LLParser.cpp revision f1cfb953375b726f999976924f95fb80db3c1c97
1//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/AutoUpgrade.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instructions.h"
21#include "llvm/Module.h"
22#include "llvm/Operator.h"
23#include "llvm/ValueSymbolTable.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/raw_ostream.h"
28using namespace llvm;
29
30/// Run: module ::= toplevelentity*
31bool LLParser::Run() {
32  // Prime the lexer.
33  Lex.Lex();
34
35  return ParseTopLevelEntities() ||
36         ValidateEndOfModule();
37}
38
39/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
40/// module.
41bool LLParser::ValidateEndOfModule() {
42  // Handle any instruction metadata forward references.
43  if (!ForwardRefInstMetadata.empty()) {
44    for (DenseMap<Instruction*, std::vector<MDRef> >::iterator
45         I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end();
46         I != E; ++I) {
47      Instruction *Inst = I->first;
48      const std::vector<MDRef> &MDList = I->second;
49
50      for (unsigned i = 0, e = MDList.size(); i != e; ++i) {
51        unsigned SlotNo = MDList[i].MDSlot;
52
53        if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0)
54          return Error(MDList[i].Loc, "use of undefined metadata '!" +
55                       utostr(SlotNo) + "'");
56        Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]);
57      }
58    }
59    ForwardRefInstMetadata.clear();
60  }
61
62
63  // Update auto-upgraded malloc calls to "malloc".
64  // FIXME: Remove in LLVM 3.0.
65  if (MallocF) {
66    MallocF->setName("malloc");
67    // If setName() does not set the name to "malloc", then there is already a
68    // declaration of "malloc".  In that case, iterate over all calls to MallocF
69    // and get them to call the declared "malloc" instead.
70    if (MallocF->getName() != "malloc") {
71      Constant *RealMallocF = M->getFunction("malloc");
72      if (RealMallocF->getType() != MallocF->getType())
73        RealMallocF = ConstantExpr::getBitCast(RealMallocF, MallocF->getType());
74      MallocF->replaceAllUsesWith(RealMallocF);
75      MallocF->eraseFromParent();
76      MallocF = NULL;
77    }
78  }
79
80
81  // If there are entries in ForwardRefBlockAddresses at this point, they are
82  // references after the function was defined.  Resolve those now.
83  while (!ForwardRefBlockAddresses.empty()) {
84    // Okay, we are referencing an already-parsed function, resolve them now.
85    Function *TheFn = 0;
86    const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
87    if (Fn.Kind == ValID::t_GlobalName)
88      TheFn = M->getFunction(Fn.StrVal);
89    else if (Fn.UIntVal < NumberedVals.size())
90      TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
91
92    if (TheFn == 0)
93      return Error(Fn.Loc, "unknown function referenced by blockaddress");
94
95    // Resolve all these references.
96    if (ResolveForwardRefBlockAddresses(TheFn,
97                                      ForwardRefBlockAddresses.begin()->second,
98                                        0))
99      return true;
100
101    ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
102  }
103
104
105  if (!ForwardRefTypes.empty())
106    return Error(ForwardRefTypes.begin()->second.second,
107                 "use of undefined type named '" +
108                 ForwardRefTypes.begin()->first + "'");
109  if (!ForwardRefTypeIDs.empty())
110    return Error(ForwardRefTypeIDs.begin()->second.second,
111                 "use of undefined type '%" +
112                 utostr(ForwardRefTypeIDs.begin()->first) + "'");
113
114  if (!ForwardRefVals.empty())
115    return Error(ForwardRefVals.begin()->second.second,
116                 "use of undefined value '@" + ForwardRefVals.begin()->first +
117                 "'");
118
119  if (!ForwardRefValIDs.empty())
120    return Error(ForwardRefValIDs.begin()->second.second,
121                 "use of undefined value '@" +
122                 utostr(ForwardRefValIDs.begin()->first) + "'");
123
124  if (!ForwardRefMDNodes.empty())
125    return Error(ForwardRefMDNodes.begin()->second.second,
126                 "use of undefined metadata '!" +
127                 utostr(ForwardRefMDNodes.begin()->first) + "'");
128
129
130  // Look for intrinsic functions and CallInst that need to be upgraded
131  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
132    UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
133
134  // Check debug info intrinsics.
135  CheckDebugInfoIntrinsics(M);
136  return false;
137}
138
139bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn,
140                             std::vector<std::pair<ValID, GlobalValue*> > &Refs,
141                                               PerFunctionState *PFS) {
142  // Loop over all the references, resolving them.
143  for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
144    BasicBlock *Res;
145    if (PFS) {
146      if (Refs[i].first.Kind == ValID::t_LocalName)
147        Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
148      else
149        Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
150    } else if (Refs[i].first.Kind == ValID::t_LocalID) {
151      return Error(Refs[i].first.Loc,
152       "cannot take address of numeric label after the function is defined");
153    } else {
154      Res = dyn_cast_or_null<BasicBlock>(
155                     TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
156    }
157
158    if (Res == 0)
159      return Error(Refs[i].first.Loc,
160                   "referenced value is not a basic block");
161
162    // Get the BlockAddress for this and update references to use it.
163    BlockAddress *BA = BlockAddress::get(TheFn, Res);
164    Refs[i].second->replaceAllUsesWith(BA);
165    Refs[i].second->eraseFromParent();
166  }
167  return false;
168}
169
170
171//===----------------------------------------------------------------------===//
172// Top-Level Entities
173//===----------------------------------------------------------------------===//
174
175bool LLParser::ParseTopLevelEntities() {
176  while (1) {
177    switch (Lex.getKind()) {
178    default:         return TokError("expected top-level entity");
179    case lltok::Eof: return false;
180    //case lltok::kw_define:
181    case lltok::kw_declare: if (ParseDeclare()) return true; break;
182    case lltok::kw_define:  if (ParseDefine()) return true; break;
183    case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
184    case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
185    case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
186    case lltok::kw_type:    if (ParseUnnamedType()) return true; break;
187    case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
188    case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
189    case lltok::LocalVar:   if (ParseNamedType()) return true; break;
190    case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
191    case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
192    case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
193    case lltok::MetadataVar: if (ParseNamedMetadata()) return true; break;
194
195    // The Global variable production with no name can have many different
196    // optional leading prefixes, the production is:
197    // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
198    //               OptionalAddrSpace ('constant'|'global') ...
199    case lltok::kw_private :       // OptionalLinkage
200    case lltok::kw_linker_private: // OptionalLinkage
201    case lltok::kw_internal:       // OptionalLinkage
202    case lltok::kw_weak:           // OptionalLinkage
203    case lltok::kw_weak_odr:       // OptionalLinkage
204    case lltok::kw_linkonce:       // OptionalLinkage
205    case lltok::kw_linkonce_odr:   // OptionalLinkage
206    case lltok::kw_appending:      // OptionalLinkage
207    case lltok::kw_dllexport:      // OptionalLinkage
208    case lltok::kw_common:         // OptionalLinkage
209    case lltok::kw_dllimport:      // OptionalLinkage
210    case lltok::kw_extern_weak:    // OptionalLinkage
211    case lltok::kw_external: {     // OptionalLinkage
212      unsigned Linkage, Visibility;
213      if (ParseOptionalLinkage(Linkage) ||
214          ParseOptionalVisibility(Visibility) ||
215          ParseGlobal("", SMLoc(), Linkage, true, Visibility))
216        return true;
217      break;
218    }
219    case lltok::kw_default:       // OptionalVisibility
220    case lltok::kw_hidden:        // OptionalVisibility
221    case lltok::kw_protected: {   // OptionalVisibility
222      unsigned Visibility;
223      if (ParseOptionalVisibility(Visibility) ||
224          ParseGlobal("", SMLoc(), 0, false, Visibility))
225        return true;
226      break;
227    }
228
229    case lltok::kw_thread_local:  // OptionalThreadLocal
230    case lltok::kw_addrspace:     // OptionalAddrSpace
231    case lltok::kw_constant:      // GlobalType
232    case lltok::kw_global:        // GlobalType
233      if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
234      break;
235    }
236  }
237}
238
239
240/// toplevelentity
241///   ::= 'module' 'asm' STRINGCONSTANT
242bool LLParser::ParseModuleAsm() {
243  assert(Lex.getKind() == lltok::kw_module);
244  Lex.Lex();
245
246  std::string AsmStr;
247  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
248      ParseStringConstant(AsmStr)) return true;
249
250  const std::string &AsmSoFar = M->getModuleInlineAsm();
251  if (AsmSoFar.empty())
252    M->setModuleInlineAsm(AsmStr);
253  else
254    M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr);
255  return false;
256}
257
258/// toplevelentity
259///   ::= 'target' 'triple' '=' STRINGCONSTANT
260///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
261bool LLParser::ParseTargetDefinition() {
262  assert(Lex.getKind() == lltok::kw_target);
263  std::string Str;
264  switch (Lex.Lex()) {
265  default: return TokError("unknown target property");
266  case lltok::kw_triple:
267    Lex.Lex();
268    if (ParseToken(lltok::equal, "expected '=' after target triple") ||
269        ParseStringConstant(Str))
270      return true;
271    M->setTargetTriple(Str);
272    return false;
273  case lltok::kw_datalayout:
274    Lex.Lex();
275    if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
276        ParseStringConstant(Str))
277      return true;
278    M->setDataLayout(Str);
279    return false;
280  }
281}
282
283/// toplevelentity
284///   ::= 'deplibs' '=' '[' ']'
285///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
286bool LLParser::ParseDepLibs() {
287  assert(Lex.getKind() == lltok::kw_deplibs);
288  Lex.Lex();
289  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
290      ParseToken(lltok::lsquare, "expected '=' after deplibs"))
291    return true;
292
293  if (EatIfPresent(lltok::rsquare))
294    return false;
295
296  std::string Str;
297  if (ParseStringConstant(Str)) return true;
298  M->addLibrary(Str);
299
300  while (EatIfPresent(lltok::comma)) {
301    if (ParseStringConstant(Str)) return true;
302    M->addLibrary(Str);
303  }
304
305  return ParseToken(lltok::rsquare, "expected ']' at end of list");
306}
307
308/// ParseUnnamedType:
309///   ::= 'type' type
310///   ::= LocalVarID '=' 'type' type
311bool LLParser::ParseUnnamedType() {
312  unsigned TypeID = NumberedTypes.size();
313
314  // Handle the LocalVarID form.
315  if (Lex.getKind() == lltok::LocalVarID) {
316    if (Lex.getUIntVal() != TypeID)
317      return Error(Lex.getLoc(), "type expected to be numbered '%" +
318                   utostr(TypeID) + "'");
319    Lex.Lex(); // eat LocalVarID;
320
321    if (ParseToken(lltok::equal, "expected '=' after name"))
322      return true;
323  }
324
325  LocTy TypeLoc = Lex.getLoc();
326  if (ParseToken(lltok::kw_type, "expected 'type' after '='")) return true;
327
328  PATypeHolder Ty(Type::getVoidTy(Context));
329  if (ParseType(Ty)) return true;
330
331  // See if this type was previously referenced.
332  std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
333    FI = ForwardRefTypeIDs.find(TypeID);
334  if (FI != ForwardRefTypeIDs.end()) {
335    if (FI->second.first.get() == Ty)
336      return Error(TypeLoc, "self referential type is invalid");
337
338    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
339    Ty = FI->second.first.get();
340    ForwardRefTypeIDs.erase(FI);
341  }
342
343  NumberedTypes.push_back(Ty);
344
345  return false;
346}
347
348/// toplevelentity
349///   ::= LocalVar '=' 'type' type
350bool LLParser::ParseNamedType() {
351  std::string Name = Lex.getStrVal();
352  LocTy NameLoc = Lex.getLoc();
353  Lex.Lex();  // eat LocalVar.
354
355  PATypeHolder Ty(Type::getVoidTy(Context));
356
357  if (ParseToken(lltok::equal, "expected '=' after name") ||
358      ParseToken(lltok::kw_type, "expected 'type' after name") ||
359      ParseType(Ty))
360    return true;
361
362  // Set the type name, checking for conflicts as we do so.
363  bool AlreadyExists = M->addTypeName(Name, Ty);
364  if (!AlreadyExists) return false;
365
366  // See if this type is a forward reference.  We need to eagerly resolve
367  // types to allow recursive type redefinitions below.
368  std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator
369  FI = ForwardRefTypes.find(Name);
370  if (FI != ForwardRefTypes.end()) {
371    if (FI->second.first.get() == Ty)
372      return Error(NameLoc, "self referential type is invalid");
373
374    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
375    Ty = FI->second.first.get();
376    ForwardRefTypes.erase(FI);
377  }
378
379  // Inserting a name that is already defined, get the existing name.
380  const Type *Existing = M->getTypeByName(Name);
381  assert(Existing && "Conflict but no matching type?!");
382
383  // Otherwise, this is an attempt to redefine a type. That's okay if
384  // the redefinition is identical to the original.
385  // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
386  if (Existing == Ty) return false;
387
388  // Any other kind of (non-equivalent) redefinition is an error.
389  return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
390               Ty->getDescription() + "'");
391}
392
393
394/// toplevelentity
395///   ::= 'declare' FunctionHeader
396bool LLParser::ParseDeclare() {
397  assert(Lex.getKind() == lltok::kw_declare);
398  Lex.Lex();
399
400  Function *F;
401  return ParseFunctionHeader(F, false);
402}
403
404/// toplevelentity
405///   ::= 'define' FunctionHeader '{' ...
406bool LLParser::ParseDefine() {
407  assert(Lex.getKind() == lltok::kw_define);
408  Lex.Lex();
409
410  Function *F;
411  return ParseFunctionHeader(F, true) ||
412         ParseFunctionBody(*F);
413}
414
415/// ParseGlobalType
416///   ::= 'constant'
417///   ::= 'global'
418bool LLParser::ParseGlobalType(bool &IsConstant) {
419  if (Lex.getKind() == lltok::kw_constant)
420    IsConstant = true;
421  else if (Lex.getKind() == lltok::kw_global)
422    IsConstant = false;
423  else {
424    IsConstant = false;
425    return TokError("expected 'global' or 'constant'");
426  }
427  Lex.Lex();
428  return false;
429}
430
431/// ParseUnnamedGlobal:
432///   OptionalVisibility ALIAS ...
433///   OptionalLinkage OptionalVisibility ...   -> global variable
434///   GlobalID '=' OptionalVisibility ALIAS ...
435///   GlobalID '=' OptionalLinkage OptionalVisibility ...   -> global variable
436bool LLParser::ParseUnnamedGlobal() {
437  unsigned VarID = NumberedVals.size();
438  std::string Name;
439  LocTy NameLoc = Lex.getLoc();
440
441  // Handle the GlobalID form.
442  if (Lex.getKind() == lltok::GlobalID) {
443    if (Lex.getUIntVal() != VarID)
444      return Error(Lex.getLoc(), "variable expected to be numbered '%" +
445                   utostr(VarID) + "'");
446    Lex.Lex(); // eat GlobalID;
447
448    if (ParseToken(lltok::equal, "expected '=' after name"))
449      return true;
450  }
451
452  bool HasLinkage;
453  unsigned Linkage, Visibility;
454  if (ParseOptionalLinkage(Linkage, HasLinkage) ||
455      ParseOptionalVisibility(Visibility))
456    return true;
457
458  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
459    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
460  return ParseAlias(Name, NameLoc, Visibility);
461}
462
463/// ParseNamedGlobal:
464///   GlobalVar '=' OptionalVisibility ALIAS ...
465///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
466bool LLParser::ParseNamedGlobal() {
467  assert(Lex.getKind() == lltok::GlobalVar);
468  LocTy NameLoc = Lex.getLoc();
469  std::string Name = Lex.getStrVal();
470  Lex.Lex();
471
472  bool HasLinkage;
473  unsigned Linkage, Visibility;
474  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
475      ParseOptionalLinkage(Linkage, HasLinkage) ||
476      ParseOptionalVisibility(Visibility))
477    return true;
478
479  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
480    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
481  return ParseAlias(Name, NameLoc, Visibility);
482}
483
484// MDString:
485//   ::= '!' STRINGCONSTANT
486bool LLParser::ParseMDString(MDString *&Result) {
487  std::string Str;
488  if (ParseStringConstant(Str)) return true;
489  Result = MDString::get(Context, Str);
490  return false;
491}
492
493// MDNode:
494//   ::= '!' MDNodeNumber
495//
496/// This version of ParseMDNodeID returns the slot number and null in the case
497/// of a forward reference.
498bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) {
499  // !{ ..., !42, ... }
500  if (ParseUInt32(SlotNo)) return true;
501
502  // Check existing MDNode.
503  if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0)
504    Result = NumberedMetadata[SlotNo];
505  else
506    Result = 0;
507  return false;
508}
509
510bool LLParser::ParseMDNodeID(MDNode *&Result) {
511  // !{ ..., !42, ... }
512  unsigned MID = 0;
513  if (ParseMDNodeID(Result, MID)) return true;
514
515  // If not a forward reference, just return it now.
516  if (Result) return false;
517
518  // Otherwise, create MDNode forward reference.
519
520  // FIXME: This is not unique enough!
521  std::string FwdRefName = "llvm.mdnode.fwdref." + utostr(MID);
522  Value *V = MDString::get(Context, FwdRefName);
523  MDNode *FwdNode = MDNode::get(Context, &V, 1);
524  ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
525
526  if (NumberedMetadata.size() <= MID)
527    NumberedMetadata.resize(MID+1);
528  NumberedMetadata[MID] = FwdNode;
529  Result = FwdNode;
530  return false;
531}
532
533/// ParseNamedMetadata:
534///   !foo = !{ !1, !2 }
535bool LLParser::ParseNamedMetadata() {
536  assert(Lex.getKind() == lltok::MetadataVar);
537  std::string Name = Lex.getStrVal();
538  Lex.Lex();
539
540  if (ParseToken(lltok::equal, "expected '=' here") ||
541      ParseToken(lltok::exclaim, "Expected '!' here") ||
542      ParseToken(lltok::lbrace, "Expected '{' here"))
543    return true;
544
545  SmallVector<MDNode *, 8> Elts;
546  do {
547    // Null is a special case since it is typeless.
548    if (EatIfPresent(lltok::kw_null)) {
549      Elts.push_back(0);
550      continue;
551    }
552
553    if (ParseToken(lltok::exclaim, "Expected '!' here"))
554      return true;
555
556    MDNode *N = 0;
557    if (ParseMDNodeID(N)) return true;
558    Elts.push_back(N);
559  } while (EatIfPresent(lltok::comma));
560
561  if (ParseToken(lltok::rbrace, "expected end of metadata node"))
562    return true;
563
564  NamedMDNode::Create(Context, Name, Elts.data(), Elts.size(), M);
565  return false;
566}
567
568/// ParseStandaloneMetadata:
569///   !42 = !{...}
570bool LLParser::ParseStandaloneMetadata() {
571  assert(Lex.getKind() == lltok::exclaim);
572  Lex.Lex();
573  unsigned MetadataID = 0;
574
575  LocTy TyLoc;
576  PATypeHolder Ty(Type::getVoidTy(Context));
577  SmallVector<Value *, 16> Elts;
578  if (ParseUInt32(MetadataID) ||
579      ParseToken(lltok::equal, "expected '=' here") ||
580      ParseType(Ty, TyLoc) ||
581      ParseToken(lltok::exclaim, "Expected '!' here") ||
582      ParseToken(lltok::lbrace, "Expected '{' here") ||
583      ParseMDNodeVector(Elts, NULL) ||
584      ParseToken(lltok::rbrace, "expected end of metadata node"))
585    return true;
586
587  MDNode *Init = MDNode::get(Context, Elts.data(), Elts.size());
588
589  // See if this was forward referenced, if so, handle it.
590  std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
591    FI = ForwardRefMDNodes.find(MetadataID);
592  if (FI != ForwardRefMDNodes.end()) {
593    FI->second.first->replaceAllUsesWith(Init);
594    ForwardRefMDNodes.erase(FI);
595
596    assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
597  } else {
598    if (MetadataID >= NumberedMetadata.size())
599      NumberedMetadata.resize(MetadataID+1);
600
601    if (NumberedMetadata[MetadataID] != 0)
602      return TokError("Metadata id is already used");
603    NumberedMetadata[MetadataID] = Init;
604  }
605
606  return false;
607}
608
609/// ParseAlias:
610///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
611/// Aliasee
612///   ::= TypeAndValue
613///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
614///   ::= 'getelementptr' 'inbounds'? '(' ... ')'
615///
616/// Everything through visibility has already been parsed.
617///
618bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
619                          unsigned Visibility) {
620  assert(Lex.getKind() == lltok::kw_alias);
621  Lex.Lex();
622  unsigned Linkage;
623  LocTy LinkageLoc = Lex.getLoc();
624  if (ParseOptionalLinkage(Linkage))
625    return true;
626
627  if (Linkage != GlobalValue::ExternalLinkage &&
628      Linkage != GlobalValue::WeakAnyLinkage &&
629      Linkage != GlobalValue::WeakODRLinkage &&
630      Linkage != GlobalValue::InternalLinkage &&
631      Linkage != GlobalValue::PrivateLinkage &&
632      Linkage != GlobalValue::LinkerPrivateLinkage)
633    return Error(LinkageLoc, "invalid linkage type for alias");
634
635  Constant *Aliasee;
636  LocTy AliaseeLoc = Lex.getLoc();
637  if (Lex.getKind() != lltok::kw_bitcast &&
638      Lex.getKind() != lltok::kw_getelementptr) {
639    if (ParseGlobalTypeAndValue(Aliasee)) return true;
640  } else {
641    // The bitcast dest type is not present, it is implied by the dest type.
642    ValID ID;
643    if (ParseValID(ID)) return true;
644    if (ID.Kind != ValID::t_Constant)
645      return Error(AliaseeLoc, "invalid aliasee");
646    Aliasee = ID.ConstantVal;
647  }
648
649  if (!Aliasee->getType()->isPointerTy())
650    return Error(AliaseeLoc, "alias must have pointer type");
651
652  // Okay, create the alias but do not insert it into the module yet.
653  GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
654                                    (GlobalValue::LinkageTypes)Linkage, Name,
655                                    Aliasee);
656  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
657
658  // See if this value already exists in the symbol table.  If so, it is either
659  // a redefinition or a definition of a forward reference.
660  if (GlobalValue *Val = M->getNamedValue(Name)) {
661    // See if this was a redefinition.  If so, there is no entry in
662    // ForwardRefVals.
663    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
664      I = ForwardRefVals.find(Name);
665    if (I == ForwardRefVals.end())
666      return Error(NameLoc, "redefinition of global named '@" + Name + "'");
667
668    // Otherwise, this was a definition of forward ref.  Verify that types
669    // agree.
670    if (Val->getType() != GA->getType())
671      return Error(NameLoc,
672              "forward reference and definition of alias have different types");
673
674    // If they agree, just RAUW the old value with the alias and remove the
675    // forward ref info.
676    Val->replaceAllUsesWith(GA);
677    Val->eraseFromParent();
678    ForwardRefVals.erase(I);
679  }
680
681  // Insert into the module, we know its name won't collide now.
682  M->getAliasList().push_back(GA);
683  assert(GA->getNameStr() == Name && "Should not be a name conflict!");
684
685  return false;
686}
687
688/// ParseGlobal
689///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
690///       OptionalAddrSpace GlobalType Type Const
691///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
692///       OptionalAddrSpace GlobalType Type Const
693///
694/// Everything through visibility has been parsed already.
695///
696bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
697                           unsigned Linkage, bool HasLinkage,
698                           unsigned Visibility) {
699  unsigned AddrSpace;
700  bool ThreadLocal, IsConstant;
701  LocTy TyLoc;
702
703  PATypeHolder Ty(Type::getVoidTy(Context));
704  if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
705      ParseOptionalAddrSpace(AddrSpace) ||
706      ParseGlobalType(IsConstant) ||
707      ParseType(Ty, TyLoc))
708    return true;
709
710  // If the linkage is specified and is external, then no initializer is
711  // present.
712  Constant *Init = 0;
713  if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
714                      Linkage != GlobalValue::ExternalWeakLinkage &&
715                      Linkage != GlobalValue::ExternalLinkage)) {
716    if (ParseGlobalValue(Ty, Init))
717      return true;
718  }
719
720  if (Ty->isFunctionTy() || Ty->isLabelTy())
721    return Error(TyLoc, "invalid type for global variable");
722
723  GlobalVariable *GV = 0;
724
725  // See if the global was forward referenced, if so, use the global.
726  if (!Name.empty()) {
727    if (GlobalValue *GVal = M->getNamedValue(Name)) {
728      if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
729        return Error(NameLoc, "redefinition of global '@" + Name + "'");
730      GV = cast<GlobalVariable>(GVal);
731    }
732  } else {
733    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
734      I = ForwardRefValIDs.find(NumberedVals.size());
735    if (I != ForwardRefValIDs.end()) {
736      GV = cast<GlobalVariable>(I->second.first);
737      ForwardRefValIDs.erase(I);
738    }
739  }
740
741  if (GV == 0) {
742    GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
743                            Name, 0, false, AddrSpace);
744  } else {
745    if (GV->getType()->getElementType() != Ty)
746      return Error(TyLoc,
747            "forward reference and definition of global have different types");
748
749    // Move the forward-reference to the correct spot in the module.
750    M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
751  }
752
753  if (Name.empty())
754    NumberedVals.push_back(GV);
755
756  // Set the parsed properties on the global.
757  if (Init)
758    GV->setInitializer(Init);
759  GV->setConstant(IsConstant);
760  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
761  GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
762  GV->setThreadLocal(ThreadLocal);
763
764  // Parse attributes on the global.
765  while (Lex.getKind() == lltok::comma) {
766    Lex.Lex();
767
768    if (Lex.getKind() == lltok::kw_section) {
769      Lex.Lex();
770      GV->setSection(Lex.getStrVal());
771      if (ParseToken(lltok::StringConstant, "expected global section string"))
772        return true;
773    } else if (Lex.getKind() == lltok::kw_align) {
774      unsigned Alignment;
775      if (ParseOptionalAlignment(Alignment)) return true;
776      GV->setAlignment(Alignment);
777    } else {
778      TokError("unknown global variable property!");
779    }
780  }
781
782  return false;
783}
784
785
786//===----------------------------------------------------------------------===//
787// GlobalValue Reference/Resolution Routines.
788//===----------------------------------------------------------------------===//
789
790/// GetGlobalVal - Get a value with the specified name or ID, creating a
791/// forward reference record if needed.  This can return null if the value
792/// exists but does not have the right type.
793GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
794                                    LocTy Loc) {
795  const PointerType *PTy = dyn_cast<PointerType>(Ty);
796  if (PTy == 0) {
797    Error(Loc, "global variable reference must have pointer type");
798    return 0;
799  }
800
801  // Look this name up in the normal function symbol table.
802  GlobalValue *Val =
803    cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
804
805  // If this is a forward reference for the value, see if we already created a
806  // forward ref record.
807  if (Val == 0) {
808    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
809      I = ForwardRefVals.find(Name);
810    if (I != ForwardRefVals.end())
811      Val = I->second.first;
812  }
813
814  // If we have the value in the symbol table or fwd-ref table, return it.
815  if (Val) {
816    if (Val->getType() == Ty) return Val;
817    Error(Loc, "'@" + Name + "' defined with type '" +
818          Val->getType()->getDescription() + "'");
819    return 0;
820  }
821
822  // Otherwise, create a new forward reference for this value and remember it.
823  GlobalValue *FwdVal;
824  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
825    // Function types can return opaque but functions can't.
826    if (FT->getReturnType()->isOpaqueTy()) {
827      Error(Loc, "function may not return opaque type");
828      return 0;
829    }
830
831    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
832  } else {
833    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
834                                GlobalValue::ExternalWeakLinkage, 0, Name);
835  }
836
837  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
838  return FwdVal;
839}
840
841GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
842  const PointerType *PTy = dyn_cast<PointerType>(Ty);
843  if (PTy == 0) {
844    Error(Loc, "global variable reference must have pointer type");
845    return 0;
846  }
847
848  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
849
850  // If this is a forward reference for the value, see if we already created a
851  // forward ref record.
852  if (Val == 0) {
853    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
854      I = ForwardRefValIDs.find(ID);
855    if (I != ForwardRefValIDs.end())
856      Val = I->second.first;
857  }
858
859  // If we have the value in the symbol table or fwd-ref table, return it.
860  if (Val) {
861    if (Val->getType() == Ty) return Val;
862    Error(Loc, "'@" + utostr(ID) + "' defined with type '" +
863          Val->getType()->getDescription() + "'");
864    return 0;
865  }
866
867  // Otherwise, create a new forward reference for this value and remember it.
868  GlobalValue *FwdVal;
869  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
870    // Function types can return opaque but functions can't.
871    if (FT->getReturnType()->isOpaqueTy()) {
872      Error(Loc, "function may not return opaque type");
873      return 0;
874    }
875    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
876  } else {
877    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
878                                GlobalValue::ExternalWeakLinkage, 0, "");
879  }
880
881  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
882  return FwdVal;
883}
884
885
886//===----------------------------------------------------------------------===//
887// Helper Routines.
888//===----------------------------------------------------------------------===//
889
890/// ParseToken - If the current token has the specified kind, eat it and return
891/// success.  Otherwise, emit the specified error and return failure.
892bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
893  if (Lex.getKind() != T)
894    return TokError(ErrMsg);
895  Lex.Lex();
896  return false;
897}
898
899/// ParseStringConstant
900///   ::= StringConstant
901bool LLParser::ParseStringConstant(std::string &Result) {
902  if (Lex.getKind() != lltok::StringConstant)
903    return TokError("expected string constant");
904  Result = Lex.getStrVal();
905  Lex.Lex();
906  return false;
907}
908
909/// ParseUInt32
910///   ::= uint32
911bool LLParser::ParseUInt32(unsigned &Val) {
912  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
913    return TokError("expected integer");
914  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
915  if (Val64 != unsigned(Val64))
916    return TokError("expected 32-bit integer (too large)");
917  Val = Val64;
918  Lex.Lex();
919  return false;
920}
921
922
923/// ParseOptionalAddrSpace
924///   := /*empty*/
925///   := 'addrspace' '(' uint32 ')'
926bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
927  AddrSpace = 0;
928  if (!EatIfPresent(lltok::kw_addrspace))
929    return false;
930  return ParseToken(lltok::lparen, "expected '(' in address space") ||
931         ParseUInt32(AddrSpace) ||
932         ParseToken(lltok::rparen, "expected ')' in address space");
933}
934
935/// ParseOptionalAttrs - Parse a potentially empty attribute list.  AttrKind
936/// indicates what kind of attribute list this is: 0: function arg, 1: result,
937/// 2: function attr.
938/// 3: function arg after value: FIXME: REMOVE IN LLVM 3.0
939bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
940  Attrs = Attribute::None;
941  LocTy AttrLoc = Lex.getLoc();
942
943  while (1) {
944    switch (Lex.getKind()) {
945    case lltok::kw_sext:
946    case lltok::kw_zext:
947      // Treat these as signext/zeroext if they occur in the argument list after
948      // the value, as in "call i8 @foo(i8 10 sext)".  If they occur before the
949      // value, as in "call i8 @foo(i8 sext (" then it is part of a constant
950      // expr.
951      // FIXME: REMOVE THIS IN LLVM 3.0
952      if (AttrKind == 3) {
953        if (Lex.getKind() == lltok::kw_sext)
954          Attrs |= Attribute::SExt;
955        else
956          Attrs |= Attribute::ZExt;
957        break;
958      }
959      // FALL THROUGH.
960    default:  // End of attributes.
961      if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
962        return Error(AttrLoc, "invalid use of function-only attribute");
963
964      if (AttrKind != 0 && AttrKind != 3 && (Attrs & Attribute::ParameterOnly))
965        return Error(AttrLoc, "invalid use of parameter-only attribute");
966
967      return false;
968    case lltok::kw_zeroext:         Attrs |= Attribute::ZExt; break;
969    case lltok::kw_signext:         Attrs |= Attribute::SExt; break;
970    case lltok::kw_inreg:           Attrs |= Attribute::InReg; break;
971    case lltok::kw_sret:            Attrs |= Attribute::StructRet; break;
972    case lltok::kw_noalias:         Attrs |= Attribute::NoAlias; break;
973    case lltok::kw_nocapture:       Attrs |= Attribute::NoCapture; break;
974    case lltok::kw_byval:           Attrs |= Attribute::ByVal; break;
975    case lltok::kw_nest:            Attrs |= Attribute::Nest; break;
976
977    case lltok::kw_noreturn:        Attrs |= Attribute::NoReturn; break;
978    case lltok::kw_nounwind:        Attrs |= Attribute::NoUnwind; break;
979    case lltok::kw_noinline:        Attrs |= Attribute::NoInline; break;
980    case lltok::kw_readnone:        Attrs |= Attribute::ReadNone; break;
981    case lltok::kw_readonly:        Attrs |= Attribute::ReadOnly; break;
982    case lltok::kw_inlinehint:      Attrs |= Attribute::InlineHint; break;
983    case lltok::kw_alwaysinline:    Attrs |= Attribute::AlwaysInline; break;
984    case lltok::kw_optsize:         Attrs |= Attribute::OptimizeForSize; break;
985    case lltok::kw_ssp:             Attrs |= Attribute::StackProtect; break;
986    case lltok::kw_sspreq:          Attrs |= Attribute::StackProtectReq; break;
987    case lltok::kw_noredzone:       Attrs |= Attribute::NoRedZone; break;
988    case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
989    case lltok::kw_naked:           Attrs |= Attribute::Naked; break;
990
991    case lltok::kw_alignstack: {
992      unsigned Alignment;
993      if (ParseOptionalStackAlignment(Alignment))
994        return true;
995      Attrs |= Attribute::constructStackAlignmentFromInt(Alignment);
996      continue;
997    }
998
999    case lltok::kw_align: {
1000      unsigned Alignment;
1001      if (ParseOptionalAlignment(Alignment))
1002        return true;
1003      Attrs |= Attribute::constructAlignmentFromInt(Alignment);
1004      continue;
1005    }
1006
1007    }
1008    Lex.Lex();
1009  }
1010}
1011
1012/// ParseOptionalLinkage
1013///   ::= /*empty*/
1014///   ::= 'private'
1015///   ::= 'linker_private'
1016///   ::= 'internal'
1017///   ::= 'weak'
1018///   ::= 'weak_odr'
1019///   ::= 'linkonce'
1020///   ::= 'linkonce_odr'
1021///   ::= 'appending'
1022///   ::= 'dllexport'
1023///   ::= 'common'
1024///   ::= 'dllimport'
1025///   ::= 'extern_weak'
1026///   ::= 'external'
1027bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
1028  HasLinkage = false;
1029  switch (Lex.getKind()) {
1030  default:                       Res=GlobalValue::ExternalLinkage; return false;
1031  case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
1032  case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
1033  case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
1034  case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
1035  case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
1036  case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
1037  case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
1038  case lltok::kw_available_externally:
1039    Res = GlobalValue::AvailableExternallyLinkage;
1040    break;
1041  case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
1042  case lltok::kw_dllexport:      Res = GlobalValue::DLLExportLinkage;     break;
1043  case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
1044  case lltok::kw_dllimport:      Res = GlobalValue::DLLImportLinkage;     break;
1045  case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
1046  case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
1047  }
1048  Lex.Lex();
1049  HasLinkage = true;
1050  return false;
1051}
1052
1053/// ParseOptionalVisibility
1054///   ::= /*empty*/
1055///   ::= 'default'
1056///   ::= 'hidden'
1057///   ::= 'protected'
1058///
1059bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1060  switch (Lex.getKind()) {
1061  default:                  Res = GlobalValue::DefaultVisibility; return false;
1062  case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
1063  case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
1064  case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1065  }
1066  Lex.Lex();
1067  return false;
1068}
1069
1070/// ParseOptionalCallingConv
1071///   ::= /*empty*/
1072///   ::= 'ccc'
1073///   ::= 'fastcc'
1074///   ::= 'coldcc'
1075///   ::= 'x86_stdcallcc'
1076///   ::= 'x86_fastcallcc'
1077///   ::= 'arm_apcscc'
1078///   ::= 'arm_aapcscc'
1079///   ::= 'arm_aapcs_vfpcc'
1080///   ::= 'msp430_intrcc'
1081///   ::= 'cc' UINT
1082///
1083bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
1084  switch (Lex.getKind()) {
1085  default:                       CC = CallingConv::C; return false;
1086  case lltok::kw_ccc:            CC = CallingConv::C; break;
1087  case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1088  case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1089  case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1090  case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1091  case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1092  case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1093  case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1094  case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1095  case lltok::kw_cc: {
1096      unsigned ArbitraryCC;
1097      Lex.Lex();
1098      if (ParseUInt32(ArbitraryCC)) {
1099        return true;
1100      } else
1101        CC = static_cast<CallingConv::ID>(ArbitraryCC);
1102        return false;
1103    }
1104    break;
1105  }
1106
1107  Lex.Lex();
1108  return false;
1109}
1110
1111/// ParseInstructionMetadata
1112///   ::= !dbg !42 (',' !dbg !57)*
1113bool LLParser::ParseInstructionMetadata(Instruction *Inst) {
1114  do {
1115    if (Lex.getKind() != lltok::MetadataVar)
1116      return TokError("expected metadata after comma");
1117
1118    std::string Name = Lex.getStrVal();
1119    Lex.Lex();
1120
1121    MDNode *Node;
1122    unsigned NodeID;
1123    SMLoc Loc = Lex.getLoc();
1124    if (ParseToken(lltok::exclaim, "expected '!' here") ||
1125        ParseMDNodeID(Node, NodeID))
1126      return true;
1127
1128    unsigned MDK = M->getMDKindID(Name.c_str());
1129    if (Node) {
1130      // If we got the node, add it to the instruction.
1131      Inst->setMetadata(MDK, Node);
1132    } else {
1133      MDRef R = { Loc, MDK, NodeID };
1134      // Otherwise, remember that this should be resolved later.
1135      ForwardRefInstMetadata[Inst].push_back(R);
1136    }
1137
1138    // If this is the end of the list, we're done.
1139  } while (EatIfPresent(lltok::comma));
1140  return false;
1141}
1142
1143/// ParseOptionalAlignment
1144///   ::= /* empty */
1145///   ::= 'align' 4
1146bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1147  Alignment = 0;
1148  if (!EatIfPresent(lltok::kw_align))
1149    return false;
1150  LocTy AlignLoc = Lex.getLoc();
1151  if (ParseUInt32(Alignment)) return true;
1152  if (!isPowerOf2_32(Alignment))
1153    return Error(AlignLoc, "alignment is not a power of two");
1154  return false;
1155}
1156
1157/// ParseOptionalCommaAlign
1158///   ::=
1159///   ::= ',' align 4
1160///
1161/// This returns with AteExtraComma set to true if it ate an excess comma at the
1162/// end.
1163bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1164                                       bool &AteExtraComma) {
1165  AteExtraComma = false;
1166  while (EatIfPresent(lltok::comma)) {
1167    // Metadata at the end is an early exit.
1168    if (Lex.getKind() == lltok::MetadataVar) {
1169      AteExtraComma = true;
1170      return false;
1171    }
1172
1173    if (Lex.getKind() == lltok::kw_align) {
1174      if (ParseOptionalAlignment(Alignment)) return true;
1175    } else
1176      return true;
1177  }
1178
1179  return false;
1180}
1181
1182/// ParseOptionalStackAlignment
1183///   ::= /* empty */
1184///   ::= 'alignstack' '(' 4 ')'
1185bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1186  Alignment = 0;
1187  if (!EatIfPresent(lltok::kw_alignstack))
1188    return false;
1189  LocTy ParenLoc = Lex.getLoc();
1190  if (!EatIfPresent(lltok::lparen))
1191    return Error(ParenLoc, "expected '('");
1192  LocTy AlignLoc = Lex.getLoc();
1193  if (ParseUInt32(Alignment)) return true;
1194  ParenLoc = Lex.getLoc();
1195  if (!EatIfPresent(lltok::rparen))
1196    return Error(ParenLoc, "expected ')'");
1197  if (!isPowerOf2_32(Alignment))
1198    return Error(AlignLoc, "stack alignment is not a power of two");
1199  return false;
1200}
1201
1202/// ParseIndexList - This parses the index list for an insert/extractvalue
1203/// instruction.  This sets AteExtraComma in the case where we eat an extra
1204/// comma at the end of the line and find that it is followed by metadata.
1205/// Clients that don't allow metadata can call the version of this function that
1206/// only takes one argument.
1207///
1208/// ParseIndexList
1209///    ::=  (',' uint32)+
1210///
1211bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1212                              bool &AteExtraComma) {
1213  AteExtraComma = false;
1214
1215  if (Lex.getKind() != lltok::comma)
1216    return TokError("expected ',' as start of index list");
1217
1218  while (EatIfPresent(lltok::comma)) {
1219    if (Lex.getKind() == lltok::MetadataVar) {
1220      AteExtraComma = true;
1221      return false;
1222    }
1223    unsigned Idx;
1224    if (ParseUInt32(Idx)) return true;
1225    Indices.push_back(Idx);
1226  }
1227
1228  return false;
1229}
1230
1231//===----------------------------------------------------------------------===//
1232// Type Parsing.
1233//===----------------------------------------------------------------------===//
1234
1235/// ParseType - Parse and resolve a full type.
1236bool LLParser::ParseType(PATypeHolder &Result, bool AllowVoid) {
1237  LocTy TypeLoc = Lex.getLoc();
1238  if (ParseTypeRec(Result)) return true;
1239
1240  // Verify no unresolved uprefs.
1241  if (!UpRefs.empty())
1242    return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
1243
1244  if (!AllowVoid && Result.get()->isVoidTy())
1245    return Error(TypeLoc, "void type only allowed for function results");
1246
1247  return false;
1248}
1249
1250/// HandleUpRefs - Every time we finish a new layer of types, this function is
1251/// called.  It loops through the UpRefs vector, which is a list of the
1252/// currently active types.  For each type, if the up-reference is contained in
1253/// the newly completed type, we decrement the level count.  When the level
1254/// count reaches zero, the up-referenced type is the type that is passed in:
1255/// thus we can complete the cycle.
1256///
1257PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
1258  // If Ty isn't abstract, or if there are no up-references in it, then there is
1259  // nothing to resolve here.
1260  if (!ty->isAbstract() || UpRefs.empty()) return ty;
1261
1262  PATypeHolder Ty(ty);
1263#if 0
1264  dbgs() << "Type '" << Ty->getDescription()
1265         << "' newly formed.  Resolving upreferences.\n"
1266         << UpRefs.size() << " upreferences active!\n";
1267#endif
1268
1269  // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
1270  // to zero), we resolve them all together before we resolve them to Ty.  At
1271  // the end of the loop, if there is anything to resolve to Ty, it will be in
1272  // this variable.
1273  OpaqueType *TypeToResolve = 0;
1274
1275  for (unsigned i = 0; i != UpRefs.size(); ++i) {
1276    // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
1277    bool ContainsType =
1278      std::find(Ty->subtype_begin(), Ty->subtype_end(),
1279                UpRefs[i].LastContainedTy) != Ty->subtype_end();
1280
1281#if 0
1282    dbgs() << "  UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
1283           << UpRefs[i].LastContainedTy->getDescription() << ") = "
1284           << (ContainsType ? "true" : "false")
1285           << " level=" << UpRefs[i].NestingLevel << "\n";
1286#endif
1287    if (!ContainsType)
1288      continue;
1289
1290    // Decrement level of upreference
1291    unsigned Level = --UpRefs[i].NestingLevel;
1292    UpRefs[i].LastContainedTy = Ty;
1293
1294    // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
1295    if (Level != 0)
1296      continue;
1297
1298#if 0
1299    dbgs() << "  * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
1300#endif
1301    if (!TypeToResolve)
1302      TypeToResolve = UpRefs[i].UpRefTy;
1303    else
1304      UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
1305    UpRefs.erase(UpRefs.begin()+i);     // Remove from upreference list.
1306    --i;                                // Do not skip the next element.
1307  }
1308
1309  if (TypeToResolve)
1310    TypeToResolve->refineAbstractTypeTo(Ty);
1311
1312  return Ty;
1313}
1314
1315
1316/// ParseTypeRec - The recursive function used to process the internal
1317/// implementation details of types.
1318bool LLParser::ParseTypeRec(PATypeHolder &Result) {
1319  switch (Lex.getKind()) {
1320  default:
1321    return TokError("expected type");
1322  case lltok::Type:
1323    // TypeRec ::= 'float' | 'void' (etc)
1324    Result = Lex.getTyVal();
1325    Lex.Lex();
1326    break;
1327  case lltok::kw_opaque:
1328    // TypeRec ::= 'opaque'
1329    Result = OpaqueType::get(Context);
1330    Lex.Lex();
1331    break;
1332  case lltok::lbrace:
1333    // TypeRec ::= '{' ... '}'
1334    if (ParseStructType(Result, false))
1335      return true;
1336    break;
1337  case lltok::kw_union:
1338    // TypeRec ::= 'union' '{' ... '}'
1339    if (ParseUnionType(Result))
1340      return true;
1341    break;
1342  case lltok::lsquare:
1343    // TypeRec ::= '[' ... ']'
1344    Lex.Lex(); // eat the lsquare.
1345    if (ParseArrayVectorType(Result, false))
1346      return true;
1347    break;
1348  case lltok::less: // Either vector or packed struct.
1349    // TypeRec ::= '<' ... '>'
1350    Lex.Lex();
1351    if (Lex.getKind() == lltok::lbrace) {
1352      if (ParseStructType(Result, true) ||
1353          ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1354        return true;
1355    } else if (ParseArrayVectorType(Result, true))
1356      return true;
1357    break;
1358  case lltok::LocalVar:
1359  case lltok::StringConstant:  // FIXME: REMOVE IN LLVM 3.0
1360    // TypeRec ::= %foo
1361    if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
1362      Result = T;
1363    } else {
1364      Result = OpaqueType::get(Context);
1365      ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
1366                                            std::make_pair(Result,
1367                                                           Lex.getLoc())));
1368      M->addTypeName(Lex.getStrVal(), Result.get());
1369    }
1370    Lex.Lex();
1371    break;
1372
1373  case lltok::LocalVarID:
1374    // TypeRec ::= %4
1375    if (Lex.getUIntVal() < NumberedTypes.size())
1376      Result = NumberedTypes[Lex.getUIntVal()];
1377    else {
1378      std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
1379        I = ForwardRefTypeIDs.find(Lex.getUIntVal());
1380      if (I != ForwardRefTypeIDs.end())
1381        Result = I->second.first;
1382      else {
1383        Result = OpaqueType::get(Context);
1384        ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
1385                                                std::make_pair(Result,
1386                                                               Lex.getLoc())));
1387      }
1388    }
1389    Lex.Lex();
1390    break;
1391  case lltok::backslash: {
1392    // TypeRec ::= '\' 4
1393    Lex.Lex();
1394    unsigned Val;
1395    if (ParseUInt32(Val)) return true;
1396    OpaqueType *OT = OpaqueType::get(Context); //Use temporary placeholder.
1397    UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
1398    Result = OT;
1399    break;
1400  }
1401  }
1402
1403  // Parse the type suffixes.
1404  while (1) {
1405    switch (Lex.getKind()) {
1406    // End of type.
1407    default: return false;
1408
1409    // TypeRec ::= TypeRec '*'
1410    case lltok::star:
1411      if (Result.get()->isLabelTy())
1412        return TokError("basic block pointers are invalid");
1413      if (Result.get()->isVoidTy())
1414        return TokError("pointers to void are invalid; use i8* instead");
1415      if (!PointerType::isValidElementType(Result.get()))
1416        return TokError("pointer to this type is invalid");
1417      Result = HandleUpRefs(PointerType::getUnqual(Result.get()));
1418      Lex.Lex();
1419      break;
1420
1421    // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1422    case lltok::kw_addrspace: {
1423      if (Result.get()->isLabelTy())
1424        return TokError("basic block pointers are invalid");
1425      if (Result.get()->isVoidTy())
1426        return TokError("pointers to void are invalid; use i8* instead");
1427      if (!PointerType::isValidElementType(Result.get()))
1428        return TokError("pointer to this type is invalid");
1429      unsigned AddrSpace;
1430      if (ParseOptionalAddrSpace(AddrSpace) ||
1431          ParseToken(lltok::star, "expected '*' in address space"))
1432        return true;
1433
1434      Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace));
1435      break;
1436    }
1437
1438    /// Types '(' ArgTypeListI ')' OptFuncAttrs
1439    case lltok::lparen:
1440      if (ParseFunctionType(Result))
1441        return true;
1442      break;
1443    }
1444  }
1445}
1446
1447/// ParseParameterList
1448///    ::= '(' ')'
1449///    ::= '(' Arg (',' Arg)* ')'
1450///  Arg
1451///    ::= Type OptionalAttributes Value OptionalAttributes
1452bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1453                                  PerFunctionState &PFS) {
1454  if (ParseToken(lltok::lparen, "expected '(' in call"))
1455    return true;
1456
1457  while (Lex.getKind() != lltok::rparen) {
1458    // If this isn't the first argument, we need a comma.
1459    if (!ArgList.empty() &&
1460        ParseToken(lltok::comma, "expected ',' in argument list"))
1461      return true;
1462
1463    // Parse the argument.
1464    LocTy ArgLoc;
1465    PATypeHolder ArgTy(Type::getVoidTy(Context));
1466    unsigned ArgAttrs1 = Attribute::None;
1467    unsigned ArgAttrs2 = Attribute::None;
1468    Value *V;
1469    if (ParseType(ArgTy, ArgLoc))
1470      return true;
1471
1472    // Otherwise, handle normal operands.
1473    if (ParseOptionalAttrs(ArgAttrs1, 0) ||
1474        ParseValue(ArgTy, V, PFS) ||
1475        // FIXME: Should not allow attributes after the argument, remove this
1476        // in LLVM 3.0.
1477        ParseOptionalAttrs(ArgAttrs2, 3))
1478      return true;
1479    ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1480  }
1481
1482  Lex.Lex();  // Lex the ')'.
1483  return false;
1484}
1485
1486
1487
1488/// ParseArgumentList - Parse the argument list for a function type or function
1489/// prototype.  If 'inType' is true then we are parsing a FunctionType.
1490///   ::= '(' ArgTypeListI ')'
1491/// ArgTypeListI
1492///   ::= /*empty*/
1493///   ::= '...'
1494///   ::= ArgTypeList ',' '...'
1495///   ::= ArgType (',' ArgType)*
1496///
1497bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
1498                                 bool &isVarArg, bool inType) {
1499  isVarArg = false;
1500  assert(Lex.getKind() == lltok::lparen);
1501  Lex.Lex(); // eat the (.
1502
1503  if (Lex.getKind() == lltok::rparen) {
1504    // empty
1505  } else if (Lex.getKind() == lltok::dotdotdot) {
1506    isVarArg = true;
1507    Lex.Lex();
1508  } else {
1509    LocTy TypeLoc = Lex.getLoc();
1510    PATypeHolder ArgTy(Type::getVoidTy(Context));
1511    unsigned Attrs;
1512    std::string Name;
1513
1514    // If we're parsing a type, use ParseTypeRec, because we allow recursive
1515    // types (such as a function returning a pointer to itself).  If parsing a
1516    // function prototype, we require fully resolved types.
1517    if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1518        ParseOptionalAttrs(Attrs, 0)) return true;
1519
1520    if (ArgTy->isVoidTy())
1521      return Error(TypeLoc, "argument can not have void type");
1522
1523    if (Lex.getKind() == lltok::LocalVar ||
1524        Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1525      Name = Lex.getStrVal();
1526      Lex.Lex();
1527    }
1528
1529    if (!FunctionType::isValidArgumentType(ArgTy))
1530      return Error(TypeLoc, "invalid type for function argument");
1531
1532    ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1533
1534    while (EatIfPresent(lltok::comma)) {
1535      // Handle ... at end of arg list.
1536      if (EatIfPresent(lltok::dotdotdot)) {
1537        isVarArg = true;
1538        break;
1539      }
1540
1541      // Otherwise must be an argument type.
1542      TypeLoc = Lex.getLoc();
1543      if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1544          ParseOptionalAttrs(Attrs, 0)) return true;
1545
1546      if (ArgTy->isVoidTy())
1547        return Error(TypeLoc, "argument can not have void type");
1548
1549      if (Lex.getKind() == lltok::LocalVar ||
1550          Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1551        Name = Lex.getStrVal();
1552        Lex.Lex();
1553      } else {
1554        Name = "";
1555      }
1556
1557      if (!ArgTy->isFirstClassType() && !ArgTy->isOpaqueTy())
1558        return Error(TypeLoc, "invalid type for function argument");
1559
1560      ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1561    }
1562  }
1563
1564  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1565}
1566
1567/// ParseFunctionType
1568///  ::= Type ArgumentList OptionalAttrs
1569bool LLParser::ParseFunctionType(PATypeHolder &Result) {
1570  assert(Lex.getKind() == lltok::lparen);
1571
1572  if (!FunctionType::isValidReturnType(Result))
1573    return TokError("invalid function return type");
1574
1575  std::vector<ArgInfo> ArgList;
1576  bool isVarArg;
1577  unsigned Attrs;
1578  if (ParseArgumentList(ArgList, isVarArg, true) ||
1579      // FIXME: Allow, but ignore attributes on function types!
1580      // FIXME: Remove in LLVM 3.0
1581      ParseOptionalAttrs(Attrs, 2))
1582    return true;
1583
1584  // Reject names on the arguments lists.
1585  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1586    if (!ArgList[i].Name.empty())
1587      return Error(ArgList[i].Loc, "argument name invalid in function type");
1588    if (!ArgList[i].Attrs != 0) {
1589      // Allow but ignore attributes on function types; this permits
1590      // auto-upgrade.
1591      // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1592    }
1593  }
1594
1595  std::vector<const Type*> ArgListTy;
1596  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1597    ArgListTy.push_back(ArgList[i].Type);
1598
1599  Result = HandleUpRefs(FunctionType::get(Result.get(),
1600                                                ArgListTy, isVarArg));
1601  return false;
1602}
1603
1604/// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1605///   TypeRec
1606///     ::= '{' '}'
1607///     ::= '{' TypeRec (',' TypeRec)* '}'
1608///     ::= '<' '{' '}' '>'
1609///     ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1610bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
1611  assert(Lex.getKind() == lltok::lbrace);
1612  Lex.Lex(); // Consume the '{'
1613
1614  if (EatIfPresent(lltok::rbrace)) {
1615    Result = StructType::get(Context, Packed);
1616    return false;
1617  }
1618
1619  std::vector<PATypeHolder> ParamsList;
1620  LocTy EltTyLoc = Lex.getLoc();
1621  if (ParseTypeRec(Result)) return true;
1622  ParamsList.push_back(Result);
1623
1624  if (Result->isVoidTy())
1625    return Error(EltTyLoc, "struct element can not have void type");
1626  if (!StructType::isValidElementType(Result))
1627    return Error(EltTyLoc, "invalid element type for struct");
1628
1629  while (EatIfPresent(lltok::comma)) {
1630    EltTyLoc = Lex.getLoc();
1631    if (ParseTypeRec(Result)) return true;
1632
1633    if (Result->isVoidTy())
1634      return Error(EltTyLoc, "struct element can not have void type");
1635    if (!StructType::isValidElementType(Result))
1636      return Error(EltTyLoc, "invalid element type for struct");
1637
1638    ParamsList.push_back(Result);
1639  }
1640
1641  if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
1642    return true;
1643
1644  std::vector<const Type*> ParamsListTy;
1645  for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1646    ParamsListTy.push_back(ParamsList[i].get());
1647  Result = HandleUpRefs(StructType::get(Context, ParamsListTy, Packed));
1648  return false;
1649}
1650
1651/// ParseUnionType
1652///   TypeRec
1653///     ::= 'union' '{' TypeRec (',' TypeRec)* '}'
1654bool LLParser::ParseUnionType(PATypeHolder &Result) {
1655  assert(Lex.getKind() == lltok::kw_union);
1656  Lex.Lex(); // Consume the 'union'
1657
1658  if (ParseToken(lltok::lbrace, "'{' expected after 'union'")) return true;
1659
1660  SmallVector<PATypeHolder, 8> ParamsList;
1661  do {
1662    LocTy EltTyLoc = Lex.getLoc();
1663    if (ParseTypeRec(Result)) return true;
1664    ParamsList.push_back(Result);
1665
1666    if (Result->isVoidTy())
1667      return Error(EltTyLoc, "union element can not have void type");
1668    if (!UnionType::isValidElementType(Result))
1669      return Error(EltTyLoc, "invalid element type for union");
1670
1671  } while (EatIfPresent(lltok::comma)) ;
1672
1673  if (ParseToken(lltok::rbrace, "expected '}' at end of union"))
1674    return true;
1675
1676  SmallVector<const Type*, 8> ParamsListTy;
1677  for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1678    ParamsListTy.push_back(ParamsList[i].get());
1679  Result = HandleUpRefs(UnionType::get(&ParamsListTy[0], ParamsListTy.size()));
1680  return false;
1681}
1682
1683/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1684/// token has already been consumed.
1685///   TypeRec
1686///     ::= '[' APSINTVAL 'x' Types ']'
1687///     ::= '<' APSINTVAL 'x' Types '>'
1688bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
1689  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1690      Lex.getAPSIntVal().getBitWidth() > 64)
1691    return TokError("expected number in address space");
1692
1693  LocTy SizeLoc = Lex.getLoc();
1694  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1695  Lex.Lex();
1696
1697  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1698      return true;
1699
1700  LocTy TypeLoc = Lex.getLoc();
1701  PATypeHolder EltTy(Type::getVoidTy(Context));
1702  if (ParseTypeRec(EltTy)) return true;
1703
1704  if (EltTy->isVoidTy())
1705    return Error(TypeLoc, "array and vector element type cannot be void");
1706
1707  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1708                 "expected end of sequential type"))
1709    return true;
1710
1711  if (isVector) {
1712    if (Size == 0)
1713      return Error(SizeLoc, "zero element vector is illegal");
1714    if ((unsigned)Size != Size)
1715      return Error(SizeLoc, "size too large for vector");
1716    if (!VectorType::isValidElementType(EltTy))
1717      return Error(TypeLoc, "vector element type must be fp or integer");
1718    Result = VectorType::get(EltTy, unsigned(Size));
1719  } else {
1720    if (!ArrayType::isValidElementType(EltTy))
1721      return Error(TypeLoc, "invalid array element type");
1722    Result = HandleUpRefs(ArrayType::get(EltTy, Size));
1723  }
1724  return false;
1725}
1726
1727//===----------------------------------------------------------------------===//
1728// Function Semantic Analysis.
1729//===----------------------------------------------------------------------===//
1730
1731LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
1732                                             int functionNumber)
1733  : P(p), F(f), FunctionNumber(functionNumber) {
1734
1735  // Insert unnamed arguments into the NumberedVals list.
1736  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1737       AI != E; ++AI)
1738    if (!AI->hasName())
1739      NumberedVals.push_back(AI);
1740}
1741
1742LLParser::PerFunctionState::~PerFunctionState() {
1743  // If there were any forward referenced non-basicblock values, delete them.
1744  for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1745       I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1746    if (!isa<BasicBlock>(I->second.first)) {
1747      I->second.first->replaceAllUsesWith(
1748                           UndefValue::get(I->second.first->getType()));
1749      delete I->second.first;
1750      I->second.first = 0;
1751    }
1752
1753  for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1754       I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1755    if (!isa<BasicBlock>(I->second.first)) {
1756      I->second.first->replaceAllUsesWith(
1757                           UndefValue::get(I->second.first->getType()));
1758      delete I->second.first;
1759      I->second.first = 0;
1760    }
1761}
1762
1763bool LLParser::PerFunctionState::FinishFunction() {
1764  // Check to see if someone took the address of labels in this block.
1765  if (!P.ForwardRefBlockAddresses.empty()) {
1766    ValID FunctionID;
1767    if (!F.getName().empty()) {
1768      FunctionID.Kind = ValID::t_GlobalName;
1769      FunctionID.StrVal = F.getName();
1770    } else {
1771      FunctionID.Kind = ValID::t_GlobalID;
1772      FunctionID.UIntVal = FunctionNumber;
1773    }
1774
1775    std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
1776      FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
1777    if (FRBAI != P.ForwardRefBlockAddresses.end()) {
1778      // Resolve all these references.
1779      if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
1780        return true;
1781
1782      P.ForwardRefBlockAddresses.erase(FRBAI);
1783    }
1784  }
1785
1786  if (!ForwardRefVals.empty())
1787    return P.Error(ForwardRefVals.begin()->second.second,
1788                   "use of undefined value '%" + ForwardRefVals.begin()->first +
1789                   "'");
1790  if (!ForwardRefValIDs.empty())
1791    return P.Error(ForwardRefValIDs.begin()->second.second,
1792                   "use of undefined value '%" +
1793                   utostr(ForwardRefValIDs.begin()->first) + "'");
1794  return false;
1795}
1796
1797
1798/// GetVal - Get a value with the specified name or ID, creating a
1799/// forward reference record if needed.  This can return null if the value
1800/// exists but does not have the right type.
1801Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1802                                          const Type *Ty, LocTy Loc) {
1803  // Look this name up in the normal function symbol table.
1804  Value *Val = F.getValueSymbolTable().lookup(Name);
1805
1806  // If this is a forward reference for the value, see if we already created a
1807  // forward ref record.
1808  if (Val == 0) {
1809    std::map<std::string, std::pair<Value*, LocTy> >::iterator
1810      I = ForwardRefVals.find(Name);
1811    if (I != ForwardRefVals.end())
1812      Val = I->second.first;
1813  }
1814
1815  // If we have the value in the symbol table or fwd-ref table, return it.
1816  if (Val) {
1817    if (Val->getType() == Ty) return Val;
1818    if (Ty->isLabelTy())
1819      P.Error(Loc, "'%" + Name + "' is not a basic block");
1820    else
1821      P.Error(Loc, "'%" + Name + "' defined with type '" +
1822              Val->getType()->getDescription() + "'");
1823    return 0;
1824  }
1825
1826  // Don't make placeholders with invalid type.
1827  if (!Ty->isFirstClassType() && !Ty->isOpaqueTy() && !Ty->isLabelTy()) {
1828    P.Error(Loc, "invalid use of a non-first-class type");
1829    return 0;
1830  }
1831
1832  // Otherwise, create a new forward reference for this value and remember it.
1833  Value *FwdVal;
1834  if (Ty->isLabelTy())
1835    FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
1836  else
1837    FwdVal = new Argument(Ty, Name);
1838
1839  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1840  return FwdVal;
1841}
1842
1843Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
1844                                          LocTy Loc) {
1845  // Look this name up in the normal function symbol table.
1846  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1847
1848  // If this is a forward reference for the value, see if we already created a
1849  // forward ref record.
1850  if (Val == 0) {
1851    std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1852      I = ForwardRefValIDs.find(ID);
1853    if (I != ForwardRefValIDs.end())
1854      Val = I->second.first;
1855  }
1856
1857  // If we have the value in the symbol table or fwd-ref table, return it.
1858  if (Val) {
1859    if (Val->getType() == Ty) return Val;
1860    if (Ty->isLabelTy())
1861      P.Error(Loc, "'%" + utostr(ID) + "' is not a basic block");
1862    else
1863      P.Error(Loc, "'%" + utostr(ID) + "' defined with type '" +
1864              Val->getType()->getDescription() + "'");
1865    return 0;
1866  }
1867
1868  if (!Ty->isFirstClassType() && !Ty->isOpaqueTy() && !Ty->isLabelTy()) {
1869    P.Error(Loc, "invalid use of a non-first-class type");
1870    return 0;
1871  }
1872
1873  // Otherwise, create a new forward reference for this value and remember it.
1874  Value *FwdVal;
1875  if (Ty->isLabelTy())
1876    FwdVal = BasicBlock::Create(F.getContext(), "", &F);
1877  else
1878    FwdVal = new Argument(Ty);
1879
1880  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1881  return FwdVal;
1882}
1883
1884/// SetInstName - After an instruction is parsed and inserted into its
1885/// basic block, this installs its name.
1886bool LLParser::PerFunctionState::SetInstName(int NameID,
1887                                             const std::string &NameStr,
1888                                             LocTy NameLoc, Instruction *Inst) {
1889  // If this instruction has void type, it cannot have a name or ID specified.
1890  if (Inst->getType()->isVoidTy()) {
1891    if (NameID != -1 || !NameStr.empty())
1892      return P.Error(NameLoc, "instructions returning void cannot have a name");
1893    return false;
1894  }
1895
1896  // If this was a numbered instruction, verify that the instruction is the
1897  // expected value and resolve any forward references.
1898  if (NameStr.empty()) {
1899    // If neither a name nor an ID was specified, just use the next ID.
1900    if (NameID == -1)
1901      NameID = NumberedVals.size();
1902
1903    if (unsigned(NameID) != NumberedVals.size())
1904      return P.Error(NameLoc, "instruction expected to be numbered '%" +
1905                     utostr(NumberedVals.size()) + "'");
1906
1907    std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1908      ForwardRefValIDs.find(NameID);
1909    if (FI != ForwardRefValIDs.end()) {
1910      if (FI->second.first->getType() != Inst->getType())
1911        return P.Error(NameLoc, "instruction forward referenced with type '" +
1912                       FI->second.first->getType()->getDescription() + "'");
1913      FI->second.first->replaceAllUsesWith(Inst);
1914      delete FI->second.first;
1915      ForwardRefValIDs.erase(FI);
1916    }
1917
1918    NumberedVals.push_back(Inst);
1919    return false;
1920  }
1921
1922  // Otherwise, the instruction had a name.  Resolve forward refs and set it.
1923  std::map<std::string, std::pair<Value*, LocTy> >::iterator
1924    FI = ForwardRefVals.find(NameStr);
1925  if (FI != ForwardRefVals.end()) {
1926    if (FI->second.first->getType() != Inst->getType())
1927      return P.Error(NameLoc, "instruction forward referenced with type '" +
1928                     FI->second.first->getType()->getDescription() + "'");
1929    FI->second.first->replaceAllUsesWith(Inst);
1930    delete FI->second.first;
1931    ForwardRefVals.erase(FI);
1932  }
1933
1934  // Set the name on the instruction.
1935  Inst->setName(NameStr);
1936
1937  if (Inst->getNameStr() != NameStr)
1938    return P.Error(NameLoc, "multiple definition of local value named '" +
1939                   NameStr + "'");
1940  return false;
1941}
1942
1943/// GetBB - Get a basic block with the specified name or ID, creating a
1944/// forward reference record if needed.
1945BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1946                                              LocTy Loc) {
1947  return cast_or_null<BasicBlock>(GetVal(Name,
1948                                        Type::getLabelTy(F.getContext()), Loc));
1949}
1950
1951BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1952  return cast_or_null<BasicBlock>(GetVal(ID,
1953                                        Type::getLabelTy(F.getContext()), Loc));
1954}
1955
1956/// DefineBB - Define the specified basic block, which is either named or
1957/// unnamed.  If there is an error, this returns null otherwise it returns
1958/// the block being defined.
1959BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1960                                                 LocTy Loc) {
1961  BasicBlock *BB;
1962  if (Name.empty())
1963    BB = GetBB(NumberedVals.size(), Loc);
1964  else
1965    BB = GetBB(Name, Loc);
1966  if (BB == 0) return 0; // Already diagnosed error.
1967
1968  // Move the block to the end of the function.  Forward ref'd blocks are
1969  // inserted wherever they happen to be referenced.
1970  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1971
1972  // Remove the block from forward ref sets.
1973  if (Name.empty()) {
1974    ForwardRefValIDs.erase(NumberedVals.size());
1975    NumberedVals.push_back(BB);
1976  } else {
1977    // BB forward references are already in the function symbol table.
1978    ForwardRefVals.erase(Name);
1979  }
1980
1981  return BB;
1982}
1983
1984//===----------------------------------------------------------------------===//
1985// Constants.
1986//===----------------------------------------------------------------------===//
1987
1988/// ParseValID - Parse an abstract value that doesn't necessarily have a
1989/// type implied.  For example, if we parse "4" we don't know what integer type
1990/// it has.  The value will later be combined with its type and checked for
1991/// sanity.  PFS is used to convert function-local operands of metadata (since
1992/// metadata operands are not just parsed here but also converted to values).
1993/// PFS can be null when we are not parsing metadata values inside a function.
1994bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
1995  ID.Loc = Lex.getLoc();
1996  switch (Lex.getKind()) {
1997  default: return TokError("expected value token");
1998  case lltok::GlobalID:  // @42
1999    ID.UIntVal = Lex.getUIntVal();
2000    ID.Kind = ValID::t_GlobalID;
2001    break;
2002  case lltok::GlobalVar:  // @foo
2003    ID.StrVal = Lex.getStrVal();
2004    ID.Kind = ValID::t_GlobalName;
2005    break;
2006  case lltok::LocalVarID:  // %42
2007    ID.UIntVal = Lex.getUIntVal();
2008    ID.Kind = ValID::t_LocalID;
2009    break;
2010  case lltok::LocalVar:  // %foo
2011  case lltok::StringConstant:  // "foo" - FIXME: REMOVE IN LLVM 3.0
2012    ID.StrVal = Lex.getStrVal();
2013    ID.Kind = ValID::t_LocalName;
2014    break;
2015  case lltok::exclaim:   // !{...} MDNode, !"foo" MDString
2016    Lex.Lex();
2017
2018    if (EatIfPresent(lltok::lbrace)) {
2019      SmallVector<Value*, 16> Elts;
2020      if (ParseMDNodeVector(Elts, PFS) ||
2021          ParseToken(lltok::rbrace, "expected end of metadata node"))
2022        return true;
2023
2024      ID.MDNodeVal = MDNode::get(Context, Elts.data(), Elts.size());
2025      ID.Kind = ValID::t_MDNode;
2026      return false;
2027    }
2028
2029    // Standalone metadata reference
2030    // !{ ..., !42, ... }
2031    if (Lex.getKind() == lltok::APSInt) {
2032      if (ParseMDNodeID(ID.MDNodeVal)) return true;
2033      ID.Kind = ValID::t_MDNode;
2034      return false;
2035    }
2036
2037    // MDString:
2038    //   ::= '!' STRINGCONSTANT
2039    if (ParseMDString(ID.MDStringVal)) return true;
2040    ID.Kind = ValID::t_MDString;
2041    return false;
2042  case lltok::APSInt:
2043    ID.APSIntVal = Lex.getAPSIntVal();
2044    ID.Kind = ValID::t_APSInt;
2045    break;
2046  case lltok::APFloat:
2047    ID.APFloatVal = Lex.getAPFloatVal();
2048    ID.Kind = ValID::t_APFloat;
2049    break;
2050  case lltok::kw_true:
2051    ID.ConstantVal = ConstantInt::getTrue(Context);
2052    ID.Kind = ValID::t_Constant;
2053    break;
2054  case lltok::kw_false:
2055    ID.ConstantVal = ConstantInt::getFalse(Context);
2056    ID.Kind = ValID::t_Constant;
2057    break;
2058  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2059  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2060  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2061
2062  case lltok::lbrace: {
2063    // ValID ::= '{' ConstVector '}'
2064    Lex.Lex();
2065    SmallVector<Constant*, 16> Elts;
2066    if (ParseGlobalValueVector(Elts) ||
2067        ParseToken(lltok::rbrace, "expected end of struct constant"))
2068      return true;
2069
2070    ID.ConstantVal = ConstantStruct::get(Context, Elts.data(),
2071                                         Elts.size(), false);
2072    ID.Kind = ValID::t_Constant;
2073    return false;
2074  }
2075  case lltok::less: {
2076    // ValID ::= '<' ConstVector '>'         --> Vector.
2077    // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2078    Lex.Lex();
2079    bool isPackedStruct = EatIfPresent(lltok::lbrace);
2080
2081    SmallVector<Constant*, 16> Elts;
2082    LocTy FirstEltLoc = Lex.getLoc();
2083    if (ParseGlobalValueVector(Elts) ||
2084        (isPackedStruct &&
2085         ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2086        ParseToken(lltok::greater, "expected end of constant"))
2087      return true;
2088
2089    if (isPackedStruct) {
2090      ID.ConstantVal =
2091        ConstantStruct::get(Context, Elts.data(), Elts.size(), true);
2092      ID.Kind = ValID::t_Constant;
2093      return false;
2094    }
2095
2096    if (Elts.empty())
2097      return Error(ID.Loc, "constant vector must not be empty");
2098
2099    if (!Elts[0]->getType()->isIntegerTy() &&
2100        !Elts[0]->getType()->isFloatingPointTy())
2101      return Error(FirstEltLoc,
2102                   "vector elements must have integer or floating point type");
2103
2104    // Verify that all the vector elements have the same type.
2105    for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2106      if (Elts[i]->getType() != Elts[0]->getType())
2107        return Error(FirstEltLoc,
2108                     "vector element #" + utostr(i) +
2109                    " is not of type '" + Elts[0]->getType()->getDescription());
2110
2111    ID.ConstantVal = ConstantVector::get(Elts.data(), Elts.size());
2112    ID.Kind = ValID::t_Constant;
2113    return false;
2114  }
2115  case lltok::lsquare: {   // Array Constant
2116    Lex.Lex();
2117    SmallVector<Constant*, 16> Elts;
2118    LocTy FirstEltLoc = Lex.getLoc();
2119    if (ParseGlobalValueVector(Elts) ||
2120        ParseToken(lltok::rsquare, "expected end of array constant"))
2121      return true;
2122
2123    // Handle empty element.
2124    if (Elts.empty()) {
2125      // Use undef instead of an array because it's inconvenient to determine
2126      // the element type at this point, there being no elements to examine.
2127      ID.Kind = ValID::t_EmptyArray;
2128      return false;
2129    }
2130
2131    if (!Elts[0]->getType()->isFirstClassType())
2132      return Error(FirstEltLoc, "invalid array element type: " +
2133                   Elts[0]->getType()->getDescription());
2134
2135    ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2136
2137    // Verify all elements are correct type!
2138    for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2139      if (Elts[i]->getType() != Elts[0]->getType())
2140        return Error(FirstEltLoc,
2141                     "array element #" + utostr(i) +
2142                     " is not of type '" +Elts[0]->getType()->getDescription());
2143    }
2144
2145    ID.ConstantVal = ConstantArray::get(ATy, Elts.data(), Elts.size());
2146    ID.Kind = ValID::t_Constant;
2147    return false;
2148  }
2149  case lltok::kw_c:  // c "foo"
2150    Lex.Lex();
2151    ID.ConstantVal = ConstantArray::get(Context, Lex.getStrVal(), false);
2152    if (ParseToken(lltok::StringConstant, "expected string")) return true;
2153    ID.Kind = ValID::t_Constant;
2154    return false;
2155
2156  case lltok::kw_asm: {
2157    // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT
2158    bool HasSideEffect, AlignStack;
2159    Lex.Lex();
2160    if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2161        ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2162        ParseStringConstant(ID.StrVal) ||
2163        ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2164        ParseToken(lltok::StringConstant, "expected constraint string"))
2165      return true;
2166    ID.StrVal2 = Lex.getStrVal();
2167    ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1);
2168    ID.Kind = ValID::t_InlineAsm;
2169    return false;
2170  }
2171
2172  case lltok::kw_blockaddress: {
2173    // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2174    Lex.Lex();
2175
2176    ValID Fn, Label;
2177    LocTy FnLoc, LabelLoc;
2178
2179    if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2180        ParseValID(Fn) ||
2181        ParseToken(lltok::comma, "expected comma in block address expression")||
2182        ParseValID(Label) ||
2183        ParseToken(lltok::rparen, "expected ')' in block address expression"))
2184      return true;
2185
2186    if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2187      return Error(Fn.Loc, "expected function name in blockaddress");
2188    if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2189      return Error(Label.Loc, "expected basic block name in blockaddress");
2190
2191    // Make a global variable as a placeholder for this reference.
2192    GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
2193                                           false, GlobalValue::InternalLinkage,
2194                                                0, "");
2195    ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
2196    ID.ConstantVal = FwdRef;
2197    ID.Kind = ValID::t_Constant;
2198    return false;
2199  }
2200
2201  case lltok::kw_trunc:
2202  case lltok::kw_zext:
2203  case lltok::kw_sext:
2204  case lltok::kw_fptrunc:
2205  case lltok::kw_fpext:
2206  case lltok::kw_bitcast:
2207  case lltok::kw_uitofp:
2208  case lltok::kw_sitofp:
2209  case lltok::kw_fptoui:
2210  case lltok::kw_fptosi:
2211  case lltok::kw_inttoptr:
2212  case lltok::kw_ptrtoint: {
2213    unsigned Opc = Lex.getUIntVal();
2214    PATypeHolder DestTy(Type::getVoidTy(Context));
2215    Constant *SrcVal;
2216    Lex.Lex();
2217    if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2218        ParseGlobalTypeAndValue(SrcVal) ||
2219        ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2220        ParseType(DestTy) ||
2221        ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2222      return true;
2223    if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2224      return Error(ID.Loc, "invalid cast opcode for cast from '" +
2225                   SrcVal->getType()->getDescription() + "' to '" +
2226                   DestTy->getDescription() + "'");
2227    ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2228                                                 SrcVal, DestTy);
2229    ID.Kind = ValID::t_Constant;
2230    return false;
2231  }
2232  case lltok::kw_extractvalue: {
2233    Lex.Lex();
2234    Constant *Val;
2235    SmallVector<unsigned, 4> Indices;
2236    if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2237        ParseGlobalTypeAndValue(Val) ||
2238        ParseIndexList(Indices) ||
2239        ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2240      return true;
2241
2242    if (!Val->getType()->isAggregateType())
2243      return Error(ID.Loc, "extractvalue operand must be aggregate type");
2244    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
2245                                          Indices.end()))
2246      return Error(ID.Loc, "invalid indices for extractvalue");
2247    ID.ConstantVal =
2248      ConstantExpr::getExtractValue(Val, Indices.data(), Indices.size());
2249    ID.Kind = ValID::t_Constant;
2250    return false;
2251  }
2252  case lltok::kw_insertvalue: {
2253    Lex.Lex();
2254    Constant *Val0, *Val1;
2255    SmallVector<unsigned, 4> Indices;
2256    if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2257        ParseGlobalTypeAndValue(Val0) ||
2258        ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2259        ParseGlobalTypeAndValue(Val1) ||
2260        ParseIndexList(Indices) ||
2261        ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2262      return true;
2263    if (!Val0->getType()->isAggregateType())
2264      return Error(ID.Loc, "insertvalue operand must be aggregate type");
2265    if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
2266                                          Indices.end()))
2267      return Error(ID.Loc, "invalid indices for insertvalue");
2268    ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1,
2269                       Indices.data(), Indices.size());
2270    ID.Kind = ValID::t_Constant;
2271    return false;
2272  }
2273  case lltok::kw_icmp:
2274  case lltok::kw_fcmp: {
2275    unsigned PredVal, Opc = Lex.getUIntVal();
2276    Constant *Val0, *Val1;
2277    Lex.Lex();
2278    if (ParseCmpPredicate(PredVal, Opc) ||
2279        ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2280        ParseGlobalTypeAndValue(Val0) ||
2281        ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2282        ParseGlobalTypeAndValue(Val1) ||
2283        ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2284      return true;
2285
2286    if (Val0->getType() != Val1->getType())
2287      return Error(ID.Loc, "compare operands must have the same type");
2288
2289    CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2290
2291    if (Opc == Instruction::FCmp) {
2292      if (!Val0->getType()->isFPOrFPVectorTy())
2293        return Error(ID.Loc, "fcmp requires floating point operands");
2294      ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2295    } else {
2296      assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2297      if (!Val0->getType()->isIntOrIntVectorTy() &&
2298          !Val0->getType()->isPointerTy())
2299        return Error(ID.Loc, "icmp requires pointer or integer operands");
2300      ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2301    }
2302    ID.Kind = ValID::t_Constant;
2303    return false;
2304  }
2305
2306  // Binary Operators.
2307  case lltok::kw_add:
2308  case lltok::kw_fadd:
2309  case lltok::kw_sub:
2310  case lltok::kw_fsub:
2311  case lltok::kw_mul:
2312  case lltok::kw_fmul:
2313  case lltok::kw_udiv:
2314  case lltok::kw_sdiv:
2315  case lltok::kw_fdiv:
2316  case lltok::kw_urem:
2317  case lltok::kw_srem:
2318  case lltok::kw_frem: {
2319    bool NUW = false;
2320    bool NSW = false;
2321    bool Exact = false;
2322    unsigned Opc = Lex.getUIntVal();
2323    Constant *Val0, *Val1;
2324    Lex.Lex();
2325    LocTy ModifierLoc = Lex.getLoc();
2326    if (Opc == Instruction::Add ||
2327        Opc == Instruction::Sub ||
2328        Opc == Instruction::Mul) {
2329      if (EatIfPresent(lltok::kw_nuw))
2330        NUW = true;
2331      if (EatIfPresent(lltok::kw_nsw)) {
2332        NSW = true;
2333        if (EatIfPresent(lltok::kw_nuw))
2334          NUW = true;
2335      }
2336    } else if (Opc == Instruction::SDiv) {
2337      if (EatIfPresent(lltok::kw_exact))
2338        Exact = true;
2339    }
2340    if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2341        ParseGlobalTypeAndValue(Val0) ||
2342        ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2343        ParseGlobalTypeAndValue(Val1) ||
2344        ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2345      return true;
2346    if (Val0->getType() != Val1->getType())
2347      return Error(ID.Loc, "operands of constexpr must have same type");
2348    if (!Val0->getType()->isIntOrIntVectorTy()) {
2349      if (NUW)
2350        return Error(ModifierLoc, "nuw only applies to integer operations");
2351      if (NSW)
2352        return Error(ModifierLoc, "nsw only applies to integer operations");
2353    }
2354    // API compatibility: Accept either integer or floating-point types with
2355    // add, sub, and mul.
2356    if (!Val0->getType()->isIntOrIntVectorTy() &&
2357        !Val0->getType()->isFPOrFPVectorTy())
2358      return Error(ID.Loc,"constexpr requires integer, fp, or vector operands");
2359    unsigned Flags = 0;
2360    if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2361    if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
2362    if (Exact) Flags |= SDivOperator::IsExact;
2363    Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2364    ID.ConstantVal = C;
2365    ID.Kind = ValID::t_Constant;
2366    return false;
2367  }
2368
2369  // Logical Operations
2370  case lltok::kw_shl:
2371  case lltok::kw_lshr:
2372  case lltok::kw_ashr:
2373  case lltok::kw_and:
2374  case lltok::kw_or:
2375  case lltok::kw_xor: {
2376    unsigned Opc = Lex.getUIntVal();
2377    Constant *Val0, *Val1;
2378    Lex.Lex();
2379    if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2380        ParseGlobalTypeAndValue(Val0) ||
2381        ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2382        ParseGlobalTypeAndValue(Val1) ||
2383        ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2384      return true;
2385    if (Val0->getType() != Val1->getType())
2386      return Error(ID.Loc, "operands of constexpr must have same type");
2387    if (!Val0->getType()->isIntOrIntVectorTy())
2388      return Error(ID.Loc,
2389                   "constexpr requires integer or integer vector operands");
2390    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2391    ID.Kind = ValID::t_Constant;
2392    return false;
2393  }
2394
2395  case lltok::kw_getelementptr:
2396  case lltok::kw_shufflevector:
2397  case lltok::kw_insertelement:
2398  case lltok::kw_extractelement:
2399  case lltok::kw_select: {
2400    unsigned Opc = Lex.getUIntVal();
2401    SmallVector<Constant*, 16> Elts;
2402    bool InBounds = false;
2403    Lex.Lex();
2404    if (Opc == Instruction::GetElementPtr)
2405      InBounds = EatIfPresent(lltok::kw_inbounds);
2406    if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2407        ParseGlobalValueVector(Elts) ||
2408        ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2409      return true;
2410
2411    if (Opc == Instruction::GetElementPtr) {
2412      if (Elts.size() == 0 || !Elts[0]->getType()->isPointerTy())
2413        return Error(ID.Loc, "getelementptr requires pointer operand");
2414
2415      if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
2416                                             (Value**)(Elts.data() + 1),
2417                                             Elts.size() - 1))
2418        return Error(ID.Loc, "invalid indices for getelementptr");
2419      ID.ConstantVal = InBounds ?
2420        ConstantExpr::getInBoundsGetElementPtr(Elts[0],
2421                                               Elts.data() + 1,
2422                                               Elts.size() - 1) :
2423        ConstantExpr::getGetElementPtr(Elts[0],
2424                                       Elts.data() + 1, Elts.size() - 1);
2425    } else if (Opc == Instruction::Select) {
2426      if (Elts.size() != 3)
2427        return Error(ID.Loc, "expected three operands to select");
2428      if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2429                                                              Elts[2]))
2430        return Error(ID.Loc, Reason);
2431      ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2432    } else if (Opc == Instruction::ShuffleVector) {
2433      if (Elts.size() != 3)
2434        return Error(ID.Loc, "expected three operands to shufflevector");
2435      if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2436        return Error(ID.Loc, "invalid operands to shufflevector");
2437      ID.ConstantVal =
2438                 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2439    } else if (Opc == Instruction::ExtractElement) {
2440      if (Elts.size() != 2)
2441        return Error(ID.Loc, "expected two operands to extractelement");
2442      if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2443        return Error(ID.Loc, "invalid extractelement operands");
2444      ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2445    } else {
2446      assert(Opc == Instruction::InsertElement && "Unknown opcode");
2447      if (Elts.size() != 3)
2448      return Error(ID.Loc, "expected three operands to insertelement");
2449      if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2450        return Error(ID.Loc, "invalid insertelement operands");
2451      ID.ConstantVal =
2452                 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2453    }
2454
2455    ID.Kind = ValID::t_Constant;
2456    return false;
2457  }
2458  }
2459
2460  Lex.Lex();
2461  return false;
2462}
2463
2464/// ParseGlobalValue - Parse a global value with the specified type.
2465bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&C) {
2466  C = 0;
2467  ValID ID;
2468  Value *V = NULL;
2469  bool Parsed = ParseValID(ID) ||
2470                ConvertValIDToValue(Ty, ID, V, NULL);
2471  if (V && !(C = dyn_cast<Constant>(V)))
2472    return Error(ID.Loc, "global values must be constants");
2473  return Parsed;
2474}
2475
2476bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2477  PATypeHolder Type(Type::getVoidTy(Context));
2478  return ParseType(Type) ||
2479         ParseGlobalValue(Type, V);
2480}
2481
2482/// ParseGlobalValueVector
2483///   ::= /*empty*/
2484///   ::= TypeAndValue (',' TypeAndValue)*
2485bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2486  // Empty list.
2487  if (Lex.getKind() == lltok::rbrace ||
2488      Lex.getKind() == lltok::rsquare ||
2489      Lex.getKind() == lltok::greater ||
2490      Lex.getKind() == lltok::rparen)
2491    return false;
2492
2493  Constant *C;
2494  if (ParseGlobalTypeAndValue(C)) return true;
2495  Elts.push_back(C);
2496
2497  while (EatIfPresent(lltok::comma)) {
2498    if (ParseGlobalTypeAndValue(C)) return true;
2499    Elts.push_back(C);
2500  }
2501
2502  return false;
2503}
2504
2505
2506//===----------------------------------------------------------------------===//
2507// Function Parsing.
2508//===----------------------------------------------------------------------===//
2509
2510bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
2511                                   PerFunctionState *PFS) {
2512  if (Ty->isFunctionTy())
2513    return Error(ID.Loc, "functions are not values, refer to them as pointers");
2514
2515  switch (ID.Kind) {
2516  default: llvm_unreachable("Unknown ValID!");
2517  case ValID::t_LocalID:
2518    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2519    V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
2520    return (V == 0);
2521  case ValID::t_LocalName:
2522    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2523    V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
2524    return (V == 0);
2525  case ValID::t_InlineAsm: {
2526    const PointerType *PTy = dyn_cast<PointerType>(Ty);
2527    const FunctionType *FTy =
2528      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2529    if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2530      return Error(ID.Loc, "invalid type for inline asm constraint string");
2531    V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, ID.UIntVal>>1);
2532    return false;
2533  }
2534  case ValID::t_MDNode:
2535    if (!Ty->isMetadataTy())
2536      return Error(ID.Loc, "metadata value must have metadata type");
2537    V = ID.MDNodeVal;
2538    return false;
2539  case ValID::t_MDString:
2540    if (!Ty->isMetadataTy())
2541      return Error(ID.Loc, "metadata value must have metadata type");
2542    V = ID.MDStringVal;
2543    return false;
2544  case ValID::t_GlobalName:
2545    V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2546    return V == 0;
2547  case ValID::t_GlobalID:
2548    V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2549    return V == 0;
2550  case ValID::t_APSInt:
2551    if (!Ty->isIntegerTy())
2552      return Error(ID.Loc, "integer constant must have integer type");
2553    ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2554    V = ConstantInt::get(Context, ID.APSIntVal);
2555    return false;
2556  case ValID::t_APFloat:
2557    if (!Ty->isFloatingPointTy() ||
2558        !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2559      return Error(ID.Loc, "floating point constant invalid for type");
2560
2561    // The lexer has no type info, so builds all float and double FP constants
2562    // as double.  Fix this here.  Long double does not need this.
2563    if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
2564        Ty->isFloatTy()) {
2565      bool Ignored;
2566      ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2567                            &Ignored);
2568    }
2569    V = ConstantFP::get(Context, ID.APFloatVal);
2570
2571    if (V->getType() != Ty)
2572      return Error(ID.Loc, "floating point constant does not have type '" +
2573                   Ty->getDescription() + "'");
2574
2575    return false;
2576  case ValID::t_Null:
2577    if (!Ty->isPointerTy())
2578      return Error(ID.Loc, "null must be a pointer type");
2579    V = ConstantPointerNull::get(cast<PointerType>(Ty));
2580    return false;
2581  case ValID::t_Undef:
2582    // FIXME: LabelTy should not be a first-class type.
2583    if ((!Ty->isFirstClassType() || Ty->isLabelTy()) &&
2584        !Ty->isOpaqueTy())
2585      return Error(ID.Loc, "invalid type for undef constant");
2586    V = UndefValue::get(Ty);
2587    return false;
2588  case ValID::t_EmptyArray:
2589    if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
2590      return Error(ID.Loc, "invalid empty array initializer");
2591    V = UndefValue::get(Ty);
2592    return false;
2593  case ValID::t_Zero:
2594    // FIXME: LabelTy should not be a first-class type.
2595    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2596      return Error(ID.Loc, "invalid type for null constant");
2597    V = Constant::getNullValue(Ty);
2598    return false;
2599  case ValID::t_Constant:
2600    if (ID.ConstantVal->getType() != Ty) {
2601      // Allow a constant struct with a single member to be converted
2602      // to a union, if the union has a member which is the same type
2603      // as the struct member.
2604      if (const UnionType* utype = dyn_cast<UnionType>(Ty)) {
2605        return ParseUnionValue(utype, ID, V);
2606      }
2607
2608      return Error(ID.Loc, "constant expression type mismatch");
2609    }
2610
2611    V = ID.ConstantVal;
2612    return false;
2613  }
2614}
2615
2616bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
2617  V = 0;
2618  ValID ID;
2619  return ParseValID(ID, &PFS) ||
2620         ConvertValIDToValue(Ty, ID, V, &PFS);
2621}
2622
2623bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
2624  PATypeHolder T(Type::getVoidTy(Context));
2625  return ParseType(T) ||
2626         ParseValue(T, V, PFS);
2627}
2628
2629bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
2630                                      PerFunctionState &PFS) {
2631  Value *V;
2632  Loc = Lex.getLoc();
2633  if (ParseTypeAndValue(V, PFS)) return true;
2634  if (!isa<BasicBlock>(V))
2635    return Error(Loc, "expected a basic block");
2636  BB = cast<BasicBlock>(V);
2637  return false;
2638}
2639
2640bool LLParser::ParseUnionValue(const UnionType* utype, ValID &ID, Value *&V) {
2641  if (const StructType* stype = dyn_cast<StructType>(ID.ConstantVal->getType())) {
2642    if (stype->getNumContainedTypes() != 1)
2643      return Error(ID.Loc, "constant expression type mismatch");
2644    int index = utype->getElementTypeIndex(stype->getContainedType(0));
2645    if (index < 0)
2646      return Error(ID.Loc, "initializer type is not a member of the union");
2647
2648    V = ConstantUnion::get(
2649        utype, cast<Constant>(ID.ConstantVal->getOperand(0)));
2650    return false;
2651  }
2652
2653  return Error(ID.Loc, "constant expression type mismatch");
2654}
2655
2656
2657/// FunctionHeader
2658///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2659///       Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2660///       OptionalAlign OptGC
2661bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2662  // Parse the linkage.
2663  LocTy LinkageLoc = Lex.getLoc();
2664  unsigned Linkage;
2665
2666  unsigned Visibility, RetAttrs;
2667  CallingConv::ID CC;
2668  PATypeHolder RetType(Type::getVoidTy(Context));
2669  LocTy RetTypeLoc = Lex.getLoc();
2670  if (ParseOptionalLinkage(Linkage) ||
2671      ParseOptionalVisibility(Visibility) ||
2672      ParseOptionalCallingConv(CC) ||
2673      ParseOptionalAttrs(RetAttrs, 1) ||
2674      ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2675    return true;
2676
2677  // Verify that the linkage is ok.
2678  switch ((GlobalValue::LinkageTypes)Linkage) {
2679  case GlobalValue::ExternalLinkage:
2680    break; // always ok.
2681  case GlobalValue::DLLImportLinkage:
2682  case GlobalValue::ExternalWeakLinkage:
2683    if (isDefine)
2684      return Error(LinkageLoc, "invalid linkage for function definition");
2685    break;
2686  case GlobalValue::PrivateLinkage:
2687  case GlobalValue::LinkerPrivateLinkage:
2688  case GlobalValue::InternalLinkage:
2689  case GlobalValue::AvailableExternallyLinkage:
2690  case GlobalValue::LinkOnceAnyLinkage:
2691  case GlobalValue::LinkOnceODRLinkage:
2692  case GlobalValue::WeakAnyLinkage:
2693  case GlobalValue::WeakODRLinkage:
2694  case GlobalValue::DLLExportLinkage:
2695    if (!isDefine)
2696      return Error(LinkageLoc, "invalid linkage for function declaration");
2697    break;
2698  case GlobalValue::AppendingLinkage:
2699  case GlobalValue::CommonLinkage:
2700    return Error(LinkageLoc, "invalid function linkage type");
2701  }
2702
2703  if (!FunctionType::isValidReturnType(RetType) ||
2704      RetType->isOpaqueTy())
2705    return Error(RetTypeLoc, "invalid function return type");
2706
2707  LocTy NameLoc = Lex.getLoc();
2708
2709  std::string FunctionName;
2710  if (Lex.getKind() == lltok::GlobalVar) {
2711    FunctionName = Lex.getStrVal();
2712  } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
2713    unsigned NameID = Lex.getUIntVal();
2714
2715    if (NameID != NumberedVals.size())
2716      return TokError("function expected to be numbered '%" +
2717                      utostr(NumberedVals.size()) + "'");
2718  } else {
2719    return TokError("expected function name");
2720  }
2721
2722  Lex.Lex();
2723
2724  if (Lex.getKind() != lltok::lparen)
2725    return TokError("expected '(' in function argument list");
2726
2727  std::vector<ArgInfo> ArgList;
2728  bool isVarArg;
2729  unsigned FuncAttrs;
2730  std::string Section;
2731  unsigned Alignment;
2732  std::string GC;
2733
2734  if (ParseArgumentList(ArgList, isVarArg, false) ||
2735      ParseOptionalAttrs(FuncAttrs, 2) ||
2736      (EatIfPresent(lltok::kw_section) &&
2737       ParseStringConstant(Section)) ||
2738      ParseOptionalAlignment(Alignment) ||
2739      (EatIfPresent(lltok::kw_gc) &&
2740       ParseStringConstant(GC)))
2741    return true;
2742
2743  // If the alignment was parsed as an attribute, move to the alignment field.
2744  if (FuncAttrs & Attribute::Alignment) {
2745    Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2746    FuncAttrs &= ~Attribute::Alignment;
2747  }
2748
2749  // Okay, if we got here, the function is syntactically valid.  Convert types
2750  // and do semantic checks.
2751  std::vector<const Type*> ParamTypeList;
2752  SmallVector<AttributeWithIndex, 8> Attrs;
2753  // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2754  // attributes.
2755  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2756  if (FuncAttrs & ObsoleteFuncAttrs) {
2757    RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
2758    FuncAttrs &= ~ObsoleteFuncAttrs;
2759  }
2760
2761  if (RetAttrs != Attribute::None)
2762    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2763
2764  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2765    ParamTypeList.push_back(ArgList[i].Type);
2766    if (ArgList[i].Attrs != Attribute::None)
2767      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2768  }
2769
2770  if (FuncAttrs != Attribute::None)
2771    Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2772
2773  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2774
2775  if (PAL.paramHasAttr(1, Attribute::StructRet) && !RetType->isVoidTy())
2776    return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2777
2778  const FunctionType *FT =
2779    FunctionType::get(RetType, ParamTypeList, isVarArg);
2780  const PointerType *PFT = PointerType::getUnqual(FT);
2781
2782  Fn = 0;
2783  if (!FunctionName.empty()) {
2784    // If this was a definition of a forward reference, remove the definition
2785    // from the forward reference table and fill in the forward ref.
2786    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2787      ForwardRefVals.find(FunctionName);
2788    if (FRVI != ForwardRefVals.end()) {
2789      Fn = M->getFunction(FunctionName);
2790      if (Fn->getType() != PFT)
2791        return Error(FRVI->second.second, "invalid forward reference to "
2792                     "function '" + FunctionName + "' with wrong type!");
2793
2794      ForwardRefVals.erase(FRVI);
2795    } else if ((Fn = M->getFunction(FunctionName))) {
2796      // If this function already exists in the symbol table, then it is
2797      // multiply defined.  We accept a few cases for old backwards compat.
2798      // FIXME: Remove this stuff for LLVM 3.0.
2799      if (Fn->getType() != PFT || Fn->getAttributes() != PAL ||
2800          (!Fn->isDeclaration() && isDefine)) {
2801        // If the redefinition has different type or different attributes,
2802        // reject it.  If both have bodies, reject it.
2803        return Error(NameLoc, "invalid redefinition of function '" +
2804                     FunctionName + "'");
2805      } else if (Fn->isDeclaration()) {
2806        // Make sure to strip off any argument names so we can't get conflicts.
2807        for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2808             AI != AE; ++AI)
2809          AI->setName("");
2810      }
2811    } else if (M->getNamedValue(FunctionName)) {
2812      return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
2813    }
2814
2815  } else {
2816    // If this is a definition of a forward referenced function, make sure the
2817    // types agree.
2818    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2819      = ForwardRefValIDs.find(NumberedVals.size());
2820    if (I != ForwardRefValIDs.end()) {
2821      Fn = cast<Function>(I->second.first);
2822      if (Fn->getType() != PFT)
2823        return Error(NameLoc, "type of definition and forward reference of '@" +
2824                     utostr(NumberedVals.size()) +"' disagree");
2825      ForwardRefValIDs.erase(I);
2826    }
2827  }
2828
2829  if (Fn == 0)
2830    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2831  else // Move the forward-reference to the correct spot in the module.
2832    M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2833
2834  if (FunctionName.empty())
2835    NumberedVals.push_back(Fn);
2836
2837  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2838  Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2839  Fn->setCallingConv(CC);
2840  Fn->setAttributes(PAL);
2841  Fn->setAlignment(Alignment);
2842  Fn->setSection(Section);
2843  if (!GC.empty()) Fn->setGC(GC.c_str());
2844
2845  // Add all of the arguments we parsed to the function.
2846  Function::arg_iterator ArgIt = Fn->arg_begin();
2847  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2848    // If we run out of arguments in the Function prototype, exit early.
2849    // FIXME: REMOVE THIS IN LLVM 3.0, this is just for the mismatch case above.
2850    if (ArgIt == Fn->arg_end()) break;
2851
2852    // If the argument has a name, insert it into the argument symbol table.
2853    if (ArgList[i].Name.empty()) continue;
2854
2855    // Set the name, if it conflicted, it will be auto-renamed.
2856    ArgIt->setName(ArgList[i].Name);
2857
2858    if (ArgIt->getNameStr() != ArgList[i].Name)
2859      return Error(ArgList[i].Loc, "redefinition of argument '%" +
2860                   ArgList[i].Name + "'");
2861  }
2862
2863  return false;
2864}
2865
2866
2867/// ParseFunctionBody
2868///   ::= '{' BasicBlock+ '}'
2869///   ::= 'begin' BasicBlock+ 'end'  // FIXME: remove in LLVM 3.0
2870///
2871bool LLParser::ParseFunctionBody(Function &Fn) {
2872  if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
2873    return TokError("expected '{' in function body");
2874  Lex.Lex();  // eat the {.
2875
2876  int FunctionNumber = -1;
2877  if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
2878
2879  PerFunctionState PFS(*this, Fn, FunctionNumber);
2880
2881  // We need at least one basic block.
2882  if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_end)
2883    return TokError("function body requires at least one basic block");
2884
2885  while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
2886    if (ParseBasicBlock(PFS)) return true;
2887
2888  // Eat the }.
2889  Lex.Lex();
2890
2891  // Verify function is ok.
2892  return PFS.FinishFunction();
2893}
2894
2895/// ParseBasicBlock
2896///   ::= LabelStr? Instruction*
2897bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2898  // If this basic block starts out with a name, remember it.
2899  std::string Name;
2900  LocTy NameLoc = Lex.getLoc();
2901  if (Lex.getKind() == lltok::LabelStr) {
2902    Name = Lex.getStrVal();
2903    Lex.Lex();
2904  }
2905
2906  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2907  if (BB == 0) return true;
2908
2909  std::string NameStr;
2910
2911  // Parse the instructions in this block until we get a terminator.
2912  Instruction *Inst;
2913  SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst;
2914  do {
2915    // This instruction may have three possibilities for a name: a) none
2916    // specified, b) name specified "%foo =", c) number specified: "%4 =".
2917    LocTy NameLoc = Lex.getLoc();
2918    int NameID = -1;
2919    NameStr = "";
2920
2921    if (Lex.getKind() == lltok::LocalVarID) {
2922      NameID = Lex.getUIntVal();
2923      Lex.Lex();
2924      if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2925        return true;
2926    } else if (Lex.getKind() == lltok::LocalVar ||
2927               // FIXME: REMOVE IN LLVM 3.0
2928               Lex.getKind() == lltok::StringConstant) {
2929      NameStr = Lex.getStrVal();
2930      Lex.Lex();
2931      if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2932        return true;
2933    }
2934
2935    switch (ParseInstruction(Inst, BB, PFS)) {
2936    default: assert(0 && "Unknown ParseInstruction result!");
2937    case InstError: return true;
2938    case InstNormal:
2939      BB->getInstList().push_back(Inst);
2940
2941      // With a normal result, we check to see if the instruction is followed by
2942      // a comma and metadata.
2943      if (EatIfPresent(lltok::comma))
2944        if (ParseInstructionMetadata(Inst))
2945          return true;
2946      break;
2947    case InstExtraComma:
2948      BB->getInstList().push_back(Inst);
2949
2950      // If the instruction parser ate an extra comma at the end of it, it
2951      // *must* be followed by metadata.
2952      if (ParseInstructionMetadata(Inst))
2953        return true;
2954      break;
2955    }
2956
2957    // Set the name on the instruction.
2958    if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2959  } while (!isa<TerminatorInst>(Inst));
2960
2961  return false;
2962}
2963
2964//===----------------------------------------------------------------------===//
2965// Instruction Parsing.
2966//===----------------------------------------------------------------------===//
2967
2968/// ParseInstruction - Parse one of the many different instructions.
2969///
2970int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2971                               PerFunctionState &PFS) {
2972  lltok::Kind Token = Lex.getKind();
2973  if (Token == lltok::Eof)
2974    return TokError("found end of file when expecting more instructions");
2975  LocTy Loc = Lex.getLoc();
2976  unsigned KeywordVal = Lex.getUIntVal();
2977  Lex.Lex();  // Eat the keyword.
2978
2979  switch (Token) {
2980  default:                    return Error(Loc, "expected instruction opcode");
2981  // Terminator Instructions.
2982  case lltok::kw_unwind:      Inst = new UnwindInst(Context); return false;
2983  case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
2984  case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
2985  case lltok::kw_br:          return ParseBr(Inst, PFS);
2986  case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
2987  case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
2988  case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
2989  // Binary Operators.
2990  case lltok::kw_add:
2991  case lltok::kw_sub:
2992  case lltok::kw_mul: {
2993    bool NUW = false;
2994    bool NSW = false;
2995    LocTy ModifierLoc = Lex.getLoc();
2996    if (EatIfPresent(lltok::kw_nuw))
2997      NUW = true;
2998    if (EatIfPresent(lltok::kw_nsw)) {
2999      NSW = true;
3000      if (EatIfPresent(lltok::kw_nuw))
3001        NUW = true;
3002    }
3003    // API compatibility: Accept either integer or floating-point types.
3004    bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 0);
3005    if (!Result) {
3006      if (!Inst->getType()->isIntOrIntVectorTy()) {
3007        if (NUW)
3008          return Error(ModifierLoc, "nuw only applies to integer operations");
3009        if (NSW)
3010          return Error(ModifierLoc, "nsw only applies to integer operations");
3011      }
3012      if (NUW)
3013        cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
3014      if (NSW)
3015        cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
3016    }
3017    return Result;
3018  }
3019  case lltok::kw_fadd:
3020  case lltok::kw_fsub:
3021  case lltok::kw_fmul:    return ParseArithmetic(Inst, PFS, KeywordVal, 2);
3022
3023  case lltok::kw_sdiv: {
3024    bool Exact = false;
3025    if (EatIfPresent(lltok::kw_exact))
3026      Exact = true;
3027    bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 1);
3028    if (!Result)
3029      if (Exact)
3030        cast<BinaryOperator>(Inst)->setIsExact(true);
3031    return Result;
3032  }
3033
3034  case lltok::kw_udiv:
3035  case lltok::kw_urem:
3036  case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
3037  case lltok::kw_fdiv:
3038  case lltok::kw_frem:   return ParseArithmetic(Inst, PFS, KeywordVal, 2);
3039  case lltok::kw_shl:
3040  case lltok::kw_lshr:
3041  case lltok::kw_ashr:
3042  case lltok::kw_and:
3043  case lltok::kw_or:
3044  case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
3045  case lltok::kw_icmp:
3046  case lltok::kw_fcmp:   return ParseCompare(Inst, PFS, KeywordVal);
3047  // Casts.
3048  case lltok::kw_trunc:
3049  case lltok::kw_zext:
3050  case lltok::kw_sext:
3051  case lltok::kw_fptrunc:
3052  case lltok::kw_fpext:
3053  case lltok::kw_bitcast:
3054  case lltok::kw_uitofp:
3055  case lltok::kw_sitofp:
3056  case lltok::kw_fptoui:
3057  case lltok::kw_fptosi:
3058  case lltok::kw_inttoptr:
3059  case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
3060  // Other.
3061  case lltok::kw_select:         return ParseSelect(Inst, PFS);
3062  case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
3063  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
3064  case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
3065  case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
3066  case lltok::kw_phi:            return ParsePHI(Inst, PFS);
3067  case lltok::kw_call:           return ParseCall(Inst, PFS, false);
3068  case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
3069  // Memory.
3070  case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
3071  case lltok::kw_malloc:         return ParseAlloc(Inst, PFS, BB, false);
3072  case lltok::kw_free:           return ParseFree(Inst, PFS, BB);
3073  case lltok::kw_load:           return ParseLoad(Inst, PFS, false);
3074  case lltok::kw_store:          return ParseStore(Inst, PFS, false);
3075  case lltok::kw_volatile:
3076    if (EatIfPresent(lltok::kw_load))
3077      return ParseLoad(Inst, PFS, true);
3078    else if (EatIfPresent(lltok::kw_store))
3079      return ParseStore(Inst, PFS, true);
3080    else
3081      return TokError("expected 'load' or 'store'");
3082  case lltok::kw_getresult:     return ParseGetResult(Inst, PFS);
3083  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
3084  case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
3085  case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
3086  }
3087}
3088
3089/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
3090bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
3091  if (Opc == Instruction::FCmp) {
3092    switch (Lex.getKind()) {
3093    default: TokError("expected fcmp predicate (e.g. 'oeq')");
3094    case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
3095    case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
3096    case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
3097    case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
3098    case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
3099    case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
3100    case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
3101    case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
3102    case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
3103    case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
3104    case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
3105    case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
3106    case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
3107    case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
3108    case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
3109    case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
3110    }
3111  } else {
3112    switch (Lex.getKind()) {
3113    default: TokError("expected icmp predicate (e.g. 'eq')");
3114    case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
3115    case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
3116    case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
3117    case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
3118    case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
3119    case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
3120    case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
3121    case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
3122    case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
3123    case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
3124    }
3125  }
3126  Lex.Lex();
3127  return false;
3128}
3129
3130//===----------------------------------------------------------------------===//
3131// Terminator Instructions.
3132//===----------------------------------------------------------------------===//
3133
3134/// ParseRet - Parse a return instruction.
3135///   ::= 'ret' void (',' !dbg, !1)*
3136///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
3137///   ::= 'ret' TypeAndValue (',' TypeAndValue)+  (',' !dbg, !1)*
3138///         [[obsolete: LLVM 3.0]]
3139int LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
3140                       PerFunctionState &PFS) {
3141  PATypeHolder Ty(Type::getVoidTy(Context));
3142  if (ParseType(Ty, true /*void allowed*/)) return true;
3143
3144  if (Ty->isVoidTy()) {
3145    Inst = ReturnInst::Create(Context);
3146    return false;
3147  }
3148
3149  Value *RV;
3150  if (ParseValue(Ty, RV, PFS)) return true;
3151
3152  bool ExtraComma = false;
3153  if (EatIfPresent(lltok::comma)) {
3154    // Parse optional custom metadata, e.g. !dbg
3155    if (Lex.getKind() == lltok::MetadataVar) {
3156      ExtraComma = true;
3157    } else {
3158      // The normal case is one return value.
3159      // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring
3160      // use of 'ret {i32,i32} {i32 1, i32 2}'
3161      SmallVector<Value*, 8> RVs;
3162      RVs.push_back(RV);
3163
3164      do {
3165        // If optional custom metadata, e.g. !dbg is seen then this is the
3166        // end of MRV.
3167        if (Lex.getKind() == lltok::MetadataVar)
3168          break;
3169        if (ParseTypeAndValue(RV, PFS)) return true;
3170        RVs.push_back(RV);
3171      } while (EatIfPresent(lltok::comma));
3172
3173      RV = UndefValue::get(PFS.getFunction().getReturnType());
3174      for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
3175        Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
3176        BB->getInstList().push_back(I);
3177        RV = I;
3178      }
3179    }
3180  }
3181
3182  Inst = ReturnInst::Create(Context, RV);
3183  return ExtraComma ? InstExtraComma : InstNormal;
3184}
3185
3186
3187/// ParseBr
3188///   ::= 'br' TypeAndValue
3189///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3190bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
3191  LocTy Loc, Loc2;
3192  Value *Op0;
3193  BasicBlock *Op1, *Op2;
3194  if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
3195
3196  if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
3197    Inst = BranchInst::Create(BB);
3198    return false;
3199  }
3200
3201  if (Op0->getType() != Type::getInt1Ty(Context))
3202    return Error(Loc, "branch condition must have 'i1' type");
3203
3204  if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
3205      ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
3206      ParseToken(lltok::comma, "expected ',' after true destination") ||
3207      ParseTypeAndBasicBlock(Op2, Loc2, PFS))
3208    return true;
3209
3210  Inst = BranchInst::Create(Op1, Op2, Op0);
3211  return false;
3212}
3213
3214/// ParseSwitch
3215///  Instruction
3216///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
3217///  JumpTable
3218///    ::= (TypeAndValue ',' TypeAndValue)*
3219bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
3220  LocTy CondLoc, BBLoc;
3221  Value *Cond;
3222  BasicBlock *DefaultBB;
3223  if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
3224      ParseToken(lltok::comma, "expected ',' after switch condition") ||
3225      ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
3226      ParseToken(lltok::lsquare, "expected '[' with switch table"))
3227    return true;
3228
3229  if (!Cond->getType()->isIntegerTy())
3230    return Error(CondLoc, "switch condition must have integer type");
3231
3232  // Parse the jump table pairs.
3233  SmallPtrSet<Value*, 32> SeenCases;
3234  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
3235  while (Lex.getKind() != lltok::rsquare) {
3236    Value *Constant;
3237    BasicBlock *DestBB;
3238
3239    if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
3240        ParseToken(lltok::comma, "expected ',' after case value") ||
3241        ParseTypeAndBasicBlock(DestBB, PFS))
3242      return true;
3243
3244    if (!SeenCases.insert(Constant))
3245      return Error(CondLoc, "duplicate case value in switch");
3246    if (!isa<ConstantInt>(Constant))
3247      return Error(CondLoc, "case value is not a constant integer");
3248
3249    Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
3250  }
3251
3252  Lex.Lex();  // Eat the ']'.
3253
3254  SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
3255  for (unsigned i = 0, e = Table.size(); i != e; ++i)
3256    SI->addCase(Table[i].first, Table[i].second);
3257  Inst = SI;
3258  return false;
3259}
3260
3261/// ParseIndirectBr
3262///  Instruction
3263///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
3264bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
3265  LocTy AddrLoc;
3266  Value *Address;
3267  if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
3268      ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
3269      ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
3270    return true;
3271
3272  if (!Address->getType()->isPointerTy())
3273    return Error(AddrLoc, "indirectbr address must have pointer type");
3274
3275  // Parse the destination list.
3276  SmallVector<BasicBlock*, 16> DestList;
3277
3278  if (Lex.getKind() != lltok::rsquare) {
3279    BasicBlock *DestBB;
3280    if (ParseTypeAndBasicBlock(DestBB, PFS))
3281      return true;
3282    DestList.push_back(DestBB);
3283
3284    while (EatIfPresent(lltok::comma)) {
3285      if (ParseTypeAndBasicBlock(DestBB, PFS))
3286        return true;
3287      DestList.push_back(DestBB);
3288    }
3289  }
3290
3291  if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
3292    return true;
3293
3294  IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
3295  for (unsigned i = 0, e = DestList.size(); i != e; ++i)
3296    IBI->addDestination(DestList[i]);
3297  Inst = IBI;
3298  return false;
3299}
3300
3301
3302/// ParseInvoke
3303///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
3304///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
3305bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
3306  LocTy CallLoc = Lex.getLoc();
3307  unsigned RetAttrs, FnAttrs;
3308  CallingConv::ID CC;
3309  PATypeHolder RetType(Type::getVoidTy(Context));
3310  LocTy RetTypeLoc;
3311  ValID CalleeID;
3312  SmallVector<ParamInfo, 16> ArgList;
3313
3314  BasicBlock *NormalBB, *UnwindBB;
3315  if (ParseOptionalCallingConv(CC) ||
3316      ParseOptionalAttrs(RetAttrs, 1) ||
3317      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3318      ParseValID(CalleeID) ||
3319      ParseParameterList(ArgList, PFS) ||
3320      ParseOptionalAttrs(FnAttrs, 2) ||
3321      ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
3322      ParseTypeAndBasicBlock(NormalBB, PFS) ||
3323      ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
3324      ParseTypeAndBasicBlock(UnwindBB, PFS))
3325    return true;
3326
3327  // If RetType is a non-function pointer type, then this is the short syntax
3328  // for the call, which means that RetType is just the return type.  Infer the
3329  // rest of the function argument types from the arguments that are present.
3330  const PointerType *PFTy = 0;
3331  const FunctionType *Ty = 0;
3332  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3333      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3334    // Pull out the types of all of the arguments...
3335    std::vector<const Type*> ParamTypes;
3336    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3337      ParamTypes.push_back(ArgList[i].V->getType());
3338
3339    if (!FunctionType::isValidReturnType(RetType))
3340      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3341
3342    Ty = FunctionType::get(RetType, ParamTypes, false);
3343    PFTy = PointerType::getUnqual(Ty);
3344  }
3345
3346  // Look up the callee.
3347  Value *Callee;
3348  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3349
3350  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3351  // function attributes.
3352  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3353  if (FnAttrs & ObsoleteFuncAttrs) {
3354    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3355    FnAttrs &= ~ObsoleteFuncAttrs;
3356  }
3357
3358  // Set up the Attributes for the function.
3359  SmallVector<AttributeWithIndex, 8> Attrs;
3360  if (RetAttrs != Attribute::None)
3361    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3362
3363  SmallVector<Value*, 8> Args;
3364
3365  // Loop through FunctionType's arguments and ensure they are specified
3366  // correctly.  Also, gather any parameter attributes.
3367  FunctionType::param_iterator I = Ty->param_begin();
3368  FunctionType::param_iterator E = Ty->param_end();
3369  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3370    const Type *ExpectedTy = 0;
3371    if (I != E) {
3372      ExpectedTy = *I++;
3373    } else if (!Ty->isVarArg()) {
3374      return Error(ArgList[i].Loc, "too many arguments specified");
3375    }
3376
3377    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3378      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3379                   ExpectedTy->getDescription() + "'");
3380    Args.push_back(ArgList[i].V);
3381    if (ArgList[i].Attrs != Attribute::None)
3382      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3383  }
3384
3385  if (I != E)
3386    return Error(CallLoc, "not enough parameters specified for call");
3387
3388  if (FnAttrs != Attribute::None)
3389    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3390
3391  // Finish off the Attributes and check them
3392  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3393
3394  InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB,
3395                                      Args.begin(), Args.end());
3396  II->setCallingConv(CC);
3397  II->setAttributes(PAL);
3398  Inst = II;
3399  return false;
3400}
3401
3402
3403
3404//===----------------------------------------------------------------------===//
3405// Binary Operators.
3406//===----------------------------------------------------------------------===//
3407
3408/// ParseArithmetic
3409///  ::= ArithmeticOps TypeAndValue ',' Value
3410///
3411/// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
3412/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
3413bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
3414                               unsigned Opc, unsigned OperandType) {
3415  LocTy Loc; Value *LHS, *RHS;
3416  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3417      ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
3418      ParseValue(LHS->getType(), RHS, PFS))
3419    return true;
3420
3421  bool Valid;
3422  switch (OperandType) {
3423  default: llvm_unreachable("Unknown operand type!");
3424  case 0: // int or FP.
3425    Valid = LHS->getType()->isIntOrIntVectorTy() ||
3426            LHS->getType()->isFPOrFPVectorTy();
3427    break;
3428  case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
3429  case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
3430  }
3431
3432  if (!Valid)
3433    return Error(Loc, "invalid operand type for instruction");
3434
3435  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3436  return false;
3437}
3438
3439/// ParseLogical
3440///  ::= ArithmeticOps TypeAndValue ',' Value {
3441bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3442                            unsigned Opc) {
3443  LocTy Loc; Value *LHS, *RHS;
3444  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3445      ParseToken(lltok::comma, "expected ',' in logical operation") ||
3446      ParseValue(LHS->getType(), RHS, PFS))
3447    return true;
3448
3449  if (!LHS->getType()->isIntOrIntVectorTy())
3450    return Error(Loc,"instruction requires integer or integer vector operands");
3451
3452  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3453  return false;
3454}
3455
3456
3457/// ParseCompare
3458///  ::= 'icmp' IPredicates TypeAndValue ',' Value
3459///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
3460bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3461                            unsigned Opc) {
3462  // Parse the integer/fp comparison predicate.
3463  LocTy Loc;
3464  unsigned Pred;
3465  Value *LHS, *RHS;
3466  if (ParseCmpPredicate(Pred, Opc) ||
3467      ParseTypeAndValue(LHS, Loc, PFS) ||
3468      ParseToken(lltok::comma, "expected ',' after compare value") ||
3469      ParseValue(LHS->getType(), RHS, PFS))
3470    return true;
3471
3472  if (Opc == Instruction::FCmp) {
3473    if (!LHS->getType()->isFPOrFPVectorTy())
3474      return Error(Loc, "fcmp requires floating point operands");
3475    Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3476  } else {
3477    assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3478    if (!LHS->getType()->isIntOrIntVectorTy() &&
3479        !LHS->getType()->isPointerTy())
3480      return Error(Loc, "icmp requires integer operands");
3481    Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3482  }
3483  return false;
3484}
3485
3486//===----------------------------------------------------------------------===//
3487// Other Instructions.
3488//===----------------------------------------------------------------------===//
3489
3490
3491/// ParseCast
3492///   ::= CastOpc TypeAndValue 'to' Type
3493bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3494                         unsigned Opc) {
3495  LocTy Loc;  Value *Op;
3496  PATypeHolder DestTy(Type::getVoidTy(Context));
3497  if (ParseTypeAndValue(Op, Loc, PFS) ||
3498      ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3499      ParseType(DestTy))
3500    return true;
3501
3502  if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3503    CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3504    return Error(Loc, "invalid cast opcode for cast from '" +
3505                 Op->getType()->getDescription() + "' to '" +
3506                 DestTy->getDescription() + "'");
3507  }
3508  Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3509  return false;
3510}
3511
3512/// ParseSelect
3513///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3514bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3515  LocTy Loc;
3516  Value *Op0, *Op1, *Op2;
3517  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3518      ParseToken(lltok::comma, "expected ',' after select condition") ||
3519      ParseTypeAndValue(Op1, PFS) ||
3520      ParseToken(lltok::comma, "expected ',' after select value") ||
3521      ParseTypeAndValue(Op2, PFS))
3522    return true;
3523
3524  if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3525    return Error(Loc, Reason);
3526
3527  Inst = SelectInst::Create(Op0, Op1, Op2);
3528  return false;
3529}
3530
3531/// ParseVA_Arg
3532///   ::= 'va_arg' TypeAndValue ',' Type
3533bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3534  Value *Op;
3535  PATypeHolder EltTy(Type::getVoidTy(Context));
3536  LocTy TypeLoc;
3537  if (ParseTypeAndValue(Op, PFS) ||
3538      ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3539      ParseType(EltTy, TypeLoc))
3540    return true;
3541
3542  if (!EltTy->isFirstClassType())
3543    return Error(TypeLoc, "va_arg requires operand with first class type");
3544
3545  Inst = new VAArgInst(Op, EltTy);
3546  return false;
3547}
3548
3549/// ParseExtractElement
3550///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
3551bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3552  LocTy Loc;
3553  Value *Op0, *Op1;
3554  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3555      ParseToken(lltok::comma, "expected ',' after extract value") ||
3556      ParseTypeAndValue(Op1, PFS))
3557    return true;
3558
3559  if (!ExtractElementInst::isValidOperands(Op0, Op1))
3560    return Error(Loc, "invalid extractelement operands");
3561
3562  Inst = ExtractElementInst::Create(Op0, Op1);
3563  return false;
3564}
3565
3566/// ParseInsertElement
3567///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3568bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3569  LocTy Loc;
3570  Value *Op0, *Op1, *Op2;
3571  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3572      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3573      ParseTypeAndValue(Op1, PFS) ||
3574      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3575      ParseTypeAndValue(Op2, PFS))
3576    return true;
3577
3578  if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3579    return Error(Loc, "invalid insertelement operands");
3580
3581  Inst = InsertElementInst::Create(Op0, Op1, Op2);
3582  return false;
3583}
3584
3585/// ParseShuffleVector
3586///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3587bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3588  LocTy Loc;
3589  Value *Op0, *Op1, *Op2;
3590  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3591      ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3592      ParseTypeAndValue(Op1, PFS) ||
3593      ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3594      ParseTypeAndValue(Op2, PFS))
3595    return true;
3596
3597  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3598    return Error(Loc, "invalid extractelement operands");
3599
3600  Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3601  return false;
3602}
3603
3604/// ParsePHI
3605///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
3606int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3607  PATypeHolder Ty(Type::getVoidTy(Context));
3608  Value *Op0, *Op1;
3609  LocTy TypeLoc = Lex.getLoc();
3610
3611  if (ParseType(Ty) ||
3612      ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3613      ParseValue(Ty, Op0, PFS) ||
3614      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3615      ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3616      ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3617    return true;
3618
3619  bool AteExtraComma = false;
3620  SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3621  while (1) {
3622    PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3623
3624    if (!EatIfPresent(lltok::comma))
3625      break;
3626
3627    if (Lex.getKind() == lltok::MetadataVar) {
3628      AteExtraComma = true;
3629      break;
3630    }
3631
3632    if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3633        ParseValue(Ty, Op0, PFS) ||
3634        ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3635        ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3636        ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3637      return true;
3638  }
3639
3640  if (!Ty->isFirstClassType())
3641    return Error(TypeLoc, "phi node must have first class type");
3642
3643  PHINode *PN = PHINode::Create(Ty);
3644  PN->reserveOperandSpace(PHIVals.size());
3645  for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3646    PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3647  Inst = PN;
3648  return AteExtraComma ? InstExtraComma : InstNormal;
3649}
3650
3651/// ParseCall
3652///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3653///       ParameterList OptionalAttrs
3654bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3655                         bool isTail) {
3656  unsigned RetAttrs, FnAttrs;
3657  CallingConv::ID CC;
3658  PATypeHolder RetType(Type::getVoidTy(Context));
3659  LocTy RetTypeLoc;
3660  ValID CalleeID;
3661  SmallVector<ParamInfo, 16> ArgList;
3662  LocTy CallLoc = Lex.getLoc();
3663
3664  if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3665      ParseOptionalCallingConv(CC) ||
3666      ParseOptionalAttrs(RetAttrs, 1) ||
3667      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3668      ParseValID(CalleeID) ||
3669      ParseParameterList(ArgList, PFS) ||
3670      ParseOptionalAttrs(FnAttrs, 2))
3671    return true;
3672
3673  // If RetType is a non-function pointer type, then this is the short syntax
3674  // for the call, which means that RetType is just the return type.  Infer the
3675  // rest of the function argument types from the arguments that are present.
3676  const PointerType *PFTy = 0;
3677  const FunctionType *Ty = 0;
3678  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3679      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3680    // Pull out the types of all of the arguments...
3681    std::vector<const Type*> ParamTypes;
3682    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3683      ParamTypes.push_back(ArgList[i].V->getType());
3684
3685    if (!FunctionType::isValidReturnType(RetType))
3686      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3687
3688    Ty = FunctionType::get(RetType, ParamTypes, false);
3689    PFTy = PointerType::getUnqual(Ty);
3690  }
3691
3692  // Look up the callee.
3693  Value *Callee;
3694  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3695
3696  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3697  // function attributes.
3698  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3699  if (FnAttrs & ObsoleteFuncAttrs) {
3700    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3701    FnAttrs &= ~ObsoleteFuncAttrs;
3702  }
3703
3704  // Set up the Attributes for the function.
3705  SmallVector<AttributeWithIndex, 8> Attrs;
3706  if (RetAttrs != Attribute::None)
3707    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3708
3709  SmallVector<Value*, 8> Args;
3710
3711  // Loop through FunctionType's arguments and ensure they are specified
3712  // correctly.  Also, gather any parameter attributes.
3713  FunctionType::param_iterator I = Ty->param_begin();
3714  FunctionType::param_iterator E = Ty->param_end();
3715  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3716    const Type *ExpectedTy = 0;
3717    if (I != E) {
3718      ExpectedTy = *I++;
3719    } else if (!Ty->isVarArg()) {
3720      return Error(ArgList[i].Loc, "too many arguments specified");
3721    }
3722
3723    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3724      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3725                   ExpectedTy->getDescription() + "'");
3726    Args.push_back(ArgList[i].V);
3727    if (ArgList[i].Attrs != Attribute::None)
3728      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3729  }
3730
3731  if (I != E)
3732    return Error(CallLoc, "not enough parameters specified for call");
3733
3734  if (FnAttrs != Attribute::None)
3735    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3736
3737  // Finish off the Attributes and check them
3738  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3739
3740  CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
3741  CI->setTailCall(isTail);
3742  CI->setCallingConv(CC);
3743  CI->setAttributes(PAL);
3744  Inst = CI;
3745  return false;
3746}
3747
3748//===----------------------------------------------------------------------===//
3749// Memory Instructions.
3750//===----------------------------------------------------------------------===//
3751
3752/// ParseAlloc
3753///   ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalInfo)?
3754///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
3755int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
3756                         BasicBlock* BB, bool isAlloca) {
3757  PATypeHolder Ty(Type::getVoidTy(Context));
3758  Value *Size = 0;
3759  LocTy SizeLoc;
3760  unsigned Alignment = 0;
3761  if (ParseType(Ty)) return true;
3762
3763  bool AteExtraComma = false;
3764  if (EatIfPresent(lltok::comma)) {
3765    if (Lex.getKind() == lltok::kw_align) {
3766      if (ParseOptionalAlignment(Alignment)) return true;
3767    } else if (Lex.getKind() == lltok::MetadataVar) {
3768      AteExtraComma = true;
3769    } else {
3770      if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
3771          ParseOptionalCommaAlign(Alignment, AteExtraComma))
3772        return true;
3773    }
3774  }
3775
3776  if (Size && !Size->getType()->isIntegerTy(32))
3777    return Error(SizeLoc, "element count must be i32");
3778
3779  if (isAlloca) {
3780    Inst = new AllocaInst(Ty, Size, Alignment);
3781    return AteExtraComma ? InstExtraComma : InstNormal;
3782  }
3783
3784  // Autoupgrade old malloc instruction to malloc call.
3785  // FIXME: Remove in LLVM 3.0.
3786  const Type *IntPtrTy = Type::getInt32Ty(Context);
3787  Constant *AllocSize = ConstantExpr::getSizeOf(Ty);
3788  AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, IntPtrTy);
3789  if (!MallocF)
3790    // Prototype malloc as "void *(int32)".
3791    // This function is renamed as "malloc" in ValidateEndOfModule().
3792    MallocF = cast<Function>(
3793       M->getOrInsertFunction("", Type::getInt8PtrTy(Context), IntPtrTy, NULL));
3794  Inst = CallInst::CreateMalloc(BB, IntPtrTy, Ty, AllocSize, Size, MallocF);
3795return AteExtraComma ? InstExtraComma : InstNormal;
3796}
3797
3798/// ParseFree
3799///   ::= 'free' TypeAndValue
3800bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS,
3801                         BasicBlock* BB) {
3802  Value *Val; LocTy Loc;
3803  if (ParseTypeAndValue(Val, Loc, PFS)) return true;
3804  if (!Val->getType()->isPointerTy())
3805    return Error(Loc, "operand to free must be a pointer");
3806  Inst = CallInst::CreateFree(Val, BB);
3807  return false;
3808}
3809
3810/// ParseLoad
3811///   ::= 'volatile'? 'load' TypeAndValue (',' OptionalInfo)?
3812int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
3813                        bool isVolatile) {
3814  Value *Val; LocTy Loc;
3815  unsigned Alignment = 0;
3816  bool AteExtraComma = false;
3817  if (ParseTypeAndValue(Val, Loc, PFS) ||
3818      ParseOptionalCommaAlign(Alignment, AteExtraComma))
3819    return true;
3820
3821  if (!Val->getType()->isPointerTy() ||
3822      !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3823    return Error(Loc, "load operand must be a pointer to a first class type");
3824
3825  Inst = new LoadInst(Val, "", isVolatile, Alignment);
3826  return AteExtraComma ? InstExtraComma : InstNormal;
3827}
3828
3829/// ParseStore
3830///   ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3831int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
3832                         bool isVolatile) {
3833  Value *Val, *Ptr; LocTy Loc, PtrLoc;
3834  unsigned Alignment = 0;
3835  bool AteExtraComma = false;
3836  if (ParseTypeAndValue(Val, Loc, PFS) ||
3837      ParseToken(lltok::comma, "expected ',' after store operand") ||
3838      ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3839      ParseOptionalCommaAlign(Alignment, AteExtraComma))
3840    return true;
3841
3842  if (!Ptr->getType()->isPointerTy())
3843    return Error(PtrLoc, "store operand must be a pointer");
3844  if (!Val->getType()->isFirstClassType())
3845    return Error(Loc, "store operand must be a first class value");
3846  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3847    return Error(Loc, "stored value and pointer type do not match");
3848
3849  Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
3850  return AteExtraComma ? InstExtraComma : InstNormal;
3851}
3852
3853/// ParseGetResult
3854///   ::= 'getresult' TypeAndValue ',' i32
3855/// FIXME: Remove support for getresult in LLVM 3.0
3856bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
3857  Value *Val; LocTy ValLoc, EltLoc;
3858  unsigned Element;
3859  if (ParseTypeAndValue(Val, ValLoc, PFS) ||
3860      ParseToken(lltok::comma, "expected ',' after getresult operand") ||
3861      ParseUInt32(Element, EltLoc))
3862    return true;
3863
3864  if (!Val->getType()->isStructTy() && !Val->getType()->isArrayTy())
3865    return Error(ValLoc, "getresult inst requires an aggregate operand");
3866  if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
3867    return Error(EltLoc, "invalid getresult index for value");
3868  Inst = ExtractValueInst::Create(Val, Element);
3869  return false;
3870}
3871
3872/// ParseGetElementPtr
3873///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
3874int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3875  Value *Ptr, *Val; LocTy Loc, EltLoc;
3876
3877  bool InBounds = EatIfPresent(lltok::kw_inbounds);
3878
3879  if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3880
3881  if (!Ptr->getType()->isPointerTy())
3882    return Error(Loc, "base of getelementptr must be a pointer");
3883
3884  SmallVector<Value*, 16> Indices;
3885  bool AteExtraComma = false;
3886  while (EatIfPresent(lltok::comma)) {
3887    if (Lex.getKind() == lltok::MetadataVar) {
3888      AteExtraComma = true;
3889      break;
3890    }
3891    if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3892    if (!Val->getType()->isIntegerTy())
3893      return Error(EltLoc, "getelementptr index must be an integer");
3894    Indices.push_back(Val);
3895  }
3896
3897  if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
3898                                         Indices.begin(), Indices.end()))
3899    return Error(Loc, "invalid getelementptr indices");
3900  Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
3901  if (InBounds)
3902    cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
3903  return AteExtraComma ? InstExtraComma : InstNormal;
3904}
3905
3906/// ParseExtractValue
3907///   ::= 'extractvalue' TypeAndValue (',' uint32)+
3908int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3909  Value *Val; LocTy Loc;
3910  SmallVector<unsigned, 4> Indices;
3911  bool AteExtraComma;
3912  if (ParseTypeAndValue(Val, Loc, PFS) ||
3913      ParseIndexList(Indices, AteExtraComma))
3914    return true;
3915
3916  if (!Val->getType()->isAggregateType())
3917    return Error(Loc, "extractvalue operand must be aggregate type");
3918
3919  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
3920                                        Indices.end()))
3921    return Error(Loc, "invalid indices for extractvalue");
3922  Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end());
3923  return AteExtraComma ? InstExtraComma : InstNormal;
3924}
3925
3926/// ParseInsertValue
3927///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3928int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3929  Value *Val0, *Val1; LocTy Loc0, Loc1;
3930  SmallVector<unsigned, 4> Indices;
3931  bool AteExtraComma;
3932  if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3933      ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3934      ParseTypeAndValue(Val1, Loc1, PFS) ||
3935      ParseIndexList(Indices, AteExtraComma))
3936    return true;
3937
3938  if (!Val0->getType()->isAggregateType())
3939    return Error(Loc0, "insertvalue operand must be aggregate type");
3940
3941  if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
3942                                        Indices.end()))
3943    return Error(Loc0, "invalid indices for insertvalue");
3944  Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end());
3945  return AteExtraComma ? InstExtraComma : InstNormal;
3946}
3947
3948//===----------------------------------------------------------------------===//
3949// Embedded metadata.
3950//===----------------------------------------------------------------------===//
3951
3952/// ParseMDNodeVector
3953///   ::= Element (',' Element)*
3954/// Element
3955///   ::= 'null' | TypeAndValue
3956bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts,
3957                                 PerFunctionState *PFS) {
3958  do {
3959    // Null is a special case since it is typeless.
3960    if (EatIfPresent(lltok::kw_null)) {
3961      Elts.push_back(0);
3962      continue;
3963    }
3964
3965    Value *V = 0;
3966    PATypeHolder Ty(Type::getVoidTy(Context));
3967    ValID ID;
3968    if (ParseType(Ty) || ParseValID(ID, PFS) ||
3969        ConvertValIDToValue(Ty, ID, V, PFS))
3970      return true;
3971
3972    Elts.push_back(V);
3973  } while (EatIfPresent(lltok::comma));
3974
3975  return false;
3976}
3977