3361  LocTy CallLoc = Lex.getLoc();
3362
3363  if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3364      ParseOptionalCallingConv(CC) ||
3365      ParseOptionalAttrs(RetAttrs, 1) ||
3366      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3367      ParseValID(CalleeID) ||
3368      ParseParameterList(ArgList, PFS) ||
3369      ParseOptionalAttrs(FnAttrs, 2))
3370    return true;
3371
3372  // If RetType is a non-function pointer type, then this is the short syntax
3373  // for the call, which means that RetType is just the return type.  Infer the
3374  // rest of the function argument types from the arguments that are present.
3375  const PointerType *PFTy = 0;
3376  const FunctionType *Ty = 0;
3377  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3378      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3379    // Pull out the types of all of the arguments...
3380    std::vector<const Type*> ParamTypes;
3381    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3382      ParamTypes.push_back(ArgList[i].V->getType());
3383
3384    if (!FunctionType::isValidReturnType(RetType))
3385      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3386
3387    Ty = FunctionType::get(RetType, ParamTypes, false);
3388    PFTy = PointerType::getUnqual(Ty);
3389  }
3390
3391  // Look up the callee.
3392  Value *Callee;
3393  if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
3394
3395  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3396  // function attributes.
3397  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3398  if (FnAttrs & ObsoleteFuncAttrs) {
3399    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3400    FnAttrs &= ~ObsoleteFuncAttrs;
3401  }
3402
3403  // Set up the Attributes for the function.
3404  SmallVector<AttributeWithIndex, 8> Attrs;
3405  if (RetAttrs != Attribute::None)
3406    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3407
3408  SmallVector<Value*, 8> Args;
3409
3410  // Loop through FunctionType's arguments and ensure they are specified
3411  // correctly.  Also, gather any parameter attributes.
3412  FunctionType::param_iterator I = Ty->param_begin();
3413  FunctionType::param_iterator E = Ty->param_end();
3414  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3415    const Type *ExpectedTy = 0;
3416    if (I != E) {
3417      ExpectedTy = *I++;
3418    } else if (!Ty->isVarArg()) {
3419      return Error(ArgList[i].Loc, "too many arguments specified");
3420    }
3421
3422    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3423      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3424                   ExpectedTy->getDescription() + "'");
3425    Args.push_back(ArgList[i].V);
3426    if (ArgList[i].Attrs != Attribute::None)
3427      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3428  }
3429
3430  if (I != E)
3431    return Error(CallLoc, "not enough parameters specified for call");
3432
3433  if (FnAttrs != Attribute::None)
3434    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3435
3436  // Finish off the Attributes and check them
3437  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3438
3439  CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
3440  CI->setTailCall(isTail);
3441  CI->setCallingConv(CC);
3442  CI->setAttributes(PAL);
3443  Inst = CI;
3444  return false;
3445}
3446
3447//===----------------------------------------------------------------------===//
3448// Memory Instructions.
3449//===----------------------------------------------------------------------===//
3450
3451/// ParseAlloc
3452///   ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalInfo)?
3453///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
3454bool LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
3455                          BasicBlock* BB, bool isAlloca) {
3456  PATypeHolder Ty(Type::getVoidTy(Context));
3457  Value *Size = 0;
3458  LocTy SizeLoc;
3459  unsigned Alignment = 0;
3460  if (ParseType(Ty)) return true;
3461
3462  if (EatIfPresent(lltok::comma)) {
3463    if (Lex.getKind() == lltok::kw_align || Lex.getKind() == lltok::kw_dbg) {
3464      if (ParseOptionalInfo(Alignment)) return true;
3465    } else {
3466      if (ParseTypeAndValue(Size, SizeLoc, PFS)) return true;
3467      if (EatIfPresent(lltok::comma))
3468        if (ParseOptionalInfo(Alignment)) return true;
3469    }
3470  }
3471
3472  if (Size && Size->getType() != Type::getInt32Ty(Context))
3473    return Error(SizeLoc, "element count must be i32");
3474
3475  if (isAlloca)
3476    Inst = new AllocaInst(Ty, Size, Alignment);
3477  else {
3478    // Autoupgrade old malloc instruction to malloc call.
3479    const Type* IntPtrTy = Type::getInt32Ty(Context);
3480    const Type* Int8PtrTy = PointerType::getUnqual(Type::getInt8Ty(Context));
3481    if (!MallocF)
3482      // Prototype malloc as "void *autoupgrade_malloc(int32)".
3483      MallocF = cast<Function>(M->getOrInsertFunction("autoupgrade_malloc",
3484                               Int8PtrTy, IntPtrTy, NULL));
3485      // "autoupgrade_malloc" updated to "malloc" in ValidateEndOfModule().
3486
3487    Inst = cast<Instruction>(CallInst::CreateMalloc(BB, IntPtrTy, Ty,
3488                                                    Size, MallocF));
3489  }
3490  return false;
3491}
3492
3493/// ParseFree
3494///   ::= 'free' TypeAndValue
3495bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS) {
3496  Value *Val; LocTy Loc;
3497  if (ParseTypeAndValue(Val, Loc, PFS)) return true;
3498  if (!isa<PointerType>(Val->getType()))
3499    return Error(Loc, "operand to free must be a pointer");
3500  Inst = new FreeInst(Val);
3501  return false;
3502}
3503
3504/// ParseLoad
3505///   ::= 'volatile'? 'load' TypeAndValue (',' OptionalInfo)?
3506bool LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
3507                         bool isVolatile) {
3508  Value *Val; LocTy Loc;
3509  unsigned Alignment = 0;
3510  if (ParseTypeAndValue(Val, Loc, PFS)) return true;
3511
3512  if (EatIfPresent(lltok::comma))
3513    if (ParseOptionalInfo(Alignment)) return true;
3514
3515  if (!isa<PointerType>(Val->getType()) ||
3516      !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3517    return Error(Loc, "load operand must be a pointer to a first class type");
3518
3519  Inst = new LoadInst(Val, "", isVolatile, Alignment);
3520  return false;
3521}
3522
3523/// ParseStore
3524///   ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3525bool LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
3526                          bool isVolatile) {
3527  Value *Val, *Ptr; LocTy Loc, PtrLoc;
3528  unsigned Alignment = 0;
3529  if (ParseTypeAndValue(Val, Loc, PFS) ||
3530      ParseToken(lltok::comma, "expected ',' after store operand") ||
3531      ParseTypeAndValue(Ptr, PtrLoc, PFS))
3532    return true;
3533
3534  if (EatIfPresent(lltok::comma))
3535    if (ParseOptionalInfo(Alignment)) return true;
3536
3537  if (!isa<PointerType>(Ptr->getType()))
3538    return Error(PtrLoc, "store operand must be a pointer");
3539  if (!Val->getType()->isFirstClassType())
3540    return Error(Loc, "store operand must be a first class value");
3541  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3542    return Error(Loc, "stored value and pointer type do not match");
3543
3544  Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
3545  return false;
3546}
3547
3548/// ParseGetResult
3549///   ::= 'getresult' TypeAndValue ',' i32
3550/// FIXME: Remove support for getresult in LLVM 3.0
3551bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
3552  Value *Val; LocTy ValLoc, EltLoc;
3553  unsigned Element;
3554  if (ParseTypeAndValue(Val, ValLoc, PFS) ||
3555      ParseToken(lltok::comma, "expected ',' after getresult operand") ||
3556      ParseUInt32(Element, EltLoc))
3557    return true;
3558
3559  if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3560    return Error(ValLoc, "getresult inst requires an aggregate operand");
3561  if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
3562    return Error(EltLoc, "invalid getresult index for value");
3563  Inst = ExtractValueInst::Create(Val, Element);
3564  return false;
3565}
3566
3567/// ParseGetElementPtr
3568///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
3569bool LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3570  Value *Ptr, *Val; LocTy Loc, EltLoc;
3571
3572  bool InBounds = EatIfPresent(lltok::kw_inbounds);
3573
3574  if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3575
3576  if (!isa<PointerType>(Ptr->getType()))
3577    return Error(Loc, "base of getelementptr must be a pointer");
3578
3579  SmallVector<Value*, 16> Indices;
3580  while (EatIfPresent(lltok::comma)) {
3581    if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3582    if (!isa<IntegerType>(Val->getType()))
3583      return Error(EltLoc, "getelementptr index must be an integer");
3584    Indices.push_back(Val);
3585  }
3586
3587  if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
3588                                         Indices.begin(), Indices.end()))
3589    return Error(Loc, "invalid getelementptr indices");
3590  Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
3591  if (InBounds)
3592    cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
3593  return false;
3594}
3595
3596/// ParseExtractValue
3597///   ::= 'extractvalue' TypeAndValue (',' uint32)+
3598bool LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3599  Value *Val; LocTy Loc;
3600  SmallVector<unsigned, 4> Indices;
3601  if (ParseTypeAndValue(Val, Loc, PFS) ||
3602      ParseIndexList(Indices))
3603    return true;
3604
3605  if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3606    return Error(Loc, "extractvalue operand must be array or struct");
3607
3608  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
3609                                        Indices.end()))
3610    return Error(Loc, "invalid indices for extractvalue");
3611  Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end());
3612  return false;
3613}
3614
3615/// ParseInsertValue
3616///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3617bool LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3618  Value *Val0, *Val1; LocTy Loc0, Loc1;
3619  SmallVector<unsigned, 4> Indices;
3620  if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3621      ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3622      ParseTypeAndValue(Val1, Loc1, PFS) ||
3623      ParseIndexList(Indices))
3624    return true;
3625
3626  if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
3627    return Error(Loc0, "extractvalue operand must be array or struct");
3628
3629  if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
3630                                        Indices.end()))
3631    return Error(Loc0, "invalid indices for insertvalue");
3632  Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end());
3633  return false;
3634}
3635
3636//===----------------------------------------------------------------------===//
3637// Embedded metadata.
3638//===----------------------------------------------------------------------===//
3639
3640/// ParseMDNodeVector
3641///   ::= Element (',' Element)*
3642/// Element
3643///   ::= 'null' | TypeAndValue
3644bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts) {
3645  assert(Lex.getKind() == lltok::lbrace);
3646  Lex.Lex();
3647  do {
3648    Value *V = 0;
3649    if (Lex.getKind() == lltok::kw_null) {
3650      Lex.Lex();
3651      V = 0;
3652    } else {
3653      PATypeHolder Ty(Type::getVoidTy(Context));
3654      if (ParseType(Ty)) return true;
3655      if (Lex.getKind() == lltok::Metadata) {
3656        Lex.Lex();
3657        MetadataBase *Node = 0;
3658        if (!ParseMDNode(Node))
3659          V = Node;
3660        else {
3661          MetadataBase *MDS = 0;
3662          if (ParseMDString(MDS)) return true;
3663          V = MDS;
3664        }
3665      } else {
3666        Constant *C;
3667        if (ParseGlobalValue(Ty, C)) return true;
3668        V = C;
3669      }
3670    }
3671    Elts.push_back(V);
3672  } while (EatIfPresent(lltok::comma));
3673
3674  return false;
3675}
3676