SelectionDAG.cpp revision 0ac1c6ad9af78654188ca5164c1d0839e834444e
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalValue.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/Assembly/Writer.h"
19#include "llvm/CodeGen/MachineBasicBlock.h"
20#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/Support/MathExtras.h"
22#include "llvm/Target/MRegisterInfo.h"
23#include "llvm/Target/TargetLowering.h"
24#include "llvm/Target/TargetInstrInfo.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/ADT/SetVector.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/StringExtras.h"
29#include <iostream>
30#include <set>
31#include <cmath>
32#include <algorithm>
33using namespace llvm;
34
35/// makeVTList - Return an instance of the SDVTList struct initialized with the
36/// specified members.
37static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
38  SDVTList Res = {VTs, NumVTs};
39  return Res;
40}
41
42// isInvertibleForFree - Return true if there is no cost to emitting the logical
43// inverse of this node.
44static bool isInvertibleForFree(SDOperand N) {
45  if (isa<ConstantSDNode>(N.Val)) return true;
46  if (N.Val->getOpcode() == ISD::SETCC && N.Val->hasOneUse())
47    return true;
48  return false;
49}
50
51//===----------------------------------------------------------------------===//
52//                              ConstantFPSDNode Class
53//===----------------------------------------------------------------------===//
54
55/// isExactlyValue - We don't rely on operator== working on double values, as
56/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
57/// As such, this method can be used to do an exact bit-for-bit comparison of
58/// two floating point values.
59bool ConstantFPSDNode::isExactlyValue(double V) const {
60  return DoubleToBits(V) == DoubleToBits(Value);
61}
62
63//===----------------------------------------------------------------------===//
64//                              ISD Namespace
65//===----------------------------------------------------------------------===//
66
67/// isBuildVectorAllOnes - Return true if the specified node is a
68/// BUILD_VECTOR where all of the elements are ~0 or undef.
69bool ISD::isBuildVectorAllOnes(const SDNode *N) {
70  // Look through a bit convert.
71  if (N->getOpcode() == ISD::BIT_CONVERT)
72    N = N->getOperand(0).Val;
73
74  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
75
76  unsigned i = 0, e = N->getNumOperands();
77
78  // Skip over all of the undef values.
79  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
80    ++i;
81
82  // Do not accept an all-undef vector.
83  if (i == e) return false;
84
85  // Do not accept build_vectors that aren't all constants or which have non-~0
86  // elements.
87  SDOperand NotZero = N->getOperand(i);
88  if (isa<ConstantSDNode>(NotZero)) {
89    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
90      return false;
91  } else if (isa<ConstantFPSDNode>(NotZero)) {
92    MVT::ValueType VT = NotZero.getValueType();
93    if (VT== MVT::f64) {
94      if (DoubleToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
95          (uint64_t)-1)
96        return false;
97    } else {
98      if (FloatToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
99          (uint32_t)-1)
100        return false;
101    }
102  } else
103    return false;
104
105  // Okay, we have at least one ~0 value, check to see if the rest match or are
106  // undefs.
107  for (++i; i != e; ++i)
108    if (N->getOperand(i) != NotZero &&
109        N->getOperand(i).getOpcode() != ISD::UNDEF)
110      return false;
111  return true;
112}
113
114
115/// isBuildVectorAllZeros - Return true if the specified node is a
116/// BUILD_VECTOR where all of the elements are 0 or undef.
117bool ISD::isBuildVectorAllZeros(const SDNode *N) {
118  // Look through a bit convert.
119  if (N->getOpcode() == ISD::BIT_CONVERT)
120    N = N->getOperand(0).Val;
121
122  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
123
124  unsigned i = 0, e = N->getNumOperands();
125
126  // Skip over all of the undef values.
127  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
128    ++i;
129
130  // Do not accept an all-undef vector.
131  if (i == e) return false;
132
133  // Do not accept build_vectors that aren't all constants or which have non-~0
134  // elements.
135  SDOperand Zero = N->getOperand(i);
136  if (isa<ConstantSDNode>(Zero)) {
137    if (!cast<ConstantSDNode>(Zero)->isNullValue())
138      return false;
139  } else if (isa<ConstantFPSDNode>(Zero)) {
140    if (!cast<ConstantFPSDNode>(Zero)->isExactlyValue(0.0))
141      return false;
142  } else
143    return false;
144
145  // Okay, we have at least one ~0 value, check to see if the rest match or are
146  // undefs.
147  for (++i; i != e; ++i)
148    if (N->getOperand(i) != Zero &&
149        N->getOperand(i).getOpcode() != ISD::UNDEF)
150      return false;
151  return true;
152}
153
154/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
155/// when given the operation for (X op Y).
156ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
157  // To perform this operation, we just need to swap the L and G bits of the
158  // operation.
159  unsigned OldL = (Operation >> 2) & 1;
160  unsigned OldG = (Operation >> 1) & 1;
161  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
162                       (OldL << 1) |       // New G bit
163                       (OldG << 2));        // New L bit.
164}
165
166/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
167/// 'op' is a valid SetCC operation.
168ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
169  unsigned Operation = Op;
170  if (isInteger)
171    Operation ^= 7;   // Flip L, G, E bits, but not U.
172  else
173    Operation ^= 15;  // Flip all of the condition bits.
174  if (Operation > ISD::SETTRUE2)
175    Operation &= ~8;     // Don't let N and U bits get set.
176  return ISD::CondCode(Operation);
177}
178
179
180/// isSignedOp - For an integer comparison, return 1 if the comparison is a
181/// signed operation and 2 if the result is an unsigned comparison.  Return zero
182/// if the operation does not depend on the sign of the input (setne and seteq).
183static int isSignedOp(ISD::CondCode Opcode) {
184  switch (Opcode) {
185  default: assert(0 && "Illegal integer setcc operation!");
186  case ISD::SETEQ:
187  case ISD::SETNE: return 0;
188  case ISD::SETLT:
189  case ISD::SETLE:
190  case ISD::SETGT:
191  case ISD::SETGE: return 1;
192  case ISD::SETULT:
193  case ISD::SETULE:
194  case ISD::SETUGT:
195  case ISD::SETUGE: return 2;
196  }
197}
198
199/// getSetCCOrOperation - Return the result of a logical OR between different
200/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
201/// returns SETCC_INVALID if it is not possible to represent the resultant
202/// comparison.
203ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
204                                       bool isInteger) {
205  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
206    // Cannot fold a signed integer setcc with an unsigned integer setcc.
207    return ISD::SETCC_INVALID;
208
209  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
210
211  // If the N and U bits get set then the resultant comparison DOES suddenly
212  // care about orderedness, and is true when ordered.
213  if (Op > ISD::SETTRUE2)
214    Op &= ~16;     // Clear the U bit if the N bit is set.
215
216  // Canonicalize illegal integer setcc's.
217  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
218    Op = ISD::SETNE;
219
220  return ISD::CondCode(Op);
221}
222
223/// getSetCCAndOperation - Return the result of a logical AND between different
224/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
225/// function returns zero if it is not possible to represent the resultant
226/// comparison.
227ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
228                                        bool isInteger) {
229  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
230    // Cannot fold a signed setcc with an unsigned setcc.
231    return ISD::SETCC_INVALID;
232
233  // Combine all of the condition bits.
234  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
235
236  // Canonicalize illegal integer setcc's.
237  if (isInteger) {
238    switch (Result) {
239    default: break;
240    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
241    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
242    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
243    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
244    }
245  }
246
247  return Result;
248}
249
250const TargetMachine &SelectionDAG::getTarget() const {
251  return TLI.getTargetMachine();
252}
253
254//===----------------------------------------------------------------------===//
255//                              SelectionDAG Class
256//===----------------------------------------------------------------------===//
257
258/// RemoveDeadNodes - This method deletes all unreachable nodes in the
259/// SelectionDAG.
260void SelectionDAG::RemoveDeadNodes() {
261  // Create a dummy node (which is not added to allnodes), that adds a reference
262  // to the root node, preventing it from being deleted.
263  HandleSDNode Dummy(getRoot());
264
265  SmallVector<SDNode*, 128> DeadNodes;
266
267  // Add all obviously-dead nodes to the DeadNodes worklist.
268  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
269    if (I->use_empty())
270      DeadNodes.push_back(I);
271
272  // Process the worklist, deleting the nodes and adding their uses to the
273  // worklist.
274  while (!DeadNodes.empty()) {
275    SDNode *N = DeadNodes.back();
276    DeadNodes.pop_back();
277
278    // Take the node out of the appropriate CSE map.
279    RemoveNodeFromCSEMaps(N);
280
281    // Next, brutally remove the operand list.  This is safe to do, as there are
282    // no cycles in the graph.
283    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
284      SDNode *Operand = I->Val;
285      Operand->removeUser(N);
286
287      // Now that we removed this operand, see if there are no uses of it left.
288      if (Operand->use_empty())
289        DeadNodes.push_back(Operand);
290    }
291    delete[] N->OperandList;
292    N->OperandList = 0;
293    N->NumOperands = 0;
294
295    // Finally, remove N itself.
296    AllNodes.erase(N);
297  }
298
299  // If the root changed (e.g. it was a dead load, update the root).
300  setRoot(Dummy.getValue());
301}
302
303void SelectionDAG::DeleteNode(SDNode *N) {
304  assert(N->use_empty() && "Cannot delete a node that is not dead!");
305
306  // First take this out of the appropriate CSE map.
307  RemoveNodeFromCSEMaps(N);
308
309  // Finally, remove uses due to operands of this node, remove from the
310  // AllNodes list, and delete the node.
311  DeleteNodeNotInCSEMaps(N);
312}
313
314void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
315
316  // Remove it from the AllNodes list.
317  AllNodes.remove(N);
318
319  // Drop all of the operands and decrement used nodes use counts.
320  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
321    I->Val->removeUser(N);
322  delete[] N->OperandList;
323  N->OperandList = 0;
324  N->NumOperands = 0;
325
326  delete N;
327}
328
329/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
330/// correspond to it.  This is useful when we're about to delete or repurpose
331/// the node.  We don't want future request for structurally identical nodes
332/// to return N anymore.
333void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
334  bool Erased = false;
335  switch (N->getOpcode()) {
336  case ISD::HANDLENODE: return;  // noop.
337  case ISD::STRING:
338    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
339    break;
340  case ISD::CONDCODE:
341    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
342           "Cond code doesn't exist!");
343    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
344    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
345    break;
346  case ISD::ExternalSymbol:
347    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
348    break;
349  case ISD::TargetExternalSymbol:
350    Erased =
351      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
352    break;
353  case ISD::VALUETYPE:
354    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
355    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
356    break;
357  default:
358    // Remove it from the CSE Map.
359    Erased = CSEMap.RemoveNode(N);
360    break;
361  }
362#ifndef NDEBUG
363  // Verify that the node was actually in one of the CSE maps, unless it has a
364  // flag result (which cannot be CSE'd) or is one of the special cases that are
365  // not subject to CSE.
366  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
367      !N->isTargetOpcode()) {
368    N->dump();
369    std::cerr << "\n";
370    assert(0 && "Node is not in map!");
371  }
372#endif
373}
374
375/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
376/// has been taken out and modified in some way.  If the specified node already
377/// exists in the CSE maps, do not modify the maps, but return the existing node
378/// instead.  If it doesn't exist, add it and return null.
379///
380SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
381  assert(N->getNumOperands() && "This is a leaf node!");
382  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
383    return 0;    // Never add these nodes.
384
385  // Check that remaining values produced are not flags.
386  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
387    if (N->getValueType(i) == MVT::Flag)
388      return 0;   // Never CSE anything that produces a flag.
389
390  SDNode *New = CSEMap.GetOrInsertNode(N);
391  if (New != N) return New;  // Node already existed.
392  return 0;
393}
394
395/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
396/// were replaced with those specified.  If this node is never memoized,
397/// return null, otherwise return a pointer to the slot it would take.  If a
398/// node already exists with these operands, the slot will be non-null.
399SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
400                                           void *&InsertPos) {
401  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
402    return 0;    // Never add these nodes.
403
404  // Check that remaining values produced are not flags.
405  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
406    if (N->getValueType(i) == MVT::Flag)
407      return 0;   // Never CSE anything that produces a flag.
408
409  SelectionDAGCSEMap::NodeID ID;
410  ID.SetOpcode(N->getOpcode());
411  ID.SetValueTypes(N->getVTList());
412  ID.SetOperands(Op);
413  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
414}
415
416/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
417/// were replaced with those specified.  If this node is never memoized,
418/// return null, otherwise return a pointer to the slot it would take.  If a
419/// node already exists with these operands, the slot will be non-null.
420SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
421                                           SDOperand Op1, SDOperand Op2,
422                                           void *&InsertPos) {
423  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
424    return 0;    // Never add these nodes.
425
426  // Check that remaining values produced are not flags.
427  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
428    if (N->getValueType(i) == MVT::Flag)
429      return 0;   // Never CSE anything that produces a flag.
430
431  SelectionDAGCSEMap::NodeID ID;
432  ID.SetOpcode(N->getOpcode());
433  ID.SetValueTypes(N->getVTList());
434  ID.SetOperands(Op1, Op2);
435  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
436}
437
438
439/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
440/// were replaced with those specified.  If this node is never memoized,
441/// return null, otherwise return a pointer to the slot it would take.  If a
442/// node already exists with these operands, the slot will be non-null.
443SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
444                                           const SDOperand *Ops,unsigned NumOps,
445                                           void *&InsertPos) {
446  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
447    return 0;    // Never add these nodes.
448
449  // Check that remaining values produced are not flags.
450  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
451    if (N->getValueType(i) == MVT::Flag)
452      return 0;   // Never CSE anything that produces a flag.
453
454  SelectionDAGCSEMap::NodeID ID;
455  ID.SetOpcode(N->getOpcode());
456  ID.SetValueTypes(N->getVTList());
457  ID.SetOperands(Ops, NumOps);
458  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
459}
460
461
462SelectionDAG::~SelectionDAG() {
463  while (!AllNodes.empty()) {
464    SDNode *N = AllNodes.begin();
465    N->SetNextInBucket(0);
466    delete [] N->OperandList;
467    N->OperandList = 0;
468    N->NumOperands = 0;
469    AllNodes.pop_front();
470  }
471}
472
473SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
474  if (Op.getValueType() == VT) return Op;
475  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
476  return getNode(ISD::AND, Op.getValueType(), Op,
477                 getConstant(Imm, Op.getValueType()));
478}
479
480SDOperand SelectionDAG::getString(const std::string &Val) {
481  StringSDNode *&N = StringNodes[Val];
482  if (!N) {
483    N = new StringSDNode(Val);
484    AllNodes.push_back(N);
485  }
486  return SDOperand(N, 0);
487}
488
489SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
490  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
491  assert(!MVT::isVector(VT) && "Cannot create Vector ConstantSDNodes!");
492
493  // Mask out any bits that are not valid for this constant.
494  Val &= MVT::getIntVTBitMask(VT);
495
496  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
497  SelectionDAGCSEMap::NodeID ID(Opc, getVTList(VT));
498  ID.AddInteger(Val);
499  void *IP = 0;
500  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
501    return SDOperand(E, 0);
502  SDNode *N = new ConstantSDNode(isT, Val, VT);
503  CSEMap.InsertNode(N, IP);
504  AllNodes.push_back(N);
505  return SDOperand(N, 0);
506}
507
508
509SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
510                                      bool isTarget) {
511  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
512  if (VT == MVT::f32)
513    Val = (float)Val;  // Mask out extra precision.
514
515  // Do the map lookup using the actual bit pattern for the floating point
516  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
517  // we don't have issues with SNANs.
518  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
519  SelectionDAGCSEMap::NodeID ID(Opc, getVTList(VT));
520  ID.AddInteger(DoubleToBits(Val));
521  void *IP = 0;
522  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
523    return SDOperand(E, 0);
524  SDNode *N = new ConstantFPSDNode(isTarget, Val, VT);
525  CSEMap.InsertNode(N, IP);
526  AllNodes.push_back(N);
527  return SDOperand(N, 0);
528}
529
530SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
531                                         MVT::ValueType VT, int Offset,
532                                         bool isTargetGA) {
533  unsigned Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
534  SelectionDAGCSEMap::NodeID ID(Opc, getVTList(VT));
535  ID.AddPointer(GV);
536  ID.AddInteger(Offset);
537  void *IP = 0;
538  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
539   return SDOperand(E, 0);
540  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
541  CSEMap.InsertNode(N, IP);
542  AllNodes.push_back(N);
543  return SDOperand(N, 0);
544}
545
546SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
547                                      bool isTarget) {
548  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
549  SelectionDAGCSEMap::NodeID ID(Opc, getVTList(VT));
550  ID.AddInteger(FI);
551  void *IP = 0;
552  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
553    return SDOperand(E, 0);
554  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
555  CSEMap.InsertNode(N, IP);
556  AllNodes.push_back(N);
557  return SDOperand(N, 0);
558}
559
560SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
561  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
562  SelectionDAGCSEMap::NodeID ID(Opc, getVTList(VT));
563  ID.AddInteger(JTI);
564  void *IP = 0;
565  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
566    return SDOperand(E, 0);
567  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
568  CSEMap.InsertNode(N, IP);
569  AllNodes.push_back(N);
570  return SDOperand(N, 0);
571}
572
573SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
574                                        unsigned Alignment, int Offset,
575                                        bool isTarget) {
576  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
577  SelectionDAGCSEMap::NodeID ID(Opc, getVTList(VT));
578  ID.AddInteger(Alignment);
579  ID.AddInteger(Offset);
580  ID.AddPointer(C);
581  void *IP = 0;
582  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
583    return SDOperand(E, 0);
584  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
585  CSEMap.InsertNode(N, IP);
586  AllNodes.push_back(N);
587  return SDOperand(N, 0);
588}
589
590
591SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
592                                        MVT::ValueType VT,
593                                        unsigned Alignment, int Offset,
594                                        bool isTarget) {
595  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
596  SelectionDAGCSEMap::NodeID ID(Opc, getVTList(VT));
597  ID.AddInteger(Alignment);
598  ID.AddInteger(Offset);
599  C->AddSelectionDAGCSEId(&ID);
600  void *IP = 0;
601  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
602    return SDOperand(E, 0);
603  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
604  CSEMap.InsertNode(N, IP);
605  AllNodes.push_back(N);
606  return SDOperand(N, 0);
607}
608
609
610SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
611  SelectionDAGCSEMap::NodeID ID(ISD::BasicBlock, getVTList(MVT::Other));
612  ID.AddPointer(MBB);
613  void *IP = 0;
614  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
615    return SDOperand(E, 0);
616  SDNode *N = new BasicBlockSDNode(MBB);
617  CSEMap.InsertNode(N, IP);
618  AllNodes.push_back(N);
619  return SDOperand(N, 0);
620}
621
622SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
623  if ((unsigned)VT >= ValueTypeNodes.size())
624    ValueTypeNodes.resize(VT+1);
625  if (ValueTypeNodes[VT] == 0) {
626    ValueTypeNodes[VT] = new VTSDNode(VT);
627    AllNodes.push_back(ValueTypeNodes[VT]);
628  }
629
630  return SDOperand(ValueTypeNodes[VT], 0);
631}
632
633SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
634  SDNode *&N = ExternalSymbols[Sym];
635  if (N) return SDOperand(N, 0);
636  N = new ExternalSymbolSDNode(false, Sym, VT);
637  AllNodes.push_back(N);
638  return SDOperand(N, 0);
639}
640
641SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
642                                                MVT::ValueType VT) {
643  SDNode *&N = TargetExternalSymbols[Sym];
644  if (N) return SDOperand(N, 0);
645  N = new ExternalSymbolSDNode(true, Sym, VT);
646  AllNodes.push_back(N);
647  return SDOperand(N, 0);
648}
649
650SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
651  if ((unsigned)Cond >= CondCodeNodes.size())
652    CondCodeNodes.resize(Cond+1);
653
654  if (CondCodeNodes[Cond] == 0) {
655    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
656    AllNodes.push_back(CondCodeNodes[Cond]);
657  }
658  return SDOperand(CondCodeNodes[Cond], 0);
659}
660
661SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
662  SelectionDAGCSEMap::NodeID ID(ISD::Register, getVTList(VT));
663  ID.AddInteger(RegNo);
664  void *IP = 0;
665  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
666    return SDOperand(E, 0);
667  SDNode *N = new RegisterSDNode(RegNo, VT);
668  CSEMap.InsertNode(N, IP);
669  AllNodes.push_back(N);
670  return SDOperand(N, 0);
671}
672
673SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
674  assert((!V || isa<PointerType>(V->getType())) &&
675         "SrcValue is not a pointer?");
676
677  SelectionDAGCSEMap::NodeID ID(ISD::SRCVALUE, getVTList(MVT::Other));
678  ID.AddPointer(V);
679  ID.AddInteger(Offset);
680  void *IP = 0;
681  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
682    return SDOperand(E, 0);
683  SDNode *N = new SrcValueSDNode(V, Offset);
684  CSEMap.InsertNode(N, IP);
685  AllNodes.push_back(N);
686  return SDOperand(N, 0);
687}
688
689SDOperand SelectionDAG::SimplifySetCC(MVT::ValueType VT, SDOperand N1,
690                                      SDOperand N2, ISD::CondCode Cond) {
691  // These setcc operations always fold.
692  switch (Cond) {
693  default: break;
694  case ISD::SETFALSE:
695  case ISD::SETFALSE2: return getConstant(0, VT);
696  case ISD::SETTRUE:
697  case ISD::SETTRUE2:  return getConstant(1, VT);
698
699  case ISD::SETOEQ:
700  case ISD::SETOGT:
701  case ISD::SETOGE:
702  case ISD::SETOLT:
703  case ISD::SETOLE:
704  case ISD::SETONE:
705  case ISD::SETO:
706  case ISD::SETUO:
707  case ISD::SETUEQ:
708  case ISD::SETUNE:
709    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
710    break;
711  }
712
713  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
714    uint64_t C2 = N2C->getValue();
715    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
716      uint64_t C1 = N1C->getValue();
717
718      // Sign extend the operands if required
719      if (ISD::isSignedIntSetCC(Cond)) {
720        C1 = N1C->getSignExtended();
721        C2 = N2C->getSignExtended();
722      }
723
724      switch (Cond) {
725      default: assert(0 && "Unknown integer setcc!");
726      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
727      case ISD::SETNE:  return getConstant(C1 != C2, VT);
728      case ISD::SETULT: return getConstant(C1 <  C2, VT);
729      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
730      case ISD::SETULE: return getConstant(C1 <= C2, VT);
731      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
732      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
733      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
734      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
735      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
736      }
737    } else {
738      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
739      if (N1.getOpcode() == ISD::ZERO_EXTEND) {
740        unsigned InSize = MVT::getSizeInBits(N1.getOperand(0).getValueType());
741
742        // If the comparison constant has bits in the upper part, the
743        // zero-extended value could never match.
744        if (C2 & (~0ULL << InSize)) {
745          unsigned VSize = MVT::getSizeInBits(N1.getValueType());
746          switch (Cond) {
747          case ISD::SETUGT:
748          case ISD::SETUGE:
749          case ISD::SETEQ: return getConstant(0, VT);
750          case ISD::SETULT:
751          case ISD::SETULE:
752          case ISD::SETNE: return getConstant(1, VT);
753          case ISD::SETGT:
754          case ISD::SETGE:
755            // True if the sign bit of C2 is set.
756            return getConstant((C2 & (1ULL << VSize)) != 0, VT);
757          case ISD::SETLT:
758          case ISD::SETLE:
759            // True if the sign bit of C2 isn't set.
760            return getConstant((C2 & (1ULL << VSize)) == 0, VT);
761          default:
762            break;
763          }
764        }
765
766        // Otherwise, we can perform the comparison with the low bits.
767        switch (Cond) {
768        case ISD::SETEQ:
769        case ISD::SETNE:
770        case ISD::SETUGT:
771        case ISD::SETUGE:
772        case ISD::SETULT:
773        case ISD::SETULE:
774          return getSetCC(VT, N1.getOperand(0),
775                          getConstant(C2, N1.getOperand(0).getValueType()),
776                          Cond);
777        default:
778          break;   // todo, be more careful with signed comparisons
779        }
780      } else if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG &&
781                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
782        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N1.getOperand(1))->getVT();
783        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
784        MVT::ValueType ExtDstTy = N1.getValueType();
785        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
786
787        // If the extended part has any inconsistent bits, it cannot ever
788        // compare equal.  In other words, they have to be all ones or all
789        // zeros.
790        uint64_t ExtBits =
791          (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
792        if ((C2 & ExtBits) != 0 && (C2 & ExtBits) != ExtBits)
793          return getConstant(Cond == ISD::SETNE, VT);
794
795        // Otherwise, make this a use of a zext.
796        return getSetCC(VT, getZeroExtendInReg(N1.getOperand(0), ExtSrcTy),
797                        getConstant(C2 & (~0ULL>>(64-ExtSrcTyBits)), ExtDstTy),
798                        Cond);
799      }
800
801      uint64_t MinVal, MaxVal;
802      unsigned OperandBitSize = MVT::getSizeInBits(N2C->getValueType(0));
803      if (ISD::isSignedIntSetCC(Cond)) {
804        MinVal = 1ULL << (OperandBitSize-1);
805        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
806          MaxVal = ~0ULL >> (65-OperandBitSize);
807        else
808          MaxVal = 0;
809      } else {
810        MinVal = 0;
811        MaxVal = ~0ULL >> (64-OperandBitSize);
812      }
813
814      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
815      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
816        if (C2 == MinVal) return getConstant(1, VT);   // X >= MIN --> true
817        --C2;                                          // X >= C1 --> X > (C1-1)
818        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
819                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
820      }
821
822      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
823        if (C2 == MaxVal) return getConstant(1, VT);   // X <= MAX --> true
824        ++C2;                                          // X <= C1 --> X < (C1+1)
825        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
826                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
827      }
828
829      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal)
830        return getConstant(0, VT);      // X < MIN --> false
831
832      // Canonicalize setgt X, Min --> setne X, Min
833      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MinVal)
834        return getSetCC(VT, N1, N2, ISD::SETNE);
835
836      // If we have setult X, 1, turn it into seteq X, 0
837      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal+1)
838        return getSetCC(VT, N1, getConstant(MinVal, N1.getValueType()),
839                        ISD::SETEQ);
840      // If we have setugt X, Max-1, turn it into seteq X, Max
841      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MaxVal-1)
842        return getSetCC(VT, N1, getConstant(MaxVal, N1.getValueType()),
843                        ISD::SETEQ);
844
845      // If we have "setcc X, C1", check to see if we can shrink the immediate
846      // by changing cc.
847
848      // SETUGT X, SINTMAX  -> SETLT X, 0
849      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
850          C2 == (~0ULL >> (65-OperandBitSize)))
851        return getSetCC(VT, N1, getConstant(0, N2.getValueType()), ISD::SETLT);
852
853      // FIXME: Implement the rest of these.
854
855
856      // Fold bit comparisons when we can.
857      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
858          VT == N1.getValueType() && N1.getOpcode() == ISD::AND)
859        if (ConstantSDNode *AndRHS =
860                    dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
861          if (Cond == ISD::SETNE && C2 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
862            // Perform the xform if the AND RHS is a single bit.
863            if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) {
864              return getNode(ISD::SRL, VT, N1,
865                             getConstant(Log2_64(AndRHS->getValue()),
866                                                   TLI.getShiftAmountTy()));
867            }
868          } else if (Cond == ISD::SETEQ && C2 == AndRHS->getValue()) {
869            // (X & 8) == 8  -->  (X & 8) >> 3
870            // Perform the xform if C2 is a single bit.
871            if ((C2 & (C2-1)) == 0) {
872              return getNode(ISD::SRL, VT, N1,
873                             getConstant(Log2_64(C2),TLI.getShiftAmountTy()));
874            }
875          }
876        }
877    }
878  } else if (isa<ConstantSDNode>(N1.Val)) {
879      // Ensure that the constant occurs on the RHS.
880    return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
881  }
882
883  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
884    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
885      double C1 = N1C->getValue(), C2 = N2C->getValue();
886
887      switch (Cond) {
888      default: break; // FIXME: Implement the rest of these!
889      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
890      case ISD::SETNE:  return getConstant(C1 != C2, VT);
891      case ISD::SETLT:  return getConstant(C1 < C2, VT);
892      case ISD::SETGT:  return getConstant(C1 > C2, VT);
893      case ISD::SETLE:  return getConstant(C1 <= C2, VT);
894      case ISD::SETGE:  return getConstant(C1 >= C2, VT);
895      }
896    } else {
897      // Ensure that the constant occurs on the RHS.
898      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
899    }
900
901  // Could not fold it.
902  return SDOperand();
903}
904
905/// getNode - Gets or creates the specified node.
906///
907SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
908  SelectionDAGCSEMap::NodeID ID(Opcode, getVTList(VT));
909  void *IP = 0;
910  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
911    return SDOperand(E, 0);
912  SDNode *N = new SDNode(Opcode, VT);
913  CSEMap.InsertNode(N, IP);
914
915  AllNodes.push_back(N);
916  return SDOperand(N, 0);
917}
918
919SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
920                                SDOperand Operand) {
921  unsigned Tmp1;
922  // Constant fold unary operations with an integer constant operand.
923  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
924    uint64_t Val = C->getValue();
925    switch (Opcode) {
926    default: break;
927    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
928    case ISD::ANY_EXTEND:
929    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
930    case ISD::TRUNCATE:    return getConstant(Val, VT);
931    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
932    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
933    case ISD::BIT_CONVERT:
934      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
935        return getConstantFP(BitsToFloat(Val), VT);
936      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
937        return getConstantFP(BitsToDouble(Val), VT);
938      break;
939    case ISD::BSWAP:
940      switch(VT) {
941      default: assert(0 && "Invalid bswap!"); break;
942      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
943      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
944      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
945      }
946      break;
947    case ISD::CTPOP:
948      switch(VT) {
949      default: assert(0 && "Invalid ctpop!"); break;
950      case MVT::i1: return getConstant(Val != 0, VT);
951      case MVT::i8:
952        Tmp1 = (unsigned)Val & 0xFF;
953        return getConstant(CountPopulation_32(Tmp1), VT);
954      case MVT::i16:
955        Tmp1 = (unsigned)Val & 0xFFFF;
956        return getConstant(CountPopulation_32(Tmp1), VT);
957      case MVT::i32:
958        return getConstant(CountPopulation_32((unsigned)Val), VT);
959      case MVT::i64:
960        return getConstant(CountPopulation_64(Val), VT);
961      }
962    case ISD::CTLZ:
963      switch(VT) {
964      default: assert(0 && "Invalid ctlz!"); break;
965      case MVT::i1: return getConstant(Val == 0, VT);
966      case MVT::i8:
967        Tmp1 = (unsigned)Val & 0xFF;
968        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
969      case MVT::i16:
970        Tmp1 = (unsigned)Val & 0xFFFF;
971        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
972      case MVT::i32:
973        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
974      case MVT::i64:
975        return getConstant(CountLeadingZeros_64(Val), VT);
976      }
977    case ISD::CTTZ:
978      switch(VT) {
979      default: assert(0 && "Invalid cttz!"); break;
980      case MVT::i1: return getConstant(Val == 0, VT);
981      case MVT::i8:
982        Tmp1 = (unsigned)Val | 0x100;
983        return getConstant(CountTrailingZeros_32(Tmp1), VT);
984      case MVT::i16:
985        Tmp1 = (unsigned)Val | 0x10000;
986        return getConstant(CountTrailingZeros_32(Tmp1), VT);
987      case MVT::i32:
988        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
989      case MVT::i64:
990        return getConstant(CountTrailingZeros_64(Val), VT);
991      }
992    }
993  }
994
995  // Constant fold unary operations with an floating point constant operand.
996  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
997    switch (Opcode) {
998    case ISD::FNEG:
999      return getConstantFP(-C->getValue(), VT);
1000    case ISD::FABS:
1001      return getConstantFP(fabs(C->getValue()), VT);
1002    case ISD::FP_ROUND:
1003    case ISD::FP_EXTEND:
1004      return getConstantFP(C->getValue(), VT);
1005    case ISD::FP_TO_SINT:
1006      return getConstant((int64_t)C->getValue(), VT);
1007    case ISD::FP_TO_UINT:
1008      return getConstant((uint64_t)C->getValue(), VT);
1009    case ISD::BIT_CONVERT:
1010      if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1011        return getConstant(FloatToBits(C->getValue()), VT);
1012      else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1013        return getConstant(DoubleToBits(C->getValue()), VT);
1014      break;
1015    }
1016
1017  unsigned OpOpcode = Operand.Val->getOpcode();
1018  switch (Opcode) {
1019  case ISD::TokenFactor:
1020    return Operand;         // Factor of one node?  No factor.
1021  case ISD::SIGN_EXTEND:
1022    if (Operand.getValueType() == VT) return Operand;   // noop extension
1023    assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!");
1024    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1025      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1026    break;
1027  case ISD::ZERO_EXTEND:
1028    if (Operand.getValueType() == VT) return Operand;   // noop extension
1029    assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!");
1030    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1031      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1032    break;
1033  case ISD::ANY_EXTEND:
1034    if (Operand.getValueType() == VT) return Operand;   // noop extension
1035    assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!");
1036    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1037      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1038      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1039    break;
1040  case ISD::TRUNCATE:
1041    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1042    assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!");
1043    if (OpOpcode == ISD::TRUNCATE)
1044      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1045    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1046             OpOpcode == ISD::ANY_EXTEND) {
1047      // If the source is smaller than the dest, we still need an extend.
1048      if (Operand.Val->getOperand(0).getValueType() < VT)
1049        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1050      else if (Operand.Val->getOperand(0).getValueType() > VT)
1051        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1052      else
1053        return Operand.Val->getOperand(0);
1054    }
1055    break;
1056  case ISD::BIT_CONVERT:
1057    // Basic sanity checking.
1058    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1059           && "Cannot BIT_CONVERT between two different types!");
1060    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1061    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1062      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1063    if (OpOpcode == ISD::UNDEF)
1064      return getNode(ISD::UNDEF, VT);
1065    break;
1066  case ISD::SCALAR_TO_VECTOR:
1067    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1068           MVT::getVectorBaseType(VT) == Operand.getValueType() &&
1069           "Illegal SCALAR_TO_VECTOR node!");
1070    break;
1071  case ISD::FNEG:
1072    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1073      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1074                     Operand.Val->getOperand(0));
1075    if (OpOpcode == ISD::FNEG)  // --X -> X
1076      return Operand.Val->getOperand(0);
1077    break;
1078  case ISD::FABS:
1079    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1080      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1081    break;
1082  }
1083
1084  SDNode *N;
1085  SDVTList VTs = getVTList(VT);
1086  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1087    SelectionDAGCSEMap::NodeID ID(Opcode, VTs, Operand);
1088    void *IP = 0;
1089    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1090      return SDOperand(E, 0);
1091    N = new SDNode(Opcode, Operand);
1092    N->setValueTypes(VTs);
1093    CSEMap.InsertNode(N, IP);
1094  } else {
1095    N = new SDNode(Opcode, Operand);
1096    N->setValueTypes(VTs);
1097  }
1098  AllNodes.push_back(N);
1099  return SDOperand(N, 0);
1100}
1101
1102
1103
1104SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1105                                SDOperand N1, SDOperand N2) {
1106#ifndef NDEBUG
1107  switch (Opcode) {
1108  case ISD::TokenFactor:
1109    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1110           N2.getValueType() == MVT::Other && "Invalid token factor!");
1111    break;
1112  case ISD::AND:
1113  case ISD::OR:
1114  case ISD::XOR:
1115  case ISD::UDIV:
1116  case ISD::UREM:
1117  case ISD::MULHU:
1118  case ISD::MULHS:
1119    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1120    // fall through
1121  case ISD::ADD:
1122  case ISD::SUB:
1123  case ISD::MUL:
1124  case ISD::SDIV:
1125  case ISD::SREM:
1126    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1127    // fall through.
1128  case ISD::FADD:
1129  case ISD::FSUB:
1130  case ISD::FMUL:
1131  case ISD::FDIV:
1132  case ISD::FREM:
1133    assert(N1.getValueType() == N2.getValueType() &&
1134           N1.getValueType() == VT && "Binary operator types must match!");
1135    break;
1136  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1137    assert(N1.getValueType() == VT &&
1138           MVT::isFloatingPoint(N1.getValueType()) &&
1139           MVT::isFloatingPoint(N2.getValueType()) &&
1140           "Invalid FCOPYSIGN!");
1141    break;
1142  case ISD::SHL:
1143  case ISD::SRA:
1144  case ISD::SRL:
1145  case ISD::ROTL:
1146  case ISD::ROTR:
1147    assert(VT == N1.getValueType() &&
1148           "Shift operators return type must be the same as their first arg");
1149    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1150           VT != MVT::i1 && "Shifts only work on integers");
1151    break;
1152  case ISD::FP_ROUND_INREG: {
1153    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1154    assert(VT == N1.getValueType() && "Not an inreg round!");
1155    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1156           "Cannot FP_ROUND_INREG integer types");
1157    assert(EVT <= VT && "Not rounding down!");
1158    break;
1159  }
1160  case ISD::AssertSext:
1161  case ISD::AssertZext:
1162  case ISD::SIGN_EXTEND_INREG: {
1163    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1164    assert(VT == N1.getValueType() && "Not an inreg extend!");
1165    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1166           "Cannot *_EXTEND_INREG FP types");
1167    assert(EVT <= VT && "Not extending!");
1168  }
1169
1170  default: break;
1171  }
1172#endif
1173
1174  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1175  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1176  if (N1C) {
1177    if (Opcode == ISD::SIGN_EXTEND_INREG) {
1178      int64_t Val = N1C->getValue();
1179      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
1180      Val <<= 64-FromBits;
1181      Val >>= 64-FromBits;
1182      return getConstant(Val, VT);
1183    }
1184
1185    if (N2C) {
1186      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1187      switch (Opcode) {
1188      case ISD::ADD: return getConstant(C1 + C2, VT);
1189      case ISD::SUB: return getConstant(C1 - C2, VT);
1190      case ISD::MUL: return getConstant(C1 * C2, VT);
1191      case ISD::UDIV:
1192        if (C2) return getConstant(C1 / C2, VT);
1193        break;
1194      case ISD::UREM :
1195        if (C2) return getConstant(C1 % C2, VT);
1196        break;
1197      case ISD::SDIV :
1198        if (C2) return getConstant(N1C->getSignExtended() /
1199                                   N2C->getSignExtended(), VT);
1200        break;
1201      case ISD::SREM :
1202        if (C2) return getConstant(N1C->getSignExtended() %
1203                                   N2C->getSignExtended(), VT);
1204        break;
1205      case ISD::AND  : return getConstant(C1 & C2, VT);
1206      case ISD::OR   : return getConstant(C1 | C2, VT);
1207      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1208      case ISD::SHL  : return getConstant(C1 << C2, VT);
1209      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1210      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1211      case ISD::ROTL :
1212        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1213                           VT);
1214      case ISD::ROTR :
1215        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1216                           VT);
1217      default: break;
1218      }
1219    } else {      // Cannonicalize constant to RHS if commutative
1220      if (isCommutativeBinOp(Opcode)) {
1221        std::swap(N1C, N2C);
1222        std::swap(N1, N2);
1223      }
1224    }
1225  }
1226
1227  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1228  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1229  if (N1CFP) {
1230    if (N2CFP) {
1231      double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1232      switch (Opcode) {
1233      case ISD::FADD: return getConstantFP(C1 + C2, VT);
1234      case ISD::FSUB: return getConstantFP(C1 - C2, VT);
1235      case ISD::FMUL: return getConstantFP(C1 * C2, VT);
1236      case ISD::FDIV:
1237        if (C2) return getConstantFP(C1 / C2, VT);
1238        break;
1239      case ISD::FREM :
1240        if (C2) return getConstantFP(fmod(C1, C2), VT);
1241        break;
1242      case ISD::FCOPYSIGN: {
1243        union {
1244          double   F;
1245          uint64_t I;
1246        } u1;
1247        union {
1248          double  F;
1249          int64_t I;
1250        } u2;
1251        u1.F = C1;
1252        u2.F = C2;
1253        if (u2.I < 0)  // Sign bit of RHS set?
1254          u1.I |= 1ULL << 63;      // Set the sign bit of the LHS.
1255        else
1256          u1.I &= (1ULL << 63)-1;  // Clear the sign bit of the LHS.
1257        return getConstantFP(u1.F, VT);
1258      }
1259      default: break;
1260      }
1261    } else {      // Cannonicalize constant to RHS if commutative
1262      if (isCommutativeBinOp(Opcode)) {
1263        std::swap(N1CFP, N2CFP);
1264        std::swap(N1, N2);
1265      }
1266    }
1267  }
1268
1269  // Canonicalize an UNDEF to the RHS, even over a constant.
1270  if (N1.getOpcode() == ISD::UNDEF) {
1271    if (isCommutativeBinOp(Opcode)) {
1272      std::swap(N1, N2);
1273    } else {
1274      switch (Opcode) {
1275      case ISD::FP_ROUND_INREG:
1276      case ISD::SIGN_EXTEND_INREG:
1277      case ISD::SUB:
1278      case ISD::FSUB:
1279      case ISD::FDIV:
1280      case ISD::FREM:
1281      case ISD::SRA:
1282        return N1;     // fold op(undef, arg2) -> undef
1283      case ISD::UDIV:
1284      case ISD::SDIV:
1285      case ISD::UREM:
1286      case ISD::SREM:
1287      case ISD::SRL:
1288      case ISD::SHL:
1289        return getConstant(0, VT);    // fold op(undef, arg2) -> 0
1290      }
1291    }
1292  }
1293
1294  // Fold a bunch of operators when the RHS is undef.
1295  if (N2.getOpcode() == ISD::UNDEF) {
1296    switch (Opcode) {
1297    case ISD::ADD:
1298    case ISD::SUB:
1299    case ISD::FADD:
1300    case ISD::FSUB:
1301    case ISD::FMUL:
1302    case ISD::FDIV:
1303    case ISD::FREM:
1304    case ISD::UDIV:
1305    case ISD::SDIV:
1306    case ISD::UREM:
1307    case ISD::SREM:
1308    case ISD::XOR:
1309      return N2;       // fold op(arg1, undef) -> undef
1310    case ISD::MUL:
1311    case ISD::AND:
1312    case ISD::SRL:
1313    case ISD::SHL:
1314      return getConstant(0, VT);  // fold op(arg1, undef) -> 0
1315    case ISD::OR:
1316      return getConstant(MVT::getIntVTBitMask(VT), VT);
1317    case ISD::SRA:
1318      return N1;
1319    }
1320  }
1321
1322  // Finally, fold operations that do not require constants.
1323  switch (Opcode) {
1324  case ISD::FP_ROUND_INREG:
1325    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1326    break;
1327  case ISD::SIGN_EXTEND_INREG: {
1328    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1329    if (EVT == VT) return N1;  // Not actually extending
1330    break;
1331  }
1332  case ISD::EXTRACT_ELEMENT:
1333    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
1334
1335    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
1336    // 64-bit integers into 32-bit parts.  Instead of building the extract of
1337    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
1338    if (N1.getOpcode() == ISD::BUILD_PAIR)
1339      return N1.getOperand(N2C->getValue());
1340
1341    // EXTRACT_ELEMENT of a constant int is also very common.
1342    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
1343      unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
1344      return getConstant(C->getValue() >> Shift, VT);
1345    }
1346    break;
1347
1348  // FIXME: figure out how to safely handle things like
1349  // int foo(int x) { return 1 << (x & 255); }
1350  // int bar() { return foo(256); }
1351#if 0
1352  case ISD::SHL:
1353  case ISD::SRL:
1354  case ISD::SRA:
1355    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1356        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
1357      return getNode(Opcode, VT, N1, N2.getOperand(0));
1358    else if (N2.getOpcode() == ISD::AND)
1359      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
1360        // If the and is only masking out bits that cannot effect the shift,
1361        // eliminate the and.
1362        unsigned NumBits = MVT::getSizeInBits(VT);
1363        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1364          return getNode(Opcode, VT, N1, N2.getOperand(0));
1365      }
1366    break;
1367#endif
1368  }
1369
1370  // Memoize this node if possible.
1371  SDNode *N;
1372  SDVTList VTs = getVTList(VT);
1373  if (VT != MVT::Flag) {
1374    SelectionDAGCSEMap::NodeID ID(Opcode, VTs, N1, N2);
1375    void *IP = 0;
1376    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1377      return SDOperand(E, 0);
1378    N = new SDNode(Opcode, N1, N2);
1379    N->setValueTypes(VTs);
1380    CSEMap.InsertNode(N, IP);
1381  } else {
1382    N = new SDNode(Opcode, N1, N2);
1383    N->setValueTypes(VTs);
1384  }
1385
1386  AllNodes.push_back(N);
1387  return SDOperand(N, 0);
1388}
1389
1390SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1391                                SDOperand N1, SDOperand N2, SDOperand N3) {
1392  // Perform various simplifications.
1393  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1394  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1395  //ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
1396  switch (Opcode) {
1397  case ISD::SETCC: {
1398    // Use SimplifySetCC  to simplify SETCC's.
1399    SDOperand Simp = SimplifySetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
1400    if (Simp.Val) return Simp;
1401    break;
1402  }
1403  case ISD::SELECT:
1404    if (N1C)
1405      if (N1C->getValue())
1406        return N2;             // select true, X, Y -> X
1407      else
1408        return N3;             // select false, X, Y -> Y
1409
1410    if (N2 == N3) return N2;   // select C, X, X -> X
1411    break;
1412  case ISD::BRCOND:
1413    if (N2C)
1414      if (N2C->getValue()) // Unconditional branch
1415        return getNode(ISD::BR, MVT::Other, N1, N3);
1416      else
1417        return N1;         // Never-taken branch
1418    break;
1419  case ISD::VECTOR_SHUFFLE:
1420    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1421           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
1422           N3.getOpcode() == ISD::BUILD_VECTOR &&
1423           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
1424           "Illegal VECTOR_SHUFFLE node!");
1425    break;
1426  }
1427
1428  // Memoize node if it doesn't produce a flag.
1429  SDNode *N;
1430  SDVTList VTs = getVTList(VT);
1431  if (VT != MVT::Flag) {
1432    SelectionDAGCSEMap::NodeID ID(Opcode, VTs, N1, N2, N3);
1433    void *IP = 0;
1434    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1435      return SDOperand(E, 0);
1436    N = new SDNode(Opcode, N1, N2, N3);
1437    N->setValueTypes(VTs);
1438    CSEMap.InsertNode(N, IP);
1439  } else {
1440    N = new SDNode(Opcode, N1, N2, N3);
1441    N->setValueTypes(VTs);
1442  }
1443  AllNodes.push_back(N);
1444  return SDOperand(N, 0);
1445}
1446
1447SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1448                                SDOperand N1, SDOperand N2, SDOperand N3,
1449                                SDOperand N4) {
1450  SDOperand Ops[] = { N1, N2, N3, N4 };
1451  return getNode(Opcode, VT, Ops, 4);
1452}
1453
1454SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1455                                SDOperand N1, SDOperand N2, SDOperand N3,
1456                                SDOperand N4, SDOperand N5) {
1457  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
1458  return getNode(Opcode, VT, Ops, 5);
1459}
1460
1461SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
1462                                SDOperand Chain, SDOperand Ptr,
1463                                const Value *SV, int SVOffset,
1464                                bool isVolatile) {
1465  // FIXME: Alignment == 1 for now.
1466  unsigned Alignment = 1;
1467  SDVTList VTs = getVTList(VT, MVT::Other);
1468  SDOperand Undef = getNode(ISD::UNDEF, VT);
1469  SelectionDAGCSEMap::NodeID ID(ISD::LOAD, VTs, Chain, Ptr, Undef);
1470  ID.AddInteger(ISD::UNINDEXED);
1471  ID.AddInteger(ISD::NON_EXTLOAD);
1472  ID.AddInteger(VT);
1473  ID.AddPointer(SV);
1474  ID.AddInteger(SVOffset);
1475  ID.AddInteger(Alignment);
1476  ID.AddInteger(isVolatile);
1477  void *IP = 0;
1478  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1479    return SDOperand(E, 0);
1480  SDNode *N = new LoadSDNode(Chain, Ptr, Undef, ISD::NON_EXTLOAD, VT,
1481                             SV, SVOffset, Alignment, isVolatile);
1482  N->setValueTypes(VTs);
1483  CSEMap.InsertNode(N, IP);
1484  AllNodes.push_back(N);
1485  return SDOperand(N, 0);
1486}
1487
1488SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
1489                                   SDOperand Chain, SDOperand Ptr, const Value *SV,
1490                                   int SVOffset, MVT::ValueType EVT,
1491                                   bool isVolatile) {
1492  // If they are asking for an extending load from/to the same thing, return a
1493  // normal load.
1494  if (VT == EVT)
1495    ExtType = ISD::NON_EXTLOAD;
1496
1497  if (MVT::isVector(VT))
1498    assert(EVT == MVT::getVectorBaseType(VT) && "Invalid vector extload!");
1499  else
1500    assert(EVT < VT && "Should only be an extending load, not truncating!");
1501  assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
1502         "Cannot sign/zero extend a FP/Vector load!");
1503  assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
1504         "Cannot convert from FP to Int or Int -> FP!");
1505
1506  // FIXME: Alignment == 1 for now.
1507  unsigned Alignment = 1;
1508  SDVTList VTs = getVTList(VT, MVT::Other);
1509  SDOperand Undef = getNode(ISD::UNDEF, VT);
1510  SelectionDAGCSEMap::NodeID ID(ISD::LOAD, VTs, Chain, Ptr, Undef);
1511  ID.AddInteger(ISD::UNINDEXED);
1512  ID.AddInteger(ExtType);
1513  ID.AddInteger(EVT);
1514  ID.AddPointer(SV);
1515  ID.AddInteger(SVOffset);
1516  ID.AddInteger(Alignment);
1517  ID.AddInteger(isVolatile);
1518  void *IP = 0;
1519  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1520    return SDOperand(E, 0);
1521  SDNode *N = new LoadSDNode(Chain, Ptr, Undef, ExtType, EVT, SV, SVOffset,
1522                             Alignment, isVolatile);
1523  N->setValueTypes(VTs);
1524  CSEMap.InsertNode(N, IP);
1525  AllNodes.push_back(N);
1526  return SDOperand(N, 0);
1527}
1528
1529SDOperand SelectionDAG::getVecLoad(unsigned Count, MVT::ValueType EVT,
1530                                   SDOperand Chain, SDOperand Ptr,
1531                                   SDOperand SV) {
1532  SDOperand Ops[] = { Chain, Ptr, SV, getConstant(Count, MVT::i32),
1533                      getValueType(EVT) };
1534  return getNode(ISD::VLOAD, getVTList(MVT::Vector, MVT::Other), Ops, 5);
1535}
1536
1537SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Value,
1538                                 SDOperand Ptr, SDOperand SV) {
1539  SDVTList VTs = getVTList(MVT::Other);
1540  SDOperand Ops[] = { Chain, Value, Ptr, SV };
1541  SelectionDAGCSEMap::NodeID ID(ISD::STORE, VTs, Ops, 4);
1542  void *IP = 0;
1543  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1544    return SDOperand(E, 0);
1545  SDNode *N = new SDNode(ISD::STORE, Chain, Value, Ptr, SV);
1546  N->setValueTypes(VTs);
1547  CSEMap.InsertNode(N, IP);
1548  AllNodes.push_back(N);
1549  return SDOperand(N, 0);
1550}
1551
1552SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
1553                                 SDOperand Chain, SDOperand Ptr,
1554                                 SDOperand SV) {
1555  SDOperand Ops[] = { Chain, Ptr, SV };
1556  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
1557}
1558
1559SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1560                                const SDOperand *Ops, unsigned NumOps) {
1561  switch (NumOps) {
1562  case 0: return getNode(Opcode, VT);
1563  case 1: return getNode(Opcode, VT, Ops[0]);
1564  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
1565  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
1566  default: break;
1567  }
1568
1569  switch (Opcode) {
1570  default: break;
1571  case ISD::TRUNCSTORE: {
1572    assert(NumOps == 5 && "TRUNCSTORE takes 5 operands!");
1573    MVT::ValueType EVT = cast<VTSDNode>(Ops[4])->getVT();
1574#if 0 // FIXME: If the target supports EVT natively, convert to a truncate/store
1575    // If this is a truncating store of a constant, convert to the desired type
1576    // and store it instead.
1577    if (isa<Constant>(Ops[0])) {
1578      SDOperand Op = getNode(ISD::TRUNCATE, EVT, N1);
1579      if (isa<Constant>(Op))
1580        N1 = Op;
1581    }
1582    // Also for ConstantFP?
1583#endif
1584    if (Ops[0].getValueType() == EVT)       // Normal store?
1585      return getStore(Ops[0], Ops[1], Ops[2], Ops[3]);
1586    assert(Ops[1].getValueType() > EVT && "Not a truncation?");
1587    assert(MVT::isInteger(Ops[1].getValueType()) == MVT::isInteger(EVT) &&
1588           "Can't do FP-INT conversion!");
1589    break;
1590  }
1591  case ISD::SELECT_CC: {
1592    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
1593    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
1594           "LHS and RHS of condition must have same type!");
1595    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1596           "True and False arms of SelectCC must have same type!");
1597    assert(Ops[2].getValueType() == VT &&
1598           "select_cc node must be of same type as true and false value!");
1599    break;
1600  }
1601  case ISD::BR_CC: {
1602    assert(NumOps == 5 && "BR_CC takes 5 operands!");
1603    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1604           "LHS/RHS of comparison should match types!");
1605    break;
1606  }
1607  }
1608
1609  // Memoize nodes.
1610  SDNode *N;
1611  SDVTList VTs = getVTList(VT);
1612  if (VT != MVT::Flag) {
1613    SelectionDAGCSEMap::NodeID ID(Opcode, VTs, Ops, NumOps);
1614    void *IP = 0;
1615    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1616      return SDOperand(E, 0);
1617    N = new SDNode(Opcode, Ops, NumOps);
1618    N->setValueTypes(VTs);
1619    CSEMap.InsertNode(N, IP);
1620  } else {
1621    N = new SDNode(Opcode, Ops, NumOps);
1622    N->setValueTypes(VTs);
1623  }
1624  AllNodes.push_back(N);
1625  return SDOperand(N, 0);
1626}
1627
1628SDOperand SelectionDAG::getNode(unsigned Opcode,
1629                                std::vector<MVT::ValueType> &ResultTys,
1630                                const SDOperand *Ops, unsigned NumOps) {
1631  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
1632                 Ops, NumOps);
1633}
1634
1635SDOperand SelectionDAG::getNode(unsigned Opcode,
1636                                const MVT::ValueType *VTs, unsigned NumVTs,
1637                                const SDOperand *Ops, unsigned NumOps) {
1638  if (NumVTs == 1)
1639    return getNode(Opcode, VTs[0], Ops, NumOps);
1640  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
1641}
1642
1643SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
1644                                const SDOperand *Ops, unsigned NumOps) {
1645  if (VTList.NumVTs == 1)
1646    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
1647
1648  switch (Opcode) {
1649  // FIXME: figure out how to safely handle things like
1650  // int foo(int x) { return 1 << (x & 255); }
1651  // int bar() { return foo(256); }
1652#if 0
1653  case ISD::SRA_PARTS:
1654  case ISD::SRL_PARTS:
1655  case ISD::SHL_PARTS:
1656    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1657        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
1658      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1659    else if (N3.getOpcode() == ISD::AND)
1660      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
1661        // If the and is only masking out bits that cannot effect the shift,
1662        // eliminate the and.
1663        unsigned NumBits = MVT::getSizeInBits(VT)*2;
1664        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1665          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1666      }
1667    break;
1668#endif
1669  }
1670
1671  // Memoize the node unless it returns a flag.
1672  SDNode *N;
1673  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
1674    SelectionDAGCSEMap::NodeID ID;
1675    ID.SetOpcode(Opcode);
1676    ID.SetValueTypes(VTList);
1677    ID.SetOperands(&Ops[0], NumOps);
1678    void *IP = 0;
1679    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1680      return SDOperand(E, 0);
1681    N = new SDNode(Opcode, Ops, NumOps);
1682    N->setValueTypes(VTList);
1683    CSEMap.InsertNode(N, IP);
1684  } else {
1685    N = new SDNode(Opcode, Ops, NumOps);
1686    N->setValueTypes(VTList);
1687  }
1688  AllNodes.push_back(N);
1689  return SDOperand(N, 0);
1690}
1691
1692SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
1693  return makeVTList(SDNode::getValueTypeList(VT), 1);
1694}
1695
1696SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
1697  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1698       E = VTList.end(); I != E; ++I) {
1699    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
1700      return makeVTList(&(*I)[0], 2);
1701  }
1702  std::vector<MVT::ValueType> V;
1703  V.push_back(VT1);
1704  V.push_back(VT2);
1705  VTList.push_front(V);
1706  return makeVTList(&(*VTList.begin())[0], 2);
1707}
1708SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
1709                                 MVT::ValueType VT3) {
1710  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1711       E = VTList.end(); I != E; ++I) {
1712    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
1713        (*I)[2] == VT3)
1714      return makeVTList(&(*I)[0], 3);
1715  }
1716  std::vector<MVT::ValueType> V;
1717  V.push_back(VT1);
1718  V.push_back(VT2);
1719  V.push_back(VT3);
1720  VTList.push_front(V);
1721  return makeVTList(&(*VTList.begin())[0], 3);
1722}
1723
1724SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
1725  switch (NumVTs) {
1726    case 0: assert(0 && "Cannot have nodes without results!");
1727    case 1: return makeVTList(SDNode::getValueTypeList(VTs[0]), 1);
1728    case 2: return getVTList(VTs[0], VTs[1]);
1729    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
1730    default: break;
1731  }
1732
1733  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1734       E = VTList.end(); I != E; ++I) {
1735    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
1736
1737    bool NoMatch = false;
1738    for (unsigned i = 2; i != NumVTs; ++i)
1739      if (VTs[i] != (*I)[i]) {
1740        NoMatch = true;
1741        break;
1742      }
1743    if (!NoMatch)
1744      return makeVTList(&*I->begin(), NumVTs);
1745  }
1746
1747  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
1748  return makeVTList(&*VTList.begin()->begin(), NumVTs);
1749}
1750
1751
1752/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
1753/// specified operands.  If the resultant node already exists in the DAG,
1754/// this does not modify the specified node, instead it returns the node that
1755/// already exists.  If the resultant node does not exist in the DAG, the
1756/// input node is returned.  As a degenerate case, if you specify the same
1757/// input operands as the node already has, the input node is returned.
1758SDOperand SelectionDAG::
1759UpdateNodeOperands(SDOperand InN, SDOperand Op) {
1760  SDNode *N = InN.Val;
1761  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
1762
1763  // Check to see if there is no change.
1764  if (Op == N->getOperand(0)) return InN;
1765
1766  // See if the modified node already exists.
1767  void *InsertPos = 0;
1768  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
1769    return SDOperand(Existing, InN.ResNo);
1770
1771  // Nope it doesn't.  Remove the node from it's current place in the maps.
1772  if (InsertPos)
1773    RemoveNodeFromCSEMaps(N);
1774
1775  // Now we update the operands.
1776  N->OperandList[0].Val->removeUser(N);
1777  Op.Val->addUser(N);
1778  N->OperandList[0] = Op;
1779
1780  // If this gets put into a CSE map, add it.
1781  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
1782  return InN;
1783}
1784
1785SDOperand SelectionDAG::
1786UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
1787  SDNode *N = InN.Val;
1788  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
1789
1790  // Check to see if there is no change.
1791  bool AnyChange = false;
1792  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
1793    return InN;   // No operands changed, just return the input node.
1794
1795  // See if the modified node already exists.
1796  void *InsertPos = 0;
1797  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
1798    return SDOperand(Existing, InN.ResNo);
1799
1800  // Nope it doesn't.  Remove the node from it's current place in the maps.
1801  if (InsertPos)
1802    RemoveNodeFromCSEMaps(N);
1803
1804  // Now we update the operands.
1805  if (N->OperandList[0] != Op1) {
1806    N->OperandList[0].Val->removeUser(N);
1807    Op1.Val->addUser(N);
1808    N->OperandList[0] = Op1;
1809  }
1810  if (N->OperandList[1] != Op2) {
1811    N->OperandList[1].Val->removeUser(N);
1812    Op2.Val->addUser(N);
1813    N->OperandList[1] = Op2;
1814  }
1815
1816  // If this gets put into a CSE map, add it.
1817  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
1818  return InN;
1819}
1820
1821SDOperand SelectionDAG::
1822UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
1823  SDOperand Ops[] = { Op1, Op2, Op3 };
1824  return UpdateNodeOperands(N, Ops, 3);
1825}
1826
1827SDOperand SelectionDAG::
1828UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1829                   SDOperand Op3, SDOperand Op4) {
1830  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
1831  return UpdateNodeOperands(N, Ops, 4);
1832}
1833
1834SDOperand SelectionDAG::
1835UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1836                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
1837  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
1838  return UpdateNodeOperands(N, Ops, 5);
1839}
1840
1841
1842SDOperand SelectionDAG::
1843UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
1844  SDNode *N = InN.Val;
1845  assert(N->getNumOperands() == NumOps &&
1846         "Update with wrong number of operands");
1847
1848  // Check to see if there is no change.
1849  bool AnyChange = false;
1850  for (unsigned i = 0; i != NumOps; ++i) {
1851    if (Ops[i] != N->getOperand(i)) {
1852      AnyChange = true;
1853      break;
1854    }
1855  }
1856
1857  // No operands changed, just return the input node.
1858  if (!AnyChange) return InN;
1859
1860  // See if the modified node already exists.
1861  void *InsertPos = 0;
1862  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
1863    return SDOperand(Existing, InN.ResNo);
1864
1865  // Nope it doesn't.  Remove the node from it's current place in the maps.
1866  if (InsertPos)
1867    RemoveNodeFromCSEMaps(N);
1868
1869  // Now we update the operands.
1870  for (unsigned i = 0; i != NumOps; ++i) {
1871    if (N->OperandList[i] != Ops[i]) {
1872      N->OperandList[i].Val->removeUser(N);
1873      Ops[i].Val->addUser(N);
1874      N->OperandList[i] = Ops[i];
1875    }
1876  }
1877
1878  // If this gets put into a CSE map, add it.
1879  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
1880  return InN;
1881}
1882
1883
1884
1885
1886/// SelectNodeTo - These are used for target selectors to *mutate* the
1887/// specified node to have the specified return type, Target opcode, and
1888/// operands.  Note that target opcodes are stored as
1889/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
1890///
1891/// Note that SelectNodeTo returns the resultant node.  If there is already a
1892/// node of the specified opcode and operands, it returns that node instead of
1893/// the current one.
1894SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1895                                   MVT::ValueType VT) {
1896  SDVTList VTs = getVTList(VT);
1897  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs);
1898  void *IP = 0;
1899  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1900    return ON;
1901
1902  RemoveNodeFromCSEMaps(N);
1903
1904  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1905  N->setValueTypes(VTs);
1906
1907  CSEMap.InsertNode(N, IP);
1908  return N;
1909}
1910
1911SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1912                                   MVT::ValueType VT, SDOperand Op1) {
1913  // If an identical node already exists, use it.
1914  SDVTList VTs = getVTList(VT);
1915  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs, Op1);
1916  void *IP = 0;
1917  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1918    return ON;
1919
1920  RemoveNodeFromCSEMaps(N);
1921  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1922  N->setValueTypes(VTs);
1923  N->setOperands(Op1);
1924  CSEMap.InsertNode(N, IP);
1925  return N;
1926}
1927
1928SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1929                                   MVT::ValueType VT, SDOperand Op1,
1930                                   SDOperand Op2) {
1931  // If an identical node already exists, use it.
1932  SDVTList VTs = getVTList(VT);
1933  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs, Op1, Op2);
1934  void *IP = 0;
1935  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1936    return ON;
1937
1938  RemoveNodeFromCSEMaps(N);
1939  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1940  N->setValueTypes(VTs);
1941  N->setOperands(Op1, Op2);
1942
1943  CSEMap.InsertNode(N, IP);   // Memoize the new node.
1944  return N;
1945}
1946
1947SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1948                                   MVT::ValueType VT, SDOperand Op1,
1949                                   SDOperand Op2, SDOperand Op3) {
1950  // If an identical node already exists, use it.
1951  SDVTList VTs = getVTList(VT);
1952  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs,
1953                                Op1, Op2, Op3);
1954  void *IP = 0;
1955  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1956    return ON;
1957
1958  RemoveNodeFromCSEMaps(N);
1959  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1960  N->setValueTypes(VTs);
1961  N->setOperands(Op1, Op2, Op3);
1962
1963  CSEMap.InsertNode(N, IP);   // Memoize the new node.
1964  return N;
1965}
1966
1967SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1968                                   MVT::ValueType VT, const SDOperand *Ops,
1969                                   unsigned NumOps) {
1970  // If an identical node already exists, use it.
1971  SDVTList VTs = getVTList(VT);
1972  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs);
1973  for (unsigned i = 0; i != NumOps; ++i)
1974    ID.AddOperand(Ops[i]);
1975  void *IP = 0;
1976  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1977    return ON;
1978
1979  RemoveNodeFromCSEMaps(N);
1980  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1981  N->setValueTypes(VTs);
1982  N->setOperands(Ops, NumOps);
1983
1984  CSEMap.InsertNode(N, IP);   // Memoize the new node.
1985  return N;
1986}
1987
1988SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1989                                   MVT::ValueType VT1, MVT::ValueType VT2,
1990                                   SDOperand Op1, SDOperand Op2) {
1991  SDVTList VTs = getVTList(VT1, VT2);
1992  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs, Op1, Op2);
1993  void *IP = 0;
1994  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1995    return ON;
1996
1997  RemoveNodeFromCSEMaps(N);
1998  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1999  N->setValueTypes(VTs);
2000  N->setOperands(Op1, Op2);
2001
2002  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2003  return N;
2004}
2005
2006SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2007                                   MVT::ValueType VT1, MVT::ValueType VT2,
2008                                   SDOperand Op1, SDOperand Op2,
2009                                   SDOperand Op3) {
2010  // If an identical node already exists, use it.
2011  SDVTList VTs = getVTList(VT1, VT2);
2012  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs,
2013                                Op1, Op2, Op3);
2014  void *IP = 0;
2015  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2016    return ON;
2017
2018  RemoveNodeFromCSEMaps(N);
2019  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2020  N->setValueTypes(VTs);
2021  N->setOperands(Op1, Op2, Op3);
2022
2023  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2024  return N;
2025}
2026
2027
2028/// getTargetNode - These are used for target selectors to create a new node
2029/// with specified return type(s), target opcode, and operands.
2030///
2031/// Note that getTargetNode returns the resultant node.  If there is already a
2032/// node of the specified opcode and operands, it returns that node instead of
2033/// the current one.
2034SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
2035  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
2036}
2037SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2038                                    SDOperand Op1) {
2039  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
2040}
2041SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2042                                    SDOperand Op1, SDOperand Op2) {
2043  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
2044}
2045SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2046                                    SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2047  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
2048}
2049SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2050                                    const SDOperand *Ops, unsigned NumOps) {
2051  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
2052}
2053SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2054                                    MVT::ValueType VT2, SDOperand Op1) {
2055  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2056  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
2057}
2058SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2059                                    MVT::ValueType VT2, SDOperand Op1,
2060                                    SDOperand Op2) {
2061  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2062  SDOperand Ops[] = { Op1, Op2 };
2063  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
2064}
2065SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2066                                    MVT::ValueType VT2, SDOperand Op1,
2067                                    SDOperand Op2, SDOperand Op3) {
2068  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2069  SDOperand Ops[] = { Op1, Op2, Op3 };
2070  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
2071}
2072SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2073                                    MVT::ValueType VT2,
2074                                    const SDOperand *Ops, unsigned NumOps) {
2075  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2076  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
2077}
2078SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2079                                    MVT::ValueType VT2, MVT::ValueType VT3,
2080                                    SDOperand Op1, SDOperand Op2) {
2081  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2082  SDOperand Ops[] = { Op1, Op2 };
2083  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
2084}
2085SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2086                                    MVT::ValueType VT2, MVT::ValueType VT3,
2087                                    const SDOperand *Ops, unsigned NumOps) {
2088  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2089  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
2090}
2091
2092/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2093/// This can cause recursive merging of nodes in the DAG.
2094///
2095/// This version assumes From/To have a single result value.
2096///
2097void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
2098                                      std::vector<SDNode*> *Deleted) {
2099  SDNode *From = FromN.Val, *To = ToN.Val;
2100  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
2101         "Cannot replace with this method!");
2102  assert(From != To && "Cannot replace uses of with self");
2103
2104  while (!From->use_empty()) {
2105    // Process users until they are all gone.
2106    SDNode *U = *From->use_begin();
2107
2108    // This node is about to morph, remove its old self from the CSE maps.
2109    RemoveNodeFromCSEMaps(U);
2110
2111    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2112         I != E; ++I)
2113      if (I->Val == From) {
2114        From->removeUser(U);
2115        I->Val = To;
2116        To->addUser(U);
2117      }
2118
2119    // Now that we have modified U, add it back to the CSE maps.  If it already
2120    // exists there, recursively merge the results together.
2121    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2122      ReplaceAllUsesWith(U, Existing, Deleted);
2123      // U is now dead.
2124      if (Deleted) Deleted->push_back(U);
2125      DeleteNodeNotInCSEMaps(U);
2126    }
2127  }
2128}
2129
2130/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2131/// This can cause recursive merging of nodes in the DAG.
2132///
2133/// This version assumes From/To have matching types and numbers of result
2134/// values.
2135///
2136void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
2137                                      std::vector<SDNode*> *Deleted) {
2138  assert(From != To && "Cannot replace uses of with self");
2139  assert(From->getNumValues() == To->getNumValues() &&
2140         "Cannot use this version of ReplaceAllUsesWith!");
2141  if (From->getNumValues() == 1) {  // If possible, use the faster version.
2142    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
2143    return;
2144  }
2145
2146  while (!From->use_empty()) {
2147    // Process users until they are all gone.
2148    SDNode *U = *From->use_begin();
2149
2150    // This node is about to morph, remove its old self from the CSE maps.
2151    RemoveNodeFromCSEMaps(U);
2152
2153    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2154         I != E; ++I)
2155      if (I->Val == From) {
2156        From->removeUser(U);
2157        I->Val = To;
2158        To->addUser(U);
2159      }
2160
2161    // Now that we have modified U, add it back to the CSE maps.  If it already
2162    // exists there, recursively merge the results together.
2163    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2164      ReplaceAllUsesWith(U, Existing, Deleted);
2165      // U is now dead.
2166      if (Deleted) Deleted->push_back(U);
2167      DeleteNodeNotInCSEMaps(U);
2168    }
2169  }
2170}
2171
2172/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2173/// This can cause recursive merging of nodes in the DAG.
2174///
2175/// This version can replace From with any result values.  To must match the
2176/// number and types of values returned by From.
2177void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
2178                                      const SDOperand *To,
2179                                      std::vector<SDNode*> *Deleted) {
2180  if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) {
2181    // Degenerate case handled above.
2182    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
2183    return;
2184  }
2185
2186  while (!From->use_empty()) {
2187    // Process users until they are all gone.
2188    SDNode *U = *From->use_begin();
2189
2190    // This node is about to morph, remove its old self from the CSE maps.
2191    RemoveNodeFromCSEMaps(U);
2192
2193    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2194         I != E; ++I)
2195      if (I->Val == From) {
2196        const SDOperand &ToOp = To[I->ResNo];
2197        From->removeUser(U);
2198        *I = ToOp;
2199        ToOp.Val->addUser(U);
2200      }
2201
2202    // Now that we have modified U, add it back to the CSE maps.  If it already
2203    // exists there, recursively merge the results together.
2204    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2205      ReplaceAllUsesWith(U, Existing, Deleted);
2206      // U is now dead.
2207      if (Deleted) Deleted->push_back(U);
2208      DeleteNodeNotInCSEMaps(U);
2209    }
2210  }
2211}
2212
2213/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
2214/// uses of other values produced by From.Val alone.  The Deleted vector is
2215/// handled the same was as for ReplaceAllUsesWith.
2216void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
2217                                             std::vector<SDNode*> &Deleted) {
2218  assert(From != To && "Cannot replace a value with itself");
2219  // Handle the simple, trivial, case efficiently.
2220  if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
2221    ReplaceAllUsesWith(From, To, &Deleted);
2222    return;
2223  }
2224
2225  // Get all of the users in a nice, deterministically ordered, uniqued set.
2226  SetVector<SDNode*> Users(From.Val->use_begin(), From.Val->use_end());
2227
2228  while (!Users.empty()) {
2229    // We know that this user uses some value of From.  If it is the right
2230    // value, update it.
2231    SDNode *User = Users.back();
2232    Users.pop_back();
2233
2234    for (SDOperand *Op = User->OperandList,
2235         *E = User->OperandList+User->NumOperands; Op != E; ++Op) {
2236      if (*Op == From) {
2237        // Okay, we know this user needs to be updated.  Remove its old self
2238        // from the CSE maps.
2239        RemoveNodeFromCSEMaps(User);
2240
2241        // Update all operands that match "From".
2242        for (; Op != E; ++Op) {
2243          if (*Op == From) {
2244            From.Val->removeUser(User);
2245            *Op = To;
2246            To.Val->addUser(User);
2247          }
2248        }
2249
2250        // Now that we have modified User, add it back to the CSE maps.  If it
2251        // already exists there, recursively merge the results together.
2252        if (SDNode *Existing = AddNonLeafNodeToCSEMaps(User)) {
2253          unsigned NumDeleted = Deleted.size();
2254          ReplaceAllUsesWith(User, Existing, &Deleted);
2255
2256          // User is now dead.
2257          Deleted.push_back(User);
2258          DeleteNodeNotInCSEMaps(User);
2259
2260          // We have to be careful here, because ReplaceAllUsesWith could have
2261          // deleted a user of From, which means there may be dangling pointers
2262          // in the "Users" setvector.  Scan over the deleted node pointers and
2263          // remove them from the setvector.
2264          for (unsigned i = NumDeleted, e = Deleted.size(); i != e; ++i)
2265            Users.remove(Deleted[i]);
2266        }
2267        break;   // Exit the operand scanning loop.
2268      }
2269    }
2270  }
2271}
2272
2273
2274/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
2275/// their allnodes order. It returns the maximum id.
2276unsigned SelectionDAG::AssignNodeIds() {
2277  unsigned Id = 0;
2278  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
2279    SDNode *N = I;
2280    N->setNodeId(Id++);
2281  }
2282  return Id;
2283}
2284
2285/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
2286/// based on their topological order. It returns the maximum id and a vector
2287/// of the SDNodes* in assigned order by reference.
2288unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
2289  unsigned DAGSize = AllNodes.size();
2290  std::vector<unsigned> InDegree(DAGSize);
2291  std::vector<SDNode*> Sources;
2292
2293  // Use a two pass approach to avoid using a std::map which is slow.
2294  unsigned Id = 0;
2295  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
2296    SDNode *N = I;
2297    N->setNodeId(Id++);
2298    unsigned Degree = N->use_size();
2299    InDegree[N->getNodeId()] = Degree;
2300    if (Degree == 0)
2301      Sources.push_back(N);
2302  }
2303
2304  TopOrder.clear();
2305  while (!Sources.empty()) {
2306    SDNode *N = Sources.back();
2307    Sources.pop_back();
2308    TopOrder.push_back(N);
2309    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
2310      SDNode *P = I->Val;
2311      unsigned Degree = --InDegree[P->getNodeId()];
2312      if (Degree == 0)
2313        Sources.push_back(P);
2314    }
2315  }
2316
2317  // Second pass, assign the actual topological order as node ids.
2318  Id = 0;
2319  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
2320       TI != TE; ++TI)
2321    (*TI)->setNodeId(Id++);
2322
2323  return Id;
2324}
2325
2326
2327
2328//===----------------------------------------------------------------------===//
2329//                              SDNode Class
2330//===----------------------------------------------------------------------===//
2331
2332// Out-of-line virtual method to give class a home.
2333void SDNode::ANCHOR() {
2334}
2335
2336/// getValueTypeList - Return a pointer to the specified value type.
2337///
2338MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
2339  static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
2340  VTs[VT] = VT;
2341  return &VTs[VT];
2342}
2343
2344/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
2345/// indicated value.  This method ignores uses of other values defined by this
2346/// operation.
2347bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
2348  assert(Value < getNumValues() && "Bad value!");
2349
2350  // If there is only one value, this is easy.
2351  if (getNumValues() == 1)
2352    return use_size() == NUses;
2353  if (Uses.size() < NUses) return false;
2354
2355  SDOperand TheValue(const_cast<SDNode *>(this), Value);
2356
2357  std::set<SDNode*> UsersHandled;
2358
2359  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
2360    SDNode *User = *UI;
2361    if (User->getNumOperands() == 1 ||
2362        UsersHandled.insert(User).second)     // First time we've seen this?
2363      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
2364        if (User->getOperand(i) == TheValue) {
2365          if (NUses == 0)
2366            return false;   // too many uses
2367          --NUses;
2368        }
2369  }
2370
2371  // Found exactly the right number of uses?
2372  return NUses == 0;
2373}
2374
2375
2376// isOnlyUse - Return true if this node is the only use of N.
2377bool SDNode::isOnlyUse(SDNode *N) const {
2378  bool Seen = false;
2379  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2380    SDNode *User = *I;
2381    if (User == this)
2382      Seen = true;
2383    else
2384      return false;
2385  }
2386
2387  return Seen;
2388}
2389
2390// isOperand - Return true if this node is an operand of N.
2391bool SDOperand::isOperand(SDNode *N) const {
2392  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2393    if (*this == N->getOperand(i))
2394      return true;
2395  return false;
2396}
2397
2398bool SDNode::isOperand(SDNode *N) const {
2399  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
2400    if (this == N->OperandList[i].Val)
2401      return true;
2402  return false;
2403}
2404
2405uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
2406  assert(Num < NumOperands && "Invalid child # of SDNode!");
2407  return cast<ConstantSDNode>(OperandList[Num])->getValue();
2408}
2409
2410const char *SDNode::getOperationName(const SelectionDAG *G) const {
2411  switch (getOpcode()) {
2412  default:
2413    if (getOpcode() < ISD::BUILTIN_OP_END)
2414      return "<<Unknown DAG Node>>";
2415    else {
2416      if (G) {
2417        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
2418          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
2419            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
2420
2421        TargetLowering &TLI = G->getTargetLoweringInfo();
2422        const char *Name =
2423          TLI.getTargetNodeName(getOpcode());
2424        if (Name) return Name;
2425      }
2426
2427      return "<<Unknown Target Node>>";
2428    }
2429
2430  case ISD::PCMARKER:      return "PCMarker";
2431  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
2432  case ISD::SRCVALUE:      return "SrcValue";
2433  case ISD::EntryToken:    return "EntryToken";
2434  case ISD::TokenFactor:   return "TokenFactor";
2435  case ISD::AssertSext:    return "AssertSext";
2436  case ISD::AssertZext:    return "AssertZext";
2437
2438  case ISD::STRING:        return "String";
2439  case ISD::BasicBlock:    return "BasicBlock";
2440  case ISD::VALUETYPE:     return "ValueType";
2441  case ISD::Register:      return "Register";
2442
2443  case ISD::Constant:      return "Constant";
2444  case ISD::ConstantFP:    return "ConstantFP";
2445  case ISD::GlobalAddress: return "GlobalAddress";
2446  case ISD::FrameIndex:    return "FrameIndex";
2447  case ISD::JumpTable:     return "JumpTable";
2448  case ISD::JumpTableRelocBase: return "JumpTableRelocBase";
2449  case ISD::ConstantPool:  return "ConstantPool";
2450  case ISD::ExternalSymbol: return "ExternalSymbol";
2451  case ISD::INTRINSIC_WO_CHAIN: {
2452    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
2453    return Intrinsic::getName((Intrinsic::ID)IID);
2454  }
2455  case ISD::INTRINSIC_VOID:
2456  case ISD::INTRINSIC_W_CHAIN: {
2457    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
2458    return Intrinsic::getName((Intrinsic::ID)IID);
2459  }
2460
2461  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
2462  case ISD::TargetConstant: return "TargetConstant";
2463  case ISD::TargetConstantFP:return "TargetConstantFP";
2464  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
2465  case ISD::TargetFrameIndex: return "TargetFrameIndex";
2466  case ISD::TargetJumpTable:  return "TargetJumpTable";
2467  case ISD::TargetConstantPool:  return "TargetConstantPool";
2468  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
2469
2470  case ISD::CopyToReg:     return "CopyToReg";
2471  case ISD::CopyFromReg:   return "CopyFromReg";
2472  case ISD::UNDEF:         return "undef";
2473  case ISD::MERGE_VALUES:  return "mergevalues";
2474  case ISD::INLINEASM:     return "inlineasm";
2475  case ISD::HANDLENODE:    return "handlenode";
2476  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
2477  case ISD::CALL:          return "call";
2478
2479  // Unary operators
2480  case ISD::FABS:   return "fabs";
2481  case ISD::FNEG:   return "fneg";
2482  case ISD::FSQRT:  return "fsqrt";
2483  case ISD::FSIN:   return "fsin";
2484  case ISD::FCOS:   return "fcos";
2485  case ISD::FPOWI:  return "fpowi";
2486
2487  // Binary operators
2488  case ISD::ADD:    return "add";
2489  case ISD::SUB:    return "sub";
2490  case ISD::MUL:    return "mul";
2491  case ISD::MULHU:  return "mulhu";
2492  case ISD::MULHS:  return "mulhs";
2493  case ISD::SDIV:   return "sdiv";
2494  case ISD::UDIV:   return "udiv";
2495  case ISD::SREM:   return "srem";
2496  case ISD::UREM:   return "urem";
2497  case ISD::AND:    return "and";
2498  case ISD::OR:     return "or";
2499  case ISD::XOR:    return "xor";
2500  case ISD::SHL:    return "shl";
2501  case ISD::SRA:    return "sra";
2502  case ISD::SRL:    return "srl";
2503  case ISD::ROTL:   return "rotl";
2504  case ISD::ROTR:   return "rotr";
2505  case ISD::FADD:   return "fadd";
2506  case ISD::FSUB:   return "fsub";
2507  case ISD::FMUL:   return "fmul";
2508  case ISD::FDIV:   return "fdiv";
2509  case ISD::FREM:   return "frem";
2510  case ISD::FCOPYSIGN: return "fcopysign";
2511  case ISD::VADD:   return "vadd";
2512  case ISD::VSUB:   return "vsub";
2513  case ISD::VMUL:   return "vmul";
2514  case ISD::VSDIV:  return "vsdiv";
2515  case ISD::VUDIV:  return "vudiv";
2516  case ISD::VAND:   return "vand";
2517  case ISD::VOR:    return "vor";
2518  case ISD::VXOR:   return "vxor";
2519
2520  case ISD::SETCC:       return "setcc";
2521  case ISD::SELECT:      return "select";
2522  case ISD::SELECT_CC:   return "select_cc";
2523  case ISD::VSELECT:     return "vselect";
2524  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
2525  case ISD::VINSERT_VECTOR_ELT:  return "vinsert_vector_elt";
2526  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
2527  case ISD::VEXTRACT_VECTOR_ELT: return "vextract_vector_elt";
2528  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
2529  case ISD::VBUILD_VECTOR:       return "vbuild_vector";
2530  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
2531  case ISD::VVECTOR_SHUFFLE:     return "vvector_shuffle";
2532  case ISD::VBIT_CONVERT:        return "vbit_convert";
2533  case ISD::ADDC:        return "addc";
2534  case ISD::ADDE:        return "adde";
2535  case ISD::SUBC:        return "subc";
2536  case ISD::SUBE:        return "sube";
2537  case ISD::SHL_PARTS:   return "shl_parts";
2538  case ISD::SRA_PARTS:   return "sra_parts";
2539  case ISD::SRL_PARTS:   return "srl_parts";
2540
2541  // Conversion operators.
2542  case ISD::SIGN_EXTEND: return "sign_extend";
2543  case ISD::ZERO_EXTEND: return "zero_extend";
2544  case ISD::ANY_EXTEND:  return "any_extend";
2545  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
2546  case ISD::TRUNCATE:    return "truncate";
2547  case ISD::FP_ROUND:    return "fp_round";
2548  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
2549  case ISD::FP_EXTEND:   return "fp_extend";
2550
2551  case ISD::SINT_TO_FP:  return "sint_to_fp";
2552  case ISD::UINT_TO_FP:  return "uint_to_fp";
2553  case ISD::FP_TO_SINT:  return "fp_to_sint";
2554  case ISD::FP_TO_UINT:  return "fp_to_uint";
2555  case ISD::BIT_CONVERT: return "bit_convert";
2556
2557    // Control flow instructions
2558  case ISD::BR:      return "br";
2559  case ISD::BRIND:   return "brind";
2560  case ISD::BRCOND:  return "brcond";
2561  case ISD::BR_CC:   return "br_cc";
2562  case ISD::RET:     return "ret";
2563  case ISD::CALLSEQ_START:  return "callseq_start";
2564  case ISD::CALLSEQ_END:    return "callseq_end";
2565
2566    // Other operators
2567  case ISD::LOAD:               return "load";
2568  case ISD::STORE:              return "store";
2569  case ISD::VLOAD:              return "vload";
2570  case ISD::TRUNCSTORE:         return "truncstore";
2571  case ISD::VAARG:              return "vaarg";
2572  case ISD::VACOPY:             return "vacopy";
2573  case ISD::VAEND:              return "vaend";
2574  case ISD::VASTART:            return "vastart";
2575  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
2576  case ISD::EXTRACT_ELEMENT:    return "extract_element";
2577  case ISD::BUILD_PAIR:         return "build_pair";
2578  case ISD::STACKSAVE:          return "stacksave";
2579  case ISD::STACKRESTORE:       return "stackrestore";
2580
2581  // Block memory operations.
2582  case ISD::MEMSET:  return "memset";
2583  case ISD::MEMCPY:  return "memcpy";
2584  case ISD::MEMMOVE: return "memmove";
2585
2586  // Bit manipulation
2587  case ISD::BSWAP:   return "bswap";
2588  case ISD::CTPOP:   return "ctpop";
2589  case ISD::CTTZ:    return "cttz";
2590  case ISD::CTLZ:    return "ctlz";
2591
2592  // Debug info
2593  case ISD::LOCATION: return "location";
2594  case ISD::DEBUG_LOC: return "debug_loc";
2595  case ISD::DEBUG_LABEL: return "debug_label";
2596
2597  case ISD::CONDCODE:
2598    switch (cast<CondCodeSDNode>(this)->get()) {
2599    default: assert(0 && "Unknown setcc condition!");
2600    case ISD::SETOEQ:  return "setoeq";
2601    case ISD::SETOGT:  return "setogt";
2602    case ISD::SETOGE:  return "setoge";
2603    case ISD::SETOLT:  return "setolt";
2604    case ISD::SETOLE:  return "setole";
2605    case ISD::SETONE:  return "setone";
2606
2607    case ISD::SETO:    return "seto";
2608    case ISD::SETUO:   return "setuo";
2609    case ISD::SETUEQ:  return "setue";
2610    case ISD::SETUGT:  return "setugt";
2611    case ISD::SETUGE:  return "setuge";
2612    case ISD::SETULT:  return "setult";
2613    case ISD::SETULE:  return "setule";
2614    case ISD::SETUNE:  return "setune";
2615
2616    case ISD::SETEQ:   return "seteq";
2617    case ISD::SETGT:   return "setgt";
2618    case ISD::SETGE:   return "setge";
2619    case ISD::SETLT:   return "setlt";
2620    case ISD::SETLE:   return "setle";
2621    case ISD::SETNE:   return "setne";
2622    }
2623  }
2624}
2625
2626void SDNode::dump() const { dump(0); }
2627void SDNode::dump(const SelectionDAG *G) const {
2628  std::cerr << (void*)this << ": ";
2629
2630  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
2631    if (i) std::cerr << ",";
2632    if (getValueType(i) == MVT::Other)
2633      std::cerr << "ch";
2634    else
2635      std::cerr << MVT::getValueTypeString(getValueType(i));
2636  }
2637  std::cerr << " = " << getOperationName(G);
2638
2639  std::cerr << " ";
2640  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2641    if (i) std::cerr << ", ";
2642    std::cerr << (void*)getOperand(i).Val;
2643    if (unsigned RN = getOperand(i).ResNo)
2644      std::cerr << ":" << RN;
2645  }
2646
2647  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
2648    std::cerr << "<" << CSDN->getValue() << ">";
2649  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
2650    std::cerr << "<" << CSDN->getValue() << ">";
2651  } else if (const GlobalAddressSDNode *GADN =
2652             dyn_cast<GlobalAddressSDNode>(this)) {
2653    int offset = GADN->getOffset();
2654    std::cerr << "<";
2655    WriteAsOperand(std::cerr, GADN->getGlobal()) << ">";
2656    if (offset > 0)
2657      std::cerr << " + " << offset;
2658    else
2659      std::cerr << " " << offset;
2660  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
2661    std::cerr << "<" << FIDN->getIndex() << ">";
2662  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
2663    int offset = CP->getOffset();
2664    if (CP->isMachineConstantPoolEntry())
2665      std::cerr << "<" << *CP->getMachineCPVal() << ">";
2666    else
2667      std::cerr << "<" << *CP->getConstVal() << ">";
2668    if (offset > 0)
2669      std::cerr << " + " << offset;
2670    else
2671      std::cerr << " " << offset;
2672  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
2673    std::cerr << "<";
2674    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
2675    if (LBB)
2676      std::cerr << LBB->getName() << " ";
2677    std::cerr << (const void*)BBDN->getBasicBlock() << ">";
2678  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
2679    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
2680      std::cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
2681    } else {
2682      std::cerr << " #" << R->getReg();
2683    }
2684  } else if (const ExternalSymbolSDNode *ES =
2685             dyn_cast<ExternalSymbolSDNode>(this)) {
2686    std::cerr << "'" << ES->getSymbol() << "'";
2687  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
2688    if (M->getValue())
2689      std::cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
2690    else
2691      std::cerr << "<null:" << M->getOffset() << ">";
2692  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
2693    std::cerr << ":" << getValueTypeString(N->getVT());
2694  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
2695    bool doExt = true;
2696    switch (LD->getExtensionType()) {
2697    default: doExt = false; break;
2698    case ISD::EXTLOAD:
2699      std::cerr << " <anyext ";
2700      break;
2701    case ISD::SEXTLOAD:
2702      std::cerr << " <sext ";
2703      break;
2704    case ISD::ZEXTLOAD:
2705      std::cerr << " <zext ";
2706      break;
2707    }
2708    if (doExt)
2709      std::cerr << MVT::getValueTypeString(LD->getLoadVT()) << ">";
2710
2711    if (LD->getAddressingMode() == ISD::PRE_INDEXED)
2712      std::cerr << " <pre>";
2713    else if (LD->getAddressingMode() == ISD::POST_INDEXED)
2714      std::cerr << " <post>";
2715  }
2716}
2717
2718static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
2719  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2720    if (N->getOperand(i).Val->hasOneUse())
2721      DumpNodes(N->getOperand(i).Val, indent+2, G);
2722    else
2723      std::cerr << "\n" << std::string(indent+2, ' ')
2724                << (void*)N->getOperand(i).Val << ": <multiple use>";
2725
2726
2727  std::cerr << "\n" << std::string(indent, ' ');
2728  N->dump(G);
2729}
2730
2731void SelectionDAG::dump() const {
2732  std::cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
2733  std::vector<const SDNode*> Nodes;
2734  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
2735       I != E; ++I)
2736    Nodes.push_back(I);
2737
2738  std::sort(Nodes.begin(), Nodes.end());
2739
2740  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2741    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
2742      DumpNodes(Nodes[i], 2, this);
2743  }
2744
2745  DumpNodes(getRoot().Val, 2, this);
2746
2747  std::cerr << "\n\n";
2748}
2749
2750const Type *ConstantPoolSDNode::getType() const {
2751  if (isMachineConstantPoolEntry())
2752    return Val.MachineCPVal->getType();
2753  return Val.ConstVal->getType();
2754}
2755