LLParser.cpp revision fbe910e7f432682457a7b3b9319f618dd66ddcd4
1//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/AutoUpgrade.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instructions.h"
21#include "llvm/Module.h"
22#include "llvm/Operator.h"
23#include "llvm/ValueSymbolTable.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/raw_ostream.h"
27using namespace llvm;
28
29static std::string getTypeString(Type *T) {
30  std::string Result;
31  raw_string_ostream Tmp(Result);
32  Tmp << *T;
33  return Tmp.str();
34}
35
36/// Run: module ::= toplevelentity*
37bool LLParser::Run() {
38  // Prime the lexer.
39  Lex.Lex();
40
41  return ParseTopLevelEntities() ||
42         ValidateEndOfModule();
43}
44
45/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
46/// module.
47bool LLParser::ValidateEndOfModule() {
48  // Handle any instruction metadata forward references.
49  if (!ForwardRefInstMetadata.empty()) {
50    for (DenseMap<Instruction*, std::vector<MDRef> >::iterator
51         I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end();
52         I != E; ++I) {
53      Instruction *Inst = I->first;
54      const std::vector<MDRef> &MDList = I->second;
55
56      for (unsigned i = 0, e = MDList.size(); i != e; ++i) {
57        unsigned SlotNo = MDList[i].MDSlot;
58
59        if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0)
60          return Error(MDList[i].Loc, "use of undefined metadata '!" +
61                       Twine(SlotNo) + "'");
62        Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]);
63      }
64    }
65    ForwardRefInstMetadata.clear();
66  }
67
68
69  // If there are entries in ForwardRefBlockAddresses at this point, they are
70  // references after the function was defined.  Resolve those now.
71  while (!ForwardRefBlockAddresses.empty()) {
72    // Okay, we are referencing an already-parsed function, resolve them now.
73    Function *TheFn = 0;
74    const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
75    if (Fn.Kind == ValID::t_GlobalName)
76      TheFn = M->getFunction(Fn.StrVal);
77    else if (Fn.UIntVal < NumberedVals.size())
78      TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
79
80    if (TheFn == 0)
81      return Error(Fn.Loc, "unknown function referenced by blockaddress");
82
83    // Resolve all these references.
84    if (ResolveForwardRefBlockAddresses(TheFn,
85                                      ForwardRefBlockAddresses.begin()->second,
86                                        0))
87      return true;
88
89    ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
90  }
91
92  for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i)
93    if (NumberedTypes[i].second.isValid())
94      return Error(NumberedTypes[i].second,
95                   "use of undefined type '%" + Twine(i) + "'");
96
97  for (StringMap<std::pair<Type*, LocTy> >::iterator I =
98       NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
99    if (I->second.second.isValid())
100      return Error(I->second.second,
101                   "use of undefined type named '" + I->getKey() + "'");
102
103  if (!ForwardRefVals.empty())
104    return Error(ForwardRefVals.begin()->second.second,
105                 "use of undefined value '@" + ForwardRefVals.begin()->first +
106                 "'");
107
108  if (!ForwardRefValIDs.empty())
109    return Error(ForwardRefValIDs.begin()->second.second,
110                 "use of undefined value '@" +
111                 Twine(ForwardRefValIDs.begin()->first) + "'");
112
113  if (!ForwardRefMDNodes.empty())
114    return Error(ForwardRefMDNodes.begin()->second.second,
115                 "use of undefined metadata '!" +
116                 Twine(ForwardRefMDNodes.begin()->first) + "'");
117
118
119  // Look for intrinsic functions and CallInst that need to be upgraded
120  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
121    UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
122
123  return false;
124}
125
126bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn,
127                             std::vector<std::pair<ValID, GlobalValue*> > &Refs,
128                                               PerFunctionState *PFS) {
129  // Loop over all the references, resolving them.
130  for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
131    BasicBlock *Res;
132    if (PFS) {
133      if (Refs[i].first.Kind == ValID::t_LocalName)
134        Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
135      else
136        Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
137    } else if (Refs[i].first.Kind == ValID::t_LocalID) {
138      return Error(Refs[i].first.Loc,
139       "cannot take address of numeric label after the function is defined");
140    } else {
141      Res = dyn_cast_or_null<BasicBlock>(
142                     TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
143    }
144
145    if (Res == 0)
146      return Error(Refs[i].first.Loc,
147                   "referenced value is not a basic block");
148
149    // Get the BlockAddress for this and update references to use it.
150    BlockAddress *BA = BlockAddress::get(TheFn, Res);
151    Refs[i].second->replaceAllUsesWith(BA);
152    Refs[i].second->eraseFromParent();
153  }
154  return false;
155}
156
157
158//===----------------------------------------------------------------------===//
159// Top-Level Entities
160//===----------------------------------------------------------------------===//
161
162bool LLParser::ParseTopLevelEntities() {
163  while (1) {
164    switch (Lex.getKind()) {
165    default:         return TokError("expected top-level entity");
166    case lltok::Eof: return false;
167    case lltok::kw_declare: if (ParseDeclare()) return true; break;
168    case lltok::kw_define:  if (ParseDefine()) return true; break;
169    case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
170    case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
171    case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
172    case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
173    case lltok::LocalVar:   if (ParseNamedType()) return true; break;
174    case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
175    case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
176    case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
177    case lltok::MetadataVar: if (ParseNamedMetadata()) return true; break;
178
179    // The Global variable production with no name can have many different
180    // optional leading prefixes, the production is:
181    // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
182    //               OptionalAddrSpace OptionalUnNammedAddr
183    //               ('constant'|'global') ...
184    case lltok::kw_private:             // OptionalLinkage
185    case lltok::kw_linker_private:      // OptionalLinkage
186    case lltok::kw_linker_private_weak: // OptionalLinkage
187    case lltok::kw_linker_private_weak_def_auto: // OptionalLinkage
188    case lltok::kw_internal:            // OptionalLinkage
189    case lltok::kw_weak:                // OptionalLinkage
190    case lltok::kw_weak_odr:            // OptionalLinkage
191    case lltok::kw_linkonce:            // OptionalLinkage
192    case lltok::kw_linkonce_odr:        // OptionalLinkage
193    case lltok::kw_appending:           // OptionalLinkage
194    case lltok::kw_dllexport:           // OptionalLinkage
195    case lltok::kw_common:              // OptionalLinkage
196    case lltok::kw_dllimport:           // OptionalLinkage
197    case lltok::kw_extern_weak:         // OptionalLinkage
198    case lltok::kw_external: {          // OptionalLinkage
199      unsigned Linkage, Visibility;
200      if (ParseOptionalLinkage(Linkage) ||
201          ParseOptionalVisibility(Visibility) ||
202          ParseGlobal("", SMLoc(), Linkage, true, Visibility))
203        return true;
204      break;
205    }
206    case lltok::kw_default:       // OptionalVisibility
207    case lltok::kw_hidden:        // OptionalVisibility
208    case lltok::kw_protected: {   // OptionalVisibility
209      unsigned Visibility;
210      if (ParseOptionalVisibility(Visibility) ||
211          ParseGlobal("", SMLoc(), 0, false, Visibility))
212        return true;
213      break;
214    }
215
216    case lltok::kw_thread_local:  // OptionalThreadLocal
217    case lltok::kw_addrspace:     // OptionalAddrSpace
218    case lltok::kw_constant:      // GlobalType
219    case lltok::kw_global:        // GlobalType
220      if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
221      break;
222    }
223  }
224}
225
226
227/// toplevelentity
228///   ::= 'module' 'asm' STRINGCONSTANT
229bool LLParser::ParseModuleAsm() {
230  assert(Lex.getKind() == lltok::kw_module);
231  Lex.Lex();
232
233  std::string AsmStr;
234  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
235      ParseStringConstant(AsmStr)) return true;
236
237  M->appendModuleInlineAsm(AsmStr);
238  return false;
239}
240
241/// toplevelentity
242///   ::= 'target' 'triple' '=' STRINGCONSTANT
243///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
244bool LLParser::ParseTargetDefinition() {
245  assert(Lex.getKind() == lltok::kw_target);
246  std::string Str;
247  switch (Lex.Lex()) {
248  default: return TokError("unknown target property");
249  case lltok::kw_triple:
250    Lex.Lex();
251    if (ParseToken(lltok::equal, "expected '=' after target triple") ||
252        ParseStringConstant(Str))
253      return true;
254    M->setTargetTriple(Str);
255    return false;
256  case lltok::kw_datalayout:
257    Lex.Lex();
258    if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
259        ParseStringConstant(Str))
260      return true;
261    M->setDataLayout(Str);
262    return false;
263  }
264}
265
266/// toplevelentity
267///   ::= 'deplibs' '=' '[' ']'
268///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
269bool LLParser::ParseDepLibs() {
270  assert(Lex.getKind() == lltok::kw_deplibs);
271  Lex.Lex();
272  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
273      ParseToken(lltok::lsquare, "expected '=' after deplibs"))
274    return true;
275
276  if (EatIfPresent(lltok::rsquare))
277    return false;
278
279  std::string Str;
280  if (ParseStringConstant(Str)) return true;
281  M->addLibrary(Str);
282
283  while (EatIfPresent(lltok::comma)) {
284    if (ParseStringConstant(Str)) return true;
285    M->addLibrary(Str);
286  }
287
288  return ParseToken(lltok::rsquare, "expected ']' at end of list");
289}
290
291/// ParseUnnamedType:
292///   ::= LocalVarID '=' 'type' type
293bool LLParser::ParseUnnamedType() {
294  LocTy TypeLoc = Lex.getLoc();
295  unsigned TypeID = Lex.getUIntVal();
296  Lex.Lex(); // eat LocalVarID;
297
298  if (ParseToken(lltok::equal, "expected '=' after name") ||
299      ParseToken(lltok::kw_type, "expected 'type' after '='"))
300    return true;
301
302  if (TypeID >= NumberedTypes.size())
303    NumberedTypes.resize(TypeID+1);
304
305  Type *Result = 0;
306  if (ParseStructDefinition(TypeLoc, "",
307                            NumberedTypes[TypeID], Result)) return true;
308
309  if (!isa<StructType>(Result)) {
310    std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
311    if (Entry.first)
312      return Error(TypeLoc, "non-struct types may not be recursive");
313    Entry.first = Result;
314    Entry.second = SMLoc();
315  }
316
317  return false;
318}
319
320
321/// toplevelentity
322///   ::= LocalVar '=' 'type' type
323bool LLParser::ParseNamedType() {
324  std::string Name = Lex.getStrVal();
325  LocTy NameLoc = Lex.getLoc();
326  Lex.Lex();  // eat LocalVar.
327
328  if (ParseToken(lltok::equal, "expected '=' after name") ||
329      ParseToken(lltok::kw_type, "expected 'type' after name"))
330    return true;
331
332  Type *Result = 0;
333  if (ParseStructDefinition(NameLoc, Name,
334                            NamedTypes[Name], Result)) return true;
335
336  if (!isa<StructType>(Result)) {
337    std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
338    if (Entry.first)
339      return Error(NameLoc, "non-struct types may not be recursive");
340    Entry.first = Result;
341    Entry.second = SMLoc();
342  }
343
344  return false;
345}
346
347
348/// toplevelentity
349///   ::= 'declare' FunctionHeader
350bool LLParser::ParseDeclare() {
351  assert(Lex.getKind() == lltok::kw_declare);
352  Lex.Lex();
353
354  Function *F;
355  return ParseFunctionHeader(F, false);
356}
357
358/// toplevelentity
359///   ::= 'define' FunctionHeader '{' ...
360bool LLParser::ParseDefine() {
361  assert(Lex.getKind() == lltok::kw_define);
362  Lex.Lex();
363
364  Function *F;
365  return ParseFunctionHeader(F, true) ||
366         ParseFunctionBody(*F);
367}
368
369/// ParseGlobalType
370///   ::= 'constant'
371///   ::= 'global'
372bool LLParser::ParseGlobalType(bool &IsConstant) {
373  if (Lex.getKind() == lltok::kw_constant)
374    IsConstant = true;
375  else if (Lex.getKind() == lltok::kw_global)
376    IsConstant = false;
377  else {
378    IsConstant = false;
379    return TokError("expected 'global' or 'constant'");
380  }
381  Lex.Lex();
382  return false;
383}
384
385/// ParseUnnamedGlobal:
386///   OptionalVisibility ALIAS ...
387///   OptionalLinkage OptionalVisibility ...   -> global variable
388///   GlobalID '=' OptionalVisibility ALIAS ...
389///   GlobalID '=' OptionalLinkage OptionalVisibility ...   -> global variable
390bool LLParser::ParseUnnamedGlobal() {
391  unsigned VarID = NumberedVals.size();
392  std::string Name;
393  LocTy NameLoc = Lex.getLoc();
394
395  // Handle the GlobalID form.
396  if (Lex.getKind() == lltok::GlobalID) {
397    if (Lex.getUIntVal() != VarID)
398      return Error(Lex.getLoc(), "variable expected to be numbered '%" +
399                   Twine(VarID) + "'");
400    Lex.Lex(); // eat GlobalID;
401
402    if (ParseToken(lltok::equal, "expected '=' after name"))
403      return true;
404  }
405
406  bool HasLinkage;
407  unsigned Linkage, Visibility;
408  if (ParseOptionalLinkage(Linkage, HasLinkage) ||
409      ParseOptionalVisibility(Visibility))
410    return true;
411
412  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
413    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
414  return ParseAlias(Name, NameLoc, Visibility);
415}
416
417/// ParseNamedGlobal:
418///   GlobalVar '=' OptionalVisibility ALIAS ...
419///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
420bool LLParser::ParseNamedGlobal() {
421  assert(Lex.getKind() == lltok::GlobalVar);
422  LocTy NameLoc = Lex.getLoc();
423  std::string Name = Lex.getStrVal();
424  Lex.Lex();
425
426  bool HasLinkage;
427  unsigned Linkage, Visibility;
428  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
429      ParseOptionalLinkage(Linkage, HasLinkage) ||
430      ParseOptionalVisibility(Visibility))
431    return true;
432
433  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
434    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
435  return ParseAlias(Name, NameLoc, Visibility);
436}
437
438// MDString:
439//   ::= '!' STRINGCONSTANT
440bool LLParser::ParseMDString(MDString *&Result) {
441  std::string Str;
442  if (ParseStringConstant(Str)) return true;
443  Result = MDString::get(Context, Str);
444  return false;
445}
446
447// MDNode:
448//   ::= '!' MDNodeNumber
449//
450/// This version of ParseMDNodeID returns the slot number and null in the case
451/// of a forward reference.
452bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) {
453  // !{ ..., !42, ... }
454  if (ParseUInt32(SlotNo)) return true;
455
456  // Check existing MDNode.
457  if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0)
458    Result = NumberedMetadata[SlotNo];
459  else
460    Result = 0;
461  return false;
462}
463
464bool LLParser::ParseMDNodeID(MDNode *&Result) {
465  // !{ ..., !42, ... }
466  unsigned MID = 0;
467  if (ParseMDNodeID(Result, MID)) return true;
468
469  // If not a forward reference, just return it now.
470  if (Result) return false;
471
472  // Otherwise, create MDNode forward reference.
473  MDNode *FwdNode = MDNode::getTemporary(Context, ArrayRef<Value*>());
474  ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
475
476  if (NumberedMetadata.size() <= MID)
477    NumberedMetadata.resize(MID+1);
478  NumberedMetadata[MID] = FwdNode;
479  Result = FwdNode;
480  return false;
481}
482
483/// ParseNamedMetadata:
484///   !foo = !{ !1, !2 }
485bool LLParser::ParseNamedMetadata() {
486  assert(Lex.getKind() == lltok::MetadataVar);
487  std::string Name = Lex.getStrVal();
488  Lex.Lex();
489
490  if (ParseToken(lltok::equal, "expected '=' here") ||
491      ParseToken(lltok::exclaim, "Expected '!' here") ||
492      ParseToken(lltok::lbrace, "Expected '{' here"))
493    return true;
494
495  NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
496  if (Lex.getKind() != lltok::rbrace)
497    do {
498      if (ParseToken(lltok::exclaim, "Expected '!' here"))
499        return true;
500
501      MDNode *N = 0;
502      if (ParseMDNodeID(N)) return true;
503      NMD->addOperand(N);
504    } while (EatIfPresent(lltok::comma));
505
506  if (ParseToken(lltok::rbrace, "expected end of metadata node"))
507    return true;
508
509  return false;
510}
511
512/// ParseStandaloneMetadata:
513///   !42 = !{...}
514bool LLParser::ParseStandaloneMetadata() {
515  assert(Lex.getKind() == lltok::exclaim);
516  Lex.Lex();
517  unsigned MetadataID = 0;
518
519  LocTy TyLoc;
520  Type *Ty = 0;
521  SmallVector<Value *, 16> Elts;
522  if (ParseUInt32(MetadataID) ||
523      ParseToken(lltok::equal, "expected '=' here") ||
524      ParseType(Ty, TyLoc) ||
525      ParseToken(lltok::exclaim, "Expected '!' here") ||
526      ParseToken(lltok::lbrace, "Expected '{' here") ||
527      ParseMDNodeVector(Elts, NULL) ||
528      ParseToken(lltok::rbrace, "expected end of metadata node"))
529    return true;
530
531  MDNode *Init = MDNode::get(Context, Elts);
532
533  // See if this was forward referenced, if so, handle it.
534  std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
535    FI = ForwardRefMDNodes.find(MetadataID);
536  if (FI != ForwardRefMDNodes.end()) {
537    MDNode *Temp = FI->second.first;
538    Temp->replaceAllUsesWith(Init);
539    MDNode::deleteTemporary(Temp);
540    ForwardRefMDNodes.erase(FI);
541
542    assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
543  } else {
544    if (MetadataID >= NumberedMetadata.size())
545      NumberedMetadata.resize(MetadataID+1);
546
547    if (NumberedMetadata[MetadataID] != 0)
548      return TokError("Metadata id is already used");
549    NumberedMetadata[MetadataID] = Init;
550  }
551
552  return false;
553}
554
555/// ParseAlias:
556///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
557/// Aliasee
558///   ::= TypeAndValue
559///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
560///   ::= 'getelementptr' 'inbounds'? '(' ... ')'
561///
562/// Everything through visibility has already been parsed.
563///
564bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
565                          unsigned Visibility) {
566  assert(Lex.getKind() == lltok::kw_alias);
567  Lex.Lex();
568  unsigned Linkage;
569  LocTy LinkageLoc = Lex.getLoc();
570  if (ParseOptionalLinkage(Linkage))
571    return true;
572
573  if (Linkage != GlobalValue::ExternalLinkage &&
574      Linkage != GlobalValue::WeakAnyLinkage &&
575      Linkage != GlobalValue::WeakODRLinkage &&
576      Linkage != GlobalValue::InternalLinkage &&
577      Linkage != GlobalValue::PrivateLinkage &&
578      Linkage != GlobalValue::LinkerPrivateLinkage &&
579      Linkage != GlobalValue::LinkerPrivateWeakLinkage &&
580      Linkage != GlobalValue::LinkerPrivateWeakDefAutoLinkage)
581    return Error(LinkageLoc, "invalid linkage type for alias");
582
583  Constant *Aliasee;
584  LocTy AliaseeLoc = Lex.getLoc();
585  if (Lex.getKind() != lltok::kw_bitcast &&
586      Lex.getKind() != lltok::kw_getelementptr) {
587    if (ParseGlobalTypeAndValue(Aliasee)) return true;
588  } else {
589    // The bitcast dest type is not present, it is implied by the dest type.
590    ValID ID;
591    if (ParseValID(ID)) return true;
592    if (ID.Kind != ValID::t_Constant)
593      return Error(AliaseeLoc, "invalid aliasee");
594    Aliasee = ID.ConstantVal;
595  }
596
597  if (!Aliasee->getType()->isPointerTy())
598    return Error(AliaseeLoc, "alias must have pointer type");
599
600  // Okay, create the alias but do not insert it into the module yet.
601  GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
602                                    (GlobalValue::LinkageTypes)Linkage, Name,
603                                    Aliasee);
604  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
605
606  // See if this value already exists in the symbol table.  If so, it is either
607  // a redefinition or a definition of a forward reference.
608  if (GlobalValue *Val = M->getNamedValue(Name)) {
609    // See if this was a redefinition.  If so, there is no entry in
610    // ForwardRefVals.
611    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
612      I = ForwardRefVals.find(Name);
613    if (I == ForwardRefVals.end())
614      return Error(NameLoc, "redefinition of global named '@" + Name + "'");
615
616    // Otherwise, this was a definition of forward ref.  Verify that types
617    // agree.
618    if (Val->getType() != GA->getType())
619      return Error(NameLoc,
620              "forward reference and definition of alias have different types");
621
622    // If they agree, just RAUW the old value with the alias and remove the
623    // forward ref info.
624    Val->replaceAllUsesWith(GA);
625    Val->eraseFromParent();
626    ForwardRefVals.erase(I);
627  }
628
629  // Insert into the module, we know its name won't collide now.
630  M->getAliasList().push_back(GA);
631  assert(GA->getName() == Name && "Should not be a name conflict!");
632
633  return false;
634}
635
636/// ParseGlobal
637///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
638///       OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const
639///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
640///       OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const
641///
642/// Everything through visibility has been parsed already.
643///
644bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
645                           unsigned Linkage, bool HasLinkage,
646                           unsigned Visibility) {
647  unsigned AddrSpace;
648  bool ThreadLocal, IsConstant, UnnamedAddr;
649  LocTy UnnamedAddrLoc;
650  LocTy TyLoc;
651
652  Type *Ty = 0;
653  if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
654      ParseOptionalAddrSpace(AddrSpace) ||
655      ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
656                         &UnnamedAddrLoc) ||
657      ParseGlobalType(IsConstant) ||
658      ParseType(Ty, TyLoc))
659    return true;
660
661  // If the linkage is specified and is external, then no initializer is
662  // present.
663  Constant *Init = 0;
664  if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
665                      Linkage != GlobalValue::ExternalWeakLinkage &&
666                      Linkage != GlobalValue::ExternalLinkage)) {
667    if (ParseGlobalValue(Ty, Init))
668      return true;
669  }
670
671  if (Ty->isFunctionTy() || Ty->isLabelTy())
672    return Error(TyLoc, "invalid type for global variable");
673
674  GlobalVariable *GV = 0;
675
676  // See if the global was forward referenced, if so, use the global.
677  if (!Name.empty()) {
678    if (GlobalValue *GVal = M->getNamedValue(Name)) {
679      if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
680        return Error(NameLoc, "redefinition of global '@" + Name + "'");
681      GV = cast<GlobalVariable>(GVal);
682    }
683  } else {
684    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
685      I = ForwardRefValIDs.find(NumberedVals.size());
686    if (I != ForwardRefValIDs.end()) {
687      GV = cast<GlobalVariable>(I->second.first);
688      ForwardRefValIDs.erase(I);
689    }
690  }
691
692  if (GV == 0) {
693    GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
694                            Name, 0, false, AddrSpace);
695  } else {
696    if (GV->getType()->getElementType() != Ty)
697      return Error(TyLoc,
698            "forward reference and definition of global have different types");
699
700    // Move the forward-reference to the correct spot in the module.
701    M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
702  }
703
704  if (Name.empty())
705    NumberedVals.push_back(GV);
706
707  // Set the parsed properties on the global.
708  if (Init)
709    GV->setInitializer(Init);
710  GV->setConstant(IsConstant);
711  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
712  GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
713  GV->setThreadLocal(ThreadLocal);
714  GV->setUnnamedAddr(UnnamedAddr);
715
716  // Parse attributes on the global.
717  while (Lex.getKind() == lltok::comma) {
718    Lex.Lex();
719
720    if (Lex.getKind() == lltok::kw_section) {
721      Lex.Lex();
722      GV->setSection(Lex.getStrVal());
723      if (ParseToken(lltok::StringConstant, "expected global section string"))
724        return true;
725    } else if (Lex.getKind() == lltok::kw_align) {
726      unsigned Alignment;
727      if (ParseOptionalAlignment(Alignment)) return true;
728      GV->setAlignment(Alignment);
729    } else {
730      TokError("unknown global variable property!");
731    }
732  }
733
734  return false;
735}
736
737
738//===----------------------------------------------------------------------===//
739// GlobalValue Reference/Resolution Routines.
740//===----------------------------------------------------------------------===//
741
742/// GetGlobalVal - Get a value with the specified name or ID, creating a
743/// forward reference record if needed.  This can return null if the value
744/// exists but does not have the right type.
745GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
746                                    LocTy Loc) {
747  PointerType *PTy = dyn_cast<PointerType>(Ty);
748  if (PTy == 0) {
749    Error(Loc, "global variable reference must have pointer type");
750    return 0;
751  }
752
753  // Look this name up in the normal function symbol table.
754  GlobalValue *Val =
755    cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
756
757  // If this is a forward reference for the value, see if we already created a
758  // forward ref record.
759  if (Val == 0) {
760    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
761      I = ForwardRefVals.find(Name);
762    if (I != ForwardRefVals.end())
763      Val = I->second.first;
764  }
765
766  // If we have the value in the symbol table or fwd-ref table, return it.
767  if (Val) {
768    if (Val->getType() == Ty) return Val;
769    Error(Loc, "'@" + Name + "' defined with type '" +
770          getTypeString(Val->getType()) + "'");
771    return 0;
772  }
773
774  // Otherwise, create a new forward reference for this value and remember it.
775  GlobalValue *FwdVal;
776  if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
777    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
778  else
779    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
780                                GlobalValue::ExternalWeakLinkage, 0, Name);
781
782  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
783  return FwdVal;
784}
785
786GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
787  PointerType *PTy = dyn_cast<PointerType>(Ty);
788  if (PTy == 0) {
789    Error(Loc, "global variable reference must have pointer type");
790    return 0;
791  }
792
793  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
794
795  // If this is a forward reference for the value, see if we already created a
796  // forward ref record.
797  if (Val == 0) {
798    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
799      I = ForwardRefValIDs.find(ID);
800    if (I != ForwardRefValIDs.end())
801      Val = I->second.first;
802  }
803
804  // If we have the value in the symbol table or fwd-ref table, return it.
805  if (Val) {
806    if (Val->getType() == Ty) return Val;
807    Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
808          getTypeString(Val->getType()) + "'");
809    return 0;
810  }
811
812  // Otherwise, create a new forward reference for this value and remember it.
813  GlobalValue *FwdVal;
814  if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
815    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
816  else
817    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
818                                GlobalValue::ExternalWeakLinkage, 0, "");
819
820  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
821  return FwdVal;
822}
823
824
825//===----------------------------------------------------------------------===//
826// Helper Routines.
827//===----------------------------------------------------------------------===//
828
829/// ParseToken - If the current token has the specified kind, eat it and return
830/// success.  Otherwise, emit the specified error and return failure.
831bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
832  if (Lex.getKind() != T)
833    return TokError(ErrMsg);
834  Lex.Lex();
835  return false;
836}
837
838/// ParseStringConstant
839///   ::= StringConstant
840bool LLParser::ParseStringConstant(std::string &Result) {
841  if (Lex.getKind() != lltok::StringConstant)
842    return TokError("expected string constant");
843  Result = Lex.getStrVal();
844  Lex.Lex();
845  return false;
846}
847
848/// ParseUInt32
849///   ::= uint32
850bool LLParser::ParseUInt32(unsigned &Val) {
851  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
852    return TokError("expected integer");
853  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
854  if (Val64 != unsigned(Val64))
855    return TokError("expected 32-bit integer (too large)");
856  Val = Val64;
857  Lex.Lex();
858  return false;
859}
860
861
862/// ParseOptionalAddrSpace
863///   := /*empty*/
864///   := 'addrspace' '(' uint32 ')'
865bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
866  AddrSpace = 0;
867  if (!EatIfPresent(lltok::kw_addrspace))
868    return false;
869  return ParseToken(lltok::lparen, "expected '(' in address space") ||
870         ParseUInt32(AddrSpace) ||
871         ParseToken(lltok::rparen, "expected ')' in address space");
872}
873
874/// ParseOptionalAttrs - Parse a potentially empty attribute list.  AttrKind
875/// indicates what kind of attribute list this is: 0: function arg, 1: result,
876/// 2: function attr.
877bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
878  Attrs = Attribute::None;
879  LocTy AttrLoc = Lex.getLoc();
880
881  while (1) {
882    switch (Lex.getKind()) {
883    default:  // End of attributes.
884      if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
885        return Error(AttrLoc, "invalid use of function-only attribute");
886
887      // As a hack, we allow "align 2" on functions as a synonym for
888      // "alignstack 2".
889      if (AttrKind == 2 &&
890          (Attrs & ~(Attribute::FunctionOnly | Attribute::Alignment)))
891        return Error(AttrLoc, "invalid use of attribute on a function");
892
893      if (AttrKind != 0 && (Attrs & Attribute::ParameterOnly))
894        return Error(AttrLoc, "invalid use of parameter-only attribute");
895
896      return false;
897    case lltok::kw_zeroext:         Attrs |= Attribute::ZExt; break;
898    case lltok::kw_signext:         Attrs |= Attribute::SExt; break;
899    case lltok::kw_inreg:           Attrs |= Attribute::InReg; break;
900    case lltok::kw_sret:            Attrs |= Attribute::StructRet; break;
901    case lltok::kw_noalias:         Attrs |= Attribute::NoAlias; break;
902    case lltok::kw_nocapture:       Attrs |= Attribute::NoCapture; break;
903    case lltok::kw_byval:           Attrs |= Attribute::ByVal; break;
904    case lltok::kw_nest:            Attrs |= Attribute::Nest; break;
905
906    case lltok::kw_noreturn:        Attrs |= Attribute::NoReturn; break;
907    case lltok::kw_nounwind:        Attrs |= Attribute::NoUnwind; break;
908    case lltok::kw_uwtable:         Attrs |= Attribute::UWTable; break;
909    case lltok::kw_returns_twice:   Attrs |= Attribute::ReturnsTwice; break;
910    case lltok::kw_noinline:        Attrs |= Attribute::NoInline; break;
911    case lltok::kw_readnone:        Attrs |= Attribute::ReadNone; break;
912    case lltok::kw_readonly:        Attrs |= Attribute::ReadOnly; break;
913    case lltok::kw_inlinehint:      Attrs |= Attribute::InlineHint; break;
914    case lltok::kw_alwaysinline:    Attrs |= Attribute::AlwaysInline; break;
915    case lltok::kw_optsize:         Attrs |= Attribute::OptimizeForSize; break;
916    case lltok::kw_ssp:             Attrs |= Attribute::StackProtect; break;
917    case lltok::kw_sspreq:          Attrs |= Attribute::StackProtectReq; break;
918    case lltok::kw_noredzone:       Attrs |= Attribute::NoRedZone; break;
919    case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
920    case lltok::kw_naked:           Attrs |= Attribute::Naked; break;
921    case lltok::kw_nonlazybind:     Attrs |= Attribute::NonLazyBind; break;
922
923    case lltok::kw_alignstack: {
924      unsigned Alignment;
925      if (ParseOptionalStackAlignment(Alignment))
926        return true;
927      Attrs |= Attribute::constructStackAlignmentFromInt(Alignment);
928      continue;
929    }
930
931    case lltok::kw_align: {
932      unsigned Alignment;
933      if (ParseOptionalAlignment(Alignment))
934        return true;
935      Attrs |= Attribute::constructAlignmentFromInt(Alignment);
936      continue;
937    }
938
939    }
940    Lex.Lex();
941  }
942}
943
944/// ParseOptionalLinkage
945///   ::= /*empty*/
946///   ::= 'private'
947///   ::= 'linker_private'
948///   ::= 'linker_private_weak'
949///   ::= 'linker_private_weak_def_auto'
950///   ::= 'internal'
951///   ::= 'weak'
952///   ::= 'weak_odr'
953///   ::= 'linkonce'
954///   ::= 'linkonce_odr'
955///   ::= 'available_externally'
956///   ::= 'appending'
957///   ::= 'dllexport'
958///   ::= 'common'
959///   ::= 'dllimport'
960///   ::= 'extern_weak'
961///   ::= 'external'
962bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
963  HasLinkage = false;
964  switch (Lex.getKind()) {
965  default:                       Res=GlobalValue::ExternalLinkage; return false;
966  case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
967  case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
968  case lltok::kw_linker_private_weak:
969    Res = GlobalValue::LinkerPrivateWeakLinkage;
970    break;
971  case lltok::kw_linker_private_weak_def_auto:
972    Res = GlobalValue::LinkerPrivateWeakDefAutoLinkage;
973    break;
974  case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
975  case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
976  case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
977  case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
978  case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
979  case lltok::kw_available_externally:
980    Res = GlobalValue::AvailableExternallyLinkage;
981    break;
982  case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
983  case lltok::kw_dllexport:      Res = GlobalValue::DLLExportLinkage;     break;
984  case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
985  case lltok::kw_dllimport:      Res = GlobalValue::DLLImportLinkage;     break;
986  case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
987  case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
988  }
989  Lex.Lex();
990  HasLinkage = true;
991  return false;
992}
993
994/// ParseOptionalVisibility
995///   ::= /*empty*/
996///   ::= 'default'
997///   ::= 'hidden'
998///   ::= 'protected'
999///
1000bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1001  switch (Lex.getKind()) {
1002  default:                  Res = GlobalValue::DefaultVisibility; return false;
1003  case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
1004  case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
1005  case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1006  }
1007  Lex.Lex();
1008  return false;
1009}
1010
1011/// ParseOptionalCallingConv
1012///   ::= /*empty*/
1013///   ::= 'ccc'
1014///   ::= 'fastcc'
1015///   ::= 'coldcc'
1016///   ::= 'x86_stdcallcc'
1017///   ::= 'x86_fastcallcc'
1018///   ::= 'x86_thiscallcc'
1019///   ::= 'arm_apcscc'
1020///   ::= 'arm_aapcscc'
1021///   ::= 'arm_aapcs_vfpcc'
1022///   ::= 'msp430_intrcc'
1023///   ::= 'ptx_kernel'
1024///   ::= 'ptx_device'
1025///   ::= 'cc' UINT
1026///
1027bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
1028  switch (Lex.getKind()) {
1029  default:                       CC = CallingConv::C; return false;
1030  case lltok::kw_ccc:            CC = CallingConv::C; break;
1031  case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1032  case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1033  case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1034  case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1035  case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1036  case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1037  case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1038  case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1039  case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1040  case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1041  case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1042  case lltok::kw_cc: {
1043      unsigned ArbitraryCC;
1044      Lex.Lex();
1045      if (ParseUInt32(ArbitraryCC)) {
1046        return true;
1047      } else
1048        CC = static_cast<CallingConv::ID>(ArbitraryCC);
1049        return false;
1050    }
1051    break;
1052  }
1053
1054  Lex.Lex();
1055  return false;
1056}
1057
1058/// ParseInstructionMetadata
1059///   ::= !dbg !42 (',' !dbg !57)*
1060bool LLParser::ParseInstructionMetadata(Instruction *Inst,
1061                                        PerFunctionState *PFS) {
1062  do {
1063    if (Lex.getKind() != lltok::MetadataVar)
1064      return TokError("expected metadata after comma");
1065
1066    std::string Name = Lex.getStrVal();
1067    unsigned MDK = M->getMDKindID(Name.c_str());
1068    Lex.Lex();
1069
1070    MDNode *Node;
1071    SMLoc Loc = Lex.getLoc();
1072
1073    if (ParseToken(lltok::exclaim, "expected '!' here"))
1074      return true;
1075
1076    // This code is similar to that of ParseMetadataValue, however it needs to
1077    // have special-case code for a forward reference; see the comments on
1078    // ForwardRefInstMetadata for details. Also, MDStrings are not supported
1079    // at the top level here.
1080    if (Lex.getKind() == lltok::lbrace) {
1081      ValID ID;
1082      if (ParseMetadataListValue(ID, PFS))
1083        return true;
1084      assert(ID.Kind == ValID::t_MDNode);
1085      Inst->setMetadata(MDK, ID.MDNodeVal);
1086    } else {
1087      unsigned NodeID = 0;
1088      if (ParseMDNodeID(Node, NodeID))
1089        return true;
1090      if (Node) {
1091        // If we got the node, add it to the instruction.
1092        Inst->setMetadata(MDK, Node);
1093      } else {
1094        MDRef R = { Loc, MDK, NodeID };
1095        // Otherwise, remember that this should be resolved later.
1096        ForwardRefInstMetadata[Inst].push_back(R);
1097      }
1098    }
1099
1100    // If this is the end of the list, we're done.
1101  } while (EatIfPresent(lltok::comma));
1102  return false;
1103}
1104
1105/// ParseOptionalAlignment
1106///   ::= /* empty */
1107///   ::= 'align' 4
1108bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1109  Alignment = 0;
1110  if (!EatIfPresent(lltok::kw_align))
1111    return false;
1112  LocTy AlignLoc = Lex.getLoc();
1113  if (ParseUInt32(Alignment)) return true;
1114  if (!isPowerOf2_32(Alignment))
1115    return Error(AlignLoc, "alignment is not a power of two");
1116  if (Alignment > Value::MaximumAlignment)
1117    return Error(AlignLoc, "huge alignments are not supported yet");
1118  return false;
1119}
1120
1121/// ParseOptionalCommaAlign
1122///   ::=
1123///   ::= ',' align 4
1124///
1125/// This returns with AteExtraComma set to true if it ate an excess comma at the
1126/// end.
1127bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1128                                       bool &AteExtraComma) {
1129  AteExtraComma = false;
1130  while (EatIfPresent(lltok::comma)) {
1131    // Metadata at the end is an early exit.
1132    if (Lex.getKind() == lltok::MetadataVar) {
1133      AteExtraComma = true;
1134      return false;
1135    }
1136
1137    if (Lex.getKind() != lltok::kw_align)
1138      return Error(Lex.getLoc(), "expected metadata or 'align'");
1139
1140    if (ParseOptionalAlignment(Alignment)) return true;
1141  }
1142
1143  return false;
1144}
1145
1146/// ParseScopeAndOrdering
1147///   if isAtomic: ::= 'singlethread'? AtomicOrdering
1148///   else: ::=
1149///
1150/// This sets Scope and Ordering to the parsed values.
1151bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
1152                                     AtomicOrdering &Ordering) {
1153  if (!isAtomic)
1154    return false;
1155
1156  Scope = CrossThread;
1157  if (EatIfPresent(lltok::kw_singlethread))
1158    Scope = SingleThread;
1159  switch (Lex.getKind()) {
1160  default: return TokError("Expected ordering on atomic instruction");
1161  case lltok::kw_unordered: Ordering = Unordered; break;
1162  case lltok::kw_monotonic: Ordering = Monotonic; break;
1163  case lltok::kw_acquire: Ordering = Acquire; break;
1164  case lltok::kw_release: Ordering = Release; break;
1165  case lltok::kw_acq_rel: Ordering = AcquireRelease; break;
1166  case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break;
1167  }
1168  Lex.Lex();
1169  return false;
1170}
1171
1172/// ParseOptionalStackAlignment
1173///   ::= /* empty */
1174///   ::= 'alignstack' '(' 4 ')'
1175bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1176  Alignment = 0;
1177  if (!EatIfPresent(lltok::kw_alignstack))
1178    return false;
1179  LocTy ParenLoc = Lex.getLoc();
1180  if (!EatIfPresent(lltok::lparen))
1181    return Error(ParenLoc, "expected '('");
1182  LocTy AlignLoc = Lex.getLoc();
1183  if (ParseUInt32(Alignment)) return true;
1184  ParenLoc = Lex.getLoc();
1185  if (!EatIfPresent(lltok::rparen))
1186    return Error(ParenLoc, "expected ')'");
1187  if (!isPowerOf2_32(Alignment))
1188    return Error(AlignLoc, "stack alignment is not a power of two");
1189  return false;
1190}
1191
1192/// ParseIndexList - This parses the index list for an insert/extractvalue
1193/// instruction.  This sets AteExtraComma in the case where we eat an extra
1194/// comma at the end of the line and find that it is followed by metadata.
1195/// Clients that don't allow metadata can call the version of this function that
1196/// only takes one argument.
1197///
1198/// ParseIndexList
1199///    ::=  (',' uint32)+
1200///
1201bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1202                              bool &AteExtraComma) {
1203  AteExtraComma = false;
1204
1205  if (Lex.getKind() != lltok::comma)
1206    return TokError("expected ',' as start of index list");
1207
1208  while (EatIfPresent(lltok::comma)) {
1209    if (Lex.getKind() == lltok::MetadataVar) {
1210      AteExtraComma = true;
1211      return false;
1212    }
1213    unsigned Idx = 0;
1214    if (ParseUInt32(Idx)) return true;
1215    Indices.push_back(Idx);
1216  }
1217
1218  return false;
1219}
1220
1221//===----------------------------------------------------------------------===//
1222// Type Parsing.
1223//===----------------------------------------------------------------------===//
1224
1225/// ParseType - Parse a type.
1226bool LLParser::ParseType(Type *&Result, bool AllowVoid) {
1227  SMLoc TypeLoc = Lex.getLoc();
1228  switch (Lex.getKind()) {
1229  default:
1230    return TokError("expected type");
1231  case lltok::Type:
1232    // Type ::= 'float' | 'void' (etc)
1233    Result = Lex.getTyVal();
1234    Lex.Lex();
1235    break;
1236  case lltok::lbrace:
1237    // Type ::= StructType
1238    if (ParseAnonStructType(Result, false))
1239      return true;
1240    break;
1241  case lltok::lsquare:
1242    // Type ::= '[' ... ']'
1243    Lex.Lex(); // eat the lsquare.
1244    if (ParseArrayVectorType(Result, false))
1245      return true;
1246    break;
1247  case lltok::less: // Either vector or packed struct.
1248    // Type ::= '<' ... '>'
1249    Lex.Lex();
1250    if (Lex.getKind() == lltok::lbrace) {
1251      if (ParseAnonStructType(Result, true) ||
1252          ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1253        return true;
1254    } else if (ParseArrayVectorType(Result, true))
1255      return true;
1256    break;
1257  case lltok::LocalVar: {
1258    // Type ::= %foo
1259    std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
1260
1261    // If the type hasn't been defined yet, create a forward definition and
1262    // remember where that forward def'n was seen (in case it never is defined).
1263    if (Entry.first == 0) {
1264      Entry.first = StructType::create(Context, Lex.getStrVal());
1265      Entry.second = Lex.getLoc();
1266    }
1267    Result = Entry.first;
1268    Lex.Lex();
1269    break;
1270  }
1271
1272  case lltok::LocalVarID: {
1273    // Type ::= %4
1274    if (Lex.getUIntVal() >= NumberedTypes.size())
1275      NumberedTypes.resize(Lex.getUIntVal()+1);
1276    std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
1277
1278    // If the type hasn't been defined yet, create a forward definition and
1279    // remember where that forward def'n was seen (in case it never is defined).
1280    if (Entry.first == 0) {
1281      Entry.first = StructType::create(Context);
1282      Entry.second = Lex.getLoc();
1283    }
1284    Result = Entry.first;
1285    Lex.Lex();
1286    break;
1287  }
1288  }
1289
1290  // Parse the type suffixes.
1291  while (1) {
1292    switch (Lex.getKind()) {
1293    // End of type.
1294    default:
1295      if (!AllowVoid && Result->isVoidTy())
1296        return Error(TypeLoc, "void type only allowed for function results");
1297      return false;
1298
1299    // Type ::= Type '*'
1300    case lltok::star:
1301      if (Result->isLabelTy())
1302        return TokError("basic block pointers are invalid");
1303      if (Result->isVoidTy())
1304        return TokError("pointers to void are invalid - use i8* instead");
1305      if (!PointerType::isValidElementType(Result))
1306        return TokError("pointer to this type is invalid");
1307      Result = PointerType::getUnqual(Result);
1308      Lex.Lex();
1309      break;
1310
1311    // Type ::= Type 'addrspace' '(' uint32 ')' '*'
1312    case lltok::kw_addrspace: {
1313      if (Result->isLabelTy())
1314        return TokError("basic block pointers are invalid");
1315      if (Result->isVoidTy())
1316        return TokError("pointers to void are invalid; use i8* instead");
1317      if (!PointerType::isValidElementType(Result))
1318        return TokError("pointer to this type is invalid");
1319      unsigned AddrSpace;
1320      if (ParseOptionalAddrSpace(AddrSpace) ||
1321          ParseToken(lltok::star, "expected '*' in address space"))
1322        return true;
1323
1324      Result = PointerType::get(Result, AddrSpace);
1325      break;
1326    }
1327
1328    /// Types '(' ArgTypeListI ')' OptFuncAttrs
1329    case lltok::lparen:
1330      if (ParseFunctionType(Result))
1331        return true;
1332      break;
1333    }
1334  }
1335}
1336
1337/// ParseParameterList
1338///    ::= '(' ')'
1339///    ::= '(' Arg (',' Arg)* ')'
1340///  Arg
1341///    ::= Type OptionalAttributes Value OptionalAttributes
1342bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1343                                  PerFunctionState &PFS) {
1344  if (ParseToken(lltok::lparen, "expected '(' in call"))
1345    return true;
1346
1347  while (Lex.getKind() != lltok::rparen) {
1348    // If this isn't the first argument, we need a comma.
1349    if (!ArgList.empty() &&
1350        ParseToken(lltok::comma, "expected ',' in argument list"))
1351      return true;
1352
1353    // Parse the argument.
1354    LocTy ArgLoc;
1355    Type *ArgTy = 0;
1356    unsigned ArgAttrs1 = Attribute::None;
1357    unsigned ArgAttrs2 = Attribute::None;
1358    Value *V;
1359    if (ParseType(ArgTy, ArgLoc))
1360      return true;
1361
1362    // Otherwise, handle normal operands.
1363    if (ParseOptionalAttrs(ArgAttrs1, 0) || ParseValue(ArgTy, V, PFS))
1364      return true;
1365    ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1366  }
1367
1368  Lex.Lex();  // Lex the ')'.
1369  return false;
1370}
1371
1372
1373
1374/// ParseArgumentList - Parse the argument list for a function type or function
1375/// prototype.
1376///   ::= '(' ArgTypeListI ')'
1377/// ArgTypeListI
1378///   ::= /*empty*/
1379///   ::= '...'
1380///   ::= ArgTypeList ',' '...'
1381///   ::= ArgType (',' ArgType)*
1382///
1383bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
1384                                 bool &isVarArg){
1385  isVarArg = false;
1386  assert(Lex.getKind() == lltok::lparen);
1387  Lex.Lex(); // eat the (.
1388
1389  if (Lex.getKind() == lltok::rparen) {
1390    // empty
1391  } else if (Lex.getKind() == lltok::dotdotdot) {
1392    isVarArg = true;
1393    Lex.Lex();
1394  } else {
1395    LocTy TypeLoc = Lex.getLoc();
1396    Type *ArgTy = 0;
1397    unsigned Attrs;
1398    std::string Name;
1399
1400    if (ParseType(ArgTy) ||
1401        ParseOptionalAttrs(Attrs, 0)) return true;
1402
1403    if (ArgTy->isVoidTy())
1404      return Error(TypeLoc, "argument can not have void type");
1405
1406    if (Lex.getKind() == lltok::LocalVar) {
1407      Name = Lex.getStrVal();
1408      Lex.Lex();
1409    }
1410
1411    if (!FunctionType::isValidArgumentType(ArgTy))
1412      return Error(TypeLoc, "invalid type for function argument");
1413
1414    ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1415
1416    while (EatIfPresent(lltok::comma)) {
1417      // Handle ... at end of arg list.
1418      if (EatIfPresent(lltok::dotdotdot)) {
1419        isVarArg = true;
1420        break;
1421      }
1422
1423      // Otherwise must be an argument type.
1424      TypeLoc = Lex.getLoc();
1425      if (ParseType(ArgTy) || ParseOptionalAttrs(Attrs, 0)) return true;
1426
1427      if (ArgTy->isVoidTy())
1428        return Error(TypeLoc, "argument can not have void type");
1429
1430      if (Lex.getKind() == lltok::LocalVar) {
1431        Name = Lex.getStrVal();
1432        Lex.Lex();
1433      } else {
1434        Name = "";
1435      }
1436
1437      if (!ArgTy->isFirstClassType())
1438        return Error(TypeLoc, "invalid type for function argument");
1439
1440      ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1441    }
1442  }
1443
1444  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1445}
1446
1447/// ParseFunctionType
1448///  ::= Type ArgumentList OptionalAttrs
1449bool LLParser::ParseFunctionType(Type *&Result) {
1450  assert(Lex.getKind() == lltok::lparen);
1451
1452  if (!FunctionType::isValidReturnType(Result))
1453    return TokError("invalid function return type");
1454
1455  SmallVector<ArgInfo, 8> ArgList;
1456  bool isVarArg;
1457  if (ParseArgumentList(ArgList, isVarArg))
1458    return true;
1459
1460  // Reject names on the arguments lists.
1461  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1462    if (!ArgList[i].Name.empty())
1463      return Error(ArgList[i].Loc, "argument name invalid in function type");
1464    if (ArgList[i].Attrs != 0)
1465      return Error(ArgList[i].Loc,
1466                   "argument attributes invalid in function type");
1467  }
1468
1469  SmallVector<Type*, 16> ArgListTy;
1470  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1471    ArgListTy.push_back(ArgList[i].Ty);
1472
1473  Result = FunctionType::get(Result, ArgListTy, isVarArg);
1474  return false;
1475}
1476
1477/// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
1478/// other structs.
1479bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
1480  SmallVector<Type*, 8> Elts;
1481  if (ParseStructBody(Elts)) return true;
1482
1483  Result = StructType::get(Context, Elts, Packed);
1484  return false;
1485}
1486
1487/// ParseStructDefinition - Parse a struct in a 'type' definition.
1488bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
1489                                     std::pair<Type*, LocTy> &Entry,
1490                                     Type *&ResultTy) {
1491  // If the type was already defined, diagnose the redefinition.
1492  if (Entry.first && !Entry.second.isValid())
1493    return Error(TypeLoc, "redefinition of type");
1494
1495  // If we have opaque, just return without filling in the definition for the
1496  // struct.  This counts as a definition as far as the .ll file goes.
1497  if (EatIfPresent(lltok::kw_opaque)) {
1498    // This type is being defined, so clear the location to indicate this.
1499    Entry.second = SMLoc();
1500
1501    // If this type number has never been uttered, create it.
1502    if (Entry.first == 0)
1503      Entry.first = StructType::create(Context, Name);
1504    ResultTy = Entry.first;
1505    return false;
1506  }
1507
1508  // If the type starts with '<', then it is either a packed struct or a vector.
1509  bool isPacked = EatIfPresent(lltok::less);
1510
1511  // If we don't have a struct, then we have a random type alias, which we
1512  // accept for compatibility with old files.  These types are not allowed to be
1513  // forward referenced and not allowed to be recursive.
1514  if (Lex.getKind() != lltok::lbrace) {
1515    if (Entry.first)
1516      return Error(TypeLoc, "forward references to non-struct type");
1517
1518    ResultTy = 0;
1519    if (isPacked)
1520      return ParseArrayVectorType(ResultTy, true);
1521    return ParseType(ResultTy);
1522  }
1523
1524  // This type is being defined, so clear the location to indicate this.
1525  Entry.second = SMLoc();
1526
1527  // If this type number has never been uttered, create it.
1528  if (Entry.first == 0)
1529    Entry.first = StructType::create(Context, Name);
1530
1531  StructType *STy = cast<StructType>(Entry.first);
1532
1533  SmallVector<Type*, 8> Body;
1534  if (ParseStructBody(Body) ||
1535      (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
1536    return true;
1537
1538  STy->setBody(Body, isPacked);
1539  ResultTy = STy;
1540  return false;
1541}
1542
1543
1544/// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1545///   StructType
1546///     ::= '{' '}'
1547///     ::= '{' Type (',' Type)* '}'
1548///     ::= '<' '{' '}' '>'
1549///     ::= '<' '{' Type (',' Type)* '}' '>'
1550bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
1551  assert(Lex.getKind() == lltok::lbrace);
1552  Lex.Lex(); // Consume the '{'
1553
1554  // Handle the empty struct.
1555  if (EatIfPresent(lltok::rbrace))
1556    return false;
1557
1558  LocTy EltTyLoc = Lex.getLoc();
1559  Type *Ty = 0;
1560  if (ParseType(Ty)) return true;
1561  Body.push_back(Ty);
1562
1563  if (!StructType::isValidElementType(Ty))
1564    return Error(EltTyLoc, "invalid element type for struct");
1565
1566  while (EatIfPresent(lltok::comma)) {
1567    EltTyLoc = Lex.getLoc();
1568    if (ParseType(Ty)) return true;
1569
1570    if (!StructType::isValidElementType(Ty))
1571      return Error(EltTyLoc, "invalid element type for struct");
1572
1573    Body.push_back(Ty);
1574  }
1575
1576  return ParseToken(lltok::rbrace, "expected '}' at end of struct");
1577}
1578
1579/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1580/// token has already been consumed.
1581///   Type
1582///     ::= '[' APSINTVAL 'x' Types ']'
1583///     ::= '<' APSINTVAL 'x' Types '>'
1584bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
1585  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1586      Lex.getAPSIntVal().getBitWidth() > 64)
1587    return TokError("expected number in address space");
1588
1589  LocTy SizeLoc = Lex.getLoc();
1590  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1591  Lex.Lex();
1592
1593  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1594      return true;
1595
1596  LocTy TypeLoc = Lex.getLoc();
1597  Type *EltTy = 0;
1598  if (ParseType(EltTy)) return true;
1599
1600  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1601                 "expected end of sequential type"))
1602    return true;
1603
1604  if (isVector) {
1605    if (Size == 0)
1606      return Error(SizeLoc, "zero element vector is illegal");
1607    if ((unsigned)Size != Size)
1608      return Error(SizeLoc, "size too large for vector");
1609    if (!VectorType::isValidElementType(EltTy))
1610      return Error(TypeLoc, "vector element type must be fp or integer");
1611    Result = VectorType::get(EltTy, unsigned(Size));
1612  } else {
1613    if (!ArrayType::isValidElementType(EltTy))
1614      return Error(TypeLoc, "invalid array element type");
1615    Result = ArrayType::get(EltTy, Size);
1616  }
1617  return false;
1618}
1619
1620//===----------------------------------------------------------------------===//
1621// Function Semantic Analysis.
1622//===----------------------------------------------------------------------===//
1623
1624LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
1625                                             int functionNumber)
1626  : P(p), F(f), FunctionNumber(functionNumber) {
1627
1628  // Insert unnamed arguments into the NumberedVals list.
1629  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1630       AI != E; ++AI)
1631    if (!AI->hasName())
1632      NumberedVals.push_back(AI);
1633}
1634
1635LLParser::PerFunctionState::~PerFunctionState() {
1636  // If there were any forward referenced non-basicblock values, delete them.
1637  for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1638       I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1639    if (!isa<BasicBlock>(I->second.first)) {
1640      I->second.first->replaceAllUsesWith(
1641                           UndefValue::get(I->second.first->getType()));
1642      delete I->second.first;
1643      I->second.first = 0;
1644    }
1645
1646  for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1647       I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1648    if (!isa<BasicBlock>(I->second.first)) {
1649      I->second.first->replaceAllUsesWith(
1650                           UndefValue::get(I->second.first->getType()));
1651      delete I->second.first;
1652      I->second.first = 0;
1653    }
1654}
1655
1656bool LLParser::PerFunctionState::FinishFunction() {
1657  // Check to see if someone took the address of labels in this block.
1658  if (!P.ForwardRefBlockAddresses.empty()) {
1659    ValID FunctionID;
1660    if (!F.getName().empty()) {
1661      FunctionID.Kind = ValID::t_GlobalName;
1662      FunctionID.StrVal = F.getName();
1663    } else {
1664      FunctionID.Kind = ValID::t_GlobalID;
1665      FunctionID.UIntVal = FunctionNumber;
1666    }
1667
1668    std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
1669      FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
1670    if (FRBAI != P.ForwardRefBlockAddresses.end()) {
1671      // Resolve all these references.
1672      if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
1673        return true;
1674
1675      P.ForwardRefBlockAddresses.erase(FRBAI);
1676    }
1677  }
1678
1679  if (!ForwardRefVals.empty())
1680    return P.Error(ForwardRefVals.begin()->second.second,
1681                   "use of undefined value '%" + ForwardRefVals.begin()->first +
1682                   "'");
1683  if (!ForwardRefValIDs.empty())
1684    return P.Error(ForwardRefValIDs.begin()->second.second,
1685                   "use of undefined value '%" +
1686                   Twine(ForwardRefValIDs.begin()->first) + "'");
1687  return false;
1688}
1689
1690
1691/// GetVal - Get a value with the specified name or ID, creating a
1692/// forward reference record if needed.  This can return null if the value
1693/// exists but does not have the right type.
1694Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1695                                          Type *Ty, LocTy Loc) {
1696  // Look this name up in the normal function symbol table.
1697  Value *Val = F.getValueSymbolTable().lookup(Name);
1698
1699  // If this is a forward reference for the value, see if we already created a
1700  // forward ref record.
1701  if (Val == 0) {
1702    std::map<std::string, std::pair<Value*, LocTy> >::iterator
1703      I = ForwardRefVals.find(Name);
1704    if (I != ForwardRefVals.end())
1705      Val = I->second.first;
1706  }
1707
1708  // If we have the value in the symbol table or fwd-ref table, return it.
1709  if (Val) {
1710    if (Val->getType() == Ty) return Val;
1711    if (Ty->isLabelTy())
1712      P.Error(Loc, "'%" + Name + "' is not a basic block");
1713    else
1714      P.Error(Loc, "'%" + Name + "' defined with type '" +
1715              getTypeString(Val->getType()) + "'");
1716    return 0;
1717  }
1718
1719  // Don't make placeholders with invalid type.
1720  if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
1721    P.Error(Loc, "invalid use of a non-first-class type");
1722    return 0;
1723  }
1724
1725  // Otherwise, create a new forward reference for this value and remember it.
1726  Value *FwdVal;
1727  if (Ty->isLabelTy())
1728    FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
1729  else
1730    FwdVal = new Argument(Ty, Name);
1731
1732  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1733  return FwdVal;
1734}
1735
1736Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty,
1737                                          LocTy Loc) {
1738  // Look this name up in the normal function symbol table.
1739  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1740
1741  // If this is a forward reference for the value, see if we already created a
1742  // forward ref record.
1743  if (Val == 0) {
1744    std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1745      I = ForwardRefValIDs.find(ID);
1746    if (I != ForwardRefValIDs.end())
1747      Val = I->second.first;
1748  }
1749
1750  // If we have the value in the symbol table or fwd-ref table, return it.
1751  if (Val) {
1752    if (Val->getType() == Ty) return Val;
1753    if (Ty->isLabelTy())
1754      P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
1755    else
1756      P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
1757              getTypeString(Val->getType()) + "'");
1758    return 0;
1759  }
1760
1761  if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
1762    P.Error(Loc, "invalid use of a non-first-class type");
1763    return 0;
1764  }
1765
1766  // Otherwise, create a new forward reference for this value and remember it.
1767  Value *FwdVal;
1768  if (Ty->isLabelTy())
1769    FwdVal = BasicBlock::Create(F.getContext(), "", &F);
1770  else
1771    FwdVal = new Argument(Ty);
1772
1773  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1774  return FwdVal;
1775}
1776
1777/// SetInstName - After an instruction is parsed and inserted into its
1778/// basic block, this installs its name.
1779bool LLParser::PerFunctionState::SetInstName(int NameID,
1780                                             const std::string &NameStr,
1781                                             LocTy NameLoc, Instruction *Inst) {
1782  // If this instruction has void type, it cannot have a name or ID specified.
1783  if (Inst->getType()->isVoidTy()) {
1784    if (NameID != -1 || !NameStr.empty())
1785      return P.Error(NameLoc, "instructions returning void cannot have a name");
1786    return false;
1787  }
1788
1789  // If this was a numbered instruction, verify that the instruction is the
1790  // expected value and resolve any forward references.
1791  if (NameStr.empty()) {
1792    // If neither a name nor an ID was specified, just use the next ID.
1793    if (NameID == -1)
1794      NameID = NumberedVals.size();
1795
1796    if (unsigned(NameID) != NumberedVals.size())
1797      return P.Error(NameLoc, "instruction expected to be numbered '%" +
1798                     Twine(NumberedVals.size()) + "'");
1799
1800    std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1801      ForwardRefValIDs.find(NameID);
1802    if (FI != ForwardRefValIDs.end()) {
1803      if (FI->second.first->getType() != Inst->getType())
1804        return P.Error(NameLoc, "instruction forward referenced with type '" +
1805                       getTypeString(FI->second.first->getType()) + "'");
1806      FI->second.first->replaceAllUsesWith(Inst);
1807      delete FI->second.first;
1808      ForwardRefValIDs.erase(FI);
1809    }
1810
1811    NumberedVals.push_back(Inst);
1812    return false;
1813  }
1814
1815  // Otherwise, the instruction had a name.  Resolve forward refs and set it.
1816  std::map<std::string, std::pair<Value*, LocTy> >::iterator
1817    FI = ForwardRefVals.find(NameStr);
1818  if (FI != ForwardRefVals.end()) {
1819    if (FI->second.first->getType() != Inst->getType())
1820      return P.Error(NameLoc, "instruction forward referenced with type '" +
1821                     getTypeString(FI->second.first->getType()) + "'");
1822    FI->second.first->replaceAllUsesWith(Inst);
1823    delete FI->second.first;
1824    ForwardRefVals.erase(FI);
1825  }
1826
1827  // Set the name on the instruction.
1828  Inst->setName(NameStr);
1829
1830  if (Inst->getName() != NameStr)
1831    return P.Error(NameLoc, "multiple definition of local value named '" +
1832                   NameStr + "'");
1833  return false;
1834}
1835
1836/// GetBB - Get a basic block with the specified name or ID, creating a
1837/// forward reference record if needed.
1838BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1839                                              LocTy Loc) {
1840  return cast_or_null<BasicBlock>(GetVal(Name,
1841                                        Type::getLabelTy(F.getContext()), Loc));
1842}
1843
1844BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1845  return cast_or_null<BasicBlock>(GetVal(ID,
1846                                        Type::getLabelTy(F.getContext()), Loc));
1847}
1848
1849/// DefineBB - Define the specified basic block, which is either named or
1850/// unnamed.  If there is an error, this returns null otherwise it returns
1851/// the block being defined.
1852BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1853                                                 LocTy Loc) {
1854  BasicBlock *BB;
1855  if (Name.empty())
1856    BB = GetBB(NumberedVals.size(), Loc);
1857  else
1858    BB = GetBB(Name, Loc);
1859  if (BB == 0) return 0; // Already diagnosed error.
1860
1861  // Move the block to the end of the function.  Forward ref'd blocks are
1862  // inserted wherever they happen to be referenced.
1863  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1864
1865  // Remove the block from forward ref sets.
1866  if (Name.empty()) {
1867    ForwardRefValIDs.erase(NumberedVals.size());
1868    NumberedVals.push_back(BB);
1869  } else {
1870    // BB forward references are already in the function symbol table.
1871    ForwardRefVals.erase(Name);
1872  }
1873
1874  return BB;
1875}
1876
1877//===----------------------------------------------------------------------===//
1878// Constants.
1879//===----------------------------------------------------------------------===//
1880
1881/// ParseValID - Parse an abstract value that doesn't necessarily have a
1882/// type implied.  For example, if we parse "4" we don't know what integer type
1883/// it has.  The value will later be combined with its type and checked for
1884/// sanity.  PFS is used to convert function-local operands of metadata (since
1885/// metadata operands are not just parsed here but also converted to values).
1886/// PFS can be null when we are not parsing metadata values inside a function.
1887bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
1888  ID.Loc = Lex.getLoc();
1889  switch (Lex.getKind()) {
1890  default: return TokError("expected value token");
1891  case lltok::GlobalID:  // @42
1892    ID.UIntVal = Lex.getUIntVal();
1893    ID.Kind = ValID::t_GlobalID;
1894    break;
1895  case lltok::GlobalVar:  // @foo
1896    ID.StrVal = Lex.getStrVal();
1897    ID.Kind = ValID::t_GlobalName;
1898    break;
1899  case lltok::LocalVarID:  // %42
1900    ID.UIntVal = Lex.getUIntVal();
1901    ID.Kind = ValID::t_LocalID;
1902    break;
1903  case lltok::LocalVar:  // %foo
1904    ID.StrVal = Lex.getStrVal();
1905    ID.Kind = ValID::t_LocalName;
1906    break;
1907  case lltok::exclaim:   // !42, !{...}, or !"foo"
1908    return ParseMetadataValue(ID, PFS);
1909  case lltok::APSInt:
1910    ID.APSIntVal = Lex.getAPSIntVal();
1911    ID.Kind = ValID::t_APSInt;
1912    break;
1913  case lltok::APFloat:
1914    ID.APFloatVal = Lex.getAPFloatVal();
1915    ID.Kind = ValID::t_APFloat;
1916    break;
1917  case lltok::kw_true:
1918    ID.ConstantVal = ConstantInt::getTrue(Context);
1919    ID.Kind = ValID::t_Constant;
1920    break;
1921  case lltok::kw_false:
1922    ID.ConstantVal = ConstantInt::getFalse(Context);
1923    ID.Kind = ValID::t_Constant;
1924    break;
1925  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
1926  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
1927  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
1928
1929  case lltok::lbrace: {
1930    // ValID ::= '{' ConstVector '}'
1931    Lex.Lex();
1932    SmallVector<Constant*, 16> Elts;
1933    if (ParseGlobalValueVector(Elts) ||
1934        ParseToken(lltok::rbrace, "expected end of struct constant"))
1935      return true;
1936
1937    ID.ConstantStructElts = new Constant*[Elts.size()];
1938    ID.UIntVal = Elts.size();
1939    memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
1940    ID.Kind = ValID::t_ConstantStruct;
1941    return false;
1942  }
1943  case lltok::less: {
1944    // ValID ::= '<' ConstVector '>'         --> Vector.
1945    // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1946    Lex.Lex();
1947    bool isPackedStruct = EatIfPresent(lltok::lbrace);
1948
1949    SmallVector<Constant*, 16> Elts;
1950    LocTy FirstEltLoc = Lex.getLoc();
1951    if (ParseGlobalValueVector(Elts) ||
1952        (isPackedStruct &&
1953         ParseToken(lltok::rbrace, "expected end of packed struct")) ||
1954        ParseToken(lltok::greater, "expected end of constant"))
1955      return true;
1956
1957    if (isPackedStruct) {
1958      ID.ConstantStructElts = new Constant*[Elts.size()];
1959      memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
1960      ID.UIntVal = Elts.size();
1961      ID.Kind = ValID::t_PackedConstantStruct;
1962      return false;
1963    }
1964
1965    if (Elts.empty())
1966      return Error(ID.Loc, "constant vector must not be empty");
1967
1968    if (!Elts[0]->getType()->isIntegerTy() &&
1969        !Elts[0]->getType()->isFloatingPointTy())
1970      return Error(FirstEltLoc,
1971                   "vector elements must have integer or floating point type");
1972
1973    // Verify that all the vector elements have the same type.
1974    for (unsigned i = 1, e = Elts.size(); i != e; ++i)
1975      if (Elts[i]->getType() != Elts[0]->getType())
1976        return Error(FirstEltLoc,
1977                     "vector element #" + Twine(i) +
1978                    " is not of type '" + getTypeString(Elts[0]->getType()));
1979
1980    ID.ConstantVal = ConstantVector::get(Elts);
1981    ID.Kind = ValID::t_Constant;
1982    return false;
1983  }
1984  case lltok::lsquare: {   // Array Constant
1985    Lex.Lex();
1986    SmallVector<Constant*, 16> Elts;
1987    LocTy FirstEltLoc = Lex.getLoc();
1988    if (ParseGlobalValueVector(Elts) ||
1989        ParseToken(lltok::rsquare, "expected end of array constant"))
1990      return true;
1991
1992    // Handle empty element.
1993    if (Elts.empty()) {
1994      // Use undef instead of an array because it's inconvenient to determine
1995      // the element type at this point, there being no elements to examine.
1996      ID.Kind = ValID::t_EmptyArray;
1997      return false;
1998    }
1999
2000    if (!Elts[0]->getType()->isFirstClassType())
2001      return Error(FirstEltLoc, "invalid array element type: " +
2002                   getTypeString(Elts[0]->getType()));
2003
2004    ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2005
2006    // Verify all elements are correct type!
2007    for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2008      if (Elts[i]->getType() != Elts[0]->getType())
2009        return Error(FirstEltLoc,
2010                     "array element #" + Twine(i) +
2011                     " is not of type '" + getTypeString(Elts[0]->getType()));
2012    }
2013
2014    ID.ConstantVal = ConstantArray::get(ATy, Elts);
2015    ID.Kind = ValID::t_Constant;
2016    return false;
2017  }
2018  case lltok::kw_c:  // c "foo"
2019    Lex.Lex();
2020    ID.ConstantVal = ConstantArray::get(Context, Lex.getStrVal(), false);
2021    if (ParseToken(lltok::StringConstant, "expected string")) return true;
2022    ID.Kind = ValID::t_Constant;
2023    return false;
2024
2025  case lltok::kw_asm: {
2026    // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT
2027    bool HasSideEffect, AlignStack;
2028    Lex.Lex();
2029    if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2030        ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2031        ParseStringConstant(ID.StrVal) ||
2032        ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2033        ParseToken(lltok::StringConstant, "expected constraint string"))
2034      return true;
2035    ID.StrVal2 = Lex.getStrVal();
2036    ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1);
2037    ID.Kind = ValID::t_InlineAsm;
2038    return false;
2039  }
2040
2041  case lltok::kw_blockaddress: {
2042    // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2043    Lex.Lex();
2044
2045    ValID Fn, Label;
2046    LocTy FnLoc, LabelLoc;
2047
2048    if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2049        ParseValID(Fn) ||
2050        ParseToken(lltok::comma, "expected comma in block address expression")||
2051        ParseValID(Label) ||
2052        ParseToken(lltok::rparen, "expected ')' in block address expression"))
2053      return true;
2054
2055    if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2056      return Error(Fn.Loc, "expected function name in blockaddress");
2057    if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2058      return Error(Label.Loc, "expected basic block name in blockaddress");
2059
2060    // Make a global variable as a placeholder for this reference.
2061    GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
2062                                           false, GlobalValue::InternalLinkage,
2063                                                0, "");
2064    ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
2065    ID.ConstantVal = FwdRef;
2066    ID.Kind = ValID::t_Constant;
2067    return false;
2068  }
2069
2070  case lltok::kw_trunc:
2071  case lltok::kw_zext:
2072  case lltok::kw_sext:
2073  case lltok::kw_fptrunc:
2074  case lltok::kw_fpext:
2075  case lltok::kw_bitcast:
2076  case lltok::kw_uitofp:
2077  case lltok::kw_sitofp:
2078  case lltok::kw_fptoui:
2079  case lltok::kw_fptosi:
2080  case lltok::kw_inttoptr:
2081  case lltok::kw_ptrtoint: {
2082    unsigned Opc = Lex.getUIntVal();
2083    Type *DestTy = 0;
2084    Constant *SrcVal;
2085    Lex.Lex();
2086    if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2087        ParseGlobalTypeAndValue(SrcVal) ||
2088        ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2089        ParseType(DestTy) ||
2090        ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2091      return true;
2092    if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2093      return Error(ID.Loc, "invalid cast opcode for cast from '" +
2094                   getTypeString(SrcVal->getType()) + "' to '" +
2095                   getTypeString(DestTy) + "'");
2096    ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2097                                                 SrcVal, DestTy);
2098    ID.Kind = ValID::t_Constant;
2099    return false;
2100  }
2101  case lltok::kw_extractvalue: {
2102    Lex.Lex();
2103    Constant *Val;
2104    SmallVector<unsigned, 4> Indices;
2105    if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2106        ParseGlobalTypeAndValue(Val) ||
2107        ParseIndexList(Indices) ||
2108        ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2109      return true;
2110
2111    if (!Val->getType()->isAggregateType())
2112      return Error(ID.Loc, "extractvalue operand must be aggregate type");
2113    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
2114      return Error(ID.Loc, "invalid indices for extractvalue");
2115    ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
2116    ID.Kind = ValID::t_Constant;
2117    return false;
2118  }
2119  case lltok::kw_insertvalue: {
2120    Lex.Lex();
2121    Constant *Val0, *Val1;
2122    SmallVector<unsigned, 4> Indices;
2123    if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2124        ParseGlobalTypeAndValue(Val0) ||
2125        ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2126        ParseGlobalTypeAndValue(Val1) ||
2127        ParseIndexList(Indices) ||
2128        ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2129      return true;
2130    if (!Val0->getType()->isAggregateType())
2131      return Error(ID.Loc, "insertvalue operand must be aggregate type");
2132    if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
2133      return Error(ID.Loc, "invalid indices for insertvalue");
2134    ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
2135    ID.Kind = ValID::t_Constant;
2136    return false;
2137  }
2138  case lltok::kw_icmp:
2139  case lltok::kw_fcmp: {
2140    unsigned PredVal, Opc = Lex.getUIntVal();
2141    Constant *Val0, *Val1;
2142    Lex.Lex();
2143    if (ParseCmpPredicate(PredVal, Opc) ||
2144        ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2145        ParseGlobalTypeAndValue(Val0) ||
2146        ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2147        ParseGlobalTypeAndValue(Val1) ||
2148        ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2149      return true;
2150
2151    if (Val0->getType() != Val1->getType())
2152      return Error(ID.Loc, "compare operands must have the same type");
2153
2154    CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2155
2156    if (Opc == Instruction::FCmp) {
2157      if (!Val0->getType()->isFPOrFPVectorTy())
2158        return Error(ID.Loc, "fcmp requires floating point operands");
2159      ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2160    } else {
2161      assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2162      if (!Val0->getType()->isIntOrIntVectorTy() &&
2163          !Val0->getType()->isPointerTy())
2164        return Error(ID.Loc, "icmp requires pointer or integer operands");
2165      ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2166    }
2167    ID.Kind = ValID::t_Constant;
2168    return false;
2169  }
2170
2171  // Binary Operators.
2172  case lltok::kw_add:
2173  case lltok::kw_fadd:
2174  case lltok::kw_sub:
2175  case lltok::kw_fsub:
2176  case lltok::kw_mul:
2177  case lltok::kw_fmul:
2178  case lltok::kw_udiv:
2179  case lltok::kw_sdiv:
2180  case lltok::kw_fdiv:
2181  case lltok::kw_urem:
2182  case lltok::kw_srem:
2183  case lltok::kw_frem:
2184  case lltok::kw_shl:
2185  case lltok::kw_lshr:
2186  case lltok::kw_ashr: {
2187    bool NUW = false;
2188    bool NSW = false;
2189    bool Exact = false;
2190    unsigned Opc = Lex.getUIntVal();
2191    Constant *Val0, *Val1;
2192    Lex.Lex();
2193    LocTy ModifierLoc = Lex.getLoc();
2194    if (Opc == Instruction::Add || Opc == Instruction::Sub ||
2195        Opc == Instruction::Mul || Opc == Instruction::Shl) {
2196      if (EatIfPresent(lltok::kw_nuw))
2197        NUW = true;
2198      if (EatIfPresent(lltok::kw_nsw)) {
2199        NSW = true;
2200        if (EatIfPresent(lltok::kw_nuw))
2201          NUW = true;
2202      }
2203    } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
2204               Opc == Instruction::LShr || Opc == Instruction::AShr) {
2205      if (EatIfPresent(lltok::kw_exact))
2206        Exact = true;
2207    }
2208    if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2209        ParseGlobalTypeAndValue(Val0) ||
2210        ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2211        ParseGlobalTypeAndValue(Val1) ||
2212        ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2213      return true;
2214    if (Val0->getType() != Val1->getType())
2215      return Error(ID.Loc, "operands of constexpr must have same type");
2216    if (!Val0->getType()->isIntOrIntVectorTy()) {
2217      if (NUW)
2218        return Error(ModifierLoc, "nuw only applies to integer operations");
2219      if (NSW)
2220        return Error(ModifierLoc, "nsw only applies to integer operations");
2221    }
2222    // Check that the type is valid for the operator.
2223    switch (Opc) {
2224    case Instruction::Add:
2225    case Instruction::Sub:
2226    case Instruction::Mul:
2227    case Instruction::UDiv:
2228    case Instruction::SDiv:
2229    case Instruction::URem:
2230    case Instruction::SRem:
2231    case Instruction::Shl:
2232    case Instruction::AShr:
2233    case Instruction::LShr:
2234      if (!Val0->getType()->isIntOrIntVectorTy())
2235        return Error(ID.Loc, "constexpr requires integer operands");
2236      break;
2237    case Instruction::FAdd:
2238    case Instruction::FSub:
2239    case Instruction::FMul:
2240    case Instruction::FDiv:
2241    case Instruction::FRem:
2242      if (!Val0->getType()->isFPOrFPVectorTy())
2243        return Error(ID.Loc, "constexpr requires fp operands");
2244      break;
2245    default: llvm_unreachable("Unknown binary operator!");
2246    }
2247    unsigned Flags = 0;
2248    if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2249    if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
2250    if (Exact) Flags |= PossiblyExactOperator::IsExact;
2251    Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2252    ID.ConstantVal = C;
2253    ID.Kind = ValID::t_Constant;
2254    return false;
2255  }
2256
2257  // Logical Operations
2258  case lltok::kw_and:
2259  case lltok::kw_or:
2260  case lltok::kw_xor: {
2261    unsigned Opc = Lex.getUIntVal();
2262    Constant *Val0, *Val1;
2263    Lex.Lex();
2264    if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2265        ParseGlobalTypeAndValue(Val0) ||
2266        ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2267        ParseGlobalTypeAndValue(Val1) ||
2268        ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2269      return true;
2270    if (Val0->getType() != Val1->getType())
2271      return Error(ID.Loc, "operands of constexpr must have same type");
2272    if (!Val0->getType()->isIntOrIntVectorTy())
2273      return Error(ID.Loc,
2274                   "constexpr requires integer or integer vector operands");
2275    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2276    ID.Kind = ValID::t_Constant;
2277    return false;
2278  }
2279
2280  case lltok::kw_getelementptr:
2281  case lltok::kw_shufflevector:
2282  case lltok::kw_insertelement:
2283  case lltok::kw_extractelement:
2284  case lltok::kw_select: {
2285    unsigned Opc = Lex.getUIntVal();
2286    SmallVector<Constant*, 16> Elts;
2287    bool InBounds = false;
2288    Lex.Lex();
2289    if (Opc == Instruction::GetElementPtr)
2290      InBounds = EatIfPresent(lltok::kw_inbounds);
2291    if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2292        ParseGlobalValueVector(Elts) ||
2293        ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2294      return true;
2295
2296    if (Opc == Instruction::GetElementPtr) {
2297      if (Elts.size() == 0 || !Elts[0]->getType()->isPointerTy())
2298        return Error(ID.Loc, "getelementptr requires pointer operand");
2299
2300      ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2301      if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), Indices))
2302        return Error(ID.Loc, "invalid indices for getelementptr");
2303      ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0], Indices,
2304                                                      InBounds);
2305    } else if (Opc == Instruction::Select) {
2306      if (Elts.size() != 3)
2307        return Error(ID.Loc, "expected three operands to select");
2308      if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2309                                                              Elts[2]))
2310        return Error(ID.Loc, Reason);
2311      ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2312    } else if (Opc == Instruction::ShuffleVector) {
2313      if (Elts.size() != 3)
2314        return Error(ID.Loc, "expected three operands to shufflevector");
2315      if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2316        return Error(ID.Loc, "invalid operands to shufflevector");
2317      ID.ConstantVal =
2318                 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2319    } else if (Opc == Instruction::ExtractElement) {
2320      if (Elts.size() != 2)
2321        return Error(ID.Loc, "expected two operands to extractelement");
2322      if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2323        return Error(ID.Loc, "invalid extractelement operands");
2324      ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2325    } else {
2326      assert(Opc == Instruction::InsertElement && "Unknown opcode");
2327      if (Elts.size() != 3)
2328      return Error(ID.Loc, "expected three operands to insertelement");
2329      if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2330        return Error(ID.Loc, "invalid insertelement operands");
2331      ID.ConstantVal =
2332                 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2333    }
2334
2335    ID.Kind = ValID::t_Constant;
2336    return false;
2337  }
2338  }
2339
2340  Lex.Lex();
2341  return false;
2342}
2343
2344/// ParseGlobalValue - Parse a global value with the specified type.
2345bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
2346  C = 0;
2347  ValID ID;
2348  Value *V = NULL;
2349  bool Parsed = ParseValID(ID) ||
2350                ConvertValIDToValue(Ty, ID, V, NULL);
2351  if (V && !(C = dyn_cast<Constant>(V)))
2352    return Error(ID.Loc, "global values must be constants");
2353  return Parsed;
2354}
2355
2356bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2357  Type *Ty = 0;
2358  return ParseType(Ty) ||
2359         ParseGlobalValue(Ty, V);
2360}
2361
2362/// ParseGlobalValueVector
2363///   ::= /*empty*/
2364///   ::= TypeAndValue (',' TypeAndValue)*
2365bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2366  // Empty list.
2367  if (Lex.getKind() == lltok::rbrace ||
2368      Lex.getKind() == lltok::rsquare ||
2369      Lex.getKind() == lltok::greater ||
2370      Lex.getKind() == lltok::rparen)
2371    return false;
2372
2373  Constant *C;
2374  if (ParseGlobalTypeAndValue(C)) return true;
2375  Elts.push_back(C);
2376
2377  while (EatIfPresent(lltok::comma)) {
2378    if (ParseGlobalTypeAndValue(C)) return true;
2379    Elts.push_back(C);
2380  }
2381
2382  return false;
2383}
2384
2385bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) {
2386  assert(Lex.getKind() == lltok::lbrace);
2387  Lex.Lex();
2388
2389  SmallVector<Value*, 16> Elts;
2390  if (ParseMDNodeVector(Elts, PFS) ||
2391      ParseToken(lltok::rbrace, "expected end of metadata node"))
2392    return true;
2393
2394  ID.MDNodeVal = MDNode::get(Context, Elts);
2395  ID.Kind = ValID::t_MDNode;
2396  return false;
2397}
2398
2399/// ParseMetadataValue
2400///  ::= !42
2401///  ::= !{...}
2402///  ::= !"string"
2403bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) {
2404  assert(Lex.getKind() == lltok::exclaim);
2405  Lex.Lex();
2406
2407  // MDNode:
2408  // !{ ... }
2409  if (Lex.getKind() == lltok::lbrace)
2410    return ParseMetadataListValue(ID, PFS);
2411
2412  // Standalone metadata reference
2413  // !42
2414  if (Lex.getKind() == lltok::APSInt) {
2415    if (ParseMDNodeID(ID.MDNodeVal)) return true;
2416    ID.Kind = ValID::t_MDNode;
2417    return false;
2418  }
2419
2420  // MDString:
2421  //   ::= '!' STRINGCONSTANT
2422  if (ParseMDString(ID.MDStringVal)) return true;
2423  ID.Kind = ValID::t_MDString;
2424  return false;
2425}
2426
2427
2428//===----------------------------------------------------------------------===//
2429// Function Parsing.
2430//===----------------------------------------------------------------------===//
2431
2432bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
2433                                   PerFunctionState *PFS) {
2434  if (Ty->isFunctionTy())
2435    return Error(ID.Loc, "functions are not values, refer to them as pointers");
2436
2437  switch (ID.Kind) {
2438  default: llvm_unreachable("Unknown ValID!");
2439  case ValID::t_LocalID:
2440    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2441    V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
2442    return (V == 0);
2443  case ValID::t_LocalName:
2444    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2445    V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
2446    return (V == 0);
2447  case ValID::t_InlineAsm: {
2448    PointerType *PTy = dyn_cast<PointerType>(Ty);
2449    FunctionType *FTy =
2450      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2451    if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2452      return Error(ID.Loc, "invalid type for inline asm constraint string");
2453    V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, ID.UIntVal>>1);
2454    return false;
2455  }
2456  case ValID::t_MDNode:
2457    if (!Ty->isMetadataTy())
2458      return Error(ID.Loc, "metadata value must have metadata type");
2459    V = ID.MDNodeVal;
2460    return false;
2461  case ValID::t_MDString:
2462    if (!Ty->isMetadataTy())
2463      return Error(ID.Loc, "metadata value must have metadata type");
2464    V = ID.MDStringVal;
2465    return false;
2466  case ValID::t_GlobalName:
2467    V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2468    return V == 0;
2469  case ValID::t_GlobalID:
2470    V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2471    return V == 0;
2472  case ValID::t_APSInt:
2473    if (!Ty->isIntegerTy())
2474      return Error(ID.Loc, "integer constant must have integer type");
2475    ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2476    V = ConstantInt::get(Context, ID.APSIntVal);
2477    return false;
2478  case ValID::t_APFloat:
2479    if (!Ty->isFloatingPointTy() ||
2480        !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2481      return Error(ID.Loc, "floating point constant invalid for type");
2482
2483    // The lexer has no type info, so builds all float and double FP constants
2484    // as double.  Fix this here.  Long double does not need this.
2485    if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
2486        Ty->isFloatTy()) {
2487      bool Ignored;
2488      ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2489                            &Ignored);
2490    }
2491    V = ConstantFP::get(Context, ID.APFloatVal);
2492
2493    if (V->getType() != Ty)
2494      return Error(ID.Loc, "floating point constant does not have type '" +
2495                   getTypeString(Ty) + "'");
2496
2497    return false;
2498  case ValID::t_Null:
2499    if (!Ty->isPointerTy())
2500      return Error(ID.Loc, "null must be a pointer type");
2501    V = ConstantPointerNull::get(cast<PointerType>(Ty));
2502    return false;
2503  case ValID::t_Undef:
2504    // FIXME: LabelTy should not be a first-class type.
2505    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2506      return Error(ID.Loc, "invalid type for undef constant");
2507    V = UndefValue::get(Ty);
2508    return false;
2509  case ValID::t_EmptyArray:
2510    if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
2511      return Error(ID.Loc, "invalid empty array initializer");
2512    V = UndefValue::get(Ty);
2513    return false;
2514  case ValID::t_Zero:
2515    // FIXME: LabelTy should not be a first-class type.
2516    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2517      return Error(ID.Loc, "invalid type for null constant");
2518    V = Constant::getNullValue(Ty);
2519    return false;
2520  case ValID::t_Constant:
2521    if (ID.ConstantVal->getType() != Ty)
2522      return Error(ID.Loc, "constant expression type mismatch");
2523
2524    V = ID.ConstantVal;
2525    return false;
2526  case ValID::t_ConstantStruct:
2527  case ValID::t_PackedConstantStruct:
2528    if (StructType *ST = dyn_cast<StructType>(Ty)) {
2529      if (ST->getNumElements() != ID.UIntVal)
2530        return Error(ID.Loc,
2531                     "initializer with struct type has wrong # elements");
2532      if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
2533        return Error(ID.Loc, "packed'ness of initializer and type don't match");
2534
2535      // Verify that the elements are compatible with the structtype.
2536      for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
2537        if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
2538          return Error(ID.Loc, "element " + Twine(i) +
2539                    " of struct initializer doesn't match struct element type");
2540
2541      V = ConstantStruct::get(ST, makeArrayRef(ID.ConstantStructElts,
2542                                               ID.UIntVal));
2543    } else
2544      return Error(ID.Loc, "constant expression type mismatch");
2545    return false;
2546  }
2547}
2548
2549bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
2550  V = 0;
2551  ValID ID;
2552  return ParseValID(ID, PFS) ||
2553         ConvertValIDToValue(Ty, ID, V, PFS);
2554}
2555
2556bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
2557  Type *Ty = 0;
2558  return ParseType(Ty) ||
2559         ParseValue(Ty, V, PFS);
2560}
2561
2562bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
2563                                      PerFunctionState &PFS) {
2564  Value *V;
2565  Loc = Lex.getLoc();
2566  if (ParseTypeAndValue(V, PFS)) return true;
2567  if (!isa<BasicBlock>(V))
2568    return Error(Loc, "expected a basic block");
2569  BB = cast<BasicBlock>(V);
2570  return false;
2571}
2572
2573
2574/// FunctionHeader
2575///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2576///       OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2577///       OptionalAlign OptGC
2578bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2579  // Parse the linkage.
2580  LocTy LinkageLoc = Lex.getLoc();
2581  unsigned Linkage;
2582
2583  unsigned Visibility, RetAttrs;
2584  CallingConv::ID CC;
2585  Type *RetType = 0;
2586  LocTy RetTypeLoc = Lex.getLoc();
2587  if (ParseOptionalLinkage(Linkage) ||
2588      ParseOptionalVisibility(Visibility) ||
2589      ParseOptionalCallingConv(CC) ||
2590      ParseOptionalAttrs(RetAttrs, 1) ||
2591      ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2592    return true;
2593
2594  // Verify that the linkage is ok.
2595  switch ((GlobalValue::LinkageTypes)Linkage) {
2596  case GlobalValue::ExternalLinkage:
2597    break; // always ok.
2598  case GlobalValue::DLLImportLinkage:
2599  case GlobalValue::ExternalWeakLinkage:
2600    if (isDefine)
2601      return Error(LinkageLoc, "invalid linkage for function definition");
2602    break;
2603  case GlobalValue::PrivateLinkage:
2604  case GlobalValue::LinkerPrivateLinkage:
2605  case GlobalValue::LinkerPrivateWeakLinkage:
2606  case GlobalValue::LinkerPrivateWeakDefAutoLinkage:
2607  case GlobalValue::InternalLinkage:
2608  case GlobalValue::AvailableExternallyLinkage:
2609  case GlobalValue::LinkOnceAnyLinkage:
2610  case GlobalValue::LinkOnceODRLinkage:
2611  case GlobalValue::WeakAnyLinkage:
2612  case GlobalValue::WeakODRLinkage:
2613  case GlobalValue::DLLExportLinkage:
2614    if (!isDefine)
2615      return Error(LinkageLoc, "invalid linkage for function declaration");
2616    break;
2617  case GlobalValue::AppendingLinkage:
2618  case GlobalValue::CommonLinkage:
2619    return Error(LinkageLoc, "invalid function linkage type");
2620  }
2621
2622  if (!FunctionType::isValidReturnType(RetType))
2623    return Error(RetTypeLoc, "invalid function return type");
2624
2625  LocTy NameLoc = Lex.getLoc();
2626
2627  std::string FunctionName;
2628  if (Lex.getKind() == lltok::GlobalVar) {
2629    FunctionName = Lex.getStrVal();
2630  } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
2631    unsigned NameID = Lex.getUIntVal();
2632
2633    if (NameID != NumberedVals.size())
2634      return TokError("function expected to be numbered '%" +
2635                      Twine(NumberedVals.size()) + "'");
2636  } else {
2637    return TokError("expected function name");
2638  }
2639
2640  Lex.Lex();
2641
2642  if (Lex.getKind() != lltok::lparen)
2643    return TokError("expected '(' in function argument list");
2644
2645  SmallVector<ArgInfo, 8> ArgList;
2646  bool isVarArg;
2647  unsigned FuncAttrs;
2648  std::string Section;
2649  unsigned Alignment;
2650  std::string GC;
2651  bool UnnamedAddr;
2652  LocTy UnnamedAddrLoc;
2653
2654  if (ParseArgumentList(ArgList, isVarArg) ||
2655      ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
2656                         &UnnamedAddrLoc) ||
2657      ParseOptionalAttrs(FuncAttrs, 2) ||
2658      (EatIfPresent(lltok::kw_section) &&
2659       ParseStringConstant(Section)) ||
2660      ParseOptionalAlignment(Alignment) ||
2661      (EatIfPresent(lltok::kw_gc) &&
2662       ParseStringConstant(GC)))
2663    return true;
2664
2665  // If the alignment was parsed as an attribute, move to the alignment field.
2666  if (FuncAttrs & Attribute::Alignment) {
2667    Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2668    FuncAttrs &= ~Attribute::Alignment;
2669  }
2670
2671  // Okay, if we got here, the function is syntactically valid.  Convert types
2672  // and do semantic checks.
2673  std::vector<Type*> ParamTypeList;
2674  SmallVector<AttributeWithIndex, 8> Attrs;
2675
2676  if (RetAttrs != Attribute::None)
2677    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2678
2679  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2680    ParamTypeList.push_back(ArgList[i].Ty);
2681    if (ArgList[i].Attrs != Attribute::None)
2682      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2683  }
2684
2685  if (FuncAttrs != Attribute::None)
2686    Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2687
2688  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2689
2690  if (PAL.paramHasAttr(1, Attribute::StructRet) && !RetType->isVoidTy())
2691    return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2692
2693  FunctionType *FT =
2694    FunctionType::get(RetType, ParamTypeList, isVarArg);
2695  PointerType *PFT = PointerType::getUnqual(FT);
2696
2697  Fn = 0;
2698  if (!FunctionName.empty()) {
2699    // If this was a definition of a forward reference, remove the definition
2700    // from the forward reference table and fill in the forward ref.
2701    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2702      ForwardRefVals.find(FunctionName);
2703    if (FRVI != ForwardRefVals.end()) {
2704      Fn = M->getFunction(FunctionName);
2705      if (Fn->getType() != PFT)
2706        return Error(FRVI->second.second, "invalid forward reference to "
2707                     "function '" + FunctionName + "' with wrong type!");
2708
2709      ForwardRefVals.erase(FRVI);
2710    } else if ((Fn = M->getFunction(FunctionName))) {
2711      // Reject redefinitions.
2712      return Error(NameLoc, "invalid redefinition of function '" +
2713                   FunctionName + "'");
2714    } else if (M->getNamedValue(FunctionName)) {
2715      return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
2716    }
2717
2718  } else {
2719    // If this is a definition of a forward referenced function, make sure the
2720    // types agree.
2721    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2722      = ForwardRefValIDs.find(NumberedVals.size());
2723    if (I != ForwardRefValIDs.end()) {
2724      Fn = cast<Function>(I->second.first);
2725      if (Fn->getType() != PFT)
2726        return Error(NameLoc, "type of definition and forward reference of '@" +
2727                     Twine(NumberedVals.size()) + "' disagree");
2728      ForwardRefValIDs.erase(I);
2729    }
2730  }
2731
2732  if (Fn == 0)
2733    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2734  else // Move the forward-reference to the correct spot in the module.
2735    M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2736
2737  if (FunctionName.empty())
2738    NumberedVals.push_back(Fn);
2739
2740  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2741  Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2742  Fn->setCallingConv(CC);
2743  Fn->setAttributes(PAL);
2744  Fn->setUnnamedAddr(UnnamedAddr);
2745  Fn->setAlignment(Alignment);
2746  Fn->setSection(Section);
2747  if (!GC.empty()) Fn->setGC(GC.c_str());
2748
2749  // Add all of the arguments we parsed to the function.
2750  Function::arg_iterator ArgIt = Fn->arg_begin();
2751  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2752    // If the argument has a name, insert it into the argument symbol table.
2753    if (ArgList[i].Name.empty()) continue;
2754
2755    // Set the name, if it conflicted, it will be auto-renamed.
2756    ArgIt->setName(ArgList[i].Name);
2757
2758    if (ArgIt->getName() != ArgList[i].Name)
2759      return Error(ArgList[i].Loc, "redefinition of argument '%" +
2760                   ArgList[i].Name + "'");
2761  }
2762
2763  return false;
2764}
2765
2766
2767/// ParseFunctionBody
2768///   ::= '{' BasicBlock+ '}'
2769///
2770bool LLParser::ParseFunctionBody(Function &Fn) {
2771  if (Lex.getKind() != lltok::lbrace)
2772    return TokError("expected '{' in function body");
2773  Lex.Lex();  // eat the {.
2774
2775  int FunctionNumber = -1;
2776  if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
2777
2778  PerFunctionState PFS(*this, Fn, FunctionNumber);
2779
2780  // We need at least one basic block.
2781  if (Lex.getKind() == lltok::rbrace)
2782    return TokError("function body requires at least one basic block");
2783
2784  while (Lex.getKind() != lltok::rbrace)
2785    if (ParseBasicBlock(PFS)) return true;
2786
2787  // Eat the }.
2788  Lex.Lex();
2789
2790  // Verify function is ok.
2791  return PFS.FinishFunction();
2792}
2793
2794/// ParseBasicBlock
2795///   ::= LabelStr? Instruction*
2796bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2797  // If this basic block starts out with a name, remember it.
2798  std::string Name;
2799  LocTy NameLoc = Lex.getLoc();
2800  if (Lex.getKind() == lltok::LabelStr) {
2801    Name = Lex.getStrVal();
2802    Lex.Lex();
2803  }
2804
2805  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2806  if (BB == 0) return true;
2807
2808  std::string NameStr;
2809
2810  // Parse the instructions in this block until we get a terminator.
2811  Instruction *Inst;
2812  SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst;
2813  do {
2814    // This instruction may have three possibilities for a name: a) none
2815    // specified, b) name specified "%foo =", c) number specified: "%4 =".
2816    LocTy NameLoc = Lex.getLoc();
2817    int NameID = -1;
2818    NameStr = "";
2819
2820    if (Lex.getKind() == lltok::LocalVarID) {
2821      NameID = Lex.getUIntVal();
2822      Lex.Lex();
2823      if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2824        return true;
2825    } else if (Lex.getKind() == lltok::LocalVar) {
2826      NameStr = Lex.getStrVal();
2827      Lex.Lex();
2828      if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2829        return true;
2830    }
2831
2832    switch (ParseInstruction(Inst, BB, PFS)) {
2833    default: assert(0 && "Unknown ParseInstruction result!");
2834    case InstError: return true;
2835    case InstNormal:
2836      BB->getInstList().push_back(Inst);
2837
2838      // With a normal result, we check to see if the instruction is followed by
2839      // a comma and metadata.
2840      if (EatIfPresent(lltok::comma))
2841        if (ParseInstructionMetadata(Inst, &PFS))
2842          return true;
2843      break;
2844    case InstExtraComma:
2845      BB->getInstList().push_back(Inst);
2846
2847      // If the instruction parser ate an extra comma at the end of it, it
2848      // *must* be followed by metadata.
2849      if (ParseInstructionMetadata(Inst, &PFS))
2850        return true;
2851      break;
2852    }
2853
2854    // Set the name on the instruction.
2855    if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2856  } while (!isa<TerminatorInst>(Inst));
2857
2858  return false;
2859}
2860
2861//===----------------------------------------------------------------------===//
2862// Instruction Parsing.
2863//===----------------------------------------------------------------------===//
2864
2865/// ParseInstruction - Parse one of the many different instructions.
2866///
2867int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2868                               PerFunctionState &PFS) {
2869  lltok::Kind Token = Lex.getKind();
2870  if (Token == lltok::Eof)
2871    return TokError("found end of file when expecting more instructions");
2872  LocTy Loc = Lex.getLoc();
2873  unsigned KeywordVal = Lex.getUIntVal();
2874  Lex.Lex();  // Eat the keyword.
2875
2876  switch (Token) {
2877  default:                    return Error(Loc, "expected instruction opcode");
2878  // Terminator Instructions.
2879  case lltok::kw_unwind:      Inst = new UnwindInst(Context); return false;
2880  case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
2881  case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
2882  case lltok::kw_br:          return ParseBr(Inst, PFS);
2883  case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
2884  case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
2885  case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
2886  case lltok::kw_resume:      return ParseResume(Inst, PFS);
2887  // Binary Operators.
2888  case lltok::kw_add:
2889  case lltok::kw_sub:
2890  case lltok::kw_mul:
2891  case lltok::kw_shl: {
2892    bool NUW = EatIfPresent(lltok::kw_nuw);
2893    bool NSW = EatIfPresent(lltok::kw_nsw);
2894    if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
2895
2896    if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
2897
2898    if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
2899    if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
2900    return false;
2901  }
2902  case lltok::kw_fadd:
2903  case lltok::kw_fsub:
2904  case lltok::kw_fmul:    return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2905
2906  case lltok::kw_sdiv:
2907  case lltok::kw_udiv:
2908  case lltok::kw_lshr:
2909  case lltok::kw_ashr: {
2910    bool Exact = EatIfPresent(lltok::kw_exact);
2911
2912    if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
2913    if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
2914    return false;
2915  }
2916
2917  case lltok::kw_urem:
2918  case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
2919  case lltok::kw_fdiv:
2920  case lltok::kw_frem:   return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2921  case lltok::kw_and:
2922  case lltok::kw_or:
2923  case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
2924  case lltok::kw_icmp:
2925  case lltok::kw_fcmp:   return ParseCompare(Inst, PFS, KeywordVal);
2926  // Casts.
2927  case lltok::kw_trunc:
2928  case lltok::kw_zext:
2929  case lltok::kw_sext:
2930  case lltok::kw_fptrunc:
2931  case lltok::kw_fpext:
2932  case lltok::kw_bitcast:
2933  case lltok::kw_uitofp:
2934  case lltok::kw_sitofp:
2935  case lltok::kw_fptoui:
2936  case lltok::kw_fptosi:
2937  case lltok::kw_inttoptr:
2938  case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
2939  // Other.
2940  case lltok::kw_select:         return ParseSelect(Inst, PFS);
2941  case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
2942  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
2943  case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
2944  case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
2945  case lltok::kw_phi:            return ParsePHI(Inst, PFS);
2946  case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
2947  case lltok::kw_call:           return ParseCall(Inst, PFS, false);
2948  case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
2949  // Memory.
2950  case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
2951  case lltok::kw_load:           return ParseLoad(Inst, PFS);
2952  case lltok::kw_store:          return ParseStore(Inst, PFS);
2953  case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
2954  case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
2955  case lltok::kw_fence:          return ParseFence(Inst, PFS);
2956  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
2957  case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
2958  case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
2959  }
2960}
2961
2962/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
2963bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
2964  if (Opc == Instruction::FCmp) {
2965    switch (Lex.getKind()) {
2966    default: TokError("expected fcmp predicate (e.g. 'oeq')");
2967    case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
2968    case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
2969    case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
2970    case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
2971    case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
2972    case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
2973    case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
2974    case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
2975    case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
2976    case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
2977    case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
2978    case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
2979    case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
2980    case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
2981    case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
2982    case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
2983    }
2984  } else {
2985    switch (Lex.getKind()) {
2986    default: TokError("expected icmp predicate (e.g. 'eq')");
2987    case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
2988    case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
2989    case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
2990    case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
2991    case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
2992    case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
2993    case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
2994    case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
2995    case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
2996    case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
2997    }
2998  }
2999  Lex.Lex();
3000  return false;
3001}
3002
3003//===----------------------------------------------------------------------===//
3004// Terminator Instructions.
3005//===----------------------------------------------------------------------===//
3006
3007/// ParseRet - Parse a return instruction.
3008///   ::= 'ret' void (',' !dbg, !1)*
3009///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
3010bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
3011                        PerFunctionState &PFS) {
3012  SMLoc TypeLoc = Lex.getLoc();
3013  Type *Ty = 0;
3014  if (ParseType(Ty, true /*void allowed*/)) return true;
3015
3016  Type *ResType = PFS.getFunction().getReturnType();
3017
3018  if (Ty->isVoidTy()) {
3019    if (!ResType->isVoidTy())
3020      return Error(TypeLoc, "value doesn't match function result type '" +
3021                   getTypeString(ResType) + "'");
3022
3023    Inst = ReturnInst::Create(Context);
3024    return false;
3025  }
3026
3027  Value *RV;
3028  if (ParseValue(Ty, RV, PFS)) return true;
3029
3030  if (ResType != RV->getType())
3031    return Error(TypeLoc, "value doesn't match function result type '" +
3032                 getTypeString(ResType) + "'");
3033
3034  Inst = ReturnInst::Create(Context, RV);
3035  return false;
3036}
3037
3038
3039/// ParseBr
3040///   ::= 'br' TypeAndValue
3041///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3042bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
3043  LocTy Loc, Loc2;
3044  Value *Op0;
3045  BasicBlock *Op1, *Op2;
3046  if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
3047
3048  if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
3049    Inst = BranchInst::Create(BB);
3050    return false;
3051  }
3052
3053  if (Op0->getType() != Type::getInt1Ty(Context))
3054    return Error(Loc, "branch condition must have 'i1' type");
3055
3056  if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
3057      ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
3058      ParseToken(lltok::comma, "expected ',' after true destination") ||
3059      ParseTypeAndBasicBlock(Op2, Loc2, PFS))
3060    return true;
3061
3062  Inst = BranchInst::Create(Op1, Op2, Op0);
3063  return false;
3064}
3065
3066/// ParseSwitch
3067///  Instruction
3068///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
3069///  JumpTable
3070///    ::= (TypeAndValue ',' TypeAndValue)*
3071bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
3072  LocTy CondLoc, BBLoc;
3073  Value *Cond;
3074  BasicBlock *DefaultBB;
3075  if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
3076      ParseToken(lltok::comma, "expected ',' after switch condition") ||
3077      ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
3078      ParseToken(lltok::lsquare, "expected '[' with switch table"))
3079    return true;
3080
3081  if (!Cond->getType()->isIntegerTy())
3082    return Error(CondLoc, "switch condition must have integer type");
3083
3084  // Parse the jump table pairs.
3085  SmallPtrSet<Value*, 32> SeenCases;
3086  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
3087  while (Lex.getKind() != lltok::rsquare) {
3088    Value *Constant;
3089    BasicBlock *DestBB;
3090
3091    if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
3092        ParseToken(lltok::comma, "expected ',' after case value") ||
3093        ParseTypeAndBasicBlock(DestBB, PFS))
3094      return true;
3095
3096    if (!SeenCases.insert(Constant))
3097      return Error(CondLoc, "duplicate case value in switch");
3098    if (!isa<ConstantInt>(Constant))
3099      return Error(CondLoc, "case value is not a constant integer");
3100
3101    Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
3102  }
3103
3104  Lex.Lex();  // Eat the ']'.
3105
3106  SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
3107  for (unsigned i = 0, e = Table.size(); i != e; ++i)
3108    SI->addCase(Table[i].first, Table[i].second);
3109  Inst = SI;
3110  return false;
3111}
3112
3113/// ParseIndirectBr
3114///  Instruction
3115///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
3116bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
3117  LocTy AddrLoc;
3118  Value *Address;
3119  if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
3120      ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
3121      ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
3122    return true;
3123
3124  if (!Address->getType()->isPointerTy())
3125    return Error(AddrLoc, "indirectbr address must have pointer type");
3126
3127  // Parse the destination list.
3128  SmallVector<BasicBlock*, 16> DestList;
3129
3130  if (Lex.getKind() != lltok::rsquare) {
3131    BasicBlock *DestBB;
3132    if (ParseTypeAndBasicBlock(DestBB, PFS))
3133      return true;
3134    DestList.push_back(DestBB);
3135
3136    while (EatIfPresent(lltok::comma)) {
3137      if (ParseTypeAndBasicBlock(DestBB, PFS))
3138        return true;
3139      DestList.push_back(DestBB);
3140    }
3141  }
3142
3143  if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
3144    return true;
3145
3146  IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
3147  for (unsigned i = 0, e = DestList.size(); i != e; ++i)
3148    IBI->addDestination(DestList[i]);
3149  Inst = IBI;
3150  return false;
3151}
3152
3153
3154/// ParseInvoke
3155///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
3156///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
3157bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
3158  LocTy CallLoc = Lex.getLoc();
3159  unsigned RetAttrs, FnAttrs;
3160  CallingConv::ID CC;
3161  Type *RetType = 0;
3162  LocTy RetTypeLoc;
3163  ValID CalleeID;
3164  SmallVector<ParamInfo, 16> ArgList;
3165
3166  BasicBlock *NormalBB, *UnwindBB;
3167  if (ParseOptionalCallingConv(CC) ||
3168      ParseOptionalAttrs(RetAttrs, 1) ||
3169      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3170      ParseValID(CalleeID) ||
3171      ParseParameterList(ArgList, PFS) ||
3172      ParseOptionalAttrs(FnAttrs, 2) ||
3173      ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
3174      ParseTypeAndBasicBlock(NormalBB, PFS) ||
3175      ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
3176      ParseTypeAndBasicBlock(UnwindBB, PFS))
3177    return true;
3178
3179  // If RetType is a non-function pointer type, then this is the short syntax
3180  // for the call, which means that RetType is just the return type.  Infer the
3181  // rest of the function argument types from the arguments that are present.
3182  PointerType *PFTy = 0;
3183  FunctionType *Ty = 0;
3184  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3185      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3186    // Pull out the types of all of the arguments...
3187    std::vector<Type*> ParamTypes;
3188    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3189      ParamTypes.push_back(ArgList[i].V->getType());
3190
3191    if (!FunctionType::isValidReturnType(RetType))
3192      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3193
3194    Ty = FunctionType::get(RetType, ParamTypes, false);
3195    PFTy = PointerType::getUnqual(Ty);
3196  }
3197
3198  // Look up the callee.
3199  Value *Callee;
3200  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3201
3202  // Set up the Attributes for the function.
3203  SmallVector<AttributeWithIndex, 8> Attrs;
3204  if (RetAttrs != Attribute::None)
3205    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3206
3207  SmallVector<Value*, 8> Args;
3208
3209  // Loop through FunctionType's arguments and ensure they are specified
3210  // correctly.  Also, gather any parameter attributes.
3211  FunctionType::param_iterator I = Ty->param_begin();
3212  FunctionType::param_iterator E = Ty->param_end();
3213  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3214    Type *ExpectedTy = 0;
3215    if (I != E) {
3216      ExpectedTy = *I++;
3217    } else if (!Ty->isVarArg()) {
3218      return Error(ArgList[i].Loc, "too many arguments specified");
3219    }
3220
3221    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3222      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3223                   getTypeString(ExpectedTy) + "'");
3224    Args.push_back(ArgList[i].V);
3225    if (ArgList[i].Attrs != Attribute::None)
3226      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3227  }
3228
3229  if (I != E)
3230    return Error(CallLoc, "not enough parameters specified for call");
3231
3232  if (FnAttrs != Attribute::None)
3233    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3234
3235  // Finish off the Attributes and check them
3236  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3237
3238  InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, Args);
3239  II->setCallingConv(CC);
3240  II->setAttributes(PAL);
3241  Inst = II;
3242  return false;
3243}
3244
3245/// ParseResume
3246///   ::= 'resume' TypeAndValue
3247bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
3248  Value *Exn; LocTy ExnLoc;
3249  if (ParseTypeAndValue(Exn, ExnLoc, PFS))
3250    return true;
3251
3252  ResumeInst *RI = ResumeInst::Create(Exn);
3253  Inst = RI;
3254  return false;
3255}
3256
3257//===----------------------------------------------------------------------===//
3258// Binary Operators.
3259//===----------------------------------------------------------------------===//
3260
3261/// ParseArithmetic
3262///  ::= ArithmeticOps TypeAndValue ',' Value
3263///
3264/// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
3265/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
3266bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
3267                               unsigned Opc, unsigned OperandType) {
3268  LocTy Loc; Value *LHS, *RHS;
3269  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3270      ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
3271      ParseValue(LHS->getType(), RHS, PFS))
3272    return true;
3273
3274  bool Valid;
3275  switch (OperandType) {
3276  default: llvm_unreachable("Unknown operand type!");
3277  case 0: // int or FP.
3278    Valid = LHS->getType()->isIntOrIntVectorTy() ||
3279            LHS->getType()->isFPOrFPVectorTy();
3280    break;
3281  case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
3282  case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
3283  }
3284
3285  if (!Valid)
3286    return Error(Loc, "invalid operand type for instruction");
3287
3288  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3289  return false;
3290}
3291
3292/// ParseLogical
3293///  ::= ArithmeticOps TypeAndValue ',' Value {
3294bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3295                            unsigned Opc) {
3296  LocTy Loc; Value *LHS, *RHS;
3297  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3298      ParseToken(lltok::comma, "expected ',' in logical operation") ||
3299      ParseValue(LHS->getType(), RHS, PFS))
3300    return true;
3301
3302  if (!LHS->getType()->isIntOrIntVectorTy())
3303    return Error(Loc,"instruction requires integer or integer vector operands");
3304
3305  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3306  return false;
3307}
3308
3309
3310/// ParseCompare
3311///  ::= 'icmp' IPredicates TypeAndValue ',' Value
3312///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
3313bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3314                            unsigned Opc) {
3315  // Parse the integer/fp comparison predicate.
3316  LocTy Loc;
3317  unsigned Pred;
3318  Value *LHS, *RHS;
3319  if (ParseCmpPredicate(Pred, Opc) ||
3320      ParseTypeAndValue(LHS, Loc, PFS) ||
3321      ParseToken(lltok::comma, "expected ',' after compare value") ||
3322      ParseValue(LHS->getType(), RHS, PFS))
3323    return true;
3324
3325  if (Opc == Instruction::FCmp) {
3326    if (!LHS->getType()->isFPOrFPVectorTy())
3327      return Error(Loc, "fcmp requires floating point operands");
3328    Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3329  } else {
3330    assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3331    if (!LHS->getType()->isIntOrIntVectorTy() &&
3332        !LHS->getType()->isPointerTy())
3333      return Error(Loc, "icmp requires integer operands");
3334    Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3335  }
3336  return false;
3337}
3338
3339//===----------------------------------------------------------------------===//
3340// Other Instructions.
3341//===----------------------------------------------------------------------===//
3342
3343
3344/// ParseCast
3345///   ::= CastOpc TypeAndValue 'to' Type
3346bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3347                         unsigned Opc) {
3348  LocTy Loc;
3349  Value *Op;
3350  Type *DestTy = 0;
3351  if (ParseTypeAndValue(Op, Loc, PFS) ||
3352      ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3353      ParseType(DestTy))
3354    return true;
3355
3356  if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3357    CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3358    return Error(Loc, "invalid cast opcode for cast from '" +
3359                 getTypeString(Op->getType()) + "' to '" +
3360                 getTypeString(DestTy) + "'");
3361  }
3362  Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3363  return false;
3364}
3365
3366/// ParseSelect
3367///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3368bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3369  LocTy Loc;
3370  Value *Op0, *Op1, *Op2;
3371  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3372      ParseToken(lltok::comma, "expected ',' after select condition") ||
3373      ParseTypeAndValue(Op1, PFS) ||
3374      ParseToken(lltok::comma, "expected ',' after select value") ||
3375      ParseTypeAndValue(Op2, PFS))
3376    return true;
3377
3378  if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3379    return Error(Loc, Reason);
3380
3381  Inst = SelectInst::Create(Op0, Op1, Op2);
3382  return false;
3383}
3384
3385/// ParseVA_Arg
3386///   ::= 'va_arg' TypeAndValue ',' Type
3387bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3388  Value *Op;
3389  Type *EltTy = 0;
3390  LocTy TypeLoc;
3391  if (ParseTypeAndValue(Op, PFS) ||
3392      ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3393      ParseType(EltTy, TypeLoc))
3394    return true;
3395
3396  if (!EltTy->isFirstClassType())
3397    return Error(TypeLoc, "va_arg requires operand with first class type");
3398
3399  Inst = new VAArgInst(Op, EltTy);
3400  return false;
3401}
3402
3403/// ParseExtractElement
3404///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
3405bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3406  LocTy Loc;
3407  Value *Op0, *Op1;
3408  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3409      ParseToken(lltok::comma, "expected ',' after extract value") ||
3410      ParseTypeAndValue(Op1, PFS))
3411    return true;
3412
3413  if (!ExtractElementInst::isValidOperands(Op0, Op1))
3414    return Error(Loc, "invalid extractelement operands");
3415
3416  Inst = ExtractElementInst::Create(Op0, Op1);
3417  return false;
3418}
3419
3420/// ParseInsertElement
3421///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3422bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3423  LocTy Loc;
3424  Value *Op0, *Op1, *Op2;
3425  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3426      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3427      ParseTypeAndValue(Op1, PFS) ||
3428      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3429      ParseTypeAndValue(Op2, PFS))
3430    return true;
3431
3432  if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3433    return Error(Loc, "invalid insertelement operands");
3434
3435  Inst = InsertElementInst::Create(Op0, Op1, Op2);
3436  return false;
3437}
3438
3439/// ParseShuffleVector
3440///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3441bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3442  LocTy Loc;
3443  Value *Op0, *Op1, *Op2;
3444  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3445      ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3446      ParseTypeAndValue(Op1, PFS) ||
3447      ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3448      ParseTypeAndValue(Op2, PFS))
3449    return true;
3450
3451  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3452    return Error(Loc, "invalid extractelement operands");
3453
3454  Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3455  return false;
3456}
3457
3458/// ParsePHI
3459///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
3460int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3461  Type *Ty = 0;  LocTy TypeLoc;
3462  Value *Op0, *Op1;
3463
3464  if (ParseType(Ty, TypeLoc) ||
3465      ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3466      ParseValue(Ty, Op0, PFS) ||
3467      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3468      ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3469      ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3470    return true;
3471
3472  bool AteExtraComma = false;
3473  SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3474  while (1) {
3475    PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3476
3477    if (!EatIfPresent(lltok::comma))
3478      break;
3479
3480    if (Lex.getKind() == lltok::MetadataVar) {
3481      AteExtraComma = true;
3482      break;
3483    }
3484
3485    if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3486        ParseValue(Ty, Op0, PFS) ||
3487        ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3488        ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3489        ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3490      return true;
3491  }
3492
3493  if (!Ty->isFirstClassType())
3494    return Error(TypeLoc, "phi node must have first class type");
3495
3496  PHINode *PN = PHINode::Create(Ty, PHIVals.size());
3497  for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3498    PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3499  Inst = PN;
3500  return AteExtraComma ? InstExtraComma : InstNormal;
3501}
3502
3503/// ParseLandingPad
3504///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
3505/// Clause
3506///   ::= 'catch' TypeAndValue
3507///   ::= 'filter'
3508///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
3509bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
3510  Type *Ty = 0; LocTy TyLoc;
3511  Value *PersFn; LocTy PersFnLoc;
3512
3513  if (ParseType(Ty, TyLoc) ||
3514      ParseToken(lltok::kw_personality, "expected 'personality'") ||
3515      ParseTypeAndValue(PersFn, PersFnLoc, PFS))
3516    return true;
3517
3518  LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, 0);
3519  LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
3520
3521  while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
3522    LandingPadInst::ClauseType CT;
3523    if (EatIfPresent(lltok::kw_catch))
3524      CT = LandingPadInst::Catch;
3525    else if (EatIfPresent(lltok::kw_filter))
3526      CT = LandingPadInst::Filter;
3527    else
3528      return TokError("expected 'catch' or 'filter' clause type");
3529
3530    Value *V; LocTy VLoc;
3531    if (ParseTypeAndValue(V, VLoc, PFS)) {
3532      delete LP;
3533      return true;
3534    }
3535
3536    // A 'catch' type expects a non-array constant. A filter clause expects an
3537    // array constant.
3538    if (CT == LandingPadInst::Catch) {
3539      if (isa<ArrayType>(V->getType()))
3540        Error(VLoc, "'catch' clause has an invalid type");
3541    } else {
3542      if (!isa<ArrayType>(V->getType()))
3543        Error(VLoc, "'filter' clause has an invalid type");
3544    }
3545
3546    LP->addClause(V);
3547  }
3548
3549  Inst = LP;
3550  return false;
3551}
3552
3553/// ParseCall
3554///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3555///       ParameterList OptionalAttrs
3556bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3557                         bool isTail) {
3558  unsigned RetAttrs, FnAttrs;
3559  CallingConv::ID CC;
3560  Type *RetType = 0;
3561  LocTy RetTypeLoc;
3562  ValID CalleeID;
3563  SmallVector<ParamInfo, 16> ArgList;
3564  LocTy CallLoc = Lex.getLoc();
3565
3566  if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3567      ParseOptionalCallingConv(CC) ||
3568      ParseOptionalAttrs(RetAttrs, 1) ||
3569      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3570      ParseValID(CalleeID) ||
3571      ParseParameterList(ArgList, PFS) ||
3572      ParseOptionalAttrs(FnAttrs, 2))
3573    return true;
3574
3575  // If RetType is a non-function pointer type, then this is the short syntax
3576  // for the call, which means that RetType is just the return type.  Infer the
3577  // rest of the function argument types from the arguments that are present.
3578  PointerType *PFTy = 0;
3579  FunctionType *Ty = 0;
3580  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3581      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3582    // Pull out the types of all of the arguments...
3583    std::vector<Type*> ParamTypes;
3584    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3585      ParamTypes.push_back(ArgList[i].V->getType());
3586
3587    if (!FunctionType::isValidReturnType(RetType))
3588      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3589
3590    Ty = FunctionType::get(RetType, ParamTypes, false);
3591    PFTy = PointerType::getUnqual(Ty);
3592  }
3593
3594  // Look up the callee.
3595  Value *Callee;
3596  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3597
3598  // Set up the Attributes for the function.
3599  SmallVector<AttributeWithIndex, 8> Attrs;
3600  if (RetAttrs != Attribute::None)
3601    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3602
3603  SmallVector<Value*, 8> Args;
3604
3605  // Loop through FunctionType's arguments and ensure they are specified
3606  // correctly.  Also, gather any parameter attributes.
3607  FunctionType::param_iterator I = Ty->param_begin();
3608  FunctionType::param_iterator E = Ty->param_end();
3609  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3610    Type *ExpectedTy = 0;
3611    if (I != E) {
3612      ExpectedTy = *I++;
3613    } else if (!Ty->isVarArg()) {
3614      return Error(ArgList[i].Loc, "too many arguments specified");
3615    }
3616
3617    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3618      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3619                   getTypeString(ExpectedTy) + "'");
3620    Args.push_back(ArgList[i].V);
3621    if (ArgList[i].Attrs != Attribute::None)
3622      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3623  }
3624
3625  if (I != E)
3626    return Error(CallLoc, "not enough parameters specified for call");
3627
3628  if (FnAttrs != Attribute::None)
3629    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3630
3631  // Finish off the Attributes and check them
3632  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3633
3634  CallInst *CI = CallInst::Create(Callee, Args);
3635  CI->setTailCall(isTail);
3636  CI->setCallingConv(CC);
3637  CI->setAttributes(PAL);
3638  Inst = CI;
3639  return false;
3640}
3641
3642//===----------------------------------------------------------------------===//
3643// Memory Instructions.
3644//===----------------------------------------------------------------------===//
3645
3646/// ParseAlloc
3647///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
3648int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
3649  Value *Size = 0;
3650  LocTy SizeLoc;
3651  unsigned Alignment = 0;
3652  Type *Ty = 0;
3653  if (ParseType(Ty)) return true;
3654
3655  bool AteExtraComma = false;
3656  if (EatIfPresent(lltok::comma)) {
3657    if (Lex.getKind() == lltok::kw_align) {
3658      if (ParseOptionalAlignment(Alignment)) return true;
3659    } else if (Lex.getKind() == lltok::MetadataVar) {
3660      AteExtraComma = true;
3661    } else {
3662      if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
3663          ParseOptionalCommaAlign(Alignment, AteExtraComma))
3664        return true;
3665    }
3666  }
3667
3668  if (Size && !Size->getType()->isIntegerTy())
3669    return Error(SizeLoc, "element count must have integer type");
3670
3671  Inst = new AllocaInst(Ty, Size, Alignment);
3672  return AteExtraComma ? InstExtraComma : InstNormal;
3673}
3674
3675/// ParseLoad
3676///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
3677///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
3678///       'singlethread'? AtomicOrdering (',' 'align' i32)?
3679int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
3680  Value *Val; LocTy Loc;
3681  unsigned Alignment = 0;
3682  bool AteExtraComma = false;
3683  bool isAtomic = false;
3684  AtomicOrdering Ordering = NotAtomic;
3685  SynchronizationScope Scope = CrossThread;
3686
3687  if (Lex.getKind() == lltok::kw_atomic) {
3688    isAtomic = true;
3689    Lex.Lex();
3690  }
3691
3692  bool isVolatile = false;
3693  if (Lex.getKind() == lltok::kw_volatile) {
3694    isVolatile = true;
3695    Lex.Lex();
3696  }
3697
3698  if (ParseTypeAndValue(Val, Loc, PFS) ||
3699      ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
3700      ParseOptionalCommaAlign(Alignment, AteExtraComma))
3701    return true;
3702
3703  if (!Val->getType()->isPointerTy() ||
3704      !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3705    return Error(Loc, "load operand must be a pointer to a first class type");
3706  if (isAtomic && !Alignment)
3707    return Error(Loc, "atomic load must have explicit non-zero alignment");
3708  if (Ordering == Release || Ordering == AcquireRelease)
3709    return Error(Loc, "atomic load cannot use Release ordering");
3710
3711  Inst = new LoadInst(Val, "", isVolatile, Alignment, Ordering, Scope);
3712  return AteExtraComma ? InstExtraComma : InstNormal;
3713}
3714
3715/// ParseStore
3716
3717///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3718///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
3719///       'singlethread'? AtomicOrdering (',' 'align' i32)?
3720int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
3721  Value *Val, *Ptr; LocTy Loc, PtrLoc;
3722  unsigned Alignment = 0;
3723  bool AteExtraComma = false;
3724  bool isAtomic = false;
3725  AtomicOrdering Ordering = NotAtomic;
3726  SynchronizationScope Scope = CrossThread;
3727
3728  if (Lex.getKind() == lltok::kw_atomic) {
3729    isAtomic = true;
3730    Lex.Lex();
3731  }
3732
3733  bool isVolatile = false;
3734  if (Lex.getKind() == lltok::kw_volatile) {
3735    isVolatile = true;
3736    Lex.Lex();
3737  }
3738
3739  if (ParseTypeAndValue(Val, Loc, PFS) ||
3740      ParseToken(lltok::comma, "expected ',' after store operand") ||
3741      ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3742      ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
3743      ParseOptionalCommaAlign(Alignment, AteExtraComma))
3744    return true;
3745
3746  if (!Ptr->getType()->isPointerTy())
3747    return Error(PtrLoc, "store operand must be a pointer");
3748  if (!Val->getType()->isFirstClassType())
3749    return Error(Loc, "store operand must be a first class value");
3750  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3751    return Error(Loc, "stored value and pointer type do not match");
3752  if (isAtomic && !Alignment)
3753    return Error(Loc, "atomic store must have explicit non-zero alignment");
3754  if (Ordering == Acquire || Ordering == AcquireRelease)
3755    return Error(Loc, "atomic store cannot use Acquire ordering");
3756
3757  Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
3758  return AteExtraComma ? InstExtraComma : InstNormal;
3759}
3760
3761/// ParseCmpXchg
3762///   ::= 'cmpxchg' 'volatile'? TypeAndValue ',' TypeAndValue ',' TypeAndValue
3763///       'singlethread'? AtomicOrdering
3764int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
3765  Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
3766  bool AteExtraComma = false;
3767  AtomicOrdering Ordering = NotAtomic;
3768  SynchronizationScope Scope = CrossThread;
3769  bool isVolatile = false;
3770
3771  if (EatIfPresent(lltok::kw_volatile))
3772    isVolatile = true;
3773
3774  if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3775      ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
3776      ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
3777      ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
3778      ParseTypeAndValue(New, NewLoc, PFS) ||
3779      ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
3780    return true;
3781
3782  if (Ordering == Unordered)
3783    return TokError("cmpxchg cannot be unordered");
3784  if (!Ptr->getType()->isPointerTy())
3785    return Error(PtrLoc, "cmpxchg operand must be a pointer");
3786  if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
3787    return Error(CmpLoc, "compare value and pointer type do not match");
3788  if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
3789    return Error(NewLoc, "new value and pointer type do not match");
3790  if (!New->getType()->isIntegerTy())
3791    return Error(NewLoc, "cmpxchg operand must be an integer");
3792  unsigned Size = New->getType()->getPrimitiveSizeInBits();
3793  if (Size < 8 || (Size & (Size - 1)))
3794    return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized"
3795                         " integer");
3796
3797  AtomicCmpXchgInst *CXI =
3798    new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Scope);
3799  CXI->setVolatile(isVolatile);
3800  Inst = CXI;
3801  return AteExtraComma ? InstExtraComma : InstNormal;
3802}
3803
3804/// ParseAtomicRMW
3805///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
3806///       'singlethread'? AtomicOrdering
3807int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
3808  Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
3809  bool AteExtraComma = false;
3810  AtomicOrdering Ordering = NotAtomic;
3811  SynchronizationScope Scope = CrossThread;
3812  bool isVolatile = false;
3813  AtomicRMWInst::BinOp Operation;
3814
3815  if (EatIfPresent(lltok::kw_volatile))
3816    isVolatile = true;
3817
3818  switch (Lex.getKind()) {
3819  default: return TokError("expected binary operation in atomicrmw");
3820  case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
3821  case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
3822  case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
3823  case lltok::kw_and: Operation = AtomicRMWInst::And; break;
3824  case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
3825  case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
3826  case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
3827  case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
3828  case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
3829  case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
3830  case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
3831  }
3832  Lex.Lex();  // Eat the operation.
3833
3834  if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3835      ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
3836      ParseTypeAndValue(Val, ValLoc, PFS) ||
3837      ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
3838    return true;
3839
3840  if (Ordering == Unordered)
3841    return TokError("atomicrmw cannot be unordered");
3842  if (!Ptr->getType()->isPointerTy())
3843    return Error(PtrLoc, "atomicrmw operand must be a pointer");
3844  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3845    return Error(ValLoc, "atomicrmw value and pointer type do not match");
3846  if (!Val->getType()->isIntegerTy())
3847    return Error(ValLoc, "atomicrmw operand must be an integer");
3848  unsigned Size = Val->getType()->getPrimitiveSizeInBits();
3849  if (Size < 8 || (Size & (Size - 1)))
3850    return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
3851                         " integer");
3852
3853  AtomicRMWInst *RMWI =
3854    new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
3855  RMWI->setVolatile(isVolatile);
3856  Inst = RMWI;
3857  return AteExtraComma ? InstExtraComma : InstNormal;
3858}
3859
3860/// ParseFence
3861///   ::= 'fence' 'singlethread'? AtomicOrdering
3862int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
3863  AtomicOrdering Ordering = NotAtomic;
3864  SynchronizationScope Scope = CrossThread;
3865  if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
3866    return true;
3867
3868  if (Ordering == Unordered)
3869    return TokError("fence cannot be unordered");
3870  if (Ordering == Monotonic)
3871    return TokError("fence cannot be monotonic");
3872
3873  Inst = new FenceInst(Context, Ordering, Scope);
3874  return InstNormal;
3875}
3876
3877/// ParseGetElementPtr
3878///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
3879int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3880  Value *Ptr, *Val; LocTy Loc, EltLoc;
3881
3882  bool InBounds = EatIfPresent(lltok::kw_inbounds);
3883
3884  if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3885
3886  if (!Ptr->getType()->isPointerTy())
3887    return Error(Loc, "base of getelementptr must be a pointer");
3888
3889  SmallVector<Value*, 16> Indices;
3890  bool AteExtraComma = false;
3891  while (EatIfPresent(lltok::comma)) {
3892    if (Lex.getKind() == lltok::MetadataVar) {
3893      AteExtraComma = true;
3894      break;
3895    }
3896    if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3897    if (!Val->getType()->isIntegerTy())
3898      return Error(EltLoc, "getelementptr index must be an integer");
3899    Indices.push_back(Val);
3900  }
3901
3902  if (!GetElementPtrInst::getIndexedType(Ptr->getType(), Indices))
3903    return Error(Loc, "invalid getelementptr indices");
3904  Inst = GetElementPtrInst::Create(Ptr, Indices);
3905  if (InBounds)
3906    cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
3907  return AteExtraComma ? InstExtraComma : InstNormal;
3908}
3909
3910/// ParseExtractValue
3911///   ::= 'extractvalue' TypeAndValue (',' uint32)+
3912int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3913  Value *Val; LocTy Loc;
3914  SmallVector<unsigned, 4> Indices;
3915  bool AteExtraComma;
3916  if (ParseTypeAndValue(Val, Loc, PFS) ||
3917      ParseIndexList(Indices, AteExtraComma))
3918    return true;
3919
3920  if (!Val->getType()->isAggregateType())
3921    return Error(Loc, "extractvalue operand must be aggregate type");
3922
3923  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3924    return Error(Loc, "invalid indices for extractvalue");
3925  Inst = ExtractValueInst::Create(Val, Indices);
3926  return AteExtraComma ? InstExtraComma : InstNormal;
3927}
3928
3929/// ParseInsertValue
3930///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3931int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3932  Value *Val0, *Val1; LocTy Loc0, Loc1;
3933  SmallVector<unsigned, 4> Indices;
3934  bool AteExtraComma;
3935  if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3936      ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3937      ParseTypeAndValue(Val1, Loc1, PFS) ||
3938      ParseIndexList(Indices, AteExtraComma))
3939    return true;
3940
3941  if (!Val0->getType()->isAggregateType())
3942    return Error(Loc0, "insertvalue operand must be aggregate type");
3943
3944  if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
3945    return Error(Loc0, "invalid indices for insertvalue");
3946  Inst = InsertValueInst::Create(Val0, Val1, Indices);
3947  return AteExtraComma ? InstExtraComma : InstNormal;
3948}
3949
3950//===----------------------------------------------------------------------===//
3951// Embedded metadata.
3952//===----------------------------------------------------------------------===//
3953
3954/// ParseMDNodeVector
3955///   ::= Element (',' Element)*
3956/// Element
3957///   ::= 'null' | TypeAndValue
3958bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts,
3959                                 PerFunctionState *PFS) {
3960  // Check for an empty list.
3961  if (Lex.getKind() == lltok::rbrace)
3962    return false;
3963
3964  do {
3965    // Null is a special case since it is typeless.
3966    if (EatIfPresent(lltok::kw_null)) {
3967      Elts.push_back(0);
3968      continue;
3969    }
3970
3971    Value *V = 0;
3972    if (ParseTypeAndValue(V, PFS)) return true;
3973    Elts.push_back(V);
3974  } while (EatIfPresent(lltok::comma));
3975
3976  return false;
3977}
3978