LLParser.cpp revision a9a9e07d1c5d3c73835e716d81c2ec94ad0b865f
1//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/AutoUpgrade.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instructions.h"
21#include "llvm/Module.h"
22#include "llvm/ValueSymbolTable.h"
23#include "llvm/ADT/SmallPtrSet.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/Support/raw_ostream.h"
26using namespace llvm;
27
28namespace llvm {
29  /// ValID - Represents a reference of a definition of some sort with no type.
30  /// There are several cases where we have to parse the value but where the
31  /// type can depend on later context.  This may either be a numeric reference
32  /// or a symbolic (%var) reference.  This is just a discriminated union.
33  struct ValID {
34    enum {
35      t_LocalID, t_GlobalID,      // ID in UIntVal.
36      t_LocalName, t_GlobalName,  // Name in StrVal.
37      t_APSInt, t_APFloat,        // Value in APSIntVal/APFloatVal.
38      t_Null, t_Undef, t_Zero,    // No value.
39      t_EmptyArray,               // No value:  []
40      t_Constant,                 // Value in ConstantVal.
41      t_InlineAsm                 // Value in StrVal/StrVal2/UIntVal.
42    } Kind;
43
44    LLParser::LocTy Loc;
45    unsigned UIntVal;
46    std::string StrVal, StrVal2;
47    APSInt APSIntVal;
48    APFloat APFloatVal;
49    Constant *ConstantVal;
50    ValID() : APFloatVal(0.0) {}
51  };
52}
53
54/// Run: module ::= toplevelentity*
55bool LLParser::Run() {
56  // Prime the lexer.
57  Lex.Lex();
58
59  return ParseTopLevelEntities() ||
60         ValidateEndOfModule();
61}
62
63/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
64/// module.
65bool LLParser::ValidateEndOfModule() {
66  if (!ForwardRefTypes.empty())
67    return Error(ForwardRefTypes.begin()->second.second,
68                 "use of undefined type named '" +
69                 ForwardRefTypes.begin()->first + "'");
70  if (!ForwardRefTypeIDs.empty())
71    return Error(ForwardRefTypeIDs.begin()->second.second,
72                 "use of undefined type '%" +
73                 utostr(ForwardRefTypeIDs.begin()->first) + "'");
74
75  if (!ForwardRefVals.empty())
76    return Error(ForwardRefVals.begin()->second.second,
77                 "use of undefined value '@" + ForwardRefVals.begin()->first +
78                 "'");
79
80  if (!ForwardRefValIDs.empty())
81    return Error(ForwardRefValIDs.begin()->second.second,
82                 "use of undefined value '@" +
83                 utostr(ForwardRefValIDs.begin()->first) + "'");
84
85  // Look for intrinsic functions and CallInst that need to be upgraded
86  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
87    UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
88
89  return false;
90}
91
92//===----------------------------------------------------------------------===//
93// Top-Level Entities
94//===----------------------------------------------------------------------===//
95
96bool LLParser::ParseTopLevelEntities() {
97  while (1) {
98    switch (Lex.getKind()) {
99    default:         return TokError("expected top-level entity");
100    case lltok::Eof: return false;
101    //case lltok::kw_define:
102    case lltok::kw_declare: if (ParseDeclare()) return true; break;
103    case lltok::kw_define:  if (ParseDefine()) return true; break;
104    case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
105    case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
106    case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
107    case lltok::kw_type:    if (ParseUnnamedType()) return true; break;
108    case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
109    case lltok::LocalVar:   if (ParseNamedType()) return true; break;
110    case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
111
112    // The Global variable production with no name can have many different
113    // optional leading prefixes, the production is:
114    // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
115    //               OptionalAddrSpace ('constant'|'global') ...
116    case lltok::kw_private:       // OptionalLinkage
117    case lltok::kw_internal:      // OptionalLinkage
118    case lltok::kw_weak:          // OptionalLinkage
119    case lltok::kw_weak_odr:      // OptionalLinkage
120    case lltok::kw_linkonce:      // OptionalLinkage
121    case lltok::kw_linkonce_odr:  // OptionalLinkage
122    case lltok::kw_appending:     // OptionalLinkage
123    case lltok::kw_dllexport:     // OptionalLinkage
124    case lltok::kw_common:        // OptionalLinkage
125    case lltok::kw_common_odr:    // OptionalLinkage
126    case lltok::kw_dllimport:     // OptionalLinkage
127    case lltok::kw_extern_weak:   // OptionalLinkage
128    case lltok::kw_extern_weak_odr: // OptionalLinkage
129    case lltok::kw_external: {    // OptionalLinkage
130      unsigned Linkage, Visibility;
131      if (ParseOptionalLinkage(Linkage) ||
132          ParseOptionalVisibility(Visibility) ||
133          ParseGlobal("", 0, Linkage, true, Visibility))
134        return true;
135      break;
136    }
137    case lltok::kw_default:       // OptionalVisibility
138    case lltok::kw_hidden:        // OptionalVisibility
139    case lltok::kw_protected: {   // OptionalVisibility
140      unsigned Visibility;
141      if (ParseOptionalVisibility(Visibility) ||
142          ParseGlobal("", 0, 0, false, Visibility))
143        return true;
144      break;
145    }
146
147    case lltok::kw_thread_local:  // OptionalThreadLocal
148    case lltok::kw_addrspace:     // OptionalAddrSpace
149    case lltok::kw_constant:      // GlobalType
150    case lltok::kw_global:        // GlobalType
151      if (ParseGlobal("", 0, 0, false, 0)) return true;
152      break;
153    }
154  }
155}
156
157
158/// toplevelentity
159///   ::= 'module' 'asm' STRINGCONSTANT
160bool LLParser::ParseModuleAsm() {
161  assert(Lex.getKind() == lltok::kw_module);
162  Lex.Lex();
163
164  std::string AsmStr;
165  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
166      ParseStringConstant(AsmStr)) return true;
167
168  const std::string &AsmSoFar = M->getModuleInlineAsm();
169  if (AsmSoFar.empty())
170    M->setModuleInlineAsm(AsmStr);
171  else
172    M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr);
173  return false;
174}
175
176/// toplevelentity
177///   ::= 'target' 'triple' '=' STRINGCONSTANT
178///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
179bool LLParser::ParseTargetDefinition() {
180  assert(Lex.getKind() == lltok::kw_target);
181  std::string Str;
182  switch (Lex.Lex()) {
183  default: return TokError("unknown target property");
184  case lltok::kw_triple:
185    Lex.Lex();
186    if (ParseToken(lltok::equal, "expected '=' after target triple") ||
187        ParseStringConstant(Str))
188      return true;
189    M->setTargetTriple(Str);
190    return false;
191  case lltok::kw_datalayout:
192    Lex.Lex();
193    if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
194        ParseStringConstant(Str))
195      return true;
196    M->setDataLayout(Str);
197    return false;
198  }
199}
200
201/// toplevelentity
202///   ::= 'deplibs' '=' '[' ']'
203///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
204bool LLParser::ParseDepLibs() {
205  assert(Lex.getKind() == lltok::kw_deplibs);
206  Lex.Lex();
207  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
208      ParseToken(lltok::lsquare, "expected '=' after deplibs"))
209    return true;
210
211  if (EatIfPresent(lltok::rsquare))
212    return false;
213
214  std::string Str;
215  if (ParseStringConstant(Str)) return true;
216  M->addLibrary(Str);
217
218  while (EatIfPresent(lltok::comma)) {
219    if (ParseStringConstant(Str)) return true;
220    M->addLibrary(Str);
221  }
222
223  return ParseToken(lltok::rsquare, "expected ']' at end of list");
224}
225
226/// toplevelentity
227///   ::= 'type' type
228bool LLParser::ParseUnnamedType() {
229  assert(Lex.getKind() == lltok::kw_type);
230  LocTy TypeLoc = Lex.getLoc();
231  Lex.Lex(); // eat kw_type
232
233  PATypeHolder Ty(Type::VoidTy);
234  if (ParseType(Ty)) return true;
235
236  unsigned TypeID = NumberedTypes.size();
237
238  // See if this type was previously referenced.
239  std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
240    FI = ForwardRefTypeIDs.find(TypeID);
241  if (FI != ForwardRefTypeIDs.end()) {
242    if (FI->second.first.get() == Ty)
243      return Error(TypeLoc, "self referential type is invalid");
244
245    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
246    Ty = FI->second.first.get();
247    ForwardRefTypeIDs.erase(FI);
248  }
249
250  NumberedTypes.push_back(Ty);
251
252  return false;
253}
254
255/// toplevelentity
256///   ::= LocalVar '=' 'type' type
257bool LLParser::ParseNamedType() {
258  std::string Name = Lex.getStrVal();
259  LocTy NameLoc = Lex.getLoc();
260  Lex.Lex();  // eat LocalVar.
261
262  PATypeHolder Ty(Type::VoidTy);
263
264  if (ParseToken(lltok::equal, "expected '=' after name") ||
265      ParseToken(lltok::kw_type, "expected 'type' after name") ||
266      ParseType(Ty))
267    return true;
268
269  // Set the type name, checking for conflicts as we do so.
270  bool AlreadyExists = M->addTypeName(Name, Ty);
271  if (!AlreadyExists) return false;
272
273  // See if this type is a forward reference.  We need to eagerly resolve
274  // types to allow recursive type redefinitions below.
275  std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator
276  FI = ForwardRefTypes.find(Name);
277  if (FI != ForwardRefTypes.end()) {
278    if (FI->second.first.get() == Ty)
279      return Error(NameLoc, "self referential type is invalid");
280
281    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
282    Ty = FI->second.first.get();
283    ForwardRefTypes.erase(FI);
284  }
285
286  // Inserting a name that is already defined, get the existing name.
287  const Type *Existing = M->getTypeByName(Name);
288  assert(Existing && "Conflict but no matching type?!");
289
290  // Otherwise, this is an attempt to redefine a type. That's okay if
291  // the redefinition is identical to the original.
292  // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
293  if (Existing == Ty) return false;
294
295  // Any other kind of (non-equivalent) redefinition is an error.
296  return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
297               Ty->getDescription() + "'");
298}
299
300
301/// toplevelentity
302///   ::= 'declare' FunctionHeader
303bool LLParser::ParseDeclare() {
304  assert(Lex.getKind() == lltok::kw_declare);
305  Lex.Lex();
306
307  Function *F;
308  return ParseFunctionHeader(F, false);
309}
310
311/// toplevelentity
312///   ::= 'define' FunctionHeader '{' ...
313bool LLParser::ParseDefine() {
314  assert(Lex.getKind() == lltok::kw_define);
315  Lex.Lex();
316
317  Function *F;
318  return ParseFunctionHeader(F, true) ||
319         ParseFunctionBody(*F);
320}
321
322/// ParseGlobalType
323///   ::= 'constant'
324///   ::= 'global'
325bool LLParser::ParseGlobalType(bool &IsConstant) {
326  if (Lex.getKind() == lltok::kw_constant)
327    IsConstant = true;
328  else if (Lex.getKind() == lltok::kw_global)
329    IsConstant = false;
330  else {
331    IsConstant = false;
332    return TokError("expected 'global' or 'constant'");
333  }
334  Lex.Lex();
335  return false;
336}
337
338/// ParseNamedGlobal:
339///   GlobalVar '=' OptionalVisibility ALIAS ...
340///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
341bool LLParser::ParseNamedGlobal() {
342  assert(Lex.getKind() == lltok::GlobalVar);
343  LocTy NameLoc = Lex.getLoc();
344  std::string Name = Lex.getStrVal();
345  Lex.Lex();
346
347  bool HasLinkage;
348  unsigned Linkage, Visibility;
349  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
350      ParseOptionalLinkage(Linkage, HasLinkage) ||
351      ParseOptionalVisibility(Visibility))
352    return true;
353
354  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
355    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
356  return ParseAlias(Name, NameLoc, Visibility);
357}
358
359/// ParseAlias:
360///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
361/// Aliasee
362///   ::= TypeAndValue | 'bitcast' '(' TypeAndValue 'to' Type ')'
363///
364/// Everything through visibility has already been parsed.
365///
366bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
367                          unsigned Visibility) {
368  assert(Lex.getKind() == lltok::kw_alias);
369  Lex.Lex();
370  unsigned Linkage;
371  LocTy LinkageLoc = Lex.getLoc();
372  if (ParseOptionalLinkage(Linkage))
373    return true;
374
375  if (Linkage != GlobalValue::ExternalLinkage &&
376      Linkage != GlobalValue::WeakAnyLinkage &&
377      Linkage != GlobalValue::WeakODRLinkage &&
378      Linkage != GlobalValue::InternalLinkage &&
379      Linkage != GlobalValue::PrivateLinkage)
380    return Error(LinkageLoc, "invalid linkage type for alias");
381
382  Constant *Aliasee;
383  LocTy AliaseeLoc = Lex.getLoc();
384  if (Lex.getKind() != lltok::kw_bitcast) {
385    if (ParseGlobalTypeAndValue(Aliasee)) return true;
386  } else {
387    // The bitcast dest type is not present, it is implied by the dest type.
388    ValID ID;
389    if (ParseValID(ID)) return true;
390    if (ID.Kind != ValID::t_Constant)
391      return Error(AliaseeLoc, "invalid aliasee");
392    Aliasee = ID.ConstantVal;
393  }
394
395  if (!isa<PointerType>(Aliasee->getType()))
396    return Error(AliaseeLoc, "alias must have pointer type");
397
398  // Okay, create the alias but do not insert it into the module yet.
399  GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
400                                    (GlobalValue::LinkageTypes)Linkage, Name,
401                                    Aliasee);
402  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
403
404  // See if this value already exists in the symbol table.  If so, it is either
405  // a redefinition or a definition of a forward reference.
406  if (GlobalValue *Val =
407        cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name))) {
408    // See if this was a redefinition.  If so, there is no entry in
409    // ForwardRefVals.
410    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
411      I = ForwardRefVals.find(Name);
412    if (I == ForwardRefVals.end())
413      return Error(NameLoc, "redefinition of global named '@" + Name + "'");
414
415    // Otherwise, this was a definition of forward ref.  Verify that types
416    // agree.
417    if (Val->getType() != GA->getType())
418      return Error(NameLoc,
419              "forward reference and definition of alias have different types");
420
421    // If they agree, just RAUW the old value with the alias and remove the
422    // forward ref info.
423    Val->replaceAllUsesWith(GA);
424    Val->eraseFromParent();
425    ForwardRefVals.erase(I);
426  }
427
428  // Insert into the module, we know its name won't collide now.
429  M->getAliasList().push_back(GA);
430  assert(GA->getNameStr() == Name && "Should not be a name conflict!");
431
432  return false;
433}
434
435/// ParseGlobal
436///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
437///       OptionalAddrSpace GlobalType Type Const
438///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
439///       OptionalAddrSpace GlobalType Type Const
440///
441/// Everything through visibility has been parsed already.
442///
443bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
444                           unsigned Linkage, bool HasLinkage,
445                           unsigned Visibility) {
446  unsigned AddrSpace;
447  bool ThreadLocal, IsConstant;
448  LocTy TyLoc;
449
450  PATypeHolder Ty(Type::VoidTy);
451  if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
452      ParseOptionalAddrSpace(AddrSpace) ||
453      ParseGlobalType(IsConstant) ||
454      ParseType(Ty, TyLoc))
455    return true;
456
457  // If the linkage is specified and is external, then no initializer is
458  // present.
459  Constant *Init = 0;
460  if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
461                      Linkage != GlobalValue::ExternalWeakAnyLinkage &&
462                      Linkage != GlobalValue::ExternalWeakODRLinkage &&
463                      Linkage != GlobalValue::ExternalLinkage)) {
464    if (ParseGlobalValue(Ty, Init))
465      return true;
466  }
467
468  if (isa<FunctionType>(Ty) || Ty == Type::LabelTy)
469    return Error(TyLoc, "invalid type for global variable");
470
471  GlobalVariable *GV = 0;
472
473  // See if the global was forward referenced, if so, use the global.
474  if (!Name.empty()) {
475    if ((GV = M->getGlobalVariable(Name, true)) &&
476        !ForwardRefVals.erase(Name))
477      return Error(NameLoc, "redefinition of global '@" + Name + "'");
478  } else {
479    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
480      I = ForwardRefValIDs.find(NumberedVals.size());
481    if (I != ForwardRefValIDs.end()) {
482      GV = cast<GlobalVariable>(I->second.first);
483      ForwardRefValIDs.erase(I);
484    }
485  }
486
487  if (GV == 0) {
488    GV = new GlobalVariable(Ty, false, GlobalValue::ExternalLinkage, 0, Name,
489                            M, false, AddrSpace);
490  } else {
491    if (GV->getType()->getElementType() != Ty)
492      return Error(TyLoc,
493            "forward reference and definition of global have different types");
494
495    // Move the forward-reference to the correct spot in the module.
496    M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
497  }
498
499  if (Name.empty())
500    NumberedVals.push_back(GV);
501
502  // Set the parsed properties on the global.
503  if (Init)
504    GV->setInitializer(Init);
505  GV->setConstant(IsConstant);
506  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
507  GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
508  GV->setThreadLocal(ThreadLocal);
509
510  // Parse attributes on the global.
511  while (Lex.getKind() == lltok::comma) {
512    Lex.Lex();
513
514    if (Lex.getKind() == lltok::kw_section) {
515      Lex.Lex();
516      GV->setSection(Lex.getStrVal());
517      if (ParseToken(lltok::StringConstant, "expected global section string"))
518        return true;
519    } else if (Lex.getKind() == lltok::kw_align) {
520      unsigned Alignment;
521      if (ParseOptionalAlignment(Alignment)) return true;
522      GV->setAlignment(Alignment);
523    } else {
524      TokError("unknown global variable property!");
525    }
526  }
527
528  return false;
529}
530
531
532//===----------------------------------------------------------------------===//
533// GlobalValue Reference/Resolution Routines.
534//===----------------------------------------------------------------------===//
535
536/// GetGlobalVal - Get a value with the specified name or ID, creating a
537/// forward reference record if needed.  This can return null if the value
538/// exists but does not have the right type.
539GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
540                                    LocTy Loc) {
541  const PointerType *PTy = dyn_cast<PointerType>(Ty);
542  if (PTy == 0) {
543    Error(Loc, "global variable reference must have pointer type");
544    return 0;
545  }
546
547  // Look this name up in the normal function symbol table.
548  GlobalValue *Val =
549    cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
550
551  // If this is a forward reference for the value, see if we already created a
552  // forward ref record.
553  if (Val == 0) {
554    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
555      I = ForwardRefVals.find(Name);
556    if (I != ForwardRefVals.end())
557      Val = I->second.first;
558  }
559
560  // If we have the value in the symbol table or fwd-ref table, return it.
561  if (Val) {
562    if (Val->getType() == Ty) return Val;
563    Error(Loc, "'@" + Name + "' defined with type '" +
564          Val->getType()->getDescription() + "'");
565    return 0;
566  }
567
568  // Otherwise, create a new forward reference for this value and remember it.
569  GlobalValue *FwdVal;
570  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
571    // Function types can return opaque but functions can't.
572    if (isa<OpaqueType>(FT->getReturnType())) {
573      Error(Loc, "function may not return opaque type");
574      return 0;
575    }
576
577    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakAnyLinkage, Name, M);
578  } else {
579    FwdVal = new GlobalVariable(PTy->getElementType(), false,
580                                GlobalValue::ExternalWeakAnyLinkage, 0, Name, M);
581  }
582
583  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
584  return FwdVal;
585}
586
587GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
588  const PointerType *PTy = dyn_cast<PointerType>(Ty);
589  if (PTy == 0) {
590    Error(Loc, "global variable reference must have pointer type");
591    return 0;
592  }
593
594  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
595
596  // If this is a forward reference for the value, see if we already created a
597  // forward ref record.
598  if (Val == 0) {
599    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
600      I = ForwardRefValIDs.find(ID);
601    if (I != ForwardRefValIDs.end())
602      Val = I->second.first;
603  }
604
605  // If we have the value in the symbol table or fwd-ref table, return it.
606  if (Val) {
607    if (Val->getType() == Ty) return Val;
608    Error(Loc, "'@" + utostr(ID) + "' defined with type '" +
609          Val->getType()->getDescription() + "'");
610    return 0;
611  }
612
613  // Otherwise, create a new forward reference for this value and remember it.
614  GlobalValue *FwdVal;
615  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
616    // Function types can return opaque but functions can't.
617    if (isa<OpaqueType>(FT->getReturnType())) {
618      Error(Loc, "function may not return opaque type");
619      return 0;
620    }
621    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakAnyLinkage, "", M);
622  } else {
623    FwdVal = new GlobalVariable(PTy->getElementType(), false,
624                                GlobalValue::ExternalWeakAnyLinkage, 0, "", M);
625  }
626
627  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
628  return FwdVal;
629}
630
631
632//===----------------------------------------------------------------------===//
633// Helper Routines.
634//===----------------------------------------------------------------------===//
635
636/// ParseToken - If the current token has the specified kind, eat it and return
637/// success.  Otherwise, emit the specified error and return failure.
638bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
639  if (Lex.getKind() != T)
640    return TokError(ErrMsg);
641  Lex.Lex();
642  return false;
643}
644
645/// ParseStringConstant
646///   ::= StringConstant
647bool LLParser::ParseStringConstant(std::string &Result) {
648  if (Lex.getKind() != lltok::StringConstant)
649    return TokError("expected string constant");
650  Result = Lex.getStrVal();
651  Lex.Lex();
652  return false;
653}
654
655/// ParseUInt32
656///   ::= uint32
657bool LLParser::ParseUInt32(unsigned &Val) {
658  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
659    return TokError("expected integer");
660  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
661  if (Val64 != unsigned(Val64))
662    return TokError("expected 32-bit integer (too large)");
663  Val = Val64;
664  Lex.Lex();
665  return false;
666}
667
668
669/// ParseOptionalAddrSpace
670///   := /*empty*/
671///   := 'addrspace' '(' uint32 ')'
672bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
673  AddrSpace = 0;
674  if (!EatIfPresent(lltok::kw_addrspace))
675    return false;
676  return ParseToken(lltok::lparen, "expected '(' in address space") ||
677         ParseUInt32(AddrSpace) ||
678         ParseToken(lltok::rparen, "expected ')' in address space");
679}
680
681/// ParseOptionalAttrs - Parse a potentially empty attribute list.  AttrKind
682/// indicates what kind of attribute list this is: 0: function arg, 1: result,
683/// 2: function attr.
684bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
685  Attrs = Attribute::None;
686  LocTy AttrLoc = Lex.getLoc();
687
688  while (1) {
689    switch (Lex.getKind()) {
690    case lltok::kw_sext:
691    case lltok::kw_zext:
692      // Treat these as signext/zeroext unless they are function attrs.
693      // FIXME: REMOVE THIS IN LLVM 3.0
694      if (AttrKind != 2) {
695        if (Lex.getKind() == lltok::kw_sext)
696          Attrs |= Attribute::SExt;
697        else
698          Attrs |= Attribute::ZExt;
699        break;
700      }
701      // FALL THROUGH.
702    default:  // End of attributes.
703      if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
704        return Error(AttrLoc, "invalid use of function-only attribute");
705
706      if (AttrKind != 0 && (Attrs & Attribute::ParameterOnly))
707        return Error(AttrLoc, "invalid use of parameter-only attribute");
708
709      return false;
710    case lltok::kw_zeroext:      Attrs |= Attribute::ZExt; break;
711    case lltok::kw_signext:      Attrs |= Attribute::SExt; break;
712    case lltok::kw_inreg:        Attrs |= Attribute::InReg; break;
713    case lltok::kw_sret:         Attrs |= Attribute::StructRet; break;
714    case lltok::kw_noalias:      Attrs |= Attribute::NoAlias; break;
715    case lltok::kw_nocapture:    Attrs |= Attribute::NoCapture; break;
716    case lltok::kw_byval:        Attrs |= Attribute::ByVal; break;
717    case lltok::kw_nest:         Attrs |= Attribute::Nest; break;
718
719    case lltok::kw_noreturn:     Attrs |= Attribute::NoReturn; break;
720    case lltok::kw_nounwind:     Attrs |= Attribute::NoUnwind; break;
721    case lltok::kw_noinline:     Attrs |= Attribute::NoInline; break;
722    case lltok::kw_readnone:     Attrs |= Attribute::ReadNone; break;
723    case lltok::kw_readonly:     Attrs |= Attribute::ReadOnly; break;
724    case lltok::kw_alwaysinline: Attrs |= Attribute::AlwaysInline; break;
725    case lltok::kw_optsize:      Attrs |= Attribute::OptimizeForSize; break;
726    case lltok::kw_ssp:          Attrs |= Attribute::StackProtect; break;
727    case lltok::kw_sspreq:       Attrs |= Attribute::StackProtectReq; break;
728
729
730    case lltok::kw_align: {
731      unsigned Alignment;
732      if (ParseOptionalAlignment(Alignment))
733        return true;
734      Attrs |= Attribute::constructAlignmentFromInt(Alignment);
735      continue;
736    }
737    }
738    Lex.Lex();
739  }
740}
741
742/// ParseOptionalLinkage
743///   ::= /*empty*/
744///   ::= 'private'
745///   ::= 'internal'
746///   ::= 'weak'
747///   ::= 'weak_odr'
748///   ::= 'linkonce'
749///   ::= 'linkonce_odr'
750///   ::= 'appending'
751///   ::= 'dllexport'
752///   ::= 'common'
753///   ::= 'common_odr'
754///   ::= 'dllimport'
755///   ::= 'extern_weak'
756///   ::= 'extern_weak_odr'
757///   ::= 'external'
758bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
759  HasLinkage = false;
760  switch (Lex.getKind()) {
761  default:                     Res = GlobalValue::ExternalLinkage; return false;
762  case lltok::kw_private:      Res = GlobalValue::PrivateLinkage; break;
763  case lltok::kw_internal:     Res = GlobalValue::InternalLinkage; break;
764  case lltok::kw_weak:         Res = GlobalValue::WeakAnyLinkage; break;
765  case lltok::kw_weak_odr:     Res = GlobalValue::WeakODRLinkage; break;
766  case lltok::kw_linkonce:     Res = GlobalValue::LinkOnceAnyLinkage; break;
767  case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break;
768  case lltok::kw_appending:    Res = GlobalValue::AppendingLinkage; break;
769  case lltok::kw_dllexport:    Res = GlobalValue::DLLExportLinkage; break;
770  case lltok::kw_common:       Res = GlobalValue::CommonAnyLinkage; break;
771  case lltok::kw_common_odr:   Res = GlobalValue::CommonODRLinkage; break;
772  case lltok::kw_dllimport:    Res = GlobalValue::DLLImportLinkage; break;
773  case lltok::kw_extern_weak:  Res = GlobalValue::ExternalWeakAnyLinkage; break;
774  case lltok::kw_extern_weak_odr:
775                               Res = GlobalValue::ExternalWeakODRLinkage; break;
776  case lltok::kw_external:     Res = GlobalValue::ExternalLinkage; break;
777  }
778  Lex.Lex();
779  HasLinkage = true;
780  return false;
781}
782
783/// ParseOptionalVisibility
784///   ::= /*empty*/
785///   ::= 'default'
786///   ::= 'hidden'
787///   ::= 'protected'
788///
789bool LLParser::ParseOptionalVisibility(unsigned &Res) {
790  switch (Lex.getKind()) {
791  default:                  Res = GlobalValue::DefaultVisibility; return false;
792  case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
793  case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
794  case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
795  }
796  Lex.Lex();
797  return false;
798}
799
800/// ParseOptionalCallingConv
801///   ::= /*empty*/
802///   ::= 'ccc'
803///   ::= 'fastcc'
804///   ::= 'coldcc'
805///   ::= 'x86_stdcallcc'
806///   ::= 'x86_fastcallcc'
807///   ::= 'cc' UINT
808///
809bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
810  switch (Lex.getKind()) {
811  default:                       CC = CallingConv::C; return false;
812  case lltok::kw_ccc:            CC = CallingConv::C; break;
813  case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
814  case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
815  case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
816  case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
817  case lltok::kw_cc:             Lex.Lex(); return ParseUInt32(CC);
818  }
819  Lex.Lex();
820  return false;
821}
822
823/// ParseOptionalAlignment
824///   ::= /* empty */
825///   ::= 'align' 4
826bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
827  Alignment = 0;
828  if (!EatIfPresent(lltok::kw_align))
829    return false;
830  LocTy AlignLoc = Lex.getLoc();
831  if (ParseUInt32(Alignment)) return true;
832  if (!isPowerOf2_32(Alignment))
833    return Error(AlignLoc, "alignment is not a power of two");
834  return false;
835}
836
837/// ParseOptionalCommaAlignment
838///   ::= /* empty */
839///   ::= ',' 'align' 4
840bool LLParser::ParseOptionalCommaAlignment(unsigned &Alignment) {
841  Alignment = 0;
842  if (!EatIfPresent(lltok::comma))
843    return false;
844  return ParseToken(lltok::kw_align, "expected 'align'") ||
845         ParseUInt32(Alignment);
846}
847
848/// ParseIndexList
849///    ::=  (',' uint32)+
850bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices) {
851  if (Lex.getKind() != lltok::comma)
852    return TokError("expected ',' as start of index list");
853
854  while (EatIfPresent(lltok::comma)) {
855    unsigned Idx;
856    if (ParseUInt32(Idx)) return true;
857    Indices.push_back(Idx);
858  }
859
860  return false;
861}
862
863//===----------------------------------------------------------------------===//
864// Type Parsing.
865//===----------------------------------------------------------------------===//
866
867/// ParseType - Parse and resolve a full type.
868bool LLParser::ParseType(PATypeHolder &Result, bool AllowVoid) {
869  LocTy TypeLoc = Lex.getLoc();
870  if (ParseTypeRec(Result)) return true;
871
872  // Verify no unresolved uprefs.
873  if (!UpRefs.empty())
874    return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
875
876  if (!AllowVoid && Result.get() == Type::VoidTy)
877    return Error(TypeLoc, "void type only allowed for function results");
878
879  return false;
880}
881
882/// HandleUpRefs - Every time we finish a new layer of types, this function is
883/// called.  It loops through the UpRefs vector, which is a list of the
884/// currently active types.  For each type, if the up-reference is contained in
885/// the newly completed type, we decrement the level count.  When the level
886/// count reaches zero, the up-referenced type is the type that is passed in:
887/// thus we can complete the cycle.
888///
889PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
890  // If Ty isn't abstract, or if there are no up-references in it, then there is
891  // nothing to resolve here.
892  if (!ty->isAbstract() || UpRefs.empty()) return ty;
893
894  PATypeHolder Ty(ty);
895#if 0
896  errs() << "Type '" << Ty->getDescription()
897         << "' newly formed.  Resolving upreferences.\n"
898         << UpRefs.size() << " upreferences active!\n";
899#endif
900
901  // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
902  // to zero), we resolve them all together before we resolve them to Ty.  At
903  // the end of the loop, if there is anything to resolve to Ty, it will be in
904  // this variable.
905  OpaqueType *TypeToResolve = 0;
906
907  for (unsigned i = 0; i != UpRefs.size(); ++i) {
908    // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
909    bool ContainsType =
910      std::find(Ty->subtype_begin(), Ty->subtype_end(),
911                UpRefs[i].LastContainedTy) != Ty->subtype_end();
912
913#if 0
914    errs() << "  UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
915           << UpRefs[i].LastContainedTy->getDescription() << ") = "
916           << (ContainsType ? "true" : "false")
917           << " level=" << UpRefs[i].NestingLevel << "\n";
918#endif
919    if (!ContainsType)
920      continue;
921
922    // Decrement level of upreference
923    unsigned Level = --UpRefs[i].NestingLevel;
924    UpRefs[i].LastContainedTy = Ty;
925
926    // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
927    if (Level != 0)
928      continue;
929
930#if 0
931    errs() << "  * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
932#endif
933    if (!TypeToResolve)
934      TypeToResolve = UpRefs[i].UpRefTy;
935    else
936      UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
937    UpRefs.erase(UpRefs.begin()+i);     // Remove from upreference list.
938    --i;                                // Do not skip the next element.
939  }
940
941  if (TypeToResolve)
942    TypeToResolve->refineAbstractTypeTo(Ty);
943
944  return Ty;
945}
946
947
948/// ParseTypeRec - The recursive function used to process the internal
949/// implementation details of types.
950bool LLParser::ParseTypeRec(PATypeHolder &Result) {
951  switch (Lex.getKind()) {
952  default:
953    return TokError("expected type");
954  case lltok::Type:
955    // TypeRec ::= 'float' | 'void' (etc)
956    Result = Lex.getTyVal();
957    Lex.Lex();
958    break;
959  case lltok::kw_opaque:
960    // TypeRec ::= 'opaque'
961    Result = OpaqueType::get();
962    Lex.Lex();
963    break;
964  case lltok::lbrace:
965    // TypeRec ::= '{' ... '}'
966    if (ParseStructType(Result, false))
967      return true;
968    break;
969  case lltok::lsquare:
970    // TypeRec ::= '[' ... ']'
971    Lex.Lex(); // eat the lsquare.
972    if (ParseArrayVectorType(Result, false))
973      return true;
974    break;
975  case lltok::less: // Either vector or packed struct.
976    // TypeRec ::= '<' ... '>'
977    Lex.Lex();
978    if (Lex.getKind() == lltok::lbrace) {
979      if (ParseStructType(Result, true) ||
980          ParseToken(lltok::greater, "expected '>' at end of packed struct"))
981        return true;
982    } else if (ParseArrayVectorType(Result, true))
983      return true;
984    break;
985  case lltok::LocalVar:
986  case lltok::StringConstant:  // FIXME: REMOVE IN LLVM 3.0
987    // TypeRec ::= %foo
988    if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
989      Result = T;
990    } else {
991      Result = OpaqueType::get();
992      ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
993                                            std::make_pair(Result,
994                                                           Lex.getLoc())));
995      M->addTypeName(Lex.getStrVal(), Result.get());
996    }
997    Lex.Lex();
998    break;
999
1000  case lltok::LocalVarID:
1001    // TypeRec ::= %4
1002    if (Lex.getUIntVal() < NumberedTypes.size())
1003      Result = NumberedTypes[Lex.getUIntVal()];
1004    else {
1005      std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
1006        I = ForwardRefTypeIDs.find(Lex.getUIntVal());
1007      if (I != ForwardRefTypeIDs.end())
1008        Result = I->second.first;
1009      else {
1010        Result = OpaqueType::get();
1011        ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
1012                                                std::make_pair(Result,
1013                                                               Lex.getLoc())));
1014      }
1015    }
1016    Lex.Lex();
1017    break;
1018  case lltok::backslash: {
1019    // TypeRec ::= '\' 4
1020    Lex.Lex();
1021    unsigned Val;
1022    if (ParseUInt32(Val)) return true;
1023    OpaqueType *OT = OpaqueType::get();        // Use temporary placeholder.
1024    UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
1025    Result = OT;
1026    break;
1027  }
1028  }
1029
1030  // Parse the type suffixes.
1031  while (1) {
1032    switch (Lex.getKind()) {
1033    // End of type.
1034    default: return false;
1035
1036    // TypeRec ::= TypeRec '*'
1037    case lltok::star:
1038      if (Result.get() == Type::LabelTy)
1039        return TokError("basic block pointers are invalid");
1040      if (Result.get() == Type::VoidTy)
1041        return TokError("pointers to void are invalid; use i8* instead");
1042      Result = HandleUpRefs(PointerType::getUnqual(Result.get()));
1043      Lex.Lex();
1044      break;
1045
1046    // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1047    case lltok::kw_addrspace: {
1048      if (Result.get() == Type::LabelTy)
1049        return TokError("basic block pointers are invalid");
1050      if (Result.get() == Type::VoidTy)
1051        return TokError("pointers to void are invalid; use i8* instead");
1052      unsigned AddrSpace;
1053      if (ParseOptionalAddrSpace(AddrSpace) ||
1054          ParseToken(lltok::star, "expected '*' in address space"))
1055        return true;
1056
1057      Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace));
1058      break;
1059    }
1060
1061    /// Types '(' ArgTypeListI ')' OptFuncAttrs
1062    case lltok::lparen:
1063      if (ParseFunctionType(Result))
1064        return true;
1065      break;
1066    }
1067  }
1068}
1069
1070/// ParseParameterList
1071///    ::= '(' ')'
1072///    ::= '(' Arg (',' Arg)* ')'
1073///  Arg
1074///    ::= Type OptionalAttributes Value OptionalAttributes
1075bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1076                                  PerFunctionState &PFS) {
1077  if (ParseToken(lltok::lparen, "expected '(' in call"))
1078    return true;
1079
1080  while (Lex.getKind() != lltok::rparen) {
1081    // If this isn't the first argument, we need a comma.
1082    if (!ArgList.empty() &&
1083        ParseToken(lltok::comma, "expected ',' in argument list"))
1084      return true;
1085
1086    // Parse the argument.
1087    LocTy ArgLoc;
1088    PATypeHolder ArgTy(Type::VoidTy);
1089    unsigned ArgAttrs1, ArgAttrs2;
1090    Value *V;
1091    if (ParseType(ArgTy, ArgLoc) ||
1092        ParseOptionalAttrs(ArgAttrs1, 0) ||
1093        ParseValue(ArgTy, V, PFS) ||
1094        // FIXME: Should not allow attributes after the argument, remove this in
1095        // LLVM 3.0.
1096        ParseOptionalAttrs(ArgAttrs2, 0))
1097      return true;
1098    ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1099  }
1100
1101  Lex.Lex();  // Lex the ')'.
1102  return false;
1103}
1104
1105
1106
1107/// ParseArgumentList - Parse the argument list for a function type or function
1108/// prototype.  If 'inType' is true then we are parsing a FunctionType.
1109///   ::= '(' ArgTypeListI ')'
1110/// ArgTypeListI
1111///   ::= /*empty*/
1112///   ::= '...'
1113///   ::= ArgTypeList ',' '...'
1114///   ::= ArgType (',' ArgType)*
1115///
1116bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
1117                                 bool &isVarArg, bool inType) {
1118  isVarArg = false;
1119  assert(Lex.getKind() == lltok::lparen);
1120  Lex.Lex(); // eat the (.
1121
1122  if (Lex.getKind() == lltok::rparen) {
1123    // empty
1124  } else if (Lex.getKind() == lltok::dotdotdot) {
1125    isVarArg = true;
1126    Lex.Lex();
1127  } else {
1128    LocTy TypeLoc = Lex.getLoc();
1129    PATypeHolder ArgTy(Type::VoidTy);
1130    unsigned Attrs;
1131    std::string Name;
1132
1133    // If we're parsing a type, use ParseTypeRec, because we allow recursive
1134    // types (such as a function returning a pointer to itself).  If parsing a
1135    // function prototype, we require fully resolved types.
1136    if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1137        ParseOptionalAttrs(Attrs, 0)) return true;
1138
1139    if (ArgTy == Type::VoidTy)
1140      return Error(TypeLoc, "argument can not have void type");
1141
1142    if (Lex.getKind() == lltok::LocalVar ||
1143        Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1144      Name = Lex.getStrVal();
1145      Lex.Lex();
1146    }
1147
1148    if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1149      return Error(TypeLoc, "invalid type for function argument");
1150
1151    ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1152
1153    while (EatIfPresent(lltok::comma)) {
1154      // Handle ... at end of arg list.
1155      if (EatIfPresent(lltok::dotdotdot)) {
1156        isVarArg = true;
1157        break;
1158      }
1159
1160      // Otherwise must be an argument type.
1161      TypeLoc = Lex.getLoc();
1162      if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1163          ParseOptionalAttrs(Attrs, 0)) return true;
1164
1165      if (ArgTy == Type::VoidTy)
1166        return Error(TypeLoc, "argument can not have void type");
1167
1168      if (Lex.getKind() == lltok::LocalVar ||
1169          Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1170        Name = Lex.getStrVal();
1171        Lex.Lex();
1172      } else {
1173        Name = "";
1174      }
1175
1176      if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1177        return Error(TypeLoc, "invalid type for function argument");
1178
1179      ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1180    }
1181  }
1182
1183  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1184}
1185
1186/// ParseFunctionType
1187///  ::= Type ArgumentList OptionalAttrs
1188bool LLParser::ParseFunctionType(PATypeHolder &Result) {
1189  assert(Lex.getKind() == lltok::lparen);
1190
1191  if (!FunctionType::isValidReturnType(Result))
1192    return TokError("invalid function return type");
1193
1194  std::vector<ArgInfo> ArgList;
1195  bool isVarArg;
1196  unsigned Attrs;
1197  if (ParseArgumentList(ArgList, isVarArg, true) ||
1198      // FIXME: Allow, but ignore attributes on function types!
1199      // FIXME: Remove in LLVM 3.0
1200      ParseOptionalAttrs(Attrs, 2))
1201    return true;
1202
1203  // Reject names on the arguments lists.
1204  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1205    if (!ArgList[i].Name.empty())
1206      return Error(ArgList[i].Loc, "argument name invalid in function type");
1207    if (!ArgList[i].Attrs != 0) {
1208      // Allow but ignore attributes on function types; this permits
1209      // auto-upgrade.
1210      // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1211    }
1212  }
1213
1214  std::vector<const Type*> ArgListTy;
1215  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1216    ArgListTy.push_back(ArgList[i].Type);
1217
1218  Result = HandleUpRefs(FunctionType::get(Result.get(), ArgListTy, isVarArg));
1219  return false;
1220}
1221
1222/// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1223///   TypeRec
1224///     ::= '{' '}'
1225///     ::= '{' TypeRec (',' TypeRec)* '}'
1226///     ::= '<' '{' '}' '>'
1227///     ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1228bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
1229  assert(Lex.getKind() == lltok::lbrace);
1230  Lex.Lex(); // Consume the '{'
1231
1232  if (EatIfPresent(lltok::rbrace)) {
1233    Result = StructType::get(std::vector<const Type*>(), Packed);
1234    return false;
1235  }
1236
1237  std::vector<PATypeHolder> ParamsList;
1238  LocTy EltTyLoc = Lex.getLoc();
1239  if (ParseTypeRec(Result)) return true;
1240  ParamsList.push_back(Result);
1241
1242  if (Result == Type::VoidTy)
1243    return Error(EltTyLoc, "struct element can not have void type");
1244
1245  while (EatIfPresent(lltok::comma)) {
1246    EltTyLoc = Lex.getLoc();
1247    if (ParseTypeRec(Result)) return true;
1248
1249    if (Result == Type::VoidTy)
1250      return Error(EltTyLoc, "struct element can not have void type");
1251
1252    ParamsList.push_back(Result);
1253  }
1254
1255  if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
1256    return true;
1257
1258  std::vector<const Type*> ParamsListTy;
1259  for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1260    ParamsListTy.push_back(ParamsList[i].get());
1261  Result = HandleUpRefs(StructType::get(ParamsListTy, Packed));
1262  return false;
1263}
1264
1265/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1266/// token has already been consumed.
1267///   TypeRec
1268///     ::= '[' APSINTVAL 'x' Types ']'
1269///     ::= '<' APSINTVAL 'x' Types '>'
1270bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
1271  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1272      Lex.getAPSIntVal().getBitWidth() > 64)
1273    return TokError("expected number in address space");
1274
1275  LocTy SizeLoc = Lex.getLoc();
1276  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1277  Lex.Lex();
1278
1279  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1280      return true;
1281
1282  LocTy TypeLoc = Lex.getLoc();
1283  PATypeHolder EltTy(Type::VoidTy);
1284  if (ParseTypeRec(EltTy)) return true;
1285
1286  if (EltTy == Type::VoidTy)
1287    return Error(TypeLoc, "array and vector element type cannot be void");
1288
1289  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1290                 "expected end of sequential type"))
1291    return true;
1292
1293  if (isVector) {
1294    if (Size == 0)
1295      return Error(SizeLoc, "zero element vector is illegal");
1296    if ((unsigned)Size != Size)
1297      return Error(SizeLoc, "size too large for vector");
1298    if (!EltTy->isFloatingPoint() && !EltTy->isInteger())
1299      return Error(TypeLoc, "vector element type must be fp or integer");
1300    Result = VectorType::get(EltTy, unsigned(Size));
1301  } else {
1302    if (!EltTy->isFirstClassType() && !isa<OpaqueType>(EltTy))
1303      return Error(TypeLoc, "invalid array element type");
1304    Result = HandleUpRefs(ArrayType::get(EltTy, Size));
1305  }
1306  return false;
1307}
1308
1309//===----------------------------------------------------------------------===//
1310// Function Semantic Analysis.
1311//===----------------------------------------------------------------------===//
1312
1313LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f)
1314  : P(p), F(f) {
1315
1316  // Insert unnamed arguments into the NumberedVals list.
1317  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1318       AI != E; ++AI)
1319    if (!AI->hasName())
1320      NumberedVals.push_back(AI);
1321}
1322
1323LLParser::PerFunctionState::~PerFunctionState() {
1324  // If there were any forward referenced non-basicblock values, delete them.
1325  for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1326       I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1327    if (!isa<BasicBlock>(I->second.first)) {
1328      I->second.first->replaceAllUsesWith(UndefValue::get(I->second.first
1329                                                          ->getType()));
1330      delete I->second.first;
1331      I->second.first = 0;
1332    }
1333
1334  for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1335       I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1336    if (!isa<BasicBlock>(I->second.first)) {
1337      I->second.first->replaceAllUsesWith(UndefValue::get(I->second.first
1338                                                          ->getType()));
1339      delete I->second.first;
1340      I->second.first = 0;
1341    }
1342}
1343
1344bool LLParser::PerFunctionState::VerifyFunctionComplete() {
1345  if (!ForwardRefVals.empty())
1346    return P.Error(ForwardRefVals.begin()->second.second,
1347                   "use of undefined value '%" + ForwardRefVals.begin()->first +
1348                   "'");
1349  if (!ForwardRefValIDs.empty())
1350    return P.Error(ForwardRefValIDs.begin()->second.second,
1351                   "use of undefined value '%" +
1352                   utostr(ForwardRefValIDs.begin()->first) + "'");
1353  return false;
1354}
1355
1356
1357/// GetVal - Get a value with the specified name or ID, creating a
1358/// forward reference record if needed.  This can return null if the value
1359/// exists but does not have the right type.
1360Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1361                                          const Type *Ty, LocTy Loc) {
1362  // Look this name up in the normal function symbol table.
1363  Value *Val = F.getValueSymbolTable().lookup(Name);
1364
1365  // If this is a forward reference for the value, see if we already created a
1366  // forward ref record.
1367  if (Val == 0) {
1368    std::map<std::string, std::pair<Value*, LocTy> >::iterator
1369      I = ForwardRefVals.find(Name);
1370    if (I != ForwardRefVals.end())
1371      Val = I->second.first;
1372  }
1373
1374  // If we have the value in the symbol table or fwd-ref table, return it.
1375  if (Val) {
1376    if (Val->getType() == Ty) return Val;
1377    if (Ty == Type::LabelTy)
1378      P.Error(Loc, "'%" + Name + "' is not a basic block");
1379    else
1380      P.Error(Loc, "'%" + Name + "' defined with type '" +
1381              Val->getType()->getDescription() + "'");
1382    return 0;
1383  }
1384
1385  // Don't make placeholders with invalid type.
1386  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) {
1387    P.Error(Loc, "invalid use of a non-first-class type");
1388    return 0;
1389  }
1390
1391  // Otherwise, create a new forward reference for this value and remember it.
1392  Value *FwdVal;
1393  if (Ty == Type::LabelTy)
1394    FwdVal = BasicBlock::Create(Name, &F);
1395  else
1396    FwdVal = new Argument(Ty, Name);
1397
1398  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1399  return FwdVal;
1400}
1401
1402Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
1403                                          LocTy Loc) {
1404  // Look this name up in the normal function symbol table.
1405  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1406
1407  // If this is a forward reference for the value, see if we already created a
1408  // forward ref record.
1409  if (Val == 0) {
1410    std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1411      I = ForwardRefValIDs.find(ID);
1412    if (I != ForwardRefValIDs.end())
1413      Val = I->second.first;
1414  }
1415
1416  // If we have the value in the symbol table or fwd-ref table, return it.
1417  if (Val) {
1418    if (Val->getType() == Ty) return Val;
1419    if (Ty == Type::LabelTy)
1420      P.Error(Loc, "'%" + utostr(ID) + "' is not a basic block");
1421    else
1422      P.Error(Loc, "'%" + utostr(ID) + "' defined with type '" +
1423              Val->getType()->getDescription() + "'");
1424    return 0;
1425  }
1426
1427  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) {
1428    P.Error(Loc, "invalid use of a non-first-class type");
1429    return 0;
1430  }
1431
1432  // Otherwise, create a new forward reference for this value and remember it.
1433  Value *FwdVal;
1434  if (Ty == Type::LabelTy)
1435    FwdVal = BasicBlock::Create("", &F);
1436  else
1437    FwdVal = new Argument(Ty);
1438
1439  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1440  return FwdVal;
1441}
1442
1443/// SetInstName - After an instruction is parsed and inserted into its
1444/// basic block, this installs its name.
1445bool LLParser::PerFunctionState::SetInstName(int NameID,
1446                                             const std::string &NameStr,
1447                                             LocTy NameLoc, Instruction *Inst) {
1448  // If this instruction has void type, it cannot have a name or ID specified.
1449  if (Inst->getType() == Type::VoidTy) {
1450    if (NameID != -1 || !NameStr.empty())
1451      return P.Error(NameLoc, "instructions returning void cannot have a name");
1452    return false;
1453  }
1454
1455  // If this was a numbered instruction, verify that the instruction is the
1456  // expected value and resolve any forward references.
1457  if (NameStr.empty()) {
1458    // If neither a name nor an ID was specified, just use the next ID.
1459    if (NameID == -1)
1460      NameID = NumberedVals.size();
1461
1462    if (unsigned(NameID) != NumberedVals.size())
1463      return P.Error(NameLoc, "instruction expected to be numbered '%" +
1464                     utostr(NumberedVals.size()) + "'");
1465
1466    std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1467      ForwardRefValIDs.find(NameID);
1468    if (FI != ForwardRefValIDs.end()) {
1469      if (FI->second.first->getType() != Inst->getType())
1470        return P.Error(NameLoc, "instruction forward referenced with type '" +
1471                       FI->second.first->getType()->getDescription() + "'");
1472      FI->second.first->replaceAllUsesWith(Inst);
1473      ForwardRefValIDs.erase(FI);
1474    }
1475
1476    NumberedVals.push_back(Inst);
1477    return false;
1478  }
1479
1480  // Otherwise, the instruction had a name.  Resolve forward refs and set it.
1481  std::map<std::string, std::pair<Value*, LocTy> >::iterator
1482    FI = ForwardRefVals.find(NameStr);
1483  if (FI != ForwardRefVals.end()) {
1484    if (FI->second.first->getType() != Inst->getType())
1485      return P.Error(NameLoc, "instruction forward referenced with type '" +
1486                     FI->second.first->getType()->getDescription() + "'");
1487    FI->second.first->replaceAllUsesWith(Inst);
1488    ForwardRefVals.erase(FI);
1489  }
1490
1491  // Set the name on the instruction.
1492  Inst->setName(NameStr);
1493
1494  if (Inst->getNameStr() != NameStr)
1495    return P.Error(NameLoc, "multiple definition of local value named '" +
1496                   NameStr + "'");
1497  return false;
1498}
1499
1500/// GetBB - Get a basic block with the specified name or ID, creating a
1501/// forward reference record if needed.
1502BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1503                                              LocTy Loc) {
1504  return cast_or_null<BasicBlock>(GetVal(Name, Type::LabelTy, Loc));
1505}
1506
1507BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1508  return cast_or_null<BasicBlock>(GetVal(ID, Type::LabelTy, Loc));
1509}
1510
1511/// DefineBB - Define the specified basic block, which is either named or
1512/// unnamed.  If there is an error, this returns null otherwise it returns
1513/// the block being defined.
1514BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1515                                                 LocTy Loc) {
1516  BasicBlock *BB;
1517  if (Name.empty())
1518    BB = GetBB(NumberedVals.size(), Loc);
1519  else
1520    BB = GetBB(Name, Loc);
1521  if (BB == 0) return 0; // Already diagnosed error.
1522
1523  // Move the block to the end of the function.  Forward ref'd blocks are
1524  // inserted wherever they happen to be referenced.
1525  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1526
1527  // Remove the block from forward ref sets.
1528  if (Name.empty()) {
1529    ForwardRefValIDs.erase(NumberedVals.size());
1530    NumberedVals.push_back(BB);
1531  } else {
1532    // BB forward references are already in the function symbol table.
1533    ForwardRefVals.erase(Name);
1534  }
1535
1536  return BB;
1537}
1538
1539//===----------------------------------------------------------------------===//
1540// Constants.
1541//===----------------------------------------------------------------------===//
1542
1543/// ParseValID - Parse an abstract value that doesn't necessarily have a
1544/// type implied.  For example, if we parse "4" we don't know what integer type
1545/// it has.  The value will later be combined with its type and checked for
1546/// sanity.
1547bool LLParser::ParseValID(ValID &ID) {
1548  ID.Loc = Lex.getLoc();
1549  switch (Lex.getKind()) {
1550  default: return TokError("expected value token");
1551  case lltok::GlobalID:  // @42
1552    ID.UIntVal = Lex.getUIntVal();
1553    ID.Kind = ValID::t_GlobalID;
1554    break;
1555  case lltok::GlobalVar:  // @foo
1556    ID.StrVal = Lex.getStrVal();
1557    ID.Kind = ValID::t_GlobalName;
1558    break;
1559  case lltok::LocalVarID:  // %42
1560    ID.UIntVal = Lex.getUIntVal();
1561    ID.Kind = ValID::t_LocalID;
1562    break;
1563  case lltok::LocalVar:  // %foo
1564  case lltok::StringConstant:  // "foo" - FIXME: REMOVE IN LLVM 3.0
1565    ID.StrVal = Lex.getStrVal();
1566    ID.Kind = ValID::t_LocalName;
1567    break;
1568  case lltok::APSInt:
1569    ID.APSIntVal = Lex.getAPSIntVal();
1570    ID.Kind = ValID::t_APSInt;
1571    break;
1572  case lltok::APFloat:
1573    ID.APFloatVal = Lex.getAPFloatVal();
1574    ID.Kind = ValID::t_APFloat;
1575    break;
1576  case lltok::kw_true:
1577    ID.ConstantVal = ConstantInt::getTrue();
1578    ID.Kind = ValID::t_Constant;
1579    break;
1580  case lltok::kw_false:
1581    ID.ConstantVal = ConstantInt::getFalse();
1582    ID.Kind = ValID::t_Constant;
1583    break;
1584  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
1585  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
1586  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
1587
1588  case lltok::lbrace: {
1589    // ValID ::= '{' ConstVector '}'
1590    Lex.Lex();
1591    SmallVector<Constant*, 16> Elts;
1592    if (ParseGlobalValueVector(Elts) ||
1593        ParseToken(lltok::rbrace, "expected end of struct constant"))
1594      return true;
1595
1596    ID.ConstantVal = ConstantStruct::get(&Elts[0], Elts.size(), false);
1597    ID.Kind = ValID::t_Constant;
1598    return false;
1599  }
1600  case lltok::less: {
1601    // ValID ::= '<' ConstVector '>'         --> Vector.
1602    // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1603    Lex.Lex();
1604    bool isPackedStruct = EatIfPresent(lltok::lbrace);
1605
1606    SmallVector<Constant*, 16> Elts;
1607    LocTy FirstEltLoc = Lex.getLoc();
1608    if (ParseGlobalValueVector(Elts) ||
1609        (isPackedStruct &&
1610         ParseToken(lltok::rbrace, "expected end of packed struct")) ||
1611        ParseToken(lltok::greater, "expected end of constant"))
1612      return true;
1613
1614    if (isPackedStruct) {
1615      ID.ConstantVal = ConstantStruct::get(&Elts[0], Elts.size(), true);
1616      ID.Kind = ValID::t_Constant;
1617      return false;
1618    }
1619
1620    if (Elts.empty())
1621      return Error(ID.Loc, "constant vector must not be empty");
1622
1623    if (!Elts[0]->getType()->isInteger() &&
1624        !Elts[0]->getType()->isFloatingPoint())
1625      return Error(FirstEltLoc,
1626                   "vector elements must have integer or floating point type");
1627
1628    // Verify that all the vector elements have the same type.
1629    for (unsigned i = 1, e = Elts.size(); i != e; ++i)
1630      if (Elts[i]->getType() != Elts[0]->getType())
1631        return Error(FirstEltLoc,
1632                     "vector element #" + utostr(i) +
1633                    " is not of type '" + Elts[0]->getType()->getDescription());
1634
1635    ID.ConstantVal = ConstantVector::get(&Elts[0], Elts.size());
1636    ID.Kind = ValID::t_Constant;
1637    return false;
1638  }
1639  case lltok::lsquare: {   // Array Constant
1640    Lex.Lex();
1641    SmallVector<Constant*, 16> Elts;
1642    LocTy FirstEltLoc = Lex.getLoc();
1643    if (ParseGlobalValueVector(Elts) ||
1644        ParseToken(lltok::rsquare, "expected end of array constant"))
1645      return true;
1646
1647    // Handle empty element.
1648    if (Elts.empty()) {
1649      // Use undef instead of an array because it's inconvenient to determine
1650      // the element type at this point, there being no elements to examine.
1651      ID.Kind = ValID::t_EmptyArray;
1652      return false;
1653    }
1654
1655    if (!Elts[0]->getType()->isFirstClassType())
1656      return Error(FirstEltLoc, "invalid array element type: " +
1657                   Elts[0]->getType()->getDescription());
1658
1659    ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
1660
1661    // Verify all elements are correct type!
1662    for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
1663      if (Elts[i]->getType() != Elts[0]->getType())
1664        return Error(FirstEltLoc,
1665                     "array element #" + utostr(i) +
1666                     " is not of type '" +Elts[0]->getType()->getDescription());
1667    }
1668
1669    ID.ConstantVal = ConstantArray::get(ATy, &Elts[0], Elts.size());
1670    ID.Kind = ValID::t_Constant;
1671    return false;
1672  }
1673  case lltok::kw_c:  // c "foo"
1674    Lex.Lex();
1675    ID.ConstantVal = ConstantArray::get(Lex.getStrVal(), false);
1676    if (ParseToken(lltok::StringConstant, "expected string")) return true;
1677    ID.Kind = ValID::t_Constant;
1678    return false;
1679
1680  case lltok::kw_asm: {
1681    // ValID ::= 'asm' SideEffect? STRINGCONSTANT ',' STRINGCONSTANT
1682    bool HasSideEffect;
1683    Lex.Lex();
1684    if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
1685        ParseStringConstant(ID.StrVal) ||
1686        ParseToken(lltok::comma, "expected comma in inline asm expression") ||
1687        ParseToken(lltok::StringConstant, "expected constraint string"))
1688      return true;
1689    ID.StrVal2 = Lex.getStrVal();
1690    ID.UIntVal = HasSideEffect;
1691    ID.Kind = ValID::t_InlineAsm;
1692    return false;
1693  }
1694
1695  case lltok::kw_trunc:
1696  case lltok::kw_zext:
1697  case lltok::kw_sext:
1698  case lltok::kw_fptrunc:
1699  case lltok::kw_fpext:
1700  case lltok::kw_bitcast:
1701  case lltok::kw_uitofp:
1702  case lltok::kw_sitofp:
1703  case lltok::kw_fptoui:
1704  case lltok::kw_fptosi:
1705  case lltok::kw_inttoptr:
1706  case lltok::kw_ptrtoint: {
1707    unsigned Opc = Lex.getUIntVal();
1708    PATypeHolder DestTy(Type::VoidTy);
1709    Constant *SrcVal;
1710    Lex.Lex();
1711    if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
1712        ParseGlobalTypeAndValue(SrcVal) ||
1713        ParseToken(lltok::kw_to, "expected 'to' int constantexpr cast") ||
1714        ParseType(DestTy) ||
1715        ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
1716      return true;
1717    if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
1718      return Error(ID.Loc, "invalid cast opcode for cast from '" +
1719                   SrcVal->getType()->getDescription() + "' to '" +
1720                   DestTy->getDescription() + "'");
1721    ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, SrcVal,
1722                                           DestTy);
1723    ID.Kind = ValID::t_Constant;
1724    return false;
1725  }
1726  case lltok::kw_extractvalue: {
1727    Lex.Lex();
1728    Constant *Val;
1729    SmallVector<unsigned, 4> Indices;
1730    if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
1731        ParseGlobalTypeAndValue(Val) ||
1732        ParseIndexList(Indices) ||
1733        ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
1734      return true;
1735    if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
1736      return Error(ID.Loc, "extractvalue operand must be array or struct");
1737    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
1738                                          Indices.end()))
1739      return Error(ID.Loc, "invalid indices for extractvalue");
1740    ID.ConstantVal = ConstantExpr::getExtractValue(Val,
1741                                                   &Indices[0], Indices.size());
1742    ID.Kind = ValID::t_Constant;
1743    return false;
1744  }
1745  case lltok::kw_insertvalue: {
1746    Lex.Lex();
1747    Constant *Val0, *Val1;
1748    SmallVector<unsigned, 4> Indices;
1749    if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
1750        ParseGlobalTypeAndValue(Val0) ||
1751        ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
1752        ParseGlobalTypeAndValue(Val1) ||
1753        ParseIndexList(Indices) ||
1754        ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
1755      return true;
1756    if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
1757      return Error(ID.Loc, "extractvalue operand must be array or struct");
1758    if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
1759                                          Indices.end()))
1760      return Error(ID.Loc, "invalid indices for insertvalue");
1761    ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1,
1762                                                  &Indices[0], Indices.size());
1763    ID.Kind = ValID::t_Constant;
1764    return false;
1765  }
1766  case lltok::kw_icmp:
1767  case lltok::kw_fcmp:
1768  case lltok::kw_vicmp:
1769  case lltok::kw_vfcmp: {
1770    unsigned PredVal, Opc = Lex.getUIntVal();
1771    Constant *Val0, *Val1;
1772    Lex.Lex();
1773    if (ParseCmpPredicate(PredVal, Opc) ||
1774        ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
1775        ParseGlobalTypeAndValue(Val0) ||
1776        ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
1777        ParseGlobalTypeAndValue(Val1) ||
1778        ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
1779      return true;
1780
1781    if (Val0->getType() != Val1->getType())
1782      return Error(ID.Loc, "compare operands must have the same type");
1783
1784    CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
1785
1786    if (Opc == Instruction::FCmp) {
1787      if (!Val0->getType()->isFPOrFPVector())
1788        return Error(ID.Loc, "fcmp requires floating point operands");
1789      ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
1790    } else if (Opc == Instruction::ICmp) {
1791      if (!Val0->getType()->isIntOrIntVector() &&
1792          !isa<PointerType>(Val0->getType()))
1793        return Error(ID.Loc, "icmp requires pointer or integer operands");
1794      ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
1795    } else if (Opc == Instruction::VFCmp) {
1796      // FIXME: REMOVE VFCMP Support
1797      if (!Val0->getType()->isFPOrFPVector() ||
1798          !isa<VectorType>(Val0->getType()))
1799        return Error(ID.Loc, "vfcmp requires vector floating point operands");
1800      ID.ConstantVal = ConstantExpr::getVFCmp(Pred, Val0, Val1);
1801    } else if (Opc == Instruction::VICmp) {
1802      // FIXME: REMOVE VICMP Support
1803      if (!Val0->getType()->isIntOrIntVector() ||
1804          !isa<VectorType>(Val0->getType()))
1805        return Error(ID.Loc, "vicmp requires vector floating point operands");
1806      ID.ConstantVal = ConstantExpr::getVICmp(Pred, Val0, Val1);
1807    }
1808    ID.Kind = ValID::t_Constant;
1809    return false;
1810  }
1811
1812  // Binary Operators.
1813  case lltok::kw_add:
1814  case lltok::kw_sub:
1815  case lltok::kw_mul:
1816  case lltok::kw_udiv:
1817  case lltok::kw_sdiv:
1818  case lltok::kw_fdiv:
1819  case lltok::kw_urem:
1820  case lltok::kw_srem:
1821  case lltok::kw_frem: {
1822    unsigned Opc = Lex.getUIntVal();
1823    Constant *Val0, *Val1;
1824    Lex.Lex();
1825    if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
1826        ParseGlobalTypeAndValue(Val0) ||
1827        ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
1828        ParseGlobalTypeAndValue(Val1) ||
1829        ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
1830      return true;
1831    if (Val0->getType() != Val1->getType())
1832      return Error(ID.Loc, "operands of constexpr must have same type");
1833    if (!Val0->getType()->isIntOrIntVector() &&
1834        !Val0->getType()->isFPOrFPVector())
1835      return Error(ID.Loc,"constexpr requires integer, fp, or vector operands");
1836    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
1837    ID.Kind = ValID::t_Constant;
1838    return false;
1839  }
1840
1841  // Logical Operations
1842  case lltok::kw_shl:
1843  case lltok::kw_lshr:
1844  case lltok::kw_ashr:
1845  case lltok::kw_and:
1846  case lltok::kw_or:
1847  case lltok::kw_xor: {
1848    unsigned Opc = Lex.getUIntVal();
1849    Constant *Val0, *Val1;
1850    Lex.Lex();
1851    if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
1852        ParseGlobalTypeAndValue(Val0) ||
1853        ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
1854        ParseGlobalTypeAndValue(Val1) ||
1855        ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
1856      return true;
1857    if (Val0->getType() != Val1->getType())
1858      return Error(ID.Loc, "operands of constexpr must have same type");
1859    if (!Val0->getType()->isIntOrIntVector())
1860      return Error(ID.Loc,
1861                   "constexpr requires integer or integer vector operands");
1862    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
1863    ID.Kind = ValID::t_Constant;
1864    return false;
1865  }
1866
1867  case lltok::kw_getelementptr:
1868  case lltok::kw_shufflevector:
1869  case lltok::kw_insertelement:
1870  case lltok::kw_extractelement:
1871  case lltok::kw_select: {
1872    unsigned Opc = Lex.getUIntVal();
1873    SmallVector<Constant*, 16> Elts;
1874    Lex.Lex();
1875    if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
1876        ParseGlobalValueVector(Elts) ||
1877        ParseToken(lltok::rparen, "expected ')' in constantexpr"))
1878      return true;
1879
1880    if (Opc == Instruction::GetElementPtr) {
1881      if (Elts.size() == 0 || !isa<PointerType>(Elts[0]->getType()))
1882        return Error(ID.Loc, "getelementptr requires pointer operand");
1883
1884      if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
1885                                             (Value**)&Elts[1], Elts.size()-1))
1886        return Error(ID.Loc, "invalid indices for getelementptr");
1887      ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0],
1888                                                      &Elts[1], Elts.size()-1);
1889    } else if (Opc == Instruction::Select) {
1890      if (Elts.size() != 3)
1891        return Error(ID.Loc, "expected three operands to select");
1892      if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
1893                                                              Elts[2]))
1894        return Error(ID.Loc, Reason);
1895      ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
1896    } else if (Opc == Instruction::ShuffleVector) {
1897      if (Elts.size() != 3)
1898        return Error(ID.Loc, "expected three operands to shufflevector");
1899      if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
1900        return Error(ID.Loc, "invalid operands to shufflevector");
1901      ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
1902    } else if (Opc == Instruction::ExtractElement) {
1903      if (Elts.size() != 2)
1904        return Error(ID.Loc, "expected two operands to extractelement");
1905      if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
1906        return Error(ID.Loc, "invalid extractelement operands");
1907      ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
1908    } else {
1909      assert(Opc == Instruction::InsertElement && "Unknown opcode");
1910      if (Elts.size() != 3)
1911      return Error(ID.Loc, "expected three operands to insertelement");
1912      if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
1913        return Error(ID.Loc, "invalid insertelement operands");
1914      ID.ConstantVal = ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
1915    }
1916
1917    ID.Kind = ValID::t_Constant;
1918    return false;
1919  }
1920  }
1921
1922  Lex.Lex();
1923  return false;
1924}
1925
1926/// ParseGlobalValue - Parse a global value with the specified type.
1927bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&V) {
1928  V = 0;
1929  ValID ID;
1930  return ParseValID(ID) ||
1931         ConvertGlobalValIDToValue(Ty, ID, V);
1932}
1933
1934/// ConvertGlobalValIDToValue - Apply a type to a ValID to get a fully resolved
1935/// constant.
1936bool LLParser::ConvertGlobalValIDToValue(const Type *Ty, ValID &ID,
1937                                         Constant *&V) {
1938  if (isa<FunctionType>(Ty))
1939    return Error(ID.Loc, "functions are not values, refer to them as pointers");
1940
1941  switch (ID.Kind) {
1942  default: assert(0 && "Unknown ValID!");
1943  case ValID::t_LocalID:
1944  case ValID::t_LocalName:
1945    return Error(ID.Loc, "invalid use of function-local name");
1946  case ValID::t_InlineAsm:
1947    return Error(ID.Loc, "inline asm can only be an operand of call/invoke");
1948  case ValID::t_GlobalName:
1949    V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
1950    return V == 0;
1951  case ValID::t_GlobalID:
1952    V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
1953    return V == 0;
1954  case ValID::t_APSInt:
1955    if (!isa<IntegerType>(Ty))
1956      return Error(ID.Loc, "integer constant must have integer type");
1957    ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
1958    V = ConstantInt::get(ID.APSIntVal);
1959    return false;
1960  case ValID::t_APFloat:
1961    if (!Ty->isFloatingPoint() ||
1962        !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
1963      return Error(ID.Loc, "floating point constant invalid for type");
1964
1965    // The lexer has no type info, so builds all float and double FP constants
1966    // as double.  Fix this here.  Long double does not need this.
1967    if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
1968        Ty == Type::FloatTy) {
1969      bool Ignored;
1970      ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
1971                            &Ignored);
1972    }
1973    V = ConstantFP::get(ID.APFloatVal);
1974
1975    if (V->getType() != Ty)
1976      return Error(ID.Loc, "floating point constant does not have type '" +
1977                   Ty->getDescription() + "'");
1978
1979    return false;
1980  case ValID::t_Null:
1981    if (!isa<PointerType>(Ty))
1982      return Error(ID.Loc, "null must be a pointer type");
1983    V = ConstantPointerNull::get(cast<PointerType>(Ty));
1984    return false;
1985  case ValID::t_Undef:
1986    // FIXME: LabelTy should not be a first-class type.
1987    if ((!Ty->isFirstClassType() || Ty == Type::LabelTy) &&
1988        !isa<OpaqueType>(Ty))
1989      return Error(ID.Loc, "invalid type for undef constant");
1990    V = UndefValue::get(Ty);
1991    return false;
1992  case ValID::t_EmptyArray:
1993    if (!isa<ArrayType>(Ty) || cast<ArrayType>(Ty)->getNumElements() != 0)
1994      return Error(ID.Loc, "invalid empty array initializer");
1995    V = UndefValue::get(Ty);
1996    return false;
1997  case ValID::t_Zero:
1998    // FIXME: LabelTy should not be a first-class type.
1999    if (!Ty->isFirstClassType() || Ty == Type::LabelTy)
2000      return Error(ID.Loc, "invalid type for null constant");
2001    V = Constant::getNullValue(Ty);
2002    return false;
2003  case ValID::t_Constant:
2004    if (ID.ConstantVal->getType() != Ty)
2005      return Error(ID.Loc, "constant expression type mismatch");
2006    V = ID.ConstantVal;
2007    return false;
2008  }
2009}
2010
2011bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2012  PATypeHolder Type(Type::VoidTy);
2013  return ParseType(Type) ||
2014         ParseGlobalValue(Type, V);
2015}
2016
2017/// ParseGlobalValueVector
2018///   ::= /*empty*/
2019///   ::= TypeAndValue (',' TypeAndValue)*
2020bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2021  // Empty list.
2022  if (Lex.getKind() == lltok::rbrace ||
2023      Lex.getKind() == lltok::rsquare ||
2024      Lex.getKind() == lltok::greater ||
2025      Lex.getKind() == lltok::rparen)
2026    return false;
2027
2028  Constant *C;
2029  if (ParseGlobalTypeAndValue(C)) return true;
2030  Elts.push_back(C);
2031
2032  while (EatIfPresent(lltok::comma)) {
2033    if (ParseGlobalTypeAndValue(C)) return true;
2034    Elts.push_back(C);
2035  }
2036
2037  return false;
2038}
2039
2040
2041//===----------------------------------------------------------------------===//
2042// Function Parsing.
2043//===----------------------------------------------------------------------===//
2044
2045bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
2046                                   PerFunctionState &PFS) {
2047  if (ID.Kind == ValID::t_LocalID)
2048    V = PFS.GetVal(ID.UIntVal, Ty, ID.Loc);
2049  else if (ID.Kind == ValID::t_LocalName)
2050    V = PFS.GetVal(ID.StrVal, Ty, ID.Loc);
2051  else if (ID.Kind == ValID::t_InlineAsm) {
2052    const PointerType *PTy = dyn_cast<PointerType>(Ty);
2053    const FunctionType *FTy =
2054      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2055    if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2056      return Error(ID.Loc, "invalid type for inline asm constraint string");
2057    V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal);
2058    return false;
2059  } else {
2060    Constant *C;
2061    if (ConvertGlobalValIDToValue(Ty, ID, C)) return true;
2062    V = C;
2063    return false;
2064  }
2065
2066  return V == 0;
2067}
2068
2069bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
2070  V = 0;
2071  ValID ID;
2072  return ParseValID(ID) ||
2073         ConvertValIDToValue(Ty, ID, V, PFS);
2074}
2075
2076bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
2077  PATypeHolder T(Type::VoidTy);
2078  return ParseType(T) ||
2079         ParseValue(T, V, PFS);
2080}
2081
2082/// FunctionHeader
2083///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2084///       Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2085///       OptionalAlign OptGC
2086bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2087  // Parse the linkage.
2088  LocTy LinkageLoc = Lex.getLoc();
2089  unsigned Linkage;
2090
2091  unsigned Visibility, CC, RetAttrs;
2092  PATypeHolder RetType(Type::VoidTy);
2093  LocTy RetTypeLoc = Lex.getLoc();
2094  if (ParseOptionalLinkage(Linkage) ||
2095      ParseOptionalVisibility(Visibility) ||
2096      ParseOptionalCallingConv(CC) ||
2097      ParseOptionalAttrs(RetAttrs, 1) ||
2098      ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2099    return true;
2100
2101  // Verify that the linkage is ok.
2102  switch ((GlobalValue::LinkageTypes)Linkage) {
2103  case GlobalValue::ExternalLinkage:
2104    break; // always ok.
2105  case GlobalValue::DLLImportLinkage:
2106  case GlobalValue::ExternalWeakAnyLinkage:
2107  case GlobalValue::ExternalWeakODRLinkage:
2108    if (isDefine)
2109      return Error(LinkageLoc, "invalid linkage for function definition");
2110    break;
2111  case GlobalValue::PrivateLinkage:
2112  case GlobalValue::InternalLinkage:
2113  case GlobalValue::LinkOnceAnyLinkage:
2114  case GlobalValue::LinkOnceODRLinkage:
2115  case GlobalValue::WeakAnyLinkage:
2116  case GlobalValue::WeakODRLinkage:
2117  case GlobalValue::DLLExportLinkage:
2118    if (!isDefine)
2119      return Error(LinkageLoc, "invalid linkage for function declaration");
2120    break;
2121  case GlobalValue::AppendingLinkage:
2122  case GlobalValue::GhostLinkage:
2123  case GlobalValue::CommonAnyLinkage:
2124  case GlobalValue::CommonODRLinkage:
2125    return Error(LinkageLoc, "invalid function linkage type");
2126  }
2127
2128  if (!FunctionType::isValidReturnType(RetType) ||
2129      isa<OpaqueType>(RetType))
2130    return Error(RetTypeLoc, "invalid function return type");
2131
2132  LocTy NameLoc = Lex.getLoc();
2133
2134  std::string FunctionName;
2135  if (Lex.getKind() == lltok::GlobalVar) {
2136    FunctionName = Lex.getStrVal();
2137  } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
2138    unsigned NameID = Lex.getUIntVal();
2139
2140    if (NameID != NumberedVals.size())
2141      return TokError("function expected to be numbered '%" +
2142                      utostr(NumberedVals.size()) + "'");
2143  } else {
2144    return TokError("expected function name");
2145  }
2146
2147  Lex.Lex();
2148
2149  if (Lex.getKind() != lltok::lparen)
2150    return TokError("expected '(' in function argument list");
2151
2152  std::vector<ArgInfo> ArgList;
2153  bool isVarArg;
2154  unsigned FuncAttrs;
2155  std::string Section;
2156  unsigned Alignment;
2157  std::string GC;
2158
2159  if (ParseArgumentList(ArgList, isVarArg, false) ||
2160      ParseOptionalAttrs(FuncAttrs, 2) ||
2161      (EatIfPresent(lltok::kw_section) &&
2162       ParseStringConstant(Section)) ||
2163      ParseOptionalAlignment(Alignment) ||
2164      (EatIfPresent(lltok::kw_gc) &&
2165       ParseStringConstant(GC)))
2166    return true;
2167
2168  // If the alignment was parsed as an attribute, move to the alignment field.
2169  if (FuncAttrs & Attribute::Alignment) {
2170    Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2171    FuncAttrs &= ~Attribute::Alignment;
2172  }
2173
2174  // Okay, if we got here, the function is syntactically valid.  Convert types
2175  // and do semantic checks.
2176  std::vector<const Type*> ParamTypeList;
2177  SmallVector<AttributeWithIndex, 8> Attrs;
2178  // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2179  // attributes.
2180  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2181  if (FuncAttrs & ObsoleteFuncAttrs) {
2182    RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
2183    FuncAttrs &= ~ObsoleteFuncAttrs;
2184  }
2185
2186  if (RetAttrs != Attribute::None)
2187    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2188
2189  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2190    ParamTypeList.push_back(ArgList[i].Type);
2191    if (ArgList[i].Attrs != Attribute::None)
2192      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2193  }
2194
2195  if (FuncAttrs != Attribute::None)
2196    Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2197
2198  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2199
2200  if (PAL.paramHasAttr(1, Attribute::StructRet) &&
2201      RetType != Type::VoidTy)
2202    return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2203
2204  const FunctionType *FT = FunctionType::get(RetType, ParamTypeList, isVarArg);
2205  const PointerType *PFT = PointerType::getUnqual(FT);
2206
2207  Fn = 0;
2208  if (!FunctionName.empty()) {
2209    // If this was a definition of a forward reference, remove the definition
2210    // from the forward reference table and fill in the forward ref.
2211    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2212      ForwardRefVals.find(FunctionName);
2213    if (FRVI != ForwardRefVals.end()) {
2214      Fn = M->getFunction(FunctionName);
2215      ForwardRefVals.erase(FRVI);
2216    } else if ((Fn = M->getFunction(FunctionName))) {
2217      // If this function already exists in the symbol table, then it is
2218      // multiply defined.  We accept a few cases for old backwards compat.
2219      // FIXME: Remove this stuff for LLVM 3.0.
2220      if (Fn->getType() != PFT || Fn->getAttributes() != PAL ||
2221          (!Fn->isDeclaration() && isDefine)) {
2222        // If the redefinition has different type or different attributes,
2223        // reject it.  If both have bodies, reject it.
2224        return Error(NameLoc, "invalid redefinition of function '" +
2225                     FunctionName + "'");
2226      } else if (Fn->isDeclaration()) {
2227        // Make sure to strip off any argument names so we can't get conflicts.
2228        for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2229             AI != AE; ++AI)
2230          AI->setName("");
2231      }
2232    }
2233
2234  } else if (FunctionName.empty()) {
2235    // If this is a definition of a forward referenced function, make sure the
2236    // types agree.
2237    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2238      = ForwardRefValIDs.find(NumberedVals.size());
2239    if (I != ForwardRefValIDs.end()) {
2240      Fn = cast<Function>(I->second.first);
2241      if (Fn->getType() != PFT)
2242        return Error(NameLoc, "type of definition and forward reference of '@" +
2243                     utostr(NumberedVals.size()) +"' disagree");
2244      ForwardRefValIDs.erase(I);
2245    }
2246  }
2247
2248  if (Fn == 0)
2249    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2250  else // Move the forward-reference to the correct spot in the module.
2251    M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2252
2253  if (FunctionName.empty())
2254    NumberedVals.push_back(Fn);
2255
2256  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2257  Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2258  Fn->setCallingConv(CC);
2259  Fn->setAttributes(PAL);
2260  Fn->setAlignment(Alignment);
2261  Fn->setSection(Section);
2262  if (!GC.empty()) Fn->setGC(GC.c_str());
2263
2264  // Add all of the arguments we parsed to the function.
2265  Function::arg_iterator ArgIt = Fn->arg_begin();
2266  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2267    // If the argument has a name, insert it into the argument symbol table.
2268    if (ArgList[i].Name.empty()) continue;
2269
2270    // Set the name, if it conflicted, it will be auto-renamed.
2271    ArgIt->setName(ArgList[i].Name);
2272
2273    if (ArgIt->getNameStr() != ArgList[i].Name)
2274      return Error(ArgList[i].Loc, "redefinition of argument '%" +
2275                   ArgList[i].Name + "'");
2276  }
2277
2278  return false;
2279}
2280
2281
2282/// ParseFunctionBody
2283///   ::= '{' BasicBlock+ '}'
2284///   ::= 'begin' BasicBlock+ 'end'  // FIXME: remove in LLVM 3.0
2285///
2286bool LLParser::ParseFunctionBody(Function &Fn) {
2287  if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
2288    return TokError("expected '{' in function body");
2289  Lex.Lex();  // eat the {.
2290
2291  PerFunctionState PFS(*this, Fn);
2292
2293  while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
2294    if (ParseBasicBlock(PFS)) return true;
2295
2296  // Eat the }.
2297  Lex.Lex();
2298
2299  // Verify function is ok.
2300  return PFS.VerifyFunctionComplete();
2301}
2302
2303/// ParseBasicBlock
2304///   ::= LabelStr? Instruction*
2305bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2306  // If this basic block starts out with a name, remember it.
2307  std::string Name;
2308  LocTy NameLoc = Lex.getLoc();
2309  if (Lex.getKind() == lltok::LabelStr) {
2310    Name = Lex.getStrVal();
2311    Lex.Lex();
2312  }
2313
2314  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2315  if (BB == 0) return true;
2316
2317  std::string NameStr;
2318
2319  // Parse the instructions in this block until we get a terminator.
2320  Instruction *Inst;
2321  do {
2322    // This instruction may have three possibilities for a name: a) none
2323    // specified, b) name specified "%foo =", c) number specified: "%4 =".
2324    LocTy NameLoc = Lex.getLoc();
2325    int NameID = -1;
2326    NameStr = "";
2327
2328    if (Lex.getKind() == lltok::LocalVarID) {
2329      NameID = Lex.getUIntVal();
2330      Lex.Lex();
2331      if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2332        return true;
2333    } else if (Lex.getKind() == lltok::LocalVar ||
2334               // FIXME: REMOVE IN LLVM 3.0
2335               Lex.getKind() == lltok::StringConstant) {
2336      NameStr = Lex.getStrVal();
2337      Lex.Lex();
2338      if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2339        return true;
2340    }
2341
2342    if (ParseInstruction(Inst, BB, PFS)) return true;
2343
2344    BB->getInstList().push_back(Inst);
2345
2346    // Set the name on the instruction.
2347    if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2348  } while (!isa<TerminatorInst>(Inst));
2349
2350  return false;
2351}
2352
2353//===----------------------------------------------------------------------===//
2354// Instruction Parsing.
2355//===----------------------------------------------------------------------===//
2356
2357/// ParseInstruction - Parse one of the many different instructions.
2358///
2359bool LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2360                                PerFunctionState &PFS) {
2361  lltok::Kind Token = Lex.getKind();
2362  if (Token == lltok::Eof)
2363    return TokError("found end of file when expecting more instructions");
2364  LocTy Loc = Lex.getLoc();
2365  unsigned KeywordVal = Lex.getUIntVal();
2366  Lex.Lex();  // Eat the keyword.
2367
2368  switch (Token) {
2369  default:                    return Error(Loc, "expected instruction opcode");
2370  // Terminator Instructions.
2371  case lltok::kw_unwind:      Inst = new UnwindInst(); return false;
2372  case lltok::kw_unreachable: Inst = new UnreachableInst(); return false;
2373  case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
2374  case lltok::kw_br:          return ParseBr(Inst, PFS);
2375  case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
2376  case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
2377  // Binary Operators.
2378  case lltok::kw_add:
2379  case lltok::kw_sub:
2380  case lltok::kw_mul:    return ParseArithmetic(Inst, PFS, KeywordVal, 0);
2381
2382  case lltok::kw_udiv:
2383  case lltok::kw_sdiv:
2384  case lltok::kw_urem:
2385  case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
2386  case lltok::kw_fdiv:
2387  case lltok::kw_frem:   return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2388  case lltok::kw_shl:
2389  case lltok::kw_lshr:
2390  case lltok::kw_ashr:
2391  case lltok::kw_and:
2392  case lltok::kw_or:
2393  case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
2394  case lltok::kw_icmp:
2395  case lltok::kw_fcmp:
2396  case lltok::kw_vicmp:
2397  case lltok::kw_vfcmp:  return ParseCompare(Inst, PFS, KeywordVal);
2398  // Casts.
2399  case lltok::kw_trunc:
2400  case lltok::kw_zext:
2401  case lltok::kw_sext:
2402  case lltok::kw_fptrunc:
2403  case lltok::kw_fpext:
2404  case lltok::kw_bitcast:
2405  case lltok::kw_uitofp:
2406  case lltok::kw_sitofp:
2407  case lltok::kw_fptoui:
2408  case lltok::kw_fptosi:
2409  case lltok::kw_inttoptr:
2410  case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
2411  // Other.
2412  case lltok::kw_select:         return ParseSelect(Inst, PFS);
2413  case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
2414  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
2415  case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
2416  case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
2417  case lltok::kw_phi:            return ParsePHI(Inst, PFS);
2418  case lltok::kw_call:           return ParseCall(Inst, PFS, false);
2419  case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
2420  // Memory.
2421  case lltok::kw_alloca:
2422  case lltok::kw_malloc:         return ParseAlloc(Inst, PFS, KeywordVal);
2423  case lltok::kw_free:           return ParseFree(Inst, PFS);
2424  case lltok::kw_load:           return ParseLoad(Inst, PFS, false);
2425  case lltok::kw_store:          return ParseStore(Inst, PFS, false);
2426  case lltok::kw_volatile:
2427    if (EatIfPresent(lltok::kw_load))
2428      return ParseLoad(Inst, PFS, true);
2429    else if (EatIfPresent(lltok::kw_store))
2430      return ParseStore(Inst, PFS, true);
2431    else
2432      return TokError("expected 'load' or 'store'");
2433  case lltok::kw_getresult:     return ParseGetResult(Inst, PFS);
2434  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
2435  case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
2436  case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
2437  }
2438}
2439
2440/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
2441bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
2442  // FIXME: REMOVE vicmp/vfcmp!
2443  if (Opc == Instruction::FCmp || Opc == Instruction::VFCmp) {
2444    switch (Lex.getKind()) {
2445    default: TokError("expected fcmp predicate (e.g. 'oeq')");
2446    case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
2447    case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
2448    case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
2449    case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
2450    case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
2451    case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
2452    case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
2453    case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
2454    case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
2455    case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
2456    case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
2457    case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
2458    case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
2459    case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
2460    case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
2461    case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
2462    }
2463  } else {
2464    switch (Lex.getKind()) {
2465    default: TokError("expected icmp predicate (e.g. 'eq')");
2466    case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
2467    case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
2468    case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
2469    case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
2470    case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
2471    case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
2472    case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
2473    case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
2474    case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
2475    case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
2476    }
2477  }
2478  Lex.Lex();
2479  return false;
2480}
2481
2482//===----------------------------------------------------------------------===//
2483// Terminator Instructions.
2484//===----------------------------------------------------------------------===//
2485
2486/// ParseRet - Parse a return instruction.
2487///   ::= 'ret' void
2488///   ::= 'ret' TypeAndValue
2489///   ::= 'ret' TypeAndValue (',' TypeAndValue)+  [[obsolete: LLVM 3.0]]
2490bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
2491                        PerFunctionState &PFS) {
2492  PATypeHolder Ty(Type::VoidTy);
2493  if (ParseType(Ty, true /*void allowed*/)) return true;
2494
2495  if (Ty == Type::VoidTy) {
2496    Inst = ReturnInst::Create();
2497    return false;
2498  }
2499
2500  Value *RV;
2501  if (ParseValue(Ty, RV, PFS)) return true;
2502
2503  // The normal case is one return value.
2504  if (Lex.getKind() == lltok::comma) {
2505    // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring use
2506    // of 'ret {i32,i32} {i32 1, i32 2}'
2507    SmallVector<Value*, 8> RVs;
2508    RVs.push_back(RV);
2509
2510    while (EatIfPresent(lltok::comma)) {
2511      if (ParseTypeAndValue(RV, PFS)) return true;
2512      RVs.push_back(RV);
2513    }
2514
2515    RV = UndefValue::get(PFS.getFunction().getReturnType());
2516    for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
2517      Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
2518      BB->getInstList().push_back(I);
2519      RV = I;
2520    }
2521  }
2522  Inst = ReturnInst::Create(RV);
2523  return false;
2524}
2525
2526
2527/// ParseBr
2528///   ::= 'br' TypeAndValue
2529///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2530bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
2531  LocTy Loc, Loc2;
2532  Value *Op0, *Op1, *Op2;
2533  if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
2534
2535  if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
2536    Inst = BranchInst::Create(BB);
2537    return false;
2538  }
2539
2540  if (Op0->getType() != Type::Int1Ty)
2541    return Error(Loc, "branch condition must have 'i1' type");
2542
2543  if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
2544      ParseTypeAndValue(Op1, Loc, PFS) ||
2545      ParseToken(lltok::comma, "expected ',' after true destination") ||
2546      ParseTypeAndValue(Op2, Loc2, PFS))
2547    return true;
2548
2549  if (!isa<BasicBlock>(Op1))
2550    return Error(Loc, "true destination of branch must be a basic block");
2551  if (!isa<BasicBlock>(Op2))
2552    return Error(Loc2, "true destination of branch must be a basic block");
2553
2554  Inst = BranchInst::Create(cast<BasicBlock>(Op1), cast<BasicBlock>(Op2), Op0);
2555  return false;
2556}
2557
2558/// ParseSwitch
2559///  Instruction
2560///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
2561///  JumpTable
2562///    ::= (TypeAndValue ',' TypeAndValue)*
2563bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
2564  LocTy CondLoc, BBLoc;
2565  Value *Cond, *DefaultBB;
2566  if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
2567      ParseToken(lltok::comma, "expected ',' after switch condition") ||
2568      ParseTypeAndValue(DefaultBB, BBLoc, PFS) ||
2569      ParseToken(lltok::lsquare, "expected '[' with switch table"))
2570    return true;
2571
2572  if (!isa<IntegerType>(Cond->getType()))
2573    return Error(CondLoc, "switch condition must have integer type");
2574  if (!isa<BasicBlock>(DefaultBB))
2575    return Error(BBLoc, "default destination must be a basic block");
2576
2577  // Parse the jump table pairs.
2578  SmallPtrSet<Value*, 32> SeenCases;
2579  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
2580  while (Lex.getKind() != lltok::rsquare) {
2581    Value *Constant, *DestBB;
2582
2583    if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
2584        ParseToken(lltok::comma, "expected ',' after case value") ||
2585        ParseTypeAndValue(DestBB, BBLoc, PFS))
2586      return true;
2587
2588    if (!SeenCases.insert(Constant))
2589      return Error(CondLoc, "duplicate case value in switch");
2590    if (!isa<ConstantInt>(Constant))
2591      return Error(CondLoc, "case value is not a constant integer");
2592    if (!isa<BasicBlock>(DestBB))
2593      return Error(BBLoc, "case destination is not a basic block");
2594
2595    Table.push_back(std::make_pair(cast<ConstantInt>(Constant),
2596                                   cast<BasicBlock>(DestBB)));
2597  }
2598
2599  Lex.Lex();  // Eat the ']'.
2600
2601  SwitchInst *SI = SwitchInst::Create(Cond, cast<BasicBlock>(DefaultBB),
2602                                      Table.size());
2603  for (unsigned i = 0, e = Table.size(); i != e; ++i)
2604    SI->addCase(Table[i].first, Table[i].second);
2605  Inst = SI;
2606  return false;
2607}
2608
2609/// ParseInvoke
2610///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
2611///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
2612bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
2613  LocTy CallLoc = Lex.getLoc();
2614  unsigned CC, RetAttrs, FnAttrs;
2615  PATypeHolder RetType(Type::VoidTy);
2616  LocTy RetTypeLoc;
2617  ValID CalleeID;
2618  SmallVector<ParamInfo, 16> ArgList;
2619
2620  Value *NormalBB, *UnwindBB;
2621  if (ParseOptionalCallingConv(CC) ||
2622      ParseOptionalAttrs(RetAttrs, 1) ||
2623      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
2624      ParseValID(CalleeID) ||
2625      ParseParameterList(ArgList, PFS) ||
2626      ParseOptionalAttrs(FnAttrs, 2) ||
2627      ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
2628      ParseTypeAndValue(NormalBB, PFS) ||
2629      ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
2630      ParseTypeAndValue(UnwindBB, PFS))
2631    return true;
2632
2633  if (!isa<BasicBlock>(NormalBB))
2634    return Error(CallLoc, "normal destination is not a basic block");
2635  if (!isa<BasicBlock>(UnwindBB))
2636    return Error(CallLoc, "unwind destination is not a basic block");
2637
2638  // If RetType is a non-function pointer type, then this is the short syntax
2639  // for the call, which means that RetType is just the return type.  Infer the
2640  // rest of the function argument types from the arguments that are present.
2641  const PointerType *PFTy = 0;
2642  const FunctionType *Ty = 0;
2643  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
2644      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2645    // Pull out the types of all of the arguments...
2646    std::vector<const Type*> ParamTypes;
2647    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2648      ParamTypes.push_back(ArgList[i].V->getType());
2649
2650    if (!FunctionType::isValidReturnType(RetType))
2651      return Error(RetTypeLoc, "Invalid result type for LLVM function");
2652
2653    Ty = FunctionType::get(RetType, ParamTypes, false);
2654    PFTy = PointerType::getUnqual(Ty);
2655  }
2656
2657  // Look up the callee.
2658  Value *Callee;
2659  if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
2660
2661  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
2662  // function attributes.
2663  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2664  if (FnAttrs & ObsoleteFuncAttrs) {
2665    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
2666    FnAttrs &= ~ObsoleteFuncAttrs;
2667  }
2668
2669  // Set up the Attributes for the function.
2670  SmallVector<AttributeWithIndex, 8> Attrs;
2671  if (RetAttrs != Attribute::None)
2672    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2673
2674  SmallVector<Value*, 8> Args;
2675
2676  // Loop through FunctionType's arguments and ensure they are specified
2677  // correctly.  Also, gather any parameter attributes.
2678  FunctionType::param_iterator I = Ty->param_begin();
2679  FunctionType::param_iterator E = Ty->param_end();
2680  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2681    const Type *ExpectedTy = 0;
2682    if (I != E) {
2683      ExpectedTy = *I++;
2684    } else if (!Ty->isVarArg()) {
2685      return Error(ArgList[i].Loc, "too many arguments specified");
2686    }
2687
2688    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
2689      return Error(ArgList[i].Loc, "argument is not of expected type '" +
2690                   ExpectedTy->getDescription() + "'");
2691    Args.push_back(ArgList[i].V);
2692    if (ArgList[i].Attrs != Attribute::None)
2693      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2694  }
2695
2696  if (I != E)
2697    return Error(CallLoc, "not enough parameters specified for call");
2698
2699  if (FnAttrs != Attribute::None)
2700    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
2701
2702  // Finish off the Attributes and check them
2703  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2704
2705  InvokeInst *II = InvokeInst::Create(Callee, cast<BasicBlock>(NormalBB),
2706                                      cast<BasicBlock>(UnwindBB),
2707                                      Args.begin(), Args.end());
2708  II->setCallingConv(CC);
2709  II->setAttributes(PAL);
2710  Inst = II;
2711  return false;
2712}
2713
2714
2715
2716//===----------------------------------------------------------------------===//
2717// Binary Operators.
2718//===----------------------------------------------------------------------===//
2719
2720/// ParseArithmetic
2721///  ::= ArithmeticOps TypeAndValue ',' Value
2722///
2723/// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
2724/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
2725bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
2726                               unsigned Opc, unsigned OperandType) {
2727  LocTy Loc; Value *LHS, *RHS;
2728  if (ParseTypeAndValue(LHS, Loc, PFS) ||
2729      ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
2730      ParseValue(LHS->getType(), RHS, PFS))
2731    return true;
2732
2733  bool Valid;
2734  switch (OperandType) {
2735  default: assert(0 && "Unknown operand type!");
2736  case 0: // int or FP.
2737    Valid = LHS->getType()->isIntOrIntVector() ||
2738            LHS->getType()->isFPOrFPVector();
2739    break;
2740  case 1: Valid = LHS->getType()->isIntOrIntVector(); break;
2741  case 2: Valid = LHS->getType()->isFPOrFPVector(); break;
2742  }
2743
2744  if (!Valid)
2745    return Error(Loc, "invalid operand type for instruction");
2746
2747  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2748  return false;
2749}
2750
2751/// ParseLogical
2752///  ::= ArithmeticOps TypeAndValue ',' Value {
2753bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
2754                            unsigned Opc) {
2755  LocTy Loc; Value *LHS, *RHS;
2756  if (ParseTypeAndValue(LHS, Loc, PFS) ||
2757      ParseToken(lltok::comma, "expected ',' in logical operation") ||
2758      ParseValue(LHS->getType(), RHS, PFS))
2759    return true;
2760
2761  if (!LHS->getType()->isIntOrIntVector())
2762    return Error(Loc,"instruction requires integer or integer vector operands");
2763
2764  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2765  return false;
2766}
2767
2768
2769/// ParseCompare
2770///  ::= 'icmp' IPredicates TypeAndValue ',' Value
2771///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
2772///  ::= 'vicmp' IPredicates TypeAndValue ',' Value
2773///  ::= 'vfcmp' FPredicates TypeAndValue ',' Value
2774bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
2775                            unsigned Opc) {
2776  // Parse the integer/fp comparison predicate.
2777  LocTy Loc;
2778  unsigned Pred;
2779  Value *LHS, *RHS;
2780  if (ParseCmpPredicate(Pred, Opc) ||
2781      ParseTypeAndValue(LHS, Loc, PFS) ||
2782      ParseToken(lltok::comma, "expected ',' after compare value") ||
2783      ParseValue(LHS->getType(), RHS, PFS))
2784    return true;
2785
2786  if (Opc == Instruction::FCmp) {
2787    if (!LHS->getType()->isFPOrFPVector())
2788      return Error(Loc, "fcmp requires floating point operands");
2789    Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2790  } else if (Opc == Instruction::ICmp) {
2791    if (!LHS->getType()->isIntOrIntVector() &&
2792        !isa<PointerType>(LHS->getType()))
2793      return Error(Loc, "icmp requires integer operands");
2794    Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2795  } else if (Opc == Instruction::VFCmp) {
2796    if (!LHS->getType()->isFPOrFPVector() || !isa<VectorType>(LHS->getType()))
2797      return Error(Loc, "vfcmp requires vector floating point operands");
2798    Inst = new VFCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2799  } else if (Opc == Instruction::VICmp) {
2800    if (!LHS->getType()->isIntOrIntVector() || !isa<VectorType>(LHS->getType()))
2801      return Error(Loc, "vicmp requires vector floating point operands");
2802    Inst = new VICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2803  }
2804  return false;
2805}
2806
2807//===----------------------------------------------------------------------===//
2808// Other Instructions.
2809//===----------------------------------------------------------------------===//
2810
2811
2812/// ParseCast
2813///   ::= CastOpc TypeAndValue 'to' Type
2814bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
2815                         unsigned Opc) {
2816  LocTy Loc;  Value *Op;
2817  PATypeHolder DestTy(Type::VoidTy);
2818  if (ParseTypeAndValue(Op, Loc, PFS) ||
2819      ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
2820      ParseType(DestTy))
2821    return true;
2822
2823  if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
2824    CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
2825    return Error(Loc, "invalid cast opcode for cast from '" +
2826                 Op->getType()->getDescription() + "' to '" +
2827                 DestTy->getDescription() + "'");
2828  }
2829  Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
2830  return false;
2831}
2832
2833/// ParseSelect
2834///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2835bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
2836  LocTy Loc;
2837  Value *Op0, *Op1, *Op2;
2838  if (ParseTypeAndValue(Op0, Loc, PFS) ||
2839      ParseToken(lltok::comma, "expected ',' after select condition") ||
2840      ParseTypeAndValue(Op1, PFS) ||
2841      ParseToken(lltok::comma, "expected ',' after select value") ||
2842      ParseTypeAndValue(Op2, PFS))
2843    return true;
2844
2845  if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
2846    return Error(Loc, Reason);
2847
2848  Inst = SelectInst::Create(Op0, Op1, Op2);
2849  return false;
2850}
2851
2852/// ParseVA_Arg
2853///   ::= 'va_arg' TypeAndValue ',' Type
2854bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
2855  Value *Op;
2856  PATypeHolder EltTy(Type::VoidTy);
2857  LocTy TypeLoc;
2858  if (ParseTypeAndValue(Op, PFS) ||
2859      ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
2860      ParseType(EltTy, TypeLoc))
2861    return true;
2862
2863  if (!EltTy->isFirstClassType())
2864    return Error(TypeLoc, "va_arg requires operand with first class type");
2865
2866  Inst = new VAArgInst(Op, EltTy);
2867  return false;
2868}
2869
2870/// ParseExtractElement
2871///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
2872bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
2873  LocTy Loc;
2874  Value *Op0, *Op1;
2875  if (ParseTypeAndValue(Op0, Loc, PFS) ||
2876      ParseToken(lltok::comma, "expected ',' after extract value") ||
2877      ParseTypeAndValue(Op1, PFS))
2878    return true;
2879
2880  if (!ExtractElementInst::isValidOperands(Op0, Op1))
2881    return Error(Loc, "invalid extractelement operands");
2882
2883  Inst = new ExtractElementInst(Op0, Op1);
2884  return false;
2885}
2886
2887/// ParseInsertElement
2888///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2889bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
2890  LocTy Loc;
2891  Value *Op0, *Op1, *Op2;
2892  if (ParseTypeAndValue(Op0, Loc, PFS) ||
2893      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2894      ParseTypeAndValue(Op1, PFS) ||
2895      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2896      ParseTypeAndValue(Op2, PFS))
2897    return true;
2898
2899  if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
2900    return Error(Loc, "invalid extractelement operands");
2901
2902  Inst = InsertElementInst::Create(Op0, Op1, Op2);
2903  return false;
2904}
2905
2906/// ParseShuffleVector
2907///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2908bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
2909  LocTy Loc;
2910  Value *Op0, *Op1, *Op2;
2911  if (ParseTypeAndValue(Op0, Loc, PFS) ||
2912      ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
2913      ParseTypeAndValue(Op1, PFS) ||
2914      ParseToken(lltok::comma, "expected ',' after shuffle value") ||
2915      ParseTypeAndValue(Op2, PFS))
2916    return true;
2917
2918  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2919    return Error(Loc, "invalid extractelement operands");
2920
2921  Inst = new ShuffleVectorInst(Op0, Op1, Op2);
2922  return false;
2923}
2924
2925/// ParsePHI
2926///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Valueß ']')*
2927bool LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
2928  PATypeHolder Ty(Type::VoidTy);
2929  Value *Op0, *Op1;
2930  LocTy TypeLoc = Lex.getLoc();
2931
2932  if (ParseType(Ty) ||
2933      ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
2934      ParseValue(Ty, Op0, PFS) ||
2935      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2936      ParseValue(Type::LabelTy, Op1, PFS) ||
2937      ParseToken(lltok::rsquare, "expected ']' in phi value list"))
2938    return true;
2939
2940  SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
2941  while (1) {
2942    PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
2943
2944    if (!EatIfPresent(lltok::comma))
2945      break;
2946
2947    if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
2948        ParseValue(Ty, Op0, PFS) ||
2949        ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2950        ParseValue(Type::LabelTy, Op1, PFS) ||
2951        ParseToken(lltok::rsquare, "expected ']' in phi value list"))
2952      return true;
2953  }
2954
2955  if (!Ty->isFirstClassType())
2956    return Error(TypeLoc, "phi node must have first class type");
2957
2958  PHINode *PN = PHINode::Create(Ty);
2959  PN->reserveOperandSpace(PHIVals.size());
2960  for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
2961    PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
2962  Inst = PN;
2963  return false;
2964}
2965
2966/// ParseCall
2967///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
2968///       ParameterList OptionalAttrs
2969bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
2970                         bool isTail) {
2971  unsigned CC, RetAttrs, FnAttrs;
2972  PATypeHolder RetType(Type::VoidTy);
2973  LocTy RetTypeLoc;
2974  ValID CalleeID;
2975  SmallVector<ParamInfo, 16> ArgList;
2976  LocTy CallLoc = Lex.getLoc();
2977
2978  if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
2979      ParseOptionalCallingConv(CC) ||
2980      ParseOptionalAttrs(RetAttrs, 1) ||
2981      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
2982      ParseValID(CalleeID) ||
2983      ParseParameterList(ArgList, PFS) ||
2984      ParseOptionalAttrs(FnAttrs, 2))
2985    return true;
2986
2987  // If RetType is a non-function pointer type, then this is the short syntax
2988  // for the call, which means that RetType is just the return type.  Infer the
2989  // rest of the function argument types from the arguments that are present.
2990  const PointerType *PFTy = 0;
2991  const FunctionType *Ty = 0;
2992  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
2993      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2994    // Pull out the types of all of the arguments...
2995    std::vector<const Type*> ParamTypes;
2996    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2997      ParamTypes.push_back(ArgList[i].V->getType());
2998
2999    if (!FunctionType::isValidReturnType(RetType))
3000      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3001
3002    Ty = FunctionType::get(RetType, ParamTypes, false);
3003    PFTy = PointerType::getUnqual(Ty);
3004  }
3005
3006  // Look up the callee.
3007  Value *Callee;
3008  if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
3009
3010  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3011  // function attributes.
3012  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3013  if (FnAttrs & ObsoleteFuncAttrs) {
3014    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3015    FnAttrs &= ~ObsoleteFuncAttrs;
3016  }
3017
3018  // Set up the Attributes for the function.
3019  SmallVector<AttributeWithIndex, 8> Attrs;
3020  if (RetAttrs != Attribute::None)
3021    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3022
3023  SmallVector<Value*, 8> Args;
3024
3025  // Loop through FunctionType's arguments and ensure they are specified
3026  // correctly.  Also, gather any parameter attributes.
3027  FunctionType::param_iterator I = Ty->param_begin();
3028  FunctionType::param_iterator E = Ty->param_end();
3029  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3030    const Type *ExpectedTy = 0;
3031    if (I != E) {
3032      ExpectedTy = *I++;
3033    } else if (!Ty->isVarArg()) {
3034      return Error(ArgList[i].Loc, "too many arguments specified");
3035    }
3036
3037    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3038      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3039                   ExpectedTy->getDescription() + "'");
3040    Args.push_back(ArgList[i].V);
3041    if (ArgList[i].Attrs != Attribute::None)
3042      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3043  }
3044
3045  if (I != E)
3046    return Error(CallLoc, "not enough parameters specified for call");
3047
3048  if (FnAttrs != Attribute::None)
3049    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3050
3051  // Finish off the Attributes and check them
3052  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3053
3054  CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
3055  CI->setTailCall(isTail);
3056  CI->setCallingConv(CC);
3057  CI->setAttributes(PAL);
3058  Inst = CI;
3059  return false;
3060}
3061
3062//===----------------------------------------------------------------------===//
3063// Memory Instructions.
3064//===----------------------------------------------------------------------===//
3065
3066/// ParseAlloc
3067///   ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalAlignment)?
3068///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalAlignment)?
3069bool LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
3070                          unsigned Opc) {
3071  PATypeHolder Ty(Type::VoidTy);
3072  Value *Size = 0;
3073  LocTy SizeLoc = 0;
3074  unsigned Alignment = 0;
3075  if (ParseType(Ty)) return true;
3076
3077  if (EatIfPresent(lltok::comma)) {
3078    if (Lex.getKind() == lltok::kw_align) {
3079      if (ParseOptionalAlignment(Alignment)) return true;
3080    } else if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
3081               ParseOptionalCommaAlignment(Alignment)) {
3082      return true;
3083    }
3084  }
3085
3086  if (Size && Size->getType() != Type::Int32Ty)
3087    return Error(SizeLoc, "element count must be i32");
3088
3089  if (Opc == Instruction::Malloc)
3090    Inst = new MallocInst(Ty, Size, Alignment);
3091  else
3092    Inst = new AllocaInst(Ty, Size, Alignment);
3093  return false;
3094}
3095
3096/// ParseFree
3097///   ::= 'free' TypeAndValue
3098bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS) {
3099  Value *Val; LocTy Loc;
3100  if (ParseTypeAndValue(Val, Loc, PFS)) return true;
3101  if (!isa<PointerType>(Val->getType()))
3102    return Error(Loc, "operand to free must be a pointer");
3103  Inst = new FreeInst(Val);
3104  return false;
3105}
3106
3107/// ParseLoad
3108///   ::= 'volatile'? 'load' TypeAndValue (',' 'align' uint)?
3109bool LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
3110                         bool isVolatile) {
3111  Value *Val; LocTy Loc;
3112  unsigned Alignment;
3113  if (ParseTypeAndValue(Val, Loc, PFS) ||
3114      ParseOptionalCommaAlignment(Alignment))
3115    return true;
3116
3117  if (!isa<PointerType>(Val->getType()) ||
3118      !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3119    return Error(Loc, "load operand must be a pointer to a first class type");
3120
3121  Inst = new LoadInst(Val, "", isVolatile, Alignment);
3122  return false;
3123}
3124
3125/// ParseStore
3126///   ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' uint)?
3127bool LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
3128                          bool isVolatile) {
3129  Value *Val, *Ptr; LocTy Loc, PtrLoc;
3130  unsigned Alignment;
3131  if (ParseTypeAndValue(Val, Loc, PFS) ||
3132      ParseToken(lltok::comma, "expected ',' after store operand") ||
3133      ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3134      ParseOptionalCommaAlignment(Alignment))
3135    return true;
3136
3137  if (!isa<PointerType>(Ptr->getType()))
3138    return Error(PtrLoc, "store operand must be a pointer");
3139  if (!Val->getType()->isFirstClassType())
3140    return Error(Loc, "store operand must be a first class value");
3141  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3142    return Error(Loc, "stored value and pointer type do not match");
3143
3144  Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
3145  return false;
3146}
3147
3148/// ParseGetResult
3149///   ::= 'getresult' TypeAndValue ',' uint
3150/// FIXME: Remove support for getresult in LLVM 3.0
3151bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
3152  Value *Val; LocTy ValLoc, EltLoc;
3153  unsigned Element;
3154  if (ParseTypeAndValue(Val, ValLoc, PFS) ||
3155      ParseToken(lltok::comma, "expected ',' after getresult operand") ||
3156      ParseUInt32(Element, EltLoc))
3157    return true;
3158
3159  if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3160    return Error(ValLoc, "getresult inst requires an aggregate operand");
3161  if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
3162    return Error(EltLoc, "invalid getresult index for value");
3163  Inst = ExtractValueInst::Create(Val, Element);
3164  return false;
3165}
3166
3167/// ParseGetElementPtr
3168///   ::= 'getelementptr' TypeAndValue (',' TypeAndValue)*
3169bool LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3170  Value *Ptr, *Val; LocTy Loc, EltLoc;
3171  if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3172
3173  if (!isa<PointerType>(Ptr->getType()))
3174    return Error(Loc, "base of getelementptr must be a pointer");
3175
3176  SmallVector<Value*, 16> Indices;
3177  while (EatIfPresent(lltok::comma)) {
3178    if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3179    if (!isa<IntegerType>(Val->getType()))
3180      return Error(EltLoc, "getelementptr index must be an integer");
3181    Indices.push_back(Val);
3182  }
3183
3184  if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
3185                                         Indices.begin(), Indices.end()))
3186    return Error(Loc, "invalid getelementptr indices");
3187  Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
3188  return false;
3189}
3190
3191/// ParseExtractValue
3192///   ::= 'extractvalue' TypeAndValue (',' uint32)+
3193bool LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3194  Value *Val; LocTy Loc;
3195  SmallVector<unsigned, 4> Indices;
3196  if (ParseTypeAndValue(Val, Loc, PFS) ||
3197      ParseIndexList(Indices))
3198    return true;
3199
3200  if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3201    return Error(Loc, "extractvalue operand must be array or struct");
3202
3203  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
3204                                        Indices.end()))
3205    return Error(Loc, "invalid indices for extractvalue");
3206  Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end());
3207  return false;
3208}
3209
3210/// ParseInsertValue
3211///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3212bool LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3213  Value *Val0, *Val1; LocTy Loc0, Loc1;
3214  SmallVector<unsigned, 4> Indices;
3215  if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3216      ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3217      ParseTypeAndValue(Val1, Loc1, PFS) ||
3218      ParseIndexList(Indices))
3219    return true;
3220
3221  if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
3222    return Error(Loc0, "extractvalue operand must be array or struct");
3223
3224  if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
3225                                        Indices.end()))
3226    return Error(Loc0, "invalid indices for insertvalue");
3227  Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end());
3228  return false;
3229}
3230