MachineVerifier.cpp revision 324da7647cfc3025e0c987176f0a300f9f780e6f
1//===-- MachineVerifier.cpp - Machine Code Verifier -------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Pass to verify generated machine code. The following is checked:
11//
12// Operand counts: All explicit operands must be present.
13//
14// Register classes: All physical and virtual register operands must be
15// compatible with the register class required by the instruction descriptor.
16//
17// Register live intervals: Registers must be defined only once, and must be
18// defined before use.
19//
20// The machine code verifier is enabled from LLVMTargetMachine.cpp with the
21// command-line option -verify-machineinstrs, or by defining the environment
22// variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
23// the verifier errors.
24//===----------------------------------------------------------------------===//
25
26#include "llvm/Function.h"
27#include "llvm/CodeGen/LiveVariables.h"
28#include "llvm/CodeGen/MachineFunctionPass.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineMemOperand.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/CodeGen/Passes.h"
33#include "llvm/Target/TargetMachine.h"
34#include "llvm/Target/TargetRegisterInfo.h"
35#include "llvm/Target/TargetInstrInfo.h"
36#include "llvm/ADT/DenseSet.h"
37#include "llvm/ADT/SetOperations.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/raw_ostream.h"
42using namespace llvm;
43
44namespace {
45  struct MachineVerifier {
46
47    MachineVerifier(Pass *pass, bool allowDoubleDefs) :
48      PASS(pass),
49      allowVirtDoubleDefs(allowDoubleDefs),
50      allowPhysDoubleDefs(allowDoubleDefs),
51      OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS"))
52      {}
53
54    bool runOnMachineFunction(MachineFunction &MF);
55
56    Pass *const PASS;
57    const bool allowVirtDoubleDefs;
58    const bool allowPhysDoubleDefs;
59
60    const char *const OutFileName;
61    raw_ostream *OS;
62    const MachineFunction *MF;
63    const TargetMachine *TM;
64    const TargetRegisterInfo *TRI;
65    const MachineRegisterInfo *MRI;
66
67    unsigned foundErrors;
68
69    typedef SmallVector<unsigned, 16> RegVector;
70    typedef DenseSet<unsigned> RegSet;
71    typedef DenseMap<unsigned, const MachineInstr*> RegMap;
72
73    BitVector regsReserved;
74    RegSet regsLive;
75    RegVector regsDefined, regsDead, regsKilled;
76    RegSet regsLiveInButUnused;
77
78    // Add Reg and any sub-registers to RV
79    void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
80      RV.push_back(Reg);
81      if (TargetRegisterInfo::isPhysicalRegister(Reg))
82        for (const unsigned *R = TRI->getSubRegisters(Reg); *R; R++)
83          RV.push_back(*R);
84    }
85
86    struct BBInfo {
87      // Is this MBB reachable from the MF entry point?
88      bool reachable;
89
90      // Vregs that must be live in because they are used without being
91      // defined. Map value is the user.
92      RegMap vregsLiveIn;
93
94      // Vregs that must be dead in because they are defined without being
95      // killed first. Map value is the defining instruction.
96      RegMap vregsDeadIn;
97
98      // Regs killed in MBB. They may be defined again, and will then be in both
99      // regsKilled and regsLiveOut.
100      RegSet regsKilled;
101
102      // Regs defined in MBB and live out. Note that vregs passing through may
103      // be live out without being mentioned here.
104      RegSet regsLiveOut;
105
106      // Vregs that pass through MBB untouched. This set is disjoint from
107      // regsKilled and regsLiveOut.
108      RegSet vregsPassed;
109
110      // Vregs that must pass through MBB because they are needed by a successor
111      // block. This set is disjoint from regsLiveOut.
112      RegSet vregsRequired;
113
114      BBInfo() : reachable(false) {}
115
116      // Add register to vregsPassed if it belongs there. Return true if
117      // anything changed.
118      bool addPassed(unsigned Reg) {
119        if (!TargetRegisterInfo::isVirtualRegister(Reg))
120          return false;
121        if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
122          return false;
123        return vregsPassed.insert(Reg).second;
124      }
125
126      // Same for a full set.
127      bool addPassed(const RegSet &RS) {
128        bool changed = false;
129        for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
130          if (addPassed(*I))
131            changed = true;
132        return changed;
133      }
134
135      // Add register to vregsRequired if it belongs there. Return true if
136      // anything changed.
137      bool addRequired(unsigned Reg) {
138        if (!TargetRegisterInfo::isVirtualRegister(Reg))
139          return false;
140        if (regsLiveOut.count(Reg))
141          return false;
142        return vregsRequired.insert(Reg).second;
143      }
144
145      // Same for a full set.
146      bool addRequired(const RegSet &RS) {
147        bool changed = false;
148        for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
149          if (addRequired(*I))
150            changed = true;
151        return changed;
152      }
153
154      // Same for a full map.
155      bool addRequired(const RegMap &RM) {
156        bool changed = false;
157        for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
158          if (addRequired(I->first))
159            changed = true;
160        return changed;
161      }
162
163      // Live-out registers are either in regsLiveOut or vregsPassed.
164      bool isLiveOut(unsigned Reg) const {
165        return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
166      }
167    };
168
169    // Extra register info per MBB.
170    DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
171
172    bool isReserved(unsigned Reg) {
173      return Reg < regsReserved.size() && regsReserved.test(Reg);
174    }
175
176    // Analysis information if available
177    LiveVariables *LiveVars;
178
179    void visitMachineFunctionBefore();
180    void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
181    void visitMachineInstrBefore(const MachineInstr *MI);
182    void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
183    void visitMachineInstrAfter(const MachineInstr *MI);
184    void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
185    void visitMachineFunctionAfter();
186
187    void report(const char *msg, const MachineFunction *MF);
188    void report(const char *msg, const MachineBasicBlock *MBB);
189    void report(const char *msg, const MachineInstr *MI);
190    void report(const char *msg, const MachineOperand *MO, unsigned MONum);
191
192    void markReachable(const MachineBasicBlock *MBB);
193    void calcMaxRegsPassed();
194    void calcMinRegsPassed();
195    void checkPHIOps(const MachineBasicBlock *MBB);
196
197    void calcRegsRequired();
198    void verifyLiveVariables();
199  };
200
201  struct MachineVerifierPass : public MachineFunctionPass {
202    static char ID; // Pass ID, replacement for typeid
203    bool AllowDoubleDefs;
204
205    explicit MachineVerifierPass(bool allowDoubleDefs = false)
206      : MachineFunctionPass(&ID),
207        AllowDoubleDefs(allowDoubleDefs) {}
208
209    void getAnalysisUsage(AnalysisUsage &AU) const {
210      AU.setPreservesAll();
211      MachineFunctionPass::getAnalysisUsage(AU);
212    }
213
214    bool runOnMachineFunction(MachineFunction &MF) {
215      MF.verify(this, AllowDoubleDefs);
216      return false;
217    }
218  };
219
220}
221
222char MachineVerifierPass::ID = 0;
223static RegisterPass<MachineVerifierPass>
224MachineVer("machineverifier", "Verify generated machine code");
225static const PassInfo *const MachineVerifyID = &MachineVer;
226
227FunctionPass *llvm::createMachineVerifierPass(bool allowPhysDoubleDefs) {
228  return new MachineVerifierPass(allowPhysDoubleDefs);
229}
230
231void MachineFunction::verify(Pass *p, bool allowDoubleDefs) const {
232  MachineVerifier(p, allowDoubleDefs)
233    .runOnMachineFunction(const_cast<MachineFunction&>(*this));
234}
235
236bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) {
237  raw_ostream *OutFile = 0;
238  if (OutFileName) {
239    std::string ErrorInfo;
240    OutFile = new raw_fd_ostream(OutFileName, ErrorInfo,
241                                 raw_fd_ostream::F_Append);
242    if (!ErrorInfo.empty()) {
243      errs() << "Error opening '" << OutFileName << "': " << ErrorInfo << '\n';
244      exit(1);
245    }
246
247    OS = OutFile;
248  } else {
249    OS = &errs();
250  }
251
252  foundErrors = 0;
253
254  this->MF = &MF;
255  TM = &MF.getTarget();
256  TRI = TM->getRegisterInfo();
257  MRI = &MF.getRegInfo();
258
259  if (PASS) {
260    LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
261  } else {
262    LiveVars = NULL;
263  }
264
265  visitMachineFunctionBefore();
266  for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
267       MFI!=MFE; ++MFI) {
268    visitMachineBasicBlockBefore(MFI);
269    for (MachineBasicBlock::const_iterator MBBI = MFI->begin(),
270           MBBE = MFI->end(); MBBI != MBBE; ++MBBI) {
271      visitMachineInstrBefore(MBBI);
272      for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I)
273        visitMachineOperand(&MBBI->getOperand(I), I);
274      visitMachineInstrAfter(MBBI);
275    }
276    visitMachineBasicBlockAfter(MFI);
277  }
278  visitMachineFunctionAfter();
279
280  if (OutFile)
281    delete OutFile;
282  else if (foundErrors)
283    llvm_report_error("Found "+Twine(foundErrors)+" machine code errors.");
284
285  // Clean up.
286  regsLive.clear();
287  regsDefined.clear();
288  regsDead.clear();
289  regsKilled.clear();
290  regsLiveInButUnused.clear();
291  MBBInfoMap.clear();
292
293  return false;                 // no changes
294}
295
296void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
297  assert(MF);
298  *OS << '\n';
299  if (!foundErrors++)
300    MF->print(*OS);
301  *OS << "*** Bad machine code: " << msg << " ***\n"
302      << "- function:    " << MF->getFunction()->getNameStr() << "\n";
303}
304
305void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
306  assert(MBB);
307  report(msg, MBB->getParent());
308  *OS << "- basic block: " << MBB->getName()
309      << " " << (void*)MBB
310      << " (BB#" << MBB->getNumber() << ")\n";
311}
312
313void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
314  assert(MI);
315  report(msg, MI->getParent());
316  *OS << "- instruction: ";
317  MI->print(*OS, TM);
318}
319
320void MachineVerifier::report(const char *msg,
321                             const MachineOperand *MO, unsigned MONum) {
322  assert(MO);
323  report(msg, MO->getParent());
324  *OS << "- operand " << MONum << ":   ";
325  MO->print(*OS, TM);
326  *OS << "\n";
327}
328
329void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
330  BBInfo &MInfo = MBBInfoMap[MBB];
331  if (!MInfo.reachable) {
332    MInfo.reachable = true;
333    for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
334           SuE = MBB->succ_end(); SuI != SuE; ++SuI)
335      markReachable(*SuI);
336  }
337}
338
339void MachineVerifier::visitMachineFunctionBefore() {
340  regsReserved = TRI->getReservedRegs(*MF);
341
342  // A sub-register of a reserved register is also reserved
343  for (int Reg = regsReserved.find_first(); Reg>=0;
344       Reg = regsReserved.find_next(Reg)) {
345    for (const unsigned *Sub = TRI->getSubRegisters(Reg); *Sub; ++Sub) {
346      // FIXME: This should probably be:
347      // assert(regsReserved.test(*Sub) && "Non-reserved sub-register");
348      regsReserved.set(*Sub);
349    }
350  }
351  markReachable(&MF->front());
352}
353
354// Does iterator point to a and b as the first two elements?
355bool matchPair(MachineBasicBlock::const_succ_iterator i,
356               const MachineBasicBlock *a, const MachineBasicBlock *b) {
357  if (*i == a)
358    return *++i == b;
359  if (*i == b)
360    return *++i == a;
361  return false;
362}
363
364void
365MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
366  const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
367
368  // Start with minimal CFG sanity checks.
369  MachineFunction::const_iterator MBBI = MBB;
370  ++MBBI;
371  if (MBBI != MF->end()) {
372    // Block is not last in function.
373    if (!MBB->isSuccessor(MBBI)) {
374      // Block does not fall through.
375      if (MBB->empty()) {
376        report("MBB doesn't fall through but is empty!", MBB);
377      }
378    }
379    if (TII->BlockHasNoFallThrough(*MBB)) {
380      if (MBB->empty()) {
381        report("TargetInstrInfo says the block has no fall through, but the "
382               "block is empty!", MBB);
383      } else if (!MBB->back().getDesc().isBarrier()) {
384        report("TargetInstrInfo says the block has no fall through, but the "
385               "block does not end in a barrier!", MBB);
386      }
387    }
388  } else {
389    // Block is last in function.
390    if (MBB->empty()) {
391      report("MBB is last in function but is empty!", MBB);
392    }
393  }
394
395  // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
396  MachineBasicBlock *TBB = 0, *FBB = 0;
397  SmallVector<MachineOperand, 4> Cond;
398  if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB),
399                          TBB, FBB, Cond)) {
400    // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
401    // check whether its answers match up with reality.
402    if (!TBB && !FBB) {
403      // Block falls through to its successor.
404      MachineFunction::const_iterator MBBI = MBB;
405      ++MBBI;
406      if (MBBI == MF->end()) {
407        // It's possible that the block legitimately ends with a noreturn
408        // call or an unreachable, in which case it won't actually fall
409        // out the bottom of the function.
410      } else if (MBB->succ_empty()) {
411        // It's possible that the block legitimately ends with a noreturn
412        // call or an unreachable, in which case it won't actuall fall
413        // out of the block.
414      } else if (MBB->succ_size() != 1) {
415        report("MBB exits via unconditional fall-through but doesn't have "
416               "exactly one CFG successor!", MBB);
417      } else if (MBB->succ_begin()[0] != MBBI) {
418        report("MBB exits via unconditional fall-through but its successor "
419               "differs from its CFG successor!", MBB);
420      }
421      if (!MBB->empty() && MBB->back().getDesc().isBarrier()) {
422        report("MBB exits via unconditional fall-through but ends with a "
423               "barrier instruction!", MBB);
424      }
425      if (!Cond.empty()) {
426        report("MBB exits via unconditional fall-through but has a condition!",
427               MBB);
428      }
429    } else if (TBB && !FBB && Cond.empty()) {
430      // Block unconditionally branches somewhere.
431      if (MBB->succ_size() != 1) {
432        report("MBB exits via unconditional branch but doesn't have "
433               "exactly one CFG successor!", MBB);
434      } else if (MBB->succ_begin()[0] != TBB) {
435        report("MBB exits via unconditional branch but the CFG "
436               "successor doesn't match the actual successor!", MBB);
437      }
438      if (MBB->empty()) {
439        report("MBB exits via unconditional branch but doesn't contain "
440               "any instructions!", MBB);
441      } else if (!MBB->back().getDesc().isBarrier()) {
442        report("MBB exits via unconditional branch but doesn't end with a "
443               "barrier instruction!", MBB);
444      } else if (!MBB->back().getDesc().isTerminator()) {
445        report("MBB exits via unconditional branch but the branch isn't a "
446               "terminator instruction!", MBB);
447      }
448    } else if (TBB && !FBB && !Cond.empty()) {
449      // Block conditionally branches somewhere, otherwise falls through.
450      MachineFunction::const_iterator MBBI = MBB;
451      ++MBBI;
452      if (MBBI == MF->end()) {
453        report("MBB conditionally falls through out of function!", MBB);
454      } if (MBB->succ_size() != 2) {
455        report("MBB exits via conditional branch/fall-through but doesn't have "
456               "exactly two CFG successors!", MBB);
457      } else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) {
458        report("MBB exits via conditional branch/fall-through but the CFG "
459               "successors don't match the actual successors!", MBB);
460      }
461      if (MBB->empty()) {
462        report("MBB exits via conditional branch/fall-through but doesn't "
463               "contain any instructions!", MBB);
464      } else if (MBB->back().getDesc().isBarrier()) {
465        report("MBB exits via conditional branch/fall-through but ends with a "
466               "barrier instruction!", MBB);
467      } else if (!MBB->back().getDesc().isTerminator()) {
468        report("MBB exits via conditional branch/fall-through but the branch "
469               "isn't a terminator instruction!", MBB);
470      }
471    } else if (TBB && FBB) {
472      // Block conditionally branches somewhere, otherwise branches
473      // somewhere else.
474      if (MBB->succ_size() != 2) {
475        report("MBB exits via conditional branch/branch but doesn't have "
476               "exactly two CFG successors!", MBB);
477      } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
478        report("MBB exits via conditional branch/branch but the CFG "
479               "successors don't match the actual successors!", MBB);
480      }
481      if (MBB->empty()) {
482        report("MBB exits via conditional branch/branch but doesn't "
483               "contain any instructions!", MBB);
484      } else if (!MBB->back().getDesc().isBarrier()) {
485        report("MBB exits via conditional branch/branch but doesn't end with a "
486               "barrier instruction!", MBB);
487      } else if (!MBB->back().getDesc().isTerminator()) {
488        report("MBB exits via conditional branch/branch but the branch "
489               "isn't a terminator instruction!", MBB);
490      }
491      if (Cond.empty()) {
492        report("MBB exits via conditinal branch/branch but there's no "
493               "condition!", MBB);
494      }
495    } else {
496      report("AnalyzeBranch returned invalid data!", MBB);
497    }
498  }
499
500  regsLive.clear();
501  for (MachineBasicBlock::const_livein_iterator I = MBB->livein_begin(),
502         E = MBB->livein_end(); I != E; ++I) {
503    if (!TargetRegisterInfo::isPhysicalRegister(*I)) {
504      report("MBB live-in list contains non-physical register", MBB);
505      continue;
506    }
507    regsLive.insert(*I);
508    for (const unsigned *R = TRI->getSubRegisters(*I); *R; R++)
509      regsLive.insert(*R);
510  }
511  regsLiveInButUnused = regsLive;
512
513  const MachineFrameInfo *MFI = MF->getFrameInfo();
514  assert(MFI && "Function has no frame info");
515  BitVector PR = MFI->getPristineRegs(MBB);
516  for (int I = PR.find_first(); I>0; I = PR.find_next(I)) {
517    regsLive.insert(I);
518    for (const unsigned *R = TRI->getSubRegisters(I); *R; R++)
519      regsLive.insert(*R);
520  }
521
522  regsKilled.clear();
523  regsDefined.clear();
524}
525
526void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
527  const TargetInstrDesc &TI = MI->getDesc();
528  if (MI->getNumOperands() < TI.getNumOperands()) {
529    report("Too few operands", MI);
530    *OS << TI.getNumOperands() << " operands expected, but "
531        << MI->getNumExplicitOperands() << " given.\n";
532  }
533
534  // Check the MachineMemOperands for basic consistency.
535  for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
536       E = MI->memoperands_end(); I != E; ++I) {
537    if ((*I)->isLoad() && !TI.mayLoad())
538      report("Missing mayLoad flag", MI);
539    if ((*I)->isStore() && !TI.mayStore())
540      report("Missing mayStore flag", MI);
541  }
542}
543
544void
545MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
546  const MachineInstr *MI = MO->getParent();
547  const TargetInstrDesc &TI = MI->getDesc();
548
549  // The first TI.NumDefs operands must be explicit register defines
550  if (MONum < TI.getNumDefs()) {
551    if (!MO->isReg())
552      report("Explicit definition must be a register", MO, MONum);
553    else if (!MO->isDef())
554      report("Explicit definition marked as use", MO, MONum);
555    else if (MO->isImplicit())
556      report("Explicit definition marked as implicit", MO, MONum);
557  } else if (MONum < TI.getNumOperands()) {
558    if (MO->isReg()) {
559      if (MO->isDef())
560        report("Explicit operand marked as def", MO, MONum);
561      if (MO->isImplicit())
562        report("Explicit operand marked as implicit", MO, MONum);
563    }
564  } else {
565    if (MO->isReg() && !MO->isImplicit() && !TI.isVariadic())
566      report("Extra explicit operand on non-variadic instruction", MO, MONum);
567  }
568
569  switch (MO->getType()) {
570  case MachineOperand::MO_Register: {
571    const unsigned Reg = MO->getReg();
572    if (!Reg)
573      return;
574
575    // Check Live Variables.
576    if (MO->isUndef()) {
577      // An <undef> doesn't refer to any register, so just skip it.
578    } else if (MO->isUse()) {
579      regsLiveInButUnused.erase(Reg);
580
581      bool isKill = false;
582      if (MO->isKill()) {
583        isKill = true;
584        // Tied operands on two-address instuctions MUST NOT have a <kill> flag.
585        if (MI->isRegTiedToDefOperand(MONum))
586            report("Illegal kill flag on two-address instruction operand",
587                   MO, MONum);
588      } else {
589        // TwoAddress instr modifying a reg is treated as kill+def.
590        unsigned defIdx;
591        if (MI->isRegTiedToDefOperand(MONum, &defIdx) &&
592            MI->getOperand(defIdx).getReg() == Reg)
593          isKill = true;
594      }
595      if (isKill) {
596        addRegWithSubRegs(regsKilled, Reg);
597
598        // Check that LiveVars knows this kill
599        if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg)) {
600          LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
601          if (std::find(VI.Kills.begin(),
602                        VI.Kills.end(), MI) == VI.Kills.end())
603            report("Kill missing from LiveVariables", MO, MONum);
604        }
605      }
606
607      // Use of a dead register.
608      if (!regsLive.count(Reg)) {
609        if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
610          // Reserved registers may be used even when 'dead'.
611          if (!isReserved(Reg))
612            report("Using an undefined physical register", MO, MONum);
613        } else {
614          BBInfo &MInfo = MBBInfoMap[MI->getParent()];
615          // We don't know which virtual registers are live in, so only complain
616          // if vreg was killed in this MBB. Otherwise keep track of vregs that
617          // must be live in. PHI instructions are handled separately.
618          if (MInfo.regsKilled.count(Reg))
619            report("Using a killed virtual register", MO, MONum);
620          else if (MI->getOpcode() != TargetInstrInfo::PHI)
621            MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
622        }
623      }
624    } else {
625      assert(MO->isDef());
626      // Register defined.
627      // TODO: verify that earlyclobber ops are not used.
628      if (MO->isDead())
629        addRegWithSubRegs(regsDead, Reg);
630      else
631        addRegWithSubRegs(regsDefined, Reg);
632    }
633
634    // Check register classes.
635    if (MONum < TI.getNumOperands() && !MO->isImplicit()) {
636      const TargetOperandInfo &TOI = TI.OpInfo[MONum];
637      unsigned SubIdx = MO->getSubReg();
638
639      if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
640        unsigned sr = Reg;
641        if (SubIdx) {
642          unsigned s = TRI->getSubReg(Reg, SubIdx);
643          if (!s) {
644            report("Invalid subregister index for physical register",
645                   MO, MONum);
646            return;
647          }
648          sr = s;
649        }
650        if (const TargetRegisterClass *DRC = TOI.getRegClass(TRI)) {
651          if (!DRC->contains(sr)) {
652            report("Illegal physical register for instruction", MO, MONum);
653            *OS << TRI->getName(sr) << " is not a "
654                << DRC->getName() << " register.\n";
655          }
656        }
657      } else {
658        // Virtual register.
659        const TargetRegisterClass *RC = MRI->getRegClass(Reg);
660        if (SubIdx) {
661          if (RC->subregclasses_begin()+SubIdx >= RC->subregclasses_end()) {
662            report("Invalid subregister index for virtual register", MO, MONum);
663            return;
664          }
665          RC = *(RC->subregclasses_begin()+SubIdx);
666        }
667        if (const TargetRegisterClass *DRC = TOI.getRegClass(TRI)) {
668          if (RC != DRC && !RC->hasSuperClass(DRC)) {
669            report("Illegal virtual register for instruction", MO, MONum);
670            *OS << "Expected a " << DRC->getName() << " register, but got a "
671                << RC->getName() << " register\n";
672          }
673        }
674      }
675    }
676    break;
677  }
678
679  case MachineOperand::MO_MachineBasicBlock:
680    if (MI->getOpcode() == TargetInstrInfo::PHI) {
681      if (!MO->getMBB()->isSuccessor(MI->getParent()))
682        report("PHI operand is not in the CFG", MO, MONum);
683    }
684    break;
685
686  default:
687    break;
688  }
689}
690
691void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {
692  BBInfo &MInfo = MBBInfoMap[MI->getParent()];
693  set_union(MInfo.regsKilled, regsKilled);
694  set_subtract(regsLive, regsKilled);
695  regsKilled.clear();
696
697  // Verify that both <def> and <def,dead> operands refer to dead registers.
698  RegVector defs(regsDefined);
699  defs.append(regsDead.begin(), regsDead.end());
700
701  for (RegVector::const_iterator I = defs.begin(), E = defs.end();
702       I != E; ++I) {
703    if (regsLive.count(*I)) {
704      if (TargetRegisterInfo::isPhysicalRegister(*I)) {
705        if (!allowPhysDoubleDefs && !isReserved(*I) &&
706            !regsLiveInButUnused.count(*I)) {
707          report("Redefining a live physical register", MI);
708          *OS << "Register " << TRI->getName(*I)
709              << " was defined but already live.\n";
710        }
711      } else {
712        if (!allowVirtDoubleDefs) {
713          report("Redefining a live virtual register", MI);
714          *OS << "Virtual register %reg" << *I
715              << " was defined but already live.\n";
716        }
717      }
718    } else if (TargetRegisterInfo::isVirtualRegister(*I) &&
719               !MInfo.regsKilled.count(*I)) {
720      // Virtual register defined without being killed first must be dead on
721      // entry.
722      MInfo.vregsDeadIn.insert(std::make_pair(*I, MI));
723    }
724  }
725
726  set_subtract(regsLive, regsDead); regsDead.clear();
727  set_union(regsLive, regsDefined); regsDefined.clear();
728}
729
730void
731MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
732  MBBInfoMap[MBB].regsLiveOut = regsLive;
733  regsLive.clear();
734}
735
736// Calculate the largest possible vregsPassed sets. These are the registers that
737// can pass through an MBB live, but may not be live every time. It is assumed
738// that all vregsPassed sets are empty before the call.
739void MachineVerifier::calcMaxRegsPassed() {
740  // First push live-out regs to successors' vregsPassed. Remember the MBBs that
741  // have any vregsPassed.
742  DenseSet<const MachineBasicBlock*> todo;
743  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
744       MFI != MFE; ++MFI) {
745    const MachineBasicBlock &MBB(*MFI);
746    BBInfo &MInfo = MBBInfoMap[&MBB];
747    if (!MInfo.reachable)
748      continue;
749    for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
750           SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
751      BBInfo &SInfo = MBBInfoMap[*SuI];
752      if (SInfo.addPassed(MInfo.regsLiveOut))
753        todo.insert(*SuI);
754    }
755  }
756
757  // Iteratively push vregsPassed to successors. This will converge to the same
758  // final state regardless of DenseSet iteration order.
759  while (!todo.empty()) {
760    const MachineBasicBlock *MBB = *todo.begin();
761    todo.erase(MBB);
762    BBInfo &MInfo = MBBInfoMap[MBB];
763    for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
764           SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
765      if (*SuI == MBB)
766        continue;
767      BBInfo &SInfo = MBBInfoMap[*SuI];
768      if (SInfo.addPassed(MInfo.vregsPassed))
769        todo.insert(*SuI);
770    }
771  }
772}
773
774// Calculate the minimum vregsPassed set. These are the registers that always
775// pass live through an MBB. The calculation assumes that calcMaxRegsPassed has
776// been called earlier.
777void MachineVerifier::calcMinRegsPassed() {
778  DenseSet<const MachineBasicBlock*> todo;
779  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
780       MFI != MFE; ++MFI)
781    todo.insert(MFI);
782
783  while (!todo.empty()) {
784    const MachineBasicBlock *MBB = *todo.begin();
785    todo.erase(MBB);
786    BBInfo &MInfo = MBBInfoMap[MBB];
787
788    // Remove entries from vRegsPassed that are not live out from all
789    // reachable predecessors.
790    RegSet dead;
791    for (RegSet::iterator I = MInfo.vregsPassed.begin(),
792           E = MInfo.vregsPassed.end(); I != E; ++I) {
793      for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
794             PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
795        BBInfo &PrInfo = MBBInfoMap[*PrI];
796        if (PrInfo.reachable && !PrInfo.isLiveOut(*I)) {
797          dead.insert(*I);
798          break;
799        }
800      }
801    }
802    // If any regs removed, we need to recheck successors.
803    if (!dead.empty()) {
804      set_subtract(MInfo.vregsPassed, dead);
805      todo.insert(MBB->succ_begin(), MBB->succ_end());
806    }
807  }
808}
809
810// Calculate the set of virtual registers that must be passed through each basic
811// block in order to satisfy the requirements of successor blocks. This is very
812// similar to calcMaxRegsPassed, only backwards.
813void MachineVerifier::calcRegsRequired() {
814  // First push live-in regs to predecessors' vregsRequired.
815  DenseSet<const MachineBasicBlock*> todo;
816  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
817       MFI != MFE; ++MFI) {
818    const MachineBasicBlock &MBB(*MFI);
819    BBInfo &MInfo = MBBInfoMap[&MBB];
820    for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
821           PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
822      BBInfo &PInfo = MBBInfoMap[*PrI];
823      if (PInfo.addRequired(MInfo.vregsLiveIn))
824        todo.insert(*PrI);
825    }
826  }
827
828  // Iteratively push vregsRequired to predecessors. This will converge to the
829  // same final state regardless of DenseSet iteration order.
830  while (!todo.empty()) {
831    const MachineBasicBlock *MBB = *todo.begin();
832    todo.erase(MBB);
833    BBInfo &MInfo = MBBInfoMap[MBB];
834    for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
835           PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
836      if (*PrI == MBB)
837        continue;
838      BBInfo &SInfo = MBBInfoMap[*PrI];
839      if (SInfo.addRequired(MInfo.vregsRequired))
840        todo.insert(*PrI);
841    }
842  }
843}
844
845// Check PHI instructions at the beginning of MBB. It is assumed that
846// calcMinRegsPassed has been run so BBInfo::isLiveOut is valid.
847void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
848  for (MachineBasicBlock::const_iterator BBI = MBB->begin(), BBE = MBB->end();
849       BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) {
850    DenseSet<const MachineBasicBlock*> seen;
851
852    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
853      unsigned Reg = BBI->getOperand(i).getReg();
854      const MachineBasicBlock *Pre = BBI->getOperand(i + 1).getMBB();
855      if (!Pre->isSuccessor(MBB))
856        continue;
857      seen.insert(Pre);
858      BBInfo &PrInfo = MBBInfoMap[Pre];
859      if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
860        report("PHI operand is not live-out from predecessor",
861               &BBI->getOperand(i), i);
862    }
863
864    // Did we see all predecessors?
865    for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
866           PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
867      if (!seen.count(*PrI)) {
868        report("Missing PHI operand", BBI);
869        *OS << "BB#" << (*PrI)->getNumber()
870            << " is a predecessor according to the CFG.\n";
871      }
872    }
873  }
874}
875
876void MachineVerifier::visitMachineFunctionAfter() {
877  calcMaxRegsPassed();
878
879  // With the maximal set of vregsPassed we can verify dead-in registers.
880  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
881       MFI != MFE; ++MFI) {
882    BBInfo &MInfo = MBBInfoMap[MFI];
883
884    // Skip unreachable MBBs.
885    if (!MInfo.reachable)
886      continue;
887
888    for (MachineBasicBlock::const_pred_iterator PrI = MFI->pred_begin(),
889           PrE = MFI->pred_end(); PrI != PrE; ++PrI) {
890      BBInfo &PrInfo = MBBInfoMap[*PrI];
891      if (!PrInfo.reachable)
892        continue;
893
894      // Verify physical live-ins. EH landing pads have magic live-ins so we
895      // ignore them.
896      if (!MFI->isLandingPad()) {
897        for (MachineBasicBlock::const_livein_iterator I = MFI->livein_begin(),
898               E = MFI->livein_end(); I != E; ++I) {
899          if (TargetRegisterInfo::isPhysicalRegister(*I) &&
900              !isReserved (*I) && !PrInfo.isLiveOut(*I)) {
901            report("Live-in physical register is not live-out from predecessor",
902                   MFI);
903            *OS << "Register " << TRI->getName(*I)
904                << " is not live-out from BB#" << (*PrI)->getNumber()
905                << ".\n";
906          }
907        }
908      }
909
910
911      // Verify dead-in virtual registers.
912      if (!allowVirtDoubleDefs) {
913        for (RegMap::iterator I = MInfo.vregsDeadIn.begin(),
914               E = MInfo.vregsDeadIn.end(); I != E; ++I) {
915          // DeadIn register must be in neither regsLiveOut or vregsPassed of
916          // any predecessor.
917          if (PrInfo.isLiveOut(I->first)) {
918            report("Live-in virtual register redefined", I->second);
919            *OS << "Register %reg" << I->first
920                << " was live-out from predecessor MBB #"
921                << (*PrI)->getNumber() << ".\n";
922          }
923        }
924      }
925    }
926  }
927
928  calcMinRegsPassed();
929
930  // With the minimal set of vregsPassed we can verify live-in virtual
931  // registers, including PHI instructions.
932  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
933       MFI != MFE; ++MFI) {
934    BBInfo &MInfo = MBBInfoMap[MFI];
935
936    // Skip unreachable MBBs.
937    if (!MInfo.reachable)
938      continue;
939
940    checkPHIOps(MFI);
941
942    for (MachineBasicBlock::const_pred_iterator PrI = MFI->pred_begin(),
943           PrE = MFI->pred_end(); PrI != PrE; ++PrI) {
944      BBInfo &PrInfo = MBBInfoMap[*PrI];
945      if (!PrInfo.reachable)
946        continue;
947
948      for (RegMap::iterator I = MInfo.vregsLiveIn.begin(),
949             E = MInfo.vregsLiveIn.end(); I != E; ++I) {
950        if (!PrInfo.isLiveOut(I->first)) {
951          report("Used virtual register is not live-in", I->second);
952          *OS << "Register %reg" << I->first
953              << " is not live-out from predecessor MBB #"
954              << (*PrI)->getNumber()
955              << ".\n";
956        }
957      }
958    }
959  }
960
961  // Now check LiveVariables info if available
962  if (LiveVars) {
963    calcRegsRequired();
964    verifyLiveVariables();
965  }
966}
967
968void MachineVerifier::verifyLiveVariables() {
969  assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
970  for (unsigned Reg = TargetRegisterInfo::FirstVirtualRegister,
971         RegE = MRI->getLastVirtReg()-1; Reg != RegE; ++Reg) {
972    LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
973    for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
974         MFI != MFE; ++MFI) {
975      BBInfo &MInfo = MBBInfoMap[MFI];
976
977      // Our vregsRequired should be identical to LiveVariables' AliveBlocks
978      if (MInfo.vregsRequired.count(Reg)) {
979        if (!VI.AliveBlocks.test(MFI->getNumber())) {
980          report("LiveVariables: Block missing from AliveBlocks", MFI);
981          *OS << "Virtual register %reg" << Reg
982              << " must be live through the block.\n";
983        }
984      } else {
985        if (VI.AliveBlocks.test(MFI->getNumber())) {
986          report("LiveVariables: Block should not be in AliveBlocks", MFI);
987          *OS << "Virtual register %reg" << Reg
988              << " is not needed live through the block.\n";
989        }
990      }
991    }
992  }
993}
994
995
996