LLParser.cpp revision c137ea6cf5febeff6aad20c51921e48a4817a2e1
1//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/AutoUpgrade.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instructions.h"
21#include "llvm/LLVMContext.h"
22#include "llvm/MDNode.h"
23#include "llvm/Module.h"
24#include "llvm/ValueSymbolTable.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/StringExtras.h"
27#include "llvm/Support/raw_ostream.h"
28using namespace llvm;
29
30namespace llvm {
31  /// ValID - Represents a reference of a definition of some sort with no type.
32  /// There are several cases where we have to parse the value but where the
33  /// type can depend on later context.  This may either be a numeric reference
34  /// or a symbolic (%var) reference.  This is just a discriminated union.
35  struct ValID {
36    enum {
37      t_LocalID, t_GlobalID,      // ID in UIntVal.
38      t_LocalName, t_GlobalName,  // Name in StrVal.
39      t_APSInt, t_APFloat,        // Value in APSIntVal/APFloatVal.
40      t_Null, t_Undef, t_Zero,    // No value.
41      t_EmptyArray,               // No value:  []
42      t_Constant,                 // Value in ConstantVal.
43      t_InlineAsm                 // Value in StrVal/StrVal2/UIntVal.
44    } Kind;
45
46    LLParser::LocTy Loc;
47    unsigned UIntVal;
48    std::string StrVal, StrVal2;
49    APSInt APSIntVal;
50    APFloat APFloatVal;
51    Constant *ConstantVal;
52    ValID() : APFloatVal(0.0) {}
53  };
54}
55
56/// Run: module ::= toplevelentity*
57bool LLParser::Run() {
58  // Prime the lexer.
59  Lex.Lex();
60
61  return ParseTopLevelEntities() ||
62         ValidateEndOfModule();
63}
64
65/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
66/// module.
67bool LLParser::ValidateEndOfModule() {
68  if (!ForwardRefTypes.empty())
69    return Error(ForwardRefTypes.begin()->second.second,
70                 "use of undefined type named '" +
71                 ForwardRefTypes.begin()->first + "'");
72  if (!ForwardRefTypeIDs.empty())
73    return Error(ForwardRefTypeIDs.begin()->second.second,
74                 "use of undefined type '%" +
75                 utostr(ForwardRefTypeIDs.begin()->first) + "'");
76
77  if (!ForwardRefVals.empty())
78    return Error(ForwardRefVals.begin()->second.second,
79                 "use of undefined value '@" + ForwardRefVals.begin()->first +
80                 "'");
81
82  if (!ForwardRefValIDs.empty())
83    return Error(ForwardRefValIDs.begin()->second.second,
84                 "use of undefined value '@" +
85                 utostr(ForwardRefValIDs.begin()->first) + "'");
86
87  // Look for intrinsic functions and CallInst that need to be upgraded
88  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
89    UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
90
91  return false;
92}
93
94//===----------------------------------------------------------------------===//
95// Top-Level Entities
96//===----------------------------------------------------------------------===//
97
98bool LLParser::ParseTopLevelEntities() {
99  while (1) {
100    switch (Lex.getKind()) {
101    default:         return TokError("expected top-level entity");
102    case lltok::Eof: return false;
103    //case lltok::kw_define:
104    case lltok::kw_declare: if (ParseDeclare()) return true; break;
105    case lltok::kw_define:  if (ParseDefine()) return true; break;
106    case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
107    case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
108    case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
109    case lltok::kw_type:    if (ParseUnnamedType()) return true; break;
110    case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
111    case lltok::LocalVar:   if (ParseNamedType()) return true; break;
112    case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
113    case lltok::Metadata:   if (ParseStandaloneMetadata()) return true; break;
114
115    // The Global variable production with no name can have many different
116    // optional leading prefixes, the production is:
117    // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
118    //               OptionalAddrSpace ('constant'|'global') ...
119    case lltok::kw_private:       // OptionalLinkage
120    case lltok::kw_internal:      // OptionalLinkage
121    case lltok::kw_weak:          // OptionalLinkage
122    case lltok::kw_weak_odr:      // OptionalLinkage
123    case lltok::kw_linkonce:      // OptionalLinkage
124    case lltok::kw_linkonce_odr:  // OptionalLinkage
125    case lltok::kw_appending:     // OptionalLinkage
126    case lltok::kw_dllexport:     // OptionalLinkage
127    case lltok::kw_common:        // OptionalLinkage
128    case lltok::kw_dllimport:     // OptionalLinkage
129    case lltok::kw_extern_weak:   // OptionalLinkage
130    case lltok::kw_external: {    // OptionalLinkage
131      unsigned Linkage, Visibility;
132      if (ParseOptionalLinkage(Linkage) ||
133          ParseOptionalVisibility(Visibility) ||
134          ParseGlobal("", 0, Linkage, true, Visibility))
135        return true;
136      break;
137    }
138    case lltok::kw_default:       // OptionalVisibility
139    case lltok::kw_hidden:        // OptionalVisibility
140    case lltok::kw_protected: {   // OptionalVisibility
141      unsigned Visibility;
142      if (ParseOptionalVisibility(Visibility) ||
143          ParseGlobal("", 0, 0, false, Visibility))
144        return true;
145      break;
146    }
147
148    case lltok::kw_thread_local:  // OptionalThreadLocal
149    case lltok::kw_addrspace:     // OptionalAddrSpace
150    case lltok::kw_constant:      // GlobalType
151    case lltok::kw_global:        // GlobalType
152      if (ParseGlobal("", 0, 0, false, 0)) return true;
153      break;
154    }
155  }
156}
157
158
159/// toplevelentity
160///   ::= 'module' 'asm' STRINGCONSTANT
161bool LLParser::ParseModuleAsm() {
162  assert(Lex.getKind() == lltok::kw_module);
163  Lex.Lex();
164
165  std::string AsmStr;
166  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
167      ParseStringConstant(AsmStr)) return true;
168
169  const std::string &AsmSoFar = M->getModuleInlineAsm();
170  if (AsmSoFar.empty())
171    M->setModuleInlineAsm(AsmStr);
172  else
173    M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr);
174  return false;
175}
176
177/// toplevelentity
178///   ::= 'target' 'triple' '=' STRINGCONSTANT
179///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
180bool LLParser::ParseTargetDefinition() {
181  assert(Lex.getKind() == lltok::kw_target);
182  std::string Str;
183  switch (Lex.Lex()) {
184  default: return TokError("unknown target property");
185  case lltok::kw_triple:
186    Lex.Lex();
187    if (ParseToken(lltok::equal, "expected '=' after target triple") ||
188        ParseStringConstant(Str))
189      return true;
190    M->setTargetTriple(Str);
191    return false;
192  case lltok::kw_datalayout:
193    Lex.Lex();
194    if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
195        ParseStringConstant(Str))
196      return true;
197    M->setDataLayout(Str);
198    return false;
199  }
200}
201
202/// toplevelentity
203///   ::= 'deplibs' '=' '[' ']'
204///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
205bool LLParser::ParseDepLibs() {
206  assert(Lex.getKind() == lltok::kw_deplibs);
207  Lex.Lex();
208  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
209      ParseToken(lltok::lsquare, "expected '=' after deplibs"))
210    return true;
211
212  if (EatIfPresent(lltok::rsquare))
213    return false;
214
215  std::string Str;
216  if (ParseStringConstant(Str)) return true;
217  M->addLibrary(Str);
218
219  while (EatIfPresent(lltok::comma)) {
220    if (ParseStringConstant(Str)) return true;
221    M->addLibrary(Str);
222  }
223
224  return ParseToken(lltok::rsquare, "expected ']' at end of list");
225}
226
227/// toplevelentity
228///   ::= 'type' type
229bool LLParser::ParseUnnamedType() {
230  assert(Lex.getKind() == lltok::kw_type);
231  LocTy TypeLoc = Lex.getLoc();
232  Lex.Lex(); // eat kw_type
233
234  PATypeHolder Ty(Type::VoidTy);
235  if (ParseType(Ty)) return true;
236
237  unsigned TypeID = NumberedTypes.size();
238
239  // See if this type was previously referenced.
240  std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
241    FI = ForwardRefTypeIDs.find(TypeID);
242  if (FI != ForwardRefTypeIDs.end()) {
243    if (FI->second.first.get() == Ty)
244      return Error(TypeLoc, "self referential type is invalid");
245
246    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
247    Ty = FI->second.first.get();
248    ForwardRefTypeIDs.erase(FI);
249  }
250
251  NumberedTypes.push_back(Ty);
252
253  return false;
254}
255
256/// toplevelentity
257///   ::= LocalVar '=' 'type' type
258bool LLParser::ParseNamedType() {
259  std::string Name = Lex.getStrVal();
260  LocTy NameLoc = Lex.getLoc();
261  Lex.Lex();  // eat LocalVar.
262
263  PATypeHolder Ty(Type::VoidTy);
264
265  if (ParseToken(lltok::equal, "expected '=' after name") ||
266      ParseToken(lltok::kw_type, "expected 'type' after name") ||
267      ParseType(Ty))
268    return true;
269
270  // Set the type name, checking for conflicts as we do so.
271  bool AlreadyExists = M->addTypeName(Name, Ty);
272  if (!AlreadyExists) return false;
273
274  // See if this type is a forward reference.  We need to eagerly resolve
275  // types to allow recursive type redefinitions below.
276  std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator
277  FI = ForwardRefTypes.find(Name);
278  if (FI != ForwardRefTypes.end()) {
279    if (FI->second.first.get() == Ty)
280      return Error(NameLoc, "self referential type is invalid");
281
282    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
283    Ty = FI->second.first.get();
284    ForwardRefTypes.erase(FI);
285  }
286
287  // Inserting a name that is already defined, get the existing name.
288  const Type *Existing = M->getTypeByName(Name);
289  assert(Existing && "Conflict but no matching type?!");
290
291  // Otherwise, this is an attempt to redefine a type. That's okay if
292  // the redefinition is identical to the original.
293  // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
294  if (Existing == Ty) return false;
295
296  // Any other kind of (non-equivalent) redefinition is an error.
297  return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
298               Ty->getDescription() + "'");
299}
300
301
302/// toplevelentity
303///   ::= 'declare' FunctionHeader
304bool LLParser::ParseDeclare() {
305  assert(Lex.getKind() == lltok::kw_declare);
306  Lex.Lex();
307
308  Function *F;
309  return ParseFunctionHeader(F, false);
310}
311
312/// toplevelentity
313///   ::= 'define' FunctionHeader '{' ...
314bool LLParser::ParseDefine() {
315  assert(Lex.getKind() == lltok::kw_define);
316  Lex.Lex();
317
318  Function *F;
319  return ParseFunctionHeader(F, true) ||
320         ParseFunctionBody(*F);
321}
322
323/// ParseGlobalType
324///   ::= 'constant'
325///   ::= 'global'
326bool LLParser::ParseGlobalType(bool &IsConstant) {
327  if (Lex.getKind() == lltok::kw_constant)
328    IsConstant = true;
329  else if (Lex.getKind() == lltok::kw_global)
330    IsConstant = false;
331  else {
332    IsConstant = false;
333    return TokError("expected 'global' or 'constant'");
334  }
335  Lex.Lex();
336  return false;
337}
338
339/// ParseNamedGlobal:
340///   GlobalVar '=' OptionalVisibility ALIAS ...
341///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
342bool LLParser::ParseNamedGlobal() {
343  assert(Lex.getKind() == lltok::GlobalVar);
344  LocTy NameLoc = Lex.getLoc();
345  std::string Name = Lex.getStrVal();
346  Lex.Lex();
347
348  bool HasLinkage;
349  unsigned Linkage, Visibility;
350  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
351      ParseOptionalLinkage(Linkage, HasLinkage) ||
352      ParseOptionalVisibility(Visibility))
353    return true;
354
355  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
356    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
357  return ParseAlias(Name, NameLoc, Visibility);
358}
359
360/// ParseStandaloneMetadata:
361///   !42 = !{...}
362bool LLParser::ParseStandaloneMetadata() {
363  assert(Lex.getKind() == lltok::Metadata);
364  Lex.Lex();
365  unsigned MetadataID = 0;
366  if (ParseUInt32(MetadataID))
367    return true;
368  if (MetadataCache.find(MetadataID) != MetadataCache.end())
369    return TokError("Metadata id is already used");
370  if (ParseToken(lltok::equal, "expected '=' here"))
371    return true;
372
373  LocTy TyLoc;
374  bool IsConstant;
375  PATypeHolder Ty(Type::VoidTy);
376  if (ParseGlobalType(IsConstant) ||
377      ParseType(Ty, TyLoc))
378    return true;
379
380  Constant *Init = 0;
381  if (ParseGlobalValue(Ty, Init))
382      return true;
383
384  MetadataCache[MetadataID] = Init;
385  return false;
386}
387
388/// ParseAlias:
389///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
390/// Aliasee
391///   ::= TypeAndValue
392///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
393///   ::= 'getelementptr' '(' ... ')'
394///
395/// Everything through visibility has already been parsed.
396///
397bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
398                          unsigned Visibility) {
399  assert(Lex.getKind() == lltok::kw_alias);
400  Lex.Lex();
401  unsigned Linkage;
402  LocTy LinkageLoc = Lex.getLoc();
403  if (ParseOptionalLinkage(Linkage))
404    return true;
405
406  if (Linkage != GlobalValue::ExternalLinkage &&
407      Linkage != GlobalValue::WeakAnyLinkage &&
408      Linkage != GlobalValue::WeakODRLinkage &&
409      Linkage != GlobalValue::InternalLinkage &&
410      Linkage != GlobalValue::PrivateLinkage)
411    return Error(LinkageLoc, "invalid linkage type for alias");
412
413  Constant *Aliasee;
414  LocTy AliaseeLoc = Lex.getLoc();
415  if (Lex.getKind() != lltok::kw_bitcast &&
416      Lex.getKind() != lltok::kw_getelementptr) {
417    if (ParseGlobalTypeAndValue(Aliasee)) return true;
418  } else {
419    // The bitcast dest type is not present, it is implied by the dest type.
420    ValID ID;
421    if (ParseValID(ID)) return true;
422    if (ID.Kind != ValID::t_Constant)
423      return Error(AliaseeLoc, "invalid aliasee");
424    Aliasee = ID.ConstantVal;
425  }
426
427  if (!isa<PointerType>(Aliasee->getType()))
428    return Error(AliaseeLoc, "alias must have pointer type");
429
430  // Okay, create the alias but do not insert it into the module yet.
431  GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
432                                    (GlobalValue::LinkageTypes)Linkage, Name,
433                                    Aliasee);
434  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
435
436  // See if this value already exists in the symbol table.  If so, it is either
437  // a redefinition or a definition of a forward reference.
438  if (GlobalValue *Val =
439        cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name))) {
440    // See if this was a redefinition.  If so, there is no entry in
441    // ForwardRefVals.
442    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
443      I = ForwardRefVals.find(Name);
444    if (I == ForwardRefVals.end())
445      return Error(NameLoc, "redefinition of global named '@" + Name + "'");
446
447    // Otherwise, this was a definition of forward ref.  Verify that types
448    // agree.
449    if (Val->getType() != GA->getType())
450      return Error(NameLoc,
451              "forward reference and definition of alias have different types");
452
453    // If they agree, just RAUW the old value with the alias and remove the
454    // forward ref info.
455    Val->replaceAllUsesWith(GA);
456    Val->eraseFromParent();
457    ForwardRefVals.erase(I);
458  }
459
460  // Insert into the module, we know its name won't collide now.
461  M->getAliasList().push_back(GA);
462  assert(GA->getNameStr() == Name && "Should not be a name conflict!");
463
464  return false;
465}
466
467/// ParseGlobal
468///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
469///       OptionalAddrSpace GlobalType Type Const
470///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
471///       OptionalAddrSpace GlobalType Type Const
472///
473/// Everything through visibility has been parsed already.
474///
475bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
476                           unsigned Linkage, bool HasLinkage,
477                           unsigned Visibility) {
478  unsigned AddrSpace;
479  bool ThreadLocal, IsConstant;
480  LocTy TyLoc;
481
482  PATypeHolder Ty(Type::VoidTy);
483  if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
484      ParseOptionalAddrSpace(AddrSpace) ||
485      ParseGlobalType(IsConstant) ||
486      ParseType(Ty, TyLoc))
487    return true;
488
489  // If the linkage is specified and is external, then no initializer is
490  // present.
491  Constant *Init = 0;
492  if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
493                      Linkage != GlobalValue::ExternalWeakLinkage &&
494                      Linkage != GlobalValue::ExternalLinkage)) {
495    if (ParseGlobalValue(Ty, Init))
496      return true;
497  }
498
499  if (isa<FunctionType>(Ty) || Ty == Type::LabelTy)
500    return Error(TyLoc, "invalid type for global variable");
501
502  GlobalVariable *GV = 0;
503
504  // See if the global was forward referenced, if so, use the global.
505  if (!Name.empty()) {
506    if ((GV = M->getGlobalVariable(Name, true)) &&
507        !ForwardRefVals.erase(Name))
508      return Error(NameLoc, "redefinition of global '@" + Name + "'");
509  } else {
510    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
511      I = ForwardRefValIDs.find(NumberedVals.size());
512    if (I != ForwardRefValIDs.end()) {
513      GV = cast<GlobalVariable>(I->second.first);
514      ForwardRefValIDs.erase(I);
515    }
516  }
517
518  if (GV == 0) {
519    GV = new GlobalVariable(Ty, false, GlobalValue::ExternalLinkage, 0, Name,
520                            M, false, AddrSpace);
521  } else {
522    if (GV->getType()->getElementType() != Ty)
523      return Error(TyLoc,
524            "forward reference and definition of global have different types");
525
526    // Move the forward-reference to the correct spot in the module.
527    M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
528  }
529
530  if (Name.empty())
531    NumberedVals.push_back(GV);
532
533  // Set the parsed properties on the global.
534  if (Init)
535    GV->setInitializer(Init);
536  GV->setConstant(IsConstant);
537  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
538  GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
539  GV->setThreadLocal(ThreadLocal);
540
541  // Parse attributes on the global.
542  while (Lex.getKind() == lltok::comma) {
543    Lex.Lex();
544
545    if (Lex.getKind() == lltok::kw_section) {
546      Lex.Lex();
547      GV->setSection(Lex.getStrVal());
548      if (ParseToken(lltok::StringConstant, "expected global section string"))
549        return true;
550    } else if (Lex.getKind() == lltok::kw_align) {
551      unsigned Alignment;
552      if (ParseOptionalAlignment(Alignment)) return true;
553      GV->setAlignment(Alignment);
554    } else {
555      TokError("unknown global variable property!");
556    }
557  }
558
559  return false;
560}
561
562
563//===----------------------------------------------------------------------===//
564// GlobalValue Reference/Resolution Routines.
565//===----------------------------------------------------------------------===//
566
567/// GetGlobalVal - Get a value with the specified name or ID, creating a
568/// forward reference record if needed.  This can return null if the value
569/// exists but does not have the right type.
570GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
571                                    LocTy Loc) {
572  const PointerType *PTy = dyn_cast<PointerType>(Ty);
573  if (PTy == 0) {
574    Error(Loc, "global variable reference must have pointer type");
575    return 0;
576  }
577
578  // Look this name up in the normal function symbol table.
579  GlobalValue *Val =
580    cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
581
582  // If this is a forward reference for the value, see if we already created a
583  // forward ref record.
584  if (Val == 0) {
585    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
586      I = ForwardRefVals.find(Name);
587    if (I != ForwardRefVals.end())
588      Val = I->second.first;
589  }
590
591  // If we have the value in the symbol table or fwd-ref table, return it.
592  if (Val) {
593    if (Val->getType() == Ty) return Val;
594    Error(Loc, "'@" + Name + "' defined with type '" +
595          Val->getType()->getDescription() + "'");
596    return 0;
597  }
598
599  // Otherwise, create a new forward reference for this value and remember it.
600  GlobalValue *FwdVal;
601  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
602    // Function types can return opaque but functions can't.
603    if (isa<OpaqueType>(FT->getReturnType())) {
604      Error(Loc, "function may not return opaque type");
605      return 0;
606    }
607
608    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
609  } else {
610    FwdVal = new GlobalVariable(PTy->getElementType(), false,
611                                GlobalValue::ExternalWeakLinkage, 0, Name, M);
612  }
613
614  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
615  return FwdVal;
616}
617
618GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
619  const PointerType *PTy = dyn_cast<PointerType>(Ty);
620  if (PTy == 0) {
621    Error(Loc, "global variable reference must have pointer type");
622    return 0;
623  }
624
625  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
626
627  // If this is a forward reference for the value, see if we already created a
628  // forward ref record.
629  if (Val == 0) {
630    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
631      I = ForwardRefValIDs.find(ID);
632    if (I != ForwardRefValIDs.end())
633      Val = I->second.first;
634  }
635
636  // If we have the value in the symbol table or fwd-ref table, return it.
637  if (Val) {
638    if (Val->getType() == Ty) return Val;
639    Error(Loc, "'@" + utostr(ID) + "' defined with type '" +
640          Val->getType()->getDescription() + "'");
641    return 0;
642  }
643
644  // Otherwise, create a new forward reference for this value and remember it.
645  GlobalValue *FwdVal;
646  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
647    // Function types can return opaque but functions can't.
648    if (isa<OpaqueType>(FT->getReturnType())) {
649      Error(Loc, "function may not return opaque type");
650      return 0;
651    }
652    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
653  } else {
654    FwdVal = new GlobalVariable(PTy->getElementType(), false,
655                                GlobalValue::ExternalWeakLinkage, 0, "", M);
656  }
657
658  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
659  return FwdVal;
660}
661
662
663//===----------------------------------------------------------------------===//
664// Helper Routines.
665//===----------------------------------------------------------------------===//
666
667/// ParseToken - If the current token has the specified kind, eat it and return
668/// success.  Otherwise, emit the specified error and return failure.
669bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
670  if (Lex.getKind() != T)
671    return TokError(ErrMsg);
672  Lex.Lex();
673  return false;
674}
675
676/// ParseStringConstant
677///   ::= StringConstant
678bool LLParser::ParseStringConstant(std::string &Result) {
679  if (Lex.getKind() != lltok::StringConstant)
680    return TokError("expected string constant");
681  Result = Lex.getStrVal();
682  Lex.Lex();
683  return false;
684}
685
686/// ParseUInt32
687///   ::= uint32
688bool LLParser::ParseUInt32(unsigned &Val) {
689  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
690    return TokError("expected integer");
691  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
692  if (Val64 != unsigned(Val64))
693    return TokError("expected 32-bit integer (too large)");
694  Val = Val64;
695  Lex.Lex();
696  return false;
697}
698
699
700/// ParseOptionalAddrSpace
701///   := /*empty*/
702///   := 'addrspace' '(' uint32 ')'
703bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
704  AddrSpace = 0;
705  if (!EatIfPresent(lltok::kw_addrspace))
706    return false;
707  return ParseToken(lltok::lparen, "expected '(' in address space") ||
708         ParseUInt32(AddrSpace) ||
709         ParseToken(lltok::rparen, "expected ')' in address space");
710}
711
712/// ParseOptionalAttrs - Parse a potentially empty attribute list.  AttrKind
713/// indicates what kind of attribute list this is: 0: function arg, 1: result,
714/// 2: function attr.
715/// 3: function arg after value: FIXME: REMOVE IN LLVM 3.0
716bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
717  Attrs = Attribute::None;
718  LocTy AttrLoc = Lex.getLoc();
719
720  while (1) {
721    switch (Lex.getKind()) {
722    case lltok::kw_sext:
723    case lltok::kw_zext:
724      // Treat these as signext/zeroext if they occur in the argument list after
725      // the value, as in "call i8 @foo(i8 10 sext)".  If they occur before the
726      // value, as in "call i8 @foo(i8 sext (" then it is part of a constant
727      // expr.
728      // FIXME: REMOVE THIS IN LLVM 3.0
729      if (AttrKind == 3) {
730        if (Lex.getKind() == lltok::kw_sext)
731          Attrs |= Attribute::SExt;
732        else
733          Attrs |= Attribute::ZExt;
734        break;
735      }
736      // FALL THROUGH.
737    default:  // End of attributes.
738      if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
739        return Error(AttrLoc, "invalid use of function-only attribute");
740
741      if (AttrKind != 0 && AttrKind != 3 && (Attrs & Attribute::ParameterOnly))
742        return Error(AttrLoc, "invalid use of parameter-only attribute");
743
744      return false;
745    case lltok::kw_zeroext:         Attrs |= Attribute::ZExt; break;
746    case lltok::kw_signext:         Attrs |= Attribute::SExt; break;
747    case lltok::kw_inreg:           Attrs |= Attribute::InReg; break;
748    case lltok::kw_sret:            Attrs |= Attribute::StructRet; break;
749    case lltok::kw_noalias:         Attrs |= Attribute::NoAlias; break;
750    case lltok::kw_nocapture:       Attrs |= Attribute::NoCapture; break;
751    case lltok::kw_byval:           Attrs |= Attribute::ByVal; break;
752    case lltok::kw_nest:            Attrs |= Attribute::Nest; break;
753
754    case lltok::kw_noreturn:        Attrs |= Attribute::NoReturn; break;
755    case lltok::kw_nounwind:        Attrs |= Attribute::NoUnwind; break;
756    case lltok::kw_noinline:        Attrs |= Attribute::NoInline; break;
757    case lltok::kw_readnone:        Attrs |= Attribute::ReadNone; break;
758    case lltok::kw_readonly:        Attrs |= Attribute::ReadOnly; break;
759    case lltok::kw_alwaysinline:    Attrs |= Attribute::AlwaysInline; break;
760    case lltok::kw_optsize:         Attrs |= Attribute::OptimizeForSize; break;
761    case lltok::kw_ssp:             Attrs |= Attribute::StackProtect; break;
762    case lltok::kw_sspreq:          Attrs |= Attribute::StackProtectReq; break;
763    case lltok::kw_noredzone:       Attrs |= Attribute::NoRedZone; break;
764    case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
765
766    case lltok::kw_align: {
767      unsigned Alignment;
768      if (ParseOptionalAlignment(Alignment))
769        return true;
770      Attrs |= Attribute::constructAlignmentFromInt(Alignment);
771      continue;
772    }
773    }
774    Lex.Lex();
775  }
776}
777
778/// ParseOptionalLinkage
779///   ::= /*empty*/
780///   ::= 'private'
781///   ::= 'internal'
782///   ::= 'weak'
783///   ::= 'weak_odr'
784///   ::= 'linkonce'
785///   ::= 'linkonce_odr'
786///   ::= 'appending'
787///   ::= 'dllexport'
788///   ::= 'common'
789///   ::= 'dllimport'
790///   ::= 'extern_weak'
791///   ::= 'external'
792bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
793  HasLinkage = false;
794  switch (Lex.getKind()) {
795  default:                     Res = GlobalValue::ExternalLinkage; return false;
796  case lltok::kw_private:      Res = GlobalValue::PrivateLinkage; break;
797  case lltok::kw_internal:     Res = GlobalValue::InternalLinkage; break;
798  case lltok::kw_weak:         Res = GlobalValue::WeakAnyLinkage; break;
799  case lltok::kw_weak_odr:     Res = GlobalValue::WeakODRLinkage; break;
800  case lltok::kw_linkonce:     Res = GlobalValue::LinkOnceAnyLinkage; break;
801  case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break;
802  case lltok::kw_available_externally:
803    Res = GlobalValue::AvailableExternallyLinkage;
804    break;
805  case lltok::kw_appending:    Res = GlobalValue::AppendingLinkage; break;
806  case lltok::kw_dllexport:    Res = GlobalValue::DLLExportLinkage; break;
807  case lltok::kw_common:       Res = GlobalValue::CommonLinkage; break;
808  case lltok::kw_dllimport:    Res = GlobalValue::DLLImportLinkage; break;
809  case lltok::kw_extern_weak:  Res = GlobalValue::ExternalWeakLinkage; break;
810  case lltok::kw_external:     Res = GlobalValue::ExternalLinkage; break;
811  }
812  Lex.Lex();
813  HasLinkage = true;
814  return false;
815}
816
817/// ParseOptionalVisibility
818///   ::= /*empty*/
819///   ::= 'default'
820///   ::= 'hidden'
821///   ::= 'protected'
822///
823bool LLParser::ParseOptionalVisibility(unsigned &Res) {
824  switch (Lex.getKind()) {
825  default:                  Res = GlobalValue::DefaultVisibility; return false;
826  case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
827  case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
828  case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
829  }
830  Lex.Lex();
831  return false;
832}
833
834/// ParseOptionalCallingConv
835///   ::= /*empty*/
836///   ::= 'ccc'
837///   ::= 'fastcc'
838///   ::= 'coldcc'
839///   ::= 'x86_stdcallcc'
840///   ::= 'x86_fastcallcc'
841///   ::= 'arm_apcscc'
842///   ::= 'arm_aapcscc'
843///   ::= 'arm_aapcs_vfpcc'
844///   ::= 'cc' UINT
845///
846bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
847  switch (Lex.getKind()) {
848  default:                       CC = CallingConv::C; return false;
849  case lltok::kw_ccc:            CC = CallingConv::C; break;
850  case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
851  case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
852  case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
853  case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
854  case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
855  case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
856  case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
857  case lltok::kw_cc:             Lex.Lex(); return ParseUInt32(CC);
858  }
859  Lex.Lex();
860  return false;
861}
862
863/// ParseOptionalAlignment
864///   ::= /* empty */
865///   ::= 'align' 4
866bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
867  Alignment = 0;
868  if (!EatIfPresent(lltok::kw_align))
869    return false;
870  LocTy AlignLoc = Lex.getLoc();
871  if (ParseUInt32(Alignment)) return true;
872  if (!isPowerOf2_32(Alignment))
873    return Error(AlignLoc, "alignment is not a power of two");
874  return false;
875}
876
877/// ParseOptionalCommaAlignment
878///   ::= /* empty */
879///   ::= ',' 'align' 4
880bool LLParser::ParseOptionalCommaAlignment(unsigned &Alignment) {
881  Alignment = 0;
882  if (!EatIfPresent(lltok::comma))
883    return false;
884  return ParseToken(lltok::kw_align, "expected 'align'") ||
885         ParseUInt32(Alignment);
886}
887
888/// ParseIndexList
889///    ::=  (',' uint32)+
890bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices) {
891  if (Lex.getKind() != lltok::comma)
892    return TokError("expected ',' as start of index list");
893
894  while (EatIfPresent(lltok::comma)) {
895    unsigned Idx;
896    if (ParseUInt32(Idx)) return true;
897    Indices.push_back(Idx);
898  }
899
900  return false;
901}
902
903//===----------------------------------------------------------------------===//
904// Type Parsing.
905//===----------------------------------------------------------------------===//
906
907/// ParseType - Parse and resolve a full type.
908bool LLParser::ParseType(PATypeHolder &Result, bool AllowVoid) {
909  LocTy TypeLoc = Lex.getLoc();
910  if (ParseTypeRec(Result)) return true;
911
912  // Verify no unresolved uprefs.
913  if (!UpRefs.empty())
914    return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
915
916  if (!AllowVoid && Result.get() == Type::VoidTy)
917    return Error(TypeLoc, "void type only allowed for function results");
918
919  return false;
920}
921
922/// HandleUpRefs - Every time we finish a new layer of types, this function is
923/// called.  It loops through the UpRefs vector, which is a list of the
924/// currently active types.  For each type, if the up-reference is contained in
925/// the newly completed type, we decrement the level count.  When the level
926/// count reaches zero, the up-referenced type is the type that is passed in:
927/// thus we can complete the cycle.
928///
929PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
930  // If Ty isn't abstract, or if there are no up-references in it, then there is
931  // nothing to resolve here.
932  if (!ty->isAbstract() || UpRefs.empty()) return ty;
933
934  PATypeHolder Ty(ty);
935#if 0
936  errs() << "Type '" << Ty->getDescription()
937         << "' newly formed.  Resolving upreferences.\n"
938         << UpRefs.size() << " upreferences active!\n";
939#endif
940
941  // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
942  // to zero), we resolve them all together before we resolve them to Ty.  At
943  // the end of the loop, if there is anything to resolve to Ty, it will be in
944  // this variable.
945  OpaqueType *TypeToResolve = 0;
946
947  for (unsigned i = 0; i != UpRefs.size(); ++i) {
948    // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
949    bool ContainsType =
950      std::find(Ty->subtype_begin(), Ty->subtype_end(),
951                UpRefs[i].LastContainedTy) != Ty->subtype_end();
952
953#if 0
954    errs() << "  UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
955           << UpRefs[i].LastContainedTy->getDescription() << ") = "
956           << (ContainsType ? "true" : "false")
957           << " level=" << UpRefs[i].NestingLevel << "\n";
958#endif
959    if (!ContainsType)
960      continue;
961
962    // Decrement level of upreference
963    unsigned Level = --UpRefs[i].NestingLevel;
964    UpRefs[i].LastContainedTy = Ty;
965
966    // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
967    if (Level != 0)
968      continue;
969
970#if 0
971    errs() << "  * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
972#endif
973    if (!TypeToResolve)
974      TypeToResolve = UpRefs[i].UpRefTy;
975    else
976      UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
977    UpRefs.erase(UpRefs.begin()+i);     // Remove from upreference list.
978    --i;                                // Do not skip the next element.
979  }
980
981  if (TypeToResolve)
982    TypeToResolve->refineAbstractTypeTo(Ty);
983
984  return Ty;
985}
986
987
988/// ParseTypeRec - The recursive function used to process the internal
989/// implementation details of types.
990bool LLParser::ParseTypeRec(PATypeHolder &Result) {
991  switch (Lex.getKind()) {
992  default:
993    return TokError("expected type");
994  case lltok::Type:
995    // TypeRec ::= 'float' | 'void' (etc)
996    Result = Lex.getTyVal();
997    Lex.Lex();
998    break;
999  case lltok::kw_opaque:
1000    // TypeRec ::= 'opaque'
1001    Result = OpaqueType::get();
1002    Lex.Lex();
1003    break;
1004  case lltok::lbrace:
1005    // TypeRec ::= '{' ... '}'
1006    if (ParseStructType(Result, false))
1007      return true;
1008    break;
1009  case lltok::lsquare:
1010    // TypeRec ::= '[' ... ']'
1011    Lex.Lex(); // eat the lsquare.
1012    if (ParseArrayVectorType(Result, false))
1013      return true;
1014    break;
1015  case lltok::less: // Either vector or packed struct.
1016    // TypeRec ::= '<' ... '>'
1017    Lex.Lex();
1018    if (Lex.getKind() == lltok::lbrace) {
1019      if (ParseStructType(Result, true) ||
1020          ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1021        return true;
1022    } else if (ParseArrayVectorType(Result, true))
1023      return true;
1024    break;
1025  case lltok::LocalVar:
1026  case lltok::StringConstant:  // FIXME: REMOVE IN LLVM 3.0
1027    // TypeRec ::= %foo
1028    if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
1029      Result = T;
1030    } else {
1031      Result = OpaqueType::get();
1032      ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
1033                                            std::make_pair(Result,
1034                                                           Lex.getLoc())));
1035      M->addTypeName(Lex.getStrVal(), Result.get());
1036    }
1037    Lex.Lex();
1038    break;
1039
1040  case lltok::LocalVarID:
1041    // TypeRec ::= %4
1042    if (Lex.getUIntVal() < NumberedTypes.size())
1043      Result = NumberedTypes[Lex.getUIntVal()];
1044    else {
1045      std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
1046        I = ForwardRefTypeIDs.find(Lex.getUIntVal());
1047      if (I != ForwardRefTypeIDs.end())
1048        Result = I->second.first;
1049      else {
1050        Result = OpaqueType::get();
1051        ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
1052                                                std::make_pair(Result,
1053                                                               Lex.getLoc())));
1054      }
1055    }
1056    Lex.Lex();
1057    break;
1058  case lltok::backslash: {
1059    // TypeRec ::= '\' 4
1060    Lex.Lex();
1061    unsigned Val;
1062    if (ParseUInt32(Val)) return true;
1063    OpaqueType *OT = OpaqueType::get();        // Use temporary placeholder.
1064    UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
1065    Result = OT;
1066    break;
1067  }
1068  }
1069
1070  // Parse the type suffixes.
1071  while (1) {
1072    switch (Lex.getKind()) {
1073    // End of type.
1074    default: return false;
1075
1076    // TypeRec ::= TypeRec '*'
1077    case lltok::star:
1078      if (Result.get() == Type::LabelTy)
1079        return TokError("basic block pointers are invalid");
1080      if (Result.get() == Type::VoidTy)
1081        return TokError("pointers to void are invalid; use i8* instead");
1082      if (!PointerType::isValidElementType(Result.get()))
1083        return TokError("pointer to this type is invalid");
1084      Result = HandleUpRefs(PointerType::getUnqual(Result.get()));
1085      Lex.Lex();
1086      break;
1087
1088    // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1089    case lltok::kw_addrspace: {
1090      if (Result.get() == Type::LabelTy)
1091        return TokError("basic block pointers are invalid");
1092      if (Result.get() == Type::VoidTy)
1093        return TokError("pointers to void are invalid; use i8* instead");
1094      if (!PointerType::isValidElementType(Result.get()))
1095        return TokError("pointer to this type is invalid");
1096      unsigned AddrSpace;
1097      if (ParseOptionalAddrSpace(AddrSpace) ||
1098          ParseToken(lltok::star, "expected '*' in address space"))
1099        return true;
1100
1101      Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace));
1102      break;
1103    }
1104
1105    /// Types '(' ArgTypeListI ')' OptFuncAttrs
1106    case lltok::lparen:
1107      if (ParseFunctionType(Result))
1108        return true;
1109      break;
1110    }
1111  }
1112}
1113
1114/// ParseParameterList
1115///    ::= '(' ')'
1116///    ::= '(' Arg (',' Arg)* ')'
1117///  Arg
1118///    ::= Type OptionalAttributes Value OptionalAttributes
1119bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1120                                  PerFunctionState &PFS) {
1121  if (ParseToken(lltok::lparen, "expected '(' in call"))
1122    return true;
1123
1124  while (Lex.getKind() != lltok::rparen) {
1125    // If this isn't the first argument, we need a comma.
1126    if (!ArgList.empty() &&
1127        ParseToken(lltok::comma, "expected ',' in argument list"))
1128      return true;
1129
1130    // Parse the argument.
1131    LocTy ArgLoc;
1132    PATypeHolder ArgTy(Type::VoidTy);
1133    unsigned ArgAttrs1, ArgAttrs2;
1134    Value *V;
1135    if (ParseType(ArgTy, ArgLoc) ||
1136        ParseOptionalAttrs(ArgAttrs1, 0) ||
1137        ParseValue(ArgTy, V, PFS) ||
1138        // FIXME: Should not allow attributes after the argument, remove this in
1139        // LLVM 3.0.
1140        ParseOptionalAttrs(ArgAttrs2, 3))
1141      return true;
1142    ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1143  }
1144
1145  Lex.Lex();  // Lex the ')'.
1146  return false;
1147}
1148
1149
1150
1151/// ParseArgumentList - Parse the argument list for a function type or function
1152/// prototype.  If 'inType' is true then we are parsing a FunctionType.
1153///   ::= '(' ArgTypeListI ')'
1154/// ArgTypeListI
1155///   ::= /*empty*/
1156///   ::= '...'
1157///   ::= ArgTypeList ',' '...'
1158///   ::= ArgType (',' ArgType)*
1159///
1160bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
1161                                 bool &isVarArg, bool inType) {
1162  isVarArg = false;
1163  assert(Lex.getKind() == lltok::lparen);
1164  Lex.Lex(); // eat the (.
1165
1166  if (Lex.getKind() == lltok::rparen) {
1167    // empty
1168  } else if (Lex.getKind() == lltok::dotdotdot) {
1169    isVarArg = true;
1170    Lex.Lex();
1171  } else {
1172    LocTy TypeLoc = Lex.getLoc();
1173    PATypeHolder ArgTy(Type::VoidTy);
1174    unsigned Attrs;
1175    std::string Name;
1176
1177    // If we're parsing a type, use ParseTypeRec, because we allow recursive
1178    // types (such as a function returning a pointer to itself).  If parsing a
1179    // function prototype, we require fully resolved types.
1180    if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1181        ParseOptionalAttrs(Attrs, 0)) return true;
1182
1183    if (ArgTy == Type::VoidTy)
1184      return Error(TypeLoc, "argument can not have void type");
1185
1186    if (Lex.getKind() == lltok::LocalVar ||
1187        Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1188      Name = Lex.getStrVal();
1189      Lex.Lex();
1190    }
1191
1192    if (!FunctionType::isValidArgumentType(ArgTy))
1193      return Error(TypeLoc, "invalid type for function argument");
1194
1195    ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1196
1197    while (EatIfPresent(lltok::comma)) {
1198      // Handle ... at end of arg list.
1199      if (EatIfPresent(lltok::dotdotdot)) {
1200        isVarArg = true;
1201        break;
1202      }
1203
1204      // Otherwise must be an argument type.
1205      TypeLoc = Lex.getLoc();
1206      if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1207          ParseOptionalAttrs(Attrs, 0)) return true;
1208
1209      if (ArgTy == Type::VoidTy)
1210        return Error(TypeLoc, "argument can not have void type");
1211
1212      if (Lex.getKind() == lltok::LocalVar ||
1213          Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1214        Name = Lex.getStrVal();
1215        Lex.Lex();
1216      } else {
1217        Name = "";
1218      }
1219
1220      if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1221        return Error(TypeLoc, "invalid type for function argument");
1222
1223      ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1224    }
1225  }
1226
1227  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1228}
1229
1230/// ParseFunctionType
1231///  ::= Type ArgumentList OptionalAttrs
1232bool LLParser::ParseFunctionType(PATypeHolder &Result) {
1233  assert(Lex.getKind() == lltok::lparen);
1234
1235  if (!FunctionType::isValidReturnType(Result))
1236    return TokError("invalid function return type");
1237
1238  std::vector<ArgInfo> ArgList;
1239  bool isVarArg;
1240  unsigned Attrs;
1241  if (ParseArgumentList(ArgList, isVarArg, true) ||
1242      // FIXME: Allow, but ignore attributes on function types!
1243      // FIXME: Remove in LLVM 3.0
1244      ParseOptionalAttrs(Attrs, 2))
1245    return true;
1246
1247  // Reject names on the arguments lists.
1248  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1249    if (!ArgList[i].Name.empty())
1250      return Error(ArgList[i].Loc, "argument name invalid in function type");
1251    if (!ArgList[i].Attrs != 0) {
1252      // Allow but ignore attributes on function types; this permits
1253      // auto-upgrade.
1254      // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1255    }
1256  }
1257
1258  std::vector<const Type*> ArgListTy;
1259  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1260    ArgListTy.push_back(ArgList[i].Type);
1261
1262  Result = HandleUpRefs(FunctionType::get(Result.get(), ArgListTy, isVarArg));
1263  return false;
1264}
1265
1266/// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1267///   TypeRec
1268///     ::= '{' '}'
1269///     ::= '{' TypeRec (',' TypeRec)* '}'
1270///     ::= '<' '{' '}' '>'
1271///     ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1272bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
1273  assert(Lex.getKind() == lltok::lbrace);
1274  Lex.Lex(); // Consume the '{'
1275
1276  if (EatIfPresent(lltok::rbrace)) {
1277    Result = StructType::get(Packed);
1278    return false;
1279  }
1280
1281  std::vector<PATypeHolder> ParamsList;
1282  LocTy EltTyLoc = Lex.getLoc();
1283  if (ParseTypeRec(Result)) return true;
1284  ParamsList.push_back(Result);
1285
1286  if (Result == Type::VoidTy)
1287    return Error(EltTyLoc, "struct element can not have void type");
1288  if (!StructType::isValidElementType(Result))
1289    return Error(EltTyLoc, "invalid element type for struct");
1290
1291  while (EatIfPresent(lltok::comma)) {
1292    EltTyLoc = Lex.getLoc();
1293    if (ParseTypeRec(Result)) return true;
1294
1295    if (Result == Type::VoidTy)
1296      return Error(EltTyLoc, "struct element can not have void type");
1297    if (!StructType::isValidElementType(Result))
1298      return Error(EltTyLoc, "invalid element type for struct");
1299
1300    ParamsList.push_back(Result);
1301  }
1302
1303  if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
1304    return true;
1305
1306  std::vector<const Type*> ParamsListTy;
1307  for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1308    ParamsListTy.push_back(ParamsList[i].get());
1309  Result = HandleUpRefs(StructType::get(ParamsListTy, Packed));
1310  return false;
1311}
1312
1313/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1314/// token has already been consumed.
1315///   TypeRec
1316///     ::= '[' APSINTVAL 'x' Types ']'
1317///     ::= '<' APSINTVAL 'x' Types '>'
1318bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
1319  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1320      Lex.getAPSIntVal().getBitWidth() > 64)
1321    return TokError("expected number in address space");
1322
1323  LocTy SizeLoc = Lex.getLoc();
1324  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1325  Lex.Lex();
1326
1327  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1328      return true;
1329
1330  LocTy TypeLoc = Lex.getLoc();
1331  PATypeHolder EltTy(Type::VoidTy);
1332  if (ParseTypeRec(EltTy)) return true;
1333
1334  if (EltTy == Type::VoidTy)
1335    return Error(TypeLoc, "array and vector element type cannot be void");
1336
1337  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1338                 "expected end of sequential type"))
1339    return true;
1340
1341  if (isVector) {
1342    if (Size == 0)
1343      return Error(SizeLoc, "zero element vector is illegal");
1344    if ((unsigned)Size != Size)
1345      return Error(SizeLoc, "size too large for vector");
1346    if (!VectorType::isValidElementType(EltTy))
1347      return Error(TypeLoc, "vector element type must be fp or integer");
1348    Result = VectorType::get(EltTy, unsigned(Size));
1349  } else {
1350    if (!ArrayType::isValidElementType(EltTy))
1351      return Error(TypeLoc, "invalid array element type");
1352    Result = HandleUpRefs(ArrayType::get(EltTy, Size));
1353  }
1354  return false;
1355}
1356
1357//===----------------------------------------------------------------------===//
1358// Function Semantic Analysis.
1359//===----------------------------------------------------------------------===//
1360
1361LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f)
1362  : P(p), F(f) {
1363
1364  // Insert unnamed arguments into the NumberedVals list.
1365  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1366       AI != E; ++AI)
1367    if (!AI->hasName())
1368      NumberedVals.push_back(AI);
1369}
1370
1371LLParser::PerFunctionState::~PerFunctionState() {
1372  // If there were any forward referenced non-basicblock values, delete them.
1373  for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1374       I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1375    if (!isa<BasicBlock>(I->second.first)) {
1376      I->second.first->replaceAllUsesWith(UndefValue::get(I->second.first
1377                                                          ->getType()));
1378      delete I->second.first;
1379      I->second.first = 0;
1380    }
1381
1382  for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1383       I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1384    if (!isa<BasicBlock>(I->second.first)) {
1385      I->second.first->replaceAllUsesWith(UndefValue::get(I->second.first
1386                                                          ->getType()));
1387      delete I->second.first;
1388      I->second.first = 0;
1389    }
1390}
1391
1392bool LLParser::PerFunctionState::VerifyFunctionComplete() {
1393  if (!ForwardRefVals.empty())
1394    return P.Error(ForwardRefVals.begin()->second.second,
1395                   "use of undefined value '%" + ForwardRefVals.begin()->first +
1396                   "'");
1397  if (!ForwardRefValIDs.empty())
1398    return P.Error(ForwardRefValIDs.begin()->second.second,
1399                   "use of undefined value '%" +
1400                   utostr(ForwardRefValIDs.begin()->first) + "'");
1401  return false;
1402}
1403
1404
1405/// GetVal - Get a value with the specified name or ID, creating a
1406/// forward reference record if needed.  This can return null if the value
1407/// exists but does not have the right type.
1408Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1409                                          const Type *Ty, LocTy Loc) {
1410  // Look this name up in the normal function symbol table.
1411  Value *Val = F.getValueSymbolTable().lookup(Name);
1412
1413  // If this is a forward reference for the value, see if we already created a
1414  // forward ref record.
1415  if (Val == 0) {
1416    std::map<std::string, std::pair<Value*, LocTy> >::iterator
1417      I = ForwardRefVals.find(Name);
1418    if (I != ForwardRefVals.end())
1419      Val = I->second.first;
1420  }
1421
1422  // If we have the value in the symbol table or fwd-ref table, return it.
1423  if (Val) {
1424    if (Val->getType() == Ty) return Val;
1425    if (Ty == Type::LabelTy)
1426      P.Error(Loc, "'%" + Name + "' is not a basic block");
1427    else
1428      P.Error(Loc, "'%" + Name + "' defined with type '" +
1429              Val->getType()->getDescription() + "'");
1430    return 0;
1431  }
1432
1433  // Don't make placeholders with invalid type.
1434  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) {
1435    P.Error(Loc, "invalid use of a non-first-class type");
1436    return 0;
1437  }
1438
1439  // Otherwise, create a new forward reference for this value and remember it.
1440  Value *FwdVal;
1441  if (Ty == Type::LabelTy)
1442    FwdVal = BasicBlock::Create(Name, &F);
1443  else
1444    FwdVal = new Argument(Ty, Name);
1445
1446  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1447  return FwdVal;
1448}
1449
1450Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
1451                                          LocTy Loc) {
1452  // Look this name up in the normal function symbol table.
1453  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1454
1455  // If this is a forward reference for the value, see if we already created a
1456  // forward ref record.
1457  if (Val == 0) {
1458    std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1459      I = ForwardRefValIDs.find(ID);
1460    if (I != ForwardRefValIDs.end())
1461      Val = I->second.first;
1462  }
1463
1464  // If we have the value in the symbol table or fwd-ref table, return it.
1465  if (Val) {
1466    if (Val->getType() == Ty) return Val;
1467    if (Ty == Type::LabelTy)
1468      P.Error(Loc, "'%" + utostr(ID) + "' is not a basic block");
1469    else
1470      P.Error(Loc, "'%" + utostr(ID) + "' defined with type '" +
1471              Val->getType()->getDescription() + "'");
1472    return 0;
1473  }
1474
1475  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) {
1476    P.Error(Loc, "invalid use of a non-first-class type");
1477    return 0;
1478  }
1479
1480  // Otherwise, create a new forward reference for this value and remember it.
1481  Value *FwdVal;
1482  if (Ty == Type::LabelTy)
1483    FwdVal = BasicBlock::Create("", &F);
1484  else
1485    FwdVal = new Argument(Ty);
1486
1487  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1488  return FwdVal;
1489}
1490
1491/// SetInstName - After an instruction is parsed and inserted into its
1492/// basic block, this installs its name.
1493bool LLParser::PerFunctionState::SetInstName(int NameID,
1494                                             const std::string &NameStr,
1495                                             LocTy NameLoc, Instruction *Inst) {
1496  // If this instruction has void type, it cannot have a name or ID specified.
1497  if (Inst->getType() == Type::VoidTy) {
1498    if (NameID != -1 || !NameStr.empty())
1499      return P.Error(NameLoc, "instructions returning void cannot have a name");
1500    return false;
1501  }
1502
1503  // If this was a numbered instruction, verify that the instruction is the
1504  // expected value and resolve any forward references.
1505  if (NameStr.empty()) {
1506    // If neither a name nor an ID was specified, just use the next ID.
1507    if (NameID == -1)
1508      NameID = NumberedVals.size();
1509
1510    if (unsigned(NameID) != NumberedVals.size())
1511      return P.Error(NameLoc, "instruction expected to be numbered '%" +
1512                     utostr(NumberedVals.size()) + "'");
1513
1514    std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1515      ForwardRefValIDs.find(NameID);
1516    if (FI != ForwardRefValIDs.end()) {
1517      if (FI->second.first->getType() != Inst->getType())
1518        return P.Error(NameLoc, "instruction forward referenced with type '" +
1519                       FI->second.first->getType()->getDescription() + "'");
1520      FI->second.first->replaceAllUsesWith(Inst);
1521      ForwardRefValIDs.erase(FI);
1522    }
1523
1524    NumberedVals.push_back(Inst);
1525    return false;
1526  }
1527
1528  // Otherwise, the instruction had a name.  Resolve forward refs and set it.
1529  std::map<std::string, std::pair<Value*, LocTy> >::iterator
1530    FI = ForwardRefVals.find(NameStr);
1531  if (FI != ForwardRefVals.end()) {
1532    if (FI->second.first->getType() != Inst->getType())
1533      return P.Error(NameLoc, "instruction forward referenced with type '" +
1534                     FI->second.first->getType()->getDescription() + "'");
1535    FI->second.first->replaceAllUsesWith(Inst);
1536    ForwardRefVals.erase(FI);
1537  }
1538
1539  // Set the name on the instruction.
1540  Inst->setName(NameStr);
1541
1542  if (Inst->getNameStr() != NameStr)
1543    return P.Error(NameLoc, "multiple definition of local value named '" +
1544                   NameStr + "'");
1545  return false;
1546}
1547
1548/// GetBB - Get a basic block with the specified name or ID, creating a
1549/// forward reference record if needed.
1550BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1551                                              LocTy Loc) {
1552  return cast_or_null<BasicBlock>(GetVal(Name, Type::LabelTy, Loc));
1553}
1554
1555BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1556  return cast_or_null<BasicBlock>(GetVal(ID, Type::LabelTy, Loc));
1557}
1558
1559/// DefineBB - Define the specified basic block, which is either named or
1560/// unnamed.  If there is an error, this returns null otherwise it returns
1561/// the block being defined.
1562BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1563                                                 LocTy Loc) {
1564  BasicBlock *BB;
1565  if (Name.empty())
1566    BB = GetBB(NumberedVals.size(), Loc);
1567  else
1568    BB = GetBB(Name, Loc);
1569  if (BB == 0) return 0; // Already diagnosed error.
1570
1571  // Move the block to the end of the function.  Forward ref'd blocks are
1572  // inserted wherever they happen to be referenced.
1573  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1574
1575  // Remove the block from forward ref sets.
1576  if (Name.empty()) {
1577    ForwardRefValIDs.erase(NumberedVals.size());
1578    NumberedVals.push_back(BB);
1579  } else {
1580    // BB forward references are already in the function symbol table.
1581    ForwardRefVals.erase(Name);
1582  }
1583
1584  return BB;
1585}
1586
1587//===----------------------------------------------------------------------===//
1588// Constants.
1589//===----------------------------------------------------------------------===//
1590
1591/// ParseValID - Parse an abstract value that doesn't necessarily have a
1592/// type implied.  For example, if we parse "4" we don't know what integer type
1593/// it has.  The value will later be combined with its type and checked for
1594/// sanity.
1595bool LLParser::ParseValID(ValID &ID) {
1596  ID.Loc = Lex.getLoc();
1597  switch (Lex.getKind()) {
1598  default: return TokError("expected value token");
1599  case lltok::GlobalID:  // @42
1600    ID.UIntVal = Lex.getUIntVal();
1601    ID.Kind = ValID::t_GlobalID;
1602    break;
1603  case lltok::GlobalVar:  // @foo
1604    ID.StrVal = Lex.getStrVal();
1605    ID.Kind = ValID::t_GlobalName;
1606    break;
1607  case lltok::LocalVarID:  // %42
1608    ID.UIntVal = Lex.getUIntVal();
1609    ID.Kind = ValID::t_LocalID;
1610    break;
1611  case lltok::LocalVar:  // %foo
1612  case lltok::StringConstant:  // "foo" - FIXME: REMOVE IN LLVM 3.0
1613    ID.StrVal = Lex.getStrVal();
1614    ID.Kind = ValID::t_LocalName;
1615    break;
1616  case lltok::Metadata: {  // !{...} MDNode, !"foo" MDString
1617    ID.Kind = ValID::t_Constant;
1618    Lex.Lex();
1619    if (Lex.getKind() == lltok::lbrace) {
1620      SmallVector<Value*, 16> Elts;
1621      if (ParseMDNodeVector(Elts) ||
1622          ParseToken(lltok::rbrace, "expected end of metadata node"))
1623        return true;
1624
1625      ID.ConstantVal = MDNode::get(Elts.data(), Elts.size());
1626      return false;
1627    }
1628
1629    // Standalone metadata reference
1630    // !{ ..., !42, ... }
1631    unsigned MID = 0;
1632    if (!ParseUInt32(MID)) {
1633      std::map<unsigned, Constant *>::iterator I = MetadataCache.find(MID);
1634      if (I == MetadataCache.end())
1635	return TokError("Unknown metadata reference");
1636      ID.ConstantVal = I->second;
1637      return false;
1638    }
1639
1640    // MDString:
1641    //   ::= '!' STRINGCONSTANT
1642    std::string Str;
1643    if (ParseStringConstant(Str)) return true;
1644
1645    ID.ConstantVal = MDString::get(Str.data(), Str.data() + Str.size());
1646    return false;
1647  }
1648  case lltok::APSInt:
1649    ID.APSIntVal = Lex.getAPSIntVal();
1650    ID.Kind = ValID::t_APSInt;
1651    break;
1652  case lltok::APFloat:
1653    ID.APFloatVal = Lex.getAPFloatVal();
1654    ID.Kind = ValID::t_APFloat;
1655    break;
1656  case lltok::kw_true:
1657    ID.ConstantVal = Context.getConstantIntTrue();
1658    ID.Kind = ValID::t_Constant;
1659    break;
1660  case lltok::kw_false:
1661    ID.ConstantVal = Context.getConstantIntFalse();
1662    ID.Kind = ValID::t_Constant;
1663    break;
1664  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
1665  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
1666  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
1667
1668  case lltok::lbrace: {
1669    // ValID ::= '{' ConstVector '}'
1670    Lex.Lex();
1671    SmallVector<Constant*, 16> Elts;
1672    if (ParseGlobalValueVector(Elts) ||
1673        ParseToken(lltok::rbrace, "expected end of struct constant"))
1674      return true;
1675
1676    ID.ConstantVal = ConstantStruct::get(Elts.data(), Elts.size(), false);
1677    ID.Kind = ValID::t_Constant;
1678    return false;
1679  }
1680  case lltok::less: {
1681    // ValID ::= '<' ConstVector '>'         --> Vector.
1682    // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1683    Lex.Lex();
1684    bool isPackedStruct = EatIfPresent(lltok::lbrace);
1685
1686    SmallVector<Constant*, 16> Elts;
1687    LocTy FirstEltLoc = Lex.getLoc();
1688    if (ParseGlobalValueVector(Elts) ||
1689        (isPackedStruct &&
1690         ParseToken(lltok::rbrace, "expected end of packed struct")) ||
1691        ParseToken(lltok::greater, "expected end of constant"))
1692      return true;
1693
1694    if (isPackedStruct) {
1695      ID.ConstantVal = ConstantStruct::get(Elts.data(), Elts.size(), true);
1696      ID.Kind = ValID::t_Constant;
1697      return false;
1698    }
1699
1700    if (Elts.empty())
1701      return Error(ID.Loc, "constant vector must not be empty");
1702
1703    if (!Elts[0]->getType()->isInteger() &&
1704        !Elts[0]->getType()->isFloatingPoint())
1705      return Error(FirstEltLoc,
1706                   "vector elements must have integer or floating point type");
1707
1708    // Verify that all the vector elements have the same type.
1709    for (unsigned i = 1, e = Elts.size(); i != e; ++i)
1710      if (Elts[i]->getType() != Elts[0]->getType())
1711        return Error(FirstEltLoc,
1712                     "vector element #" + utostr(i) +
1713                    " is not of type '" + Elts[0]->getType()->getDescription());
1714
1715    ID.ConstantVal = ConstantVector::get(Elts.data(), Elts.size());
1716    ID.Kind = ValID::t_Constant;
1717    return false;
1718  }
1719  case lltok::lsquare: {   // Array Constant
1720    Lex.Lex();
1721    SmallVector<Constant*, 16> Elts;
1722    LocTy FirstEltLoc = Lex.getLoc();
1723    if (ParseGlobalValueVector(Elts) ||
1724        ParseToken(lltok::rsquare, "expected end of array constant"))
1725      return true;
1726
1727    // Handle empty element.
1728    if (Elts.empty()) {
1729      // Use undef instead of an array because it's inconvenient to determine
1730      // the element type at this point, there being no elements to examine.
1731      ID.Kind = ValID::t_EmptyArray;
1732      return false;
1733    }
1734
1735    if (!Elts[0]->getType()->isFirstClassType())
1736      return Error(FirstEltLoc, "invalid array element type: " +
1737                   Elts[0]->getType()->getDescription());
1738
1739    ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
1740
1741    // Verify all elements are correct type!
1742    for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
1743      if (Elts[i]->getType() != Elts[0]->getType())
1744        return Error(FirstEltLoc,
1745                     "array element #" + utostr(i) +
1746                     " is not of type '" +Elts[0]->getType()->getDescription());
1747    }
1748
1749    ID.ConstantVal = ConstantArray::get(ATy, Elts.data(), Elts.size());
1750    ID.Kind = ValID::t_Constant;
1751    return false;
1752  }
1753  case lltok::kw_c:  // c "foo"
1754    Lex.Lex();
1755    ID.ConstantVal = ConstantArray::get(Lex.getStrVal(), false);
1756    if (ParseToken(lltok::StringConstant, "expected string")) return true;
1757    ID.Kind = ValID::t_Constant;
1758    return false;
1759
1760  case lltok::kw_asm: {
1761    // ValID ::= 'asm' SideEffect? STRINGCONSTANT ',' STRINGCONSTANT
1762    bool HasSideEffect;
1763    Lex.Lex();
1764    if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
1765        ParseStringConstant(ID.StrVal) ||
1766        ParseToken(lltok::comma, "expected comma in inline asm expression") ||
1767        ParseToken(lltok::StringConstant, "expected constraint string"))
1768      return true;
1769    ID.StrVal2 = Lex.getStrVal();
1770    ID.UIntVal = HasSideEffect;
1771    ID.Kind = ValID::t_InlineAsm;
1772    return false;
1773  }
1774
1775  case lltok::kw_trunc:
1776  case lltok::kw_zext:
1777  case lltok::kw_sext:
1778  case lltok::kw_fptrunc:
1779  case lltok::kw_fpext:
1780  case lltok::kw_bitcast:
1781  case lltok::kw_uitofp:
1782  case lltok::kw_sitofp:
1783  case lltok::kw_fptoui:
1784  case lltok::kw_fptosi:
1785  case lltok::kw_inttoptr:
1786  case lltok::kw_ptrtoint: {
1787    unsigned Opc = Lex.getUIntVal();
1788    PATypeHolder DestTy(Type::VoidTy);
1789    Constant *SrcVal;
1790    Lex.Lex();
1791    if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
1792        ParseGlobalTypeAndValue(SrcVal) ||
1793        ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
1794        ParseType(DestTy) ||
1795        ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
1796      return true;
1797    if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
1798      return Error(ID.Loc, "invalid cast opcode for cast from '" +
1799                   SrcVal->getType()->getDescription() + "' to '" +
1800                   DestTy->getDescription() + "'");
1801    ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, SrcVal,
1802                                           DestTy);
1803    ID.Kind = ValID::t_Constant;
1804    return false;
1805  }
1806  case lltok::kw_extractvalue: {
1807    Lex.Lex();
1808    Constant *Val;
1809    SmallVector<unsigned, 4> Indices;
1810    if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
1811        ParseGlobalTypeAndValue(Val) ||
1812        ParseIndexList(Indices) ||
1813        ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
1814      return true;
1815    if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
1816      return Error(ID.Loc, "extractvalue operand must be array or struct");
1817    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
1818                                          Indices.end()))
1819      return Error(ID.Loc, "invalid indices for extractvalue");
1820    ID.ConstantVal =
1821      ConstantExpr::getExtractValue(Val, Indices.data(), Indices.size());
1822    ID.Kind = ValID::t_Constant;
1823    return false;
1824  }
1825  case lltok::kw_insertvalue: {
1826    Lex.Lex();
1827    Constant *Val0, *Val1;
1828    SmallVector<unsigned, 4> Indices;
1829    if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
1830        ParseGlobalTypeAndValue(Val0) ||
1831        ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
1832        ParseGlobalTypeAndValue(Val1) ||
1833        ParseIndexList(Indices) ||
1834        ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
1835      return true;
1836    if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
1837      return Error(ID.Loc, "extractvalue operand must be array or struct");
1838    if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
1839                                          Indices.end()))
1840      return Error(ID.Loc, "invalid indices for insertvalue");
1841    ID.ConstantVal =
1842      ConstantExpr::getInsertValue(Val0, Val1, Indices.data(), Indices.size());
1843    ID.Kind = ValID::t_Constant;
1844    return false;
1845  }
1846  case lltok::kw_icmp:
1847  case lltok::kw_fcmp:
1848  case lltok::kw_vicmp:
1849  case lltok::kw_vfcmp: {
1850    unsigned PredVal, Opc = Lex.getUIntVal();
1851    Constant *Val0, *Val1;
1852    Lex.Lex();
1853    if (ParseCmpPredicate(PredVal, Opc) ||
1854        ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
1855        ParseGlobalTypeAndValue(Val0) ||
1856        ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
1857        ParseGlobalTypeAndValue(Val1) ||
1858        ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
1859      return true;
1860
1861    if (Val0->getType() != Val1->getType())
1862      return Error(ID.Loc, "compare operands must have the same type");
1863
1864    CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
1865
1866    if (Opc == Instruction::FCmp) {
1867      if (!Val0->getType()->isFPOrFPVector())
1868        return Error(ID.Loc, "fcmp requires floating point operands");
1869      ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
1870    } else if (Opc == Instruction::ICmp) {
1871      if (!Val0->getType()->isIntOrIntVector() &&
1872          !isa<PointerType>(Val0->getType()))
1873        return Error(ID.Loc, "icmp requires pointer or integer operands");
1874      ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
1875    } else if (Opc == Instruction::VFCmp) {
1876      // FIXME: REMOVE VFCMP Support
1877      if (!Val0->getType()->isFPOrFPVector() ||
1878          !isa<VectorType>(Val0->getType()))
1879        return Error(ID.Loc, "vfcmp requires vector floating point operands");
1880      ID.ConstantVal = ConstantExpr::getVFCmp(Pred, Val0, Val1);
1881    } else if (Opc == Instruction::VICmp) {
1882      // FIXME: REMOVE VICMP Support
1883      if (!Val0->getType()->isIntOrIntVector() ||
1884          !isa<VectorType>(Val0->getType()))
1885        return Error(ID.Loc, "vicmp requires vector floating point operands");
1886      ID.ConstantVal = ConstantExpr::getVICmp(Pred, Val0, Val1);
1887    }
1888    ID.Kind = ValID::t_Constant;
1889    return false;
1890  }
1891
1892  // Binary Operators.
1893  case lltok::kw_add:
1894  case lltok::kw_fadd:
1895  case lltok::kw_sub:
1896  case lltok::kw_fsub:
1897  case lltok::kw_mul:
1898  case lltok::kw_fmul:
1899  case lltok::kw_udiv:
1900  case lltok::kw_sdiv:
1901  case lltok::kw_fdiv:
1902  case lltok::kw_urem:
1903  case lltok::kw_srem:
1904  case lltok::kw_frem: {
1905    unsigned Opc = Lex.getUIntVal();
1906    Constant *Val0, *Val1;
1907    Lex.Lex();
1908    if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
1909        ParseGlobalTypeAndValue(Val0) ||
1910        ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
1911        ParseGlobalTypeAndValue(Val1) ||
1912        ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
1913      return true;
1914    if (Val0->getType() != Val1->getType())
1915      return Error(ID.Loc, "operands of constexpr must have same type");
1916    if (!Val0->getType()->isIntOrIntVector() &&
1917        !Val0->getType()->isFPOrFPVector())
1918      return Error(ID.Loc,"constexpr requires integer, fp, or vector operands");
1919    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
1920    ID.Kind = ValID::t_Constant;
1921    return false;
1922  }
1923
1924  // Logical Operations
1925  case lltok::kw_shl:
1926  case lltok::kw_lshr:
1927  case lltok::kw_ashr:
1928  case lltok::kw_and:
1929  case lltok::kw_or:
1930  case lltok::kw_xor: {
1931    unsigned Opc = Lex.getUIntVal();
1932    Constant *Val0, *Val1;
1933    Lex.Lex();
1934    if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
1935        ParseGlobalTypeAndValue(Val0) ||
1936        ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
1937        ParseGlobalTypeAndValue(Val1) ||
1938        ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
1939      return true;
1940    if (Val0->getType() != Val1->getType())
1941      return Error(ID.Loc, "operands of constexpr must have same type");
1942    if (!Val0->getType()->isIntOrIntVector())
1943      return Error(ID.Loc,
1944                   "constexpr requires integer or integer vector operands");
1945    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
1946    ID.Kind = ValID::t_Constant;
1947    return false;
1948  }
1949
1950  case lltok::kw_getelementptr:
1951  case lltok::kw_shufflevector:
1952  case lltok::kw_insertelement:
1953  case lltok::kw_extractelement:
1954  case lltok::kw_select: {
1955    unsigned Opc = Lex.getUIntVal();
1956    SmallVector<Constant*, 16> Elts;
1957    Lex.Lex();
1958    if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
1959        ParseGlobalValueVector(Elts) ||
1960        ParseToken(lltok::rparen, "expected ')' in constantexpr"))
1961      return true;
1962
1963    if (Opc == Instruction::GetElementPtr) {
1964      if (Elts.size() == 0 || !isa<PointerType>(Elts[0]->getType()))
1965        return Error(ID.Loc, "getelementptr requires pointer operand");
1966
1967      if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
1968                                             (Value**)&Elts[1], Elts.size()-1))
1969        return Error(ID.Loc, "invalid indices for getelementptr");
1970      ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0],
1971                                                      &Elts[1], Elts.size()-1);
1972    } else if (Opc == Instruction::Select) {
1973      if (Elts.size() != 3)
1974        return Error(ID.Loc, "expected three operands to select");
1975      if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
1976                                                              Elts[2]))
1977        return Error(ID.Loc, Reason);
1978      ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
1979    } else if (Opc == Instruction::ShuffleVector) {
1980      if (Elts.size() != 3)
1981        return Error(ID.Loc, "expected three operands to shufflevector");
1982      if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
1983        return Error(ID.Loc, "invalid operands to shufflevector");
1984      ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
1985    } else if (Opc == Instruction::ExtractElement) {
1986      if (Elts.size() != 2)
1987        return Error(ID.Loc, "expected two operands to extractelement");
1988      if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
1989        return Error(ID.Loc, "invalid extractelement operands");
1990      ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
1991    } else {
1992      assert(Opc == Instruction::InsertElement && "Unknown opcode");
1993      if (Elts.size() != 3)
1994      return Error(ID.Loc, "expected three operands to insertelement");
1995      if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
1996        return Error(ID.Loc, "invalid insertelement operands");
1997      ID.ConstantVal = ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
1998    }
1999
2000    ID.Kind = ValID::t_Constant;
2001    return false;
2002  }
2003  }
2004
2005  Lex.Lex();
2006  return false;
2007}
2008
2009/// ParseGlobalValue - Parse a global value with the specified type.
2010bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&V) {
2011  V = 0;
2012  ValID ID;
2013  return ParseValID(ID) ||
2014         ConvertGlobalValIDToValue(Ty, ID, V);
2015}
2016
2017/// ConvertGlobalValIDToValue - Apply a type to a ValID to get a fully resolved
2018/// constant.
2019bool LLParser::ConvertGlobalValIDToValue(const Type *Ty, ValID &ID,
2020                                         Constant *&V) {
2021  if (isa<FunctionType>(Ty))
2022    return Error(ID.Loc, "functions are not values, refer to them as pointers");
2023
2024  switch (ID.Kind) {
2025  default: assert(0 && "Unknown ValID!");
2026  case ValID::t_LocalID:
2027  case ValID::t_LocalName:
2028    return Error(ID.Loc, "invalid use of function-local name");
2029  case ValID::t_InlineAsm:
2030    return Error(ID.Loc, "inline asm can only be an operand of call/invoke");
2031  case ValID::t_GlobalName:
2032    V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2033    return V == 0;
2034  case ValID::t_GlobalID:
2035    V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2036    return V == 0;
2037  case ValID::t_APSInt:
2038    if (!isa<IntegerType>(Ty))
2039      return Error(ID.Loc, "integer constant must have integer type");
2040    ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2041    V = Context.getConstantInt(ID.APSIntVal);
2042    return false;
2043  case ValID::t_APFloat:
2044    if (!Ty->isFloatingPoint() ||
2045        !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2046      return Error(ID.Loc, "floating point constant invalid for type");
2047
2048    // The lexer has no type info, so builds all float and double FP constants
2049    // as double.  Fix this here.  Long double does not need this.
2050    if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
2051        Ty == Type::FloatTy) {
2052      bool Ignored;
2053      ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2054                            &Ignored);
2055    }
2056    V = ConstantFP::get(ID.APFloatVal);
2057
2058    if (V->getType() != Ty)
2059      return Error(ID.Loc, "floating point constant does not have type '" +
2060                   Ty->getDescription() + "'");
2061
2062    return false;
2063  case ValID::t_Null:
2064    if (!isa<PointerType>(Ty))
2065      return Error(ID.Loc, "null must be a pointer type");
2066    V = ConstantPointerNull::get(cast<PointerType>(Ty));
2067    return false;
2068  case ValID::t_Undef:
2069    // FIXME: LabelTy should not be a first-class type.
2070    if ((!Ty->isFirstClassType() || Ty == Type::LabelTy) &&
2071        !isa<OpaqueType>(Ty))
2072      return Error(ID.Loc, "invalid type for undef constant");
2073    V = UndefValue::get(Ty);
2074    return false;
2075  case ValID::t_EmptyArray:
2076    if (!isa<ArrayType>(Ty) || cast<ArrayType>(Ty)->getNumElements() != 0)
2077      return Error(ID.Loc, "invalid empty array initializer");
2078    V = UndefValue::get(Ty);
2079    return false;
2080  case ValID::t_Zero:
2081    // FIXME: LabelTy should not be a first-class type.
2082    if (!Ty->isFirstClassType() || Ty == Type::LabelTy)
2083      return Error(ID.Loc, "invalid type for null constant");
2084    V = Constant::getNullValue(Ty);
2085    return false;
2086  case ValID::t_Constant:
2087    if (ID.ConstantVal->getType() != Ty)
2088      return Error(ID.Loc, "constant expression type mismatch");
2089    V = ID.ConstantVal;
2090    return false;
2091  }
2092}
2093
2094bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2095  PATypeHolder Type(Type::VoidTy);
2096  return ParseType(Type) ||
2097         ParseGlobalValue(Type, V);
2098}
2099
2100/// ParseGlobalValueVector
2101///   ::= /*empty*/
2102///   ::= TypeAndValue (',' TypeAndValue)*
2103bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2104  // Empty list.
2105  if (Lex.getKind() == lltok::rbrace ||
2106      Lex.getKind() == lltok::rsquare ||
2107      Lex.getKind() == lltok::greater ||
2108      Lex.getKind() == lltok::rparen)
2109    return false;
2110
2111  Constant *C;
2112  if (ParseGlobalTypeAndValue(C)) return true;
2113  Elts.push_back(C);
2114
2115  while (EatIfPresent(lltok::comma)) {
2116    if (ParseGlobalTypeAndValue(C)) return true;
2117    Elts.push_back(C);
2118  }
2119
2120  return false;
2121}
2122
2123
2124//===----------------------------------------------------------------------===//
2125// Function Parsing.
2126//===----------------------------------------------------------------------===//
2127
2128bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
2129                                   PerFunctionState &PFS) {
2130  if (ID.Kind == ValID::t_LocalID)
2131    V = PFS.GetVal(ID.UIntVal, Ty, ID.Loc);
2132  else if (ID.Kind == ValID::t_LocalName)
2133    V = PFS.GetVal(ID.StrVal, Ty, ID.Loc);
2134  else if (ID.Kind == ValID::t_InlineAsm) {
2135    const PointerType *PTy = dyn_cast<PointerType>(Ty);
2136    const FunctionType *FTy =
2137      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2138    if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2139      return Error(ID.Loc, "invalid type for inline asm constraint string");
2140    V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal);
2141    return false;
2142  } else {
2143    Constant *C;
2144    if (ConvertGlobalValIDToValue(Ty, ID, C)) return true;
2145    V = C;
2146    return false;
2147  }
2148
2149  return V == 0;
2150}
2151
2152bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
2153  V = 0;
2154  ValID ID;
2155  return ParseValID(ID) ||
2156         ConvertValIDToValue(Ty, ID, V, PFS);
2157}
2158
2159bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
2160  PATypeHolder T(Type::VoidTy);
2161  return ParseType(T) ||
2162         ParseValue(T, V, PFS);
2163}
2164
2165/// FunctionHeader
2166///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2167///       Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2168///       OptionalAlign OptGC
2169bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2170  // Parse the linkage.
2171  LocTy LinkageLoc = Lex.getLoc();
2172  unsigned Linkage;
2173
2174  unsigned Visibility, CC, RetAttrs;
2175  PATypeHolder RetType(Type::VoidTy);
2176  LocTy RetTypeLoc = Lex.getLoc();
2177  if (ParseOptionalLinkage(Linkage) ||
2178      ParseOptionalVisibility(Visibility) ||
2179      ParseOptionalCallingConv(CC) ||
2180      ParseOptionalAttrs(RetAttrs, 1) ||
2181      ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2182    return true;
2183
2184  // Verify that the linkage is ok.
2185  switch ((GlobalValue::LinkageTypes)Linkage) {
2186  case GlobalValue::ExternalLinkage:
2187    break; // always ok.
2188  case GlobalValue::DLLImportLinkage:
2189  case GlobalValue::ExternalWeakLinkage:
2190    if (isDefine)
2191      return Error(LinkageLoc, "invalid linkage for function definition");
2192    break;
2193  case GlobalValue::PrivateLinkage:
2194  case GlobalValue::InternalLinkage:
2195  case GlobalValue::AvailableExternallyLinkage:
2196  case GlobalValue::LinkOnceAnyLinkage:
2197  case GlobalValue::LinkOnceODRLinkage:
2198  case GlobalValue::WeakAnyLinkage:
2199  case GlobalValue::WeakODRLinkage:
2200  case GlobalValue::DLLExportLinkage:
2201    if (!isDefine)
2202      return Error(LinkageLoc, "invalid linkage for function declaration");
2203    break;
2204  case GlobalValue::AppendingLinkage:
2205  case GlobalValue::GhostLinkage:
2206  case GlobalValue::CommonLinkage:
2207    return Error(LinkageLoc, "invalid function linkage type");
2208  }
2209
2210  if (!FunctionType::isValidReturnType(RetType) ||
2211      isa<OpaqueType>(RetType))
2212    return Error(RetTypeLoc, "invalid function return type");
2213
2214  LocTy NameLoc = Lex.getLoc();
2215
2216  std::string FunctionName;
2217  if (Lex.getKind() == lltok::GlobalVar) {
2218    FunctionName = Lex.getStrVal();
2219  } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
2220    unsigned NameID = Lex.getUIntVal();
2221
2222    if (NameID != NumberedVals.size())
2223      return TokError("function expected to be numbered '%" +
2224                      utostr(NumberedVals.size()) + "'");
2225  } else {
2226    return TokError("expected function name");
2227  }
2228
2229  Lex.Lex();
2230
2231  if (Lex.getKind() != lltok::lparen)
2232    return TokError("expected '(' in function argument list");
2233
2234  std::vector<ArgInfo> ArgList;
2235  bool isVarArg;
2236  unsigned FuncAttrs;
2237  std::string Section;
2238  unsigned Alignment;
2239  std::string GC;
2240
2241  if (ParseArgumentList(ArgList, isVarArg, false) ||
2242      ParseOptionalAttrs(FuncAttrs, 2) ||
2243      (EatIfPresent(lltok::kw_section) &&
2244       ParseStringConstant(Section)) ||
2245      ParseOptionalAlignment(Alignment) ||
2246      (EatIfPresent(lltok::kw_gc) &&
2247       ParseStringConstant(GC)))
2248    return true;
2249
2250  // If the alignment was parsed as an attribute, move to the alignment field.
2251  if (FuncAttrs & Attribute::Alignment) {
2252    Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2253    FuncAttrs &= ~Attribute::Alignment;
2254  }
2255
2256  // Okay, if we got here, the function is syntactically valid.  Convert types
2257  // and do semantic checks.
2258  std::vector<const Type*> ParamTypeList;
2259  SmallVector<AttributeWithIndex, 8> Attrs;
2260  // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2261  // attributes.
2262  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2263  if (FuncAttrs & ObsoleteFuncAttrs) {
2264    RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
2265    FuncAttrs &= ~ObsoleteFuncAttrs;
2266  }
2267
2268  if (RetAttrs != Attribute::None)
2269    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2270
2271  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2272    ParamTypeList.push_back(ArgList[i].Type);
2273    if (ArgList[i].Attrs != Attribute::None)
2274      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2275  }
2276
2277  if (FuncAttrs != Attribute::None)
2278    Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2279
2280  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2281
2282  if (PAL.paramHasAttr(1, Attribute::StructRet) &&
2283      RetType != Type::VoidTy)
2284    return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2285
2286  const FunctionType *FT = FunctionType::get(RetType, ParamTypeList, isVarArg);
2287  const PointerType *PFT = PointerType::getUnqual(FT);
2288
2289  Fn = 0;
2290  if (!FunctionName.empty()) {
2291    // If this was a definition of a forward reference, remove the definition
2292    // from the forward reference table and fill in the forward ref.
2293    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2294      ForwardRefVals.find(FunctionName);
2295    if (FRVI != ForwardRefVals.end()) {
2296      Fn = M->getFunction(FunctionName);
2297      ForwardRefVals.erase(FRVI);
2298    } else if ((Fn = M->getFunction(FunctionName))) {
2299      // If this function already exists in the symbol table, then it is
2300      // multiply defined.  We accept a few cases for old backwards compat.
2301      // FIXME: Remove this stuff for LLVM 3.0.
2302      if (Fn->getType() != PFT || Fn->getAttributes() != PAL ||
2303          (!Fn->isDeclaration() && isDefine)) {
2304        // If the redefinition has different type or different attributes,
2305        // reject it.  If both have bodies, reject it.
2306        return Error(NameLoc, "invalid redefinition of function '" +
2307                     FunctionName + "'");
2308      } else if (Fn->isDeclaration()) {
2309        // Make sure to strip off any argument names so we can't get conflicts.
2310        for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2311             AI != AE; ++AI)
2312          AI->setName("");
2313      }
2314    }
2315
2316  } else if (FunctionName.empty()) {
2317    // If this is a definition of a forward referenced function, make sure the
2318    // types agree.
2319    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2320      = ForwardRefValIDs.find(NumberedVals.size());
2321    if (I != ForwardRefValIDs.end()) {
2322      Fn = cast<Function>(I->second.first);
2323      if (Fn->getType() != PFT)
2324        return Error(NameLoc, "type of definition and forward reference of '@" +
2325                     utostr(NumberedVals.size()) +"' disagree");
2326      ForwardRefValIDs.erase(I);
2327    }
2328  }
2329
2330  if (Fn == 0)
2331    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2332  else // Move the forward-reference to the correct spot in the module.
2333    M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2334
2335  if (FunctionName.empty())
2336    NumberedVals.push_back(Fn);
2337
2338  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2339  Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2340  Fn->setCallingConv(CC);
2341  Fn->setAttributes(PAL);
2342  Fn->setAlignment(Alignment);
2343  Fn->setSection(Section);
2344  if (!GC.empty()) Fn->setGC(GC.c_str());
2345
2346  // Add all of the arguments we parsed to the function.
2347  Function::arg_iterator ArgIt = Fn->arg_begin();
2348  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2349    // If the argument has a name, insert it into the argument symbol table.
2350    if (ArgList[i].Name.empty()) continue;
2351
2352    // Set the name, if it conflicted, it will be auto-renamed.
2353    ArgIt->setName(ArgList[i].Name);
2354
2355    if (ArgIt->getNameStr() != ArgList[i].Name)
2356      return Error(ArgList[i].Loc, "redefinition of argument '%" +
2357                   ArgList[i].Name + "'");
2358  }
2359
2360  return false;
2361}
2362
2363
2364/// ParseFunctionBody
2365///   ::= '{' BasicBlock+ '}'
2366///   ::= 'begin' BasicBlock+ 'end'  // FIXME: remove in LLVM 3.0
2367///
2368bool LLParser::ParseFunctionBody(Function &Fn) {
2369  if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
2370    return TokError("expected '{' in function body");
2371  Lex.Lex();  // eat the {.
2372
2373  PerFunctionState PFS(*this, Fn);
2374
2375  while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
2376    if (ParseBasicBlock(PFS)) return true;
2377
2378  // Eat the }.
2379  Lex.Lex();
2380
2381  // Verify function is ok.
2382  return PFS.VerifyFunctionComplete();
2383}
2384
2385/// ParseBasicBlock
2386///   ::= LabelStr? Instruction*
2387bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2388  // If this basic block starts out with a name, remember it.
2389  std::string Name;
2390  LocTy NameLoc = Lex.getLoc();
2391  if (Lex.getKind() == lltok::LabelStr) {
2392    Name = Lex.getStrVal();
2393    Lex.Lex();
2394  }
2395
2396  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2397  if (BB == 0) return true;
2398
2399  std::string NameStr;
2400
2401  // Parse the instructions in this block until we get a terminator.
2402  Instruction *Inst;
2403  do {
2404    // This instruction may have three possibilities for a name: a) none
2405    // specified, b) name specified "%foo =", c) number specified: "%4 =".
2406    LocTy NameLoc = Lex.getLoc();
2407    int NameID = -1;
2408    NameStr = "";
2409
2410    if (Lex.getKind() == lltok::LocalVarID) {
2411      NameID = Lex.getUIntVal();
2412      Lex.Lex();
2413      if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2414        return true;
2415    } else if (Lex.getKind() == lltok::LocalVar ||
2416               // FIXME: REMOVE IN LLVM 3.0
2417               Lex.getKind() == lltok::StringConstant) {
2418      NameStr = Lex.getStrVal();
2419      Lex.Lex();
2420      if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2421        return true;
2422    }
2423
2424    if (ParseInstruction(Inst, BB, PFS)) return true;
2425
2426    BB->getInstList().push_back(Inst);
2427
2428    // Set the name on the instruction.
2429    if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2430  } while (!isa<TerminatorInst>(Inst));
2431
2432  return false;
2433}
2434
2435//===----------------------------------------------------------------------===//
2436// Instruction Parsing.
2437//===----------------------------------------------------------------------===//
2438
2439/// ParseInstruction - Parse one of the many different instructions.
2440///
2441bool LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2442                                PerFunctionState &PFS) {
2443  lltok::Kind Token = Lex.getKind();
2444  if (Token == lltok::Eof)
2445    return TokError("found end of file when expecting more instructions");
2446  LocTy Loc = Lex.getLoc();
2447  unsigned KeywordVal = Lex.getUIntVal();
2448  Lex.Lex();  // Eat the keyword.
2449
2450  switch (Token) {
2451  default:                    return Error(Loc, "expected instruction opcode");
2452  // Terminator Instructions.
2453  case lltok::kw_unwind:      Inst = new UnwindInst(); return false;
2454  case lltok::kw_unreachable: Inst = new UnreachableInst(); return false;
2455  case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
2456  case lltok::kw_br:          return ParseBr(Inst, PFS);
2457  case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
2458  case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
2459  // Binary Operators.
2460  case lltok::kw_add:
2461  case lltok::kw_sub:
2462  case lltok::kw_mul:
2463    // API compatibility: Accept either integer or floating-point types.
2464    return ParseArithmetic(Inst, PFS, KeywordVal, 0);
2465  case lltok::kw_fadd:
2466  case lltok::kw_fsub:
2467  case lltok::kw_fmul:    return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2468
2469  case lltok::kw_udiv:
2470  case lltok::kw_sdiv:
2471  case lltok::kw_urem:
2472  case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
2473  case lltok::kw_fdiv:
2474  case lltok::kw_frem:   return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2475  case lltok::kw_shl:
2476  case lltok::kw_lshr:
2477  case lltok::kw_ashr:
2478  case lltok::kw_and:
2479  case lltok::kw_or:
2480  case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
2481  case lltok::kw_icmp:
2482  case lltok::kw_fcmp:
2483  case lltok::kw_vicmp:
2484  case lltok::kw_vfcmp:  return ParseCompare(Inst, PFS, KeywordVal);
2485  // Casts.
2486  case lltok::kw_trunc:
2487  case lltok::kw_zext:
2488  case lltok::kw_sext:
2489  case lltok::kw_fptrunc:
2490  case lltok::kw_fpext:
2491  case lltok::kw_bitcast:
2492  case lltok::kw_uitofp:
2493  case lltok::kw_sitofp:
2494  case lltok::kw_fptoui:
2495  case lltok::kw_fptosi:
2496  case lltok::kw_inttoptr:
2497  case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
2498  // Other.
2499  case lltok::kw_select:         return ParseSelect(Inst, PFS);
2500  case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
2501  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
2502  case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
2503  case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
2504  case lltok::kw_phi:            return ParsePHI(Inst, PFS);
2505  case lltok::kw_call:           return ParseCall(Inst, PFS, false);
2506  case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
2507  // Memory.
2508  case lltok::kw_alloca:
2509  case lltok::kw_malloc:         return ParseAlloc(Inst, PFS, KeywordVal);
2510  case lltok::kw_free:           return ParseFree(Inst, PFS);
2511  case lltok::kw_load:           return ParseLoad(Inst, PFS, false);
2512  case lltok::kw_store:          return ParseStore(Inst, PFS, false);
2513  case lltok::kw_volatile:
2514    if (EatIfPresent(lltok::kw_load))
2515      return ParseLoad(Inst, PFS, true);
2516    else if (EatIfPresent(lltok::kw_store))
2517      return ParseStore(Inst, PFS, true);
2518    else
2519      return TokError("expected 'load' or 'store'");
2520  case lltok::kw_getresult:     return ParseGetResult(Inst, PFS);
2521  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
2522  case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
2523  case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
2524  }
2525}
2526
2527/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
2528bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
2529  // FIXME: REMOVE vicmp/vfcmp!
2530  if (Opc == Instruction::FCmp || Opc == Instruction::VFCmp) {
2531    switch (Lex.getKind()) {
2532    default: TokError("expected fcmp predicate (e.g. 'oeq')");
2533    case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
2534    case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
2535    case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
2536    case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
2537    case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
2538    case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
2539    case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
2540    case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
2541    case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
2542    case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
2543    case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
2544    case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
2545    case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
2546    case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
2547    case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
2548    case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
2549    }
2550  } else {
2551    switch (Lex.getKind()) {
2552    default: TokError("expected icmp predicate (e.g. 'eq')");
2553    case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
2554    case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
2555    case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
2556    case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
2557    case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
2558    case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
2559    case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
2560    case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
2561    case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
2562    case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
2563    }
2564  }
2565  Lex.Lex();
2566  return false;
2567}
2568
2569//===----------------------------------------------------------------------===//
2570// Terminator Instructions.
2571//===----------------------------------------------------------------------===//
2572
2573/// ParseRet - Parse a return instruction.
2574///   ::= 'ret' void
2575///   ::= 'ret' TypeAndValue
2576///   ::= 'ret' TypeAndValue (',' TypeAndValue)+  [[obsolete: LLVM 3.0]]
2577bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
2578                        PerFunctionState &PFS) {
2579  PATypeHolder Ty(Type::VoidTy);
2580  if (ParseType(Ty, true /*void allowed*/)) return true;
2581
2582  if (Ty == Type::VoidTy) {
2583    Inst = ReturnInst::Create();
2584    return false;
2585  }
2586
2587  Value *RV;
2588  if (ParseValue(Ty, RV, PFS)) return true;
2589
2590  // The normal case is one return value.
2591  if (Lex.getKind() == lltok::comma) {
2592    // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring use
2593    // of 'ret {i32,i32} {i32 1, i32 2}'
2594    SmallVector<Value*, 8> RVs;
2595    RVs.push_back(RV);
2596
2597    while (EatIfPresent(lltok::comma)) {
2598      if (ParseTypeAndValue(RV, PFS)) return true;
2599      RVs.push_back(RV);
2600    }
2601
2602    RV = UndefValue::get(PFS.getFunction().getReturnType());
2603    for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
2604      Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
2605      BB->getInstList().push_back(I);
2606      RV = I;
2607    }
2608  }
2609  Inst = ReturnInst::Create(RV);
2610  return false;
2611}
2612
2613
2614/// ParseBr
2615///   ::= 'br' TypeAndValue
2616///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2617bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
2618  LocTy Loc, Loc2;
2619  Value *Op0, *Op1, *Op2;
2620  if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
2621
2622  if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
2623    Inst = BranchInst::Create(BB);
2624    return false;
2625  }
2626
2627  if (Op0->getType() != Type::Int1Ty)
2628    return Error(Loc, "branch condition must have 'i1' type");
2629
2630  if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
2631      ParseTypeAndValue(Op1, Loc, PFS) ||
2632      ParseToken(lltok::comma, "expected ',' after true destination") ||
2633      ParseTypeAndValue(Op2, Loc2, PFS))
2634    return true;
2635
2636  if (!isa<BasicBlock>(Op1))
2637    return Error(Loc, "true destination of branch must be a basic block");
2638  if (!isa<BasicBlock>(Op2))
2639    return Error(Loc2, "true destination of branch must be a basic block");
2640
2641  Inst = BranchInst::Create(cast<BasicBlock>(Op1), cast<BasicBlock>(Op2), Op0);
2642  return false;
2643}
2644
2645/// ParseSwitch
2646///  Instruction
2647///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
2648///  JumpTable
2649///    ::= (TypeAndValue ',' TypeAndValue)*
2650bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
2651  LocTy CondLoc, BBLoc;
2652  Value *Cond, *DefaultBB;
2653  if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
2654      ParseToken(lltok::comma, "expected ',' after switch condition") ||
2655      ParseTypeAndValue(DefaultBB, BBLoc, PFS) ||
2656      ParseToken(lltok::lsquare, "expected '[' with switch table"))
2657    return true;
2658
2659  if (!isa<IntegerType>(Cond->getType()))
2660    return Error(CondLoc, "switch condition must have integer type");
2661  if (!isa<BasicBlock>(DefaultBB))
2662    return Error(BBLoc, "default destination must be a basic block");
2663
2664  // Parse the jump table pairs.
2665  SmallPtrSet<Value*, 32> SeenCases;
2666  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
2667  while (Lex.getKind() != lltok::rsquare) {
2668    Value *Constant, *DestBB;
2669
2670    if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
2671        ParseToken(lltok::comma, "expected ',' after case value") ||
2672        ParseTypeAndValue(DestBB, BBLoc, PFS))
2673      return true;
2674
2675    if (!SeenCases.insert(Constant))
2676      return Error(CondLoc, "duplicate case value in switch");
2677    if (!isa<ConstantInt>(Constant))
2678      return Error(CondLoc, "case value is not a constant integer");
2679    if (!isa<BasicBlock>(DestBB))
2680      return Error(BBLoc, "case destination is not a basic block");
2681
2682    Table.push_back(std::make_pair(cast<ConstantInt>(Constant),
2683                                   cast<BasicBlock>(DestBB)));
2684  }
2685
2686  Lex.Lex();  // Eat the ']'.
2687
2688  SwitchInst *SI = SwitchInst::Create(Cond, cast<BasicBlock>(DefaultBB),
2689                                      Table.size());
2690  for (unsigned i = 0, e = Table.size(); i != e; ++i)
2691    SI->addCase(Table[i].first, Table[i].second);
2692  Inst = SI;
2693  return false;
2694}
2695
2696/// ParseInvoke
2697///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
2698///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
2699bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
2700  LocTy CallLoc = Lex.getLoc();
2701  unsigned CC, RetAttrs, FnAttrs;
2702  PATypeHolder RetType(Type::VoidTy);
2703  LocTy RetTypeLoc;
2704  ValID CalleeID;
2705  SmallVector<ParamInfo, 16> ArgList;
2706
2707  Value *NormalBB, *UnwindBB;
2708  if (ParseOptionalCallingConv(CC) ||
2709      ParseOptionalAttrs(RetAttrs, 1) ||
2710      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
2711      ParseValID(CalleeID) ||
2712      ParseParameterList(ArgList, PFS) ||
2713      ParseOptionalAttrs(FnAttrs, 2) ||
2714      ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
2715      ParseTypeAndValue(NormalBB, PFS) ||
2716      ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
2717      ParseTypeAndValue(UnwindBB, PFS))
2718    return true;
2719
2720  if (!isa<BasicBlock>(NormalBB))
2721    return Error(CallLoc, "normal destination is not a basic block");
2722  if (!isa<BasicBlock>(UnwindBB))
2723    return Error(CallLoc, "unwind destination is not a basic block");
2724
2725  // If RetType is a non-function pointer type, then this is the short syntax
2726  // for the call, which means that RetType is just the return type.  Infer the
2727  // rest of the function argument types from the arguments that are present.
2728  const PointerType *PFTy = 0;
2729  const FunctionType *Ty = 0;
2730  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
2731      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2732    // Pull out the types of all of the arguments...
2733    std::vector<const Type*> ParamTypes;
2734    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2735      ParamTypes.push_back(ArgList[i].V->getType());
2736
2737    if (!FunctionType::isValidReturnType(RetType))
2738      return Error(RetTypeLoc, "Invalid result type for LLVM function");
2739
2740    Ty = FunctionType::get(RetType, ParamTypes, false);
2741    PFTy = PointerType::getUnqual(Ty);
2742  }
2743
2744  // Look up the callee.
2745  Value *Callee;
2746  if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
2747
2748  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
2749  // function attributes.
2750  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2751  if (FnAttrs & ObsoleteFuncAttrs) {
2752    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
2753    FnAttrs &= ~ObsoleteFuncAttrs;
2754  }
2755
2756  // Set up the Attributes for the function.
2757  SmallVector<AttributeWithIndex, 8> Attrs;
2758  if (RetAttrs != Attribute::None)
2759    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2760
2761  SmallVector<Value*, 8> Args;
2762
2763  // Loop through FunctionType's arguments and ensure they are specified
2764  // correctly.  Also, gather any parameter attributes.
2765  FunctionType::param_iterator I = Ty->param_begin();
2766  FunctionType::param_iterator E = Ty->param_end();
2767  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2768    const Type *ExpectedTy = 0;
2769    if (I != E) {
2770      ExpectedTy = *I++;
2771    } else if (!Ty->isVarArg()) {
2772      return Error(ArgList[i].Loc, "too many arguments specified");
2773    }
2774
2775    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
2776      return Error(ArgList[i].Loc, "argument is not of expected type '" +
2777                   ExpectedTy->getDescription() + "'");
2778    Args.push_back(ArgList[i].V);
2779    if (ArgList[i].Attrs != Attribute::None)
2780      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2781  }
2782
2783  if (I != E)
2784    return Error(CallLoc, "not enough parameters specified for call");
2785
2786  if (FnAttrs != Attribute::None)
2787    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
2788
2789  // Finish off the Attributes and check them
2790  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2791
2792  InvokeInst *II = InvokeInst::Create(Callee, cast<BasicBlock>(NormalBB),
2793                                      cast<BasicBlock>(UnwindBB),
2794                                      Args.begin(), Args.end());
2795  II->setCallingConv(CC);
2796  II->setAttributes(PAL);
2797  Inst = II;
2798  return false;
2799}
2800
2801
2802
2803//===----------------------------------------------------------------------===//
2804// Binary Operators.
2805//===----------------------------------------------------------------------===//
2806
2807/// ParseArithmetic
2808///  ::= ArithmeticOps TypeAndValue ',' Value
2809///
2810/// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
2811/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
2812bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
2813                               unsigned Opc, unsigned OperandType) {
2814  LocTy Loc; Value *LHS, *RHS;
2815  if (ParseTypeAndValue(LHS, Loc, PFS) ||
2816      ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
2817      ParseValue(LHS->getType(), RHS, PFS))
2818    return true;
2819
2820  bool Valid;
2821  switch (OperandType) {
2822  default: assert(0 && "Unknown operand type!");
2823  case 0: // int or FP.
2824    Valid = LHS->getType()->isIntOrIntVector() ||
2825            LHS->getType()->isFPOrFPVector();
2826    break;
2827  case 1: Valid = LHS->getType()->isIntOrIntVector(); break;
2828  case 2: Valid = LHS->getType()->isFPOrFPVector(); break;
2829  }
2830
2831  if (!Valid)
2832    return Error(Loc, "invalid operand type for instruction");
2833
2834  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2835  return false;
2836}
2837
2838/// ParseLogical
2839///  ::= ArithmeticOps TypeAndValue ',' Value {
2840bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
2841                            unsigned Opc) {
2842  LocTy Loc; Value *LHS, *RHS;
2843  if (ParseTypeAndValue(LHS, Loc, PFS) ||
2844      ParseToken(lltok::comma, "expected ',' in logical operation") ||
2845      ParseValue(LHS->getType(), RHS, PFS))
2846    return true;
2847
2848  if (!LHS->getType()->isIntOrIntVector())
2849    return Error(Loc,"instruction requires integer or integer vector operands");
2850
2851  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2852  return false;
2853}
2854
2855
2856/// ParseCompare
2857///  ::= 'icmp' IPredicates TypeAndValue ',' Value
2858///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
2859///  ::= 'vicmp' IPredicates TypeAndValue ',' Value
2860///  ::= 'vfcmp' FPredicates TypeAndValue ',' Value
2861bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
2862                            unsigned Opc) {
2863  // Parse the integer/fp comparison predicate.
2864  LocTy Loc;
2865  unsigned Pred;
2866  Value *LHS, *RHS;
2867  if (ParseCmpPredicate(Pred, Opc) ||
2868      ParseTypeAndValue(LHS, Loc, PFS) ||
2869      ParseToken(lltok::comma, "expected ',' after compare value") ||
2870      ParseValue(LHS->getType(), RHS, PFS))
2871    return true;
2872
2873  if (Opc == Instruction::FCmp) {
2874    if (!LHS->getType()->isFPOrFPVector())
2875      return Error(Loc, "fcmp requires floating point operands");
2876    Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2877  } else if (Opc == Instruction::ICmp) {
2878    if (!LHS->getType()->isIntOrIntVector() &&
2879        !isa<PointerType>(LHS->getType()))
2880      return Error(Loc, "icmp requires integer operands");
2881    Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2882  } else if (Opc == Instruction::VFCmp) {
2883    if (!LHS->getType()->isFPOrFPVector() || !isa<VectorType>(LHS->getType()))
2884      return Error(Loc, "vfcmp requires vector floating point operands");
2885    Inst = new VFCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2886  } else if (Opc == Instruction::VICmp) {
2887    if (!LHS->getType()->isIntOrIntVector() || !isa<VectorType>(LHS->getType()))
2888      return Error(Loc, "vicmp requires vector floating point operands");
2889    Inst = new VICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2890  }
2891  return false;
2892}
2893
2894//===----------------------------------------------------------------------===//
2895// Other Instructions.
2896//===----------------------------------------------------------------------===//
2897
2898
2899/// ParseCast
2900///   ::= CastOpc TypeAndValue 'to' Type
2901bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
2902                         unsigned Opc) {
2903  LocTy Loc;  Value *Op;
2904  PATypeHolder DestTy(Type::VoidTy);
2905  if (ParseTypeAndValue(Op, Loc, PFS) ||
2906      ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
2907      ParseType(DestTy))
2908    return true;
2909
2910  if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
2911    CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
2912    return Error(Loc, "invalid cast opcode for cast from '" +
2913                 Op->getType()->getDescription() + "' to '" +
2914                 DestTy->getDescription() + "'");
2915  }
2916  Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
2917  return false;
2918}
2919
2920/// ParseSelect
2921///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2922bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
2923  LocTy Loc;
2924  Value *Op0, *Op1, *Op2;
2925  if (ParseTypeAndValue(Op0, Loc, PFS) ||
2926      ParseToken(lltok::comma, "expected ',' after select condition") ||
2927      ParseTypeAndValue(Op1, PFS) ||
2928      ParseToken(lltok::comma, "expected ',' after select value") ||
2929      ParseTypeAndValue(Op2, PFS))
2930    return true;
2931
2932  if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
2933    return Error(Loc, Reason);
2934
2935  Inst = SelectInst::Create(Op0, Op1, Op2);
2936  return false;
2937}
2938
2939/// ParseVA_Arg
2940///   ::= 'va_arg' TypeAndValue ',' Type
2941bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
2942  Value *Op;
2943  PATypeHolder EltTy(Type::VoidTy);
2944  LocTy TypeLoc;
2945  if (ParseTypeAndValue(Op, PFS) ||
2946      ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
2947      ParseType(EltTy, TypeLoc))
2948    return true;
2949
2950  if (!EltTy->isFirstClassType())
2951    return Error(TypeLoc, "va_arg requires operand with first class type");
2952
2953  Inst = new VAArgInst(Op, EltTy);
2954  return false;
2955}
2956
2957/// ParseExtractElement
2958///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
2959bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
2960  LocTy Loc;
2961  Value *Op0, *Op1;
2962  if (ParseTypeAndValue(Op0, Loc, PFS) ||
2963      ParseToken(lltok::comma, "expected ',' after extract value") ||
2964      ParseTypeAndValue(Op1, PFS))
2965    return true;
2966
2967  if (!ExtractElementInst::isValidOperands(Op0, Op1))
2968    return Error(Loc, "invalid extractelement operands");
2969
2970  Inst = new ExtractElementInst(Op0, Op1);
2971  return false;
2972}
2973
2974/// ParseInsertElement
2975///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2976bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
2977  LocTy Loc;
2978  Value *Op0, *Op1, *Op2;
2979  if (ParseTypeAndValue(Op0, Loc, PFS) ||
2980      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2981      ParseTypeAndValue(Op1, PFS) ||
2982      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2983      ParseTypeAndValue(Op2, PFS))
2984    return true;
2985
2986  if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
2987    return Error(Loc, "invalid extractelement operands");
2988
2989  Inst = InsertElementInst::Create(Op0, Op1, Op2);
2990  return false;
2991}
2992
2993/// ParseShuffleVector
2994///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2995bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
2996  LocTy Loc;
2997  Value *Op0, *Op1, *Op2;
2998  if (ParseTypeAndValue(Op0, Loc, PFS) ||
2999      ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3000      ParseTypeAndValue(Op1, PFS) ||
3001      ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3002      ParseTypeAndValue(Op2, PFS))
3003    return true;
3004
3005  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3006    return Error(Loc, "invalid extractelement operands");
3007
3008  Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3009  return false;
3010}
3011
3012/// ParsePHI
3013///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Valueß ']')*
3014bool LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3015  PATypeHolder Ty(Type::VoidTy);
3016  Value *Op0, *Op1;
3017  LocTy TypeLoc = Lex.getLoc();
3018
3019  if (ParseType(Ty) ||
3020      ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3021      ParseValue(Ty, Op0, PFS) ||
3022      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3023      ParseValue(Type::LabelTy, Op1, PFS) ||
3024      ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3025    return true;
3026
3027  SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3028  while (1) {
3029    PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3030
3031    if (!EatIfPresent(lltok::comma))
3032      break;
3033
3034    if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3035        ParseValue(Ty, Op0, PFS) ||
3036        ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3037        ParseValue(Type::LabelTy, Op1, PFS) ||
3038        ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3039      return true;
3040  }
3041
3042  if (!Ty->isFirstClassType())
3043    return Error(TypeLoc, "phi node must have first class type");
3044
3045  PHINode *PN = PHINode::Create(Ty);
3046  PN->reserveOperandSpace(PHIVals.size());
3047  for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3048    PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3049  Inst = PN;
3050  return false;
3051}
3052
3053/// ParseCall
3054///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3055///       ParameterList OptionalAttrs
3056bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3057                         bool isTail) {
3058  unsigned CC, RetAttrs, FnAttrs;
3059  PATypeHolder RetType(Type::VoidTy);
3060  LocTy RetTypeLoc;
3061  ValID CalleeID;
3062  SmallVector<ParamInfo, 16> ArgList;
3063  LocTy CallLoc = Lex.getLoc();
3064
3065  if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3066      ParseOptionalCallingConv(CC) ||
3067      ParseOptionalAttrs(RetAttrs, 1) ||
3068      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3069      ParseValID(CalleeID) ||
3070      ParseParameterList(ArgList, PFS) ||
3071      ParseOptionalAttrs(FnAttrs, 2))
3072    return true;
3073
3074  // If RetType is a non-function pointer type, then this is the short syntax
3075  // for the call, which means that RetType is just the return type.  Infer the
3076  // rest of the function argument types from the arguments that are present.
3077  const PointerType *PFTy = 0;
3078  const FunctionType *Ty = 0;
3079  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3080      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3081    // Pull out the types of all of the arguments...
3082    std::vector<const Type*> ParamTypes;
3083    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3084      ParamTypes.push_back(ArgList[i].V->getType());
3085
3086    if (!FunctionType::isValidReturnType(RetType))
3087      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3088
3089    Ty = FunctionType::get(RetType, ParamTypes, false);
3090    PFTy = PointerType::getUnqual(Ty);
3091  }
3092
3093  // Look up the callee.
3094  Value *Callee;
3095  if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
3096
3097  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3098  // function attributes.
3099  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3100  if (FnAttrs & ObsoleteFuncAttrs) {
3101    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3102    FnAttrs &= ~ObsoleteFuncAttrs;
3103  }
3104
3105  // Set up the Attributes for the function.
3106  SmallVector<AttributeWithIndex, 8> Attrs;
3107  if (RetAttrs != Attribute::None)
3108    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3109
3110  SmallVector<Value*, 8> Args;
3111
3112  // Loop through FunctionType's arguments and ensure they are specified
3113  // correctly.  Also, gather any parameter attributes.
3114  FunctionType::param_iterator I = Ty->param_begin();
3115  FunctionType::param_iterator E = Ty->param_end();
3116  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3117    const Type *ExpectedTy = 0;
3118    if (I != E) {
3119      ExpectedTy = *I++;
3120    } else if (!Ty->isVarArg()) {
3121      return Error(ArgList[i].Loc, "too many arguments specified");
3122    }
3123
3124    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3125      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3126                   ExpectedTy->getDescription() + "'");
3127    Args.push_back(ArgList[i].V);
3128    if (ArgList[i].Attrs != Attribute::None)
3129      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3130  }
3131
3132  if (I != E)
3133    return Error(CallLoc, "not enough parameters specified for call");
3134
3135  if (FnAttrs != Attribute::None)
3136    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3137
3138  // Finish off the Attributes and check them
3139  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3140
3141  CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
3142  CI->setTailCall(isTail);
3143  CI->setCallingConv(CC);
3144  CI->setAttributes(PAL);
3145  Inst = CI;
3146  return false;
3147}
3148
3149//===----------------------------------------------------------------------===//
3150// Memory Instructions.
3151//===----------------------------------------------------------------------===//
3152
3153/// ParseAlloc
3154///   ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalAlignment)?
3155///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalAlignment)?
3156bool LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
3157                          unsigned Opc) {
3158  PATypeHolder Ty(Type::VoidTy);
3159  Value *Size = 0;
3160  LocTy SizeLoc = 0;
3161  unsigned Alignment = 0;
3162  if (ParseType(Ty)) return true;
3163
3164  if (EatIfPresent(lltok::comma)) {
3165    if (Lex.getKind() == lltok::kw_align) {
3166      if (ParseOptionalAlignment(Alignment)) return true;
3167    } else if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
3168               ParseOptionalCommaAlignment(Alignment)) {
3169      return true;
3170    }
3171  }
3172
3173  if (Size && Size->getType() != Type::Int32Ty)
3174    return Error(SizeLoc, "element count must be i32");
3175
3176  if (Opc == Instruction::Malloc)
3177    Inst = new MallocInst(Ty, Size, Alignment);
3178  else
3179    Inst = new AllocaInst(Ty, Size, Alignment);
3180  return false;
3181}
3182
3183/// ParseFree
3184///   ::= 'free' TypeAndValue
3185bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS) {
3186  Value *Val; LocTy Loc;
3187  if (ParseTypeAndValue(Val, Loc, PFS)) return true;
3188  if (!isa<PointerType>(Val->getType()))
3189    return Error(Loc, "operand to free must be a pointer");
3190  Inst = new FreeInst(Val);
3191  return false;
3192}
3193
3194/// ParseLoad
3195///   ::= 'volatile'? 'load' TypeAndValue (',' 'align' i32)?
3196bool LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
3197                         bool isVolatile) {
3198  Value *Val; LocTy Loc;
3199  unsigned Alignment;
3200  if (ParseTypeAndValue(Val, Loc, PFS) ||
3201      ParseOptionalCommaAlignment(Alignment))
3202    return true;
3203
3204  if (!isa<PointerType>(Val->getType()) ||
3205      !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3206    return Error(Loc, "load operand must be a pointer to a first class type");
3207
3208  Inst = new LoadInst(Val, "", isVolatile, Alignment);
3209  return false;
3210}
3211
3212/// ParseStore
3213///   ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3214bool LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
3215                          bool isVolatile) {
3216  Value *Val, *Ptr; LocTy Loc, PtrLoc;
3217  unsigned Alignment;
3218  if (ParseTypeAndValue(Val, Loc, PFS) ||
3219      ParseToken(lltok::comma, "expected ',' after store operand") ||
3220      ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3221      ParseOptionalCommaAlignment(Alignment))
3222    return true;
3223
3224  if (!isa<PointerType>(Ptr->getType()))
3225    return Error(PtrLoc, "store operand must be a pointer");
3226  if (!Val->getType()->isFirstClassType())
3227    return Error(Loc, "store operand must be a first class value");
3228  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3229    return Error(Loc, "stored value and pointer type do not match");
3230
3231  Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
3232  return false;
3233}
3234
3235/// ParseGetResult
3236///   ::= 'getresult' TypeAndValue ',' i32
3237/// FIXME: Remove support for getresult in LLVM 3.0
3238bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
3239  Value *Val; LocTy ValLoc, EltLoc;
3240  unsigned Element;
3241  if (ParseTypeAndValue(Val, ValLoc, PFS) ||
3242      ParseToken(lltok::comma, "expected ',' after getresult operand") ||
3243      ParseUInt32(Element, EltLoc))
3244    return true;
3245
3246  if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3247    return Error(ValLoc, "getresult inst requires an aggregate operand");
3248  if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
3249    return Error(EltLoc, "invalid getresult index for value");
3250  Inst = ExtractValueInst::Create(Val, Element);
3251  return false;
3252}
3253
3254/// ParseGetElementPtr
3255///   ::= 'getelementptr' TypeAndValue (',' TypeAndValue)*
3256bool LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3257  Value *Ptr, *Val; LocTy Loc, EltLoc;
3258  if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3259
3260  if (!isa<PointerType>(Ptr->getType()))
3261    return Error(Loc, "base of getelementptr must be a pointer");
3262
3263  SmallVector<Value*, 16> Indices;
3264  while (EatIfPresent(lltok::comma)) {
3265    if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3266    if (!isa<IntegerType>(Val->getType()))
3267      return Error(EltLoc, "getelementptr index must be an integer");
3268    Indices.push_back(Val);
3269  }
3270
3271  if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
3272                                         Indices.begin(), Indices.end()))
3273    return Error(Loc, "invalid getelementptr indices");
3274  Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
3275  return false;
3276}
3277
3278/// ParseExtractValue
3279///   ::= 'extractvalue' TypeAndValue (',' uint32)+
3280bool LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3281  Value *Val; LocTy Loc;
3282  SmallVector<unsigned, 4> Indices;
3283  if (ParseTypeAndValue(Val, Loc, PFS) ||
3284      ParseIndexList(Indices))
3285    return true;
3286
3287  if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3288    return Error(Loc, "extractvalue operand must be array or struct");
3289
3290  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
3291                                        Indices.end()))
3292    return Error(Loc, "invalid indices for extractvalue");
3293  Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end());
3294  return false;
3295}
3296
3297/// ParseInsertValue
3298///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3299bool LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3300  Value *Val0, *Val1; LocTy Loc0, Loc1;
3301  SmallVector<unsigned, 4> Indices;
3302  if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3303      ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3304      ParseTypeAndValue(Val1, Loc1, PFS) ||
3305      ParseIndexList(Indices))
3306    return true;
3307
3308  if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
3309    return Error(Loc0, "extractvalue operand must be array or struct");
3310
3311  if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
3312                                        Indices.end()))
3313    return Error(Loc0, "invalid indices for insertvalue");
3314  Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end());
3315  return false;
3316}
3317
3318//===----------------------------------------------------------------------===//
3319// Embedded metadata.
3320//===----------------------------------------------------------------------===//
3321
3322/// ParseMDNodeVector
3323///   ::= Element (',' Element)*
3324/// Element
3325///   ::= 'null' | TypeAndValue
3326bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts) {
3327  assert(Lex.getKind() == lltok::lbrace);
3328  Lex.Lex();
3329  do {
3330    Value *V;
3331    if (Lex.getKind() == lltok::kw_null) {
3332      Lex.Lex();
3333      V = 0;
3334    } else {
3335      Constant *C;
3336      if (ParseGlobalTypeAndValue(C)) return true;
3337      V = C;
3338    }
3339    Elts.push_back(V);
3340  } while (EatIfPresent(lltok::comma));
3341
3342  return false;
3343}
3344