SelectionDAG.cpp revision 54c94525f420cab274af60e98a77f081f96e59c2
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetOptions.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/ADT/SetVector.h"
37#include "llvm/ADT/SmallPtrSet.h"
38#include "llvm/ADT/SmallSet.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/ADT/StringExtras.h"
41#include <algorithm>
42#include <cmath>
43using namespace llvm;
44
45/// makeVTList - Return an instance of the SDVTList struct initialized with the
46/// specified members.
47static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
48  SDVTList Res = {VTs, NumVTs};
49  return Res;
50}
51
52static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
53  switch (VT.getSimpleVT()) {
54  default: assert(0 && "Unknown FP format");
55  case MVT::f32:     return &APFloat::IEEEsingle;
56  case MVT::f64:     return &APFloat::IEEEdouble;
57  case MVT::f80:     return &APFloat::x87DoubleExtended;
58  case MVT::f128:    return &APFloat::IEEEquad;
59  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
60  }
61}
62
63SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
64
65//===----------------------------------------------------------------------===//
66//                              ConstantFPSDNode Class
67//===----------------------------------------------------------------------===//
68
69/// isExactlyValue - We don't rely on operator== working on double values, as
70/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
71/// As such, this method can be used to do an exact bit-for-bit comparison of
72/// two floating point values.
73bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
74  return getValueAPF().bitwiseIsEqual(V);
75}
76
77bool ConstantFPSDNode::isValueValidForType(MVT VT,
78                                           const APFloat& Val) {
79  assert(VT.isFloatingPoint() && "Can only convert between FP types");
80
81  // PPC long double cannot be converted to any other type.
82  if (VT == MVT::ppcf128 ||
83      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
84    return false;
85
86  // convert modifies in place, so make a copy.
87  APFloat Val2 = APFloat(Val);
88  bool losesInfo;
89  (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
90                      &losesInfo);
91  return !losesInfo;
92}
93
94//===----------------------------------------------------------------------===//
95//                              ISD Namespace
96//===----------------------------------------------------------------------===//
97
98/// isBuildVectorAllOnes - Return true if the specified node is a
99/// BUILD_VECTOR where all of the elements are ~0 or undef.
100bool ISD::isBuildVectorAllOnes(const SDNode *N) {
101  // Look through a bit convert.
102  if (N->getOpcode() == ISD::BIT_CONVERT)
103    N = N->getOperand(0).getNode();
104
105  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
106
107  unsigned i = 0, e = N->getNumOperands();
108
109  // Skip over all of the undef values.
110  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
111    ++i;
112
113  // Do not accept an all-undef vector.
114  if (i == e) return false;
115
116  // Do not accept build_vectors that aren't all constants or which have non-~0
117  // elements.
118  SDValue NotZero = N->getOperand(i);
119  if (isa<ConstantSDNode>(NotZero)) {
120    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
121      return false;
122  } else if (isa<ConstantFPSDNode>(NotZero)) {
123    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
124                bitcastToAPInt().isAllOnesValue())
125      return false;
126  } else
127    return false;
128
129  // Okay, we have at least one ~0 value, check to see if the rest match or are
130  // undefs.
131  for (++i; i != e; ++i)
132    if (N->getOperand(i) != NotZero &&
133        N->getOperand(i).getOpcode() != ISD::UNDEF)
134      return false;
135  return true;
136}
137
138
139/// isBuildVectorAllZeros - Return true if the specified node is a
140/// BUILD_VECTOR where all of the elements are 0 or undef.
141bool ISD::isBuildVectorAllZeros(const SDNode *N) {
142  // Look through a bit convert.
143  if (N->getOpcode() == ISD::BIT_CONVERT)
144    N = N->getOperand(0).getNode();
145
146  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
147
148  unsigned i = 0, e = N->getNumOperands();
149
150  // Skip over all of the undef values.
151  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
152    ++i;
153
154  // Do not accept an all-undef vector.
155  if (i == e) return false;
156
157  // Do not accept build_vectors that aren't all constants or which have non-~0
158  // elements.
159  SDValue Zero = N->getOperand(i);
160  if (isa<ConstantSDNode>(Zero)) {
161    if (!cast<ConstantSDNode>(Zero)->isNullValue())
162      return false;
163  } else if (isa<ConstantFPSDNode>(Zero)) {
164    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
165      return false;
166  } else
167    return false;
168
169  // Okay, we have at least one ~0 value, check to see if the rest match or are
170  // undefs.
171  for (++i; i != e; ++i)
172    if (N->getOperand(i) != Zero &&
173        N->getOperand(i).getOpcode() != ISD::UNDEF)
174      return false;
175  return true;
176}
177
178/// isScalarToVector - Return true if the specified node is a
179/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
180/// element is not an undef.
181bool ISD::isScalarToVector(const SDNode *N) {
182  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
183    return true;
184
185  if (N->getOpcode() != ISD::BUILD_VECTOR)
186    return false;
187  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
188    return false;
189  unsigned NumElems = N->getNumOperands();
190  for (unsigned i = 1; i < NumElems; ++i) {
191    SDValue V = N->getOperand(i);
192    if (V.getOpcode() != ISD::UNDEF)
193      return false;
194  }
195  return true;
196}
197
198
199/// isDebugLabel - Return true if the specified node represents a debug
200/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
201bool ISD::isDebugLabel(const SDNode *N) {
202  SDValue Zero;
203  if (N->getOpcode() == ISD::DBG_LABEL)
204    return true;
205  if (N->isMachineOpcode() &&
206      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
207    return true;
208  return false;
209}
210
211/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212/// when given the operation for (X op Y).
213ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
214  // To perform this operation, we just need to swap the L and G bits of the
215  // operation.
216  unsigned OldL = (Operation >> 2) & 1;
217  unsigned OldG = (Operation >> 1) & 1;
218  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
219                       (OldL << 1) |       // New G bit
220                       (OldG << 2));       // New L bit.
221}
222
223/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224/// 'op' is a valid SetCC operation.
225ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
226  unsigned Operation = Op;
227  if (isInteger)
228    Operation ^= 7;   // Flip L, G, E bits, but not U.
229  else
230    Operation ^= 15;  // Flip all of the condition bits.
231
232  if (Operation > ISD::SETTRUE2)
233    Operation &= ~8;  // Don't let N and U bits get set.
234
235  return ISD::CondCode(Operation);
236}
237
238
239/// isSignedOp - For an integer comparison, return 1 if the comparison is a
240/// signed operation and 2 if the result is an unsigned comparison.  Return zero
241/// if the operation does not depend on the sign of the input (setne and seteq).
242static int isSignedOp(ISD::CondCode Opcode) {
243  switch (Opcode) {
244  default: assert(0 && "Illegal integer setcc operation!");
245  case ISD::SETEQ:
246  case ISD::SETNE: return 0;
247  case ISD::SETLT:
248  case ISD::SETLE:
249  case ISD::SETGT:
250  case ISD::SETGE: return 1;
251  case ISD::SETULT:
252  case ISD::SETULE:
253  case ISD::SETUGT:
254  case ISD::SETUGE: return 2;
255  }
256}
257
258/// getSetCCOrOperation - Return the result of a logical OR between different
259/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
260/// returns SETCC_INVALID if it is not possible to represent the resultant
261/// comparison.
262ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
263                                       bool isInteger) {
264  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
265    // Cannot fold a signed integer setcc with an unsigned integer setcc.
266    return ISD::SETCC_INVALID;
267
268  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
269
270  // If the N and U bits get set then the resultant comparison DOES suddenly
271  // care about orderedness, and is true when ordered.
272  if (Op > ISD::SETTRUE2)
273    Op &= ~16;     // Clear the U bit if the N bit is set.
274
275  // Canonicalize illegal integer setcc's.
276  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
277    Op = ISD::SETNE;
278
279  return ISD::CondCode(Op);
280}
281
282/// getSetCCAndOperation - Return the result of a logical AND between different
283/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
284/// function returns zero if it is not possible to represent the resultant
285/// comparison.
286ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
287                                        bool isInteger) {
288  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
289    // Cannot fold a signed setcc with an unsigned setcc.
290    return ISD::SETCC_INVALID;
291
292  // Combine all of the condition bits.
293  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
294
295  // Canonicalize illegal integer setcc's.
296  if (isInteger) {
297    switch (Result) {
298    default: break;
299    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
300    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
301    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
302    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
303    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
304    }
305  }
306
307  return Result;
308}
309
310const TargetMachine &SelectionDAG::getTarget() const {
311  return MF->getTarget();
312}
313
314//===----------------------------------------------------------------------===//
315//                           SDNode Profile Support
316//===----------------------------------------------------------------------===//
317
318/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
319///
320static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
321  ID.AddInteger(OpC);
322}
323
324/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
325/// solely with their pointer.
326static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
327  ID.AddPointer(VTList.VTs);
328}
329
330/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
331///
332static void AddNodeIDOperands(FoldingSetNodeID &ID,
333                              const SDValue *Ops, unsigned NumOps) {
334  for (; NumOps; --NumOps, ++Ops) {
335    ID.AddPointer(Ops->getNode());
336    ID.AddInteger(Ops->getResNo());
337  }
338}
339
340/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
341///
342static void AddNodeIDOperands(FoldingSetNodeID &ID,
343                              const SDUse *Ops, unsigned NumOps) {
344  for (; NumOps; --NumOps, ++Ops) {
345    ID.AddPointer(Ops->getNode());
346    ID.AddInteger(Ops->getResNo());
347  }
348}
349
350static void AddNodeIDNode(FoldingSetNodeID &ID,
351                          unsigned short OpC, SDVTList VTList,
352                          const SDValue *OpList, unsigned N) {
353  AddNodeIDOpcode(ID, OpC);
354  AddNodeIDValueTypes(ID, VTList);
355  AddNodeIDOperands(ID, OpList, N);
356}
357
358/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
359/// the NodeID data.
360static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
361  switch (N->getOpcode()) {
362  default: break;  // Normal nodes don't need extra info.
363  case ISD::ARG_FLAGS:
364    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
365    break;
366  case ISD::TargetConstant:
367  case ISD::Constant:
368    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
369    break;
370  case ISD::TargetConstantFP:
371  case ISD::ConstantFP: {
372    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
373    break;
374  }
375  case ISD::TargetGlobalAddress:
376  case ISD::GlobalAddress:
377  case ISD::TargetGlobalTLSAddress:
378  case ISD::GlobalTLSAddress: {
379    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
380    ID.AddPointer(GA->getGlobal());
381    ID.AddInteger(GA->getOffset());
382    break;
383  }
384  case ISD::BasicBlock:
385    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
386    break;
387  case ISD::Register:
388    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
389    break;
390  case ISD::DBG_STOPPOINT: {
391    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
392    ID.AddInteger(DSP->getLine());
393    ID.AddInteger(DSP->getColumn());
394    ID.AddPointer(DSP->getCompileUnit());
395    break;
396  }
397  case ISD::SRCVALUE:
398    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
399    break;
400  case ISD::MEMOPERAND: {
401    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
402    MO.Profile(ID);
403    break;
404  }
405  case ISD::FrameIndex:
406  case ISD::TargetFrameIndex:
407    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
408    break;
409  case ISD::JumpTable:
410  case ISD::TargetJumpTable:
411    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
412    break;
413  case ISD::ConstantPool:
414  case ISD::TargetConstantPool: {
415    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
416    ID.AddInteger(CP->getAlignment());
417    ID.AddInteger(CP->getOffset());
418    if (CP->isMachineConstantPoolEntry())
419      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
420    else
421      ID.AddPointer(CP->getConstVal());
422    break;
423  }
424  case ISD::CALL: {
425    const CallSDNode *Call = cast<CallSDNode>(N);
426    ID.AddInteger(Call->getCallingConv());
427    ID.AddInteger(Call->isVarArg());
428    break;
429  }
430  case ISD::LOAD: {
431    const LoadSDNode *LD = cast<LoadSDNode>(N);
432    ID.AddInteger(LD->getAddressingMode());
433    ID.AddInteger(LD->getExtensionType());
434    ID.AddInteger(LD->getMemoryVT().getRawBits());
435    ID.AddInteger(LD->getRawFlags());
436    break;
437  }
438  case ISD::STORE: {
439    const StoreSDNode *ST = cast<StoreSDNode>(N);
440    ID.AddInteger(ST->getAddressingMode());
441    ID.AddInteger(ST->isTruncatingStore());
442    ID.AddInteger(ST->getMemoryVT().getRawBits());
443    ID.AddInteger(ST->getRawFlags());
444    break;
445  }
446  case ISD::ATOMIC_CMP_SWAP:
447  case ISD::ATOMIC_SWAP:
448  case ISD::ATOMIC_LOAD_ADD:
449  case ISD::ATOMIC_LOAD_SUB:
450  case ISD::ATOMIC_LOAD_AND:
451  case ISD::ATOMIC_LOAD_OR:
452  case ISD::ATOMIC_LOAD_XOR:
453  case ISD::ATOMIC_LOAD_NAND:
454  case ISD::ATOMIC_LOAD_MIN:
455  case ISD::ATOMIC_LOAD_MAX:
456  case ISD::ATOMIC_LOAD_UMIN:
457  case ISD::ATOMIC_LOAD_UMAX: {
458    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
459    ID.AddInteger(AT->getRawFlags());
460    break;
461  }
462  } // end switch (N->getOpcode())
463}
464
465/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
466/// data.
467static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
468  AddNodeIDOpcode(ID, N->getOpcode());
469  // Add the return value info.
470  AddNodeIDValueTypes(ID, N->getVTList());
471  // Add the operand info.
472  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
473
474  // Handle SDNode leafs with special info.
475  AddNodeIDCustom(ID, N);
476}
477
478/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
479/// the CSE map that carries both alignment and volatility information.
480///
481static inline unsigned
482encodeMemSDNodeFlags(bool isVolatile, unsigned Alignment) {
483  return isVolatile | ((Log2_32(Alignment) + 1) << 1);
484}
485
486//===----------------------------------------------------------------------===//
487//                              SelectionDAG Class
488//===----------------------------------------------------------------------===//
489
490/// doNotCSE - Return true if CSE should not be performed for this node.
491static bool doNotCSE(SDNode *N) {
492  if (N->getValueType(0) == MVT::Flag)
493    return true; // Never CSE anything that produces a flag.
494
495  switch (N->getOpcode()) {
496  default: break;
497  case ISD::HANDLENODE:
498  case ISD::DBG_LABEL:
499  case ISD::DBG_STOPPOINT:
500  case ISD::EH_LABEL:
501  case ISD::DECLARE:
502    return true;   // Never CSE these nodes.
503  }
504
505  // Check that remaining values produced are not flags.
506  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
507    if (N->getValueType(i) == MVT::Flag)
508      return true; // Never CSE anything that produces a flag.
509
510  return false;
511}
512
513/// RemoveDeadNodes - This method deletes all unreachable nodes in the
514/// SelectionDAG.
515void SelectionDAG::RemoveDeadNodes() {
516  // Create a dummy node (which is not added to allnodes), that adds a reference
517  // to the root node, preventing it from being deleted.
518  HandleSDNode Dummy(getRoot());
519
520  SmallVector<SDNode*, 128> DeadNodes;
521
522  // Add all obviously-dead nodes to the DeadNodes worklist.
523  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
524    if (I->use_empty())
525      DeadNodes.push_back(I);
526
527  RemoveDeadNodes(DeadNodes);
528
529  // If the root changed (e.g. it was a dead load, update the root).
530  setRoot(Dummy.getValue());
531}
532
533/// RemoveDeadNodes - This method deletes the unreachable nodes in the
534/// given list, and any nodes that become unreachable as a result.
535void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
536                                   DAGUpdateListener *UpdateListener) {
537
538  // Process the worklist, deleting the nodes and adding their uses to the
539  // worklist.
540  while (!DeadNodes.empty()) {
541    SDNode *N = DeadNodes.pop_back_val();
542
543    if (UpdateListener)
544      UpdateListener->NodeDeleted(N, 0);
545
546    // Take the node out of the appropriate CSE map.
547    RemoveNodeFromCSEMaps(N);
548
549    // Next, brutally remove the operand list.  This is safe to do, as there are
550    // no cycles in the graph.
551    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
552      SDUse &Use = *I++;
553      SDNode *Operand = Use.getNode();
554      Use.set(SDValue());
555
556      // Now that we removed this operand, see if there are no uses of it left.
557      if (Operand->use_empty())
558        DeadNodes.push_back(Operand);
559    }
560
561    DeallocateNode(N);
562  }
563}
564
565void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
566  SmallVector<SDNode*, 16> DeadNodes(1, N);
567  RemoveDeadNodes(DeadNodes, UpdateListener);
568}
569
570void SelectionDAG::DeleteNode(SDNode *N) {
571  // First take this out of the appropriate CSE map.
572  RemoveNodeFromCSEMaps(N);
573
574  // Finally, remove uses due to operands of this node, remove from the
575  // AllNodes list, and delete the node.
576  DeleteNodeNotInCSEMaps(N);
577}
578
579void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
580  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
581  assert(N->use_empty() && "Cannot delete a node that is not dead!");
582
583  // Drop all of the operands and decrement used node's use counts.
584  N->DropOperands();
585
586  DeallocateNode(N);
587}
588
589void SelectionDAG::DeallocateNode(SDNode *N) {
590  if (N->OperandsNeedDelete)
591    delete[] N->OperandList;
592
593  // Set the opcode to DELETED_NODE to help catch bugs when node
594  // memory is reallocated.
595  N->NodeType = ISD::DELETED_NODE;
596
597  NodeAllocator.Deallocate(AllNodes.remove(N));
598}
599
600/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
601/// correspond to it.  This is useful when we're about to delete or repurpose
602/// the node.  We don't want future request for structurally identical nodes
603/// to return N anymore.
604bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
605  bool Erased = false;
606  switch (N->getOpcode()) {
607  case ISD::EntryToken:
608    assert(0 && "EntryToken should not be in CSEMaps!");
609    return false;
610  case ISD::HANDLENODE: return false;  // noop.
611  case ISD::CONDCODE:
612    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
613           "Cond code doesn't exist!");
614    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
615    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
616    break;
617  case ISD::ExternalSymbol:
618    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
619    break;
620  case ISD::TargetExternalSymbol:
621    Erased =
622      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
623    break;
624  case ISD::VALUETYPE: {
625    MVT VT = cast<VTSDNode>(N)->getVT();
626    if (VT.isExtended()) {
627      Erased = ExtendedValueTypeNodes.erase(VT);
628    } else {
629      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
630      ValueTypeNodes[VT.getSimpleVT()] = 0;
631    }
632    break;
633  }
634  default:
635    // Remove it from the CSE Map.
636    Erased = CSEMap.RemoveNode(N);
637    break;
638  }
639#ifndef NDEBUG
640  // Verify that the node was actually in one of the CSE maps, unless it has a
641  // flag result (which cannot be CSE'd) or is one of the special cases that are
642  // not subject to CSE.
643  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
644      !N->isMachineOpcode() && !doNotCSE(N)) {
645    N->dump(this);
646    cerr << "\n";
647    assert(0 && "Node is not in map!");
648  }
649#endif
650  return Erased;
651}
652
653/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
654/// maps and modified in place. Add it back to the CSE maps, unless an identical
655/// node already exists, in which case transfer all its users to the existing
656/// node. This transfer can potentially trigger recursive merging.
657///
658void
659SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
660                                       DAGUpdateListener *UpdateListener) {
661  // For node types that aren't CSE'd, just act as if no identical node
662  // already exists.
663  if (!doNotCSE(N)) {
664    SDNode *Existing = CSEMap.GetOrInsertNode(N);
665    if (Existing != N) {
666      // If there was already an existing matching node, use ReplaceAllUsesWith
667      // to replace the dead one with the existing one.  This can cause
668      // recursive merging of other unrelated nodes down the line.
669      ReplaceAllUsesWith(N, Existing, UpdateListener);
670
671      // N is now dead.  Inform the listener if it exists and delete it.
672      if (UpdateListener)
673        UpdateListener->NodeDeleted(N, Existing);
674      DeleteNodeNotInCSEMaps(N);
675      return;
676    }
677  }
678
679  // If the node doesn't already exist, we updated it.  Inform a listener if
680  // it exists.
681  if (UpdateListener)
682    UpdateListener->NodeUpdated(N);
683}
684
685/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
686/// were replaced with those specified.  If this node is never memoized,
687/// return null, otherwise return a pointer to the slot it would take.  If a
688/// node already exists with these operands, the slot will be non-null.
689SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
690                                           void *&InsertPos) {
691  if (doNotCSE(N))
692    return 0;
693
694  SDValue Ops[] = { Op };
695  FoldingSetNodeID ID;
696  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
697  AddNodeIDCustom(ID, N);
698  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
699}
700
701/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
702/// were replaced with those specified.  If this node is never memoized,
703/// return null, otherwise return a pointer to the slot it would take.  If a
704/// node already exists with these operands, the slot will be non-null.
705SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
706                                           SDValue Op1, SDValue Op2,
707                                           void *&InsertPos) {
708  if (doNotCSE(N))
709    return 0;
710
711  SDValue Ops[] = { Op1, Op2 };
712  FoldingSetNodeID ID;
713  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
714  AddNodeIDCustom(ID, N);
715  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
716}
717
718
719/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
720/// were replaced with those specified.  If this node is never memoized,
721/// return null, otherwise return a pointer to the slot it would take.  If a
722/// node already exists with these operands, the slot will be non-null.
723SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
724                                           const SDValue *Ops,unsigned NumOps,
725                                           void *&InsertPos) {
726  if (doNotCSE(N))
727    return 0;
728
729  FoldingSetNodeID ID;
730  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
731  AddNodeIDCustom(ID, N);
732  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
733}
734
735/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
736void SelectionDAG::VerifyNode(SDNode *N) {
737  switch (N->getOpcode()) {
738  default:
739    break;
740  case ISD::BUILD_PAIR: {
741    MVT VT = N->getValueType(0);
742    assert(N->getNumValues() == 1 && "Too many results!");
743    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
744           "Wrong return type!");
745    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
746    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
747           "Mismatched operand types!");
748    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
749           "Wrong operand type!");
750    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
751           "Wrong return type size");
752    break;
753  }
754  case ISD::BUILD_VECTOR: {
755    assert(N->getNumValues() == 1 && "Too many results!");
756    assert(N->getValueType(0).isVector() && "Wrong return type!");
757    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
758           "Wrong number of operands!");
759    // FIXME: Change vector_shuffle to a variadic node with mask elements being
760    // operands of the node.  Currently the mask is a BUILD_VECTOR passed as an
761    // operand, and it is not always possible to legalize it.  Turning off the
762    // following checks at least makes it possible to legalize most of the time.
763//    MVT EltVT = N->getValueType(0).getVectorElementType();
764//    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
765//      assert(I->getValueType() == EltVT &&
766//             "Wrong operand type!");
767    break;
768  }
769  }
770}
771
772/// getMVTAlignment - Compute the default alignment value for the
773/// given type.
774///
775unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
776  const Type *Ty = VT == MVT::iPTR ?
777                   PointerType::get(Type::Int8Ty, 0) :
778                   VT.getTypeForMVT();
779
780  return TLI.getTargetData()->getABITypeAlignment(Ty);
781}
782
783SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
784  : TLI(tli), FLI(fli),
785    EntryNode(ISD::EntryToken, getVTList(MVT::Other)),
786    Root(getEntryNode()) {
787  AllNodes.push_back(&EntryNode);
788}
789
790void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
791                        DwarfWriter *dw) {
792  MF = &mf;
793  MMI = mmi;
794  DW = dw;
795}
796
797SelectionDAG::~SelectionDAG() {
798  allnodes_clear();
799}
800
801void SelectionDAG::allnodes_clear() {
802  assert(&*AllNodes.begin() == &EntryNode);
803  AllNodes.remove(AllNodes.begin());
804  while (!AllNodes.empty())
805    DeallocateNode(AllNodes.begin());
806}
807
808void SelectionDAG::clear() {
809  allnodes_clear();
810  OperandAllocator.Reset();
811  CSEMap.clear();
812
813  ExtendedValueTypeNodes.clear();
814  ExternalSymbols.clear();
815  TargetExternalSymbols.clear();
816  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
817            static_cast<CondCodeSDNode*>(0));
818  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
819            static_cast<SDNode*>(0));
820
821  EntryNode.UseList = 0;
822  AllNodes.push_back(&EntryNode);
823  Root = getEntryNode();
824}
825
826SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, MVT VT) {
827  if (Op.getValueType() == VT) return Op;
828  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
829                                   VT.getSizeInBits());
830  return getNode(ISD::AND, Op.getValueType(), Op,
831                 getConstant(Imm, Op.getValueType()));
832}
833
834SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, MVT VT) {
835  if (Op.getValueType() == VT) return Op;
836  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
837                                   VT.getSizeInBits());
838  return getNode(ISD::AND, DL, Op.getValueType(), Op,
839                 getConstant(Imm, Op.getValueType()));
840}
841
842/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
843///
844SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, MVT VT) {
845  SDValue NegOne;
846  if (VT.isVector()) {
847    MVT EltVT = VT.getVectorElementType();
848    SDValue NegOneElt =
849      getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), EltVT);
850    std::vector<SDValue> NegOnes(VT.getVectorNumElements(), NegOneElt);
851    NegOne = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(), VT,
852                     &NegOnes[0], NegOnes.size());
853  } else {
854    NegOne = getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
855  }
856
857  return getNode(ISD::XOR, DL, VT, Val, NegOne);
858}
859
860SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
861  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
862  assert((EltVT.getSizeInBits() >= 64 ||
863         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
864         "getConstant with a uint64_t value that doesn't fit in the type!");
865  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
866}
867
868SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
869  return getConstant(*ConstantInt::get(Val), VT, isT);
870}
871
872SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
873  assert(VT.isInteger() && "Cannot create FP integer constant!");
874
875  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
876  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
877         "APInt size does not match type size!");
878
879  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
880  FoldingSetNodeID ID;
881  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
882  ID.AddPointer(&Val);
883  void *IP = 0;
884  SDNode *N = NULL;
885  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
886    if (!VT.isVector())
887      return SDValue(N, 0);
888  if (!N) {
889    N = NodeAllocator.Allocate<ConstantSDNode>();
890    new (N) ConstantSDNode(isT, &Val, EltVT);
891    CSEMap.InsertNode(N, IP);
892    AllNodes.push_back(N);
893  }
894
895  SDValue Result(N, 0);
896  if (VT.isVector()) {
897    SmallVector<SDValue, 8> Ops;
898    Ops.assign(VT.getVectorNumElements(), Result);
899    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
900  }
901  return Result;
902}
903
904SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
905  return getConstant(Val, TLI.getPointerTy(), isTarget);
906}
907
908
909SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
910  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
911}
912
913SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
914  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
915
916  MVT EltVT =
917    VT.isVector() ? VT.getVectorElementType() : VT;
918
919  // Do the map lookup using the actual bit pattern for the floating point
920  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
921  // we don't have issues with SNANs.
922  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
923  FoldingSetNodeID ID;
924  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
925  ID.AddPointer(&V);
926  void *IP = 0;
927  SDNode *N = NULL;
928  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
929    if (!VT.isVector())
930      return SDValue(N, 0);
931  if (!N) {
932    N = NodeAllocator.Allocate<ConstantFPSDNode>();
933    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
934    CSEMap.InsertNode(N, IP);
935    AllNodes.push_back(N);
936  }
937
938  SDValue Result(N, 0);
939  if (VT.isVector()) {
940    SmallVector<SDValue, 8> Ops;
941    Ops.assign(VT.getVectorNumElements(), Result);
942    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
943  }
944  return Result;
945}
946
947SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
948  MVT EltVT =
949    VT.isVector() ? VT.getVectorElementType() : VT;
950  if (EltVT==MVT::f32)
951    return getConstantFP(APFloat((float)Val), VT, isTarget);
952  else
953    return getConstantFP(APFloat(Val), VT, isTarget);
954}
955
956SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
957                                       MVT VT, int64_t Offset,
958                                       bool isTargetGA) {
959  unsigned Opc;
960
961  // Truncate (with sign-extension) the offset value to the pointer size.
962  unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
963  if (BitWidth < 64)
964    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
965
966  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
967  if (!GVar) {
968    // If GV is an alias then use the aliasee for determining thread-localness.
969    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
970      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
971  }
972
973  if (GVar && GVar->isThreadLocal())
974    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
975  else
976    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
977
978  FoldingSetNodeID ID;
979  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
980  ID.AddPointer(GV);
981  ID.AddInteger(Offset);
982  void *IP = 0;
983  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
984    return SDValue(E, 0);
985  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
986  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
987  CSEMap.InsertNode(N, IP);
988  AllNodes.push_back(N);
989  return SDValue(N, 0);
990}
991
992SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
993  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
994  FoldingSetNodeID ID;
995  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
996  ID.AddInteger(FI);
997  void *IP = 0;
998  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
999    return SDValue(E, 0);
1000  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1001  new (N) FrameIndexSDNode(FI, VT, isTarget);
1002  CSEMap.InsertNode(N, IP);
1003  AllNodes.push_back(N);
1004  return SDValue(N, 0);
1005}
1006
1007SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
1008  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1009  FoldingSetNodeID ID;
1010  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1011  ID.AddInteger(JTI);
1012  void *IP = 0;
1013  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1014    return SDValue(E, 0);
1015  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1016  new (N) JumpTableSDNode(JTI, VT, isTarget);
1017  CSEMap.InsertNode(N, IP);
1018  AllNodes.push_back(N);
1019  return SDValue(N, 0);
1020}
1021
1022SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1023                                      unsigned Alignment, int Offset,
1024                                      bool isTarget) {
1025  if (Alignment == 0)
1026    Alignment =
1027      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1028  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1029  FoldingSetNodeID ID;
1030  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1031  ID.AddInteger(Alignment);
1032  ID.AddInteger(Offset);
1033  ID.AddPointer(C);
1034  void *IP = 0;
1035  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1036    return SDValue(E, 0);
1037  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1038  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1039  CSEMap.InsertNode(N, IP);
1040  AllNodes.push_back(N);
1041  return SDValue(N, 0);
1042}
1043
1044
1045SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1046                                      unsigned Alignment, int Offset,
1047                                      bool isTarget) {
1048  if (Alignment == 0)
1049    Alignment =
1050      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1051  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1052  FoldingSetNodeID ID;
1053  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1054  ID.AddInteger(Alignment);
1055  ID.AddInteger(Offset);
1056  C->AddSelectionDAGCSEId(ID);
1057  void *IP = 0;
1058  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1059    return SDValue(E, 0);
1060  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1061  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1062  CSEMap.InsertNode(N, IP);
1063  AllNodes.push_back(N);
1064  return SDValue(N, 0);
1065}
1066
1067
1068SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1069  FoldingSetNodeID ID;
1070  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1071  ID.AddPointer(MBB);
1072  void *IP = 0;
1073  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1074    return SDValue(E, 0);
1075  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1076  new (N) BasicBlockSDNode(MBB);
1077  CSEMap.InsertNode(N, IP);
1078  AllNodes.push_back(N);
1079  return SDValue(N, 0);
1080}
1081
1082SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB, DebugLoc dl) {
1083  FoldingSetNodeID ID;
1084  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1085  ID.AddPointer(MBB);
1086  void *IP = 0;
1087  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1088    return SDValue(E, 0);
1089  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1090  new (N) BasicBlockSDNode(MBB, dl);
1091  CSEMap.InsertNode(N, IP);
1092  AllNodes.push_back(N);
1093  return SDValue(N, 0);
1094}
1095
1096SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1097  FoldingSetNodeID ID;
1098  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1099  ID.AddInteger(Flags.getRawBits());
1100  void *IP = 0;
1101  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1102    return SDValue(E, 0);
1103  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1104  new (N) ARG_FLAGSSDNode(Flags);
1105  CSEMap.InsertNode(N, IP);
1106  AllNodes.push_back(N);
1107  return SDValue(N, 0);
1108}
1109
1110SDValue SelectionDAG::getValueType(MVT VT) {
1111  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1112    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1113
1114  SDNode *&N = VT.isExtended() ?
1115    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1116
1117  if (N) return SDValue(N, 0);
1118  N = NodeAllocator.Allocate<VTSDNode>();
1119  new (N) VTSDNode(VT);
1120  AllNodes.push_back(N);
1121  return SDValue(N, 0);
1122}
1123
1124SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1125  SDNode *&N = ExternalSymbols[Sym];
1126  if (N) return SDValue(N, 0);
1127  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1128  new (N) ExternalSymbolSDNode(false, Sym, VT);
1129  AllNodes.push_back(N);
1130  return SDValue(N, 0);
1131}
1132
1133SDValue SelectionDAG::getExternalSymbol(const char *Sym, DebugLoc dl, MVT VT) {
1134  SDNode *&N = ExternalSymbols[Sym];
1135  if (N) return SDValue(N, 0);
1136  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1137  new (N) ExternalSymbolSDNode(false, dl, Sym, VT);
1138  AllNodes.push_back(N);
1139  return SDValue(N, 0);
1140}
1141
1142SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1143  SDNode *&N = TargetExternalSymbols[Sym];
1144  if (N) return SDValue(N, 0);
1145  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1146  new (N) ExternalSymbolSDNode(true, Sym, VT);
1147  AllNodes.push_back(N);
1148  return SDValue(N, 0);
1149}
1150
1151SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, DebugLoc dl,
1152                                              MVT VT) {
1153  SDNode *&N = TargetExternalSymbols[Sym];
1154  if (N) return SDValue(N, 0);
1155  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1156  new (N) ExternalSymbolSDNode(true, dl, Sym, VT);
1157  AllNodes.push_back(N);
1158  return SDValue(N, 0);
1159}
1160
1161SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1162  if ((unsigned)Cond >= CondCodeNodes.size())
1163    CondCodeNodes.resize(Cond+1);
1164
1165  if (CondCodeNodes[Cond] == 0) {
1166    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1167    new (N) CondCodeSDNode(Cond);
1168    CondCodeNodes[Cond] = N;
1169    AllNodes.push_back(N);
1170  }
1171  return SDValue(CondCodeNodes[Cond], 0);
1172}
1173
1174SDValue SelectionDAG::getConvertRndSat(MVT VT, SDValue Val, SDValue DTy,
1175                                       SDValue STy, SDValue Rnd, SDValue Sat,
1176                                       ISD::CvtCode Code) {
1177  // If the src and dest types are the same, no conversion is necessary.
1178  if (DTy == STy)
1179    return Val;
1180
1181  FoldingSetNodeID ID;
1182  void* IP = 0;
1183  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1184    return SDValue(E, 0);
1185  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1186  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1187  new (N) CvtRndSatSDNode(VT, Ops, 5, Code);
1188  CSEMap.InsertNode(N, IP);
1189  AllNodes.push_back(N);
1190  return SDValue(N, 0);
1191}
1192
1193SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1194  FoldingSetNodeID ID;
1195  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1196  ID.AddInteger(RegNo);
1197  void *IP = 0;
1198  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1199    return SDValue(E, 0);
1200  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1201  new (N) RegisterSDNode(RegNo, VT);
1202  CSEMap.InsertNode(N, IP);
1203  AllNodes.push_back(N);
1204  return SDValue(N, 0);
1205}
1206
1207SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1208                                      unsigned Line, unsigned Col,
1209                                      Value *CU) {
1210  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1211  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1212  AllNodes.push_back(N);
1213  return SDValue(N, 0);
1214}
1215
1216SDValue SelectionDAG::getLabel(unsigned Opcode,
1217                               SDValue Root,
1218                               unsigned LabelID) {
1219  FoldingSetNodeID ID;
1220  SDValue Ops[] = { Root };
1221  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1222  ID.AddInteger(LabelID);
1223  void *IP = 0;
1224  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1225    return SDValue(E, 0);
1226  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1227  new (N) LabelSDNode(Opcode, Root, LabelID);
1228  CSEMap.InsertNode(N, IP);
1229  AllNodes.push_back(N);
1230  return SDValue(N, 0);
1231}
1232
1233SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1234                               SDValue Root,
1235                               unsigned LabelID) {
1236  FoldingSetNodeID ID;
1237  SDValue Ops[] = { Root };
1238  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1239  ID.AddInteger(LabelID);
1240  void *IP = 0;
1241  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1242    return SDValue(E, 0);
1243  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1244  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1245  CSEMap.InsertNode(N, IP);
1246  AllNodes.push_back(N);
1247  return SDValue(N, 0);
1248}
1249
1250SDValue SelectionDAG::getSrcValue(const Value *V) {
1251  assert((!V || isa<PointerType>(V->getType())) &&
1252         "SrcValue is not a pointer?");
1253
1254  FoldingSetNodeID ID;
1255  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1256  ID.AddPointer(V);
1257
1258  void *IP = 0;
1259  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1260    return SDValue(E, 0);
1261
1262  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1263  new (N) SrcValueSDNode(V);
1264  CSEMap.InsertNode(N, IP);
1265  AllNodes.push_back(N);
1266  return SDValue(N, 0);
1267}
1268
1269SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1270#ifndef NDEBUG
1271  const Value *v = MO.getValue();
1272  assert((!v || isa<PointerType>(v->getType())) &&
1273         "SrcValue is not a pointer?");
1274#endif
1275
1276  FoldingSetNodeID ID;
1277  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1278  MO.Profile(ID);
1279
1280  void *IP = 0;
1281  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1282    return SDValue(E, 0);
1283
1284  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1285  new (N) MemOperandSDNode(MO);
1286  CSEMap.InsertNode(N, IP);
1287  AllNodes.push_back(N);
1288  return SDValue(N, 0);
1289}
1290
1291/// getShiftAmountOperand - Return the specified value casted to
1292/// the target's desired shift amount type.
1293SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1294  MVT OpTy = Op.getValueType();
1295  MVT ShTy = TLI.getShiftAmountTy();
1296  if (OpTy == ShTy || OpTy.isVector()) return Op;
1297
1298  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1299  return getNode(Opcode, ShTy, Op);
1300}
1301
1302/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1303/// specified value type.
1304SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1305  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1306  unsigned ByteSize = VT.getStoreSizeInBits()/8;
1307  const Type *Ty = VT.getTypeForMVT();
1308  unsigned StackAlign =
1309  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1310
1311  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1312  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1313}
1314
1315/// CreateStackTemporary - Create a stack temporary suitable for holding
1316/// either of the specified value types.
1317SDValue SelectionDAG::CreateStackTemporary(MVT VT1, MVT VT2) {
1318  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1319                            VT2.getStoreSizeInBits())/8;
1320  const Type *Ty1 = VT1.getTypeForMVT();
1321  const Type *Ty2 = VT2.getTypeForMVT();
1322  const TargetData *TD = TLI.getTargetData();
1323  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1324                            TD->getPrefTypeAlignment(Ty2));
1325
1326  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1327  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align);
1328  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1329}
1330
1331SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1332                                SDValue N2, ISD::CondCode Cond) {
1333  // These setcc operations always fold.
1334  switch (Cond) {
1335  default: break;
1336  case ISD::SETFALSE:
1337  case ISD::SETFALSE2: return getConstant(0, VT);
1338  case ISD::SETTRUE:
1339  case ISD::SETTRUE2:  return getConstant(1, VT);
1340
1341  case ISD::SETOEQ:
1342  case ISD::SETOGT:
1343  case ISD::SETOGE:
1344  case ISD::SETOLT:
1345  case ISD::SETOLE:
1346  case ISD::SETONE:
1347  case ISD::SETO:
1348  case ISD::SETUO:
1349  case ISD::SETUEQ:
1350  case ISD::SETUNE:
1351    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1352    break;
1353  }
1354
1355  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1356    const APInt &C2 = N2C->getAPIntValue();
1357    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1358      const APInt &C1 = N1C->getAPIntValue();
1359
1360      switch (Cond) {
1361      default: assert(0 && "Unknown integer setcc!");
1362      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1363      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1364      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1365      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1366      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1367      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1368      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1369      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1370      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1371      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1372      }
1373    }
1374  }
1375  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1376    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1377      // No compile time operations on this type yet.
1378      if (N1C->getValueType(0) == MVT::ppcf128)
1379        return SDValue();
1380
1381      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1382      switch (Cond) {
1383      default: break;
1384      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1385                          return getNode(ISD::UNDEF, VT);
1386                        // fall through
1387      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1388      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1389                          return getNode(ISD::UNDEF, VT);
1390                        // fall through
1391      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1392                                           R==APFloat::cmpLessThan, VT);
1393      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1394                          return getNode(ISD::UNDEF, VT);
1395                        // fall through
1396      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1397      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1398                          return getNode(ISD::UNDEF, VT);
1399                        // fall through
1400      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1401      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1402                          return getNode(ISD::UNDEF, VT);
1403                        // fall through
1404      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1405                                           R==APFloat::cmpEqual, VT);
1406      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1407                          return getNode(ISD::UNDEF, VT);
1408                        // fall through
1409      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1410                                           R==APFloat::cmpEqual, VT);
1411      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1412      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1413      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1414                                           R==APFloat::cmpEqual, VT);
1415      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1416      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1417                                           R==APFloat::cmpLessThan, VT);
1418      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1419                                           R==APFloat::cmpUnordered, VT);
1420      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1421      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1422      }
1423    } else {
1424      // Ensure that the constant occurs on the RHS.
1425      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1426    }
1427  }
1428
1429  // Could not fold it.
1430  return SDValue();
1431}
1432
1433/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1434/// use this predicate to simplify operations downstream.
1435bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1436  unsigned BitWidth = Op.getValueSizeInBits();
1437  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1438}
1439
1440/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1441/// this predicate to simplify operations downstream.  Mask is known to be zero
1442/// for bits that V cannot have.
1443bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1444                                     unsigned Depth) const {
1445  APInt KnownZero, KnownOne;
1446  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1447  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1448  return (KnownZero & Mask) == Mask;
1449}
1450
1451/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1452/// known to be either zero or one and return them in the KnownZero/KnownOne
1453/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1454/// processing.
1455void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1456                                     APInt &KnownZero, APInt &KnownOne,
1457                                     unsigned Depth) const {
1458  unsigned BitWidth = Mask.getBitWidth();
1459  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1460         "Mask size mismatches value type size!");
1461
1462  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1463  if (Depth == 6 || Mask == 0)
1464    return;  // Limit search depth.
1465
1466  APInt KnownZero2, KnownOne2;
1467
1468  switch (Op.getOpcode()) {
1469  case ISD::Constant:
1470    // We know all of the bits for a constant!
1471    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1472    KnownZero = ~KnownOne & Mask;
1473    return;
1474  case ISD::AND:
1475    // If either the LHS or the RHS are Zero, the result is zero.
1476    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1477    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1478                      KnownZero2, KnownOne2, Depth+1);
1479    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1480    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1481
1482    // Output known-1 bits are only known if set in both the LHS & RHS.
1483    KnownOne &= KnownOne2;
1484    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1485    KnownZero |= KnownZero2;
1486    return;
1487  case ISD::OR:
1488    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1489    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1490                      KnownZero2, KnownOne2, Depth+1);
1491    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1492    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1493
1494    // Output known-0 bits are only known if clear in both the LHS & RHS.
1495    KnownZero &= KnownZero2;
1496    // Output known-1 are known to be set if set in either the LHS | RHS.
1497    KnownOne |= KnownOne2;
1498    return;
1499  case ISD::XOR: {
1500    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1501    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1502    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1503    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1504
1505    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1506    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1507    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1508    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1509    KnownZero = KnownZeroOut;
1510    return;
1511  }
1512  case ISD::MUL: {
1513    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1514    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1515    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1516    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1517    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1518
1519    // If low bits are zero in either operand, output low known-0 bits.
1520    // Also compute a conserative estimate for high known-0 bits.
1521    // More trickiness is possible, but this is sufficient for the
1522    // interesting case of alignment computation.
1523    KnownOne.clear();
1524    unsigned TrailZ = KnownZero.countTrailingOnes() +
1525                      KnownZero2.countTrailingOnes();
1526    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1527                               KnownZero2.countLeadingOnes(),
1528                               BitWidth) - BitWidth;
1529
1530    TrailZ = std::min(TrailZ, BitWidth);
1531    LeadZ = std::min(LeadZ, BitWidth);
1532    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1533                APInt::getHighBitsSet(BitWidth, LeadZ);
1534    KnownZero &= Mask;
1535    return;
1536  }
1537  case ISD::UDIV: {
1538    // For the purposes of computing leading zeros we can conservatively
1539    // treat a udiv as a logical right shift by the power of 2 known to
1540    // be less than the denominator.
1541    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1542    ComputeMaskedBits(Op.getOperand(0),
1543                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1544    unsigned LeadZ = KnownZero2.countLeadingOnes();
1545
1546    KnownOne2.clear();
1547    KnownZero2.clear();
1548    ComputeMaskedBits(Op.getOperand(1),
1549                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1550    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1551    if (RHSUnknownLeadingOnes != BitWidth)
1552      LeadZ = std::min(BitWidth,
1553                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1554
1555    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1556    return;
1557  }
1558  case ISD::SELECT:
1559    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1560    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1561    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1562    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1563
1564    // Only known if known in both the LHS and RHS.
1565    KnownOne &= KnownOne2;
1566    KnownZero &= KnownZero2;
1567    return;
1568  case ISD::SELECT_CC:
1569    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1570    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1571    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1572    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1573
1574    // Only known if known in both the LHS and RHS.
1575    KnownOne &= KnownOne2;
1576    KnownZero &= KnownZero2;
1577    return;
1578  case ISD::SADDO:
1579  case ISD::UADDO:
1580  case ISD::SSUBO:
1581  case ISD::USUBO:
1582  case ISD::SMULO:
1583  case ISD::UMULO:
1584    if (Op.getResNo() != 1)
1585      return;
1586    // The boolean result conforms to getBooleanContents.  Fall through.
1587  case ISD::SETCC:
1588    // If we know the result of a setcc has the top bits zero, use this info.
1589    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1590        BitWidth > 1)
1591      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1592    return;
1593  case ISD::SHL:
1594    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1595    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1596      unsigned ShAmt = SA->getZExtValue();
1597
1598      // If the shift count is an invalid immediate, don't do anything.
1599      if (ShAmt >= BitWidth)
1600        return;
1601
1602      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1603                        KnownZero, KnownOne, Depth+1);
1604      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1605      KnownZero <<= ShAmt;
1606      KnownOne  <<= ShAmt;
1607      // low bits known zero.
1608      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1609    }
1610    return;
1611  case ISD::SRL:
1612    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1613    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1614      unsigned ShAmt = SA->getZExtValue();
1615
1616      // If the shift count is an invalid immediate, don't do anything.
1617      if (ShAmt >= BitWidth)
1618        return;
1619
1620      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1621                        KnownZero, KnownOne, Depth+1);
1622      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1623      KnownZero = KnownZero.lshr(ShAmt);
1624      KnownOne  = KnownOne.lshr(ShAmt);
1625
1626      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1627      KnownZero |= HighBits;  // High bits known zero.
1628    }
1629    return;
1630  case ISD::SRA:
1631    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1632      unsigned ShAmt = SA->getZExtValue();
1633
1634      // If the shift count is an invalid immediate, don't do anything.
1635      if (ShAmt >= BitWidth)
1636        return;
1637
1638      APInt InDemandedMask = (Mask << ShAmt);
1639      // If any of the demanded bits are produced by the sign extension, we also
1640      // demand the input sign bit.
1641      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1642      if (HighBits.getBoolValue())
1643        InDemandedMask |= APInt::getSignBit(BitWidth);
1644
1645      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1646                        Depth+1);
1647      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1648      KnownZero = KnownZero.lshr(ShAmt);
1649      KnownOne  = KnownOne.lshr(ShAmt);
1650
1651      // Handle the sign bits.
1652      APInt SignBit = APInt::getSignBit(BitWidth);
1653      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1654
1655      if (KnownZero.intersects(SignBit)) {
1656        KnownZero |= HighBits;  // New bits are known zero.
1657      } else if (KnownOne.intersects(SignBit)) {
1658        KnownOne  |= HighBits;  // New bits are known one.
1659      }
1660    }
1661    return;
1662  case ISD::SIGN_EXTEND_INREG: {
1663    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1664    unsigned EBits = EVT.getSizeInBits();
1665
1666    // Sign extension.  Compute the demanded bits in the result that are not
1667    // present in the input.
1668    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1669
1670    APInt InSignBit = APInt::getSignBit(EBits);
1671    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1672
1673    // If the sign extended bits are demanded, we know that the sign
1674    // bit is demanded.
1675    InSignBit.zext(BitWidth);
1676    if (NewBits.getBoolValue())
1677      InputDemandedBits |= InSignBit;
1678
1679    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1680                      KnownZero, KnownOne, Depth+1);
1681    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1682
1683    // If the sign bit of the input is known set or clear, then we know the
1684    // top bits of the result.
1685    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1686      KnownZero |= NewBits;
1687      KnownOne  &= ~NewBits;
1688    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1689      KnownOne  |= NewBits;
1690      KnownZero &= ~NewBits;
1691    } else {                              // Input sign bit unknown
1692      KnownZero &= ~NewBits;
1693      KnownOne  &= ~NewBits;
1694    }
1695    return;
1696  }
1697  case ISD::CTTZ:
1698  case ISD::CTLZ:
1699  case ISD::CTPOP: {
1700    unsigned LowBits = Log2_32(BitWidth)+1;
1701    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1702    KnownOne.clear();
1703    return;
1704  }
1705  case ISD::LOAD: {
1706    if (ISD::isZEXTLoad(Op.getNode())) {
1707      LoadSDNode *LD = cast<LoadSDNode>(Op);
1708      MVT VT = LD->getMemoryVT();
1709      unsigned MemBits = VT.getSizeInBits();
1710      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1711    }
1712    return;
1713  }
1714  case ISD::ZERO_EXTEND: {
1715    MVT InVT = Op.getOperand(0).getValueType();
1716    unsigned InBits = InVT.getSizeInBits();
1717    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1718    APInt InMask    = Mask;
1719    InMask.trunc(InBits);
1720    KnownZero.trunc(InBits);
1721    KnownOne.trunc(InBits);
1722    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1723    KnownZero.zext(BitWidth);
1724    KnownOne.zext(BitWidth);
1725    KnownZero |= NewBits;
1726    return;
1727  }
1728  case ISD::SIGN_EXTEND: {
1729    MVT InVT = Op.getOperand(0).getValueType();
1730    unsigned InBits = InVT.getSizeInBits();
1731    APInt InSignBit = APInt::getSignBit(InBits);
1732    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1733    APInt InMask = Mask;
1734    InMask.trunc(InBits);
1735
1736    // If any of the sign extended bits are demanded, we know that the sign
1737    // bit is demanded. Temporarily set this bit in the mask for our callee.
1738    if (NewBits.getBoolValue())
1739      InMask |= InSignBit;
1740
1741    KnownZero.trunc(InBits);
1742    KnownOne.trunc(InBits);
1743    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1744
1745    // Note if the sign bit is known to be zero or one.
1746    bool SignBitKnownZero = KnownZero.isNegative();
1747    bool SignBitKnownOne  = KnownOne.isNegative();
1748    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1749           "Sign bit can't be known to be both zero and one!");
1750
1751    // If the sign bit wasn't actually demanded by our caller, we don't
1752    // want it set in the KnownZero and KnownOne result values. Reset the
1753    // mask and reapply it to the result values.
1754    InMask = Mask;
1755    InMask.trunc(InBits);
1756    KnownZero &= InMask;
1757    KnownOne  &= InMask;
1758
1759    KnownZero.zext(BitWidth);
1760    KnownOne.zext(BitWidth);
1761
1762    // If the sign bit is known zero or one, the top bits match.
1763    if (SignBitKnownZero)
1764      KnownZero |= NewBits;
1765    else if (SignBitKnownOne)
1766      KnownOne  |= NewBits;
1767    return;
1768  }
1769  case ISD::ANY_EXTEND: {
1770    MVT InVT = Op.getOperand(0).getValueType();
1771    unsigned InBits = InVT.getSizeInBits();
1772    APInt InMask = Mask;
1773    InMask.trunc(InBits);
1774    KnownZero.trunc(InBits);
1775    KnownOne.trunc(InBits);
1776    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1777    KnownZero.zext(BitWidth);
1778    KnownOne.zext(BitWidth);
1779    return;
1780  }
1781  case ISD::TRUNCATE: {
1782    MVT InVT = Op.getOperand(0).getValueType();
1783    unsigned InBits = InVT.getSizeInBits();
1784    APInt InMask = Mask;
1785    InMask.zext(InBits);
1786    KnownZero.zext(InBits);
1787    KnownOne.zext(InBits);
1788    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1789    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1790    KnownZero.trunc(BitWidth);
1791    KnownOne.trunc(BitWidth);
1792    break;
1793  }
1794  case ISD::AssertZext: {
1795    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1796    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1797    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1798                      KnownOne, Depth+1);
1799    KnownZero |= (~InMask) & Mask;
1800    return;
1801  }
1802  case ISD::FGETSIGN:
1803    // All bits are zero except the low bit.
1804    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1805    return;
1806
1807  case ISD::SUB: {
1808    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1809      // We know that the top bits of C-X are clear if X contains less bits
1810      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1811      // positive if we can prove that X is >= 0 and < 16.
1812      if (CLHS->getAPIntValue().isNonNegative()) {
1813        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1814        // NLZ can't be BitWidth with no sign bit
1815        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1816        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1817                          Depth+1);
1818
1819        // If all of the MaskV bits are known to be zero, then we know the
1820        // output top bits are zero, because we now know that the output is
1821        // from [0-C].
1822        if ((KnownZero2 & MaskV) == MaskV) {
1823          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1824          // Top bits known zero.
1825          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1826        }
1827      }
1828    }
1829  }
1830  // fall through
1831  case ISD::ADD: {
1832    // Output known-0 bits are known if clear or set in both the low clear bits
1833    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1834    // low 3 bits clear.
1835    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1836    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1837    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1838    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1839
1840    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1841    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1842    KnownZeroOut = std::min(KnownZeroOut,
1843                            KnownZero2.countTrailingOnes());
1844
1845    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1846    return;
1847  }
1848  case ISD::SREM:
1849    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1850      const APInt &RA = Rem->getAPIntValue();
1851      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1852        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1853        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1854        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1855
1856        // If the sign bit of the first operand is zero, the sign bit of
1857        // the result is zero. If the first operand has no one bits below
1858        // the second operand's single 1 bit, its sign will be zero.
1859        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1860          KnownZero2 |= ~LowBits;
1861
1862        KnownZero |= KnownZero2 & Mask;
1863
1864        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1865      }
1866    }
1867    return;
1868  case ISD::UREM: {
1869    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1870      const APInt &RA = Rem->getAPIntValue();
1871      if (RA.isPowerOf2()) {
1872        APInt LowBits = (RA - 1);
1873        APInt Mask2 = LowBits & Mask;
1874        KnownZero |= ~LowBits & Mask;
1875        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1876        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1877        break;
1878      }
1879    }
1880
1881    // Since the result is less than or equal to either operand, any leading
1882    // zero bits in either operand must also exist in the result.
1883    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1884    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1885                      Depth+1);
1886    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1887                      Depth+1);
1888
1889    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1890                                KnownZero2.countLeadingOnes());
1891    KnownOne.clear();
1892    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1893    return;
1894  }
1895  default:
1896    // Allow the target to implement this method for its nodes.
1897    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1898  case ISD::INTRINSIC_WO_CHAIN:
1899  case ISD::INTRINSIC_W_CHAIN:
1900  case ISD::INTRINSIC_VOID:
1901      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1902    }
1903    return;
1904  }
1905}
1906
1907/// ComputeNumSignBits - Return the number of times the sign bit of the
1908/// register is replicated into the other bits.  We know that at least 1 bit
1909/// is always equal to the sign bit (itself), but other cases can give us
1910/// information.  For example, immediately after an "SRA X, 2", we know that
1911/// the top 3 bits are all equal to each other, so we return 3.
1912unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1913  MVT VT = Op.getValueType();
1914  assert(VT.isInteger() && "Invalid VT!");
1915  unsigned VTBits = VT.getSizeInBits();
1916  unsigned Tmp, Tmp2;
1917  unsigned FirstAnswer = 1;
1918
1919  if (Depth == 6)
1920    return 1;  // Limit search depth.
1921
1922  switch (Op.getOpcode()) {
1923  default: break;
1924  case ISD::AssertSext:
1925    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1926    return VTBits-Tmp+1;
1927  case ISD::AssertZext:
1928    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1929    return VTBits-Tmp;
1930
1931  case ISD::Constant: {
1932    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1933    // If negative, return # leading ones.
1934    if (Val.isNegative())
1935      return Val.countLeadingOnes();
1936
1937    // Return # leading zeros.
1938    return Val.countLeadingZeros();
1939  }
1940
1941  case ISD::SIGN_EXTEND:
1942    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1943    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1944
1945  case ISD::SIGN_EXTEND_INREG:
1946    // Max of the input and what this extends.
1947    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1948    Tmp = VTBits-Tmp+1;
1949
1950    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1951    return std::max(Tmp, Tmp2);
1952
1953  case ISD::SRA:
1954    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1955    // SRA X, C   -> adds C sign bits.
1956    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1957      Tmp += C->getZExtValue();
1958      if (Tmp > VTBits) Tmp = VTBits;
1959    }
1960    return Tmp;
1961  case ISD::SHL:
1962    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1963      // shl destroys sign bits.
1964      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1965      if (C->getZExtValue() >= VTBits ||      // Bad shift.
1966          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
1967      return Tmp - C->getZExtValue();
1968    }
1969    break;
1970  case ISD::AND:
1971  case ISD::OR:
1972  case ISD::XOR:    // NOT is handled here.
1973    // Logical binary ops preserve the number of sign bits at the worst.
1974    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1975    if (Tmp != 1) {
1976      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1977      FirstAnswer = std::min(Tmp, Tmp2);
1978      // We computed what we know about the sign bits as our first
1979      // answer. Now proceed to the generic code that uses
1980      // ComputeMaskedBits, and pick whichever answer is better.
1981    }
1982    break;
1983
1984  case ISD::SELECT:
1985    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1986    if (Tmp == 1) return 1;  // Early out.
1987    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1988    return std::min(Tmp, Tmp2);
1989
1990  case ISD::SADDO:
1991  case ISD::UADDO:
1992  case ISD::SSUBO:
1993  case ISD::USUBO:
1994  case ISD::SMULO:
1995  case ISD::UMULO:
1996    if (Op.getResNo() != 1)
1997      break;
1998    // The boolean result conforms to getBooleanContents.  Fall through.
1999  case ISD::SETCC:
2000    // If setcc returns 0/-1, all bits are sign bits.
2001    if (TLI.getBooleanContents() ==
2002        TargetLowering::ZeroOrNegativeOneBooleanContent)
2003      return VTBits;
2004    break;
2005  case ISD::ROTL:
2006  case ISD::ROTR:
2007    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2008      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2009
2010      // Handle rotate right by N like a rotate left by 32-N.
2011      if (Op.getOpcode() == ISD::ROTR)
2012        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2013
2014      // If we aren't rotating out all of the known-in sign bits, return the
2015      // number that are left.  This handles rotl(sext(x), 1) for example.
2016      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2017      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2018    }
2019    break;
2020  case ISD::ADD:
2021    // Add can have at most one carry bit.  Thus we know that the output
2022    // is, at worst, one more bit than the inputs.
2023    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2024    if (Tmp == 1) return 1;  // Early out.
2025
2026    // Special case decrementing a value (ADD X, -1):
2027    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2028      if (CRHS->isAllOnesValue()) {
2029        APInt KnownZero, KnownOne;
2030        APInt Mask = APInt::getAllOnesValue(VTBits);
2031        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2032
2033        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2034        // sign bits set.
2035        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2036          return VTBits;
2037
2038        // If we are subtracting one from a positive number, there is no carry
2039        // out of the result.
2040        if (KnownZero.isNegative())
2041          return Tmp;
2042      }
2043
2044    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2045    if (Tmp2 == 1) return 1;
2046      return std::min(Tmp, Tmp2)-1;
2047    break;
2048
2049  case ISD::SUB:
2050    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2051    if (Tmp2 == 1) return 1;
2052
2053    // Handle NEG.
2054    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2055      if (CLHS->isNullValue()) {
2056        APInt KnownZero, KnownOne;
2057        APInt Mask = APInt::getAllOnesValue(VTBits);
2058        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2059        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2060        // sign bits set.
2061        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2062          return VTBits;
2063
2064        // If the input is known to be positive (the sign bit is known clear),
2065        // the output of the NEG has the same number of sign bits as the input.
2066        if (KnownZero.isNegative())
2067          return Tmp2;
2068
2069        // Otherwise, we treat this like a SUB.
2070      }
2071
2072    // Sub can have at most one carry bit.  Thus we know that the output
2073    // is, at worst, one more bit than the inputs.
2074    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2075    if (Tmp == 1) return 1;  // Early out.
2076      return std::min(Tmp, Tmp2)-1;
2077    break;
2078  case ISD::TRUNCATE:
2079    // FIXME: it's tricky to do anything useful for this, but it is an important
2080    // case for targets like X86.
2081    break;
2082  }
2083
2084  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2085  if (Op.getOpcode() == ISD::LOAD) {
2086    LoadSDNode *LD = cast<LoadSDNode>(Op);
2087    unsigned ExtType = LD->getExtensionType();
2088    switch (ExtType) {
2089    default: break;
2090    case ISD::SEXTLOAD:    // '17' bits known
2091      Tmp = LD->getMemoryVT().getSizeInBits();
2092      return VTBits-Tmp+1;
2093    case ISD::ZEXTLOAD:    // '16' bits known
2094      Tmp = LD->getMemoryVT().getSizeInBits();
2095      return VTBits-Tmp;
2096    }
2097  }
2098
2099  // Allow the target to implement this method for its nodes.
2100  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2101      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2102      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2103      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2104    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2105    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2106  }
2107
2108  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2109  // use this information.
2110  APInt KnownZero, KnownOne;
2111  APInt Mask = APInt::getAllOnesValue(VTBits);
2112  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2113
2114  if (KnownZero.isNegative()) {        // sign bit is 0
2115    Mask = KnownZero;
2116  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2117    Mask = KnownOne;
2118  } else {
2119    // Nothing known.
2120    return FirstAnswer;
2121  }
2122
2123  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2124  // the number of identical bits in the top of the input value.
2125  Mask = ~Mask;
2126  Mask <<= Mask.getBitWidth()-VTBits;
2127  // Return # leading zeros.  We use 'min' here in case Val was zero before
2128  // shifting.  We don't want to return '64' as for an i32 "0".
2129  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2130}
2131
2132
2133bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2134  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2135  if (!GA) return false;
2136  if (GA->getOffset() != 0) return false;
2137  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2138  if (!GV) return false;
2139  MachineModuleInfo *MMI = getMachineModuleInfo();
2140  return MMI && MMI->hasDebugInfo();
2141}
2142
2143
2144/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2145/// element of the result of the vector shuffle.
2146SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
2147  MVT VT = N->getValueType(0);
2148  SDValue PermMask = N->getOperand(2);
2149  SDValue Idx = PermMask.getOperand(i);
2150  if (Idx.getOpcode() == ISD::UNDEF)
2151    return getNode(ISD::UNDEF, VT.getVectorElementType());
2152  unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
2153  unsigned NumElems = PermMask.getNumOperands();
2154  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2155  Index %= NumElems;
2156
2157  if (V.getOpcode() == ISD::BIT_CONVERT) {
2158    V = V.getOperand(0);
2159    MVT VVT = V.getValueType();
2160    if (!VVT.isVector() || VVT.getVectorNumElements() != NumElems)
2161      return SDValue();
2162  }
2163  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2164    return (Index == 0) ? V.getOperand(0)
2165                      : getNode(ISD::UNDEF, VT.getVectorElementType());
2166  if (V.getOpcode() == ISD::BUILD_VECTOR)
2167    return V.getOperand(Index);
2168  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
2169    return getShuffleScalarElt(V.getNode(), Index);
2170  return SDValue();
2171}
2172
2173
2174/// getNode - Gets or creates the specified node.
2175///
2176SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT) {
2177  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT);
2178}
2179
2180SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT) {
2181  FoldingSetNodeID ID;
2182  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2183  void *IP = 0;
2184  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2185    return SDValue(E, 0);
2186  SDNode *N = NodeAllocator.Allocate<SDNode>();
2187  new (N) SDNode(Opcode, DL, SDNode::getSDVTList(VT));
2188  CSEMap.InsertNode(N, IP);
2189
2190  AllNodes.push_back(N);
2191#ifndef NDEBUG
2192  VerifyNode(N);
2193#endif
2194  return SDValue(N, 0);
2195}
2196
2197SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, SDValue Operand) {
2198  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, Operand);
2199}
2200
2201SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2202                              MVT VT, SDValue Operand) {
2203  // Constant fold unary operations with an integer constant operand.
2204  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2205    const APInt &Val = C->getAPIntValue();
2206    unsigned BitWidth = VT.getSizeInBits();
2207    switch (Opcode) {
2208    default: break;
2209    case ISD::SIGN_EXTEND:
2210      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2211    case ISD::ANY_EXTEND:
2212    case ISD::ZERO_EXTEND:
2213    case ISD::TRUNCATE:
2214      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2215    case ISD::UINT_TO_FP:
2216    case ISD::SINT_TO_FP: {
2217      const uint64_t zero[] = {0, 0};
2218      // No compile time operations on this type.
2219      if (VT==MVT::ppcf128)
2220        break;
2221      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2222      (void)apf.convertFromAPInt(Val,
2223                                 Opcode==ISD::SINT_TO_FP,
2224                                 APFloat::rmNearestTiesToEven);
2225      return getConstantFP(apf, VT);
2226    }
2227    case ISD::BIT_CONVERT:
2228      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2229        return getConstantFP(Val.bitsToFloat(), VT);
2230      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2231        return getConstantFP(Val.bitsToDouble(), VT);
2232      break;
2233    case ISD::BSWAP:
2234      return getConstant(Val.byteSwap(), VT);
2235    case ISD::CTPOP:
2236      return getConstant(Val.countPopulation(), VT);
2237    case ISD::CTLZ:
2238      return getConstant(Val.countLeadingZeros(), VT);
2239    case ISD::CTTZ:
2240      return getConstant(Val.countTrailingZeros(), VT);
2241    }
2242  }
2243
2244  // Constant fold unary operations with a floating point constant operand.
2245  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2246    APFloat V = C->getValueAPF();    // make copy
2247    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2248      switch (Opcode) {
2249      case ISD::FNEG:
2250        V.changeSign();
2251        return getConstantFP(V, VT);
2252      case ISD::FABS:
2253        V.clearSign();
2254        return getConstantFP(V, VT);
2255      case ISD::FP_ROUND:
2256      case ISD::FP_EXTEND: {
2257        bool ignored;
2258        // This can return overflow, underflow, or inexact; we don't care.
2259        // FIXME need to be more flexible about rounding mode.
2260        (void)V.convert(*MVTToAPFloatSemantics(VT),
2261                        APFloat::rmNearestTiesToEven, &ignored);
2262        return getConstantFP(V, VT);
2263      }
2264      case ISD::FP_TO_SINT:
2265      case ISD::FP_TO_UINT: {
2266        integerPart x;
2267        bool ignored;
2268        assert(integerPartWidth >= 64);
2269        // FIXME need to be more flexible about rounding mode.
2270        APFloat::opStatus s = V.convertToInteger(&x, 64U,
2271                              Opcode==ISD::FP_TO_SINT,
2272                              APFloat::rmTowardZero, &ignored);
2273        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2274          break;
2275        return getConstant(x, VT);
2276      }
2277      case ISD::BIT_CONVERT:
2278        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2279          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2280        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2281          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2282        break;
2283      }
2284    }
2285  }
2286
2287  unsigned OpOpcode = Operand.getNode()->getOpcode();
2288  switch (Opcode) {
2289  case ISD::TokenFactor:
2290  case ISD::MERGE_VALUES:
2291  case ISD::CONCAT_VECTORS:
2292    return Operand;         // Factor, merge or concat of one node?  No need.
2293  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2294  case ISD::FP_EXTEND:
2295    assert(VT.isFloatingPoint() &&
2296           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2297    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2298    if (Operand.getOpcode() == ISD::UNDEF)
2299      return getNode(ISD::UNDEF, VT);
2300    break;
2301  case ISD::SIGN_EXTEND:
2302    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2303           "Invalid SIGN_EXTEND!");
2304    if (Operand.getValueType() == VT) return Operand;   // noop extension
2305    assert(Operand.getValueType().bitsLT(VT)
2306           && "Invalid sext node, dst < src!");
2307    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2308      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2309    break;
2310  case ISD::ZERO_EXTEND:
2311    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2312           "Invalid ZERO_EXTEND!");
2313    if (Operand.getValueType() == VT) return Operand;   // noop extension
2314    assert(Operand.getValueType().bitsLT(VT)
2315           && "Invalid zext node, dst < src!");
2316    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2317      return getNode(ISD::ZERO_EXTEND, VT, Operand.getNode()->getOperand(0));
2318    break;
2319  case ISD::ANY_EXTEND:
2320    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2321           "Invalid ANY_EXTEND!");
2322    if (Operand.getValueType() == VT) return Operand;   // noop extension
2323    assert(Operand.getValueType().bitsLT(VT)
2324           && "Invalid anyext node, dst < src!");
2325    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2326      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2327      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2328    break;
2329  case ISD::TRUNCATE:
2330    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2331           "Invalid TRUNCATE!");
2332    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2333    assert(Operand.getValueType().bitsGT(VT)
2334           && "Invalid truncate node, src < dst!");
2335    if (OpOpcode == ISD::TRUNCATE)
2336      return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2337    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2338             OpOpcode == ISD::ANY_EXTEND) {
2339      // If the source is smaller than the dest, we still need an extend.
2340      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2341        return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2342      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2343        return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2344      else
2345        return Operand.getNode()->getOperand(0);
2346    }
2347    break;
2348  case ISD::BIT_CONVERT:
2349    // Basic sanity checking.
2350    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2351           && "Cannot BIT_CONVERT between types of different sizes!");
2352    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2353    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2354      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
2355    if (OpOpcode == ISD::UNDEF)
2356      return getNode(ISD::UNDEF, VT);
2357    break;
2358  case ISD::SCALAR_TO_VECTOR:
2359    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2360           VT.getVectorElementType() == Operand.getValueType() &&
2361           "Illegal SCALAR_TO_VECTOR node!");
2362    if (OpOpcode == ISD::UNDEF)
2363      return getNode(ISD::UNDEF, VT);
2364    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2365    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2366        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2367        Operand.getConstantOperandVal(1) == 0 &&
2368        Operand.getOperand(0).getValueType() == VT)
2369      return Operand.getOperand(0);
2370    break;
2371  case ISD::FNEG:
2372    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2373    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2374      return getNode(ISD::FSUB, VT, Operand.getNode()->getOperand(1),
2375                     Operand.getNode()->getOperand(0));
2376    if (OpOpcode == ISD::FNEG)  // --X -> X
2377      return Operand.getNode()->getOperand(0);
2378    break;
2379  case ISD::FABS:
2380    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2381      return getNode(ISD::FABS, VT, Operand.getNode()->getOperand(0));
2382    break;
2383  }
2384
2385  SDNode *N;
2386  SDVTList VTs = getVTList(VT);
2387  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2388    FoldingSetNodeID ID;
2389    SDValue Ops[1] = { Operand };
2390    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2391    void *IP = 0;
2392    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2393      return SDValue(E, 0);
2394    N = NodeAllocator.Allocate<UnarySDNode>();
2395    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2396    CSEMap.InsertNode(N, IP);
2397  } else {
2398    N = NodeAllocator.Allocate<UnarySDNode>();
2399    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2400  }
2401
2402  AllNodes.push_back(N);
2403#ifndef NDEBUG
2404  VerifyNode(N);
2405#endif
2406  return SDValue(N, 0);
2407}
2408
2409SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2410                                             MVT VT,
2411                                             ConstantSDNode *Cst1,
2412                                             ConstantSDNode *Cst2) {
2413  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2414
2415  switch (Opcode) {
2416  case ISD::ADD:  return getConstant(C1 + C2, VT);
2417  case ISD::SUB:  return getConstant(C1 - C2, VT);
2418  case ISD::MUL:  return getConstant(C1 * C2, VT);
2419  case ISD::UDIV:
2420    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2421    break;
2422  case ISD::UREM:
2423    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2424    break;
2425  case ISD::SDIV:
2426    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2427    break;
2428  case ISD::SREM:
2429    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2430    break;
2431  case ISD::AND:  return getConstant(C1 & C2, VT);
2432  case ISD::OR:   return getConstant(C1 | C2, VT);
2433  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2434  case ISD::SHL:  return getConstant(C1 << C2, VT);
2435  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2436  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2437  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2438  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2439  default: break;
2440  }
2441
2442  return SDValue();
2443}
2444
2445SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2446                              SDValue N1, SDValue N2) {
2447  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, N1, N2);
2448}
2449
2450SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2451                              SDValue N1, SDValue N2) {
2452  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2453  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2454  switch (Opcode) {
2455  default: break;
2456  case ISD::TokenFactor:
2457    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2458           N2.getValueType() == MVT::Other && "Invalid token factor!");
2459    // Fold trivial token factors.
2460    if (N1.getOpcode() == ISD::EntryToken) return N2;
2461    if (N2.getOpcode() == ISD::EntryToken) return N1;
2462    if (N1 == N2) return N1;
2463    break;
2464  case ISD::CONCAT_VECTORS:
2465    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2466    // one big BUILD_VECTOR.
2467    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2468        N2.getOpcode() == ISD::BUILD_VECTOR) {
2469      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2470      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2471      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2472    }
2473    break;
2474  case ISD::AND:
2475    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2476           N1.getValueType() == VT && "Binary operator types must match!");
2477    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2478    // worth handling here.
2479    if (N2C && N2C->isNullValue())
2480      return N2;
2481    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2482      return N1;
2483    break;
2484  case ISD::OR:
2485  case ISD::XOR:
2486  case ISD::ADD:
2487  case ISD::SUB:
2488    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2489           N1.getValueType() == VT && "Binary operator types must match!");
2490    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2491    // it's worth handling here.
2492    if (N2C && N2C->isNullValue())
2493      return N1;
2494    break;
2495  case ISD::UDIV:
2496  case ISD::UREM:
2497  case ISD::MULHU:
2498  case ISD::MULHS:
2499  case ISD::MUL:
2500  case ISD::SDIV:
2501  case ISD::SREM:
2502    assert(VT.isInteger() && "This operator does not apply to FP types!");
2503    // fall through
2504  case ISD::FADD:
2505  case ISD::FSUB:
2506  case ISD::FMUL:
2507  case ISD::FDIV:
2508  case ISD::FREM:
2509    if (UnsafeFPMath) {
2510      if (Opcode == ISD::FADD) {
2511        // 0+x --> x
2512        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2513          if (CFP->getValueAPF().isZero())
2514            return N2;
2515        // x+0 --> x
2516        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2517          if (CFP->getValueAPF().isZero())
2518            return N1;
2519      } else if (Opcode == ISD::FSUB) {
2520        // x-0 --> x
2521        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2522          if (CFP->getValueAPF().isZero())
2523            return N1;
2524      }
2525    }
2526    assert(N1.getValueType() == N2.getValueType() &&
2527           N1.getValueType() == VT && "Binary operator types must match!");
2528    break;
2529  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2530    assert(N1.getValueType() == VT &&
2531           N1.getValueType().isFloatingPoint() &&
2532           N2.getValueType().isFloatingPoint() &&
2533           "Invalid FCOPYSIGN!");
2534    break;
2535  case ISD::SHL:
2536  case ISD::SRA:
2537  case ISD::SRL:
2538  case ISD::ROTL:
2539  case ISD::ROTR:
2540    assert(VT == N1.getValueType() &&
2541           "Shift operators return type must be the same as their first arg");
2542    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2543           "Shifts only work on integers");
2544
2545    // Always fold shifts of i1 values so the code generator doesn't need to
2546    // handle them.  Since we know the size of the shift has to be less than the
2547    // size of the value, the shift/rotate count is guaranteed to be zero.
2548    if (VT == MVT::i1)
2549      return N1;
2550    break;
2551  case ISD::FP_ROUND_INREG: {
2552    MVT EVT = cast<VTSDNode>(N2)->getVT();
2553    assert(VT == N1.getValueType() && "Not an inreg round!");
2554    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2555           "Cannot FP_ROUND_INREG integer types");
2556    assert(EVT.bitsLE(VT) && "Not rounding down!");
2557    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2558    break;
2559  }
2560  case ISD::FP_ROUND:
2561    assert(VT.isFloatingPoint() &&
2562           N1.getValueType().isFloatingPoint() &&
2563           VT.bitsLE(N1.getValueType()) &&
2564           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2565    if (N1.getValueType() == VT) return N1;  // noop conversion.
2566    break;
2567  case ISD::AssertSext:
2568  case ISD::AssertZext: {
2569    MVT EVT = cast<VTSDNode>(N2)->getVT();
2570    assert(VT == N1.getValueType() && "Not an inreg extend!");
2571    assert(VT.isInteger() && EVT.isInteger() &&
2572           "Cannot *_EXTEND_INREG FP types");
2573    assert(EVT.bitsLE(VT) && "Not extending!");
2574    if (VT == EVT) return N1; // noop assertion.
2575    break;
2576  }
2577  case ISD::SIGN_EXTEND_INREG: {
2578    MVT EVT = cast<VTSDNode>(N2)->getVT();
2579    assert(VT == N1.getValueType() && "Not an inreg extend!");
2580    assert(VT.isInteger() && EVT.isInteger() &&
2581           "Cannot *_EXTEND_INREG FP types");
2582    assert(EVT.bitsLE(VT) && "Not extending!");
2583    if (EVT == VT) return N1;  // Not actually extending
2584
2585    if (N1C) {
2586      APInt Val = N1C->getAPIntValue();
2587      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2588      Val <<= Val.getBitWidth()-FromBits;
2589      Val = Val.ashr(Val.getBitWidth()-FromBits);
2590      return getConstant(Val, VT);
2591    }
2592    break;
2593  }
2594  case ISD::EXTRACT_VECTOR_ELT:
2595    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2596    if (N1.getOpcode() == ISD::UNDEF)
2597      return getNode(ISD::UNDEF, VT);
2598
2599    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2600    // expanding copies of large vectors from registers.
2601    if (N2C &&
2602        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2603        N1.getNumOperands() > 0) {
2604      unsigned Factor =
2605        N1.getOperand(0).getValueType().getVectorNumElements();
2606      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2607                     N1.getOperand(N2C->getZExtValue() / Factor),
2608                     getConstant(N2C->getZExtValue() % Factor,
2609                                 N2.getValueType()));
2610    }
2611
2612    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2613    // expanding large vector constants.
2614    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR)
2615      return N1.getOperand(N2C->getZExtValue());
2616
2617    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2618    // operations are lowered to scalars.
2619    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2620      // If the indices are the same, return the inserted element.
2621      if (N1.getOperand(2) == N2)
2622        return N1.getOperand(1);
2623      // If the indices are known different, extract the element from
2624      // the original vector.
2625      else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2626               isa<ConstantSDNode>(N2))
2627        return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2628    }
2629    break;
2630  case ISD::EXTRACT_ELEMENT:
2631    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2632    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2633           (N1.getValueType().isInteger() == VT.isInteger()) &&
2634           "Wrong types for EXTRACT_ELEMENT!");
2635
2636    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2637    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2638    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2639    if (N1.getOpcode() == ISD::BUILD_PAIR)
2640      return N1.getOperand(N2C->getZExtValue());
2641
2642    // EXTRACT_ELEMENT of a constant int is also very common.
2643    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2644      unsigned ElementSize = VT.getSizeInBits();
2645      unsigned Shift = ElementSize * N2C->getZExtValue();
2646      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2647      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2648    }
2649    break;
2650  case ISD::EXTRACT_SUBVECTOR:
2651    if (N1.getValueType() == VT) // Trivial extraction.
2652      return N1;
2653    break;
2654  }
2655
2656  if (N1C) {
2657    if (N2C) {
2658      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2659      if (SV.getNode()) return SV;
2660    } else {      // Cannonicalize constant to RHS if commutative
2661      if (isCommutativeBinOp(Opcode)) {
2662        std::swap(N1C, N2C);
2663        std::swap(N1, N2);
2664      }
2665    }
2666  }
2667
2668  // Constant fold FP operations.
2669  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2670  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2671  if (N1CFP) {
2672    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2673      // Cannonicalize constant to RHS if commutative
2674      std::swap(N1CFP, N2CFP);
2675      std::swap(N1, N2);
2676    } else if (N2CFP && VT != MVT::ppcf128) {
2677      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2678      APFloat::opStatus s;
2679      switch (Opcode) {
2680      case ISD::FADD:
2681        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2682        if (s != APFloat::opInvalidOp)
2683          return getConstantFP(V1, VT);
2684        break;
2685      case ISD::FSUB:
2686        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2687        if (s!=APFloat::opInvalidOp)
2688          return getConstantFP(V1, VT);
2689        break;
2690      case ISD::FMUL:
2691        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2692        if (s!=APFloat::opInvalidOp)
2693          return getConstantFP(V1, VT);
2694        break;
2695      case ISD::FDIV:
2696        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2697        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2698          return getConstantFP(V1, VT);
2699        break;
2700      case ISD::FREM :
2701        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2702        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2703          return getConstantFP(V1, VT);
2704        break;
2705      case ISD::FCOPYSIGN:
2706        V1.copySign(V2);
2707        return getConstantFP(V1, VT);
2708      default: break;
2709      }
2710    }
2711  }
2712
2713  // Canonicalize an UNDEF to the RHS, even over a constant.
2714  if (N1.getOpcode() == ISD::UNDEF) {
2715    if (isCommutativeBinOp(Opcode)) {
2716      std::swap(N1, N2);
2717    } else {
2718      switch (Opcode) {
2719      case ISD::FP_ROUND_INREG:
2720      case ISD::SIGN_EXTEND_INREG:
2721      case ISD::SUB:
2722      case ISD::FSUB:
2723      case ISD::FDIV:
2724      case ISD::FREM:
2725      case ISD::SRA:
2726        return N1;     // fold op(undef, arg2) -> undef
2727      case ISD::UDIV:
2728      case ISD::SDIV:
2729      case ISD::UREM:
2730      case ISD::SREM:
2731      case ISD::SRL:
2732      case ISD::SHL:
2733        if (!VT.isVector())
2734          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2735        // For vectors, we can't easily build an all zero vector, just return
2736        // the LHS.
2737        return N2;
2738      }
2739    }
2740  }
2741
2742  // Fold a bunch of operators when the RHS is undef.
2743  if (N2.getOpcode() == ISD::UNDEF) {
2744    switch (Opcode) {
2745    case ISD::XOR:
2746      if (N1.getOpcode() == ISD::UNDEF)
2747        // Handle undef ^ undef -> 0 special case. This is a common
2748        // idiom (misuse).
2749        return getConstant(0, VT);
2750      // fallthrough
2751    case ISD::ADD:
2752    case ISD::ADDC:
2753    case ISD::ADDE:
2754    case ISD::SUB:
2755    case ISD::FADD:
2756    case ISD::FSUB:
2757    case ISD::FMUL:
2758    case ISD::FDIV:
2759    case ISD::FREM:
2760    case ISD::UDIV:
2761    case ISD::SDIV:
2762    case ISD::UREM:
2763    case ISD::SREM:
2764      return N2;       // fold op(arg1, undef) -> undef
2765    case ISD::MUL:
2766    case ISD::AND:
2767    case ISD::SRL:
2768    case ISD::SHL:
2769      if (!VT.isVector())
2770        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2771      // For vectors, we can't easily build an all zero vector, just return
2772      // the LHS.
2773      return N1;
2774    case ISD::OR:
2775      if (!VT.isVector())
2776        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2777      // For vectors, we can't easily build an all one vector, just return
2778      // the LHS.
2779      return N1;
2780    case ISD::SRA:
2781      return N1;
2782    }
2783  }
2784
2785  // Memoize this node if possible.
2786  SDNode *N;
2787  SDVTList VTs = getVTList(VT);
2788  if (VT != MVT::Flag) {
2789    SDValue Ops[] = { N1, N2 };
2790    FoldingSetNodeID ID;
2791    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2792    void *IP = 0;
2793    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2794      return SDValue(E, 0);
2795    N = NodeAllocator.Allocate<BinarySDNode>();
2796    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2797    CSEMap.InsertNode(N, IP);
2798  } else {
2799    N = NodeAllocator.Allocate<BinarySDNode>();
2800    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2801  }
2802
2803  AllNodes.push_back(N);
2804#ifndef NDEBUG
2805  VerifyNode(N);
2806#endif
2807  return SDValue(N, 0);
2808}
2809
2810SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2811                              SDValue N1, SDValue N2, SDValue N3) {
2812  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, N1, N2, N3);
2813}
2814
2815SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2816                              SDValue N1, SDValue N2, SDValue N3) {
2817  // Perform various simplifications.
2818  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2819  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2820  switch (Opcode) {
2821  case ISD::CONCAT_VECTORS:
2822    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2823    // one big BUILD_VECTOR.
2824    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2825        N2.getOpcode() == ISD::BUILD_VECTOR &&
2826        N3.getOpcode() == ISD::BUILD_VECTOR) {
2827      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2828      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2829      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2830      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2831    }
2832    break;
2833  case ISD::SETCC: {
2834    // Use FoldSetCC to simplify SETCC's.
2835    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2836    if (Simp.getNode()) return Simp;
2837    break;
2838  }
2839  case ISD::SELECT:
2840    if (N1C) {
2841     if (N1C->getZExtValue())
2842        return N2;             // select true, X, Y -> X
2843      else
2844        return N3;             // select false, X, Y -> Y
2845    }
2846
2847    if (N2 == N3) return N2;   // select C, X, X -> X
2848    break;
2849  case ISD::BRCOND:
2850    if (N2C) {
2851      if (N2C->getZExtValue()) // Unconditional branch
2852        return getNode(ISD::BR, MVT::Other, N1, N3);
2853      else
2854        return N1;         // Never-taken branch
2855    }
2856    break;
2857  case ISD::VECTOR_SHUFFLE:
2858    assert(N1.getValueType() == N2.getValueType() &&
2859           N1.getValueType().isVector() &&
2860           VT.isVector() && N3.getValueType().isVector() &&
2861           N3.getOpcode() == ISD::BUILD_VECTOR &&
2862           VT.getVectorNumElements() == N3.getNumOperands() &&
2863           "Illegal VECTOR_SHUFFLE node!");
2864    break;
2865  case ISD::BIT_CONVERT:
2866    // Fold bit_convert nodes from a type to themselves.
2867    if (N1.getValueType() == VT)
2868      return N1;
2869    break;
2870  }
2871
2872  // Memoize node if it doesn't produce a flag.
2873  SDNode *N;
2874  SDVTList VTs = getVTList(VT);
2875  if (VT != MVT::Flag) {
2876    SDValue Ops[] = { N1, N2, N3 };
2877    FoldingSetNodeID ID;
2878    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2879    void *IP = 0;
2880    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2881      return SDValue(E, 0);
2882    N = NodeAllocator.Allocate<TernarySDNode>();
2883    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2884    CSEMap.InsertNode(N, IP);
2885  } else {
2886    N = NodeAllocator.Allocate<TernarySDNode>();
2887    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2888  }
2889  AllNodes.push_back(N);
2890#ifndef NDEBUG
2891  VerifyNode(N);
2892#endif
2893  return SDValue(N, 0);
2894}
2895
2896SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2897                              SDValue N1, SDValue N2, SDValue N3,
2898                              SDValue N4) {
2899  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, N1, N2, N3, N4);
2900}
2901
2902SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2903                              SDValue N1, SDValue N2, SDValue N3,
2904                              SDValue N4) {
2905  SDValue Ops[] = { N1, N2, N3, N4 };
2906  return getNode(Opcode, DL, VT, Ops, 4);
2907}
2908
2909SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2910                              SDValue N1, SDValue N2, SDValue N3,
2911                              SDValue N4, SDValue N5) {
2912  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, N1, N2, N3, N4, N5);
2913}
2914
2915SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2916                              SDValue N1, SDValue N2, SDValue N3,
2917                              SDValue N4, SDValue N5) {
2918  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2919  return getNode(Opcode, DL, VT, Ops, 5);
2920}
2921
2922/// getMemsetValue - Vectorized representation of the memset value
2923/// operand.
2924static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG) {
2925  unsigned NumBits = VT.isVector() ?
2926    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2927  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2928    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2929    unsigned Shift = 8;
2930    for (unsigned i = NumBits; i > 8; i >>= 1) {
2931      Val = (Val << Shift) | Val;
2932      Shift <<= 1;
2933    }
2934    if (VT.isInteger())
2935      return DAG.getConstant(Val, VT);
2936    return DAG.getConstantFP(APFloat(Val), VT);
2937  }
2938
2939  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2940  Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2941  unsigned Shift = 8;
2942  for (unsigned i = NumBits; i > 8; i >>= 1) {
2943    Value = DAG.getNode(ISD::OR, VT,
2944                        DAG.getNode(ISD::SHL, VT, Value,
2945                                    DAG.getConstant(Shift,
2946                                                    TLI.getShiftAmountTy())),
2947                        Value);
2948    Shift <<= 1;
2949  }
2950
2951  return Value;
2952}
2953
2954/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2955/// used when a memcpy is turned into a memset when the source is a constant
2956/// string ptr.
2957static SDValue getMemsetStringVal(MVT VT, SelectionDAG &DAG,
2958                                    const TargetLowering &TLI,
2959                                    std::string &Str, unsigned Offset) {
2960  // Handle vector with all elements zero.
2961  if (Str.empty()) {
2962    if (VT.isInteger())
2963      return DAG.getConstant(0, VT);
2964    unsigned NumElts = VT.getVectorNumElements();
2965    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2966    return DAG.getNode(ISD::BIT_CONVERT, VT,
2967                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2968  }
2969
2970  assert(!VT.isVector() && "Can't handle vector type here!");
2971  unsigned NumBits = VT.getSizeInBits();
2972  unsigned MSB = NumBits / 8;
2973  uint64_t Val = 0;
2974  if (TLI.isLittleEndian())
2975    Offset = Offset + MSB - 1;
2976  for (unsigned i = 0; i != MSB; ++i) {
2977    Val = (Val << 8) | (unsigned char)Str[Offset];
2978    Offset += TLI.isLittleEndian() ? -1 : 1;
2979  }
2980  return DAG.getConstant(Val, VT);
2981}
2982
2983/// getMemBasePlusOffset - Returns base and offset node for the
2984///
2985static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
2986                                      SelectionDAG &DAG) {
2987  MVT VT = Base.getValueType();
2988  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2989}
2990
2991/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2992///
2993static bool isMemSrcFromString(SDValue Src, std::string &Str) {
2994  unsigned SrcDelta = 0;
2995  GlobalAddressSDNode *G = NULL;
2996  if (Src.getOpcode() == ISD::GlobalAddress)
2997    G = cast<GlobalAddressSDNode>(Src);
2998  else if (Src.getOpcode() == ISD::ADD &&
2999           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3000           Src.getOperand(1).getOpcode() == ISD::Constant) {
3001    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3002    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3003  }
3004  if (!G)
3005    return false;
3006
3007  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3008  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3009    return true;
3010
3011  return false;
3012}
3013
3014/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3015/// to replace the memset / memcpy is below the threshold. It also returns the
3016/// types of the sequence of memory ops to perform memset / memcpy.
3017static
3018bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
3019                              SDValue Dst, SDValue Src,
3020                              unsigned Limit, uint64_t Size, unsigned &Align,
3021                              std::string &Str, bool &isSrcStr,
3022                              SelectionDAG &DAG,
3023                              const TargetLowering &TLI) {
3024  isSrcStr = isMemSrcFromString(Src, Str);
3025  bool isSrcConst = isa<ConstantSDNode>(Src);
3026  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
3027  MVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
3028  if (VT != MVT::iAny) {
3029    unsigned NewAlign = (unsigned)
3030      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
3031    // If source is a string constant, this will require an unaligned load.
3032    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
3033      if (Dst.getOpcode() != ISD::FrameIndex) {
3034        // Can't change destination alignment. It requires a unaligned store.
3035        if (AllowUnalign)
3036          VT = MVT::iAny;
3037      } else {
3038        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
3039        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3040        if (MFI->isFixedObjectIndex(FI)) {
3041          // Can't change destination alignment. It requires a unaligned store.
3042          if (AllowUnalign)
3043            VT = MVT::iAny;
3044        } else {
3045          // Give the stack frame object a larger alignment if needed.
3046          if (MFI->getObjectAlignment(FI) < NewAlign)
3047            MFI->setObjectAlignment(FI, NewAlign);
3048          Align = NewAlign;
3049        }
3050      }
3051    }
3052  }
3053
3054  if (VT == MVT::iAny) {
3055    if (AllowUnalign) {
3056      VT = MVT::i64;
3057    } else {
3058      switch (Align & 7) {
3059      case 0:  VT = MVT::i64; break;
3060      case 4:  VT = MVT::i32; break;
3061      case 2:  VT = MVT::i16; break;
3062      default: VT = MVT::i8;  break;
3063      }
3064    }
3065
3066    MVT LVT = MVT::i64;
3067    while (!TLI.isTypeLegal(LVT))
3068      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
3069    assert(LVT.isInteger());
3070
3071    if (VT.bitsGT(LVT))
3072      VT = LVT;
3073  }
3074
3075  unsigned NumMemOps = 0;
3076  while (Size != 0) {
3077    unsigned VTSize = VT.getSizeInBits() / 8;
3078    while (VTSize > Size) {
3079      // For now, only use non-vector load / store's for the left-over pieces.
3080      if (VT.isVector()) {
3081        VT = MVT::i64;
3082        while (!TLI.isTypeLegal(VT))
3083          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3084        VTSize = VT.getSizeInBits() / 8;
3085      } else {
3086        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3087        VTSize >>= 1;
3088      }
3089    }
3090
3091    if (++NumMemOps > Limit)
3092      return false;
3093    MemOps.push_back(VT);
3094    Size -= VTSize;
3095  }
3096
3097  return true;
3098}
3099
3100static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG,
3101                                         SDValue Chain, SDValue Dst,
3102                                         SDValue Src, uint64_t Size,
3103                                         unsigned Align, bool AlwaysInline,
3104                                         const Value *DstSV, uint64_t DstSVOff,
3105                                         const Value *SrcSV, uint64_t SrcSVOff){
3106  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3107
3108  // Expand memcpy to a series of load and store ops if the size operand falls
3109  // below a certain threshold.
3110  std::vector<MVT> MemOps;
3111  uint64_t Limit = -1ULL;
3112  if (!AlwaysInline)
3113    Limit = TLI.getMaxStoresPerMemcpy();
3114  unsigned DstAlign = Align;  // Destination alignment can change.
3115  std::string Str;
3116  bool CopyFromStr;
3117  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3118                                Str, CopyFromStr, DAG, TLI))
3119    return SDValue();
3120
3121
3122  bool isZeroStr = CopyFromStr && Str.empty();
3123  SmallVector<SDValue, 8> OutChains;
3124  unsigned NumMemOps = MemOps.size();
3125  uint64_t SrcOff = 0, DstOff = 0;
3126  for (unsigned i = 0; i < NumMemOps; i++) {
3127    MVT VT = MemOps[i];
3128    unsigned VTSize = VT.getSizeInBits() / 8;
3129    SDValue Value, Store;
3130
3131    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3132      // It's unlikely a store of a vector immediate can be done in a single
3133      // instruction. It would require a load from a constantpool first.
3134      // We also handle store a vector with all zero's.
3135      // FIXME: Handle other cases where store of vector immediate is done in
3136      // a single instruction.
3137      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
3138      Store = DAG.getStore(Chain, Value,
3139                           getMemBasePlusOffset(Dst, DstOff, DAG),
3140                           DstSV, DstSVOff + DstOff, false, DstAlign);
3141    } else {
3142      Value = DAG.getLoad(VT, Chain,
3143                          getMemBasePlusOffset(Src, SrcOff, DAG),
3144                          SrcSV, SrcSVOff + SrcOff, false, Align);
3145      Store = DAG.getStore(Chain, Value,
3146                           getMemBasePlusOffset(Dst, DstOff, DAG),
3147                           DstSV, DstSVOff + DstOff, false, DstAlign);
3148    }
3149    OutChains.push_back(Store);
3150    SrcOff += VTSize;
3151    DstOff += VTSize;
3152  }
3153
3154  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3155                     &OutChains[0], OutChains.size());
3156}
3157
3158static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG,
3159                                          SDValue Chain, SDValue Dst,
3160                                          SDValue Src, uint64_t Size,
3161                                          unsigned Align, bool AlwaysInline,
3162                                          const Value *DstSV, uint64_t DstSVOff,
3163                                          const Value *SrcSV, uint64_t SrcSVOff){
3164  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3165
3166  // Expand memmove to a series of load and store ops if the size operand falls
3167  // below a certain threshold.
3168  std::vector<MVT> MemOps;
3169  uint64_t Limit = -1ULL;
3170  if (!AlwaysInline)
3171    Limit = TLI.getMaxStoresPerMemmove();
3172  unsigned DstAlign = Align;  // Destination alignment can change.
3173  std::string Str;
3174  bool CopyFromStr;
3175  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3176                                Str, CopyFromStr, DAG, TLI))
3177    return SDValue();
3178
3179  uint64_t SrcOff = 0, DstOff = 0;
3180
3181  SmallVector<SDValue, 8> LoadValues;
3182  SmallVector<SDValue, 8> LoadChains;
3183  SmallVector<SDValue, 8> OutChains;
3184  unsigned NumMemOps = MemOps.size();
3185  for (unsigned i = 0; i < NumMemOps; i++) {
3186    MVT VT = MemOps[i];
3187    unsigned VTSize = VT.getSizeInBits() / 8;
3188    SDValue Value, Store;
3189
3190    Value = DAG.getLoad(VT, Chain,
3191                        getMemBasePlusOffset(Src, SrcOff, DAG),
3192                        SrcSV, SrcSVOff + SrcOff, false, Align);
3193    LoadValues.push_back(Value);
3194    LoadChains.push_back(Value.getValue(1));
3195    SrcOff += VTSize;
3196  }
3197  Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3198                      &LoadChains[0], LoadChains.size());
3199  OutChains.clear();
3200  for (unsigned i = 0; i < NumMemOps; i++) {
3201    MVT VT = MemOps[i];
3202    unsigned VTSize = VT.getSizeInBits() / 8;
3203    SDValue Value, Store;
3204
3205    Store = DAG.getStore(Chain, LoadValues[i],
3206                         getMemBasePlusOffset(Dst, DstOff, DAG),
3207                         DstSV, DstSVOff + DstOff, false, DstAlign);
3208    OutChains.push_back(Store);
3209    DstOff += VTSize;
3210  }
3211
3212  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3213                     &OutChains[0], OutChains.size());
3214}
3215
3216static SDValue getMemsetStores(SelectionDAG &DAG,
3217                                 SDValue Chain, SDValue Dst,
3218                                 SDValue Src, uint64_t Size,
3219                                 unsigned Align,
3220                                 const Value *DstSV, uint64_t DstSVOff) {
3221  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3222
3223  // Expand memset to a series of load/store ops if the size operand
3224  // falls below a certain threshold.
3225  std::vector<MVT> MemOps;
3226  std::string Str;
3227  bool CopyFromStr;
3228  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3229                                Size, Align, Str, CopyFromStr, DAG, TLI))
3230    return SDValue();
3231
3232  SmallVector<SDValue, 8> OutChains;
3233  uint64_t DstOff = 0;
3234
3235  unsigned NumMemOps = MemOps.size();
3236  for (unsigned i = 0; i < NumMemOps; i++) {
3237    MVT VT = MemOps[i];
3238    unsigned VTSize = VT.getSizeInBits() / 8;
3239    SDValue Value = getMemsetValue(Src, VT, DAG);
3240    SDValue Store = DAG.getStore(Chain, Value,
3241                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3242                                 DstSV, DstSVOff + DstOff);
3243    OutChains.push_back(Store);
3244    DstOff += VTSize;
3245  }
3246
3247  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3248                     &OutChains[0], OutChains.size());
3249}
3250
3251SDValue SelectionDAG::getMemcpy(SDValue Chain, SDValue Dst,
3252                                SDValue Src, SDValue Size,
3253                                unsigned Align, bool AlwaysInline,
3254                                const Value *DstSV, uint64_t DstSVOff,
3255                                const Value *SrcSV, uint64_t SrcSVOff) {
3256
3257  // Check to see if we should lower the memcpy to loads and stores first.
3258  // For cases within the target-specified limits, this is the best choice.
3259  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3260  if (ConstantSize) {
3261    // Memcpy with size zero? Just return the original chain.
3262    if (ConstantSize->isNullValue())
3263      return Chain;
3264
3265    SDValue Result =
3266      getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3267                              ConstantSize->getZExtValue(),
3268                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3269    if (Result.getNode())
3270      return Result;
3271  }
3272
3273  // Then check to see if we should lower the memcpy with target-specific
3274  // code. If the target chooses to do this, this is the next best.
3275  SDValue Result =
3276    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
3277                                AlwaysInline,
3278                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3279  if (Result.getNode())
3280    return Result;
3281
3282  // If we really need inline code and the target declined to provide it,
3283  // use a (potentially long) sequence of loads and stores.
3284  if (AlwaysInline) {
3285    assert(ConstantSize && "AlwaysInline requires a constant size!");
3286    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3287                                   ConstantSize->getZExtValue(), Align, true,
3288                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3289  }
3290
3291  // Emit a library call.
3292  TargetLowering::ArgListTy Args;
3293  TargetLowering::ArgListEntry Entry;
3294  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3295  Entry.Node = Dst; Args.push_back(Entry);
3296  Entry.Node = Src; Args.push_back(Entry);
3297  Entry.Node = Size; Args.push_back(Entry);
3298  // FIXME: pass in DebugLoc
3299  std::pair<SDValue,SDValue> CallResult =
3300    TLI.LowerCallTo(Chain, Type::VoidTy,
3301                    false, false, false, false, CallingConv::C, false,
3302                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3303                    Args, *this, DebugLoc::getUnknownLoc());
3304  return CallResult.second;
3305}
3306
3307SDValue SelectionDAG::getMemmove(SDValue Chain, SDValue Dst,
3308                                 SDValue Src, SDValue Size,
3309                                 unsigned Align,
3310                                 const Value *DstSV, uint64_t DstSVOff,
3311                                 const Value *SrcSV, uint64_t SrcSVOff) {
3312
3313  // Check to see if we should lower the memmove to loads and stores first.
3314  // For cases within the target-specified limits, this is the best choice.
3315  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3316  if (ConstantSize) {
3317    // Memmove with size zero? Just return the original chain.
3318    if (ConstantSize->isNullValue())
3319      return Chain;
3320
3321    SDValue Result =
3322      getMemmoveLoadsAndStores(*this, Chain, Dst, Src,
3323                               ConstantSize->getZExtValue(),
3324                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3325    if (Result.getNode())
3326      return Result;
3327  }
3328
3329  // Then check to see if we should lower the memmove with target-specific
3330  // code. If the target chooses to do this, this is the next best.
3331  SDValue Result =
3332    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
3333                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3334  if (Result.getNode())
3335    return Result;
3336
3337  // Emit a library call.
3338  TargetLowering::ArgListTy Args;
3339  TargetLowering::ArgListEntry Entry;
3340  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3341  Entry.Node = Dst; Args.push_back(Entry);
3342  Entry.Node = Src; Args.push_back(Entry);
3343  Entry.Node = Size; Args.push_back(Entry);
3344  // FIXME:  pass in DebugLoc
3345  std::pair<SDValue,SDValue> CallResult =
3346    TLI.LowerCallTo(Chain, Type::VoidTy,
3347                    false, false, false, false, CallingConv::C, false,
3348                    getExternalSymbol("memmove", TLI.getPointerTy()),
3349                    Args, *this, DebugLoc::getUnknownLoc());
3350  return CallResult.second;
3351}
3352
3353SDValue SelectionDAG::getMemset(SDValue Chain, SDValue Dst,
3354                                SDValue Src, SDValue Size,
3355                                unsigned Align,
3356                                const Value *DstSV, uint64_t DstSVOff) {
3357
3358  // Check to see if we should lower the memset to stores first.
3359  // For cases within the target-specified limits, this is the best choice.
3360  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3361  if (ConstantSize) {
3362    // Memset with size zero? Just return the original chain.
3363    if (ConstantSize->isNullValue())
3364      return Chain;
3365
3366    SDValue Result =
3367      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getZExtValue(),
3368                      Align, DstSV, DstSVOff);
3369    if (Result.getNode())
3370      return Result;
3371  }
3372
3373  // Then check to see if we should lower the memset with target-specific
3374  // code. If the target chooses to do this, this is the next best.
3375  SDValue Result =
3376    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
3377                                DstSV, DstSVOff);
3378  if (Result.getNode())
3379    return Result;
3380
3381  // Emit a library call.
3382  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3383  TargetLowering::ArgListTy Args;
3384  TargetLowering::ArgListEntry Entry;
3385  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3386  Args.push_back(Entry);
3387  // Extend or truncate the argument to be an i32 value for the call.
3388  if (Src.getValueType().bitsGT(MVT::i32))
3389    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
3390  else
3391    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
3392  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3393  Args.push_back(Entry);
3394  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3395  Args.push_back(Entry);
3396  // FIXME: pass in DebugLoc
3397  std::pair<SDValue,SDValue> CallResult =
3398    TLI.LowerCallTo(Chain, Type::VoidTy,
3399                    false, false, false, false, CallingConv::C, false,
3400                    getExternalSymbol("memset", TLI.getPointerTy()),
3401                    Args, *this, DebugLoc::getUnknownLoc());
3402  return CallResult.second;
3403}
3404
3405SDValue SelectionDAG::getAtomic(unsigned Opcode, MVT MemVT,
3406                                SDValue Chain,
3407                                SDValue Ptr, SDValue Cmp,
3408                                SDValue Swp, const Value* PtrVal,
3409                                unsigned Alignment) {
3410  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3411  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3412
3413  MVT VT = Cmp.getValueType();
3414
3415  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3416    Alignment = getMVTAlignment(MemVT);
3417
3418  SDVTList VTs = getVTList(VT, MVT::Other);
3419  FoldingSetNodeID ID;
3420  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3421  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3422  void* IP = 0;
3423  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3424    return SDValue(E, 0);
3425  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3426  new (N) AtomicSDNode(Opcode, VTs, MemVT,
3427                       Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3428  CSEMap.InsertNode(N, IP);
3429  AllNodes.push_back(N);
3430  return SDValue(N, 0);
3431}
3432
3433SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3434                                SDValue Chain,
3435                                SDValue Ptr, SDValue Cmp,
3436                                SDValue Swp, const Value* PtrVal,
3437                                unsigned Alignment) {
3438  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3439  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3440
3441  MVT VT = Cmp.getValueType();
3442
3443  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3444    Alignment = getMVTAlignment(MemVT);
3445
3446  SDVTList VTs = getVTList(VT, MVT::Other);
3447  FoldingSetNodeID ID;
3448  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3449  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3450  void* IP = 0;
3451  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3452    return SDValue(E, 0);
3453  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3454  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3455                       Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3456  CSEMap.InsertNode(N, IP);
3457  AllNodes.push_back(N);
3458  return SDValue(N, 0);
3459}
3460
3461SDValue SelectionDAG::getAtomic(unsigned Opcode, MVT MemVT,
3462                                SDValue Chain,
3463                                SDValue Ptr, SDValue Val,
3464                                const Value* PtrVal,
3465                                unsigned Alignment) {
3466  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3467          Opcode == ISD::ATOMIC_LOAD_SUB ||
3468          Opcode == ISD::ATOMIC_LOAD_AND ||
3469          Opcode == ISD::ATOMIC_LOAD_OR ||
3470          Opcode == ISD::ATOMIC_LOAD_XOR ||
3471          Opcode == ISD::ATOMIC_LOAD_NAND ||
3472          Opcode == ISD::ATOMIC_LOAD_MIN ||
3473          Opcode == ISD::ATOMIC_LOAD_MAX ||
3474          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3475          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3476          Opcode == ISD::ATOMIC_SWAP) &&
3477         "Invalid Atomic Op");
3478
3479  MVT VT = Val.getValueType();
3480
3481  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3482    Alignment = getMVTAlignment(MemVT);
3483
3484  SDVTList VTs = getVTList(VT, MVT::Other);
3485  FoldingSetNodeID ID;
3486  SDValue Ops[] = {Chain, Ptr, Val};
3487  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3488  void* IP = 0;
3489  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3490    return SDValue(E, 0);
3491  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3492  new (N) AtomicSDNode(Opcode, VTs, MemVT,
3493                       Chain, Ptr, Val, PtrVal, Alignment);
3494  CSEMap.InsertNode(N, IP);
3495  AllNodes.push_back(N);
3496  return SDValue(N, 0);
3497}
3498
3499SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3500                                SDValue Chain,
3501                                SDValue Ptr, SDValue Val,
3502                                const Value* PtrVal,
3503                                unsigned Alignment) {
3504  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3505          Opcode == ISD::ATOMIC_LOAD_SUB ||
3506          Opcode == ISD::ATOMIC_LOAD_AND ||
3507          Opcode == ISD::ATOMIC_LOAD_OR ||
3508          Opcode == ISD::ATOMIC_LOAD_XOR ||
3509          Opcode == ISD::ATOMIC_LOAD_NAND ||
3510          Opcode == ISD::ATOMIC_LOAD_MIN ||
3511          Opcode == ISD::ATOMIC_LOAD_MAX ||
3512          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3513          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3514          Opcode == ISD::ATOMIC_SWAP) &&
3515         "Invalid Atomic Op");
3516
3517  MVT VT = Val.getValueType();
3518
3519  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3520    Alignment = getMVTAlignment(MemVT);
3521
3522  SDVTList VTs = getVTList(VT, MVT::Other);
3523  FoldingSetNodeID ID;
3524  SDValue Ops[] = {Chain, Ptr, Val};
3525  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3526  void* IP = 0;
3527  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3528    return SDValue(E, 0);
3529  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3530  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3531                       Chain, Ptr, Val, PtrVal, Alignment);
3532  CSEMap.InsertNode(N, IP);
3533  AllNodes.push_back(N);
3534  return SDValue(N, 0);
3535}
3536
3537/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3538/// Allowed to return something different (and simpler) if Simplify is true.
3539SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps) {
3540  if (NumOps == 1)
3541    return Ops[0];
3542
3543  SmallVector<MVT, 4> VTs;
3544  VTs.reserve(NumOps);
3545  for (unsigned i = 0; i < NumOps; ++i)
3546    VTs.push_back(Ops[i].getValueType());
3547  return getNode(ISD::MERGE_VALUES, getVTList(&VTs[0], NumOps), Ops, NumOps);
3548}
3549
3550/// DebugLoc-aware version.
3551SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3552                                     DebugLoc dl) {
3553  if (NumOps == 1)
3554    return Ops[0];
3555
3556  SmallVector<MVT, 4> VTs;
3557  VTs.reserve(NumOps);
3558  for (unsigned i = 0; i < NumOps; ++i)
3559    VTs.push_back(Ops[i].getValueType());
3560  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3561                 Ops, NumOps);
3562}
3563
3564SDValue
3565SelectionDAG::getMemIntrinsicNode(unsigned Opcode,
3566                                  const MVT *VTs, unsigned NumVTs,
3567                                  const SDValue *Ops, unsigned NumOps,
3568                                  MVT MemVT, const Value *srcValue, int SVOff,
3569                                  unsigned Align, bool Vol,
3570                                  bool ReadMem, bool WriteMem) {
3571  return getMemIntrinsicNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps,
3572                             MemVT, srcValue, SVOff, Align, Vol,
3573                             ReadMem, WriteMem);
3574}
3575
3576SDValue
3577SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3578                                  const MVT *VTs, unsigned NumVTs,
3579                                  const SDValue *Ops, unsigned NumOps,
3580                                  MVT MemVT, const Value *srcValue, int SVOff,
3581                                  unsigned Align, bool Vol,
3582                                  bool ReadMem, bool WriteMem) {
3583  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3584                             MemVT, srcValue, SVOff, Align, Vol,
3585                             ReadMem, WriteMem);
3586}
3587
3588SDValue
3589SelectionDAG::getMemIntrinsicNode(unsigned Opcode, SDVTList VTList,
3590                                  const SDValue *Ops, unsigned NumOps,
3591                                  MVT MemVT, const Value *srcValue, int SVOff,
3592                                  unsigned Align, bool Vol,
3593                                  bool ReadMem, bool WriteMem) {
3594  // Memoize the node unless it returns a flag.
3595  MemIntrinsicSDNode *N;
3596  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3597    FoldingSetNodeID ID;
3598    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3599    void *IP = 0;
3600    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3601      return SDValue(E, 0);
3602
3603    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3604    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3605                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3606    CSEMap.InsertNode(N, IP);
3607  } else {
3608    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3609    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3610                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3611  }
3612  AllNodes.push_back(N);
3613  return SDValue(N, 0);
3614}
3615
3616SDValue
3617SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3618                                  const SDValue *Ops, unsigned NumOps,
3619                                  MVT MemVT, const Value *srcValue, int SVOff,
3620                                  unsigned Align, bool Vol,
3621                                  bool ReadMem, bool WriteMem) {
3622  // Memoize the node unless it returns a flag.
3623  MemIntrinsicSDNode *N;
3624  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3625    FoldingSetNodeID ID;
3626    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3627    void *IP = 0;
3628    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3629      return SDValue(E, 0);
3630
3631    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3632    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3633                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3634    CSEMap.InsertNode(N, IP);
3635  } else {
3636    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3637    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3638                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3639  }
3640  AllNodes.push_back(N);
3641  return SDValue(N, 0);
3642}
3643
3644SDValue
3645SelectionDAG::getCall(unsigned CallingConv, bool IsVarArgs, bool IsTailCall,
3646                      bool IsInreg, SDVTList VTs,
3647                      const SDValue *Operands, unsigned NumOperands) {
3648  // Do not include isTailCall in the folding set profile.
3649  FoldingSetNodeID ID;
3650  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3651  ID.AddInteger(CallingConv);
3652  ID.AddInteger(IsVarArgs);
3653  void *IP = 0;
3654  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3655    // Instead of including isTailCall in the folding set, we just
3656    // set the flag of the existing node.
3657    if (!IsTailCall)
3658      cast<CallSDNode>(E)->setNotTailCall();
3659    return SDValue(E, 0);
3660  }
3661  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3662  new (N) CallSDNode(CallingConv, IsVarArgs, IsTailCall, IsInreg,
3663                     VTs, Operands, NumOperands);
3664  CSEMap.InsertNode(N, IP);
3665  AllNodes.push_back(N);
3666  return SDValue(N, 0);
3667}
3668
3669SDValue
3670SelectionDAG::getCall(unsigned CallingConv, DebugLoc dl, bool IsVarArgs,
3671                      bool IsTailCall, bool IsInreg, SDVTList VTs,
3672                      const SDValue *Operands, unsigned NumOperands) {
3673  // Do not include isTailCall in the folding set profile.
3674  FoldingSetNodeID ID;
3675  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3676  ID.AddInteger(CallingConv);
3677  ID.AddInteger(IsVarArgs);
3678  void *IP = 0;
3679  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3680    // Instead of including isTailCall in the folding set, we just
3681    // set the flag of the existing node.
3682    if (!IsTailCall)
3683      cast<CallSDNode>(E)->setNotTailCall();
3684    return SDValue(E, 0);
3685  }
3686  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3687  new (N) CallSDNode(CallingConv, dl, IsVarArgs, IsTailCall, IsInreg,
3688                     VTs, Operands, NumOperands);
3689  CSEMap.InsertNode(N, IP);
3690  AllNodes.push_back(N);
3691  return SDValue(N, 0);
3692}
3693
3694SDValue
3695SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3696                      MVT VT, SDValue Chain,
3697                      SDValue Ptr, SDValue Offset,
3698                      const Value *SV, int SVOffset, MVT EVT,
3699                      bool isVolatile, unsigned Alignment) {
3700  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3701    Alignment = getMVTAlignment(VT);
3702
3703  if (VT == EVT) {
3704    ExtType = ISD::NON_EXTLOAD;
3705  } else if (ExtType == ISD::NON_EXTLOAD) {
3706    assert(VT == EVT && "Non-extending load from different memory type!");
3707  } else {
3708    // Extending load.
3709    if (VT.isVector())
3710      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3711             "Invalid vector extload!");
3712    else
3713      assert(EVT.bitsLT(VT) &&
3714             "Should only be an extending load, not truncating!");
3715    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3716           "Cannot sign/zero extend a FP/Vector load!");
3717    assert(VT.isInteger() == EVT.isInteger() &&
3718           "Cannot convert from FP to Int or Int -> FP!");
3719  }
3720
3721  bool Indexed = AM != ISD::UNINDEXED;
3722  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3723         "Unindexed load with an offset!");
3724
3725  SDVTList VTs = Indexed ?
3726    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3727  SDValue Ops[] = { Chain, Ptr, Offset };
3728  FoldingSetNodeID ID;
3729  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3730  ID.AddInteger(AM);
3731  ID.AddInteger(ExtType);
3732  ID.AddInteger(EVT.getRawBits());
3733  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3734  void *IP = 0;
3735  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3736    return SDValue(E, 0);
3737  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3738  new (N) LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
3739                     Alignment, isVolatile);
3740  CSEMap.InsertNode(N, IP);
3741  AllNodes.push_back(N);
3742  return SDValue(N, 0);
3743}
3744
3745SDValue
3746SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3747                      ISD::LoadExtType ExtType, MVT VT, SDValue Chain,
3748                      SDValue Ptr, SDValue Offset,
3749                      const Value *SV, int SVOffset, MVT EVT,
3750                      bool isVolatile, unsigned Alignment) {
3751  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3752    Alignment = getMVTAlignment(VT);
3753
3754  if (VT == EVT) {
3755    ExtType = ISD::NON_EXTLOAD;
3756  } else if (ExtType == ISD::NON_EXTLOAD) {
3757    assert(VT == EVT && "Non-extending load from different memory type!");
3758  } else {
3759    // Extending load.
3760    if (VT.isVector())
3761      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3762             "Invalid vector extload!");
3763    else
3764      assert(EVT.bitsLT(VT) &&
3765             "Should only be an extending load, not truncating!");
3766    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3767           "Cannot sign/zero extend a FP/Vector load!");
3768    assert(VT.isInteger() == EVT.isInteger() &&
3769           "Cannot convert from FP to Int or Int -> FP!");
3770  }
3771
3772  bool Indexed = AM != ISD::UNINDEXED;
3773  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3774         "Unindexed load with an offset!");
3775
3776  SDVTList VTs = Indexed ?
3777    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3778  SDValue Ops[] = { Chain, Ptr, Offset };
3779  FoldingSetNodeID ID;
3780  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3781  ID.AddInteger(AM);
3782  ID.AddInteger(ExtType);
3783  ID.AddInteger(EVT.getRawBits());
3784  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3785  void *IP = 0;
3786  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3787    return SDValue(E, 0);
3788  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3789  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, EVT, SV, SVOffset,
3790                     Alignment, isVolatile);
3791  CSEMap.InsertNode(N, IP);
3792  AllNodes.push_back(N);
3793  return SDValue(N, 0);
3794}
3795
3796SDValue SelectionDAG::getLoad(MVT VT,
3797                              SDValue Chain, SDValue Ptr,
3798                              const Value *SV, int SVOffset,
3799                              bool isVolatile, unsigned Alignment) {
3800  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3801  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3802                 SV, SVOffset, VT, isVolatile, Alignment);
3803}
3804
3805SDValue SelectionDAG::getLoad(MVT VT, DebugLoc dl,
3806                              SDValue Chain, SDValue Ptr,
3807                              const Value *SV, int SVOffset,
3808                              bool isVolatile, unsigned Alignment) {
3809  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3810  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3811                 SV, SVOffset, VT, isVolatile, Alignment);
3812}
3813
3814SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT VT,
3815                                 SDValue Chain, SDValue Ptr,
3816                                 const Value *SV,
3817                                 int SVOffset, MVT EVT,
3818                                 bool isVolatile, unsigned Alignment) {
3819  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3820  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
3821                 SV, SVOffset, EVT, isVolatile, Alignment);
3822}
3823
3824SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, MVT VT,
3825                                 SDValue Chain, SDValue Ptr,
3826                                 const Value *SV,
3827                                 int SVOffset, MVT EVT,
3828                                 bool isVolatile, unsigned Alignment) {
3829  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3830  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3831                 SV, SVOffset, EVT, isVolatile, Alignment);
3832}
3833
3834SDValue
3835SelectionDAG::getIndexedLoad(SDValue OrigLoad, SDValue Base,
3836                             SDValue Offset, ISD::MemIndexedMode AM) {
3837  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3838  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3839         "Load is already a indexed load!");
3840  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
3841                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3842                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3843                 LD->isVolatile(), LD->getAlignment());
3844}
3845
3846SDValue
3847SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3848                             SDValue Offset, ISD::MemIndexedMode AM) {
3849  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3850  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3851         "Load is already a indexed load!");
3852  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3853                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3854                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3855                 LD->isVolatile(), LD->getAlignment());
3856}
3857
3858SDValue SelectionDAG::getStore(SDValue Chain, SDValue Val,
3859                               SDValue Ptr, const Value *SV, int SVOffset,
3860                               bool isVolatile, unsigned Alignment) {
3861  MVT VT = Val.getValueType();
3862
3863  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3864    Alignment = getMVTAlignment(VT);
3865
3866  SDVTList VTs = getVTList(MVT::Other);
3867  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3868  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3869  FoldingSetNodeID ID;
3870  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3871  ID.AddInteger(ISD::UNINDEXED);
3872  ID.AddInteger(false);
3873  ID.AddInteger(VT.getRawBits());
3874  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3875  void *IP = 0;
3876  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3877    return SDValue(E, 0);
3878  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3879  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
3880                      VT, SV, SVOffset, Alignment, isVolatile);
3881  CSEMap.InsertNode(N, IP);
3882  AllNodes.push_back(N);
3883  return SDValue(N, 0);
3884}
3885
3886SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3887                               SDValue Ptr, const Value *SV, int SVOffset,
3888                               bool isVolatile, unsigned Alignment) {
3889  MVT VT = Val.getValueType();
3890
3891  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3892    Alignment = getMVTAlignment(VT);
3893
3894  SDVTList VTs = getVTList(MVT::Other);
3895  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3896  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3897  FoldingSetNodeID ID;
3898  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3899  ID.AddInteger(ISD::UNINDEXED);
3900  ID.AddInteger(false);
3901  ID.AddInteger(VT.getRawBits());
3902  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3903  void *IP = 0;
3904  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3905    return SDValue(E, 0);
3906  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3907  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false,
3908                      VT, SV, SVOffset, Alignment, isVolatile);
3909  CSEMap.InsertNode(N, IP);
3910  AllNodes.push_back(N);
3911  return SDValue(N, 0);
3912}
3913
3914SDValue SelectionDAG::getTruncStore(SDValue Chain, SDValue Val,
3915                                    SDValue Ptr, const Value *SV,
3916                                    int SVOffset, MVT SVT,
3917                                    bool isVolatile, unsigned Alignment) {
3918  MVT VT = Val.getValueType();
3919
3920  if (VT == SVT)
3921    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3922
3923  assert(VT.bitsGT(SVT) && "Not a truncation?");
3924  assert(VT.isInteger() == SVT.isInteger() &&
3925         "Can't do FP-INT conversion!");
3926
3927  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3928    Alignment = getMVTAlignment(VT);
3929
3930  SDVTList VTs = getVTList(MVT::Other);
3931  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3932  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3933  FoldingSetNodeID ID;
3934  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3935  ID.AddInteger(ISD::UNINDEXED);
3936  ID.AddInteger(1);
3937  ID.AddInteger(SVT.getRawBits());
3938  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3939  void *IP = 0;
3940  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3941    return SDValue(E, 0);
3942  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3943  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
3944                      SVT, SV, SVOffset, Alignment, isVolatile);
3945  CSEMap.InsertNode(N, IP);
3946  AllNodes.push_back(N);
3947  return SDValue(N, 0);
3948}
3949
3950SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3951                                    SDValue Ptr, const Value *SV,
3952                                    int SVOffset, MVT SVT,
3953                                    bool isVolatile, unsigned Alignment) {
3954  MVT VT = Val.getValueType();
3955
3956  if (VT == SVT)
3957    return getStore(Chain, dl, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3958
3959  assert(VT.bitsGT(SVT) && "Not a truncation?");
3960  assert(VT.isInteger() == SVT.isInteger() &&
3961         "Can't do FP-INT conversion!");
3962
3963  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3964    Alignment = getMVTAlignment(VT);
3965
3966  SDVTList VTs = getVTList(MVT::Other);
3967  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3968  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3969  FoldingSetNodeID ID;
3970  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3971  ID.AddInteger(ISD::UNINDEXED);
3972  ID.AddInteger(1);
3973  ID.AddInteger(SVT.getRawBits());
3974  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3975  void *IP = 0;
3976  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3977    return SDValue(E, 0);
3978  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3979  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true,
3980                      SVT, SV, SVOffset, Alignment, isVolatile);
3981  CSEMap.InsertNode(N, IP);
3982  AllNodes.push_back(N);
3983  return SDValue(N, 0);
3984}
3985
3986SDValue
3987SelectionDAG::getIndexedStore(SDValue OrigStore, SDValue Base,
3988                              SDValue Offset, ISD::MemIndexedMode AM) {
3989  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3990  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3991         "Store is already a indexed store!");
3992  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3993  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3994  FoldingSetNodeID ID;
3995  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3996  ID.AddInteger(AM);
3997  ID.AddInteger(ST->isTruncatingStore());
3998  ID.AddInteger(ST->getMemoryVT().getRawBits());
3999  ID.AddInteger(ST->getRawFlags());
4000  void *IP = 0;
4001  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4002    return SDValue(E, 0);
4003  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
4004  new (N) StoreSDNode(Ops, VTs, AM,
4005                      ST->isTruncatingStore(), ST->getMemoryVT(),
4006                      ST->getSrcValue(), ST->getSrcValueOffset(),
4007                      ST->getAlignment(), ST->isVolatile());
4008  CSEMap.InsertNode(N, IP);
4009  AllNodes.push_back(N);
4010  return SDValue(N, 0);
4011}
4012
4013SDValue
4014SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4015                              SDValue Offset, ISD::MemIndexedMode AM) {
4016  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4017  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4018         "Store is already a indexed store!");
4019  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4020  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4021  FoldingSetNodeID ID;
4022  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4023  ID.AddInteger(AM);
4024  ID.AddInteger(ST->isTruncatingStore());
4025  ID.AddInteger(ST->getMemoryVT().getRawBits());
4026  ID.AddInteger(ST->getRawFlags());
4027  void *IP = 0;
4028  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4029    return SDValue(E, 0);
4030  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
4031  new (N) StoreSDNode(Ops, dl, VTs, AM,
4032                      ST->isTruncatingStore(), ST->getMemoryVT(),
4033                      ST->getSrcValue(), ST->getSrcValueOffset(),
4034                      ST->getAlignment(), ST->isVolatile());
4035  CSEMap.InsertNode(N, IP);
4036  AllNodes.push_back(N);
4037  return SDValue(N, 0);
4038}
4039
4040SDValue SelectionDAG::getVAArg(MVT VT,
4041                               SDValue Chain, SDValue Ptr,
4042                               SDValue SV) {
4043  SDValue Ops[] = { Chain, Ptr, SV };
4044  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
4045}
4046
4047SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
4048                              const SDUse *Ops, unsigned NumOps) {
4049  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, Ops, NumOps);
4050}
4051
4052SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
4053                              const SDUse *Ops, unsigned NumOps) {
4054  switch (NumOps) {
4055  case 0: return getNode(Opcode, DL, VT);
4056  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4057  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4058  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4059  default: break;
4060  }
4061
4062  // Copy from an SDUse array into an SDValue array for use with
4063  // the regular getNode logic.
4064  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4065  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4066}
4067
4068SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
4069                              const SDValue *Ops, unsigned NumOps) {
4070  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, Ops, NumOps);
4071}
4072
4073SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
4074                              const SDValue *Ops, unsigned NumOps) {
4075  switch (NumOps) {
4076  case 0: return getNode(Opcode, DL, VT);
4077  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4078  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4079  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4080  default: break;
4081  }
4082
4083  switch (Opcode) {
4084  default: break;
4085  case ISD::SELECT_CC: {
4086    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4087    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4088           "LHS and RHS of condition must have same type!");
4089    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4090           "True and False arms of SelectCC must have same type!");
4091    assert(Ops[2].getValueType() == VT &&
4092           "select_cc node must be of same type as true and false value!");
4093    break;
4094  }
4095  case ISD::BR_CC: {
4096    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4097    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4098           "LHS/RHS of comparison should match types!");
4099    break;
4100  }
4101  }
4102
4103  // Memoize nodes.
4104  SDNode *N;
4105  SDVTList VTs = getVTList(VT);
4106
4107  if (VT != MVT::Flag) {
4108    FoldingSetNodeID ID;
4109    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4110    void *IP = 0;
4111
4112    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4113      return SDValue(E, 0);
4114
4115    N = NodeAllocator.Allocate<SDNode>();
4116    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4117    CSEMap.InsertNode(N, IP);
4118  } else {
4119    N = NodeAllocator.Allocate<SDNode>();
4120    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4121  }
4122
4123  AllNodes.push_back(N);
4124#ifndef NDEBUG
4125  VerifyNode(N);
4126#endif
4127  return SDValue(N, 0);
4128}
4129
4130SDValue SelectionDAG::getNode(unsigned Opcode,
4131                              const std::vector<MVT> &ResultTys,
4132                              const SDValue *Ops, unsigned NumOps) {
4133  return getNode(Opcode, DebugLoc::getUnknownLoc(), ResultTys, Ops, NumOps);
4134}
4135
4136SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4137                              const std::vector<MVT> &ResultTys,
4138                              const SDValue *Ops, unsigned NumOps) {
4139  return getNode(Opcode, DL, getNodeValueTypes(ResultTys), ResultTys.size(),
4140                 Ops, NumOps);
4141}
4142
4143SDValue SelectionDAG::getNode(unsigned Opcode,
4144                              const MVT *VTs, unsigned NumVTs,
4145                              const SDValue *Ops, unsigned NumOps) {
4146  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTs, NumVTs, Ops, NumOps);
4147}
4148
4149SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4150                              const MVT *VTs, unsigned NumVTs,
4151                              const SDValue *Ops, unsigned NumOps) {
4152  if (NumVTs == 1)
4153    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4154  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4155}
4156
4157SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
4158                              const SDValue *Ops, unsigned NumOps) {
4159  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTList, Ops, NumOps);
4160}
4161
4162SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4163                              const SDValue *Ops, unsigned NumOps) {
4164  if (VTList.NumVTs == 1)
4165    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4166
4167  switch (Opcode) {
4168  // FIXME: figure out how to safely handle things like
4169  // int foo(int x) { return 1 << (x & 255); }
4170  // int bar() { return foo(256); }
4171#if 0
4172  case ISD::SRA_PARTS:
4173  case ISD::SRL_PARTS:
4174  case ISD::SHL_PARTS:
4175    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4176        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4177      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4178    else if (N3.getOpcode() == ISD::AND)
4179      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4180        // If the and is only masking out bits that cannot effect the shift,
4181        // eliminate the and.
4182        unsigned NumBits = VT.getSizeInBits()*2;
4183        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4184          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4185      }
4186    break;
4187#endif
4188  }
4189
4190  // Memoize the node unless it returns a flag.
4191  SDNode *N;
4192  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4193    FoldingSetNodeID ID;
4194    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4195    void *IP = 0;
4196    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4197      return SDValue(E, 0);
4198    if (NumOps == 1) {
4199      N = NodeAllocator.Allocate<UnarySDNode>();
4200      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4201    } else if (NumOps == 2) {
4202      N = NodeAllocator.Allocate<BinarySDNode>();
4203      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4204    } else if (NumOps == 3) {
4205      N = NodeAllocator.Allocate<TernarySDNode>();
4206      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4207    } else {
4208      N = NodeAllocator.Allocate<SDNode>();
4209      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4210    }
4211    CSEMap.InsertNode(N, IP);
4212  } else {
4213    if (NumOps == 1) {
4214      N = NodeAllocator.Allocate<UnarySDNode>();
4215      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4216    } else if (NumOps == 2) {
4217      N = NodeAllocator.Allocate<BinarySDNode>();
4218      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4219    } else if (NumOps == 3) {
4220      N = NodeAllocator.Allocate<TernarySDNode>();
4221      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4222    } else {
4223      N = NodeAllocator.Allocate<SDNode>();
4224      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4225    }
4226  }
4227  AllNodes.push_back(N);
4228#ifndef NDEBUG
4229  VerifyNode(N);
4230#endif
4231  return SDValue(N, 0);
4232}
4233
4234SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
4235  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTList);
4236}
4237
4238SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4239  return getNode(Opcode, DL, VTList, 0, 0);
4240}
4241
4242SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
4243                              SDValue N1) {
4244  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTList, N1);
4245}
4246
4247SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4248                              SDValue N1) {
4249  SDValue Ops[] = { N1 };
4250  return getNode(Opcode, DL, VTList, Ops, 1);
4251}
4252
4253SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
4254                              SDValue N1, SDValue N2) {
4255  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTList, N1, N2);
4256}
4257
4258SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4259                              SDValue N1, SDValue N2) {
4260  SDValue Ops[] = { N1, N2 };
4261  return getNode(Opcode, DL, VTList, Ops, 2);
4262}
4263
4264SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
4265                              SDValue N1, SDValue N2, SDValue N3) {
4266  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTList, N1, N2, N3);
4267}
4268
4269SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4270                              SDValue N1, SDValue N2, SDValue N3) {
4271  SDValue Ops[] = { N1, N2, N3 };
4272  return getNode(Opcode, DL, VTList, Ops, 3);
4273}
4274
4275SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
4276                              SDValue N1, SDValue N2, SDValue N3,
4277                              SDValue N4) {
4278  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTList, N1, N2, N3, N4);
4279}
4280
4281SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4282                              SDValue N1, SDValue N2, SDValue N3,
4283                              SDValue N4) {
4284  SDValue Ops[] = { N1, N2, N3, N4 };
4285  return getNode(Opcode, DL, VTList, Ops, 4);
4286}
4287
4288SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
4289                              SDValue N1, SDValue N2, SDValue N3,
4290                              SDValue N4, SDValue N5) {
4291  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTList, N1, N2, N3, N4, N5);
4292}
4293
4294SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4295                              SDValue N1, SDValue N2, SDValue N3,
4296                              SDValue N4, SDValue N5) {
4297  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4298  return getNode(Opcode, DL, VTList, Ops, 5);
4299}
4300
4301SDVTList SelectionDAG::getVTList(MVT VT) {
4302  return makeVTList(SDNode::getValueTypeList(VT), 1);
4303}
4304
4305SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
4306  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4307       E = VTList.rend(); I != E; ++I)
4308    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4309      return *I;
4310
4311  MVT *Array = Allocator.Allocate<MVT>(2);
4312  Array[0] = VT1;
4313  Array[1] = VT2;
4314  SDVTList Result = makeVTList(Array, 2);
4315  VTList.push_back(Result);
4316  return Result;
4317}
4318
4319SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
4320  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4321       E = VTList.rend(); I != E; ++I)
4322    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4323                          I->VTs[2] == VT3)
4324      return *I;
4325
4326  MVT *Array = Allocator.Allocate<MVT>(3);
4327  Array[0] = VT1;
4328  Array[1] = VT2;
4329  Array[2] = VT3;
4330  SDVTList Result = makeVTList(Array, 3);
4331  VTList.push_back(Result);
4332  return Result;
4333}
4334
4335SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3, MVT VT4) {
4336  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4337       E = VTList.rend(); I != E; ++I)
4338    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4339                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4340      return *I;
4341
4342  MVT *Array = Allocator.Allocate<MVT>(3);
4343  Array[0] = VT1;
4344  Array[1] = VT2;
4345  Array[2] = VT3;
4346  Array[3] = VT4;
4347  SDVTList Result = makeVTList(Array, 4);
4348  VTList.push_back(Result);
4349  return Result;
4350}
4351
4352SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
4353  switch (NumVTs) {
4354    case 0: assert(0 && "Cannot have nodes without results!");
4355    case 1: return getVTList(VTs[0]);
4356    case 2: return getVTList(VTs[0], VTs[1]);
4357    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4358    default: break;
4359  }
4360
4361  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4362       E = VTList.rend(); I != E; ++I) {
4363    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4364      continue;
4365
4366    bool NoMatch = false;
4367    for (unsigned i = 2; i != NumVTs; ++i)
4368      if (VTs[i] != I->VTs[i]) {
4369        NoMatch = true;
4370        break;
4371      }
4372    if (!NoMatch)
4373      return *I;
4374  }
4375
4376  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
4377  std::copy(VTs, VTs+NumVTs, Array);
4378  SDVTList Result = makeVTList(Array, NumVTs);
4379  VTList.push_back(Result);
4380  return Result;
4381}
4382
4383
4384/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4385/// specified operands.  If the resultant node already exists in the DAG,
4386/// this does not modify the specified node, instead it returns the node that
4387/// already exists.  If the resultant node does not exist in the DAG, the
4388/// input node is returned.  As a degenerate case, if you specify the same
4389/// input operands as the node already has, the input node is returned.
4390SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4391  SDNode *N = InN.getNode();
4392  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4393
4394  // Check to see if there is no change.
4395  if (Op == N->getOperand(0)) return InN;
4396
4397  // See if the modified node already exists.
4398  void *InsertPos = 0;
4399  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4400    return SDValue(Existing, InN.getResNo());
4401
4402  // Nope it doesn't.  Remove the node from its current place in the maps.
4403  if (InsertPos)
4404    if (!RemoveNodeFromCSEMaps(N))
4405      InsertPos = 0;
4406
4407  // Now we update the operands.
4408  N->OperandList[0].set(Op);
4409
4410  // If this gets put into a CSE map, add it.
4411  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4412  return InN;
4413}
4414
4415SDValue SelectionDAG::
4416UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4417  SDNode *N = InN.getNode();
4418  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4419
4420  // Check to see if there is no change.
4421  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4422    return InN;   // No operands changed, just return the input node.
4423
4424  // See if the modified node already exists.
4425  void *InsertPos = 0;
4426  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4427    return SDValue(Existing, InN.getResNo());
4428
4429  // Nope it doesn't.  Remove the node from its current place in the maps.
4430  if (InsertPos)
4431    if (!RemoveNodeFromCSEMaps(N))
4432      InsertPos = 0;
4433
4434  // Now we update the operands.
4435  if (N->OperandList[0] != Op1)
4436    N->OperandList[0].set(Op1);
4437  if (N->OperandList[1] != Op2)
4438    N->OperandList[1].set(Op2);
4439
4440  // If this gets put into a CSE map, add it.
4441  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4442  return InN;
4443}
4444
4445SDValue SelectionDAG::
4446UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4447  SDValue Ops[] = { Op1, Op2, Op3 };
4448  return UpdateNodeOperands(N, Ops, 3);
4449}
4450
4451SDValue SelectionDAG::
4452UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4453                   SDValue Op3, SDValue Op4) {
4454  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4455  return UpdateNodeOperands(N, Ops, 4);
4456}
4457
4458SDValue SelectionDAG::
4459UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4460                   SDValue Op3, SDValue Op4, SDValue Op5) {
4461  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4462  return UpdateNodeOperands(N, Ops, 5);
4463}
4464
4465SDValue SelectionDAG::
4466UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4467  SDNode *N = InN.getNode();
4468  assert(N->getNumOperands() == NumOps &&
4469         "Update with wrong number of operands");
4470
4471  // Check to see if there is no change.
4472  bool AnyChange = false;
4473  for (unsigned i = 0; i != NumOps; ++i) {
4474    if (Ops[i] != N->getOperand(i)) {
4475      AnyChange = true;
4476      break;
4477    }
4478  }
4479
4480  // No operands changed, just return the input node.
4481  if (!AnyChange) return InN;
4482
4483  // See if the modified node already exists.
4484  void *InsertPos = 0;
4485  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4486    return SDValue(Existing, InN.getResNo());
4487
4488  // Nope it doesn't.  Remove the node from its current place in the maps.
4489  if (InsertPos)
4490    if (!RemoveNodeFromCSEMaps(N))
4491      InsertPos = 0;
4492
4493  // Now we update the operands.
4494  for (unsigned i = 0; i != NumOps; ++i)
4495    if (N->OperandList[i] != Ops[i])
4496      N->OperandList[i].set(Ops[i]);
4497
4498  // If this gets put into a CSE map, add it.
4499  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4500  return InN;
4501}
4502
4503/// DropOperands - Release the operands and set this node to have
4504/// zero operands.
4505void SDNode::DropOperands() {
4506  // Unlike the code in MorphNodeTo that does this, we don't need to
4507  // watch for dead nodes here.
4508  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4509    SDUse &Use = *I++;
4510    Use.set(SDValue());
4511  }
4512}
4513
4514/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4515/// machine opcode.
4516///
4517SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4518                                   MVT VT) {
4519  SDVTList VTs = getVTList(VT);
4520  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4521}
4522
4523SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4524                                   MVT VT, SDValue Op1) {
4525  SDVTList VTs = getVTList(VT);
4526  SDValue Ops[] = { Op1 };
4527  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4528}
4529
4530SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4531                                   MVT VT, SDValue Op1,
4532                                   SDValue Op2) {
4533  SDVTList VTs = getVTList(VT);
4534  SDValue Ops[] = { Op1, Op2 };
4535  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4536}
4537
4538SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4539                                   MVT VT, SDValue Op1,
4540                                   SDValue Op2, SDValue Op3) {
4541  SDVTList VTs = getVTList(VT);
4542  SDValue Ops[] = { Op1, Op2, Op3 };
4543  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4544}
4545
4546SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4547                                   MVT VT, const SDValue *Ops,
4548                                   unsigned NumOps) {
4549  SDVTList VTs = getVTList(VT);
4550  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4551}
4552
4553SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4554                                   MVT VT1, MVT VT2, const SDValue *Ops,
4555                                   unsigned NumOps) {
4556  SDVTList VTs = getVTList(VT1, VT2);
4557  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4558}
4559
4560SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4561                                   MVT VT1, MVT VT2) {
4562  SDVTList VTs = getVTList(VT1, VT2);
4563  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4564}
4565
4566SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4567                                   MVT VT1, MVT VT2, MVT VT3,
4568                                   const SDValue *Ops, unsigned NumOps) {
4569  SDVTList VTs = getVTList(VT1, VT2, VT3);
4570  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4571}
4572
4573SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4574                                   MVT VT1, MVT VT2, MVT VT3, MVT VT4,
4575                                   const SDValue *Ops, unsigned NumOps) {
4576  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4577  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4578}
4579
4580SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4581                                   MVT VT1, MVT VT2,
4582                                   SDValue Op1) {
4583  SDVTList VTs = getVTList(VT1, VT2);
4584  SDValue Ops[] = { Op1 };
4585  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4586}
4587
4588SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4589                                   MVT VT1, MVT VT2,
4590                                   SDValue Op1, SDValue Op2) {
4591  SDVTList VTs = getVTList(VT1, VT2);
4592  SDValue Ops[] = { Op1, Op2 };
4593  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4594}
4595
4596SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4597                                   MVT VT1, MVT VT2,
4598                                   SDValue Op1, SDValue Op2,
4599                                   SDValue Op3) {
4600  SDVTList VTs = getVTList(VT1, VT2);
4601  SDValue Ops[] = { Op1, Op2, Op3 };
4602  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4603}
4604
4605SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4606                                   MVT VT1, MVT VT2, MVT VT3,
4607                                   SDValue Op1, SDValue Op2,
4608                                   SDValue Op3) {
4609  SDVTList VTs = getVTList(VT1, VT2, VT3);
4610  SDValue Ops[] = { Op1, Op2, Op3 };
4611  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4612}
4613
4614SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4615                                   SDVTList VTs, const SDValue *Ops,
4616                                   unsigned NumOps) {
4617  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4618}
4619
4620SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4621                                  MVT VT) {
4622  SDVTList VTs = getVTList(VT);
4623  return MorphNodeTo(N, Opc, VTs, 0, 0);
4624}
4625
4626SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4627                                  MVT VT, SDValue Op1) {
4628  SDVTList VTs = getVTList(VT);
4629  SDValue Ops[] = { Op1 };
4630  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4631}
4632
4633SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4634                                  MVT VT, SDValue Op1,
4635                                  SDValue Op2) {
4636  SDVTList VTs = getVTList(VT);
4637  SDValue Ops[] = { Op1, Op2 };
4638  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4639}
4640
4641SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4642                                  MVT VT, SDValue Op1,
4643                                  SDValue Op2, SDValue Op3) {
4644  SDVTList VTs = getVTList(VT);
4645  SDValue Ops[] = { Op1, Op2, Op3 };
4646  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4647}
4648
4649SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4650                                  MVT VT, const SDValue *Ops,
4651                                  unsigned NumOps) {
4652  SDVTList VTs = getVTList(VT);
4653  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4654}
4655
4656SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4657                                  MVT VT1, MVT VT2, const SDValue *Ops,
4658                                  unsigned NumOps) {
4659  SDVTList VTs = getVTList(VT1, VT2);
4660  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4661}
4662
4663SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4664                                  MVT VT1, MVT VT2) {
4665  SDVTList VTs = getVTList(VT1, VT2);
4666  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4667}
4668
4669SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4670                                  MVT VT1, MVT VT2, MVT VT3,
4671                                  const SDValue *Ops, unsigned NumOps) {
4672  SDVTList VTs = getVTList(VT1, VT2, VT3);
4673  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4674}
4675
4676SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4677                                  MVT VT1, MVT VT2,
4678                                  SDValue Op1) {
4679  SDVTList VTs = getVTList(VT1, VT2);
4680  SDValue Ops[] = { Op1 };
4681  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4682}
4683
4684SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4685                                  MVT VT1, MVT VT2,
4686                                  SDValue Op1, SDValue Op2) {
4687  SDVTList VTs = getVTList(VT1, VT2);
4688  SDValue Ops[] = { Op1, Op2 };
4689  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4690}
4691
4692SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4693                                  MVT VT1, MVT VT2,
4694                                  SDValue Op1, SDValue Op2,
4695                                  SDValue Op3) {
4696  SDVTList VTs = getVTList(VT1, VT2);
4697  SDValue Ops[] = { Op1, Op2, Op3 };
4698  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4699}
4700
4701/// MorphNodeTo - These *mutate* the specified node to have the specified
4702/// return type, opcode, and operands.
4703///
4704/// Note that MorphNodeTo returns the resultant node.  If there is already a
4705/// node of the specified opcode and operands, it returns that node instead of
4706/// the current one.
4707///
4708/// Using MorphNodeTo is faster than creating a new node and swapping it in
4709/// with ReplaceAllUsesWith both because it often avoids allocating a new
4710/// node, and because it doesn't require CSE recalculation for any of
4711/// the node's users.
4712///
4713SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4714                                  SDVTList VTs, const SDValue *Ops,
4715                                  unsigned NumOps) {
4716  // If an identical node already exists, use it.
4717  void *IP = 0;
4718  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4719    FoldingSetNodeID ID;
4720    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4721    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4722      return ON;
4723  }
4724
4725  if (!RemoveNodeFromCSEMaps(N))
4726    IP = 0;
4727
4728  // Start the morphing.
4729  N->NodeType = Opc;
4730  N->ValueList = VTs.VTs;
4731  N->NumValues = VTs.NumVTs;
4732
4733  // Clear the operands list, updating used nodes to remove this from their
4734  // use list.  Keep track of any operands that become dead as a result.
4735  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4736  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4737    SDUse &Use = *I++;
4738    SDNode *Used = Use.getNode();
4739    Use.set(SDValue());
4740    if (Used->use_empty())
4741      DeadNodeSet.insert(Used);
4742  }
4743
4744  // If NumOps is larger than the # of operands we currently have, reallocate
4745  // the operand list.
4746  if (NumOps > N->NumOperands) {
4747    if (N->OperandsNeedDelete)
4748      delete[] N->OperandList;
4749
4750    if (N->isMachineOpcode()) {
4751      // We're creating a final node that will live unmorphed for the
4752      // remainder of the current SelectionDAG iteration, so we can allocate
4753      // the operands directly out of a pool with no recycling metadata.
4754      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4755      N->OperandsNeedDelete = false;
4756    } else {
4757      N->OperandList = new SDUse[NumOps];
4758      N->OperandsNeedDelete = true;
4759    }
4760  }
4761
4762  // Assign the new operands.
4763  N->NumOperands = NumOps;
4764  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4765    N->OperandList[i].setUser(N);
4766    N->OperandList[i].setInitial(Ops[i]);
4767  }
4768
4769  // Delete any nodes that are still dead after adding the uses for the
4770  // new operands.
4771  SmallVector<SDNode *, 16> DeadNodes;
4772  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4773       E = DeadNodeSet.end(); I != E; ++I)
4774    if ((*I)->use_empty())
4775      DeadNodes.push_back(*I);
4776  RemoveDeadNodes(DeadNodes);
4777
4778  if (IP)
4779    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4780  return N;
4781}
4782
4783
4784/// getTargetNode - These are used for target selectors to create a new node
4785/// with specified return type(s), target opcode, and operands.
4786///
4787/// Note that getTargetNode returns the resultant node.  If there is already a
4788/// node of the specified opcode and operands, it returns that node instead of
4789/// the current one.
4790SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT) {
4791  return getNode(~Opcode, VT).getNode();
4792}
4793SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT) {
4794  return getNode(~Opcode, dl, VT).getNode();
4795}
4796
4797SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, SDValue Op1) {
4798  return getNode(~Opcode, VT, Op1).getNode();
4799}
4800SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4801                                    SDValue Op1) {
4802  return getNode(~Opcode, dl, VT, Op1).getNode();
4803}
4804
4805SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4806                                    SDValue Op1, SDValue Op2) {
4807  return getNode(~Opcode, VT, Op1, Op2).getNode();
4808}
4809SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4810                                    SDValue Op1, SDValue Op2) {
4811  return getNode(~Opcode, dl, VT, Op1, Op2).getNode();
4812}
4813
4814SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4815                                    SDValue Op1, SDValue Op2,
4816                                    SDValue Op3) {
4817  return getNode(~Opcode, VT, Op1, Op2, Op3).getNode();
4818}
4819SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4820                                    SDValue Op1, SDValue Op2,
4821                                    SDValue Op3) {
4822  return getNode(~Opcode, dl, VT, Op1, Op2, Op3).getNode();
4823}
4824
4825SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4826                                    const SDValue *Ops, unsigned NumOps) {
4827  return getNode(~Opcode, VT, Ops, NumOps).getNode();
4828}
4829SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4830                                    const SDValue *Ops, unsigned NumOps) {
4831  return getNode(~Opcode, dl, VT, Ops, NumOps).getNode();
4832}
4833
4834SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2) {
4835  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4836  SDValue Op;
4837  return getNode(~Opcode, VTs, 2, &Op, 0).getNode();
4838}
4839SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4840                                    MVT VT1, MVT VT2) {
4841  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4842  SDValue Op;
4843  return getNode(~Opcode, dl, VTs, 2, &Op, 0).getNode();
4844}
4845
4846SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4847                                    MVT VT2, SDValue Op1) {
4848  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4849  return getNode(~Opcode, VTs, 2, &Op1, 1).getNode();
4850}
4851SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4852                                    MVT VT2, SDValue Op1) {
4853  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4854  return getNode(~Opcode, dl, VTs, 2, &Op1, 1).getNode();
4855}
4856
4857SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4858                                    MVT VT2, SDValue Op1,
4859                                    SDValue Op2) {
4860  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4861  SDValue Ops[] = { Op1, Op2 };
4862  return getNode(~Opcode, VTs, 2, Ops, 2).getNode();
4863}
4864SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4865                                    MVT VT2, SDValue Op1,
4866                                    SDValue Op2) {
4867  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4868  SDValue Ops[] = { Op1, Op2 };
4869  return getNode(~Opcode, dl, VTs, 2, Ops, 2).getNode();
4870}
4871
4872SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4873                                    MVT VT2, SDValue Op1,
4874                                    SDValue Op2, SDValue Op3) {
4875  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4876  SDValue Ops[] = { Op1, Op2, Op3 };
4877  return getNode(~Opcode, VTs, 2, Ops, 3).getNode();
4878}
4879SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4880                                    MVT VT2, SDValue Op1,
4881                                    SDValue Op2, SDValue Op3) {
4882  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4883  SDValue Ops[] = { Op1, Op2, Op3 };
4884  return getNode(~Opcode, dl, VTs, 2, Ops, 3).getNode();
4885}
4886
4887SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
4888                                    const SDValue *Ops, unsigned NumOps) {
4889  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4890  return getNode(~Opcode, VTs, 2, Ops, NumOps).getNode();
4891}
4892SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4893                                    MVT VT1, MVT VT2,
4894                                    const SDValue *Ops, unsigned NumOps) {
4895  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4896  return getNode(~Opcode, dl, VTs, 2, Ops, NumOps).getNode();
4897}
4898
4899SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4900                                    SDValue Op1, SDValue Op2) {
4901  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4902  SDValue Ops[] = { Op1, Op2 };
4903  return getNode(~Opcode, VTs, 3, Ops, 2).getNode();
4904}
4905SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4906                                    MVT VT1, MVT VT2, MVT VT3,
4907                                    SDValue Op1, SDValue Op2) {
4908  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4909  SDValue Ops[] = { Op1, Op2 };
4910  return getNode(~Opcode, dl, VTs, 3, Ops, 2).getNode();
4911}
4912
4913SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4914                                    SDValue Op1, SDValue Op2,
4915                                    SDValue Op3) {
4916  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4917  SDValue Ops[] = { Op1, Op2, Op3 };
4918  return getNode(~Opcode, VTs, 3, Ops, 3).getNode();
4919}
4920SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4921                                    MVT VT1, MVT VT2, MVT VT3,
4922                                    SDValue Op1, SDValue Op2,
4923                                    SDValue Op3) {
4924  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4925  SDValue Ops[] = { Op1, Op2, Op3 };
4926  return getNode(~Opcode, dl, VTs, 3, Ops, 3).getNode();
4927}
4928
4929SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4930                                    const SDValue *Ops, unsigned NumOps) {
4931  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4932  return getNode(~Opcode, VTs, 3, Ops, NumOps).getNode();
4933}
4934SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4935                                    MVT VT1, MVT VT2, MVT VT3,
4936                                    const SDValue *Ops, unsigned NumOps) {
4937  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4938  return getNode(~Opcode, VTs, 3, Ops, NumOps).getNode();
4939}
4940
4941SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4942                                    MVT VT2, MVT VT3, MVT VT4,
4943                                    const SDValue *Ops, unsigned NumOps) {
4944  std::vector<MVT> VTList;
4945  VTList.push_back(VT1);
4946  VTList.push_back(VT2);
4947  VTList.push_back(VT3);
4948  VTList.push_back(VT4);
4949  const MVT *VTs = getNodeValueTypes(VTList);
4950  return getNode(~Opcode, VTs, 4, Ops, NumOps).getNode();
4951}
4952SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4953                                    MVT VT2, MVT VT3, MVT VT4,
4954                                    const SDValue *Ops, unsigned NumOps) {
4955  std::vector<MVT> VTList;
4956  VTList.push_back(VT1);
4957  VTList.push_back(VT2);
4958  VTList.push_back(VT3);
4959  VTList.push_back(VT4);
4960  const MVT *VTs = getNodeValueTypes(VTList);
4961  return getNode(~Opcode, dl, VTs, 4, Ops, NumOps).getNode();
4962}
4963
4964SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
4965                                    const std::vector<MVT> &ResultTys,
4966                                    const SDValue *Ops, unsigned NumOps) {
4967  const MVT *VTs = getNodeValueTypes(ResultTys);
4968  return getNode(~Opcode, VTs, ResultTys.size(),
4969                 Ops, NumOps).getNode();
4970}
4971SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4972                                    const std::vector<MVT> &ResultTys,
4973                                    const SDValue *Ops, unsigned NumOps) {
4974  const MVT *VTs = getNodeValueTypes(ResultTys);
4975  return getNode(~Opcode, dl, VTs, ResultTys.size(),
4976                 Ops, NumOps).getNode();
4977}
4978
4979/// getNodeIfExists - Get the specified node if it's already available, or
4980/// else return NULL.
4981SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4982                                      const SDValue *Ops, unsigned NumOps) {
4983  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4984    FoldingSetNodeID ID;
4985    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4986    void *IP = 0;
4987    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4988      return E;
4989  }
4990  return NULL;
4991}
4992
4993/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4994/// This can cause recursive merging of nodes in the DAG.
4995///
4996/// This version assumes From has a single result value.
4997///
4998void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4999                                      DAGUpdateListener *UpdateListener) {
5000  SDNode *From = FromN.getNode();
5001  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
5002         "Cannot replace with this method!");
5003  assert(From != To.getNode() && "Cannot replace uses of with self");
5004
5005  // Iterate over all the existing uses of From. New uses will be added
5006  // to the beginning of the use list, which we avoid visiting.
5007  // This specifically avoids visiting uses of From that arise while the
5008  // replacement is happening, because any such uses would be the result
5009  // of CSE: If an existing node looks like From after one of its operands
5010  // is replaced by To, we don't want to replace of all its users with To
5011  // too. See PR3018 for more info.
5012  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5013  while (UI != UE) {
5014    SDNode *User = *UI;
5015
5016    // This node is about to morph, remove its old self from the CSE maps.
5017    RemoveNodeFromCSEMaps(User);
5018
5019    // A user can appear in a use list multiple times, and when this
5020    // happens the uses are usually next to each other in the list.
5021    // To help reduce the number of CSE recomputations, process all
5022    // the uses of this user that we can find this way.
5023    do {
5024      SDUse &Use = UI.getUse();
5025      ++UI;
5026      Use.set(To);
5027    } while (UI != UE && *UI == User);
5028
5029    // Now that we have modified User, add it back to the CSE maps.  If it
5030    // already exists there, recursively merge the results together.
5031    AddModifiedNodeToCSEMaps(User, UpdateListener);
5032  }
5033}
5034
5035/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5036/// This can cause recursive merging of nodes in the DAG.
5037///
5038/// This version assumes From/To have matching types and numbers of result
5039/// values.
5040///
5041void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5042                                      DAGUpdateListener *UpdateListener) {
5043  assert(From->getVTList().VTs == To->getVTList().VTs &&
5044         From->getNumValues() == To->getNumValues() &&
5045         "Cannot use this version of ReplaceAllUsesWith!");
5046
5047  // Handle the trivial case.
5048  if (From == To)
5049    return;
5050
5051  // Iterate over just the existing users of From. See the comments in
5052  // the ReplaceAllUsesWith above.
5053  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5054  while (UI != UE) {
5055    SDNode *User = *UI;
5056
5057    // This node is about to morph, remove its old self from the CSE maps.
5058    RemoveNodeFromCSEMaps(User);
5059
5060    // A user can appear in a use list multiple times, and when this
5061    // happens the uses are usually next to each other in the list.
5062    // To help reduce the number of CSE recomputations, process all
5063    // the uses of this user that we can find this way.
5064    do {
5065      SDUse &Use = UI.getUse();
5066      ++UI;
5067      Use.setNode(To);
5068    } while (UI != UE && *UI == User);
5069
5070    // Now that we have modified User, add it back to the CSE maps.  If it
5071    // already exists there, recursively merge the results together.
5072    AddModifiedNodeToCSEMaps(User, UpdateListener);
5073  }
5074}
5075
5076/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5077/// This can cause recursive merging of nodes in the DAG.
5078///
5079/// This version can replace From with any result values.  To must match the
5080/// number and types of values returned by From.
5081void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5082                                      const SDValue *To,
5083                                      DAGUpdateListener *UpdateListener) {
5084  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5085    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5086
5087  // Iterate over just the existing users of From. See the comments in
5088  // the ReplaceAllUsesWith above.
5089  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5090  while (UI != UE) {
5091    SDNode *User = *UI;
5092
5093    // This node is about to morph, remove its old self from the CSE maps.
5094    RemoveNodeFromCSEMaps(User);
5095
5096    // A user can appear in a use list multiple times, and when this
5097    // happens the uses are usually next to each other in the list.
5098    // To help reduce the number of CSE recomputations, process all
5099    // the uses of this user that we can find this way.
5100    do {
5101      SDUse &Use = UI.getUse();
5102      const SDValue &ToOp = To[Use.getResNo()];
5103      ++UI;
5104      Use.set(ToOp);
5105    } while (UI != UE && *UI == User);
5106
5107    // Now that we have modified User, add it back to the CSE maps.  If it
5108    // already exists there, recursively merge the results together.
5109    AddModifiedNodeToCSEMaps(User, UpdateListener);
5110  }
5111}
5112
5113/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5114/// uses of other values produced by From.getNode() alone.  The Deleted
5115/// vector is handled the same way as for ReplaceAllUsesWith.
5116void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5117                                             DAGUpdateListener *UpdateListener){
5118  // Handle the really simple, really trivial case efficiently.
5119  if (From == To) return;
5120
5121  // Handle the simple, trivial, case efficiently.
5122  if (From.getNode()->getNumValues() == 1) {
5123    ReplaceAllUsesWith(From, To, UpdateListener);
5124    return;
5125  }
5126
5127  // Iterate over just the existing users of From. See the comments in
5128  // the ReplaceAllUsesWith above.
5129  SDNode::use_iterator UI = From.getNode()->use_begin(),
5130                       UE = From.getNode()->use_end();
5131  while (UI != UE) {
5132    SDNode *User = *UI;
5133    bool UserRemovedFromCSEMaps = false;
5134
5135    // A user can appear in a use list multiple times, and when this
5136    // happens the uses are usually next to each other in the list.
5137    // To help reduce the number of CSE recomputations, process all
5138    // the uses of this user that we can find this way.
5139    do {
5140      SDUse &Use = UI.getUse();
5141
5142      // Skip uses of different values from the same node.
5143      if (Use.getResNo() != From.getResNo()) {
5144        ++UI;
5145        continue;
5146      }
5147
5148      // If this node hasn't been modified yet, it's still in the CSE maps,
5149      // so remove its old self from the CSE maps.
5150      if (!UserRemovedFromCSEMaps) {
5151        RemoveNodeFromCSEMaps(User);
5152        UserRemovedFromCSEMaps = true;
5153      }
5154
5155      ++UI;
5156      Use.set(To);
5157    } while (UI != UE && *UI == User);
5158
5159    // We are iterating over all uses of the From node, so if a use
5160    // doesn't use the specific value, no changes are made.
5161    if (!UserRemovedFromCSEMaps)
5162      continue;
5163
5164    // Now that we have modified User, add it back to the CSE maps.  If it
5165    // already exists there, recursively merge the results together.
5166    AddModifiedNodeToCSEMaps(User, UpdateListener);
5167  }
5168}
5169
5170namespace {
5171  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5172  /// to record information about a use.
5173  struct UseMemo {
5174    SDNode *User;
5175    unsigned Index;
5176    SDUse *Use;
5177  };
5178
5179  /// operator< - Sort Memos by User.
5180  bool operator<(const UseMemo &L, const UseMemo &R) {
5181    return (intptr_t)L.User < (intptr_t)R.User;
5182  }
5183}
5184
5185/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5186/// uses of other values produced by From.getNode() alone.  The same value
5187/// may appear in both the From and To list.  The Deleted vector is
5188/// handled the same way as for ReplaceAllUsesWith.
5189void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5190                                              const SDValue *To,
5191                                              unsigned Num,
5192                                              DAGUpdateListener *UpdateListener){
5193  // Handle the simple, trivial case efficiently.
5194  if (Num == 1)
5195    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5196
5197  // Read up all the uses and make records of them. This helps
5198  // processing new uses that are introduced during the
5199  // replacement process.
5200  SmallVector<UseMemo, 4> Uses;
5201  for (unsigned i = 0; i != Num; ++i) {
5202    unsigned FromResNo = From[i].getResNo();
5203    SDNode *FromNode = From[i].getNode();
5204    for (SDNode::use_iterator UI = FromNode->use_begin(),
5205         E = FromNode->use_end(); UI != E; ++UI) {
5206      SDUse &Use = UI.getUse();
5207      if (Use.getResNo() == FromResNo) {
5208        UseMemo Memo = { *UI, i, &Use };
5209        Uses.push_back(Memo);
5210      }
5211    }
5212  }
5213
5214  // Sort the uses, so that all the uses from a given User are together.
5215  std::sort(Uses.begin(), Uses.end());
5216
5217  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5218       UseIndex != UseIndexEnd; ) {
5219    // We know that this user uses some value of From.  If it is the right
5220    // value, update it.
5221    SDNode *User = Uses[UseIndex].User;
5222
5223    // This node is about to morph, remove its old self from the CSE maps.
5224    RemoveNodeFromCSEMaps(User);
5225
5226    // The Uses array is sorted, so all the uses for a given User
5227    // are next to each other in the list.
5228    // To help reduce the number of CSE recomputations, process all
5229    // the uses of this user that we can find this way.
5230    do {
5231      unsigned i = Uses[UseIndex].Index;
5232      SDUse &Use = *Uses[UseIndex].Use;
5233      ++UseIndex;
5234
5235      Use.set(To[i]);
5236    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5237
5238    // Now that we have modified User, add it back to the CSE maps.  If it
5239    // already exists there, recursively merge the results together.
5240    AddModifiedNodeToCSEMaps(User, UpdateListener);
5241  }
5242}
5243
5244/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5245/// based on their topological order. It returns the maximum id and a vector
5246/// of the SDNodes* in assigned order by reference.
5247unsigned SelectionDAG::AssignTopologicalOrder() {
5248
5249  unsigned DAGSize = 0;
5250
5251  // SortedPos tracks the progress of the algorithm. Nodes before it are
5252  // sorted, nodes after it are unsorted. When the algorithm completes
5253  // it is at the end of the list.
5254  allnodes_iterator SortedPos = allnodes_begin();
5255
5256  // Visit all the nodes. Move nodes with no operands to the front of
5257  // the list immediately. Annotate nodes that do have operands with their
5258  // operand count. Before we do this, the Node Id fields of the nodes
5259  // may contain arbitrary values. After, the Node Id fields for nodes
5260  // before SortedPos will contain the topological sort index, and the
5261  // Node Id fields for nodes At SortedPos and after will contain the
5262  // count of outstanding operands.
5263  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5264    SDNode *N = I++;
5265    unsigned Degree = N->getNumOperands();
5266    if (Degree == 0) {
5267      // A node with no uses, add it to the result array immediately.
5268      N->setNodeId(DAGSize++);
5269      allnodes_iterator Q = N;
5270      if (Q != SortedPos)
5271        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5272      ++SortedPos;
5273    } else {
5274      // Temporarily use the Node Id as scratch space for the degree count.
5275      N->setNodeId(Degree);
5276    }
5277  }
5278
5279  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5280  // such that by the time the end is reached all nodes will be sorted.
5281  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5282    SDNode *N = I;
5283    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5284         UI != UE; ++UI) {
5285      SDNode *P = *UI;
5286      unsigned Degree = P->getNodeId();
5287      --Degree;
5288      if (Degree == 0) {
5289        // All of P's operands are sorted, so P may sorted now.
5290        P->setNodeId(DAGSize++);
5291        if (P != SortedPos)
5292          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5293        ++SortedPos;
5294      } else {
5295        // Update P's outstanding operand count.
5296        P->setNodeId(Degree);
5297      }
5298    }
5299  }
5300
5301  assert(SortedPos == AllNodes.end() &&
5302         "Topological sort incomplete!");
5303  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5304         "First node in topological sort is not the entry token!");
5305  assert(AllNodes.front().getNodeId() == 0 &&
5306         "First node in topological sort has non-zero id!");
5307  assert(AllNodes.front().getNumOperands() == 0 &&
5308         "First node in topological sort has operands!");
5309  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5310         "Last node in topologic sort has unexpected id!");
5311  assert(AllNodes.back().use_empty() &&
5312         "Last node in topologic sort has users!");
5313  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5314  return DAGSize;
5315}
5316
5317
5318
5319//===----------------------------------------------------------------------===//
5320//                              SDNode Class
5321//===----------------------------------------------------------------------===//
5322
5323HandleSDNode::~HandleSDNode() {
5324  DropOperands();
5325}
5326
5327GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
5328                                         MVT VT, int64_t o)
5329  : SDNode(isa<GlobalVariable>(GA) &&
5330           cast<GlobalVariable>(GA)->isThreadLocal() ?
5331           // Thread Local
5332           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
5333           // Non Thread Local
5334           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
5335           getSDVTList(VT)), Offset(o) {
5336  TheGlobal = const_cast<GlobalValue*>(GA);
5337}
5338
5339MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, MVT memvt,
5340                     const Value *srcValue, int SVO,
5341                     unsigned alignment, bool vol)
5342 : SDNode(Opc, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
5343   Flags(encodeMemSDNodeFlags(vol, alignment)) {
5344
5345  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
5346  assert(getAlignment() == alignment && "Alignment representation error!");
5347  assert(isVolatile() == vol && "Volatile representation error!");
5348}
5349
5350MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, const SDValue *Ops,
5351                     unsigned NumOps, MVT memvt, const Value *srcValue,
5352                     int SVO, unsigned alignment, bool vol)
5353   : SDNode(Opc, VTs, Ops, NumOps),
5354     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
5355     Flags(vol | ((Log2_32(alignment) + 1) << 1)) {
5356  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
5357  assert(getAlignment() == alignment && "Alignment representation error!");
5358  assert(isVolatile() == vol && "Volatile representation error!");
5359}
5360
5361MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, MVT memvt,
5362                     const Value *srcValue, int SVO,
5363                     unsigned alignment, bool vol)
5364 : SDNode(Opc, dl, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
5365   Flags(encodeMemSDNodeFlags(vol, alignment)) {
5366
5367  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
5368  assert(getAlignment() == alignment && "Alignment representation error!");
5369  assert(isVolatile() == vol && "Volatile representation error!");
5370}
5371
5372MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5373                     const SDValue *Ops,
5374                     unsigned NumOps, MVT memvt, const Value *srcValue,
5375                     int SVO, unsigned alignment, bool vol)
5376   : SDNode(Opc, dl, VTs, Ops, NumOps),
5377     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
5378     Flags(vol | ((Log2_32(alignment) + 1) << 1)) {
5379  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
5380  assert(getAlignment() == alignment && "Alignment representation error!");
5381  assert(isVolatile() == vol && "Volatile representation error!");
5382}
5383
5384/// getMemOperand - Return a MachineMemOperand object describing the memory
5385/// reference performed by this memory reference.
5386MachineMemOperand MemSDNode::getMemOperand() const {
5387  int Flags = 0;
5388  if (isa<LoadSDNode>(this))
5389    Flags = MachineMemOperand::MOLoad;
5390  else if (isa<StoreSDNode>(this))
5391    Flags = MachineMemOperand::MOStore;
5392  else if (isa<AtomicSDNode>(this)) {
5393    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
5394  }
5395  else {
5396    const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
5397    assert(MemIntrinNode && "Unknown MemSDNode opcode!");
5398    if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
5399    if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
5400  }
5401
5402  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
5403  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
5404
5405  // Check if the memory reference references a frame index
5406  const FrameIndexSDNode *FI =
5407  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
5408  if (!getSrcValue() && FI)
5409    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
5410                             Flags, 0, Size, getAlignment());
5411  else
5412    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
5413                             Size, getAlignment());
5414}
5415
5416/// Profile - Gather unique data for the node.
5417///
5418void SDNode::Profile(FoldingSetNodeID &ID) const {
5419  AddNodeIDNode(ID, this);
5420}
5421
5422/// getValueTypeList - Return a pointer to the specified value type.
5423///
5424const MVT *SDNode::getValueTypeList(MVT VT) {
5425  if (VT.isExtended()) {
5426    static std::set<MVT, MVT::compareRawBits> EVTs;
5427    return &(*EVTs.insert(VT).first);
5428  } else {
5429    static MVT VTs[MVT::LAST_VALUETYPE];
5430    VTs[VT.getSimpleVT()] = VT;
5431    return &VTs[VT.getSimpleVT()];
5432  }
5433}
5434
5435/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5436/// indicated value.  This method ignores uses of other values defined by this
5437/// operation.
5438bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5439  assert(Value < getNumValues() && "Bad value!");
5440
5441  // TODO: Only iterate over uses of a given value of the node
5442  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5443    if (UI.getUse().getResNo() == Value) {
5444      if (NUses == 0)
5445        return false;
5446      --NUses;
5447    }
5448  }
5449
5450  // Found exactly the right number of uses?
5451  return NUses == 0;
5452}
5453
5454
5455/// hasAnyUseOfValue - Return true if there are any use of the indicated
5456/// value. This method ignores uses of other values defined by this operation.
5457bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5458  assert(Value < getNumValues() && "Bad value!");
5459
5460  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5461    if (UI.getUse().getResNo() == Value)
5462      return true;
5463
5464  return false;
5465}
5466
5467
5468/// isOnlyUserOf - Return true if this node is the only use of N.
5469///
5470bool SDNode::isOnlyUserOf(SDNode *N) const {
5471  bool Seen = false;
5472  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5473    SDNode *User = *I;
5474    if (User == this)
5475      Seen = true;
5476    else
5477      return false;
5478  }
5479
5480  return Seen;
5481}
5482
5483/// isOperand - Return true if this node is an operand of N.
5484///
5485bool SDValue::isOperandOf(SDNode *N) const {
5486  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5487    if (*this == N->getOperand(i))
5488      return true;
5489  return false;
5490}
5491
5492bool SDNode::isOperandOf(SDNode *N) const {
5493  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5494    if (this == N->OperandList[i].getNode())
5495      return true;
5496  return false;
5497}
5498
5499/// reachesChainWithoutSideEffects - Return true if this operand (which must
5500/// be a chain) reaches the specified operand without crossing any
5501/// side-effecting instructions.  In practice, this looks through token
5502/// factors and non-volatile loads.  In order to remain efficient, this only
5503/// looks a couple of nodes in, it does not do an exhaustive search.
5504bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5505                                               unsigned Depth) const {
5506  if (*this == Dest) return true;
5507
5508  // Don't search too deeply, we just want to be able to see through
5509  // TokenFactor's etc.
5510  if (Depth == 0) return false;
5511
5512  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5513  // of the operands of the TF reach dest, then we can do the xform.
5514  if (getOpcode() == ISD::TokenFactor) {
5515    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5516      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5517        return true;
5518    return false;
5519  }
5520
5521  // Loads don't have side effects, look through them.
5522  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5523    if (!Ld->isVolatile())
5524      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5525  }
5526  return false;
5527}
5528
5529
5530static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
5531                            SmallPtrSet<SDNode *, 32> &Visited) {
5532  if (found || !Visited.insert(N))
5533    return;
5534
5535  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
5536    SDNode *Op = N->getOperand(i).getNode();
5537    if (Op == P) {
5538      found = true;
5539      return;
5540    }
5541    findPredecessor(Op, P, found, Visited);
5542  }
5543}
5544
5545/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5546/// is either an operand of N or it can be reached by recursively traversing
5547/// up the operands.
5548/// NOTE: this is an expensive method. Use it carefully.
5549bool SDNode::isPredecessorOf(SDNode *N) const {
5550  SmallPtrSet<SDNode *, 32> Visited;
5551  bool found = false;
5552  findPredecessor(N, this, found, Visited);
5553  return found;
5554}
5555
5556uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5557  assert(Num < NumOperands && "Invalid child # of SDNode!");
5558  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5559}
5560
5561std::string SDNode::getOperationName(const SelectionDAG *G) const {
5562  switch (getOpcode()) {
5563  default:
5564    if (getOpcode() < ISD::BUILTIN_OP_END)
5565      return "<<Unknown DAG Node>>";
5566    if (isMachineOpcode()) {
5567      if (G)
5568        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5569          if (getMachineOpcode() < TII->getNumOpcodes())
5570            return TII->get(getMachineOpcode()).getName();
5571      return "<<Unknown Machine Node>>";
5572    }
5573    if (G) {
5574      const TargetLowering &TLI = G->getTargetLoweringInfo();
5575      const char *Name = TLI.getTargetNodeName(getOpcode());
5576      if (Name) return Name;
5577      return "<<Unknown Target Node>>";
5578    }
5579    return "<<Unknown Node>>";
5580
5581#ifndef NDEBUG
5582  case ISD::DELETED_NODE:
5583    return "<<Deleted Node!>>";
5584#endif
5585  case ISD::PREFETCH:      return "Prefetch";
5586  case ISD::MEMBARRIER:    return "MemBarrier";
5587  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5588  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5589  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5590  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5591  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5592  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5593  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5594  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5595  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5596  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5597  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5598  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5599  case ISD::PCMARKER:      return "PCMarker";
5600  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5601  case ISD::SRCVALUE:      return "SrcValue";
5602  case ISD::MEMOPERAND:    return "MemOperand";
5603  case ISD::EntryToken:    return "EntryToken";
5604  case ISD::TokenFactor:   return "TokenFactor";
5605  case ISD::AssertSext:    return "AssertSext";
5606  case ISD::AssertZext:    return "AssertZext";
5607
5608  case ISD::BasicBlock:    return "BasicBlock";
5609  case ISD::ARG_FLAGS:     return "ArgFlags";
5610  case ISD::VALUETYPE:     return "ValueType";
5611  case ISD::Register:      return "Register";
5612
5613  case ISD::Constant:      return "Constant";
5614  case ISD::ConstantFP:    return "ConstantFP";
5615  case ISD::GlobalAddress: return "GlobalAddress";
5616  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5617  case ISD::FrameIndex:    return "FrameIndex";
5618  case ISD::JumpTable:     return "JumpTable";
5619  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5620  case ISD::RETURNADDR: return "RETURNADDR";
5621  case ISD::FRAMEADDR: return "FRAMEADDR";
5622  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5623  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5624  case ISD::EHSELECTION: return "EHSELECTION";
5625  case ISD::EH_RETURN: return "EH_RETURN";
5626  case ISD::ConstantPool:  return "ConstantPool";
5627  case ISD::ExternalSymbol: return "ExternalSymbol";
5628  case ISD::INTRINSIC_WO_CHAIN: {
5629    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5630    return Intrinsic::getName((Intrinsic::ID)IID);
5631  }
5632  case ISD::INTRINSIC_VOID:
5633  case ISD::INTRINSIC_W_CHAIN: {
5634    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5635    return Intrinsic::getName((Intrinsic::ID)IID);
5636  }
5637
5638  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5639  case ISD::TargetConstant: return "TargetConstant";
5640  case ISD::TargetConstantFP:return "TargetConstantFP";
5641  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5642  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5643  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5644  case ISD::TargetJumpTable:  return "TargetJumpTable";
5645  case ISD::TargetConstantPool:  return "TargetConstantPool";
5646  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5647
5648  case ISD::CopyToReg:     return "CopyToReg";
5649  case ISD::CopyFromReg:   return "CopyFromReg";
5650  case ISD::UNDEF:         return "undef";
5651  case ISD::MERGE_VALUES:  return "merge_values";
5652  case ISD::INLINEASM:     return "inlineasm";
5653  case ISD::DBG_LABEL:     return "dbg_label";
5654  case ISD::EH_LABEL:      return "eh_label";
5655  case ISD::DECLARE:       return "declare";
5656  case ISD::HANDLENODE:    return "handlenode";
5657  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5658  case ISD::CALL:          return "call";
5659
5660  // Unary operators
5661  case ISD::FABS:   return "fabs";
5662  case ISD::FNEG:   return "fneg";
5663  case ISD::FSQRT:  return "fsqrt";
5664  case ISD::FSIN:   return "fsin";
5665  case ISD::FCOS:   return "fcos";
5666  case ISD::FPOWI:  return "fpowi";
5667  case ISD::FPOW:   return "fpow";
5668  case ISD::FTRUNC: return "ftrunc";
5669  case ISD::FFLOOR: return "ffloor";
5670  case ISD::FCEIL:  return "fceil";
5671  case ISD::FRINT:  return "frint";
5672  case ISD::FNEARBYINT: return "fnearbyint";
5673
5674  // Binary operators
5675  case ISD::ADD:    return "add";
5676  case ISD::SUB:    return "sub";
5677  case ISD::MUL:    return "mul";
5678  case ISD::MULHU:  return "mulhu";
5679  case ISD::MULHS:  return "mulhs";
5680  case ISD::SDIV:   return "sdiv";
5681  case ISD::UDIV:   return "udiv";
5682  case ISD::SREM:   return "srem";
5683  case ISD::UREM:   return "urem";
5684  case ISD::SMUL_LOHI:  return "smul_lohi";
5685  case ISD::UMUL_LOHI:  return "umul_lohi";
5686  case ISD::SDIVREM:    return "sdivrem";
5687  case ISD::UDIVREM:    return "udivrem";
5688  case ISD::AND:    return "and";
5689  case ISD::OR:     return "or";
5690  case ISD::XOR:    return "xor";
5691  case ISD::SHL:    return "shl";
5692  case ISD::SRA:    return "sra";
5693  case ISD::SRL:    return "srl";
5694  case ISD::ROTL:   return "rotl";
5695  case ISD::ROTR:   return "rotr";
5696  case ISD::FADD:   return "fadd";
5697  case ISD::FSUB:   return "fsub";
5698  case ISD::FMUL:   return "fmul";
5699  case ISD::FDIV:   return "fdiv";
5700  case ISD::FREM:   return "frem";
5701  case ISD::FCOPYSIGN: return "fcopysign";
5702  case ISD::FGETSIGN:  return "fgetsign";
5703
5704  case ISD::SETCC:       return "setcc";
5705  case ISD::VSETCC:      return "vsetcc";
5706  case ISD::SELECT:      return "select";
5707  case ISD::SELECT_CC:   return "select_cc";
5708  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5709  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5710  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5711  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5712  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5713  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5714  case ISD::CARRY_FALSE:         return "carry_false";
5715  case ISD::ADDC:        return "addc";
5716  case ISD::ADDE:        return "adde";
5717  case ISD::SADDO:       return "saddo";
5718  case ISD::UADDO:       return "uaddo";
5719  case ISD::SSUBO:       return "ssubo";
5720  case ISD::USUBO:       return "usubo";
5721  case ISD::SMULO:       return "smulo";
5722  case ISD::UMULO:       return "umulo";
5723  case ISD::SUBC:        return "subc";
5724  case ISD::SUBE:        return "sube";
5725  case ISD::SHL_PARTS:   return "shl_parts";
5726  case ISD::SRA_PARTS:   return "sra_parts";
5727  case ISD::SRL_PARTS:   return "srl_parts";
5728
5729  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
5730  case ISD::INSERT_SUBREG:      return "insert_subreg";
5731
5732  // Conversion operators.
5733  case ISD::SIGN_EXTEND: return "sign_extend";
5734  case ISD::ZERO_EXTEND: return "zero_extend";
5735  case ISD::ANY_EXTEND:  return "any_extend";
5736  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5737  case ISD::TRUNCATE:    return "truncate";
5738  case ISD::FP_ROUND:    return "fp_round";
5739  case ISD::FLT_ROUNDS_: return "flt_rounds";
5740  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5741  case ISD::FP_EXTEND:   return "fp_extend";
5742
5743  case ISD::SINT_TO_FP:  return "sint_to_fp";
5744  case ISD::UINT_TO_FP:  return "uint_to_fp";
5745  case ISD::FP_TO_SINT:  return "fp_to_sint";
5746  case ISD::FP_TO_UINT:  return "fp_to_uint";
5747  case ISD::BIT_CONVERT: return "bit_convert";
5748
5749  case ISD::CONVERT_RNDSAT: {
5750    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5751    default: assert(0 && "Unknown cvt code!");
5752    case ISD::CVT_FF:  return "cvt_ff";
5753    case ISD::CVT_FS:  return "cvt_fs";
5754    case ISD::CVT_FU:  return "cvt_fu";
5755    case ISD::CVT_SF:  return "cvt_sf";
5756    case ISD::CVT_UF:  return "cvt_uf";
5757    case ISD::CVT_SS:  return "cvt_ss";
5758    case ISD::CVT_SU:  return "cvt_su";
5759    case ISD::CVT_US:  return "cvt_us";
5760    case ISD::CVT_UU:  return "cvt_uu";
5761    }
5762  }
5763
5764    // Control flow instructions
5765  case ISD::BR:      return "br";
5766  case ISD::BRIND:   return "brind";
5767  case ISD::BR_JT:   return "br_jt";
5768  case ISD::BRCOND:  return "brcond";
5769  case ISD::BR_CC:   return "br_cc";
5770  case ISD::RET:     return "ret";
5771  case ISD::CALLSEQ_START:  return "callseq_start";
5772  case ISD::CALLSEQ_END:    return "callseq_end";
5773
5774    // Other operators
5775  case ISD::LOAD:               return "load";
5776  case ISD::STORE:              return "store";
5777  case ISD::VAARG:              return "vaarg";
5778  case ISD::VACOPY:             return "vacopy";
5779  case ISD::VAEND:              return "vaend";
5780  case ISD::VASTART:            return "vastart";
5781  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5782  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5783  case ISD::BUILD_PAIR:         return "build_pair";
5784  case ISD::STACKSAVE:          return "stacksave";
5785  case ISD::STACKRESTORE:       return "stackrestore";
5786  case ISD::TRAP:               return "trap";
5787
5788  // Bit manipulation
5789  case ISD::BSWAP:   return "bswap";
5790  case ISD::CTPOP:   return "ctpop";
5791  case ISD::CTTZ:    return "cttz";
5792  case ISD::CTLZ:    return "ctlz";
5793
5794  // Debug info
5795  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5796  case ISD::DEBUG_LOC: return "debug_loc";
5797
5798  // Trampolines
5799  case ISD::TRAMPOLINE: return "trampoline";
5800
5801  case ISD::CONDCODE:
5802    switch (cast<CondCodeSDNode>(this)->get()) {
5803    default: assert(0 && "Unknown setcc condition!");
5804    case ISD::SETOEQ:  return "setoeq";
5805    case ISD::SETOGT:  return "setogt";
5806    case ISD::SETOGE:  return "setoge";
5807    case ISD::SETOLT:  return "setolt";
5808    case ISD::SETOLE:  return "setole";
5809    case ISD::SETONE:  return "setone";
5810
5811    case ISD::SETO:    return "seto";
5812    case ISD::SETUO:   return "setuo";
5813    case ISD::SETUEQ:  return "setue";
5814    case ISD::SETUGT:  return "setugt";
5815    case ISD::SETUGE:  return "setuge";
5816    case ISD::SETULT:  return "setult";
5817    case ISD::SETULE:  return "setule";
5818    case ISD::SETUNE:  return "setune";
5819
5820    case ISD::SETEQ:   return "seteq";
5821    case ISD::SETGT:   return "setgt";
5822    case ISD::SETGE:   return "setge";
5823    case ISD::SETLT:   return "setlt";
5824    case ISD::SETLE:   return "setle";
5825    case ISD::SETNE:   return "setne";
5826    }
5827  }
5828}
5829
5830const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5831  switch (AM) {
5832  default:
5833    return "";
5834  case ISD::PRE_INC:
5835    return "<pre-inc>";
5836  case ISD::PRE_DEC:
5837    return "<pre-dec>";
5838  case ISD::POST_INC:
5839    return "<post-inc>";
5840  case ISD::POST_DEC:
5841    return "<post-dec>";
5842  }
5843}
5844
5845std::string ISD::ArgFlagsTy::getArgFlagsString() {
5846  std::string S = "< ";
5847
5848  if (isZExt())
5849    S += "zext ";
5850  if (isSExt())
5851    S += "sext ";
5852  if (isInReg())
5853    S += "inreg ";
5854  if (isSRet())
5855    S += "sret ";
5856  if (isByVal())
5857    S += "byval ";
5858  if (isNest())
5859    S += "nest ";
5860  if (getByValAlign())
5861    S += "byval-align:" + utostr(getByValAlign()) + " ";
5862  if (getOrigAlign())
5863    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5864  if (getByValSize())
5865    S += "byval-size:" + utostr(getByValSize()) + " ";
5866  return S + ">";
5867}
5868
5869void SDNode::dump() const { dump(0); }
5870void SDNode::dump(const SelectionDAG *G) const {
5871  print(errs(), G);
5872  errs().flush();
5873}
5874
5875void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5876  OS << (void*)this << ": ";
5877
5878  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5879    if (i) OS << ",";
5880    if (getValueType(i) == MVT::Other)
5881      OS << "ch";
5882    else
5883      OS << getValueType(i).getMVTString();
5884  }
5885  OS << " = " << getOperationName(G);
5886
5887  OS << " ";
5888  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5889    if (i) OS << ", ";
5890    OS << (void*)getOperand(i).getNode();
5891    if (unsigned RN = getOperand(i).getResNo())
5892      OS << ":" << RN;
5893  }
5894
5895  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5896    SDNode *Mask = getOperand(2).getNode();
5897    OS << "<";
5898    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
5899      if (i) OS << ",";
5900      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
5901        OS << "u";
5902      else
5903        OS << cast<ConstantSDNode>(Mask->getOperand(i))->getZExtValue();
5904    }
5905    OS << ">";
5906  }
5907
5908  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5909    OS << '<' << CSDN->getAPIntValue() << '>';
5910  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5911    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5912      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5913    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5914      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5915    else {
5916      OS << "<APFloat(";
5917      CSDN->getValueAPF().bitcastToAPInt().dump();
5918      OS << ")>";
5919    }
5920  } else if (const GlobalAddressSDNode *GADN =
5921             dyn_cast<GlobalAddressSDNode>(this)) {
5922    int64_t offset = GADN->getOffset();
5923    OS << '<';
5924    WriteAsOperand(OS, GADN->getGlobal());
5925    OS << '>';
5926    if (offset > 0)
5927      OS << " + " << offset;
5928    else
5929      OS << " " << offset;
5930  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5931    OS << "<" << FIDN->getIndex() << ">";
5932  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5933    OS << "<" << JTDN->getIndex() << ">";
5934  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5935    int offset = CP->getOffset();
5936    if (CP->isMachineConstantPoolEntry())
5937      OS << "<" << *CP->getMachineCPVal() << ">";
5938    else
5939      OS << "<" << *CP->getConstVal() << ">";
5940    if (offset > 0)
5941      OS << " + " << offset;
5942    else
5943      OS << " " << offset;
5944  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5945    OS << "<";
5946    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5947    if (LBB)
5948      OS << LBB->getName() << " ";
5949    OS << (const void*)BBDN->getBasicBlock() << ">";
5950  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5951    if (G && R->getReg() &&
5952        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5953      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5954    } else {
5955      OS << " #" << R->getReg();
5956    }
5957  } else if (const ExternalSymbolSDNode *ES =
5958             dyn_cast<ExternalSymbolSDNode>(this)) {
5959    OS << "'" << ES->getSymbol() << "'";
5960  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5961    if (M->getValue())
5962      OS << "<" << M->getValue() << ">";
5963    else
5964      OS << "<null>";
5965  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5966    if (M->MO.getValue())
5967      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5968    else
5969      OS << "<null:" << M->MO.getOffset() << ">";
5970  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5971    OS << N->getArgFlags().getArgFlagsString();
5972  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5973    OS << ":" << N->getVT().getMVTString();
5974  }
5975  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5976    const Value *SrcValue = LD->getSrcValue();
5977    int SrcOffset = LD->getSrcValueOffset();
5978    OS << " <";
5979    if (SrcValue)
5980      OS << SrcValue;
5981    else
5982      OS << "null";
5983    OS << ":" << SrcOffset << ">";
5984
5985    bool doExt = true;
5986    switch (LD->getExtensionType()) {
5987    default: doExt = false; break;
5988    case ISD::EXTLOAD: OS << " <anyext "; break;
5989    case ISD::SEXTLOAD: OS << " <sext "; break;
5990    case ISD::ZEXTLOAD: OS << " <zext "; break;
5991    }
5992    if (doExt)
5993      OS << LD->getMemoryVT().getMVTString() << ">";
5994
5995    const char *AM = getIndexedModeName(LD->getAddressingMode());
5996    if (*AM)
5997      OS << " " << AM;
5998    if (LD->isVolatile())
5999      OS << " <volatile>";
6000    OS << " alignment=" << LD->getAlignment();
6001  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
6002    const Value *SrcValue = ST->getSrcValue();
6003    int SrcOffset = ST->getSrcValueOffset();
6004    OS << " <";
6005    if (SrcValue)
6006      OS << SrcValue;
6007    else
6008      OS << "null";
6009    OS << ":" << SrcOffset << ">";
6010
6011    if (ST->isTruncatingStore())
6012      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
6013
6014    const char *AM = getIndexedModeName(ST->getAddressingMode());
6015    if (*AM)
6016      OS << " " << AM;
6017    if (ST->isVolatile())
6018      OS << " <volatile>";
6019    OS << " alignment=" << ST->getAlignment();
6020  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
6021    const Value *SrcValue = AT->getSrcValue();
6022    int SrcOffset = AT->getSrcValueOffset();
6023    OS << " <";
6024    if (SrcValue)
6025      OS << SrcValue;
6026    else
6027      OS << "null";
6028    OS << ":" << SrcOffset << ">";
6029    if (AT->isVolatile())
6030      OS << " <volatile>";
6031    OS << " alignment=" << AT->getAlignment();
6032  }
6033}
6034
6035static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6036  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6037    if (N->getOperand(i).getNode()->hasOneUse())
6038      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6039    else
6040      cerr << "\n" << std::string(indent+2, ' ')
6041           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6042
6043
6044  cerr << "\n" << std::string(indent, ' ');
6045  N->dump(G);
6046}
6047
6048void SelectionDAG::dump() const {
6049  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
6050
6051  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6052       I != E; ++I) {
6053    const SDNode *N = I;
6054    if (!N->hasOneUse() && N != getRoot().getNode())
6055      DumpNodes(N, 2, this);
6056  }
6057
6058  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6059
6060  cerr << "\n\n";
6061}
6062
6063const Type *ConstantPoolSDNode::getType() const {
6064  if (isMachineConstantPoolEntry())
6065    return Val.MachineCPVal->getType();
6066  return Val.ConstVal->getType();
6067}
6068