MachineVerifier.cpp revision c910c8d2fa6e73e8f9875e871a2f3a44574a0b01
1//===-- MachineVerifier.cpp - Machine Code Verifier -------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Pass to verify generated machine code. The following is checked:
11//
12// Operand counts: All explicit operands must be present.
13//
14// Register classes: All physical and virtual register operands must be
15// compatible with the register class required by the instruction descriptor.
16//
17// Register live intervals: Registers must be defined only once, and must be
18// defined before use.
19//
20// The machine code verifier is enabled from LLVMTargetMachine.cpp with the
21// command-line option -verify-machineinstrs, or by defining the environment
22// variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
23// the verifier errors.
24//===----------------------------------------------------------------------===//
25
26#include "llvm/Function.h"
27#include "llvm/CodeGen/LiveIntervalAnalysis.h"
28#include "llvm/CodeGen/LiveVariables.h"
29#include "llvm/CodeGen/MachineFunctionPass.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineMemOperand.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/CodeGen/Passes.h"
34#include "llvm/Target/TargetMachine.h"
35#include "llvm/Target/TargetRegisterInfo.h"
36#include "llvm/Target/TargetInstrInfo.h"
37#include "llvm/ADT/DenseSet.h"
38#include "llvm/ADT/SetOperations.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/raw_ostream.h"
43using namespace llvm;
44
45namespace {
46  struct MachineVerifier {
47
48    MachineVerifier(Pass *pass) :
49      PASS(pass),
50      OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS"))
51      {}
52
53    bool runOnMachineFunction(MachineFunction &MF);
54
55    Pass *const PASS;
56    const char *const OutFileName;
57    raw_ostream *OS;
58    const MachineFunction *MF;
59    const TargetMachine *TM;
60    const TargetRegisterInfo *TRI;
61    const MachineRegisterInfo *MRI;
62
63    unsigned foundErrors;
64
65    typedef SmallVector<unsigned, 16> RegVector;
66    typedef DenseSet<unsigned> RegSet;
67    typedef DenseMap<unsigned, const MachineInstr*> RegMap;
68
69    BitVector regsReserved;
70    RegSet regsLive;
71    RegVector regsDefined, regsDead, regsKilled;
72    RegSet regsLiveInButUnused;
73
74    // Add Reg and any sub-registers to RV
75    void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
76      RV.push_back(Reg);
77      if (TargetRegisterInfo::isPhysicalRegister(Reg))
78        for (const unsigned *R = TRI->getSubRegisters(Reg); *R; R++)
79          RV.push_back(*R);
80    }
81
82    struct BBInfo {
83      // Is this MBB reachable from the MF entry point?
84      bool reachable;
85
86      // Vregs that must be live in because they are used without being
87      // defined. Map value is the user.
88      RegMap vregsLiveIn;
89
90      // Regs killed in MBB. They may be defined again, and will then be in both
91      // regsKilled and regsLiveOut.
92      RegSet regsKilled;
93
94      // Regs defined in MBB and live out. Note that vregs passing through may
95      // be live out without being mentioned here.
96      RegSet regsLiveOut;
97
98      // Vregs that pass through MBB untouched. This set is disjoint from
99      // regsKilled and regsLiveOut.
100      RegSet vregsPassed;
101
102      // Vregs that must pass through MBB because they are needed by a successor
103      // block. This set is disjoint from regsLiveOut.
104      RegSet vregsRequired;
105
106      BBInfo() : reachable(false) {}
107
108      // Add register to vregsPassed if it belongs there. Return true if
109      // anything changed.
110      bool addPassed(unsigned Reg) {
111        if (!TargetRegisterInfo::isVirtualRegister(Reg))
112          return false;
113        if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
114          return false;
115        return vregsPassed.insert(Reg).second;
116      }
117
118      // Same for a full set.
119      bool addPassed(const RegSet &RS) {
120        bool changed = false;
121        for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
122          if (addPassed(*I))
123            changed = true;
124        return changed;
125      }
126
127      // Add register to vregsRequired if it belongs there. Return true if
128      // anything changed.
129      bool addRequired(unsigned Reg) {
130        if (!TargetRegisterInfo::isVirtualRegister(Reg))
131          return false;
132        if (regsLiveOut.count(Reg))
133          return false;
134        return vregsRequired.insert(Reg).second;
135      }
136
137      // Same for a full set.
138      bool addRequired(const RegSet &RS) {
139        bool changed = false;
140        for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
141          if (addRequired(*I))
142            changed = true;
143        return changed;
144      }
145
146      // Same for a full map.
147      bool addRequired(const RegMap &RM) {
148        bool changed = false;
149        for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
150          if (addRequired(I->first))
151            changed = true;
152        return changed;
153      }
154
155      // Live-out registers are either in regsLiveOut or vregsPassed.
156      bool isLiveOut(unsigned Reg) const {
157        return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
158      }
159    };
160
161    // Extra register info per MBB.
162    DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
163
164    bool isReserved(unsigned Reg) {
165      return Reg < regsReserved.size() && regsReserved.test(Reg);
166    }
167
168    // Analysis information if available
169    LiveVariables *LiveVars;
170    LiveIntervals *LiveInts;
171
172    void visitMachineFunctionBefore();
173    void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
174    void visitMachineInstrBefore(const MachineInstr *MI);
175    void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
176    void visitMachineInstrAfter(const MachineInstr *MI);
177    void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
178    void visitMachineFunctionAfter();
179
180    void report(const char *msg, const MachineFunction *MF);
181    void report(const char *msg, const MachineBasicBlock *MBB);
182    void report(const char *msg, const MachineInstr *MI);
183    void report(const char *msg, const MachineOperand *MO, unsigned MONum);
184
185    void markReachable(const MachineBasicBlock *MBB);
186    void calcRegsPassed();
187    void checkPHIOps(const MachineBasicBlock *MBB);
188
189    void calcRegsRequired();
190    void verifyLiveVariables();
191  };
192
193  struct MachineVerifierPass : public MachineFunctionPass {
194    static char ID; // Pass ID, replacement for typeid
195
196    MachineVerifierPass()
197      : MachineFunctionPass(ID) {}
198
199    void getAnalysisUsage(AnalysisUsage &AU) const {
200      AU.setPreservesAll();
201      MachineFunctionPass::getAnalysisUsage(AU);
202    }
203
204    bool runOnMachineFunction(MachineFunction &MF) {
205      MF.verify(this);
206      return false;
207    }
208  };
209
210}
211
212char MachineVerifierPass::ID = 0;
213static RegisterPass<MachineVerifierPass>
214MachineVer("machineverifier", "Verify generated machine code");
215static const PassInfo *const MachineVerifyID = &MachineVer;
216
217FunctionPass *llvm::createMachineVerifierPass() {
218  return new MachineVerifierPass();
219}
220
221void MachineFunction::verify(Pass *p) const {
222  MachineVerifier(p).runOnMachineFunction(const_cast<MachineFunction&>(*this));
223}
224
225bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) {
226  raw_ostream *OutFile = 0;
227  if (OutFileName) {
228    std::string ErrorInfo;
229    OutFile = new raw_fd_ostream(OutFileName, ErrorInfo,
230                                 raw_fd_ostream::F_Append);
231    if (!ErrorInfo.empty()) {
232      errs() << "Error opening '" << OutFileName << "': " << ErrorInfo << '\n';
233      exit(1);
234    }
235
236    OS = OutFile;
237  } else {
238    OS = &errs();
239  }
240
241  foundErrors = 0;
242
243  this->MF = &MF;
244  TM = &MF.getTarget();
245  TRI = TM->getRegisterInfo();
246  MRI = &MF.getRegInfo();
247
248  LiveVars = NULL;
249  LiveInts = NULL;
250  if (PASS) {
251    LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
252    // We don't want to verify LiveVariables if LiveIntervals is available.
253    if (!LiveInts)
254      LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
255  }
256
257  visitMachineFunctionBefore();
258  for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
259       MFI!=MFE; ++MFI) {
260    visitMachineBasicBlockBefore(MFI);
261    for (MachineBasicBlock::const_iterator MBBI = MFI->begin(),
262           MBBE = MFI->end(); MBBI != MBBE; ++MBBI) {
263      visitMachineInstrBefore(MBBI);
264      for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I)
265        visitMachineOperand(&MBBI->getOperand(I), I);
266      visitMachineInstrAfter(MBBI);
267    }
268    visitMachineBasicBlockAfter(MFI);
269  }
270  visitMachineFunctionAfter();
271
272  if (OutFile)
273    delete OutFile;
274  else if (foundErrors)
275    report_fatal_error("Found "+Twine(foundErrors)+" machine code errors.");
276
277  // Clean up.
278  regsLive.clear();
279  regsDefined.clear();
280  regsDead.clear();
281  regsKilled.clear();
282  regsLiveInButUnused.clear();
283  MBBInfoMap.clear();
284
285  return false;                 // no changes
286}
287
288void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
289  assert(MF);
290  *OS << '\n';
291  if (!foundErrors++)
292    MF->print(*OS);
293  *OS << "*** Bad machine code: " << msg << " ***\n"
294      << "- function:    " << MF->getFunction()->getNameStr() << "\n";
295}
296
297void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
298  assert(MBB);
299  report(msg, MBB->getParent());
300  *OS << "- basic block: " << MBB->getName()
301      << " " << (void*)MBB
302      << " (BB#" << MBB->getNumber() << ")\n";
303}
304
305void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
306  assert(MI);
307  report(msg, MI->getParent());
308  *OS << "- instruction: ";
309  MI->print(*OS, TM);
310}
311
312void MachineVerifier::report(const char *msg,
313                             const MachineOperand *MO, unsigned MONum) {
314  assert(MO);
315  report(msg, MO->getParent());
316  *OS << "- operand " << MONum << ":   ";
317  MO->print(*OS, TM);
318  *OS << "\n";
319}
320
321void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
322  BBInfo &MInfo = MBBInfoMap[MBB];
323  if (!MInfo.reachable) {
324    MInfo.reachable = true;
325    for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
326           SuE = MBB->succ_end(); SuI != SuE; ++SuI)
327      markReachable(*SuI);
328  }
329}
330
331void MachineVerifier::visitMachineFunctionBefore() {
332  regsReserved = TRI->getReservedRegs(*MF);
333
334  // A sub-register of a reserved register is also reserved
335  for (int Reg = regsReserved.find_first(); Reg>=0;
336       Reg = regsReserved.find_next(Reg)) {
337    for (const unsigned *Sub = TRI->getSubRegisters(Reg); *Sub; ++Sub) {
338      // FIXME: This should probably be:
339      // assert(regsReserved.test(*Sub) && "Non-reserved sub-register");
340      regsReserved.set(*Sub);
341    }
342  }
343  markReachable(&MF->front());
344}
345
346// Does iterator point to a and b as the first two elements?
347static bool matchPair(MachineBasicBlock::const_succ_iterator i,
348                      const MachineBasicBlock *a, const MachineBasicBlock *b) {
349  if (*i == a)
350    return *++i == b;
351  if (*i == b)
352    return *++i == a;
353  return false;
354}
355
356void
357MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
358  const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
359
360  // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
361  MachineBasicBlock *TBB = 0, *FBB = 0;
362  SmallVector<MachineOperand, 4> Cond;
363  if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB),
364                          TBB, FBB, Cond)) {
365    // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
366    // check whether its answers match up with reality.
367    if (!TBB && !FBB) {
368      // Block falls through to its successor.
369      MachineFunction::const_iterator MBBI = MBB;
370      ++MBBI;
371      if (MBBI == MF->end()) {
372        // It's possible that the block legitimately ends with a noreturn
373        // call or an unreachable, in which case it won't actually fall
374        // out the bottom of the function.
375      } else if (MBB->succ_empty()) {
376        // It's possible that the block legitimately ends with a noreturn
377        // call or an unreachable, in which case it won't actuall fall
378        // out of the block.
379      } else if (MBB->succ_size() != 1) {
380        report("MBB exits via unconditional fall-through but doesn't have "
381               "exactly one CFG successor!", MBB);
382      } else if (MBB->succ_begin()[0] != MBBI) {
383        report("MBB exits via unconditional fall-through but its successor "
384               "differs from its CFG successor!", MBB);
385      }
386      if (!MBB->empty() && MBB->back().getDesc().isBarrier() &&
387          !TII->isPredicated(&MBB->back())) {
388        report("MBB exits via unconditional fall-through but ends with a "
389               "barrier instruction!", MBB);
390      }
391      if (!Cond.empty()) {
392        report("MBB exits via unconditional fall-through but has a condition!",
393               MBB);
394      }
395    } else if (TBB && !FBB && Cond.empty()) {
396      // Block unconditionally branches somewhere.
397      if (MBB->succ_size() != 1) {
398        report("MBB exits via unconditional branch but doesn't have "
399               "exactly one CFG successor!", MBB);
400      } else if (MBB->succ_begin()[0] != TBB) {
401        report("MBB exits via unconditional branch but the CFG "
402               "successor doesn't match the actual successor!", MBB);
403      }
404      if (MBB->empty()) {
405        report("MBB exits via unconditional branch but doesn't contain "
406               "any instructions!", MBB);
407      } else if (!MBB->back().getDesc().isBarrier()) {
408        report("MBB exits via unconditional branch but doesn't end with a "
409               "barrier instruction!", MBB);
410      } else if (!MBB->back().getDesc().isTerminator()) {
411        report("MBB exits via unconditional branch but the branch isn't a "
412               "terminator instruction!", MBB);
413      }
414    } else if (TBB && !FBB && !Cond.empty()) {
415      // Block conditionally branches somewhere, otherwise falls through.
416      MachineFunction::const_iterator MBBI = MBB;
417      ++MBBI;
418      if (MBBI == MF->end()) {
419        report("MBB conditionally falls through out of function!", MBB);
420      } if (MBB->succ_size() != 2) {
421        report("MBB exits via conditional branch/fall-through but doesn't have "
422               "exactly two CFG successors!", MBB);
423      } else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) {
424        report("MBB exits via conditional branch/fall-through but the CFG "
425               "successors don't match the actual successors!", MBB);
426      }
427      if (MBB->empty()) {
428        report("MBB exits via conditional branch/fall-through but doesn't "
429               "contain any instructions!", MBB);
430      } else if (MBB->back().getDesc().isBarrier()) {
431        report("MBB exits via conditional branch/fall-through but ends with a "
432               "barrier instruction!", MBB);
433      } else if (!MBB->back().getDesc().isTerminator()) {
434        report("MBB exits via conditional branch/fall-through but the branch "
435               "isn't a terminator instruction!", MBB);
436      }
437    } else if (TBB && FBB) {
438      // Block conditionally branches somewhere, otherwise branches
439      // somewhere else.
440      if (MBB->succ_size() != 2) {
441        report("MBB exits via conditional branch/branch but doesn't have "
442               "exactly two CFG successors!", MBB);
443      } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
444        report("MBB exits via conditional branch/branch but the CFG "
445               "successors don't match the actual successors!", MBB);
446      }
447      if (MBB->empty()) {
448        report("MBB exits via conditional branch/branch but doesn't "
449               "contain any instructions!", MBB);
450      } else if (!MBB->back().getDesc().isBarrier()) {
451        report("MBB exits via conditional branch/branch but doesn't end with a "
452               "barrier instruction!", MBB);
453      } else if (!MBB->back().getDesc().isTerminator()) {
454        report("MBB exits via conditional branch/branch but the branch "
455               "isn't a terminator instruction!", MBB);
456      }
457      if (Cond.empty()) {
458        report("MBB exits via conditinal branch/branch but there's no "
459               "condition!", MBB);
460      }
461    } else {
462      report("AnalyzeBranch returned invalid data!", MBB);
463    }
464  }
465
466  regsLive.clear();
467  for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
468         E = MBB->livein_end(); I != E; ++I) {
469    if (!TargetRegisterInfo::isPhysicalRegister(*I)) {
470      report("MBB live-in list contains non-physical register", MBB);
471      continue;
472    }
473    regsLive.insert(*I);
474    for (const unsigned *R = TRI->getSubRegisters(*I); *R; R++)
475      regsLive.insert(*R);
476  }
477  regsLiveInButUnused = regsLive;
478
479  const MachineFrameInfo *MFI = MF->getFrameInfo();
480  assert(MFI && "Function has no frame info");
481  BitVector PR = MFI->getPristineRegs(MBB);
482  for (int I = PR.find_first(); I>0; I = PR.find_next(I)) {
483    regsLive.insert(I);
484    for (const unsigned *R = TRI->getSubRegisters(I); *R; R++)
485      regsLive.insert(*R);
486  }
487
488  regsKilled.clear();
489  regsDefined.clear();
490}
491
492void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
493  const TargetInstrDesc &TI = MI->getDesc();
494  if (MI->getNumOperands() < TI.getNumOperands()) {
495    report("Too few operands", MI);
496    *OS << TI.getNumOperands() << " operands expected, but "
497        << MI->getNumExplicitOperands() << " given.\n";
498  }
499
500  // Check the MachineMemOperands for basic consistency.
501  for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
502       E = MI->memoperands_end(); I != E; ++I) {
503    if ((*I)->isLoad() && !TI.mayLoad())
504      report("Missing mayLoad flag", MI);
505    if ((*I)->isStore() && !TI.mayStore())
506      report("Missing mayStore flag", MI);
507  }
508
509  // Debug values must not have a slot index.
510  // Other instructions must have one.
511  if (LiveInts) {
512    bool mapped = !LiveInts->isNotInMIMap(MI);
513    if (MI->isDebugValue()) {
514      if (mapped)
515        report("Debug instruction has a slot index", MI);
516    } else {
517      if (!mapped)
518        report("Missing slot index", MI);
519    }
520  }
521
522}
523
524void
525MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
526  const MachineInstr *MI = MO->getParent();
527  const TargetInstrDesc &TI = MI->getDesc();
528
529  // The first TI.NumDefs operands must be explicit register defines
530  if (MONum < TI.getNumDefs()) {
531    if (!MO->isReg())
532      report("Explicit definition must be a register", MO, MONum);
533    else if (!MO->isDef())
534      report("Explicit definition marked as use", MO, MONum);
535    else if (MO->isImplicit())
536      report("Explicit definition marked as implicit", MO, MONum);
537  } else if (MONum < TI.getNumOperands()) {
538    if (MO->isReg()) {
539      if (MO->isDef())
540        report("Explicit operand marked as def", MO, MONum);
541      if (MO->isImplicit())
542        report("Explicit operand marked as implicit", MO, MONum);
543    }
544  } else {
545    // ARM adds %reg0 operands to indicate predicates. We'll allow that.
546    if (MO->isReg() && !MO->isImplicit() && !TI.isVariadic() && MO->getReg())
547      report("Extra explicit operand on non-variadic instruction", MO, MONum);
548  }
549
550  switch (MO->getType()) {
551  case MachineOperand::MO_Register: {
552    const unsigned Reg = MO->getReg();
553    if (!Reg)
554      return;
555
556    // Check Live Variables.
557    if (MO->isUndef()) {
558      // An <undef> doesn't refer to any register, so just skip it.
559    } else if (MO->isUse()) {
560      regsLiveInButUnused.erase(Reg);
561
562      bool isKill = false;
563      unsigned defIdx;
564      if (MI->isRegTiedToDefOperand(MONum, &defIdx)) {
565        // A two-addr use counts as a kill if use and def are the same.
566        unsigned DefReg = MI->getOperand(defIdx).getReg();
567        if (Reg == DefReg) {
568          isKill = true;
569          // ANd in that case an explicit kill flag is not allowed.
570          if (MO->isKill())
571            report("Illegal kill flag on two-address instruction operand",
572                   MO, MONum);
573        } else if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
574          report("Two-address instruction operands must be identical",
575                 MO, MONum);
576        }
577      } else
578        isKill = MO->isKill();
579
580      if (isKill)
581        addRegWithSubRegs(regsKilled, Reg);
582
583      // Check that LiveVars knows this kill.
584      if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
585          MO->isKill()) {
586        LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
587        if (std::find(VI.Kills.begin(),
588                      VI.Kills.end(), MI) == VI.Kills.end())
589          report("Kill missing from LiveVariables", MO, MONum);
590      }
591
592      // Check LiveInts liveness and kill.
593      if (LiveInts && !LiveInts->isNotInMIMap(MI)) {
594        SlotIndex UseIdx = LiveInts->getInstructionIndex(MI).getUseIndex();
595        if (LiveInts->hasInterval(Reg)) {
596          const LiveInterval &LI = LiveInts->getInterval(Reg);
597          if (!LI.liveAt(UseIdx)) {
598            report("No live range at use", MO, MONum);
599            *OS << UseIdx << " is not live in " << LI << '\n';
600          }
601          // TODO: Verify isKill == LI.killedAt.
602        } else if (TargetRegisterInfo::isVirtualRegister(Reg)) {
603          report("Virtual register has no Live interval", MO, MONum);
604        }
605      }
606
607      // Use of a dead register.
608      if (!regsLive.count(Reg)) {
609        if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
610          // Reserved registers may be used even when 'dead'.
611          if (!isReserved(Reg))
612            report("Using an undefined physical register", MO, MONum);
613        } else {
614          BBInfo &MInfo = MBBInfoMap[MI->getParent()];
615          // We don't know which virtual registers are live in, so only complain
616          // if vreg was killed in this MBB. Otherwise keep track of vregs that
617          // must be live in. PHI instructions are handled separately.
618          if (MInfo.regsKilled.count(Reg))
619            report("Using a killed virtual register", MO, MONum);
620          else if (!MI->isPHI())
621            MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
622        }
623      }
624    } else {
625      assert(MO->isDef());
626      // Register defined.
627      // TODO: verify that earlyclobber ops are not used.
628      if (MO->isDead())
629        addRegWithSubRegs(regsDead, Reg);
630      else
631        addRegWithSubRegs(regsDefined, Reg);
632
633      // Check LiveInts for a live range.
634      if (LiveInts && !LiveInts->isNotInMIMap(MI)) {
635        SlotIndex DefIdx = LiveInts->getInstructionIndex(MI).getDefIndex();
636        if (LiveInts->hasInterval(Reg)) {
637          const LiveInterval &LI = LiveInts->getInterval(Reg);
638          if (const LiveRange *LR = LI.getLiveRangeContaining(DefIdx)) {
639            assert(LR->valno && "NULL valno is not allowed");
640            if (LR->valno->def != DefIdx) {
641              report("Inconsistent valno->def", MO, MONum);
642              *OS << "Valno " << LR->valno->id << " is not defined at "
643                  << DefIdx << " in " << LI << '\n';
644            }
645            if (LR->start != DefIdx) {
646              report("Live range doesn't start at def", MO, MONum);
647              LR->print(*OS);
648              *OS << " should start at " << DefIdx << " in " << LI << '\n';
649            }
650          } else {
651            report("No live range at def", MO, MONum);
652            *OS << DefIdx << " is not live in " << LI << '\n';
653          }
654        } else if (TargetRegisterInfo::isVirtualRegister(Reg)) {
655          report("Virtual register has no Live interval", MO, MONum);
656        }
657      }
658    }
659
660    // Check register classes.
661    if (MONum < TI.getNumOperands() && !MO->isImplicit()) {
662      const TargetOperandInfo &TOI = TI.OpInfo[MONum];
663      unsigned SubIdx = MO->getSubReg();
664
665      if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
666        unsigned sr = Reg;
667        if (SubIdx) {
668          unsigned s = TRI->getSubReg(Reg, SubIdx);
669          if (!s) {
670            report("Invalid subregister index for physical register",
671                   MO, MONum);
672            return;
673          }
674          sr = s;
675        }
676        if (const TargetRegisterClass *DRC = TOI.getRegClass(TRI)) {
677          if (!DRC->contains(sr)) {
678            report("Illegal physical register for instruction", MO, MONum);
679            *OS << TRI->getName(sr) << " is not a "
680                << DRC->getName() << " register.\n";
681          }
682        }
683      } else {
684        // Virtual register.
685        const TargetRegisterClass *RC = MRI->getRegClass(Reg);
686        if (SubIdx) {
687          const TargetRegisterClass *SRC = RC->getSubRegisterRegClass(SubIdx);
688          if (!SRC) {
689            report("Invalid subregister index for virtual register", MO, MONum);
690            *OS << "Register class " << RC->getName()
691                << " does not support subreg index " << SubIdx << "\n";
692            return;
693          }
694          RC = SRC;
695        }
696        if (const TargetRegisterClass *DRC = TOI.getRegClass(TRI)) {
697          if (RC != DRC && !RC->hasSuperClass(DRC)) {
698            report("Illegal virtual register for instruction", MO, MONum);
699            *OS << "Expected a " << DRC->getName() << " register, but got a "
700                << RC->getName() << " register\n";
701          }
702        }
703      }
704    }
705    break;
706  }
707
708  case MachineOperand::MO_MachineBasicBlock:
709    if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
710      report("PHI operand is not in the CFG", MO, MONum);
711    break;
712
713  default:
714    break;
715  }
716}
717
718void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {
719  BBInfo &MInfo = MBBInfoMap[MI->getParent()];
720  set_union(MInfo.regsKilled, regsKilled);
721  set_subtract(regsLive, regsKilled); regsKilled.clear();
722  set_subtract(regsLive, regsDead);   regsDead.clear();
723  set_union(regsLive, regsDefined);   regsDefined.clear();
724}
725
726void
727MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
728  MBBInfoMap[MBB].regsLiveOut = regsLive;
729  regsLive.clear();
730}
731
732// Calculate the largest possible vregsPassed sets. These are the registers that
733// can pass through an MBB live, but may not be live every time. It is assumed
734// that all vregsPassed sets are empty before the call.
735void MachineVerifier::calcRegsPassed() {
736  // First push live-out regs to successors' vregsPassed. Remember the MBBs that
737  // have any vregsPassed.
738  DenseSet<const MachineBasicBlock*> todo;
739  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
740       MFI != MFE; ++MFI) {
741    const MachineBasicBlock &MBB(*MFI);
742    BBInfo &MInfo = MBBInfoMap[&MBB];
743    if (!MInfo.reachable)
744      continue;
745    for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
746           SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
747      BBInfo &SInfo = MBBInfoMap[*SuI];
748      if (SInfo.addPassed(MInfo.regsLiveOut))
749        todo.insert(*SuI);
750    }
751  }
752
753  // Iteratively push vregsPassed to successors. This will converge to the same
754  // final state regardless of DenseSet iteration order.
755  while (!todo.empty()) {
756    const MachineBasicBlock *MBB = *todo.begin();
757    todo.erase(MBB);
758    BBInfo &MInfo = MBBInfoMap[MBB];
759    for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
760           SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
761      if (*SuI == MBB)
762        continue;
763      BBInfo &SInfo = MBBInfoMap[*SuI];
764      if (SInfo.addPassed(MInfo.vregsPassed))
765        todo.insert(*SuI);
766    }
767  }
768}
769
770// Calculate the set of virtual registers that must be passed through each basic
771// block in order to satisfy the requirements of successor blocks. This is very
772// similar to calcRegsPassed, only backwards.
773void MachineVerifier::calcRegsRequired() {
774  // First push live-in regs to predecessors' vregsRequired.
775  DenseSet<const MachineBasicBlock*> todo;
776  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
777       MFI != MFE; ++MFI) {
778    const MachineBasicBlock &MBB(*MFI);
779    BBInfo &MInfo = MBBInfoMap[&MBB];
780    for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
781           PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
782      BBInfo &PInfo = MBBInfoMap[*PrI];
783      if (PInfo.addRequired(MInfo.vregsLiveIn))
784        todo.insert(*PrI);
785    }
786  }
787
788  // Iteratively push vregsRequired to predecessors. This will converge to the
789  // same final state regardless of DenseSet iteration order.
790  while (!todo.empty()) {
791    const MachineBasicBlock *MBB = *todo.begin();
792    todo.erase(MBB);
793    BBInfo &MInfo = MBBInfoMap[MBB];
794    for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
795           PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
796      if (*PrI == MBB)
797        continue;
798      BBInfo &SInfo = MBBInfoMap[*PrI];
799      if (SInfo.addRequired(MInfo.vregsRequired))
800        todo.insert(*PrI);
801    }
802  }
803}
804
805// Check PHI instructions at the beginning of MBB. It is assumed that
806// calcRegsPassed has been run so BBInfo::isLiveOut is valid.
807void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
808  for (MachineBasicBlock::const_iterator BBI = MBB->begin(), BBE = MBB->end();
809       BBI != BBE && BBI->isPHI(); ++BBI) {
810    DenseSet<const MachineBasicBlock*> seen;
811
812    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
813      unsigned Reg = BBI->getOperand(i).getReg();
814      const MachineBasicBlock *Pre = BBI->getOperand(i + 1).getMBB();
815      if (!Pre->isSuccessor(MBB))
816        continue;
817      seen.insert(Pre);
818      BBInfo &PrInfo = MBBInfoMap[Pre];
819      if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
820        report("PHI operand is not live-out from predecessor",
821               &BBI->getOperand(i), i);
822    }
823
824    // Did we see all predecessors?
825    for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
826           PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
827      if (!seen.count(*PrI)) {
828        report("Missing PHI operand", BBI);
829        *OS << "BB#" << (*PrI)->getNumber()
830            << " is a predecessor according to the CFG.\n";
831      }
832    }
833  }
834}
835
836void MachineVerifier::visitMachineFunctionAfter() {
837  calcRegsPassed();
838
839  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
840       MFI != MFE; ++MFI) {
841    BBInfo &MInfo = MBBInfoMap[MFI];
842
843    // Skip unreachable MBBs.
844    if (!MInfo.reachable)
845      continue;
846
847    checkPHIOps(MFI);
848  }
849
850  // Now check LiveVariables info if available
851  if (LiveVars) {
852    calcRegsRequired();
853    verifyLiveVariables();
854  }
855}
856
857void MachineVerifier::verifyLiveVariables() {
858  assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
859  for (unsigned Reg = TargetRegisterInfo::FirstVirtualRegister,
860         RegE = MRI->getLastVirtReg()-1; Reg != RegE; ++Reg) {
861    LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
862    for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
863         MFI != MFE; ++MFI) {
864      BBInfo &MInfo = MBBInfoMap[MFI];
865
866      // Our vregsRequired should be identical to LiveVariables' AliveBlocks
867      if (MInfo.vregsRequired.count(Reg)) {
868        if (!VI.AliveBlocks.test(MFI->getNumber())) {
869          report("LiveVariables: Block missing from AliveBlocks", MFI);
870          *OS << "Virtual register %reg" << Reg
871              << " must be live through the block.\n";
872        }
873      } else {
874        if (VI.AliveBlocks.test(MFI->getNumber())) {
875          report("LiveVariables: Block should not be in AliveBlocks", MFI);
876          *OS << "Virtual register %reg" << Reg
877              << " is not needed live through the block.\n";
878        }
879      }
880    }
881  }
882}
883
884
885