LLParser.cpp revision cb33799b9f4e152e3460faa83e59b53ff604c87d
1//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/AutoUpgrade.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instructions.h"
21#include "llvm/MDNode.h"
22#include "llvm/Module.h"
23#include "llvm/ValueSymbolTable.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/Support/raw_ostream.h"
27using namespace llvm;
28
29namespace llvm {
30  /// ValID - Represents a reference of a definition of some sort with no type.
31  /// There are several cases where we have to parse the value but where the
32  /// type can depend on later context.  This may either be a numeric reference
33  /// or a symbolic (%var) reference.  This is just a discriminated union.
34  struct ValID {
35    enum {
36      t_LocalID, t_GlobalID,      // ID in UIntVal.
37      t_LocalName, t_GlobalName,  // Name in StrVal.
38      t_APSInt, t_APFloat,        // Value in APSIntVal/APFloatVal.
39      t_Null, t_Undef, t_Zero,    // No value.
40      t_EmptyArray,               // No value:  []
41      t_Constant,                 // Value in ConstantVal.
42      t_InlineAsm                 // Value in StrVal/StrVal2/UIntVal.
43    } Kind;
44
45    LLParser::LocTy Loc;
46    unsigned UIntVal;
47    std::string StrVal, StrVal2;
48    APSInt APSIntVal;
49    APFloat APFloatVal;
50    Constant *ConstantVal;
51    ValID() : APFloatVal(0.0) {}
52  };
53}
54
55/// Run: module ::= toplevelentity*
56bool LLParser::Run() {
57  // Prime the lexer.
58  Lex.Lex();
59
60  return ParseTopLevelEntities() ||
61         ValidateEndOfModule();
62}
63
64/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
65/// module.
66bool LLParser::ValidateEndOfModule() {
67  if (!ForwardRefTypes.empty())
68    return Error(ForwardRefTypes.begin()->second.second,
69                 "use of undefined type named '" +
70                 ForwardRefTypes.begin()->first + "'");
71  if (!ForwardRefTypeIDs.empty())
72    return Error(ForwardRefTypeIDs.begin()->second.second,
73                 "use of undefined type '%" +
74                 utostr(ForwardRefTypeIDs.begin()->first) + "'");
75
76  if (!ForwardRefVals.empty())
77    return Error(ForwardRefVals.begin()->second.second,
78                 "use of undefined value '@" + ForwardRefVals.begin()->first +
79                 "'");
80
81  if (!ForwardRefValIDs.empty())
82    return Error(ForwardRefValIDs.begin()->second.second,
83                 "use of undefined value '@" +
84                 utostr(ForwardRefValIDs.begin()->first) + "'");
85
86  // Look for intrinsic functions and CallInst that need to be upgraded
87  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
88    UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
89
90  return false;
91}
92
93//===----------------------------------------------------------------------===//
94// Top-Level Entities
95//===----------------------------------------------------------------------===//
96
97bool LLParser::ParseTopLevelEntities() {
98  while (1) {
99    switch (Lex.getKind()) {
100    default:         return TokError("expected top-level entity");
101    case lltok::Eof: return false;
102    //case lltok::kw_define:
103    case lltok::kw_declare: if (ParseDeclare()) return true; break;
104    case lltok::kw_define:  if (ParseDefine()) return true; break;
105    case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
106    case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
107    case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
108    case lltok::kw_type:    if (ParseUnnamedType()) return true; break;
109    case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
110    case lltok::LocalVar:   if (ParseNamedType()) return true; break;
111    case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
112
113    // The Global variable production with no name can have many different
114    // optional leading prefixes, the production is:
115    // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
116    //               OptionalAddrSpace ('constant'|'global') ...
117    case lltok::kw_private:       // OptionalLinkage
118    case lltok::kw_internal:      // OptionalLinkage
119    case lltok::kw_weak:          // OptionalLinkage
120    case lltok::kw_weak_odr:      // OptionalLinkage
121    case lltok::kw_linkonce:      // OptionalLinkage
122    case lltok::kw_linkonce_odr:  // OptionalLinkage
123    case lltok::kw_appending:     // OptionalLinkage
124    case lltok::kw_dllexport:     // OptionalLinkage
125    case lltok::kw_common:        // OptionalLinkage
126    case lltok::kw_dllimport:     // OptionalLinkage
127    case lltok::kw_extern_weak:   // OptionalLinkage
128    case lltok::kw_external: {    // OptionalLinkage
129      unsigned Linkage, Visibility;
130      if (ParseOptionalLinkage(Linkage) ||
131          ParseOptionalVisibility(Visibility) ||
132          ParseGlobal("", 0, Linkage, true, Visibility))
133        return true;
134      break;
135    }
136    case lltok::kw_default:       // OptionalVisibility
137    case lltok::kw_hidden:        // OptionalVisibility
138    case lltok::kw_protected: {   // OptionalVisibility
139      unsigned Visibility;
140      if (ParseOptionalVisibility(Visibility) ||
141          ParseGlobal("", 0, 0, false, Visibility))
142        return true;
143      break;
144    }
145
146    case lltok::kw_thread_local:  // OptionalThreadLocal
147    case lltok::kw_addrspace:     // OptionalAddrSpace
148    case lltok::kw_constant:      // GlobalType
149    case lltok::kw_global:        // GlobalType
150      if (ParseGlobal("", 0, 0, false, 0)) return true;
151      break;
152    }
153  }
154}
155
156
157/// toplevelentity
158///   ::= 'module' 'asm' STRINGCONSTANT
159bool LLParser::ParseModuleAsm() {
160  assert(Lex.getKind() == lltok::kw_module);
161  Lex.Lex();
162
163  std::string AsmStr;
164  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
165      ParseStringConstant(AsmStr)) return true;
166
167  const std::string &AsmSoFar = M->getModuleInlineAsm();
168  if (AsmSoFar.empty())
169    M->setModuleInlineAsm(AsmStr);
170  else
171    M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr);
172  return false;
173}
174
175/// toplevelentity
176///   ::= 'target' 'triple' '=' STRINGCONSTANT
177///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
178bool LLParser::ParseTargetDefinition() {
179  assert(Lex.getKind() == lltok::kw_target);
180  std::string Str;
181  switch (Lex.Lex()) {
182  default: return TokError("unknown target property");
183  case lltok::kw_triple:
184    Lex.Lex();
185    if (ParseToken(lltok::equal, "expected '=' after target triple") ||
186        ParseStringConstant(Str))
187      return true;
188    M->setTargetTriple(Str);
189    return false;
190  case lltok::kw_datalayout:
191    Lex.Lex();
192    if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
193        ParseStringConstant(Str))
194      return true;
195    M->setDataLayout(Str);
196    return false;
197  }
198}
199
200/// toplevelentity
201///   ::= 'deplibs' '=' '[' ']'
202///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
203bool LLParser::ParseDepLibs() {
204  assert(Lex.getKind() == lltok::kw_deplibs);
205  Lex.Lex();
206  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
207      ParseToken(lltok::lsquare, "expected '=' after deplibs"))
208    return true;
209
210  if (EatIfPresent(lltok::rsquare))
211    return false;
212
213  std::string Str;
214  if (ParseStringConstant(Str)) return true;
215  M->addLibrary(Str);
216
217  while (EatIfPresent(lltok::comma)) {
218    if (ParseStringConstant(Str)) return true;
219    M->addLibrary(Str);
220  }
221
222  return ParseToken(lltok::rsquare, "expected ']' at end of list");
223}
224
225/// toplevelentity
226///   ::= 'type' type
227bool LLParser::ParseUnnamedType() {
228  assert(Lex.getKind() == lltok::kw_type);
229  LocTy TypeLoc = Lex.getLoc();
230  Lex.Lex(); // eat kw_type
231
232  PATypeHolder Ty(Type::VoidTy);
233  if (ParseType(Ty)) return true;
234
235  unsigned TypeID = NumberedTypes.size();
236
237  // See if this type was previously referenced.
238  std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
239    FI = ForwardRefTypeIDs.find(TypeID);
240  if (FI != ForwardRefTypeIDs.end()) {
241    if (FI->second.first.get() == Ty)
242      return Error(TypeLoc, "self referential type is invalid");
243
244    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
245    Ty = FI->second.first.get();
246    ForwardRefTypeIDs.erase(FI);
247  }
248
249  NumberedTypes.push_back(Ty);
250
251  return false;
252}
253
254/// toplevelentity
255///   ::= LocalVar '=' 'type' type
256bool LLParser::ParseNamedType() {
257  std::string Name = Lex.getStrVal();
258  LocTy NameLoc = Lex.getLoc();
259  Lex.Lex();  // eat LocalVar.
260
261  PATypeHolder Ty(Type::VoidTy);
262
263  if (ParseToken(lltok::equal, "expected '=' after name") ||
264      ParseToken(lltok::kw_type, "expected 'type' after name") ||
265      ParseType(Ty))
266    return true;
267
268  // Set the type name, checking for conflicts as we do so.
269  bool AlreadyExists = M->addTypeName(Name, Ty);
270  if (!AlreadyExists) return false;
271
272  // See if this type is a forward reference.  We need to eagerly resolve
273  // types to allow recursive type redefinitions below.
274  std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator
275  FI = ForwardRefTypes.find(Name);
276  if (FI != ForwardRefTypes.end()) {
277    if (FI->second.first.get() == Ty)
278      return Error(NameLoc, "self referential type is invalid");
279
280    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
281    Ty = FI->second.first.get();
282    ForwardRefTypes.erase(FI);
283  }
284
285  // Inserting a name that is already defined, get the existing name.
286  const Type *Existing = M->getTypeByName(Name);
287  assert(Existing && "Conflict but no matching type?!");
288
289  // Otherwise, this is an attempt to redefine a type. That's okay if
290  // the redefinition is identical to the original.
291  // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
292  if (Existing == Ty) return false;
293
294  // Any other kind of (non-equivalent) redefinition is an error.
295  return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
296               Ty->getDescription() + "'");
297}
298
299
300/// toplevelentity
301///   ::= 'declare' FunctionHeader
302bool LLParser::ParseDeclare() {
303  assert(Lex.getKind() == lltok::kw_declare);
304  Lex.Lex();
305
306  Function *F;
307  return ParseFunctionHeader(F, false);
308}
309
310/// toplevelentity
311///   ::= 'define' FunctionHeader '{' ...
312bool LLParser::ParseDefine() {
313  assert(Lex.getKind() == lltok::kw_define);
314  Lex.Lex();
315
316  Function *F;
317  return ParseFunctionHeader(F, true) ||
318         ParseFunctionBody(*F);
319}
320
321/// ParseGlobalType
322///   ::= 'constant'
323///   ::= 'global'
324bool LLParser::ParseGlobalType(bool &IsConstant) {
325  if (Lex.getKind() == lltok::kw_constant)
326    IsConstant = true;
327  else if (Lex.getKind() == lltok::kw_global)
328    IsConstant = false;
329  else {
330    IsConstant = false;
331    return TokError("expected 'global' or 'constant'");
332  }
333  Lex.Lex();
334  return false;
335}
336
337/// ParseNamedGlobal:
338///   GlobalVar '=' OptionalVisibility ALIAS ...
339///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
340bool LLParser::ParseNamedGlobal() {
341  assert(Lex.getKind() == lltok::GlobalVar);
342  LocTy NameLoc = Lex.getLoc();
343  std::string Name = Lex.getStrVal();
344  Lex.Lex();
345
346  bool HasLinkage;
347  unsigned Linkage, Visibility;
348  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
349      ParseOptionalLinkage(Linkage, HasLinkage) ||
350      ParseOptionalVisibility(Visibility))
351    return true;
352
353  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
354    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
355  return ParseAlias(Name, NameLoc, Visibility);
356}
357
358/// ParseAlias:
359///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
360/// Aliasee
361///   ::= TypeAndValue
362///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
363///   ::= 'getelementptr' '(' ... ')'
364///
365/// Everything through visibility has already been parsed.
366///
367bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
368                          unsigned Visibility) {
369  assert(Lex.getKind() == lltok::kw_alias);
370  Lex.Lex();
371  unsigned Linkage;
372  LocTy LinkageLoc = Lex.getLoc();
373  if (ParseOptionalLinkage(Linkage))
374    return true;
375
376  if (Linkage != GlobalValue::ExternalLinkage &&
377      Linkage != GlobalValue::WeakAnyLinkage &&
378      Linkage != GlobalValue::WeakODRLinkage &&
379      Linkage != GlobalValue::InternalLinkage &&
380      Linkage != GlobalValue::PrivateLinkage)
381    return Error(LinkageLoc, "invalid linkage type for alias");
382
383  Constant *Aliasee;
384  LocTy AliaseeLoc = Lex.getLoc();
385  if (Lex.getKind() != lltok::kw_bitcast &&
386      Lex.getKind() != lltok::kw_getelementptr) {
387    if (ParseGlobalTypeAndValue(Aliasee)) return true;
388  } else {
389    // The bitcast dest type is not present, it is implied by the dest type.
390    ValID ID;
391    if (ParseValID(ID)) return true;
392    if (ID.Kind != ValID::t_Constant)
393      return Error(AliaseeLoc, "invalid aliasee");
394    Aliasee = ID.ConstantVal;
395  }
396
397  if (!isa<PointerType>(Aliasee->getType()))
398    return Error(AliaseeLoc, "alias must have pointer type");
399
400  // Okay, create the alias but do not insert it into the module yet.
401  GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
402                                    (GlobalValue::LinkageTypes)Linkage, Name,
403                                    Aliasee);
404  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
405
406  // See if this value already exists in the symbol table.  If so, it is either
407  // a redefinition or a definition of a forward reference.
408  if (GlobalValue *Val =
409        cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name))) {
410    // See if this was a redefinition.  If so, there is no entry in
411    // ForwardRefVals.
412    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
413      I = ForwardRefVals.find(Name);
414    if (I == ForwardRefVals.end())
415      return Error(NameLoc, "redefinition of global named '@" + Name + "'");
416
417    // Otherwise, this was a definition of forward ref.  Verify that types
418    // agree.
419    if (Val->getType() != GA->getType())
420      return Error(NameLoc,
421              "forward reference and definition of alias have different types");
422
423    // If they agree, just RAUW the old value with the alias and remove the
424    // forward ref info.
425    Val->replaceAllUsesWith(GA);
426    Val->eraseFromParent();
427    ForwardRefVals.erase(I);
428  }
429
430  // Insert into the module, we know its name won't collide now.
431  M->getAliasList().push_back(GA);
432  assert(GA->getNameStr() == Name && "Should not be a name conflict!");
433
434  return false;
435}
436
437/// ParseGlobal
438///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
439///       OptionalAddrSpace GlobalType Type Const
440///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
441///       OptionalAddrSpace GlobalType Type Const
442///
443/// Everything through visibility has been parsed already.
444///
445bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
446                           unsigned Linkage, bool HasLinkage,
447                           unsigned Visibility) {
448  unsigned AddrSpace;
449  bool ThreadLocal, IsConstant;
450  LocTy TyLoc;
451
452  PATypeHolder Ty(Type::VoidTy);
453  if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
454      ParseOptionalAddrSpace(AddrSpace) ||
455      ParseGlobalType(IsConstant) ||
456      ParseType(Ty, TyLoc))
457    return true;
458
459  // If the linkage is specified and is external, then no initializer is
460  // present.
461  Constant *Init = 0;
462  if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
463                      Linkage != GlobalValue::ExternalWeakLinkage &&
464                      Linkage != GlobalValue::ExternalLinkage)) {
465    if (ParseGlobalValue(Ty, Init))
466      return true;
467  }
468
469  if (isa<FunctionType>(Ty) || Ty == Type::LabelTy)
470    return Error(TyLoc, "invalid type for global variable");
471
472  GlobalVariable *GV = 0;
473
474  // See if the global was forward referenced, if so, use the global.
475  if (!Name.empty()) {
476    if ((GV = M->getGlobalVariable(Name, true)) &&
477        !ForwardRefVals.erase(Name))
478      return Error(NameLoc, "redefinition of global '@" + Name + "'");
479  } else {
480    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
481      I = ForwardRefValIDs.find(NumberedVals.size());
482    if (I != ForwardRefValIDs.end()) {
483      GV = cast<GlobalVariable>(I->second.first);
484      ForwardRefValIDs.erase(I);
485    }
486  }
487
488  if (GV == 0) {
489    GV = new GlobalVariable(Ty, false, GlobalValue::ExternalLinkage, 0, Name,
490                            M, false, AddrSpace);
491  } else {
492    if (GV->getType()->getElementType() != Ty)
493      return Error(TyLoc,
494            "forward reference and definition of global have different types");
495
496    // Move the forward-reference to the correct spot in the module.
497    M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
498  }
499
500  if (Name.empty())
501    NumberedVals.push_back(GV);
502
503  // Set the parsed properties on the global.
504  if (Init)
505    GV->setInitializer(Init);
506  GV->setConstant(IsConstant);
507  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
508  GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
509  GV->setThreadLocal(ThreadLocal);
510
511  // Parse attributes on the global.
512  while (Lex.getKind() == lltok::comma) {
513    Lex.Lex();
514
515    if (Lex.getKind() == lltok::kw_section) {
516      Lex.Lex();
517      GV->setSection(Lex.getStrVal());
518      if (ParseToken(lltok::StringConstant, "expected global section string"))
519        return true;
520    } else if (Lex.getKind() == lltok::kw_align) {
521      unsigned Alignment;
522      if (ParseOptionalAlignment(Alignment)) return true;
523      GV->setAlignment(Alignment);
524    } else {
525      TokError("unknown global variable property!");
526    }
527  }
528
529  return false;
530}
531
532
533//===----------------------------------------------------------------------===//
534// GlobalValue Reference/Resolution Routines.
535//===----------------------------------------------------------------------===//
536
537/// GetGlobalVal - Get a value with the specified name or ID, creating a
538/// forward reference record if needed.  This can return null if the value
539/// exists but does not have the right type.
540GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
541                                    LocTy Loc) {
542  const PointerType *PTy = dyn_cast<PointerType>(Ty);
543  if (PTy == 0) {
544    Error(Loc, "global variable reference must have pointer type");
545    return 0;
546  }
547
548  // Look this name up in the normal function symbol table.
549  GlobalValue *Val =
550    cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
551
552  // If this is a forward reference for the value, see if we already created a
553  // forward ref record.
554  if (Val == 0) {
555    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
556      I = ForwardRefVals.find(Name);
557    if (I != ForwardRefVals.end())
558      Val = I->second.first;
559  }
560
561  // If we have the value in the symbol table or fwd-ref table, return it.
562  if (Val) {
563    if (Val->getType() == Ty) return Val;
564    Error(Loc, "'@" + Name + "' defined with type '" +
565          Val->getType()->getDescription() + "'");
566    return 0;
567  }
568
569  // Otherwise, create a new forward reference for this value and remember it.
570  GlobalValue *FwdVal;
571  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
572    // Function types can return opaque but functions can't.
573    if (isa<OpaqueType>(FT->getReturnType())) {
574      Error(Loc, "function may not return opaque type");
575      return 0;
576    }
577
578    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
579  } else {
580    FwdVal = new GlobalVariable(PTy->getElementType(), false,
581                                GlobalValue::ExternalWeakLinkage, 0, Name, M);
582  }
583
584  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
585  return FwdVal;
586}
587
588GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
589  const PointerType *PTy = dyn_cast<PointerType>(Ty);
590  if (PTy == 0) {
591    Error(Loc, "global variable reference must have pointer type");
592    return 0;
593  }
594
595  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
596
597  // If this is a forward reference for the value, see if we already created a
598  // forward ref record.
599  if (Val == 0) {
600    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
601      I = ForwardRefValIDs.find(ID);
602    if (I != ForwardRefValIDs.end())
603      Val = I->second.first;
604  }
605
606  // If we have the value in the symbol table or fwd-ref table, return it.
607  if (Val) {
608    if (Val->getType() == Ty) return Val;
609    Error(Loc, "'@" + utostr(ID) + "' defined with type '" +
610          Val->getType()->getDescription() + "'");
611    return 0;
612  }
613
614  // Otherwise, create a new forward reference for this value and remember it.
615  GlobalValue *FwdVal;
616  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
617    // Function types can return opaque but functions can't.
618    if (isa<OpaqueType>(FT->getReturnType())) {
619      Error(Loc, "function may not return opaque type");
620      return 0;
621    }
622    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
623  } else {
624    FwdVal = new GlobalVariable(PTy->getElementType(), false,
625                                GlobalValue::ExternalWeakLinkage, 0, "", M);
626  }
627
628  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
629  return FwdVal;
630}
631
632
633//===----------------------------------------------------------------------===//
634// Helper Routines.
635//===----------------------------------------------------------------------===//
636
637/// ParseToken - If the current token has the specified kind, eat it and return
638/// success.  Otherwise, emit the specified error and return failure.
639bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
640  if (Lex.getKind() != T)
641    return TokError(ErrMsg);
642  Lex.Lex();
643  return false;
644}
645
646/// ParseStringConstant
647///   ::= StringConstant
648bool LLParser::ParseStringConstant(std::string &Result) {
649  if (Lex.getKind() != lltok::StringConstant)
650    return TokError("expected string constant");
651  Result = Lex.getStrVal();
652  Lex.Lex();
653  return false;
654}
655
656/// ParseUInt32
657///   ::= uint32
658bool LLParser::ParseUInt32(unsigned &Val) {
659  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
660    return TokError("expected integer");
661  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
662  if (Val64 != unsigned(Val64))
663    return TokError("expected 32-bit integer (too large)");
664  Val = Val64;
665  Lex.Lex();
666  return false;
667}
668
669
670/// ParseOptionalAddrSpace
671///   := /*empty*/
672///   := 'addrspace' '(' uint32 ')'
673bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
674  AddrSpace = 0;
675  if (!EatIfPresent(lltok::kw_addrspace))
676    return false;
677  return ParseToken(lltok::lparen, "expected '(' in address space") ||
678         ParseUInt32(AddrSpace) ||
679         ParseToken(lltok::rparen, "expected ')' in address space");
680}
681
682/// ParseOptionalAttrs - Parse a potentially empty attribute list.  AttrKind
683/// indicates what kind of attribute list this is: 0: function arg, 1: result,
684/// 2: function attr.
685/// 3: function arg after value: FIXME: REMOVE IN LLVM 3.0
686bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
687  Attrs = Attribute::None;
688  LocTy AttrLoc = Lex.getLoc();
689
690  while (1) {
691    switch (Lex.getKind()) {
692    case lltok::kw_sext:
693    case lltok::kw_zext:
694      // Treat these as signext/zeroext if they occur in the argument list after
695      // the value, as in "call i8 @foo(i8 10 sext)".  If they occur before the
696      // value, as in "call i8 @foo(i8 sext (" then it is part of a constant
697      // expr.
698      // FIXME: REMOVE THIS IN LLVM 3.0
699      if (AttrKind == 3) {
700        if (Lex.getKind() == lltok::kw_sext)
701          Attrs |= Attribute::SExt;
702        else
703          Attrs |= Attribute::ZExt;
704        break;
705      }
706      // FALL THROUGH.
707    default:  // End of attributes.
708      if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
709        return Error(AttrLoc, "invalid use of function-only attribute");
710
711      if (AttrKind != 0 && AttrKind != 3 && (Attrs & Attribute::ParameterOnly))
712        return Error(AttrLoc, "invalid use of parameter-only attribute");
713
714      return false;
715    case lltok::kw_zeroext:      Attrs |= Attribute::ZExt; break;
716    case lltok::kw_signext:      Attrs |= Attribute::SExt; break;
717    case lltok::kw_inreg:        Attrs |= Attribute::InReg; break;
718    case lltok::kw_sret:         Attrs |= Attribute::StructRet; break;
719    case lltok::kw_noalias:      Attrs |= Attribute::NoAlias; break;
720    case lltok::kw_nocapture:    Attrs |= Attribute::NoCapture; break;
721    case lltok::kw_byval:        Attrs |= Attribute::ByVal; break;
722    case lltok::kw_nest:         Attrs |= Attribute::Nest; break;
723
724    case lltok::kw_noreturn:     Attrs |= Attribute::NoReturn; break;
725    case lltok::kw_nounwind:     Attrs |= Attribute::NoUnwind; break;
726    case lltok::kw_noinline:     Attrs |= Attribute::NoInline; break;
727    case lltok::kw_readnone:     Attrs |= Attribute::ReadNone; break;
728    case lltok::kw_readonly:     Attrs |= Attribute::ReadOnly; break;
729    case lltok::kw_alwaysinline: Attrs |= Attribute::AlwaysInline; break;
730    case lltok::kw_optsize:      Attrs |= Attribute::OptimizeForSize; break;
731    case lltok::kw_ssp:          Attrs |= Attribute::StackProtect; break;
732    case lltok::kw_sspreq:       Attrs |= Attribute::StackProtectReq; break;
733
734
735    case lltok::kw_align: {
736      unsigned Alignment;
737      if (ParseOptionalAlignment(Alignment))
738        return true;
739      Attrs |= Attribute::constructAlignmentFromInt(Alignment);
740      continue;
741    }
742    }
743    Lex.Lex();
744  }
745}
746
747/// ParseOptionalLinkage
748///   ::= /*empty*/
749///   ::= 'private'
750///   ::= 'internal'
751///   ::= 'weak'
752///   ::= 'weak_odr'
753///   ::= 'linkonce'
754///   ::= 'linkonce_odr'
755///   ::= 'appending'
756///   ::= 'dllexport'
757///   ::= 'common'
758///   ::= 'dllimport'
759///   ::= 'extern_weak'
760///   ::= 'external'
761bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
762  HasLinkage = false;
763  switch (Lex.getKind()) {
764  default:                     Res = GlobalValue::ExternalLinkage; return false;
765  case lltok::kw_private:      Res = GlobalValue::PrivateLinkage; break;
766  case lltok::kw_internal:     Res = GlobalValue::InternalLinkage; break;
767  case lltok::kw_weak:         Res = GlobalValue::WeakAnyLinkage; break;
768  case lltok::kw_weak_odr:     Res = GlobalValue::WeakODRLinkage; break;
769  case lltok::kw_linkonce:     Res = GlobalValue::LinkOnceAnyLinkage; break;
770  case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break;
771  case lltok::kw_available_externally:
772    Res = GlobalValue::AvailableExternallyLinkage;
773    break;
774  case lltok::kw_appending:    Res = GlobalValue::AppendingLinkage; break;
775  case lltok::kw_dllexport:    Res = GlobalValue::DLLExportLinkage; break;
776  case lltok::kw_common:       Res = GlobalValue::CommonLinkage; break;
777  case lltok::kw_dllimport:    Res = GlobalValue::DLLImportLinkage; break;
778  case lltok::kw_extern_weak:  Res = GlobalValue::ExternalWeakLinkage; break;
779  case lltok::kw_external:     Res = GlobalValue::ExternalLinkage; break;
780  }
781  Lex.Lex();
782  HasLinkage = true;
783  return false;
784}
785
786/// ParseOptionalVisibility
787///   ::= /*empty*/
788///   ::= 'default'
789///   ::= 'hidden'
790///   ::= 'protected'
791///
792bool LLParser::ParseOptionalVisibility(unsigned &Res) {
793  switch (Lex.getKind()) {
794  default:                  Res = GlobalValue::DefaultVisibility; return false;
795  case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
796  case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
797  case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
798  }
799  Lex.Lex();
800  return false;
801}
802
803/// ParseOptionalCallingConv
804///   ::= /*empty*/
805///   ::= 'ccc'
806///   ::= 'fastcc'
807///   ::= 'coldcc'
808///   ::= 'x86_stdcallcc'
809///   ::= 'x86_fastcallcc'
810///   ::= 'cc' UINT
811///
812bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
813  switch (Lex.getKind()) {
814  default:                       CC = CallingConv::C; return false;
815  case lltok::kw_ccc:            CC = CallingConv::C; break;
816  case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
817  case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
818  case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
819  case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
820  case lltok::kw_cc:             Lex.Lex(); return ParseUInt32(CC);
821  }
822  Lex.Lex();
823  return false;
824}
825
826/// ParseOptionalAlignment
827///   ::= /* empty */
828///   ::= 'align' 4
829bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
830  Alignment = 0;
831  if (!EatIfPresent(lltok::kw_align))
832    return false;
833  LocTy AlignLoc = Lex.getLoc();
834  if (ParseUInt32(Alignment)) return true;
835  if (!isPowerOf2_32(Alignment))
836    return Error(AlignLoc, "alignment is not a power of two");
837  return false;
838}
839
840/// ParseOptionalCommaAlignment
841///   ::= /* empty */
842///   ::= ',' 'align' 4
843bool LLParser::ParseOptionalCommaAlignment(unsigned &Alignment) {
844  Alignment = 0;
845  if (!EatIfPresent(lltok::comma))
846    return false;
847  return ParseToken(lltok::kw_align, "expected 'align'") ||
848         ParseUInt32(Alignment);
849}
850
851/// ParseIndexList
852///    ::=  (',' uint32)+
853bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices) {
854  if (Lex.getKind() != lltok::comma)
855    return TokError("expected ',' as start of index list");
856
857  while (EatIfPresent(lltok::comma)) {
858    unsigned Idx;
859    if (ParseUInt32(Idx)) return true;
860    Indices.push_back(Idx);
861  }
862
863  return false;
864}
865
866//===----------------------------------------------------------------------===//
867// Type Parsing.
868//===----------------------------------------------------------------------===//
869
870/// ParseType - Parse and resolve a full type.
871bool LLParser::ParseType(PATypeHolder &Result, bool AllowVoid) {
872  LocTy TypeLoc = Lex.getLoc();
873  if (ParseTypeRec(Result)) return true;
874
875  // Verify no unresolved uprefs.
876  if (!UpRefs.empty())
877    return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
878
879  if (!AllowVoid && Result.get() == Type::VoidTy)
880    return Error(TypeLoc, "void type only allowed for function results");
881
882  return false;
883}
884
885/// HandleUpRefs - Every time we finish a new layer of types, this function is
886/// called.  It loops through the UpRefs vector, which is a list of the
887/// currently active types.  For each type, if the up-reference is contained in
888/// the newly completed type, we decrement the level count.  When the level
889/// count reaches zero, the up-referenced type is the type that is passed in:
890/// thus we can complete the cycle.
891///
892PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
893  // If Ty isn't abstract, or if there are no up-references in it, then there is
894  // nothing to resolve here.
895  if (!ty->isAbstract() || UpRefs.empty()) return ty;
896
897  PATypeHolder Ty(ty);
898#if 0
899  errs() << "Type '" << Ty->getDescription()
900         << "' newly formed.  Resolving upreferences.\n"
901         << UpRefs.size() << " upreferences active!\n";
902#endif
903
904  // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
905  // to zero), we resolve them all together before we resolve them to Ty.  At
906  // the end of the loop, if there is anything to resolve to Ty, it will be in
907  // this variable.
908  OpaqueType *TypeToResolve = 0;
909
910  for (unsigned i = 0; i != UpRefs.size(); ++i) {
911    // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
912    bool ContainsType =
913      std::find(Ty->subtype_begin(), Ty->subtype_end(),
914                UpRefs[i].LastContainedTy) != Ty->subtype_end();
915
916#if 0
917    errs() << "  UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
918           << UpRefs[i].LastContainedTy->getDescription() << ") = "
919           << (ContainsType ? "true" : "false")
920           << " level=" << UpRefs[i].NestingLevel << "\n";
921#endif
922    if (!ContainsType)
923      continue;
924
925    // Decrement level of upreference
926    unsigned Level = --UpRefs[i].NestingLevel;
927    UpRefs[i].LastContainedTy = Ty;
928
929    // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
930    if (Level != 0)
931      continue;
932
933#if 0
934    errs() << "  * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
935#endif
936    if (!TypeToResolve)
937      TypeToResolve = UpRefs[i].UpRefTy;
938    else
939      UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
940    UpRefs.erase(UpRefs.begin()+i);     // Remove from upreference list.
941    --i;                                // Do not skip the next element.
942  }
943
944  if (TypeToResolve)
945    TypeToResolve->refineAbstractTypeTo(Ty);
946
947  return Ty;
948}
949
950
951/// ParseTypeRec - The recursive function used to process the internal
952/// implementation details of types.
953bool LLParser::ParseTypeRec(PATypeHolder &Result) {
954  switch (Lex.getKind()) {
955  default:
956    return TokError("expected type");
957  case lltok::Type:
958    // TypeRec ::= 'float' | 'void' (etc)
959    Result = Lex.getTyVal();
960    Lex.Lex();
961    break;
962  case lltok::kw_opaque:
963    // TypeRec ::= 'opaque'
964    Result = OpaqueType::get();
965    Lex.Lex();
966    break;
967  case lltok::lbrace:
968    // TypeRec ::= '{' ... '}'
969    if (ParseStructType(Result, false))
970      return true;
971    break;
972  case lltok::lsquare:
973    // TypeRec ::= '[' ... ']'
974    Lex.Lex(); // eat the lsquare.
975    if (ParseArrayVectorType(Result, false))
976      return true;
977    break;
978  case lltok::less: // Either vector or packed struct.
979    // TypeRec ::= '<' ... '>'
980    Lex.Lex();
981    if (Lex.getKind() == lltok::lbrace) {
982      if (ParseStructType(Result, true) ||
983          ParseToken(lltok::greater, "expected '>' at end of packed struct"))
984        return true;
985    } else if (ParseArrayVectorType(Result, true))
986      return true;
987    break;
988  case lltok::LocalVar:
989  case lltok::StringConstant:  // FIXME: REMOVE IN LLVM 3.0
990    // TypeRec ::= %foo
991    if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
992      Result = T;
993    } else {
994      Result = OpaqueType::get();
995      ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
996                                            std::make_pair(Result,
997                                                           Lex.getLoc())));
998      M->addTypeName(Lex.getStrVal(), Result.get());
999    }
1000    Lex.Lex();
1001    break;
1002
1003  case lltok::LocalVarID:
1004    // TypeRec ::= %4
1005    if (Lex.getUIntVal() < NumberedTypes.size())
1006      Result = NumberedTypes[Lex.getUIntVal()];
1007    else {
1008      std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
1009        I = ForwardRefTypeIDs.find(Lex.getUIntVal());
1010      if (I != ForwardRefTypeIDs.end())
1011        Result = I->second.first;
1012      else {
1013        Result = OpaqueType::get();
1014        ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
1015                                                std::make_pair(Result,
1016                                                               Lex.getLoc())));
1017      }
1018    }
1019    Lex.Lex();
1020    break;
1021  case lltok::backslash: {
1022    // TypeRec ::= '\' 4
1023    Lex.Lex();
1024    unsigned Val;
1025    if (ParseUInt32(Val)) return true;
1026    OpaqueType *OT = OpaqueType::get();        // Use temporary placeholder.
1027    UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
1028    Result = OT;
1029    break;
1030  }
1031  }
1032
1033  // Parse the type suffixes.
1034  while (1) {
1035    switch (Lex.getKind()) {
1036    // End of type.
1037    default: return false;
1038
1039    // TypeRec ::= TypeRec '*'
1040    case lltok::star:
1041      if (Result.get() == Type::LabelTy)
1042        return TokError("basic block pointers are invalid");
1043      if (Result.get() == Type::VoidTy)
1044        return TokError("pointers to void are invalid; use i8* instead");
1045      Result = HandleUpRefs(PointerType::getUnqual(Result.get()));
1046      Lex.Lex();
1047      break;
1048
1049    // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1050    case lltok::kw_addrspace: {
1051      if (Result.get() == Type::LabelTy)
1052        return TokError("basic block pointers are invalid");
1053      if (Result.get() == Type::VoidTy)
1054        return TokError("pointers to void are invalid; use i8* instead");
1055      unsigned AddrSpace;
1056      if (ParseOptionalAddrSpace(AddrSpace) ||
1057          ParseToken(lltok::star, "expected '*' in address space"))
1058        return true;
1059
1060      Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace));
1061      break;
1062    }
1063
1064    /// Types '(' ArgTypeListI ')' OptFuncAttrs
1065    case lltok::lparen:
1066      if (ParseFunctionType(Result))
1067        return true;
1068      break;
1069    }
1070  }
1071}
1072
1073/// ParseParameterList
1074///    ::= '(' ')'
1075///    ::= '(' Arg (',' Arg)* ')'
1076///  Arg
1077///    ::= Type OptionalAttributes Value OptionalAttributes
1078bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1079                                  PerFunctionState &PFS) {
1080  if (ParseToken(lltok::lparen, "expected '(' in call"))
1081    return true;
1082
1083  while (Lex.getKind() != lltok::rparen) {
1084    // If this isn't the first argument, we need a comma.
1085    if (!ArgList.empty() &&
1086        ParseToken(lltok::comma, "expected ',' in argument list"))
1087      return true;
1088
1089    // Parse the argument.
1090    LocTy ArgLoc;
1091    PATypeHolder ArgTy(Type::VoidTy);
1092    unsigned ArgAttrs1, ArgAttrs2;
1093    Value *V;
1094    if (ParseType(ArgTy, ArgLoc) ||
1095        ParseOptionalAttrs(ArgAttrs1, 0) ||
1096        ParseValue(ArgTy, V, PFS) ||
1097        // FIXME: Should not allow attributes after the argument, remove this in
1098        // LLVM 3.0.
1099        ParseOptionalAttrs(ArgAttrs2, 3))
1100      return true;
1101    ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1102  }
1103
1104  Lex.Lex();  // Lex the ')'.
1105  return false;
1106}
1107
1108
1109
1110/// ParseArgumentList - Parse the argument list for a function type or function
1111/// prototype.  If 'inType' is true then we are parsing a FunctionType.
1112///   ::= '(' ArgTypeListI ')'
1113/// ArgTypeListI
1114///   ::= /*empty*/
1115///   ::= '...'
1116///   ::= ArgTypeList ',' '...'
1117///   ::= ArgType (',' ArgType)*
1118///
1119bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
1120                                 bool &isVarArg, bool inType) {
1121  isVarArg = false;
1122  assert(Lex.getKind() == lltok::lparen);
1123  Lex.Lex(); // eat the (.
1124
1125  if (Lex.getKind() == lltok::rparen) {
1126    // empty
1127  } else if (Lex.getKind() == lltok::dotdotdot) {
1128    isVarArg = true;
1129    Lex.Lex();
1130  } else {
1131    LocTy TypeLoc = Lex.getLoc();
1132    PATypeHolder ArgTy(Type::VoidTy);
1133    unsigned Attrs;
1134    std::string Name;
1135
1136    // If we're parsing a type, use ParseTypeRec, because we allow recursive
1137    // types (such as a function returning a pointer to itself).  If parsing a
1138    // function prototype, we require fully resolved types.
1139    if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1140        ParseOptionalAttrs(Attrs, 0)) return true;
1141
1142    if (ArgTy == Type::VoidTy)
1143      return Error(TypeLoc, "argument can not have void type");
1144
1145    if (Lex.getKind() == lltok::LocalVar ||
1146        Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1147      Name = Lex.getStrVal();
1148      Lex.Lex();
1149    }
1150
1151    if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1152      return Error(TypeLoc, "invalid type for function argument");
1153
1154    ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1155
1156    while (EatIfPresent(lltok::comma)) {
1157      // Handle ... at end of arg list.
1158      if (EatIfPresent(lltok::dotdotdot)) {
1159        isVarArg = true;
1160        break;
1161      }
1162
1163      // Otherwise must be an argument type.
1164      TypeLoc = Lex.getLoc();
1165      if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1166          ParseOptionalAttrs(Attrs, 0)) return true;
1167
1168      if (ArgTy == Type::VoidTy)
1169        return Error(TypeLoc, "argument can not have void type");
1170
1171      if (Lex.getKind() == lltok::LocalVar ||
1172          Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1173        Name = Lex.getStrVal();
1174        Lex.Lex();
1175      } else {
1176        Name = "";
1177      }
1178
1179      if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1180        return Error(TypeLoc, "invalid type for function argument");
1181
1182      ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1183    }
1184  }
1185
1186  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1187}
1188
1189/// ParseFunctionType
1190///  ::= Type ArgumentList OptionalAttrs
1191bool LLParser::ParseFunctionType(PATypeHolder &Result) {
1192  assert(Lex.getKind() == lltok::lparen);
1193
1194  if (!FunctionType::isValidReturnType(Result))
1195    return TokError("invalid function return type");
1196
1197  std::vector<ArgInfo> ArgList;
1198  bool isVarArg;
1199  unsigned Attrs;
1200  if (ParseArgumentList(ArgList, isVarArg, true) ||
1201      // FIXME: Allow, but ignore attributes on function types!
1202      // FIXME: Remove in LLVM 3.0
1203      ParseOptionalAttrs(Attrs, 2))
1204    return true;
1205
1206  // Reject names on the arguments lists.
1207  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1208    if (!ArgList[i].Name.empty())
1209      return Error(ArgList[i].Loc, "argument name invalid in function type");
1210    if (!ArgList[i].Attrs != 0) {
1211      // Allow but ignore attributes on function types; this permits
1212      // auto-upgrade.
1213      // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1214    }
1215  }
1216
1217  std::vector<const Type*> ArgListTy;
1218  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1219    ArgListTy.push_back(ArgList[i].Type);
1220
1221  Result = HandleUpRefs(FunctionType::get(Result.get(), ArgListTy, isVarArg));
1222  return false;
1223}
1224
1225/// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1226///   TypeRec
1227///     ::= '{' '}'
1228///     ::= '{' TypeRec (',' TypeRec)* '}'
1229///     ::= '<' '{' '}' '>'
1230///     ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1231bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
1232  assert(Lex.getKind() == lltok::lbrace);
1233  Lex.Lex(); // Consume the '{'
1234
1235  if (EatIfPresent(lltok::rbrace)) {
1236    Result = StructType::get(std::vector<const Type*>(), Packed);
1237    return false;
1238  }
1239
1240  std::vector<PATypeHolder> ParamsList;
1241  LocTy EltTyLoc = Lex.getLoc();
1242  if (ParseTypeRec(Result)) return true;
1243  ParamsList.push_back(Result);
1244
1245  if (Result == Type::VoidTy)
1246    return Error(EltTyLoc, "struct element can not have void type");
1247
1248  while (EatIfPresent(lltok::comma)) {
1249    EltTyLoc = Lex.getLoc();
1250    if (ParseTypeRec(Result)) return true;
1251
1252    if (Result == Type::VoidTy)
1253      return Error(EltTyLoc, "struct element can not have void type");
1254
1255    ParamsList.push_back(Result);
1256  }
1257
1258  if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
1259    return true;
1260
1261  std::vector<const Type*> ParamsListTy;
1262  for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1263    ParamsListTy.push_back(ParamsList[i].get());
1264  Result = HandleUpRefs(StructType::get(ParamsListTy, Packed));
1265  return false;
1266}
1267
1268/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1269/// token has already been consumed.
1270///   TypeRec
1271///     ::= '[' APSINTVAL 'x' Types ']'
1272///     ::= '<' APSINTVAL 'x' Types '>'
1273bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
1274  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1275      Lex.getAPSIntVal().getBitWidth() > 64)
1276    return TokError("expected number in address space");
1277
1278  LocTy SizeLoc = Lex.getLoc();
1279  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1280  Lex.Lex();
1281
1282  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1283      return true;
1284
1285  LocTy TypeLoc = Lex.getLoc();
1286  PATypeHolder EltTy(Type::VoidTy);
1287  if (ParseTypeRec(EltTy)) return true;
1288
1289  if (EltTy == Type::VoidTy)
1290    return Error(TypeLoc, "array and vector element type cannot be void");
1291
1292  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1293                 "expected end of sequential type"))
1294    return true;
1295
1296  if (isVector) {
1297    if (Size == 0)
1298      return Error(SizeLoc, "zero element vector is illegal");
1299    if ((unsigned)Size != Size)
1300      return Error(SizeLoc, "size too large for vector");
1301    if (!EltTy->isFloatingPoint() && !EltTy->isInteger())
1302      return Error(TypeLoc, "vector element type must be fp or integer");
1303    Result = VectorType::get(EltTy, unsigned(Size));
1304  } else {
1305    if (!EltTy->isFirstClassType() && !isa<OpaqueType>(EltTy))
1306      return Error(TypeLoc, "invalid array element type");
1307    Result = HandleUpRefs(ArrayType::get(EltTy, Size));
1308  }
1309  return false;
1310}
1311
1312//===----------------------------------------------------------------------===//
1313// Function Semantic Analysis.
1314//===----------------------------------------------------------------------===//
1315
1316LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f)
1317  : P(p), F(f) {
1318
1319  // Insert unnamed arguments into the NumberedVals list.
1320  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1321       AI != E; ++AI)
1322    if (!AI->hasName())
1323      NumberedVals.push_back(AI);
1324}
1325
1326LLParser::PerFunctionState::~PerFunctionState() {
1327  // If there were any forward referenced non-basicblock values, delete them.
1328  for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1329       I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1330    if (!isa<BasicBlock>(I->second.first)) {
1331      I->second.first->replaceAllUsesWith(UndefValue::get(I->second.first
1332                                                          ->getType()));
1333      delete I->second.first;
1334      I->second.first = 0;
1335    }
1336
1337  for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1338       I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1339    if (!isa<BasicBlock>(I->second.first)) {
1340      I->second.first->replaceAllUsesWith(UndefValue::get(I->second.first
1341                                                          ->getType()));
1342      delete I->second.first;
1343      I->second.first = 0;
1344    }
1345}
1346
1347bool LLParser::PerFunctionState::VerifyFunctionComplete() {
1348  if (!ForwardRefVals.empty())
1349    return P.Error(ForwardRefVals.begin()->second.second,
1350                   "use of undefined value '%" + ForwardRefVals.begin()->first +
1351                   "'");
1352  if (!ForwardRefValIDs.empty())
1353    return P.Error(ForwardRefValIDs.begin()->second.second,
1354                   "use of undefined value '%" +
1355                   utostr(ForwardRefValIDs.begin()->first) + "'");
1356  return false;
1357}
1358
1359
1360/// GetVal - Get a value with the specified name or ID, creating a
1361/// forward reference record if needed.  This can return null if the value
1362/// exists but does not have the right type.
1363Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1364                                          const Type *Ty, LocTy Loc) {
1365  // Look this name up in the normal function symbol table.
1366  Value *Val = F.getValueSymbolTable().lookup(Name);
1367
1368  // If this is a forward reference for the value, see if we already created a
1369  // forward ref record.
1370  if (Val == 0) {
1371    std::map<std::string, std::pair<Value*, LocTy> >::iterator
1372      I = ForwardRefVals.find(Name);
1373    if (I != ForwardRefVals.end())
1374      Val = I->second.first;
1375  }
1376
1377  // If we have the value in the symbol table or fwd-ref table, return it.
1378  if (Val) {
1379    if (Val->getType() == Ty) return Val;
1380    if (Ty == Type::LabelTy)
1381      P.Error(Loc, "'%" + Name + "' is not a basic block");
1382    else
1383      P.Error(Loc, "'%" + Name + "' defined with type '" +
1384              Val->getType()->getDescription() + "'");
1385    return 0;
1386  }
1387
1388  // Don't make placeholders with invalid type.
1389  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) {
1390    P.Error(Loc, "invalid use of a non-first-class type");
1391    return 0;
1392  }
1393
1394  // Otherwise, create a new forward reference for this value and remember it.
1395  Value *FwdVal;
1396  if (Ty == Type::LabelTy)
1397    FwdVal = BasicBlock::Create(Name, &F);
1398  else
1399    FwdVal = new Argument(Ty, Name);
1400
1401  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1402  return FwdVal;
1403}
1404
1405Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
1406                                          LocTy Loc) {
1407  // Look this name up in the normal function symbol table.
1408  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1409
1410  // If this is a forward reference for the value, see if we already created a
1411  // forward ref record.
1412  if (Val == 0) {
1413    std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1414      I = ForwardRefValIDs.find(ID);
1415    if (I != ForwardRefValIDs.end())
1416      Val = I->second.first;
1417  }
1418
1419  // If we have the value in the symbol table or fwd-ref table, return it.
1420  if (Val) {
1421    if (Val->getType() == Ty) return Val;
1422    if (Ty == Type::LabelTy)
1423      P.Error(Loc, "'%" + utostr(ID) + "' is not a basic block");
1424    else
1425      P.Error(Loc, "'%" + utostr(ID) + "' defined with type '" +
1426              Val->getType()->getDescription() + "'");
1427    return 0;
1428  }
1429
1430  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) {
1431    P.Error(Loc, "invalid use of a non-first-class type");
1432    return 0;
1433  }
1434
1435  // Otherwise, create a new forward reference for this value and remember it.
1436  Value *FwdVal;
1437  if (Ty == Type::LabelTy)
1438    FwdVal = BasicBlock::Create("", &F);
1439  else
1440    FwdVal = new Argument(Ty);
1441
1442  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1443  return FwdVal;
1444}
1445
1446/// SetInstName - After an instruction is parsed and inserted into its
1447/// basic block, this installs its name.
1448bool LLParser::PerFunctionState::SetInstName(int NameID,
1449                                             const std::string &NameStr,
1450                                             LocTy NameLoc, Instruction *Inst) {
1451  // If this instruction has void type, it cannot have a name or ID specified.
1452  if (Inst->getType() == Type::VoidTy) {
1453    if (NameID != -1 || !NameStr.empty())
1454      return P.Error(NameLoc, "instructions returning void cannot have a name");
1455    return false;
1456  }
1457
1458  // If this was a numbered instruction, verify that the instruction is the
1459  // expected value and resolve any forward references.
1460  if (NameStr.empty()) {
1461    // If neither a name nor an ID was specified, just use the next ID.
1462    if (NameID == -1)
1463      NameID = NumberedVals.size();
1464
1465    if (unsigned(NameID) != NumberedVals.size())
1466      return P.Error(NameLoc, "instruction expected to be numbered '%" +
1467                     utostr(NumberedVals.size()) + "'");
1468
1469    std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1470      ForwardRefValIDs.find(NameID);
1471    if (FI != ForwardRefValIDs.end()) {
1472      if (FI->second.first->getType() != Inst->getType())
1473        return P.Error(NameLoc, "instruction forward referenced with type '" +
1474                       FI->second.first->getType()->getDescription() + "'");
1475      FI->second.first->replaceAllUsesWith(Inst);
1476      ForwardRefValIDs.erase(FI);
1477    }
1478
1479    NumberedVals.push_back(Inst);
1480    return false;
1481  }
1482
1483  // Otherwise, the instruction had a name.  Resolve forward refs and set it.
1484  std::map<std::string, std::pair<Value*, LocTy> >::iterator
1485    FI = ForwardRefVals.find(NameStr);
1486  if (FI != ForwardRefVals.end()) {
1487    if (FI->second.first->getType() != Inst->getType())
1488      return P.Error(NameLoc, "instruction forward referenced with type '" +
1489                     FI->second.first->getType()->getDescription() + "'");
1490    FI->second.first->replaceAllUsesWith(Inst);
1491    ForwardRefVals.erase(FI);
1492  }
1493
1494  // Set the name on the instruction.
1495  Inst->setName(NameStr);
1496
1497  if (Inst->getNameStr() != NameStr)
1498    return P.Error(NameLoc, "multiple definition of local value named '" +
1499                   NameStr + "'");
1500  return false;
1501}
1502
1503/// GetBB - Get a basic block with the specified name or ID, creating a
1504/// forward reference record if needed.
1505BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1506                                              LocTy Loc) {
1507  return cast_or_null<BasicBlock>(GetVal(Name, Type::LabelTy, Loc));
1508}
1509
1510BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1511  return cast_or_null<BasicBlock>(GetVal(ID, Type::LabelTy, Loc));
1512}
1513
1514/// DefineBB - Define the specified basic block, which is either named or
1515/// unnamed.  If there is an error, this returns null otherwise it returns
1516/// the block being defined.
1517BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1518                                                 LocTy Loc) {
1519  BasicBlock *BB;
1520  if (Name.empty())
1521    BB = GetBB(NumberedVals.size(), Loc);
1522  else
1523    BB = GetBB(Name, Loc);
1524  if (BB == 0) return 0; // Already diagnosed error.
1525
1526  // Move the block to the end of the function.  Forward ref'd blocks are
1527  // inserted wherever they happen to be referenced.
1528  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1529
1530  // Remove the block from forward ref sets.
1531  if (Name.empty()) {
1532    ForwardRefValIDs.erase(NumberedVals.size());
1533    NumberedVals.push_back(BB);
1534  } else {
1535    // BB forward references are already in the function symbol table.
1536    ForwardRefVals.erase(Name);
1537  }
1538
1539  return BB;
1540}
1541
1542//===----------------------------------------------------------------------===//
1543// Constants.
1544//===----------------------------------------------------------------------===//
1545
1546/// ParseValID - Parse an abstract value that doesn't necessarily have a
1547/// type implied.  For example, if we parse "4" we don't know what integer type
1548/// it has.  The value will later be combined with its type and checked for
1549/// sanity.
1550bool LLParser::ParseValID(ValID &ID) {
1551  ID.Loc = Lex.getLoc();
1552  switch (Lex.getKind()) {
1553  default: return TokError("expected value token");
1554  case lltok::GlobalID:  // @42
1555    ID.UIntVal = Lex.getUIntVal();
1556    ID.Kind = ValID::t_GlobalID;
1557    break;
1558  case lltok::GlobalVar:  // @foo
1559    ID.StrVal = Lex.getStrVal();
1560    ID.Kind = ValID::t_GlobalName;
1561    break;
1562  case lltok::LocalVarID:  // %42
1563    ID.UIntVal = Lex.getUIntVal();
1564    ID.Kind = ValID::t_LocalID;
1565    break;
1566  case lltok::LocalVar:  // %foo
1567  case lltok::StringConstant:  // "foo" - FIXME: REMOVE IN LLVM 3.0
1568    ID.StrVal = Lex.getStrVal();
1569    ID.Kind = ValID::t_LocalName;
1570    break;
1571  case lltok::Metadata: {  // !{...} MDNode, !"foo" MDString
1572    ID.Kind = ValID::t_Constant;
1573    Lex.Lex();
1574    if (Lex.getKind() == lltok::lbrace) {
1575      SmallVector<Value*, 16> Elts;
1576      if (ParseMDNodeVector(Elts) ||
1577          ParseToken(lltok::rbrace, "expected end of metadata node"))
1578        return true;
1579
1580      ID.ConstantVal = MDNode::get(&Elts[0], Elts.size());
1581      return false;
1582    }
1583
1584    // MDString:
1585    //   ::= '!' STRINGCONSTANT
1586    std::string Str;
1587    if (ParseStringConstant(Str)) return true;
1588
1589    ID.ConstantVal = MDString::get(Str.data(), Str.data() + Str.size());
1590    return false;
1591  }
1592  case lltok::APSInt:
1593    ID.APSIntVal = Lex.getAPSIntVal();
1594    ID.Kind = ValID::t_APSInt;
1595    break;
1596  case lltok::APFloat:
1597    ID.APFloatVal = Lex.getAPFloatVal();
1598    ID.Kind = ValID::t_APFloat;
1599    break;
1600  case lltok::kw_true:
1601    ID.ConstantVal = ConstantInt::getTrue();
1602    ID.Kind = ValID::t_Constant;
1603    break;
1604  case lltok::kw_false:
1605    ID.ConstantVal = ConstantInt::getFalse();
1606    ID.Kind = ValID::t_Constant;
1607    break;
1608  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
1609  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
1610  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
1611
1612  case lltok::lbrace: {
1613    // ValID ::= '{' ConstVector '}'
1614    Lex.Lex();
1615    SmallVector<Constant*, 16> Elts;
1616    if (ParseGlobalValueVector(Elts) ||
1617        ParseToken(lltok::rbrace, "expected end of struct constant"))
1618      return true;
1619
1620    ID.ConstantVal = ConstantStruct::get(&Elts[0], Elts.size(), false);
1621    ID.Kind = ValID::t_Constant;
1622    return false;
1623  }
1624  case lltok::less: {
1625    // ValID ::= '<' ConstVector '>'         --> Vector.
1626    // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1627    Lex.Lex();
1628    bool isPackedStruct = EatIfPresent(lltok::lbrace);
1629
1630    SmallVector<Constant*, 16> Elts;
1631    LocTy FirstEltLoc = Lex.getLoc();
1632    if (ParseGlobalValueVector(Elts) ||
1633        (isPackedStruct &&
1634         ParseToken(lltok::rbrace, "expected end of packed struct")) ||
1635        ParseToken(lltok::greater, "expected end of constant"))
1636      return true;
1637
1638    if (isPackedStruct) {
1639      ID.ConstantVal = ConstantStruct::get(&Elts[0], Elts.size(), true);
1640      ID.Kind = ValID::t_Constant;
1641      return false;
1642    }
1643
1644    if (Elts.empty())
1645      return Error(ID.Loc, "constant vector must not be empty");
1646
1647    if (!Elts[0]->getType()->isInteger() &&
1648        !Elts[0]->getType()->isFloatingPoint())
1649      return Error(FirstEltLoc,
1650                   "vector elements must have integer or floating point type");
1651
1652    // Verify that all the vector elements have the same type.
1653    for (unsigned i = 1, e = Elts.size(); i != e; ++i)
1654      if (Elts[i]->getType() != Elts[0]->getType())
1655        return Error(FirstEltLoc,
1656                     "vector element #" + utostr(i) +
1657                    " is not of type '" + Elts[0]->getType()->getDescription());
1658
1659    ID.ConstantVal = ConstantVector::get(&Elts[0], Elts.size());
1660    ID.Kind = ValID::t_Constant;
1661    return false;
1662  }
1663  case lltok::lsquare: {   // Array Constant
1664    Lex.Lex();
1665    SmallVector<Constant*, 16> Elts;
1666    LocTy FirstEltLoc = Lex.getLoc();
1667    if (ParseGlobalValueVector(Elts) ||
1668        ParseToken(lltok::rsquare, "expected end of array constant"))
1669      return true;
1670
1671    // Handle empty element.
1672    if (Elts.empty()) {
1673      // Use undef instead of an array because it's inconvenient to determine
1674      // the element type at this point, there being no elements to examine.
1675      ID.Kind = ValID::t_EmptyArray;
1676      return false;
1677    }
1678
1679    if (!Elts[0]->getType()->isFirstClassType())
1680      return Error(FirstEltLoc, "invalid array element type: " +
1681                   Elts[0]->getType()->getDescription());
1682
1683    ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
1684
1685    // Verify all elements are correct type!
1686    for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
1687      if (Elts[i]->getType() != Elts[0]->getType())
1688        return Error(FirstEltLoc,
1689                     "array element #" + utostr(i) +
1690                     " is not of type '" +Elts[0]->getType()->getDescription());
1691    }
1692
1693    ID.ConstantVal = ConstantArray::get(ATy, &Elts[0], Elts.size());
1694    ID.Kind = ValID::t_Constant;
1695    return false;
1696  }
1697  case lltok::kw_c:  // c "foo"
1698    Lex.Lex();
1699    ID.ConstantVal = ConstantArray::get(Lex.getStrVal(), false);
1700    if (ParseToken(lltok::StringConstant, "expected string")) return true;
1701    ID.Kind = ValID::t_Constant;
1702    return false;
1703
1704  case lltok::kw_asm: {
1705    // ValID ::= 'asm' SideEffect? STRINGCONSTANT ',' STRINGCONSTANT
1706    bool HasSideEffect;
1707    Lex.Lex();
1708    if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
1709        ParseStringConstant(ID.StrVal) ||
1710        ParseToken(lltok::comma, "expected comma in inline asm expression") ||
1711        ParseToken(lltok::StringConstant, "expected constraint string"))
1712      return true;
1713    ID.StrVal2 = Lex.getStrVal();
1714    ID.UIntVal = HasSideEffect;
1715    ID.Kind = ValID::t_InlineAsm;
1716    return false;
1717  }
1718
1719  case lltok::kw_trunc:
1720  case lltok::kw_zext:
1721  case lltok::kw_sext:
1722  case lltok::kw_fptrunc:
1723  case lltok::kw_fpext:
1724  case lltok::kw_bitcast:
1725  case lltok::kw_uitofp:
1726  case lltok::kw_sitofp:
1727  case lltok::kw_fptoui:
1728  case lltok::kw_fptosi:
1729  case lltok::kw_inttoptr:
1730  case lltok::kw_ptrtoint: {
1731    unsigned Opc = Lex.getUIntVal();
1732    PATypeHolder DestTy(Type::VoidTy);
1733    Constant *SrcVal;
1734    Lex.Lex();
1735    if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
1736        ParseGlobalTypeAndValue(SrcVal) ||
1737        ParseToken(lltok::kw_to, "expected 'to' int constantexpr cast") ||
1738        ParseType(DestTy) ||
1739        ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
1740      return true;
1741    if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
1742      return Error(ID.Loc, "invalid cast opcode for cast from '" +
1743                   SrcVal->getType()->getDescription() + "' to '" +
1744                   DestTy->getDescription() + "'");
1745    ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, SrcVal,
1746                                           DestTy);
1747    ID.Kind = ValID::t_Constant;
1748    return false;
1749  }
1750  case lltok::kw_extractvalue: {
1751    Lex.Lex();
1752    Constant *Val;
1753    SmallVector<unsigned, 4> Indices;
1754    if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
1755        ParseGlobalTypeAndValue(Val) ||
1756        ParseIndexList(Indices) ||
1757        ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
1758      return true;
1759    if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
1760      return Error(ID.Loc, "extractvalue operand must be array or struct");
1761    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
1762                                          Indices.end()))
1763      return Error(ID.Loc, "invalid indices for extractvalue");
1764    ID.ConstantVal = ConstantExpr::getExtractValue(Val,
1765                                                   &Indices[0], Indices.size());
1766    ID.Kind = ValID::t_Constant;
1767    return false;
1768  }
1769  case lltok::kw_insertvalue: {
1770    Lex.Lex();
1771    Constant *Val0, *Val1;
1772    SmallVector<unsigned, 4> Indices;
1773    if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
1774        ParseGlobalTypeAndValue(Val0) ||
1775        ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
1776        ParseGlobalTypeAndValue(Val1) ||
1777        ParseIndexList(Indices) ||
1778        ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
1779      return true;
1780    if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
1781      return Error(ID.Loc, "extractvalue operand must be array or struct");
1782    if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
1783                                          Indices.end()))
1784      return Error(ID.Loc, "invalid indices for insertvalue");
1785    ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1,
1786                                                  &Indices[0], Indices.size());
1787    ID.Kind = ValID::t_Constant;
1788    return false;
1789  }
1790  case lltok::kw_icmp:
1791  case lltok::kw_fcmp:
1792  case lltok::kw_vicmp:
1793  case lltok::kw_vfcmp: {
1794    unsigned PredVal, Opc = Lex.getUIntVal();
1795    Constant *Val0, *Val1;
1796    Lex.Lex();
1797    if (ParseCmpPredicate(PredVal, Opc) ||
1798        ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
1799        ParseGlobalTypeAndValue(Val0) ||
1800        ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
1801        ParseGlobalTypeAndValue(Val1) ||
1802        ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
1803      return true;
1804
1805    if (Val0->getType() != Val1->getType())
1806      return Error(ID.Loc, "compare operands must have the same type");
1807
1808    CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
1809
1810    if (Opc == Instruction::FCmp) {
1811      if (!Val0->getType()->isFPOrFPVector())
1812        return Error(ID.Loc, "fcmp requires floating point operands");
1813      ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
1814    } else if (Opc == Instruction::ICmp) {
1815      if (!Val0->getType()->isIntOrIntVector() &&
1816          !isa<PointerType>(Val0->getType()))
1817        return Error(ID.Loc, "icmp requires pointer or integer operands");
1818      ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
1819    } else if (Opc == Instruction::VFCmp) {
1820      // FIXME: REMOVE VFCMP Support
1821      if (!Val0->getType()->isFPOrFPVector() ||
1822          !isa<VectorType>(Val0->getType()))
1823        return Error(ID.Loc, "vfcmp requires vector floating point operands");
1824      ID.ConstantVal = ConstantExpr::getVFCmp(Pred, Val0, Val1);
1825    } else if (Opc == Instruction::VICmp) {
1826      // FIXME: REMOVE VICMP Support
1827      if (!Val0->getType()->isIntOrIntVector() ||
1828          !isa<VectorType>(Val0->getType()))
1829        return Error(ID.Loc, "vicmp requires vector floating point operands");
1830      ID.ConstantVal = ConstantExpr::getVICmp(Pred, Val0, Val1);
1831    }
1832    ID.Kind = ValID::t_Constant;
1833    return false;
1834  }
1835
1836  // Binary Operators.
1837  case lltok::kw_add:
1838  case lltok::kw_sub:
1839  case lltok::kw_mul:
1840  case lltok::kw_udiv:
1841  case lltok::kw_sdiv:
1842  case lltok::kw_fdiv:
1843  case lltok::kw_urem:
1844  case lltok::kw_srem:
1845  case lltok::kw_frem: {
1846    unsigned Opc = Lex.getUIntVal();
1847    Constant *Val0, *Val1;
1848    Lex.Lex();
1849    if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
1850        ParseGlobalTypeAndValue(Val0) ||
1851        ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
1852        ParseGlobalTypeAndValue(Val1) ||
1853        ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
1854      return true;
1855    if (Val0->getType() != Val1->getType())
1856      return Error(ID.Loc, "operands of constexpr must have same type");
1857    if (!Val0->getType()->isIntOrIntVector() &&
1858        !Val0->getType()->isFPOrFPVector())
1859      return Error(ID.Loc,"constexpr requires integer, fp, or vector operands");
1860    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
1861    ID.Kind = ValID::t_Constant;
1862    return false;
1863  }
1864
1865  // Logical Operations
1866  case lltok::kw_shl:
1867  case lltok::kw_lshr:
1868  case lltok::kw_ashr:
1869  case lltok::kw_and:
1870  case lltok::kw_or:
1871  case lltok::kw_xor: {
1872    unsigned Opc = Lex.getUIntVal();
1873    Constant *Val0, *Val1;
1874    Lex.Lex();
1875    if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
1876        ParseGlobalTypeAndValue(Val0) ||
1877        ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
1878        ParseGlobalTypeAndValue(Val1) ||
1879        ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
1880      return true;
1881    if (Val0->getType() != Val1->getType())
1882      return Error(ID.Loc, "operands of constexpr must have same type");
1883    if (!Val0->getType()->isIntOrIntVector())
1884      return Error(ID.Loc,
1885                   "constexpr requires integer or integer vector operands");
1886    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
1887    ID.Kind = ValID::t_Constant;
1888    return false;
1889  }
1890
1891  case lltok::kw_getelementptr:
1892  case lltok::kw_shufflevector:
1893  case lltok::kw_insertelement:
1894  case lltok::kw_extractelement:
1895  case lltok::kw_select: {
1896    unsigned Opc = Lex.getUIntVal();
1897    SmallVector<Constant*, 16> Elts;
1898    Lex.Lex();
1899    if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
1900        ParseGlobalValueVector(Elts) ||
1901        ParseToken(lltok::rparen, "expected ')' in constantexpr"))
1902      return true;
1903
1904    if (Opc == Instruction::GetElementPtr) {
1905      if (Elts.size() == 0 || !isa<PointerType>(Elts[0]->getType()))
1906        return Error(ID.Loc, "getelementptr requires pointer operand");
1907
1908      if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
1909                                             (Value**)&Elts[1], Elts.size()-1))
1910        return Error(ID.Loc, "invalid indices for getelementptr");
1911      ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0],
1912                                                      &Elts[1], Elts.size()-1);
1913    } else if (Opc == Instruction::Select) {
1914      if (Elts.size() != 3)
1915        return Error(ID.Loc, "expected three operands to select");
1916      if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
1917                                                              Elts[2]))
1918        return Error(ID.Loc, Reason);
1919      ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
1920    } else if (Opc == Instruction::ShuffleVector) {
1921      if (Elts.size() != 3)
1922        return Error(ID.Loc, "expected three operands to shufflevector");
1923      if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
1924        return Error(ID.Loc, "invalid operands to shufflevector");
1925      ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
1926    } else if (Opc == Instruction::ExtractElement) {
1927      if (Elts.size() != 2)
1928        return Error(ID.Loc, "expected two operands to extractelement");
1929      if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
1930        return Error(ID.Loc, "invalid extractelement operands");
1931      ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
1932    } else {
1933      assert(Opc == Instruction::InsertElement && "Unknown opcode");
1934      if (Elts.size() != 3)
1935      return Error(ID.Loc, "expected three operands to insertelement");
1936      if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
1937        return Error(ID.Loc, "invalid insertelement operands");
1938      ID.ConstantVal = ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
1939    }
1940
1941    ID.Kind = ValID::t_Constant;
1942    return false;
1943  }
1944  }
1945
1946  Lex.Lex();
1947  return false;
1948}
1949
1950/// ParseGlobalValue - Parse a global value with the specified type.
1951bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&V) {
1952  V = 0;
1953  ValID ID;
1954  return ParseValID(ID) ||
1955         ConvertGlobalValIDToValue(Ty, ID, V);
1956}
1957
1958/// ConvertGlobalValIDToValue - Apply a type to a ValID to get a fully resolved
1959/// constant.
1960bool LLParser::ConvertGlobalValIDToValue(const Type *Ty, ValID &ID,
1961                                         Constant *&V) {
1962  if (isa<FunctionType>(Ty))
1963    return Error(ID.Loc, "functions are not values, refer to them as pointers");
1964
1965  switch (ID.Kind) {
1966  default: assert(0 && "Unknown ValID!");
1967  case ValID::t_LocalID:
1968  case ValID::t_LocalName:
1969    return Error(ID.Loc, "invalid use of function-local name");
1970  case ValID::t_InlineAsm:
1971    return Error(ID.Loc, "inline asm can only be an operand of call/invoke");
1972  case ValID::t_GlobalName:
1973    V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
1974    return V == 0;
1975  case ValID::t_GlobalID:
1976    V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
1977    return V == 0;
1978  case ValID::t_APSInt:
1979    if (!isa<IntegerType>(Ty))
1980      return Error(ID.Loc, "integer constant must have integer type");
1981    ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
1982    V = ConstantInt::get(ID.APSIntVal);
1983    return false;
1984  case ValID::t_APFloat:
1985    if (!Ty->isFloatingPoint() ||
1986        !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
1987      return Error(ID.Loc, "floating point constant invalid for type");
1988
1989    // The lexer has no type info, so builds all float and double FP constants
1990    // as double.  Fix this here.  Long double does not need this.
1991    if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
1992        Ty == Type::FloatTy) {
1993      bool Ignored;
1994      ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
1995                            &Ignored);
1996    }
1997    V = ConstantFP::get(ID.APFloatVal);
1998
1999    if (V->getType() != Ty)
2000      return Error(ID.Loc, "floating point constant does not have type '" +
2001                   Ty->getDescription() + "'");
2002
2003    return false;
2004  case ValID::t_Null:
2005    if (!isa<PointerType>(Ty))
2006      return Error(ID.Loc, "null must be a pointer type");
2007    V = ConstantPointerNull::get(cast<PointerType>(Ty));
2008    return false;
2009  case ValID::t_Undef:
2010    // FIXME: LabelTy should not be a first-class type.
2011    if ((!Ty->isFirstClassType() || Ty == Type::LabelTy) &&
2012        !isa<OpaqueType>(Ty))
2013      return Error(ID.Loc, "invalid type for undef constant");
2014    V = UndefValue::get(Ty);
2015    return false;
2016  case ValID::t_EmptyArray:
2017    if (!isa<ArrayType>(Ty) || cast<ArrayType>(Ty)->getNumElements() != 0)
2018      return Error(ID.Loc, "invalid empty array initializer");
2019    V = UndefValue::get(Ty);
2020    return false;
2021  case ValID::t_Zero:
2022    // FIXME: LabelTy should not be a first-class type.
2023    if (!Ty->isFirstClassType() || Ty == Type::LabelTy)
2024      return Error(ID.Loc, "invalid type for null constant");
2025    V = Constant::getNullValue(Ty);
2026    return false;
2027  case ValID::t_Constant:
2028    if (ID.ConstantVal->getType() != Ty)
2029      return Error(ID.Loc, "constant expression type mismatch");
2030    V = ID.ConstantVal;
2031    return false;
2032  }
2033}
2034
2035bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2036  PATypeHolder Type(Type::VoidTy);
2037  return ParseType(Type) ||
2038         ParseGlobalValue(Type, V);
2039}
2040
2041/// ParseGlobalValueVector
2042///   ::= /*empty*/
2043///   ::= TypeAndValue (',' TypeAndValue)*
2044bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2045  // Empty list.
2046  if (Lex.getKind() == lltok::rbrace ||
2047      Lex.getKind() == lltok::rsquare ||
2048      Lex.getKind() == lltok::greater ||
2049      Lex.getKind() == lltok::rparen)
2050    return false;
2051
2052  Constant *C;
2053  if (ParseGlobalTypeAndValue(C)) return true;
2054  Elts.push_back(C);
2055
2056  while (EatIfPresent(lltok::comma)) {
2057    if (ParseGlobalTypeAndValue(C)) return true;
2058    Elts.push_back(C);
2059  }
2060
2061  return false;
2062}
2063
2064
2065//===----------------------------------------------------------------------===//
2066// Function Parsing.
2067//===----------------------------------------------------------------------===//
2068
2069bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
2070                                   PerFunctionState &PFS) {
2071  if (ID.Kind == ValID::t_LocalID)
2072    V = PFS.GetVal(ID.UIntVal, Ty, ID.Loc);
2073  else if (ID.Kind == ValID::t_LocalName)
2074    V = PFS.GetVal(ID.StrVal, Ty, ID.Loc);
2075  else if (ID.Kind == ValID::t_InlineAsm) {
2076    const PointerType *PTy = dyn_cast<PointerType>(Ty);
2077    const FunctionType *FTy =
2078      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2079    if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2080      return Error(ID.Loc, "invalid type for inline asm constraint string");
2081    V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal);
2082    return false;
2083  } else {
2084    Constant *C;
2085    if (ConvertGlobalValIDToValue(Ty, ID, C)) return true;
2086    V = C;
2087    return false;
2088  }
2089
2090  return V == 0;
2091}
2092
2093bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
2094  V = 0;
2095  ValID ID;
2096  return ParseValID(ID) ||
2097         ConvertValIDToValue(Ty, ID, V, PFS);
2098}
2099
2100bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
2101  PATypeHolder T(Type::VoidTy);
2102  return ParseType(T) ||
2103         ParseValue(T, V, PFS);
2104}
2105
2106/// FunctionHeader
2107///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2108///       Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2109///       OptionalAlign OptGC
2110bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2111  // Parse the linkage.
2112  LocTy LinkageLoc = Lex.getLoc();
2113  unsigned Linkage;
2114
2115  unsigned Visibility, CC, RetAttrs;
2116  PATypeHolder RetType(Type::VoidTy);
2117  LocTy RetTypeLoc = Lex.getLoc();
2118  if (ParseOptionalLinkage(Linkage) ||
2119      ParseOptionalVisibility(Visibility) ||
2120      ParseOptionalCallingConv(CC) ||
2121      ParseOptionalAttrs(RetAttrs, 1) ||
2122      ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2123    return true;
2124
2125  // Verify that the linkage is ok.
2126  switch ((GlobalValue::LinkageTypes)Linkage) {
2127  case GlobalValue::ExternalLinkage:
2128    break; // always ok.
2129  case GlobalValue::DLLImportLinkage:
2130  case GlobalValue::ExternalWeakLinkage:
2131    if (isDefine)
2132      return Error(LinkageLoc, "invalid linkage for function definition");
2133    break;
2134  case GlobalValue::PrivateLinkage:
2135  case GlobalValue::InternalLinkage:
2136  case GlobalValue::AvailableExternallyLinkage:
2137  case GlobalValue::LinkOnceAnyLinkage:
2138  case GlobalValue::LinkOnceODRLinkage:
2139  case GlobalValue::WeakAnyLinkage:
2140  case GlobalValue::WeakODRLinkage:
2141  case GlobalValue::DLLExportLinkage:
2142    if (!isDefine)
2143      return Error(LinkageLoc, "invalid linkage for function declaration");
2144    break;
2145  case GlobalValue::AppendingLinkage:
2146  case GlobalValue::GhostLinkage:
2147  case GlobalValue::CommonLinkage:
2148    return Error(LinkageLoc, "invalid function linkage type");
2149  }
2150
2151  if (!FunctionType::isValidReturnType(RetType) ||
2152      isa<OpaqueType>(RetType))
2153    return Error(RetTypeLoc, "invalid function return type");
2154
2155  LocTy NameLoc = Lex.getLoc();
2156
2157  std::string FunctionName;
2158  if (Lex.getKind() == lltok::GlobalVar) {
2159    FunctionName = Lex.getStrVal();
2160  } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
2161    unsigned NameID = Lex.getUIntVal();
2162
2163    if (NameID != NumberedVals.size())
2164      return TokError("function expected to be numbered '%" +
2165                      utostr(NumberedVals.size()) + "'");
2166  } else {
2167    return TokError("expected function name");
2168  }
2169
2170  Lex.Lex();
2171
2172  if (Lex.getKind() != lltok::lparen)
2173    return TokError("expected '(' in function argument list");
2174
2175  std::vector<ArgInfo> ArgList;
2176  bool isVarArg;
2177  unsigned FuncAttrs;
2178  std::string Section;
2179  unsigned Alignment;
2180  std::string GC;
2181
2182  if (ParseArgumentList(ArgList, isVarArg, false) ||
2183      ParseOptionalAttrs(FuncAttrs, 2) ||
2184      (EatIfPresent(lltok::kw_section) &&
2185       ParseStringConstant(Section)) ||
2186      ParseOptionalAlignment(Alignment) ||
2187      (EatIfPresent(lltok::kw_gc) &&
2188       ParseStringConstant(GC)))
2189    return true;
2190
2191  // If the alignment was parsed as an attribute, move to the alignment field.
2192  if (FuncAttrs & Attribute::Alignment) {
2193    Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2194    FuncAttrs &= ~Attribute::Alignment;
2195  }
2196
2197  // Okay, if we got here, the function is syntactically valid.  Convert types
2198  // and do semantic checks.
2199  std::vector<const Type*> ParamTypeList;
2200  SmallVector<AttributeWithIndex, 8> Attrs;
2201  // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2202  // attributes.
2203  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2204  if (FuncAttrs & ObsoleteFuncAttrs) {
2205    RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
2206    FuncAttrs &= ~ObsoleteFuncAttrs;
2207  }
2208
2209  if (RetAttrs != Attribute::None)
2210    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2211
2212  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2213    ParamTypeList.push_back(ArgList[i].Type);
2214    if (ArgList[i].Attrs != Attribute::None)
2215      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2216  }
2217
2218  if (FuncAttrs != Attribute::None)
2219    Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2220
2221  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2222
2223  if (PAL.paramHasAttr(1, Attribute::StructRet) &&
2224      RetType != Type::VoidTy)
2225    return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2226
2227  const FunctionType *FT = FunctionType::get(RetType, ParamTypeList, isVarArg);
2228  const PointerType *PFT = PointerType::getUnqual(FT);
2229
2230  Fn = 0;
2231  if (!FunctionName.empty()) {
2232    // If this was a definition of a forward reference, remove the definition
2233    // from the forward reference table and fill in the forward ref.
2234    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2235      ForwardRefVals.find(FunctionName);
2236    if (FRVI != ForwardRefVals.end()) {
2237      Fn = M->getFunction(FunctionName);
2238      ForwardRefVals.erase(FRVI);
2239    } else if ((Fn = M->getFunction(FunctionName))) {
2240      // If this function already exists in the symbol table, then it is
2241      // multiply defined.  We accept a few cases for old backwards compat.
2242      // FIXME: Remove this stuff for LLVM 3.0.
2243      if (Fn->getType() != PFT || Fn->getAttributes() != PAL ||
2244          (!Fn->isDeclaration() && isDefine)) {
2245        // If the redefinition has different type or different attributes,
2246        // reject it.  If both have bodies, reject it.
2247        return Error(NameLoc, "invalid redefinition of function '" +
2248                     FunctionName + "'");
2249      } else if (Fn->isDeclaration()) {
2250        // Make sure to strip off any argument names so we can't get conflicts.
2251        for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2252             AI != AE; ++AI)
2253          AI->setName("");
2254      }
2255    }
2256
2257  } else if (FunctionName.empty()) {
2258    // If this is a definition of a forward referenced function, make sure the
2259    // types agree.
2260    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2261      = ForwardRefValIDs.find(NumberedVals.size());
2262    if (I != ForwardRefValIDs.end()) {
2263      Fn = cast<Function>(I->second.first);
2264      if (Fn->getType() != PFT)
2265        return Error(NameLoc, "type of definition and forward reference of '@" +
2266                     utostr(NumberedVals.size()) +"' disagree");
2267      ForwardRefValIDs.erase(I);
2268    }
2269  }
2270
2271  if (Fn == 0)
2272    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2273  else // Move the forward-reference to the correct spot in the module.
2274    M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2275
2276  if (FunctionName.empty())
2277    NumberedVals.push_back(Fn);
2278
2279  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2280  Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2281  Fn->setCallingConv(CC);
2282  Fn->setAttributes(PAL);
2283  Fn->setAlignment(Alignment);
2284  Fn->setSection(Section);
2285  if (!GC.empty()) Fn->setGC(GC.c_str());
2286
2287  // Add all of the arguments we parsed to the function.
2288  Function::arg_iterator ArgIt = Fn->arg_begin();
2289  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2290    // If the argument has a name, insert it into the argument symbol table.
2291    if (ArgList[i].Name.empty()) continue;
2292
2293    // Set the name, if it conflicted, it will be auto-renamed.
2294    ArgIt->setName(ArgList[i].Name);
2295
2296    if (ArgIt->getNameStr() != ArgList[i].Name)
2297      return Error(ArgList[i].Loc, "redefinition of argument '%" +
2298                   ArgList[i].Name + "'");
2299  }
2300
2301  return false;
2302}
2303
2304
2305/// ParseFunctionBody
2306///   ::= '{' BasicBlock+ '}'
2307///   ::= 'begin' BasicBlock+ 'end'  // FIXME: remove in LLVM 3.0
2308///
2309bool LLParser::ParseFunctionBody(Function &Fn) {
2310  if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
2311    return TokError("expected '{' in function body");
2312  Lex.Lex();  // eat the {.
2313
2314  PerFunctionState PFS(*this, Fn);
2315
2316  while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
2317    if (ParseBasicBlock(PFS)) return true;
2318
2319  // Eat the }.
2320  Lex.Lex();
2321
2322  // Verify function is ok.
2323  return PFS.VerifyFunctionComplete();
2324}
2325
2326/// ParseBasicBlock
2327///   ::= LabelStr? Instruction*
2328bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2329  // If this basic block starts out with a name, remember it.
2330  std::string Name;
2331  LocTy NameLoc = Lex.getLoc();
2332  if (Lex.getKind() == lltok::LabelStr) {
2333    Name = Lex.getStrVal();
2334    Lex.Lex();
2335  }
2336
2337  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2338  if (BB == 0) return true;
2339
2340  std::string NameStr;
2341
2342  // Parse the instructions in this block until we get a terminator.
2343  Instruction *Inst;
2344  do {
2345    // This instruction may have three possibilities for a name: a) none
2346    // specified, b) name specified "%foo =", c) number specified: "%4 =".
2347    LocTy NameLoc = Lex.getLoc();
2348    int NameID = -1;
2349    NameStr = "";
2350
2351    if (Lex.getKind() == lltok::LocalVarID) {
2352      NameID = Lex.getUIntVal();
2353      Lex.Lex();
2354      if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2355        return true;
2356    } else if (Lex.getKind() == lltok::LocalVar ||
2357               // FIXME: REMOVE IN LLVM 3.0
2358               Lex.getKind() == lltok::StringConstant) {
2359      NameStr = Lex.getStrVal();
2360      Lex.Lex();
2361      if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2362        return true;
2363    }
2364
2365    if (ParseInstruction(Inst, BB, PFS)) return true;
2366
2367    BB->getInstList().push_back(Inst);
2368
2369    // Set the name on the instruction.
2370    if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2371  } while (!isa<TerminatorInst>(Inst));
2372
2373  return false;
2374}
2375
2376//===----------------------------------------------------------------------===//
2377// Instruction Parsing.
2378//===----------------------------------------------------------------------===//
2379
2380/// ParseInstruction - Parse one of the many different instructions.
2381///
2382bool LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2383                                PerFunctionState &PFS) {
2384  lltok::Kind Token = Lex.getKind();
2385  if (Token == lltok::Eof)
2386    return TokError("found end of file when expecting more instructions");
2387  LocTy Loc = Lex.getLoc();
2388  unsigned KeywordVal = Lex.getUIntVal();
2389  Lex.Lex();  // Eat the keyword.
2390
2391  switch (Token) {
2392  default:                    return Error(Loc, "expected instruction opcode");
2393  // Terminator Instructions.
2394  case lltok::kw_unwind:      Inst = new UnwindInst(); return false;
2395  case lltok::kw_unreachable: Inst = new UnreachableInst(); return false;
2396  case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
2397  case lltok::kw_br:          return ParseBr(Inst, PFS);
2398  case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
2399  case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
2400  // Binary Operators.
2401  case lltok::kw_add:
2402  case lltok::kw_sub:
2403  case lltok::kw_mul:    return ParseArithmetic(Inst, PFS, KeywordVal, 0);
2404
2405  case lltok::kw_udiv:
2406  case lltok::kw_sdiv:
2407  case lltok::kw_urem:
2408  case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
2409  case lltok::kw_fdiv:
2410  case lltok::kw_frem:   return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2411  case lltok::kw_shl:
2412  case lltok::kw_lshr:
2413  case lltok::kw_ashr:
2414  case lltok::kw_and:
2415  case lltok::kw_or:
2416  case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
2417  case lltok::kw_icmp:
2418  case lltok::kw_fcmp:
2419  case lltok::kw_vicmp:
2420  case lltok::kw_vfcmp:  return ParseCompare(Inst, PFS, KeywordVal);
2421  // Casts.
2422  case lltok::kw_trunc:
2423  case lltok::kw_zext:
2424  case lltok::kw_sext:
2425  case lltok::kw_fptrunc:
2426  case lltok::kw_fpext:
2427  case lltok::kw_bitcast:
2428  case lltok::kw_uitofp:
2429  case lltok::kw_sitofp:
2430  case lltok::kw_fptoui:
2431  case lltok::kw_fptosi:
2432  case lltok::kw_inttoptr:
2433  case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
2434  // Other.
2435  case lltok::kw_select:         return ParseSelect(Inst, PFS);
2436  case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
2437  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
2438  case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
2439  case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
2440  case lltok::kw_phi:            return ParsePHI(Inst, PFS);
2441  case lltok::kw_call:           return ParseCall(Inst, PFS, false);
2442  case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
2443  // Memory.
2444  case lltok::kw_alloca:
2445  case lltok::kw_malloc:         return ParseAlloc(Inst, PFS, KeywordVal);
2446  case lltok::kw_free:           return ParseFree(Inst, PFS);
2447  case lltok::kw_load:           return ParseLoad(Inst, PFS, false);
2448  case lltok::kw_store:          return ParseStore(Inst, PFS, false);
2449  case lltok::kw_volatile:
2450    if (EatIfPresent(lltok::kw_load))
2451      return ParseLoad(Inst, PFS, true);
2452    else if (EatIfPresent(lltok::kw_store))
2453      return ParseStore(Inst, PFS, true);
2454    else
2455      return TokError("expected 'load' or 'store'");
2456  case lltok::kw_getresult:     return ParseGetResult(Inst, PFS);
2457  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
2458  case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
2459  case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
2460  }
2461}
2462
2463/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
2464bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
2465  // FIXME: REMOVE vicmp/vfcmp!
2466  if (Opc == Instruction::FCmp || Opc == Instruction::VFCmp) {
2467    switch (Lex.getKind()) {
2468    default: TokError("expected fcmp predicate (e.g. 'oeq')");
2469    case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
2470    case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
2471    case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
2472    case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
2473    case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
2474    case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
2475    case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
2476    case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
2477    case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
2478    case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
2479    case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
2480    case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
2481    case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
2482    case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
2483    case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
2484    case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
2485    }
2486  } else {
2487    switch (Lex.getKind()) {
2488    default: TokError("expected icmp predicate (e.g. 'eq')");
2489    case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
2490    case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
2491    case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
2492    case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
2493    case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
2494    case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
2495    case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
2496    case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
2497    case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
2498    case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
2499    }
2500  }
2501  Lex.Lex();
2502  return false;
2503}
2504
2505//===----------------------------------------------------------------------===//
2506// Terminator Instructions.
2507//===----------------------------------------------------------------------===//
2508
2509/// ParseRet - Parse a return instruction.
2510///   ::= 'ret' void
2511///   ::= 'ret' TypeAndValue
2512///   ::= 'ret' TypeAndValue (',' TypeAndValue)+  [[obsolete: LLVM 3.0]]
2513bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
2514                        PerFunctionState &PFS) {
2515  PATypeHolder Ty(Type::VoidTy);
2516  if (ParseType(Ty, true /*void allowed*/)) return true;
2517
2518  if (Ty == Type::VoidTy) {
2519    Inst = ReturnInst::Create();
2520    return false;
2521  }
2522
2523  Value *RV;
2524  if (ParseValue(Ty, RV, PFS)) return true;
2525
2526  // The normal case is one return value.
2527  if (Lex.getKind() == lltok::comma) {
2528    // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring use
2529    // of 'ret {i32,i32} {i32 1, i32 2}'
2530    SmallVector<Value*, 8> RVs;
2531    RVs.push_back(RV);
2532
2533    while (EatIfPresent(lltok::comma)) {
2534      if (ParseTypeAndValue(RV, PFS)) return true;
2535      RVs.push_back(RV);
2536    }
2537
2538    RV = UndefValue::get(PFS.getFunction().getReturnType());
2539    for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
2540      Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
2541      BB->getInstList().push_back(I);
2542      RV = I;
2543    }
2544  }
2545  Inst = ReturnInst::Create(RV);
2546  return false;
2547}
2548
2549
2550/// ParseBr
2551///   ::= 'br' TypeAndValue
2552///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2553bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
2554  LocTy Loc, Loc2;
2555  Value *Op0, *Op1, *Op2;
2556  if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
2557
2558  if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
2559    Inst = BranchInst::Create(BB);
2560    return false;
2561  }
2562
2563  if (Op0->getType() != Type::Int1Ty)
2564    return Error(Loc, "branch condition must have 'i1' type");
2565
2566  if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
2567      ParseTypeAndValue(Op1, Loc, PFS) ||
2568      ParseToken(lltok::comma, "expected ',' after true destination") ||
2569      ParseTypeAndValue(Op2, Loc2, PFS))
2570    return true;
2571
2572  if (!isa<BasicBlock>(Op1))
2573    return Error(Loc, "true destination of branch must be a basic block");
2574  if (!isa<BasicBlock>(Op2))
2575    return Error(Loc2, "true destination of branch must be a basic block");
2576
2577  Inst = BranchInst::Create(cast<BasicBlock>(Op1), cast<BasicBlock>(Op2), Op0);
2578  return false;
2579}
2580
2581/// ParseSwitch
2582///  Instruction
2583///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
2584///  JumpTable
2585///    ::= (TypeAndValue ',' TypeAndValue)*
2586bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
2587  LocTy CondLoc, BBLoc;
2588  Value *Cond, *DefaultBB;
2589  if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
2590      ParseToken(lltok::comma, "expected ',' after switch condition") ||
2591      ParseTypeAndValue(DefaultBB, BBLoc, PFS) ||
2592      ParseToken(lltok::lsquare, "expected '[' with switch table"))
2593    return true;
2594
2595  if (!isa<IntegerType>(Cond->getType()))
2596    return Error(CondLoc, "switch condition must have integer type");
2597  if (!isa<BasicBlock>(DefaultBB))
2598    return Error(BBLoc, "default destination must be a basic block");
2599
2600  // Parse the jump table pairs.
2601  SmallPtrSet<Value*, 32> SeenCases;
2602  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
2603  while (Lex.getKind() != lltok::rsquare) {
2604    Value *Constant, *DestBB;
2605
2606    if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
2607        ParseToken(lltok::comma, "expected ',' after case value") ||
2608        ParseTypeAndValue(DestBB, BBLoc, PFS))
2609      return true;
2610
2611    if (!SeenCases.insert(Constant))
2612      return Error(CondLoc, "duplicate case value in switch");
2613    if (!isa<ConstantInt>(Constant))
2614      return Error(CondLoc, "case value is not a constant integer");
2615    if (!isa<BasicBlock>(DestBB))
2616      return Error(BBLoc, "case destination is not a basic block");
2617
2618    Table.push_back(std::make_pair(cast<ConstantInt>(Constant),
2619                                   cast<BasicBlock>(DestBB)));
2620  }
2621
2622  Lex.Lex();  // Eat the ']'.
2623
2624  SwitchInst *SI = SwitchInst::Create(Cond, cast<BasicBlock>(DefaultBB),
2625                                      Table.size());
2626  for (unsigned i = 0, e = Table.size(); i != e; ++i)
2627    SI->addCase(Table[i].first, Table[i].second);
2628  Inst = SI;
2629  return false;
2630}
2631
2632/// ParseInvoke
2633///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
2634///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
2635bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
2636  LocTy CallLoc = Lex.getLoc();
2637  unsigned CC, RetAttrs, FnAttrs;
2638  PATypeHolder RetType(Type::VoidTy);
2639  LocTy RetTypeLoc;
2640  ValID CalleeID;
2641  SmallVector<ParamInfo, 16> ArgList;
2642
2643  Value *NormalBB, *UnwindBB;
2644  if (ParseOptionalCallingConv(CC) ||
2645      ParseOptionalAttrs(RetAttrs, 1) ||
2646      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
2647      ParseValID(CalleeID) ||
2648      ParseParameterList(ArgList, PFS) ||
2649      ParseOptionalAttrs(FnAttrs, 2) ||
2650      ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
2651      ParseTypeAndValue(NormalBB, PFS) ||
2652      ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
2653      ParseTypeAndValue(UnwindBB, PFS))
2654    return true;
2655
2656  if (!isa<BasicBlock>(NormalBB))
2657    return Error(CallLoc, "normal destination is not a basic block");
2658  if (!isa<BasicBlock>(UnwindBB))
2659    return Error(CallLoc, "unwind destination is not a basic block");
2660
2661  // If RetType is a non-function pointer type, then this is the short syntax
2662  // for the call, which means that RetType is just the return type.  Infer the
2663  // rest of the function argument types from the arguments that are present.
2664  const PointerType *PFTy = 0;
2665  const FunctionType *Ty = 0;
2666  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
2667      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2668    // Pull out the types of all of the arguments...
2669    std::vector<const Type*> ParamTypes;
2670    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2671      ParamTypes.push_back(ArgList[i].V->getType());
2672
2673    if (!FunctionType::isValidReturnType(RetType))
2674      return Error(RetTypeLoc, "Invalid result type for LLVM function");
2675
2676    Ty = FunctionType::get(RetType, ParamTypes, false);
2677    PFTy = PointerType::getUnqual(Ty);
2678  }
2679
2680  // Look up the callee.
2681  Value *Callee;
2682  if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
2683
2684  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
2685  // function attributes.
2686  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2687  if (FnAttrs & ObsoleteFuncAttrs) {
2688    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
2689    FnAttrs &= ~ObsoleteFuncAttrs;
2690  }
2691
2692  // Set up the Attributes for the function.
2693  SmallVector<AttributeWithIndex, 8> Attrs;
2694  if (RetAttrs != Attribute::None)
2695    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2696
2697  SmallVector<Value*, 8> Args;
2698
2699  // Loop through FunctionType's arguments and ensure they are specified
2700  // correctly.  Also, gather any parameter attributes.
2701  FunctionType::param_iterator I = Ty->param_begin();
2702  FunctionType::param_iterator E = Ty->param_end();
2703  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2704    const Type *ExpectedTy = 0;
2705    if (I != E) {
2706      ExpectedTy = *I++;
2707    } else if (!Ty->isVarArg()) {
2708      return Error(ArgList[i].Loc, "too many arguments specified");
2709    }
2710
2711    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
2712      return Error(ArgList[i].Loc, "argument is not of expected type '" +
2713                   ExpectedTy->getDescription() + "'");
2714    Args.push_back(ArgList[i].V);
2715    if (ArgList[i].Attrs != Attribute::None)
2716      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2717  }
2718
2719  if (I != E)
2720    return Error(CallLoc, "not enough parameters specified for call");
2721
2722  if (FnAttrs != Attribute::None)
2723    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
2724
2725  // Finish off the Attributes and check them
2726  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2727
2728  InvokeInst *II = InvokeInst::Create(Callee, cast<BasicBlock>(NormalBB),
2729                                      cast<BasicBlock>(UnwindBB),
2730                                      Args.begin(), Args.end());
2731  II->setCallingConv(CC);
2732  II->setAttributes(PAL);
2733  Inst = II;
2734  return false;
2735}
2736
2737
2738
2739//===----------------------------------------------------------------------===//
2740// Binary Operators.
2741//===----------------------------------------------------------------------===//
2742
2743/// ParseArithmetic
2744///  ::= ArithmeticOps TypeAndValue ',' Value
2745///
2746/// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
2747/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
2748bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
2749                               unsigned Opc, unsigned OperandType) {
2750  LocTy Loc; Value *LHS, *RHS;
2751  if (ParseTypeAndValue(LHS, Loc, PFS) ||
2752      ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
2753      ParseValue(LHS->getType(), RHS, PFS))
2754    return true;
2755
2756  bool Valid;
2757  switch (OperandType) {
2758  default: assert(0 && "Unknown operand type!");
2759  case 0: // int or FP.
2760    Valid = LHS->getType()->isIntOrIntVector() ||
2761            LHS->getType()->isFPOrFPVector();
2762    break;
2763  case 1: Valid = LHS->getType()->isIntOrIntVector(); break;
2764  case 2: Valid = LHS->getType()->isFPOrFPVector(); break;
2765  }
2766
2767  if (!Valid)
2768    return Error(Loc, "invalid operand type for instruction");
2769
2770  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2771  return false;
2772}
2773
2774/// ParseLogical
2775///  ::= ArithmeticOps TypeAndValue ',' Value {
2776bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
2777                            unsigned Opc) {
2778  LocTy Loc; Value *LHS, *RHS;
2779  if (ParseTypeAndValue(LHS, Loc, PFS) ||
2780      ParseToken(lltok::comma, "expected ',' in logical operation") ||
2781      ParseValue(LHS->getType(), RHS, PFS))
2782    return true;
2783
2784  if (!LHS->getType()->isIntOrIntVector())
2785    return Error(Loc,"instruction requires integer or integer vector operands");
2786
2787  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2788  return false;
2789}
2790
2791
2792/// ParseCompare
2793///  ::= 'icmp' IPredicates TypeAndValue ',' Value
2794///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
2795///  ::= 'vicmp' IPredicates TypeAndValue ',' Value
2796///  ::= 'vfcmp' FPredicates TypeAndValue ',' Value
2797bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
2798                            unsigned Opc) {
2799  // Parse the integer/fp comparison predicate.
2800  LocTy Loc;
2801  unsigned Pred;
2802  Value *LHS, *RHS;
2803  if (ParseCmpPredicate(Pred, Opc) ||
2804      ParseTypeAndValue(LHS, Loc, PFS) ||
2805      ParseToken(lltok::comma, "expected ',' after compare value") ||
2806      ParseValue(LHS->getType(), RHS, PFS))
2807    return true;
2808
2809  if (Opc == Instruction::FCmp) {
2810    if (!LHS->getType()->isFPOrFPVector())
2811      return Error(Loc, "fcmp requires floating point operands");
2812    Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2813  } else if (Opc == Instruction::ICmp) {
2814    if (!LHS->getType()->isIntOrIntVector() &&
2815        !isa<PointerType>(LHS->getType()))
2816      return Error(Loc, "icmp requires integer operands");
2817    Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2818  } else if (Opc == Instruction::VFCmp) {
2819    if (!LHS->getType()->isFPOrFPVector() || !isa<VectorType>(LHS->getType()))
2820      return Error(Loc, "vfcmp requires vector floating point operands");
2821    Inst = new VFCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2822  } else if (Opc == Instruction::VICmp) {
2823    if (!LHS->getType()->isIntOrIntVector() || !isa<VectorType>(LHS->getType()))
2824      return Error(Loc, "vicmp requires vector floating point operands");
2825    Inst = new VICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2826  }
2827  return false;
2828}
2829
2830//===----------------------------------------------------------------------===//
2831// Other Instructions.
2832//===----------------------------------------------------------------------===//
2833
2834
2835/// ParseCast
2836///   ::= CastOpc TypeAndValue 'to' Type
2837bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
2838                         unsigned Opc) {
2839  LocTy Loc;  Value *Op;
2840  PATypeHolder DestTy(Type::VoidTy);
2841  if (ParseTypeAndValue(Op, Loc, PFS) ||
2842      ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
2843      ParseType(DestTy))
2844    return true;
2845
2846  if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
2847    CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
2848    return Error(Loc, "invalid cast opcode for cast from '" +
2849                 Op->getType()->getDescription() + "' to '" +
2850                 DestTy->getDescription() + "'");
2851  }
2852  Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
2853  return false;
2854}
2855
2856/// ParseSelect
2857///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2858bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
2859  LocTy Loc;
2860  Value *Op0, *Op1, *Op2;
2861  if (ParseTypeAndValue(Op0, Loc, PFS) ||
2862      ParseToken(lltok::comma, "expected ',' after select condition") ||
2863      ParseTypeAndValue(Op1, PFS) ||
2864      ParseToken(lltok::comma, "expected ',' after select value") ||
2865      ParseTypeAndValue(Op2, PFS))
2866    return true;
2867
2868  if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
2869    return Error(Loc, Reason);
2870
2871  Inst = SelectInst::Create(Op0, Op1, Op2);
2872  return false;
2873}
2874
2875/// ParseVA_Arg
2876///   ::= 'va_arg' TypeAndValue ',' Type
2877bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
2878  Value *Op;
2879  PATypeHolder EltTy(Type::VoidTy);
2880  LocTy TypeLoc;
2881  if (ParseTypeAndValue(Op, PFS) ||
2882      ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
2883      ParseType(EltTy, TypeLoc))
2884    return true;
2885
2886  if (!EltTy->isFirstClassType())
2887    return Error(TypeLoc, "va_arg requires operand with first class type");
2888
2889  Inst = new VAArgInst(Op, EltTy);
2890  return false;
2891}
2892
2893/// ParseExtractElement
2894///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
2895bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
2896  LocTy Loc;
2897  Value *Op0, *Op1;
2898  if (ParseTypeAndValue(Op0, Loc, PFS) ||
2899      ParseToken(lltok::comma, "expected ',' after extract value") ||
2900      ParseTypeAndValue(Op1, PFS))
2901    return true;
2902
2903  if (!ExtractElementInst::isValidOperands(Op0, Op1))
2904    return Error(Loc, "invalid extractelement operands");
2905
2906  Inst = new ExtractElementInst(Op0, Op1);
2907  return false;
2908}
2909
2910/// ParseInsertElement
2911///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2912bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
2913  LocTy Loc;
2914  Value *Op0, *Op1, *Op2;
2915  if (ParseTypeAndValue(Op0, Loc, PFS) ||
2916      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2917      ParseTypeAndValue(Op1, PFS) ||
2918      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2919      ParseTypeAndValue(Op2, PFS))
2920    return true;
2921
2922  if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
2923    return Error(Loc, "invalid extractelement operands");
2924
2925  Inst = InsertElementInst::Create(Op0, Op1, Op2);
2926  return false;
2927}
2928
2929/// ParseShuffleVector
2930///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2931bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
2932  LocTy Loc;
2933  Value *Op0, *Op1, *Op2;
2934  if (ParseTypeAndValue(Op0, Loc, PFS) ||
2935      ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
2936      ParseTypeAndValue(Op1, PFS) ||
2937      ParseToken(lltok::comma, "expected ',' after shuffle value") ||
2938      ParseTypeAndValue(Op2, PFS))
2939    return true;
2940
2941  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2942    return Error(Loc, "invalid extractelement operands");
2943
2944  Inst = new ShuffleVectorInst(Op0, Op1, Op2);
2945  return false;
2946}
2947
2948/// ParsePHI
2949///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Valueß ']')*
2950bool LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
2951  PATypeHolder Ty(Type::VoidTy);
2952  Value *Op0, *Op1;
2953  LocTy TypeLoc = Lex.getLoc();
2954
2955  if (ParseType(Ty) ||
2956      ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
2957      ParseValue(Ty, Op0, PFS) ||
2958      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2959      ParseValue(Type::LabelTy, Op1, PFS) ||
2960      ParseToken(lltok::rsquare, "expected ']' in phi value list"))
2961    return true;
2962
2963  SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
2964  while (1) {
2965    PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
2966
2967    if (!EatIfPresent(lltok::comma))
2968      break;
2969
2970    if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
2971        ParseValue(Ty, Op0, PFS) ||
2972        ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2973        ParseValue(Type::LabelTy, Op1, PFS) ||
2974        ParseToken(lltok::rsquare, "expected ']' in phi value list"))
2975      return true;
2976  }
2977
2978  if (!Ty->isFirstClassType())
2979    return Error(TypeLoc, "phi node must have first class type");
2980
2981  PHINode *PN = PHINode::Create(Ty);
2982  PN->reserveOperandSpace(PHIVals.size());
2983  for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
2984    PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
2985  Inst = PN;
2986  return false;
2987}
2988
2989/// ParseCall
2990///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
2991///       ParameterList OptionalAttrs
2992bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
2993                         bool isTail) {
2994  unsigned CC, RetAttrs, FnAttrs;
2995  PATypeHolder RetType(Type::VoidTy);
2996  LocTy RetTypeLoc;
2997  ValID CalleeID;
2998  SmallVector<ParamInfo, 16> ArgList;
2999  LocTy CallLoc = Lex.getLoc();
3000
3001  if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3002      ParseOptionalCallingConv(CC) ||
3003      ParseOptionalAttrs(RetAttrs, 1) ||
3004      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3005      ParseValID(CalleeID) ||
3006      ParseParameterList(ArgList, PFS) ||
3007      ParseOptionalAttrs(FnAttrs, 2))
3008    return true;
3009
3010  // If RetType is a non-function pointer type, then this is the short syntax
3011  // for the call, which means that RetType is just the return type.  Infer the
3012  // rest of the function argument types from the arguments that are present.
3013  const PointerType *PFTy = 0;
3014  const FunctionType *Ty = 0;
3015  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3016      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3017    // Pull out the types of all of the arguments...
3018    std::vector<const Type*> ParamTypes;
3019    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3020      ParamTypes.push_back(ArgList[i].V->getType());
3021
3022    if (!FunctionType::isValidReturnType(RetType))
3023      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3024
3025    Ty = FunctionType::get(RetType, ParamTypes, false);
3026    PFTy = PointerType::getUnqual(Ty);
3027  }
3028
3029  // Look up the callee.
3030  Value *Callee;
3031  if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
3032
3033  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3034  // function attributes.
3035  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3036  if (FnAttrs & ObsoleteFuncAttrs) {
3037    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3038    FnAttrs &= ~ObsoleteFuncAttrs;
3039  }
3040
3041  // Set up the Attributes for the function.
3042  SmallVector<AttributeWithIndex, 8> Attrs;
3043  if (RetAttrs != Attribute::None)
3044    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3045
3046  SmallVector<Value*, 8> Args;
3047
3048  // Loop through FunctionType's arguments and ensure they are specified
3049  // correctly.  Also, gather any parameter attributes.
3050  FunctionType::param_iterator I = Ty->param_begin();
3051  FunctionType::param_iterator E = Ty->param_end();
3052  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3053    const Type *ExpectedTy = 0;
3054    if (I != E) {
3055      ExpectedTy = *I++;
3056    } else if (!Ty->isVarArg()) {
3057      return Error(ArgList[i].Loc, "too many arguments specified");
3058    }
3059
3060    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3061      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3062                   ExpectedTy->getDescription() + "'");
3063    Args.push_back(ArgList[i].V);
3064    if (ArgList[i].Attrs != Attribute::None)
3065      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3066  }
3067
3068  if (I != E)
3069    return Error(CallLoc, "not enough parameters specified for call");
3070
3071  if (FnAttrs != Attribute::None)
3072    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3073
3074  // Finish off the Attributes and check them
3075  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3076
3077  CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
3078  CI->setTailCall(isTail);
3079  CI->setCallingConv(CC);
3080  CI->setAttributes(PAL);
3081  Inst = CI;
3082  return false;
3083}
3084
3085//===----------------------------------------------------------------------===//
3086// Memory Instructions.
3087//===----------------------------------------------------------------------===//
3088
3089/// ParseAlloc
3090///   ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalAlignment)?
3091///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalAlignment)?
3092bool LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
3093                          unsigned Opc) {
3094  PATypeHolder Ty(Type::VoidTy);
3095  Value *Size = 0;
3096  LocTy SizeLoc = 0;
3097  unsigned Alignment = 0;
3098  if (ParseType(Ty)) return true;
3099
3100  if (EatIfPresent(lltok::comma)) {
3101    if (Lex.getKind() == lltok::kw_align) {
3102      if (ParseOptionalAlignment(Alignment)) return true;
3103    } else if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
3104               ParseOptionalCommaAlignment(Alignment)) {
3105      return true;
3106    }
3107  }
3108
3109  if (Size && Size->getType() != Type::Int32Ty)
3110    return Error(SizeLoc, "element count must be i32");
3111
3112  if (Opc == Instruction::Malloc)
3113    Inst = new MallocInst(Ty, Size, Alignment);
3114  else
3115    Inst = new AllocaInst(Ty, Size, Alignment);
3116  return false;
3117}
3118
3119/// ParseFree
3120///   ::= 'free' TypeAndValue
3121bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS) {
3122  Value *Val; LocTy Loc;
3123  if (ParseTypeAndValue(Val, Loc, PFS)) return true;
3124  if (!isa<PointerType>(Val->getType()))
3125    return Error(Loc, "operand to free must be a pointer");
3126  Inst = new FreeInst(Val);
3127  return false;
3128}
3129
3130/// ParseLoad
3131///   ::= 'volatile'? 'load' TypeAndValue (',' 'align' uint)?
3132bool LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
3133                         bool isVolatile) {
3134  Value *Val; LocTy Loc;
3135  unsigned Alignment;
3136  if (ParseTypeAndValue(Val, Loc, PFS) ||
3137      ParseOptionalCommaAlignment(Alignment))
3138    return true;
3139
3140  if (!isa<PointerType>(Val->getType()) ||
3141      !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3142    return Error(Loc, "load operand must be a pointer to a first class type");
3143
3144  Inst = new LoadInst(Val, "", isVolatile, Alignment);
3145  return false;
3146}
3147
3148/// ParseStore
3149///   ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' uint)?
3150bool LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
3151                          bool isVolatile) {
3152  Value *Val, *Ptr; LocTy Loc, PtrLoc;
3153  unsigned Alignment;
3154  if (ParseTypeAndValue(Val, Loc, PFS) ||
3155      ParseToken(lltok::comma, "expected ',' after store operand") ||
3156      ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3157      ParseOptionalCommaAlignment(Alignment))
3158    return true;
3159
3160  if (!isa<PointerType>(Ptr->getType()))
3161    return Error(PtrLoc, "store operand must be a pointer");
3162  if (!Val->getType()->isFirstClassType())
3163    return Error(Loc, "store operand must be a first class value");
3164  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3165    return Error(Loc, "stored value and pointer type do not match");
3166
3167  Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
3168  return false;
3169}
3170
3171/// ParseGetResult
3172///   ::= 'getresult' TypeAndValue ',' uint
3173/// FIXME: Remove support for getresult in LLVM 3.0
3174bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
3175  Value *Val; LocTy ValLoc, EltLoc;
3176  unsigned Element;
3177  if (ParseTypeAndValue(Val, ValLoc, PFS) ||
3178      ParseToken(lltok::comma, "expected ',' after getresult operand") ||
3179      ParseUInt32(Element, EltLoc))
3180    return true;
3181
3182  if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3183    return Error(ValLoc, "getresult inst requires an aggregate operand");
3184  if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
3185    return Error(EltLoc, "invalid getresult index for value");
3186  Inst = ExtractValueInst::Create(Val, Element);
3187  return false;
3188}
3189
3190/// ParseGetElementPtr
3191///   ::= 'getelementptr' TypeAndValue (',' TypeAndValue)*
3192bool LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3193  Value *Ptr, *Val; LocTy Loc, EltLoc;
3194  if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3195
3196  if (!isa<PointerType>(Ptr->getType()))
3197    return Error(Loc, "base of getelementptr must be a pointer");
3198
3199  SmallVector<Value*, 16> Indices;
3200  while (EatIfPresent(lltok::comma)) {
3201    if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3202    if (!isa<IntegerType>(Val->getType()))
3203      return Error(EltLoc, "getelementptr index must be an integer");
3204    Indices.push_back(Val);
3205  }
3206
3207  if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
3208                                         Indices.begin(), Indices.end()))
3209    return Error(Loc, "invalid getelementptr indices");
3210  Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
3211  return false;
3212}
3213
3214/// ParseExtractValue
3215///   ::= 'extractvalue' TypeAndValue (',' uint32)+
3216bool LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3217  Value *Val; LocTy Loc;
3218  SmallVector<unsigned, 4> Indices;
3219  if (ParseTypeAndValue(Val, Loc, PFS) ||
3220      ParseIndexList(Indices))
3221    return true;
3222
3223  if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3224    return Error(Loc, "extractvalue operand must be array or struct");
3225
3226  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
3227                                        Indices.end()))
3228    return Error(Loc, "invalid indices for extractvalue");
3229  Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end());
3230  return false;
3231}
3232
3233/// ParseInsertValue
3234///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3235bool LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3236  Value *Val0, *Val1; LocTy Loc0, Loc1;
3237  SmallVector<unsigned, 4> Indices;
3238  if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3239      ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3240      ParseTypeAndValue(Val1, Loc1, PFS) ||
3241      ParseIndexList(Indices))
3242    return true;
3243
3244  if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
3245    return Error(Loc0, "extractvalue operand must be array or struct");
3246
3247  if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
3248                                        Indices.end()))
3249    return Error(Loc0, "invalid indices for insertvalue");
3250  Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end());
3251  return false;
3252}
3253
3254//===----------------------------------------------------------------------===//
3255// Embedded metadata.
3256//===----------------------------------------------------------------------===//
3257
3258/// ParseMDNodeVector
3259///   ::= Element (',' Element)*
3260/// Element
3261///   ::= 'null' | TypeAndValue
3262bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts) {
3263  assert(Lex.getKind() == lltok::lbrace);
3264  Lex.Lex();
3265  do {
3266    Value *V;
3267    if (Lex.getKind() == lltok::kw_null) {
3268      Lex.Lex();
3269      V = 0;
3270    } else {
3271      Constant *C;
3272      if (ParseGlobalTypeAndValue(C)) return true;
3273      V = C;
3274    }
3275    Elts.push_back(V);
3276  } while (EatIfPresent(lltok::comma));
3277
3278  return false;
3279}
3280