SelectionDAG.cpp revision b10b5ac8d9da43ca2db61401a20af6b676c98438
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetOptions.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/ADT/SetVector.h"
37#include "llvm/ADT/SmallPtrSet.h"
38#include "llvm/ADT/SmallSet.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/ADT/StringExtras.h"
41#include <algorithm>
42#include <cmath>
43using namespace llvm;
44
45/// makeVTList - Return an instance of the SDVTList struct initialized with the
46/// specified members.
47static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
48  SDVTList Res = {VTs, NumVTs};
49  return Res;
50}
51
52static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
53  switch (VT.getSimpleVT()) {
54  default: assert(0 && "Unknown FP format");
55  case MVT::f32:     return &APFloat::IEEEsingle;
56  case MVT::f64:     return &APFloat::IEEEdouble;
57  case MVT::f80:     return &APFloat::x87DoubleExtended;
58  case MVT::f128:    return &APFloat::IEEEquad;
59  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
60  }
61}
62
63SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
64
65//===----------------------------------------------------------------------===//
66//                              ConstantFPSDNode Class
67//===----------------------------------------------------------------------===//
68
69/// isExactlyValue - We don't rely on operator== working on double values, as
70/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
71/// As such, this method can be used to do an exact bit-for-bit comparison of
72/// two floating point values.
73bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
74  return getValueAPF().bitwiseIsEqual(V);
75}
76
77bool ConstantFPSDNode::isValueValidForType(MVT VT,
78                                           const APFloat& Val) {
79  assert(VT.isFloatingPoint() && "Can only convert between FP types");
80
81  // PPC long double cannot be converted to any other type.
82  if (VT == MVT::ppcf128 ||
83      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
84    return false;
85
86  // convert modifies in place, so make a copy.
87  APFloat Val2 = APFloat(Val);
88  bool losesInfo;
89  (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
90                      &losesInfo);
91  return !losesInfo;
92}
93
94//===----------------------------------------------------------------------===//
95//                              ISD Namespace
96//===----------------------------------------------------------------------===//
97
98/// isBuildVectorAllOnes - Return true if the specified node is a
99/// BUILD_VECTOR where all of the elements are ~0 or undef.
100bool ISD::isBuildVectorAllOnes(const SDNode *N) {
101  // Look through a bit convert.
102  if (N->getOpcode() == ISD::BIT_CONVERT)
103    N = N->getOperand(0).getNode();
104
105  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
106
107  unsigned i = 0, e = N->getNumOperands();
108
109  // Skip over all of the undef values.
110  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
111    ++i;
112
113  // Do not accept an all-undef vector.
114  if (i == e) return false;
115
116  // Do not accept build_vectors that aren't all constants or which have non-~0
117  // elements.
118  SDValue NotZero = N->getOperand(i);
119  if (isa<ConstantSDNode>(NotZero)) {
120    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
121      return false;
122  } else if (isa<ConstantFPSDNode>(NotZero)) {
123    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
124                bitcastToAPInt().isAllOnesValue())
125      return false;
126  } else
127    return false;
128
129  // Okay, we have at least one ~0 value, check to see if the rest match or are
130  // undefs.
131  for (++i; i != e; ++i)
132    if (N->getOperand(i) != NotZero &&
133        N->getOperand(i).getOpcode() != ISD::UNDEF)
134      return false;
135  return true;
136}
137
138
139/// isBuildVectorAllZeros - Return true if the specified node is a
140/// BUILD_VECTOR where all of the elements are 0 or undef.
141bool ISD::isBuildVectorAllZeros(const SDNode *N) {
142  // Look through a bit convert.
143  if (N->getOpcode() == ISD::BIT_CONVERT)
144    N = N->getOperand(0).getNode();
145
146  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
147
148  unsigned i = 0, e = N->getNumOperands();
149
150  // Skip over all of the undef values.
151  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
152    ++i;
153
154  // Do not accept an all-undef vector.
155  if (i == e) return false;
156
157  // Do not accept build_vectors that aren't all constants or which have non-~0
158  // elements.
159  SDValue Zero = N->getOperand(i);
160  if (isa<ConstantSDNode>(Zero)) {
161    if (!cast<ConstantSDNode>(Zero)->isNullValue())
162      return false;
163  } else if (isa<ConstantFPSDNode>(Zero)) {
164    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
165      return false;
166  } else
167    return false;
168
169  // Okay, we have at least one ~0 value, check to see if the rest match or are
170  // undefs.
171  for (++i; i != e; ++i)
172    if (N->getOperand(i) != Zero &&
173        N->getOperand(i).getOpcode() != ISD::UNDEF)
174      return false;
175  return true;
176}
177
178/// isScalarToVector - Return true if the specified node is a
179/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
180/// element is not an undef.
181bool ISD::isScalarToVector(const SDNode *N) {
182  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
183    return true;
184
185  if (N->getOpcode() != ISD::BUILD_VECTOR)
186    return false;
187  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
188    return false;
189  unsigned NumElems = N->getNumOperands();
190  for (unsigned i = 1; i < NumElems; ++i) {
191    SDValue V = N->getOperand(i);
192    if (V.getOpcode() != ISD::UNDEF)
193      return false;
194  }
195  return true;
196}
197
198
199/// isDebugLabel - Return true if the specified node represents a debug
200/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
201bool ISD::isDebugLabel(const SDNode *N) {
202  SDValue Zero;
203  if (N->getOpcode() == ISD::DBG_LABEL)
204    return true;
205  if (N->isMachineOpcode() &&
206      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
207    return true;
208  return false;
209}
210
211/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212/// when given the operation for (X op Y).
213ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
214  // To perform this operation, we just need to swap the L and G bits of the
215  // operation.
216  unsigned OldL = (Operation >> 2) & 1;
217  unsigned OldG = (Operation >> 1) & 1;
218  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
219                       (OldL << 1) |       // New G bit
220                       (OldG << 2));       // New L bit.
221}
222
223/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224/// 'op' is a valid SetCC operation.
225ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
226  unsigned Operation = Op;
227  if (isInteger)
228    Operation ^= 7;   // Flip L, G, E bits, but not U.
229  else
230    Operation ^= 15;  // Flip all of the condition bits.
231
232  if (Operation > ISD::SETTRUE2)
233    Operation &= ~8;  // Don't let N and U bits get set.
234
235  return ISD::CondCode(Operation);
236}
237
238
239/// isSignedOp - For an integer comparison, return 1 if the comparison is a
240/// signed operation and 2 if the result is an unsigned comparison.  Return zero
241/// if the operation does not depend on the sign of the input (setne and seteq).
242static int isSignedOp(ISD::CondCode Opcode) {
243  switch (Opcode) {
244  default: assert(0 && "Illegal integer setcc operation!");
245  case ISD::SETEQ:
246  case ISD::SETNE: return 0;
247  case ISD::SETLT:
248  case ISD::SETLE:
249  case ISD::SETGT:
250  case ISD::SETGE: return 1;
251  case ISD::SETULT:
252  case ISD::SETULE:
253  case ISD::SETUGT:
254  case ISD::SETUGE: return 2;
255  }
256}
257
258/// getSetCCOrOperation - Return the result of a logical OR between different
259/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
260/// returns SETCC_INVALID if it is not possible to represent the resultant
261/// comparison.
262ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
263                                       bool isInteger) {
264  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
265    // Cannot fold a signed integer setcc with an unsigned integer setcc.
266    return ISD::SETCC_INVALID;
267
268  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
269
270  // If the N and U bits get set then the resultant comparison DOES suddenly
271  // care about orderedness, and is true when ordered.
272  if (Op > ISD::SETTRUE2)
273    Op &= ~16;     // Clear the U bit if the N bit is set.
274
275  // Canonicalize illegal integer setcc's.
276  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
277    Op = ISD::SETNE;
278
279  return ISD::CondCode(Op);
280}
281
282/// getSetCCAndOperation - Return the result of a logical AND between different
283/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
284/// function returns zero if it is not possible to represent the resultant
285/// comparison.
286ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
287                                        bool isInteger) {
288  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
289    // Cannot fold a signed setcc with an unsigned setcc.
290    return ISD::SETCC_INVALID;
291
292  // Combine all of the condition bits.
293  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
294
295  // Canonicalize illegal integer setcc's.
296  if (isInteger) {
297    switch (Result) {
298    default: break;
299    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
300    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
301    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
302    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
303    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
304    }
305  }
306
307  return Result;
308}
309
310const TargetMachine &SelectionDAG::getTarget() const {
311  return MF->getTarget();
312}
313
314//===----------------------------------------------------------------------===//
315//                           SDNode Profile Support
316//===----------------------------------------------------------------------===//
317
318/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
319///
320static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
321  ID.AddInteger(OpC);
322}
323
324/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
325/// solely with their pointer.
326static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
327  ID.AddPointer(VTList.VTs);
328}
329
330/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
331///
332static void AddNodeIDOperands(FoldingSetNodeID &ID,
333                              const SDValue *Ops, unsigned NumOps) {
334  for (; NumOps; --NumOps, ++Ops) {
335    ID.AddPointer(Ops->getNode());
336    ID.AddInteger(Ops->getResNo());
337  }
338}
339
340/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
341///
342static void AddNodeIDOperands(FoldingSetNodeID &ID,
343                              const SDUse *Ops, unsigned NumOps) {
344  for (; NumOps; --NumOps, ++Ops) {
345    ID.AddPointer(Ops->getNode());
346    ID.AddInteger(Ops->getResNo());
347  }
348}
349
350static void AddNodeIDNode(FoldingSetNodeID &ID,
351                          unsigned short OpC, SDVTList VTList,
352                          const SDValue *OpList, unsigned N) {
353  AddNodeIDOpcode(ID, OpC);
354  AddNodeIDValueTypes(ID, VTList);
355  AddNodeIDOperands(ID, OpList, N);
356}
357
358/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
359/// the NodeID data.
360static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
361  switch (N->getOpcode()) {
362  default: break;  // Normal nodes don't need extra info.
363  case ISD::ARG_FLAGS:
364    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
365    break;
366  case ISD::TargetConstant:
367  case ISD::Constant:
368    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
369    break;
370  case ISD::TargetConstantFP:
371  case ISD::ConstantFP: {
372    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
373    break;
374  }
375  case ISD::TargetGlobalAddress:
376  case ISD::GlobalAddress:
377  case ISD::TargetGlobalTLSAddress:
378  case ISD::GlobalTLSAddress: {
379    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
380    ID.AddPointer(GA->getGlobal());
381    ID.AddInteger(GA->getOffset());
382    break;
383  }
384  case ISD::BasicBlock:
385    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
386    break;
387  case ISD::Register:
388    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
389    break;
390  case ISD::DBG_STOPPOINT: {
391    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
392    ID.AddInteger(DSP->getLine());
393    ID.AddInteger(DSP->getColumn());
394    ID.AddPointer(DSP->getCompileUnit());
395    break;
396  }
397  case ISD::SRCVALUE:
398    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
399    break;
400  case ISD::MEMOPERAND: {
401    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
402    MO.Profile(ID);
403    break;
404  }
405  case ISD::FrameIndex:
406  case ISD::TargetFrameIndex:
407    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
408    break;
409  case ISD::JumpTable:
410  case ISD::TargetJumpTable:
411    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
412    break;
413  case ISD::ConstantPool:
414  case ISD::TargetConstantPool: {
415    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
416    ID.AddInteger(CP->getAlignment());
417    ID.AddInteger(CP->getOffset());
418    if (CP->isMachineConstantPoolEntry())
419      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
420    else
421      ID.AddPointer(CP->getConstVal());
422    break;
423  }
424  case ISD::CALL: {
425    const CallSDNode *Call = cast<CallSDNode>(N);
426    ID.AddInteger(Call->getCallingConv());
427    ID.AddInteger(Call->isVarArg());
428    break;
429  }
430  case ISD::LOAD: {
431    const LoadSDNode *LD = cast<LoadSDNode>(N);
432    ID.AddInteger(LD->getMemoryVT().getRawBits());
433    ID.AddInteger(LD->getRawSubclassData());
434    break;
435  }
436  case ISD::STORE: {
437    const StoreSDNode *ST = cast<StoreSDNode>(N);
438    ID.AddInteger(ST->getMemoryVT().getRawBits());
439    ID.AddInteger(ST->getRawSubclassData());
440    break;
441  }
442  case ISD::ATOMIC_CMP_SWAP:
443  case ISD::ATOMIC_SWAP:
444  case ISD::ATOMIC_LOAD_ADD:
445  case ISD::ATOMIC_LOAD_SUB:
446  case ISD::ATOMIC_LOAD_AND:
447  case ISD::ATOMIC_LOAD_OR:
448  case ISD::ATOMIC_LOAD_XOR:
449  case ISD::ATOMIC_LOAD_NAND:
450  case ISD::ATOMIC_LOAD_MIN:
451  case ISD::ATOMIC_LOAD_MAX:
452  case ISD::ATOMIC_LOAD_UMIN:
453  case ISD::ATOMIC_LOAD_UMAX: {
454    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
455    ID.AddInteger(AT->getMemoryVT().getRawBits());
456    ID.AddInteger(AT->getRawSubclassData());
457    break;
458  }
459  } // end switch (N->getOpcode())
460}
461
462/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
463/// data.
464static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
465  AddNodeIDOpcode(ID, N->getOpcode());
466  // Add the return value info.
467  AddNodeIDValueTypes(ID, N->getVTList());
468  // Add the operand info.
469  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
470
471  // Handle SDNode leafs with special info.
472  AddNodeIDCustom(ID, N);
473}
474
475/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
476/// the CSE map that carries alignment, volatility, indexing mode, and
477/// extension/truncation information.
478///
479static inline unsigned
480encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM,
481                     bool isVolatile, unsigned Alignment) {
482  assert((ConvType & 3) == ConvType &&
483         "ConvType may not require more than 2 bits!");
484  assert((AM & 7) == AM &&
485         "AM may not require more than 3 bits!");
486  return ConvType |
487         (AM << 2) |
488         (isVolatile << 5) |
489         ((Log2_32(Alignment) + 1) << 6);
490}
491
492//===----------------------------------------------------------------------===//
493//                              SelectionDAG Class
494//===----------------------------------------------------------------------===//
495
496/// doNotCSE - Return true if CSE should not be performed for this node.
497static bool doNotCSE(SDNode *N) {
498  if (N->getValueType(0) == MVT::Flag)
499    return true; // Never CSE anything that produces a flag.
500
501  switch (N->getOpcode()) {
502  default: break;
503  case ISD::HANDLENODE:
504  case ISD::DBG_LABEL:
505  case ISD::DBG_STOPPOINT:
506  case ISD::EH_LABEL:
507  case ISD::DECLARE:
508    return true;   // Never CSE these nodes.
509  }
510
511  // Check that remaining values produced are not flags.
512  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
513    if (N->getValueType(i) == MVT::Flag)
514      return true; // Never CSE anything that produces a flag.
515
516  return false;
517}
518
519/// RemoveDeadNodes - This method deletes all unreachable nodes in the
520/// SelectionDAG.
521void SelectionDAG::RemoveDeadNodes() {
522  // Create a dummy node (which is not added to allnodes), that adds a reference
523  // to the root node, preventing it from being deleted.
524  HandleSDNode Dummy(getRoot());
525
526  SmallVector<SDNode*, 128> DeadNodes;
527
528  // Add all obviously-dead nodes to the DeadNodes worklist.
529  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
530    if (I->use_empty())
531      DeadNodes.push_back(I);
532
533  RemoveDeadNodes(DeadNodes);
534
535  // If the root changed (e.g. it was a dead load, update the root).
536  setRoot(Dummy.getValue());
537}
538
539/// RemoveDeadNodes - This method deletes the unreachable nodes in the
540/// given list, and any nodes that become unreachable as a result.
541void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
542                                   DAGUpdateListener *UpdateListener) {
543
544  // Process the worklist, deleting the nodes and adding their uses to the
545  // worklist.
546  while (!DeadNodes.empty()) {
547    SDNode *N = DeadNodes.pop_back_val();
548
549    if (UpdateListener)
550      UpdateListener->NodeDeleted(N, 0);
551
552    // Take the node out of the appropriate CSE map.
553    RemoveNodeFromCSEMaps(N);
554
555    // Next, brutally remove the operand list.  This is safe to do, as there are
556    // no cycles in the graph.
557    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
558      SDUse &Use = *I++;
559      SDNode *Operand = Use.getNode();
560      Use.set(SDValue());
561
562      // Now that we removed this operand, see if there are no uses of it left.
563      if (Operand->use_empty())
564        DeadNodes.push_back(Operand);
565    }
566
567    DeallocateNode(N);
568  }
569}
570
571void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
572  SmallVector<SDNode*, 16> DeadNodes(1, N);
573  RemoveDeadNodes(DeadNodes, UpdateListener);
574}
575
576void SelectionDAG::DeleteNode(SDNode *N) {
577  // First take this out of the appropriate CSE map.
578  RemoveNodeFromCSEMaps(N);
579
580  // Finally, remove uses due to operands of this node, remove from the
581  // AllNodes list, and delete the node.
582  DeleteNodeNotInCSEMaps(N);
583}
584
585void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
586  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
587  assert(N->use_empty() && "Cannot delete a node that is not dead!");
588
589  // Drop all of the operands and decrement used node's use counts.
590  N->DropOperands();
591
592  DeallocateNode(N);
593}
594
595void SelectionDAG::DeallocateNode(SDNode *N) {
596  if (N->OperandsNeedDelete)
597    delete[] N->OperandList;
598
599  // Set the opcode to DELETED_NODE to help catch bugs when node
600  // memory is reallocated.
601  N->NodeType = ISD::DELETED_NODE;
602
603  NodeAllocator.Deallocate(AllNodes.remove(N));
604}
605
606/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
607/// correspond to it.  This is useful when we're about to delete or repurpose
608/// the node.  We don't want future request for structurally identical nodes
609/// to return N anymore.
610bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
611  bool Erased = false;
612  switch (N->getOpcode()) {
613  case ISD::EntryToken:
614    assert(0 && "EntryToken should not be in CSEMaps!");
615    return false;
616  case ISD::HANDLENODE: return false;  // noop.
617  case ISD::CONDCODE:
618    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
619           "Cond code doesn't exist!");
620    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
621    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
622    break;
623  case ISD::ExternalSymbol:
624    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
625    break;
626  case ISD::TargetExternalSymbol:
627    Erased =
628      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
629    break;
630  case ISD::VALUETYPE: {
631    MVT VT = cast<VTSDNode>(N)->getVT();
632    if (VT.isExtended()) {
633      Erased = ExtendedValueTypeNodes.erase(VT);
634    } else {
635      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
636      ValueTypeNodes[VT.getSimpleVT()] = 0;
637    }
638    break;
639  }
640  default:
641    // Remove it from the CSE Map.
642    Erased = CSEMap.RemoveNode(N);
643    break;
644  }
645#ifndef NDEBUG
646  // Verify that the node was actually in one of the CSE maps, unless it has a
647  // flag result (which cannot be CSE'd) or is one of the special cases that are
648  // not subject to CSE.
649  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
650      !N->isMachineOpcode() && !doNotCSE(N)) {
651    N->dump(this);
652    cerr << "\n";
653    assert(0 && "Node is not in map!");
654  }
655#endif
656  return Erased;
657}
658
659/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
660/// maps and modified in place. Add it back to the CSE maps, unless an identical
661/// node already exists, in which case transfer all its users to the existing
662/// node. This transfer can potentially trigger recursive merging.
663///
664void
665SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
666                                       DAGUpdateListener *UpdateListener) {
667  // For node types that aren't CSE'd, just act as if no identical node
668  // already exists.
669  if (!doNotCSE(N)) {
670    SDNode *Existing = CSEMap.GetOrInsertNode(N);
671    if (Existing != N) {
672      // If there was already an existing matching node, use ReplaceAllUsesWith
673      // to replace the dead one with the existing one.  This can cause
674      // recursive merging of other unrelated nodes down the line.
675      ReplaceAllUsesWith(N, Existing, UpdateListener);
676
677      // N is now dead.  Inform the listener if it exists and delete it.
678      if (UpdateListener)
679        UpdateListener->NodeDeleted(N, Existing);
680      DeleteNodeNotInCSEMaps(N);
681      return;
682    }
683  }
684
685  // If the node doesn't already exist, we updated it.  Inform a listener if
686  // it exists.
687  if (UpdateListener)
688    UpdateListener->NodeUpdated(N);
689}
690
691/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
692/// were replaced with those specified.  If this node is never memoized,
693/// return null, otherwise return a pointer to the slot it would take.  If a
694/// node already exists with these operands, the slot will be non-null.
695SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
696                                           void *&InsertPos) {
697  if (doNotCSE(N))
698    return 0;
699
700  SDValue Ops[] = { Op };
701  FoldingSetNodeID ID;
702  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
703  AddNodeIDCustom(ID, N);
704  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
705}
706
707/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
708/// were replaced with those specified.  If this node is never memoized,
709/// return null, otherwise return a pointer to the slot it would take.  If a
710/// node already exists with these operands, the slot will be non-null.
711SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
712                                           SDValue Op1, SDValue Op2,
713                                           void *&InsertPos) {
714  if (doNotCSE(N))
715    return 0;
716
717  SDValue Ops[] = { Op1, Op2 };
718  FoldingSetNodeID ID;
719  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
720  AddNodeIDCustom(ID, N);
721  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
722}
723
724
725/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
726/// were replaced with those specified.  If this node is never memoized,
727/// return null, otherwise return a pointer to the slot it would take.  If a
728/// node already exists with these operands, the slot will be non-null.
729SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
730                                           const SDValue *Ops,unsigned NumOps,
731                                           void *&InsertPos) {
732  if (doNotCSE(N))
733    return 0;
734
735  FoldingSetNodeID ID;
736  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
737  AddNodeIDCustom(ID, N);
738  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
739}
740
741/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
742void SelectionDAG::VerifyNode(SDNode *N) {
743  switch (N->getOpcode()) {
744  default:
745    break;
746  case ISD::BUILD_PAIR: {
747    MVT VT = N->getValueType(0);
748    assert(N->getNumValues() == 1 && "Too many results!");
749    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
750           "Wrong return type!");
751    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
752    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
753           "Mismatched operand types!");
754    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
755           "Wrong operand type!");
756    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
757           "Wrong return type size");
758    break;
759  }
760  case ISD::BUILD_VECTOR: {
761    assert(N->getNumValues() == 1 && "Too many results!");
762    assert(N->getValueType(0).isVector() && "Wrong return type!");
763    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
764           "Wrong number of operands!");
765    // FIXME: Change vector_shuffle to a variadic node with mask elements being
766    // operands of the node.  Currently the mask is a BUILD_VECTOR passed as an
767    // operand, and it is not always possible to legalize it.  Turning off the
768    // following checks at least makes it possible to legalize most of the time.
769//    MVT EltVT = N->getValueType(0).getVectorElementType();
770//    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
771//      assert((I->getValueType() == EltVT ||
772//              I->getValueType() == TLI.getTypeToTransformTo(EltVT)) &&
773//             "Wrong operand type!");
774    break;
775  }
776  }
777}
778
779/// getMVTAlignment - Compute the default alignment value for the
780/// given type.
781///
782unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
783  const Type *Ty = VT == MVT::iPTR ?
784                   PointerType::get(Type::Int8Ty, 0) :
785                   VT.getTypeForMVT();
786
787  return TLI.getTargetData()->getABITypeAlignment(Ty);
788}
789
790// EntryNode could meaningfully have debug info if we can find it...
791SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
792  : TLI(tli), FLI(fli), DW(0),
793    EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
794    getVTList(MVT::Other)), Root(getEntryNode()) {
795  AllNodes.push_back(&EntryNode);
796}
797
798void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
799                        DwarfWriter *dw) {
800  MF = &mf;
801  MMI = mmi;
802  DW = dw;
803}
804
805SelectionDAG::~SelectionDAG() {
806  allnodes_clear();
807}
808
809void SelectionDAG::allnodes_clear() {
810  assert(&*AllNodes.begin() == &EntryNode);
811  AllNodes.remove(AllNodes.begin());
812  while (!AllNodes.empty())
813    DeallocateNode(AllNodes.begin());
814}
815
816void SelectionDAG::clear() {
817  allnodes_clear();
818  OperandAllocator.Reset();
819  CSEMap.clear();
820
821  ExtendedValueTypeNodes.clear();
822  ExternalSymbols.clear();
823  TargetExternalSymbols.clear();
824  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
825            static_cast<CondCodeSDNode*>(0));
826  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
827            static_cast<SDNode*>(0));
828
829  EntryNode.UseList = 0;
830  AllNodes.push_back(&EntryNode);
831  Root = getEntryNode();
832}
833
834SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, MVT VT) {
835  if (Op.getValueType() == VT) return Op;
836  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
837                                   VT.getSizeInBits());
838  return getNode(ISD::AND, DL, Op.getValueType(), Op,
839                 getConstant(Imm, Op.getValueType()));
840}
841
842/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
843///
844SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, MVT VT) {
845  SDValue NegOne;
846  if (VT.isVector()) {
847    MVT EltVT = VT.getVectorElementType();
848    SDValue NegOneElt =
849      getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), EltVT);
850    std::vector<SDValue> NegOnes(VT.getVectorNumElements(), NegOneElt);
851    NegOne = getNode(ISD::BUILD_VECTOR, DL, VT, &NegOnes[0], NegOnes.size());
852  } else {
853    NegOne = getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
854  }
855  return getNode(ISD::XOR, DL, VT, Val, NegOne);
856}
857
858SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
859  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
860  assert((EltVT.getSizeInBits() >= 64 ||
861         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
862         "getConstant with a uint64_t value that doesn't fit in the type!");
863  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
864}
865
866SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
867  return getConstant(*ConstantInt::get(Val), VT, isT);
868}
869
870SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
871  assert(VT.isInteger() && "Cannot create FP integer constant!");
872
873  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
874  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
875         "APInt size does not match type size!");
876
877  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
878  FoldingSetNodeID ID;
879  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
880  ID.AddPointer(&Val);
881  void *IP = 0;
882  SDNode *N = NULL;
883  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
884    if (!VT.isVector())
885      return SDValue(N, 0);
886  if (!N) {
887    N = NodeAllocator.Allocate<ConstantSDNode>();
888    new (N) ConstantSDNode(isT, &Val, EltVT);
889    CSEMap.InsertNode(N, IP);
890    AllNodes.push_back(N);
891  }
892
893  SDValue Result(N, 0);
894  if (VT.isVector()) {
895    SmallVector<SDValue, 8> Ops;
896    Ops.assign(VT.getVectorNumElements(), Result);
897    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
898                     VT, &Ops[0], Ops.size());
899  }
900  return Result;
901}
902
903SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
904  return getConstant(Val, TLI.getPointerTy(), isTarget);
905}
906
907
908SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
909  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
910}
911
912SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
913  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
914
915  MVT EltVT =
916    VT.isVector() ? VT.getVectorElementType() : VT;
917
918  // Do the map lookup using the actual bit pattern for the floating point
919  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
920  // we don't have issues with SNANs.
921  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
922  FoldingSetNodeID ID;
923  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
924  ID.AddPointer(&V);
925  void *IP = 0;
926  SDNode *N = NULL;
927  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
928    if (!VT.isVector())
929      return SDValue(N, 0);
930  if (!N) {
931    N = NodeAllocator.Allocate<ConstantFPSDNode>();
932    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
933    CSEMap.InsertNode(N, IP);
934    AllNodes.push_back(N);
935  }
936
937  SDValue Result(N, 0);
938  if (VT.isVector()) {
939    SmallVector<SDValue, 8> Ops;
940    Ops.assign(VT.getVectorNumElements(), Result);
941    // FIXME DebugLoc info might be appropriate here
942    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
943                     VT, &Ops[0], Ops.size());
944  }
945  return Result;
946}
947
948SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
949  MVT EltVT =
950    VT.isVector() ? VT.getVectorElementType() : VT;
951  if (EltVT==MVT::f32)
952    return getConstantFP(APFloat((float)Val), VT, isTarget);
953  else
954    return getConstantFP(APFloat(Val), VT, isTarget);
955}
956
957SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
958                                       MVT VT, int64_t Offset,
959                                       bool isTargetGA) {
960  unsigned Opc;
961
962  // Truncate (with sign-extension) the offset value to the pointer size.
963  unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
964  if (BitWidth < 64)
965    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
966
967  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
968  if (!GVar) {
969    // If GV is an alias then use the aliasee for determining thread-localness.
970    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
971      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
972  }
973
974  if (GVar && GVar->isThreadLocal())
975    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
976  else
977    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
978
979  FoldingSetNodeID ID;
980  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
981  ID.AddPointer(GV);
982  ID.AddInteger(Offset);
983  void *IP = 0;
984  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
985    return SDValue(E, 0);
986  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
987  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
988  CSEMap.InsertNode(N, IP);
989  AllNodes.push_back(N);
990  return SDValue(N, 0);
991}
992
993SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
994  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
995  FoldingSetNodeID ID;
996  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
997  ID.AddInteger(FI);
998  void *IP = 0;
999  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1000    return SDValue(E, 0);
1001  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1002  new (N) FrameIndexSDNode(FI, VT, isTarget);
1003  CSEMap.InsertNode(N, IP);
1004  AllNodes.push_back(N);
1005  return SDValue(N, 0);
1006}
1007
1008SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
1009  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1010  FoldingSetNodeID ID;
1011  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1012  ID.AddInteger(JTI);
1013  void *IP = 0;
1014  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1015    return SDValue(E, 0);
1016  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1017  new (N) JumpTableSDNode(JTI, VT, isTarget);
1018  CSEMap.InsertNode(N, IP);
1019  AllNodes.push_back(N);
1020  return SDValue(N, 0);
1021}
1022
1023SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1024                                      unsigned Alignment, int Offset,
1025                                      bool isTarget) {
1026  if (Alignment == 0)
1027    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1028  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1029  FoldingSetNodeID ID;
1030  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1031  ID.AddInteger(Alignment);
1032  ID.AddInteger(Offset);
1033  ID.AddPointer(C);
1034  void *IP = 0;
1035  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1036    return SDValue(E, 0);
1037  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1038  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1039  CSEMap.InsertNode(N, IP);
1040  AllNodes.push_back(N);
1041  return SDValue(N, 0);
1042}
1043
1044
1045SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1046                                      unsigned Alignment, int Offset,
1047                                      bool isTarget) {
1048  if (Alignment == 0)
1049    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1050  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1051  FoldingSetNodeID ID;
1052  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1053  ID.AddInteger(Alignment);
1054  ID.AddInteger(Offset);
1055  C->AddSelectionDAGCSEId(ID);
1056  void *IP = 0;
1057  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1058    return SDValue(E, 0);
1059  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1060  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1061  CSEMap.InsertNode(N, IP);
1062  AllNodes.push_back(N);
1063  return SDValue(N, 0);
1064}
1065
1066SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1067  FoldingSetNodeID ID;
1068  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1069  ID.AddPointer(MBB);
1070  void *IP = 0;
1071  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1072    return SDValue(E, 0);
1073  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1074  new (N) BasicBlockSDNode(MBB);
1075  CSEMap.InsertNode(N, IP);
1076  AllNodes.push_back(N);
1077  return SDValue(N, 0);
1078}
1079
1080SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1081  FoldingSetNodeID ID;
1082  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1083  ID.AddInteger(Flags.getRawBits());
1084  void *IP = 0;
1085  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1086    return SDValue(E, 0);
1087  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1088  new (N) ARG_FLAGSSDNode(Flags);
1089  CSEMap.InsertNode(N, IP);
1090  AllNodes.push_back(N);
1091  return SDValue(N, 0);
1092}
1093
1094SDValue SelectionDAG::getValueType(MVT VT) {
1095  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1096    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1097
1098  SDNode *&N = VT.isExtended() ?
1099    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1100
1101  if (N) return SDValue(N, 0);
1102  N = NodeAllocator.Allocate<VTSDNode>();
1103  new (N) VTSDNode(VT);
1104  AllNodes.push_back(N);
1105  return SDValue(N, 0);
1106}
1107
1108SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1109  SDNode *&N = ExternalSymbols[Sym];
1110  if (N) return SDValue(N, 0);
1111  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1112  new (N) ExternalSymbolSDNode(false, Sym, VT);
1113  AllNodes.push_back(N);
1114  return SDValue(N, 0);
1115}
1116
1117SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1118  SDNode *&N = TargetExternalSymbols[Sym];
1119  if (N) return SDValue(N, 0);
1120  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1121  new (N) ExternalSymbolSDNode(true, Sym, VT);
1122  AllNodes.push_back(N);
1123  return SDValue(N, 0);
1124}
1125
1126SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1127  if ((unsigned)Cond >= CondCodeNodes.size())
1128    CondCodeNodes.resize(Cond+1);
1129
1130  if (CondCodeNodes[Cond] == 0) {
1131    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1132    new (N) CondCodeSDNode(Cond);
1133    CondCodeNodes[Cond] = N;
1134    AllNodes.push_back(N);
1135  }
1136  return SDValue(CondCodeNodes[Cond], 0);
1137}
1138
1139SDValue SelectionDAG::getConvertRndSat(MVT VT, DebugLoc dl,
1140                                       SDValue Val, SDValue DTy,
1141                                       SDValue STy, SDValue Rnd, SDValue Sat,
1142                                       ISD::CvtCode Code) {
1143  // If the src and dest types are the same and the conversion is between
1144  // integer types of the same sign or two floats, no conversion is necessary.
1145  if (DTy == STy &&
1146      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1147    return Val;
1148
1149  FoldingSetNodeID ID;
1150  void* IP = 0;
1151  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1152    return SDValue(E, 0);
1153  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1154  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1155  new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1156  CSEMap.InsertNode(N, IP);
1157  AllNodes.push_back(N);
1158  return SDValue(N, 0);
1159}
1160
1161SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1162  FoldingSetNodeID ID;
1163  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1164  ID.AddInteger(RegNo);
1165  void *IP = 0;
1166  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1167    return SDValue(E, 0);
1168  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1169  new (N) RegisterSDNode(RegNo, VT);
1170  CSEMap.InsertNode(N, IP);
1171  AllNodes.push_back(N);
1172  return SDValue(N, 0);
1173}
1174
1175SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1176                                      unsigned Line, unsigned Col,
1177                                      Value *CU) {
1178  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1179  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1180  AllNodes.push_back(N);
1181  return SDValue(N, 0);
1182}
1183
1184SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1185                               SDValue Root,
1186                               unsigned LabelID) {
1187  FoldingSetNodeID ID;
1188  SDValue Ops[] = { Root };
1189  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1190  ID.AddInteger(LabelID);
1191  void *IP = 0;
1192  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1193    return SDValue(E, 0);
1194  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1195  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1196  CSEMap.InsertNode(N, IP);
1197  AllNodes.push_back(N);
1198  return SDValue(N, 0);
1199}
1200
1201SDValue SelectionDAG::getSrcValue(const Value *V) {
1202  assert((!V || isa<PointerType>(V->getType())) &&
1203         "SrcValue is not a pointer?");
1204
1205  FoldingSetNodeID ID;
1206  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1207  ID.AddPointer(V);
1208
1209  void *IP = 0;
1210  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1211    return SDValue(E, 0);
1212
1213  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1214  new (N) SrcValueSDNode(V);
1215  CSEMap.InsertNode(N, IP);
1216  AllNodes.push_back(N);
1217  return SDValue(N, 0);
1218}
1219
1220SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1221#ifndef NDEBUG
1222  const Value *v = MO.getValue();
1223  assert((!v || isa<PointerType>(v->getType())) &&
1224         "SrcValue is not a pointer?");
1225#endif
1226
1227  FoldingSetNodeID ID;
1228  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1229  MO.Profile(ID);
1230
1231  void *IP = 0;
1232  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1233    return SDValue(E, 0);
1234
1235  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1236  new (N) MemOperandSDNode(MO);
1237  CSEMap.InsertNode(N, IP);
1238  AllNodes.push_back(N);
1239  return SDValue(N, 0);
1240}
1241
1242/// getShiftAmountOperand - Return the specified value casted to
1243/// the target's desired shift amount type.
1244SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1245  MVT OpTy = Op.getValueType();
1246  MVT ShTy = TLI.getShiftAmountTy();
1247  if (OpTy == ShTy || OpTy.isVector()) return Op;
1248
1249  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1250  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1251}
1252
1253/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1254/// specified value type.
1255SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1256  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1257  unsigned ByteSize = VT.getStoreSizeInBits()/8;
1258  const Type *Ty = VT.getTypeForMVT();
1259  unsigned StackAlign =
1260  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1261
1262  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1263  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1264}
1265
1266/// CreateStackTemporary - Create a stack temporary suitable for holding
1267/// either of the specified value types.
1268SDValue SelectionDAG::CreateStackTemporary(MVT VT1, MVT VT2) {
1269  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1270                            VT2.getStoreSizeInBits())/8;
1271  const Type *Ty1 = VT1.getTypeForMVT();
1272  const Type *Ty2 = VT2.getTypeForMVT();
1273  const TargetData *TD = TLI.getTargetData();
1274  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1275                            TD->getPrefTypeAlignment(Ty2));
1276
1277  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1278  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align);
1279  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1280}
1281
1282SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1283                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1284  // These setcc operations always fold.
1285  switch (Cond) {
1286  default: break;
1287  case ISD::SETFALSE:
1288  case ISD::SETFALSE2: return getConstant(0, VT);
1289  case ISD::SETTRUE:
1290  case ISD::SETTRUE2:  return getConstant(1, VT);
1291
1292  case ISD::SETOEQ:
1293  case ISD::SETOGT:
1294  case ISD::SETOGE:
1295  case ISD::SETOLT:
1296  case ISD::SETOLE:
1297  case ISD::SETONE:
1298  case ISD::SETO:
1299  case ISD::SETUO:
1300  case ISD::SETUEQ:
1301  case ISD::SETUNE:
1302    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1303    break;
1304  }
1305
1306  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1307    const APInt &C2 = N2C->getAPIntValue();
1308    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1309      const APInt &C1 = N1C->getAPIntValue();
1310
1311      switch (Cond) {
1312      default: assert(0 && "Unknown integer setcc!");
1313      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1314      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1315      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1316      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1317      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1318      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1319      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1320      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1321      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1322      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1323      }
1324    }
1325  }
1326  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1327    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1328      // No compile time operations on this type yet.
1329      if (N1C->getValueType(0) == MVT::ppcf128)
1330        return SDValue();
1331
1332      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1333      switch (Cond) {
1334      default: break;
1335      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1336                          return getUNDEF(VT);
1337                        // fall through
1338      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1339      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1340                          return getUNDEF(VT);
1341                        // fall through
1342      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1343                                           R==APFloat::cmpLessThan, VT);
1344      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1345                          return getUNDEF(VT);
1346                        // fall through
1347      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1348      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1349                          return getUNDEF(VT);
1350                        // fall through
1351      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1352      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1353                          return getUNDEF(VT);
1354                        // fall through
1355      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1356                                           R==APFloat::cmpEqual, VT);
1357      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1358                          return getUNDEF(VT);
1359                        // fall through
1360      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1361                                           R==APFloat::cmpEqual, VT);
1362      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1363      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1364      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1365                                           R==APFloat::cmpEqual, VT);
1366      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1367      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1368                                           R==APFloat::cmpLessThan, VT);
1369      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1370                                           R==APFloat::cmpUnordered, VT);
1371      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1372      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1373      }
1374    } else {
1375      // Ensure that the constant occurs on the RHS.
1376      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1377    }
1378  }
1379
1380  // Could not fold it.
1381  return SDValue();
1382}
1383
1384/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1385/// use this predicate to simplify operations downstream.
1386bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1387  unsigned BitWidth = Op.getValueSizeInBits();
1388  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1389}
1390
1391/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1392/// this predicate to simplify operations downstream.  Mask is known to be zero
1393/// for bits that V cannot have.
1394bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1395                                     unsigned Depth) const {
1396  APInt KnownZero, KnownOne;
1397  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1398  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1399  return (KnownZero & Mask) == Mask;
1400}
1401
1402/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1403/// known to be either zero or one and return them in the KnownZero/KnownOne
1404/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1405/// processing.
1406void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1407                                     APInt &KnownZero, APInt &KnownOne,
1408                                     unsigned Depth) const {
1409  unsigned BitWidth = Mask.getBitWidth();
1410  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1411         "Mask size mismatches value type size!");
1412
1413  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1414  if (Depth == 6 || Mask == 0)
1415    return;  // Limit search depth.
1416
1417  APInt KnownZero2, KnownOne2;
1418
1419  switch (Op.getOpcode()) {
1420  case ISD::Constant:
1421    // We know all of the bits for a constant!
1422    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1423    KnownZero = ~KnownOne & Mask;
1424    return;
1425  case ISD::AND:
1426    // If either the LHS or the RHS are Zero, the result is zero.
1427    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1428    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1429                      KnownZero2, KnownOne2, Depth+1);
1430    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1431    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1432
1433    // Output known-1 bits are only known if set in both the LHS & RHS.
1434    KnownOne &= KnownOne2;
1435    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1436    KnownZero |= KnownZero2;
1437    return;
1438  case ISD::OR:
1439    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1440    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1441                      KnownZero2, KnownOne2, Depth+1);
1442    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1443    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1444
1445    // Output known-0 bits are only known if clear in both the LHS & RHS.
1446    KnownZero &= KnownZero2;
1447    // Output known-1 are known to be set if set in either the LHS | RHS.
1448    KnownOne |= KnownOne2;
1449    return;
1450  case ISD::XOR: {
1451    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1452    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1453    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1454    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1455
1456    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1457    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1458    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1459    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1460    KnownZero = KnownZeroOut;
1461    return;
1462  }
1463  case ISD::MUL: {
1464    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1465    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1466    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1467    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1468    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1469
1470    // If low bits are zero in either operand, output low known-0 bits.
1471    // Also compute a conserative estimate for high known-0 bits.
1472    // More trickiness is possible, but this is sufficient for the
1473    // interesting case of alignment computation.
1474    KnownOne.clear();
1475    unsigned TrailZ = KnownZero.countTrailingOnes() +
1476                      KnownZero2.countTrailingOnes();
1477    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1478                               KnownZero2.countLeadingOnes(),
1479                               BitWidth) - BitWidth;
1480
1481    TrailZ = std::min(TrailZ, BitWidth);
1482    LeadZ = std::min(LeadZ, BitWidth);
1483    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1484                APInt::getHighBitsSet(BitWidth, LeadZ);
1485    KnownZero &= Mask;
1486    return;
1487  }
1488  case ISD::UDIV: {
1489    // For the purposes of computing leading zeros we can conservatively
1490    // treat a udiv as a logical right shift by the power of 2 known to
1491    // be less than the denominator.
1492    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1493    ComputeMaskedBits(Op.getOperand(0),
1494                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1495    unsigned LeadZ = KnownZero2.countLeadingOnes();
1496
1497    KnownOne2.clear();
1498    KnownZero2.clear();
1499    ComputeMaskedBits(Op.getOperand(1),
1500                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1501    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1502    if (RHSUnknownLeadingOnes != BitWidth)
1503      LeadZ = std::min(BitWidth,
1504                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1505
1506    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1507    return;
1508  }
1509  case ISD::SELECT:
1510    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1511    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1512    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1513    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1514
1515    // Only known if known in both the LHS and RHS.
1516    KnownOne &= KnownOne2;
1517    KnownZero &= KnownZero2;
1518    return;
1519  case ISD::SELECT_CC:
1520    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1521    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1522    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1523    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1524
1525    // Only known if known in both the LHS and RHS.
1526    KnownOne &= KnownOne2;
1527    KnownZero &= KnownZero2;
1528    return;
1529  case ISD::SADDO:
1530  case ISD::UADDO:
1531  case ISD::SSUBO:
1532  case ISD::USUBO:
1533  case ISD::SMULO:
1534  case ISD::UMULO:
1535    if (Op.getResNo() != 1)
1536      return;
1537    // The boolean result conforms to getBooleanContents.  Fall through.
1538  case ISD::SETCC:
1539    // If we know the result of a setcc has the top bits zero, use this info.
1540    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1541        BitWidth > 1)
1542      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1543    return;
1544  case ISD::SHL:
1545    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1546    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1547      unsigned ShAmt = SA->getZExtValue();
1548
1549      // If the shift count is an invalid immediate, don't do anything.
1550      if (ShAmt >= BitWidth)
1551        return;
1552
1553      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1554                        KnownZero, KnownOne, Depth+1);
1555      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1556      KnownZero <<= ShAmt;
1557      KnownOne  <<= ShAmt;
1558      // low bits known zero.
1559      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1560    }
1561    return;
1562  case ISD::SRL:
1563    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1564    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1565      unsigned ShAmt = SA->getZExtValue();
1566
1567      // If the shift count is an invalid immediate, don't do anything.
1568      if (ShAmt >= BitWidth)
1569        return;
1570
1571      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1572                        KnownZero, KnownOne, Depth+1);
1573      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1574      KnownZero = KnownZero.lshr(ShAmt);
1575      KnownOne  = KnownOne.lshr(ShAmt);
1576
1577      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1578      KnownZero |= HighBits;  // High bits known zero.
1579    }
1580    return;
1581  case ISD::SRA:
1582    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1583      unsigned ShAmt = SA->getZExtValue();
1584
1585      // If the shift count is an invalid immediate, don't do anything.
1586      if (ShAmt >= BitWidth)
1587        return;
1588
1589      APInt InDemandedMask = (Mask << ShAmt);
1590      // If any of the demanded bits are produced by the sign extension, we also
1591      // demand the input sign bit.
1592      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1593      if (HighBits.getBoolValue())
1594        InDemandedMask |= APInt::getSignBit(BitWidth);
1595
1596      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1597                        Depth+1);
1598      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1599      KnownZero = KnownZero.lshr(ShAmt);
1600      KnownOne  = KnownOne.lshr(ShAmt);
1601
1602      // Handle the sign bits.
1603      APInt SignBit = APInt::getSignBit(BitWidth);
1604      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1605
1606      if (KnownZero.intersects(SignBit)) {
1607        KnownZero |= HighBits;  // New bits are known zero.
1608      } else if (KnownOne.intersects(SignBit)) {
1609        KnownOne  |= HighBits;  // New bits are known one.
1610      }
1611    }
1612    return;
1613  case ISD::SIGN_EXTEND_INREG: {
1614    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1615    unsigned EBits = EVT.getSizeInBits();
1616
1617    // Sign extension.  Compute the demanded bits in the result that are not
1618    // present in the input.
1619    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1620
1621    APInt InSignBit = APInt::getSignBit(EBits);
1622    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1623
1624    // If the sign extended bits are demanded, we know that the sign
1625    // bit is demanded.
1626    InSignBit.zext(BitWidth);
1627    if (NewBits.getBoolValue())
1628      InputDemandedBits |= InSignBit;
1629
1630    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1631                      KnownZero, KnownOne, Depth+1);
1632    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1633
1634    // If the sign bit of the input is known set or clear, then we know the
1635    // top bits of the result.
1636    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1637      KnownZero |= NewBits;
1638      KnownOne  &= ~NewBits;
1639    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1640      KnownOne  |= NewBits;
1641      KnownZero &= ~NewBits;
1642    } else {                              // Input sign bit unknown
1643      KnownZero &= ~NewBits;
1644      KnownOne  &= ~NewBits;
1645    }
1646    return;
1647  }
1648  case ISD::CTTZ:
1649  case ISD::CTLZ:
1650  case ISD::CTPOP: {
1651    unsigned LowBits = Log2_32(BitWidth)+1;
1652    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1653    KnownOne.clear();
1654    return;
1655  }
1656  case ISD::LOAD: {
1657    if (ISD::isZEXTLoad(Op.getNode())) {
1658      LoadSDNode *LD = cast<LoadSDNode>(Op);
1659      MVT VT = LD->getMemoryVT();
1660      unsigned MemBits = VT.getSizeInBits();
1661      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1662    }
1663    return;
1664  }
1665  case ISD::ZERO_EXTEND: {
1666    MVT InVT = Op.getOperand(0).getValueType();
1667    unsigned InBits = InVT.getSizeInBits();
1668    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1669    APInt InMask    = Mask;
1670    InMask.trunc(InBits);
1671    KnownZero.trunc(InBits);
1672    KnownOne.trunc(InBits);
1673    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1674    KnownZero.zext(BitWidth);
1675    KnownOne.zext(BitWidth);
1676    KnownZero |= NewBits;
1677    return;
1678  }
1679  case ISD::SIGN_EXTEND: {
1680    MVT InVT = Op.getOperand(0).getValueType();
1681    unsigned InBits = InVT.getSizeInBits();
1682    APInt InSignBit = APInt::getSignBit(InBits);
1683    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1684    APInt InMask = Mask;
1685    InMask.trunc(InBits);
1686
1687    // If any of the sign extended bits are demanded, we know that the sign
1688    // bit is demanded. Temporarily set this bit in the mask for our callee.
1689    if (NewBits.getBoolValue())
1690      InMask |= InSignBit;
1691
1692    KnownZero.trunc(InBits);
1693    KnownOne.trunc(InBits);
1694    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1695
1696    // Note if the sign bit is known to be zero or one.
1697    bool SignBitKnownZero = KnownZero.isNegative();
1698    bool SignBitKnownOne  = KnownOne.isNegative();
1699    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1700           "Sign bit can't be known to be both zero and one!");
1701
1702    // If the sign bit wasn't actually demanded by our caller, we don't
1703    // want it set in the KnownZero and KnownOne result values. Reset the
1704    // mask and reapply it to the result values.
1705    InMask = Mask;
1706    InMask.trunc(InBits);
1707    KnownZero &= InMask;
1708    KnownOne  &= InMask;
1709
1710    KnownZero.zext(BitWidth);
1711    KnownOne.zext(BitWidth);
1712
1713    // If the sign bit is known zero or one, the top bits match.
1714    if (SignBitKnownZero)
1715      KnownZero |= NewBits;
1716    else if (SignBitKnownOne)
1717      KnownOne  |= NewBits;
1718    return;
1719  }
1720  case ISD::ANY_EXTEND: {
1721    MVT InVT = Op.getOperand(0).getValueType();
1722    unsigned InBits = InVT.getSizeInBits();
1723    APInt InMask = Mask;
1724    InMask.trunc(InBits);
1725    KnownZero.trunc(InBits);
1726    KnownOne.trunc(InBits);
1727    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1728    KnownZero.zext(BitWidth);
1729    KnownOne.zext(BitWidth);
1730    return;
1731  }
1732  case ISD::TRUNCATE: {
1733    MVT InVT = Op.getOperand(0).getValueType();
1734    unsigned InBits = InVT.getSizeInBits();
1735    APInt InMask = Mask;
1736    InMask.zext(InBits);
1737    KnownZero.zext(InBits);
1738    KnownOne.zext(InBits);
1739    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1740    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1741    KnownZero.trunc(BitWidth);
1742    KnownOne.trunc(BitWidth);
1743    break;
1744  }
1745  case ISD::AssertZext: {
1746    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1747    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1748    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1749                      KnownOne, Depth+1);
1750    KnownZero |= (~InMask) & Mask;
1751    return;
1752  }
1753  case ISD::FGETSIGN:
1754    // All bits are zero except the low bit.
1755    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1756    return;
1757
1758  case ISD::SUB: {
1759    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1760      // We know that the top bits of C-X are clear if X contains less bits
1761      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1762      // positive if we can prove that X is >= 0 and < 16.
1763      if (CLHS->getAPIntValue().isNonNegative()) {
1764        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1765        // NLZ can't be BitWidth with no sign bit
1766        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1767        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1768                          Depth+1);
1769
1770        // If all of the MaskV bits are known to be zero, then we know the
1771        // output top bits are zero, because we now know that the output is
1772        // from [0-C].
1773        if ((KnownZero2 & MaskV) == MaskV) {
1774          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1775          // Top bits known zero.
1776          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1777        }
1778      }
1779    }
1780  }
1781  // fall through
1782  case ISD::ADD: {
1783    // Output known-0 bits are known if clear or set in both the low clear bits
1784    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1785    // low 3 bits clear.
1786    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1787    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1788    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1789    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1790
1791    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1792    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1793    KnownZeroOut = std::min(KnownZeroOut,
1794                            KnownZero2.countTrailingOnes());
1795
1796    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1797    return;
1798  }
1799  case ISD::SREM:
1800    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1801      const APInt &RA = Rem->getAPIntValue();
1802      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1803        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1804        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1805        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1806
1807        // If the sign bit of the first operand is zero, the sign bit of
1808        // the result is zero. If the first operand has no one bits below
1809        // the second operand's single 1 bit, its sign will be zero.
1810        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1811          KnownZero2 |= ~LowBits;
1812
1813        KnownZero |= KnownZero2 & Mask;
1814
1815        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1816      }
1817    }
1818    return;
1819  case ISD::UREM: {
1820    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1821      const APInt &RA = Rem->getAPIntValue();
1822      if (RA.isPowerOf2()) {
1823        APInt LowBits = (RA - 1);
1824        APInt Mask2 = LowBits & Mask;
1825        KnownZero |= ~LowBits & Mask;
1826        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1827        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1828        break;
1829      }
1830    }
1831
1832    // Since the result is less than or equal to either operand, any leading
1833    // zero bits in either operand must also exist in the result.
1834    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1835    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1836                      Depth+1);
1837    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1838                      Depth+1);
1839
1840    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1841                                KnownZero2.countLeadingOnes());
1842    KnownOne.clear();
1843    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1844    return;
1845  }
1846  default:
1847    // Allow the target to implement this method for its nodes.
1848    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1849  case ISD::INTRINSIC_WO_CHAIN:
1850  case ISD::INTRINSIC_W_CHAIN:
1851  case ISD::INTRINSIC_VOID:
1852      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1853    }
1854    return;
1855  }
1856}
1857
1858/// ComputeNumSignBits - Return the number of times the sign bit of the
1859/// register is replicated into the other bits.  We know that at least 1 bit
1860/// is always equal to the sign bit (itself), but other cases can give us
1861/// information.  For example, immediately after an "SRA X, 2", we know that
1862/// the top 3 bits are all equal to each other, so we return 3.
1863unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1864  MVT VT = Op.getValueType();
1865  assert(VT.isInteger() && "Invalid VT!");
1866  unsigned VTBits = VT.getSizeInBits();
1867  unsigned Tmp, Tmp2;
1868  unsigned FirstAnswer = 1;
1869
1870  if (Depth == 6)
1871    return 1;  // Limit search depth.
1872
1873  switch (Op.getOpcode()) {
1874  default: break;
1875  case ISD::AssertSext:
1876    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1877    return VTBits-Tmp+1;
1878  case ISD::AssertZext:
1879    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1880    return VTBits-Tmp;
1881
1882  case ISD::Constant: {
1883    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1884    // If negative, return # leading ones.
1885    if (Val.isNegative())
1886      return Val.countLeadingOnes();
1887
1888    // Return # leading zeros.
1889    return Val.countLeadingZeros();
1890  }
1891
1892  case ISD::SIGN_EXTEND:
1893    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1894    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1895
1896  case ISD::SIGN_EXTEND_INREG:
1897    // Max of the input and what this extends.
1898    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1899    Tmp = VTBits-Tmp+1;
1900
1901    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1902    return std::max(Tmp, Tmp2);
1903
1904  case ISD::SRA:
1905    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1906    // SRA X, C   -> adds C sign bits.
1907    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1908      Tmp += C->getZExtValue();
1909      if (Tmp > VTBits) Tmp = VTBits;
1910    }
1911    return Tmp;
1912  case ISD::SHL:
1913    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1914      // shl destroys sign bits.
1915      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1916      if (C->getZExtValue() >= VTBits ||      // Bad shift.
1917          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
1918      return Tmp - C->getZExtValue();
1919    }
1920    break;
1921  case ISD::AND:
1922  case ISD::OR:
1923  case ISD::XOR:    // NOT is handled here.
1924    // Logical binary ops preserve the number of sign bits at the worst.
1925    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1926    if (Tmp != 1) {
1927      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1928      FirstAnswer = std::min(Tmp, Tmp2);
1929      // We computed what we know about the sign bits as our first
1930      // answer. Now proceed to the generic code that uses
1931      // ComputeMaskedBits, and pick whichever answer is better.
1932    }
1933    break;
1934
1935  case ISD::SELECT:
1936    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1937    if (Tmp == 1) return 1;  // Early out.
1938    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1939    return std::min(Tmp, Tmp2);
1940
1941  case ISD::SADDO:
1942  case ISD::UADDO:
1943  case ISD::SSUBO:
1944  case ISD::USUBO:
1945  case ISD::SMULO:
1946  case ISD::UMULO:
1947    if (Op.getResNo() != 1)
1948      break;
1949    // The boolean result conforms to getBooleanContents.  Fall through.
1950  case ISD::SETCC:
1951    // If setcc returns 0/-1, all bits are sign bits.
1952    if (TLI.getBooleanContents() ==
1953        TargetLowering::ZeroOrNegativeOneBooleanContent)
1954      return VTBits;
1955    break;
1956  case ISD::ROTL:
1957  case ISD::ROTR:
1958    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1959      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
1960
1961      // Handle rotate right by N like a rotate left by 32-N.
1962      if (Op.getOpcode() == ISD::ROTR)
1963        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1964
1965      // If we aren't rotating out all of the known-in sign bits, return the
1966      // number that are left.  This handles rotl(sext(x), 1) for example.
1967      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1968      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1969    }
1970    break;
1971  case ISD::ADD:
1972    // Add can have at most one carry bit.  Thus we know that the output
1973    // is, at worst, one more bit than the inputs.
1974    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1975    if (Tmp == 1) return 1;  // Early out.
1976
1977    // Special case decrementing a value (ADD X, -1):
1978    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1979      if (CRHS->isAllOnesValue()) {
1980        APInt KnownZero, KnownOne;
1981        APInt Mask = APInt::getAllOnesValue(VTBits);
1982        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1983
1984        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1985        // sign bits set.
1986        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1987          return VTBits;
1988
1989        // If we are subtracting one from a positive number, there is no carry
1990        // out of the result.
1991        if (KnownZero.isNegative())
1992          return Tmp;
1993      }
1994
1995    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1996    if (Tmp2 == 1) return 1;
1997      return std::min(Tmp, Tmp2)-1;
1998    break;
1999
2000  case ISD::SUB:
2001    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2002    if (Tmp2 == 1) return 1;
2003
2004    // Handle NEG.
2005    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2006      if (CLHS->isNullValue()) {
2007        APInt KnownZero, KnownOne;
2008        APInt Mask = APInt::getAllOnesValue(VTBits);
2009        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2010        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2011        // sign bits set.
2012        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2013          return VTBits;
2014
2015        // If the input is known to be positive (the sign bit is known clear),
2016        // the output of the NEG has the same number of sign bits as the input.
2017        if (KnownZero.isNegative())
2018          return Tmp2;
2019
2020        // Otherwise, we treat this like a SUB.
2021      }
2022
2023    // Sub can have at most one carry bit.  Thus we know that the output
2024    // is, at worst, one more bit than the inputs.
2025    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2026    if (Tmp == 1) return 1;  // Early out.
2027      return std::min(Tmp, Tmp2)-1;
2028    break;
2029  case ISD::TRUNCATE:
2030    // FIXME: it's tricky to do anything useful for this, but it is an important
2031    // case for targets like X86.
2032    break;
2033  }
2034
2035  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2036  if (Op.getOpcode() == ISD::LOAD) {
2037    LoadSDNode *LD = cast<LoadSDNode>(Op);
2038    unsigned ExtType = LD->getExtensionType();
2039    switch (ExtType) {
2040    default: break;
2041    case ISD::SEXTLOAD:    // '17' bits known
2042      Tmp = LD->getMemoryVT().getSizeInBits();
2043      return VTBits-Tmp+1;
2044    case ISD::ZEXTLOAD:    // '16' bits known
2045      Tmp = LD->getMemoryVT().getSizeInBits();
2046      return VTBits-Tmp;
2047    }
2048  }
2049
2050  // Allow the target to implement this method for its nodes.
2051  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2052      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2053      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2054      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2055    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2056    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2057  }
2058
2059  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2060  // use this information.
2061  APInt KnownZero, KnownOne;
2062  APInt Mask = APInt::getAllOnesValue(VTBits);
2063  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2064
2065  if (KnownZero.isNegative()) {        // sign bit is 0
2066    Mask = KnownZero;
2067  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2068    Mask = KnownOne;
2069  } else {
2070    // Nothing known.
2071    return FirstAnswer;
2072  }
2073
2074  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2075  // the number of identical bits in the top of the input value.
2076  Mask = ~Mask;
2077  Mask <<= Mask.getBitWidth()-VTBits;
2078  // Return # leading zeros.  We use 'min' here in case Val was zero before
2079  // shifting.  We don't want to return '64' as for an i32 "0".
2080  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2081}
2082
2083
2084bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2085  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2086  if (!GA) return false;
2087  if (GA->getOffset() != 0) return false;
2088  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2089  if (!GV) return false;
2090  MachineModuleInfo *MMI = getMachineModuleInfo();
2091  return MMI && MMI->hasDebugInfo();
2092}
2093
2094
2095/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2096/// element of the result of the vector shuffle.
2097SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
2098  MVT VT = N->getValueType(0);
2099  DebugLoc dl = N->getDebugLoc();
2100  SDValue PermMask = N->getOperand(2);
2101  SDValue Idx = PermMask.getOperand(i);
2102  if (Idx.getOpcode() == ISD::UNDEF)
2103    return getUNDEF(VT.getVectorElementType());
2104  unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
2105  unsigned NumElems = PermMask.getNumOperands();
2106  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2107  Index %= NumElems;
2108
2109  if (V.getOpcode() == ISD::BIT_CONVERT) {
2110    V = V.getOperand(0);
2111    MVT VVT = V.getValueType();
2112    if (!VVT.isVector() || VVT.getVectorNumElements() != NumElems)
2113      return SDValue();
2114  }
2115  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2116    return (Index == 0) ? V.getOperand(0)
2117                      : getUNDEF(VT.getVectorElementType());
2118  if (V.getOpcode() == ISD::BUILD_VECTOR)
2119    return V.getOperand(Index);
2120  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
2121    return getShuffleScalarElt(V.getNode(), Index);
2122  return SDValue();
2123}
2124
2125
2126/// getNode - Gets or creates the specified node.
2127///
2128SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT) {
2129  FoldingSetNodeID ID;
2130  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2131  void *IP = 0;
2132  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2133    return SDValue(E, 0);
2134  SDNode *N = NodeAllocator.Allocate<SDNode>();
2135  new (N) SDNode(Opcode, DL, getVTList(VT));
2136  CSEMap.InsertNode(N, IP);
2137
2138  AllNodes.push_back(N);
2139#ifndef NDEBUG
2140  VerifyNode(N);
2141#endif
2142  return SDValue(N, 0);
2143}
2144
2145SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2146                              MVT VT, SDValue Operand) {
2147  // Constant fold unary operations with an integer constant operand.
2148  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2149    const APInt &Val = C->getAPIntValue();
2150    unsigned BitWidth = VT.getSizeInBits();
2151    switch (Opcode) {
2152    default: break;
2153    case ISD::SIGN_EXTEND:
2154      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2155    case ISD::ANY_EXTEND:
2156    case ISD::ZERO_EXTEND:
2157    case ISD::TRUNCATE:
2158      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2159    case ISD::UINT_TO_FP:
2160    case ISD::SINT_TO_FP: {
2161      const uint64_t zero[] = {0, 0};
2162      // No compile time operations on this type.
2163      if (VT==MVT::ppcf128)
2164        break;
2165      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2166      (void)apf.convertFromAPInt(Val,
2167                                 Opcode==ISD::SINT_TO_FP,
2168                                 APFloat::rmNearestTiesToEven);
2169      return getConstantFP(apf, VT);
2170    }
2171    case ISD::BIT_CONVERT:
2172      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2173        return getConstantFP(Val.bitsToFloat(), VT);
2174      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2175        return getConstantFP(Val.bitsToDouble(), VT);
2176      break;
2177    case ISD::BSWAP:
2178      return getConstant(Val.byteSwap(), VT);
2179    case ISD::CTPOP:
2180      return getConstant(Val.countPopulation(), VT);
2181    case ISD::CTLZ:
2182      return getConstant(Val.countLeadingZeros(), VT);
2183    case ISD::CTTZ:
2184      return getConstant(Val.countTrailingZeros(), VT);
2185    }
2186  }
2187
2188  // Constant fold unary operations with a floating point constant operand.
2189  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2190    APFloat V = C->getValueAPF();    // make copy
2191    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2192      switch (Opcode) {
2193      case ISD::FNEG:
2194        V.changeSign();
2195        return getConstantFP(V, VT);
2196      case ISD::FABS:
2197        V.clearSign();
2198        return getConstantFP(V, VT);
2199      case ISD::FP_ROUND:
2200      case ISD::FP_EXTEND: {
2201        bool ignored;
2202        // This can return overflow, underflow, or inexact; we don't care.
2203        // FIXME need to be more flexible about rounding mode.
2204        (void)V.convert(*MVTToAPFloatSemantics(VT),
2205                        APFloat::rmNearestTiesToEven, &ignored);
2206        return getConstantFP(V, VT);
2207      }
2208      case ISD::FP_TO_SINT:
2209      case ISD::FP_TO_UINT: {
2210        integerPart x;
2211        bool ignored;
2212        assert(integerPartWidth >= 64);
2213        // FIXME need to be more flexible about rounding mode.
2214        APFloat::opStatus s = V.convertToInteger(&x, 64U,
2215                              Opcode==ISD::FP_TO_SINT,
2216                              APFloat::rmTowardZero, &ignored);
2217        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2218          break;
2219        return getConstant(x, VT);
2220      }
2221      case ISD::BIT_CONVERT:
2222        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2223          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2224        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2225          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2226        break;
2227      }
2228    }
2229  }
2230
2231  unsigned OpOpcode = Operand.getNode()->getOpcode();
2232  switch (Opcode) {
2233  case ISD::TokenFactor:
2234  case ISD::MERGE_VALUES:
2235  case ISD::CONCAT_VECTORS:
2236    return Operand;         // Factor, merge or concat of one node?  No need.
2237  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2238  case ISD::FP_EXTEND:
2239    assert(VT.isFloatingPoint() &&
2240           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2241    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2242    if (Operand.getOpcode() == ISD::UNDEF)
2243      return getUNDEF(VT);
2244    break;
2245  case ISD::SIGN_EXTEND:
2246    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2247           "Invalid SIGN_EXTEND!");
2248    if (Operand.getValueType() == VT) return Operand;   // noop extension
2249    assert(Operand.getValueType().bitsLT(VT)
2250           && "Invalid sext node, dst < src!");
2251    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2252      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2253    break;
2254  case ISD::ZERO_EXTEND:
2255    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2256           "Invalid ZERO_EXTEND!");
2257    if (Operand.getValueType() == VT) return Operand;   // noop extension
2258    assert(Operand.getValueType().bitsLT(VT)
2259           && "Invalid zext node, dst < src!");
2260    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2261      return getNode(ISD::ZERO_EXTEND, DL, VT,
2262                     Operand.getNode()->getOperand(0));
2263    break;
2264  case ISD::ANY_EXTEND:
2265    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2266           "Invalid ANY_EXTEND!");
2267    if (Operand.getValueType() == VT) return Operand;   // noop extension
2268    assert(Operand.getValueType().bitsLT(VT)
2269           && "Invalid anyext node, dst < src!");
2270    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2271      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2272      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2273    break;
2274  case ISD::TRUNCATE:
2275    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2276           "Invalid TRUNCATE!");
2277    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2278    assert(Operand.getValueType().bitsGT(VT)
2279           && "Invalid truncate node, src < dst!");
2280    if (OpOpcode == ISD::TRUNCATE)
2281      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2282    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2283             OpOpcode == ISD::ANY_EXTEND) {
2284      // If the source is smaller than the dest, we still need an extend.
2285      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2286        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2287      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2288        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2289      else
2290        return Operand.getNode()->getOperand(0);
2291    }
2292    break;
2293  case ISD::BIT_CONVERT:
2294    // Basic sanity checking.
2295    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2296           && "Cannot BIT_CONVERT between types of different sizes!");
2297    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2298    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2299      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2300    if (OpOpcode == ISD::UNDEF)
2301      return getUNDEF(VT);
2302    break;
2303  case ISD::SCALAR_TO_VECTOR:
2304    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2305           (VT.getVectorElementType() == Operand.getValueType() ||
2306            (VT.getVectorElementType().isInteger() &&
2307             Operand.getValueType().isInteger() &&
2308             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2309           "Illegal SCALAR_TO_VECTOR node!");
2310    if (OpOpcode == ISD::UNDEF)
2311      return getUNDEF(VT);
2312    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2313    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2314        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2315        Operand.getConstantOperandVal(1) == 0 &&
2316        Operand.getOperand(0).getValueType() == VT)
2317      return Operand.getOperand(0);
2318    break;
2319  case ISD::FNEG:
2320    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2321    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2322      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2323                     Operand.getNode()->getOperand(0));
2324    if (OpOpcode == ISD::FNEG)  // --X -> X
2325      return Operand.getNode()->getOperand(0);
2326    break;
2327  case ISD::FABS:
2328    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2329      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2330    break;
2331  }
2332
2333  SDNode *N;
2334  SDVTList VTs = getVTList(VT);
2335  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2336    FoldingSetNodeID ID;
2337    SDValue Ops[1] = { Operand };
2338    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2339    void *IP = 0;
2340    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2341      return SDValue(E, 0);
2342    N = NodeAllocator.Allocate<UnarySDNode>();
2343    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2344    CSEMap.InsertNode(N, IP);
2345  } else {
2346    N = NodeAllocator.Allocate<UnarySDNode>();
2347    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2348  }
2349
2350  AllNodes.push_back(N);
2351#ifndef NDEBUG
2352  VerifyNode(N);
2353#endif
2354  return SDValue(N, 0);
2355}
2356
2357SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2358                                             MVT VT,
2359                                             ConstantSDNode *Cst1,
2360                                             ConstantSDNode *Cst2) {
2361  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2362
2363  switch (Opcode) {
2364  case ISD::ADD:  return getConstant(C1 + C2, VT);
2365  case ISD::SUB:  return getConstant(C1 - C2, VT);
2366  case ISD::MUL:  return getConstant(C1 * C2, VT);
2367  case ISD::UDIV:
2368    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2369    break;
2370  case ISD::UREM:
2371    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2372    break;
2373  case ISD::SDIV:
2374    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2375    break;
2376  case ISD::SREM:
2377    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2378    break;
2379  case ISD::AND:  return getConstant(C1 & C2, VT);
2380  case ISD::OR:   return getConstant(C1 | C2, VT);
2381  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2382  case ISD::SHL:  return getConstant(C1 << C2, VT);
2383  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2384  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2385  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2386  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2387  default: break;
2388  }
2389
2390  return SDValue();
2391}
2392
2393SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2394                              SDValue N1, SDValue N2) {
2395  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2396  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2397  switch (Opcode) {
2398  default: break;
2399  case ISD::TokenFactor:
2400    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2401           N2.getValueType() == MVT::Other && "Invalid token factor!");
2402    // Fold trivial token factors.
2403    if (N1.getOpcode() == ISD::EntryToken) return N2;
2404    if (N2.getOpcode() == ISD::EntryToken) return N1;
2405    if (N1 == N2) return N1;
2406    break;
2407  case ISD::CONCAT_VECTORS:
2408    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2409    // one big BUILD_VECTOR.
2410    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2411        N2.getOpcode() == ISD::BUILD_VECTOR) {
2412      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2413      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2414      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2415    }
2416    break;
2417  case ISD::AND:
2418    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2419           N1.getValueType() == VT && "Binary operator types must match!");
2420    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2421    // worth handling here.
2422    if (N2C && N2C->isNullValue())
2423      return N2;
2424    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2425      return N1;
2426    break;
2427  case ISD::OR:
2428  case ISD::XOR:
2429  case ISD::ADD:
2430  case ISD::SUB:
2431    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2432           N1.getValueType() == VT && "Binary operator types must match!");
2433    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2434    // it's worth handling here.
2435    if (N2C && N2C->isNullValue())
2436      return N1;
2437    break;
2438  case ISD::UDIV:
2439  case ISD::UREM:
2440  case ISD::MULHU:
2441  case ISD::MULHS:
2442  case ISD::MUL:
2443  case ISD::SDIV:
2444  case ISD::SREM:
2445    assert(VT.isInteger() && "This operator does not apply to FP types!");
2446    // fall through
2447  case ISD::FADD:
2448  case ISD::FSUB:
2449  case ISD::FMUL:
2450  case ISD::FDIV:
2451  case ISD::FREM:
2452    if (UnsafeFPMath) {
2453      if (Opcode == ISD::FADD) {
2454        // 0+x --> x
2455        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2456          if (CFP->getValueAPF().isZero())
2457            return N2;
2458        // x+0 --> x
2459        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2460          if (CFP->getValueAPF().isZero())
2461            return N1;
2462      } else if (Opcode == ISD::FSUB) {
2463        // x-0 --> x
2464        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2465          if (CFP->getValueAPF().isZero())
2466            return N1;
2467      }
2468    }
2469    assert(N1.getValueType() == N2.getValueType() &&
2470           N1.getValueType() == VT && "Binary operator types must match!");
2471    break;
2472  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2473    assert(N1.getValueType() == VT &&
2474           N1.getValueType().isFloatingPoint() &&
2475           N2.getValueType().isFloatingPoint() &&
2476           "Invalid FCOPYSIGN!");
2477    break;
2478  case ISD::SHL:
2479  case ISD::SRA:
2480  case ISD::SRL:
2481  case ISD::ROTL:
2482  case ISD::ROTR:
2483    assert(VT == N1.getValueType() &&
2484           "Shift operators return type must be the same as their first arg");
2485    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2486           "Shifts only work on integers");
2487
2488    // Always fold shifts of i1 values so the code generator doesn't need to
2489    // handle them.  Since we know the size of the shift has to be less than the
2490    // size of the value, the shift/rotate count is guaranteed to be zero.
2491    if (VT == MVT::i1)
2492      return N1;
2493    break;
2494  case ISD::FP_ROUND_INREG: {
2495    MVT EVT = cast<VTSDNode>(N2)->getVT();
2496    assert(VT == N1.getValueType() && "Not an inreg round!");
2497    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2498           "Cannot FP_ROUND_INREG integer types");
2499    assert(EVT.bitsLE(VT) && "Not rounding down!");
2500    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2501    break;
2502  }
2503  case ISD::FP_ROUND:
2504    assert(VT.isFloatingPoint() &&
2505           N1.getValueType().isFloatingPoint() &&
2506           VT.bitsLE(N1.getValueType()) &&
2507           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2508    if (N1.getValueType() == VT) return N1;  // noop conversion.
2509    break;
2510  case ISD::AssertSext:
2511  case ISD::AssertZext: {
2512    MVT EVT = cast<VTSDNode>(N2)->getVT();
2513    assert(VT == N1.getValueType() && "Not an inreg extend!");
2514    assert(VT.isInteger() && EVT.isInteger() &&
2515           "Cannot *_EXTEND_INREG FP types");
2516    assert(EVT.bitsLE(VT) && "Not extending!");
2517    if (VT == EVT) return N1; // noop assertion.
2518    break;
2519  }
2520  case ISD::SIGN_EXTEND_INREG: {
2521    MVT EVT = cast<VTSDNode>(N2)->getVT();
2522    assert(VT == N1.getValueType() && "Not an inreg extend!");
2523    assert(VT.isInteger() && EVT.isInteger() &&
2524           "Cannot *_EXTEND_INREG FP types");
2525    assert(EVT.bitsLE(VT) && "Not extending!");
2526    if (EVT == VT) return N1;  // Not actually extending
2527
2528    if (N1C) {
2529      APInt Val = N1C->getAPIntValue();
2530      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2531      Val <<= Val.getBitWidth()-FromBits;
2532      Val = Val.ashr(Val.getBitWidth()-FromBits);
2533      return getConstant(Val, VT);
2534    }
2535    break;
2536  }
2537  case ISD::EXTRACT_VECTOR_ELT:
2538    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2539    if (N1.getOpcode() == ISD::UNDEF)
2540      return getUNDEF(VT);
2541
2542    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2543    // expanding copies of large vectors from registers.
2544    if (N2C &&
2545        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2546        N1.getNumOperands() > 0) {
2547      unsigned Factor =
2548        N1.getOperand(0).getValueType().getVectorNumElements();
2549      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2550                     N1.getOperand(N2C->getZExtValue() / Factor),
2551                     getConstant(N2C->getZExtValue() % Factor,
2552                                 N2.getValueType()));
2553    }
2554
2555    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2556    // expanding large vector constants.
2557    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2558      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2559      if (Elt.getValueType() != VT) {
2560        // If the vector element type is not legal, the BUILD_VECTOR operands
2561        // are promoted and implicitly truncated.  Make that explicit here.
2562        assert(Elt.getValueType() == TLI.getTypeToTransformTo(VT) &&
2563               "Bad type for BUILD_VECTOR operand");
2564        Elt = getNode(ISD::TRUNCATE, DL, VT, Elt);
2565      }
2566      return Elt;
2567    }
2568
2569    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2570    // operations are lowered to scalars.
2571    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2572      // If the indices are the same, return the inserted element.
2573      if (N1.getOperand(2) == N2)
2574        return N1.getOperand(1);
2575      // If the indices are known different, extract the element from
2576      // the original vector.
2577      else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2578               isa<ConstantSDNode>(N2))
2579        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2580    }
2581    break;
2582  case ISD::EXTRACT_ELEMENT:
2583    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2584    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2585           (N1.getValueType().isInteger() == VT.isInteger()) &&
2586           "Wrong types for EXTRACT_ELEMENT!");
2587
2588    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2589    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2590    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2591    if (N1.getOpcode() == ISD::BUILD_PAIR)
2592      return N1.getOperand(N2C->getZExtValue());
2593
2594    // EXTRACT_ELEMENT of a constant int is also very common.
2595    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2596      unsigned ElementSize = VT.getSizeInBits();
2597      unsigned Shift = ElementSize * N2C->getZExtValue();
2598      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2599      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2600    }
2601    break;
2602  case ISD::EXTRACT_SUBVECTOR:
2603    if (N1.getValueType() == VT) // Trivial extraction.
2604      return N1;
2605    break;
2606  }
2607
2608  if (N1C) {
2609    if (N2C) {
2610      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2611      if (SV.getNode()) return SV;
2612    } else {      // Cannonicalize constant to RHS if commutative
2613      if (isCommutativeBinOp(Opcode)) {
2614        std::swap(N1C, N2C);
2615        std::swap(N1, N2);
2616      }
2617    }
2618  }
2619
2620  // Constant fold FP operations.
2621  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2622  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2623  if (N1CFP) {
2624    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2625      // Cannonicalize constant to RHS if commutative
2626      std::swap(N1CFP, N2CFP);
2627      std::swap(N1, N2);
2628    } else if (N2CFP && VT != MVT::ppcf128) {
2629      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2630      APFloat::opStatus s;
2631      switch (Opcode) {
2632      case ISD::FADD:
2633        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2634        if (s != APFloat::opInvalidOp)
2635          return getConstantFP(V1, VT);
2636        break;
2637      case ISD::FSUB:
2638        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2639        if (s!=APFloat::opInvalidOp)
2640          return getConstantFP(V1, VT);
2641        break;
2642      case ISD::FMUL:
2643        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2644        if (s!=APFloat::opInvalidOp)
2645          return getConstantFP(V1, VT);
2646        break;
2647      case ISD::FDIV:
2648        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2649        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2650          return getConstantFP(V1, VT);
2651        break;
2652      case ISD::FREM :
2653        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2654        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2655          return getConstantFP(V1, VT);
2656        break;
2657      case ISD::FCOPYSIGN:
2658        V1.copySign(V2);
2659        return getConstantFP(V1, VT);
2660      default: break;
2661      }
2662    }
2663  }
2664
2665  // Canonicalize an UNDEF to the RHS, even over a constant.
2666  if (N1.getOpcode() == ISD::UNDEF) {
2667    if (isCommutativeBinOp(Opcode)) {
2668      std::swap(N1, N2);
2669    } else {
2670      switch (Opcode) {
2671      case ISD::FP_ROUND_INREG:
2672      case ISD::SIGN_EXTEND_INREG:
2673      case ISD::SUB:
2674      case ISD::FSUB:
2675      case ISD::FDIV:
2676      case ISD::FREM:
2677      case ISD::SRA:
2678        return N1;     // fold op(undef, arg2) -> undef
2679      case ISD::UDIV:
2680      case ISD::SDIV:
2681      case ISD::UREM:
2682      case ISD::SREM:
2683      case ISD::SRL:
2684      case ISD::SHL:
2685        if (!VT.isVector())
2686          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2687        // For vectors, we can't easily build an all zero vector, just return
2688        // the LHS.
2689        return N2;
2690      }
2691    }
2692  }
2693
2694  // Fold a bunch of operators when the RHS is undef.
2695  if (N2.getOpcode() == ISD::UNDEF) {
2696    switch (Opcode) {
2697    case ISD::XOR:
2698      if (N1.getOpcode() == ISD::UNDEF)
2699        // Handle undef ^ undef -> 0 special case. This is a common
2700        // idiom (misuse).
2701        return getConstant(0, VT);
2702      // fallthrough
2703    case ISD::ADD:
2704    case ISD::ADDC:
2705    case ISD::ADDE:
2706    case ISD::SUB:
2707    case ISD::FADD:
2708    case ISD::FSUB:
2709    case ISD::FMUL:
2710    case ISD::FDIV:
2711    case ISD::FREM:
2712    case ISD::UDIV:
2713    case ISD::SDIV:
2714    case ISD::UREM:
2715    case ISD::SREM:
2716      return N2;       // fold op(arg1, undef) -> undef
2717    case ISD::MUL:
2718    case ISD::AND:
2719    case ISD::SRL:
2720    case ISD::SHL:
2721      if (!VT.isVector())
2722        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2723      // For vectors, we can't easily build an all zero vector, just return
2724      // the LHS.
2725      return N1;
2726    case ISD::OR:
2727      if (!VT.isVector())
2728        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2729      // For vectors, we can't easily build an all one vector, just return
2730      // the LHS.
2731      return N1;
2732    case ISD::SRA:
2733      return N1;
2734    }
2735  }
2736
2737  // Memoize this node if possible.
2738  SDNode *N;
2739  SDVTList VTs = getVTList(VT);
2740  if (VT != MVT::Flag) {
2741    SDValue Ops[] = { N1, N2 };
2742    FoldingSetNodeID ID;
2743    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2744    void *IP = 0;
2745    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2746      return SDValue(E, 0);
2747    N = NodeAllocator.Allocate<BinarySDNode>();
2748    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2749    CSEMap.InsertNode(N, IP);
2750  } else {
2751    N = NodeAllocator.Allocate<BinarySDNode>();
2752    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2753  }
2754
2755  AllNodes.push_back(N);
2756#ifndef NDEBUG
2757  VerifyNode(N);
2758#endif
2759  return SDValue(N, 0);
2760}
2761
2762SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2763                              SDValue N1, SDValue N2, SDValue N3) {
2764  // Perform various simplifications.
2765  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2766  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2767  switch (Opcode) {
2768  case ISD::CONCAT_VECTORS:
2769    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2770    // one big BUILD_VECTOR.
2771    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2772        N2.getOpcode() == ISD::BUILD_VECTOR &&
2773        N3.getOpcode() == ISD::BUILD_VECTOR) {
2774      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2775      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2776      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2777      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2778    }
2779    break;
2780  case ISD::SETCC: {
2781    // Use FoldSetCC to simplify SETCC's.
2782    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2783    if (Simp.getNode()) return Simp;
2784    break;
2785  }
2786  case ISD::SELECT:
2787    if (N1C) {
2788     if (N1C->getZExtValue())
2789        return N2;             // select true, X, Y -> X
2790      else
2791        return N3;             // select false, X, Y -> Y
2792    }
2793
2794    if (N2 == N3) return N2;   // select C, X, X -> X
2795    break;
2796  case ISD::BRCOND:
2797    if (N2C) {
2798      if (N2C->getZExtValue()) // Unconditional branch
2799        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
2800      else
2801        return N1;         // Never-taken branch
2802    }
2803    break;
2804  case ISD::VECTOR_SHUFFLE:
2805    assert(N1.getValueType() == N2.getValueType() &&
2806           N1.getValueType().isVector() &&
2807           VT.isVector() && N3.getValueType().isVector() &&
2808           N3.getOpcode() == ISD::BUILD_VECTOR &&
2809           VT.getVectorNumElements() == N3.getNumOperands() &&
2810           "Illegal VECTOR_SHUFFLE node!");
2811    break;
2812  case ISD::BIT_CONVERT:
2813    // Fold bit_convert nodes from a type to themselves.
2814    if (N1.getValueType() == VT)
2815      return N1;
2816    break;
2817  }
2818
2819  // Memoize node if it doesn't produce a flag.
2820  SDNode *N;
2821  SDVTList VTs = getVTList(VT);
2822  if (VT != MVT::Flag) {
2823    SDValue Ops[] = { N1, N2, N3 };
2824    FoldingSetNodeID ID;
2825    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2826    void *IP = 0;
2827    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2828      return SDValue(E, 0);
2829    N = NodeAllocator.Allocate<TernarySDNode>();
2830    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2831    CSEMap.InsertNode(N, IP);
2832  } else {
2833    N = NodeAllocator.Allocate<TernarySDNode>();
2834    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2835  }
2836  AllNodes.push_back(N);
2837#ifndef NDEBUG
2838  VerifyNode(N);
2839#endif
2840  return SDValue(N, 0);
2841}
2842
2843SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2844                              SDValue N1, SDValue N2, SDValue N3,
2845                              SDValue N4) {
2846  SDValue Ops[] = { N1, N2, N3, N4 };
2847  return getNode(Opcode, DL, VT, Ops, 4);
2848}
2849
2850SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2851                              SDValue N1, SDValue N2, SDValue N3,
2852                              SDValue N4, SDValue N5) {
2853  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2854  return getNode(Opcode, DL, VT, Ops, 5);
2855}
2856
2857/// getMemsetValue - Vectorized representation of the memset value
2858/// operand.
2859static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG,
2860                              DebugLoc dl) {
2861  unsigned NumBits = VT.isVector() ?
2862    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2863  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2864    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2865    unsigned Shift = 8;
2866    for (unsigned i = NumBits; i > 8; i >>= 1) {
2867      Val = (Val << Shift) | Val;
2868      Shift <<= 1;
2869    }
2870    if (VT.isInteger())
2871      return DAG.getConstant(Val, VT);
2872    return DAG.getConstantFP(APFloat(Val), VT);
2873  }
2874
2875  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2876  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
2877  unsigned Shift = 8;
2878  for (unsigned i = NumBits; i > 8; i >>= 1) {
2879    Value = DAG.getNode(ISD::OR, dl, VT,
2880                        DAG.getNode(ISD::SHL, dl, VT, Value,
2881                                    DAG.getConstant(Shift,
2882                                                    TLI.getShiftAmountTy())),
2883                        Value);
2884    Shift <<= 1;
2885  }
2886
2887  return Value;
2888}
2889
2890/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2891/// used when a memcpy is turned into a memset when the source is a constant
2892/// string ptr.
2893static SDValue getMemsetStringVal(MVT VT, DebugLoc dl, SelectionDAG &DAG,
2894                                    const TargetLowering &TLI,
2895                                    std::string &Str, unsigned Offset) {
2896  // Handle vector with all elements zero.
2897  if (Str.empty()) {
2898    if (VT.isInteger())
2899      return DAG.getConstant(0, VT);
2900    unsigned NumElts = VT.getVectorNumElements();
2901    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2902    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
2903                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2904  }
2905
2906  assert(!VT.isVector() && "Can't handle vector type here!");
2907  unsigned NumBits = VT.getSizeInBits();
2908  unsigned MSB = NumBits / 8;
2909  uint64_t Val = 0;
2910  if (TLI.isLittleEndian())
2911    Offset = Offset + MSB - 1;
2912  for (unsigned i = 0; i != MSB; ++i) {
2913    Val = (Val << 8) | (unsigned char)Str[Offset];
2914    Offset += TLI.isLittleEndian() ? -1 : 1;
2915  }
2916  return DAG.getConstant(Val, VT);
2917}
2918
2919/// getMemBasePlusOffset - Returns base and offset node for the
2920///
2921static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
2922                                      SelectionDAG &DAG) {
2923  MVT VT = Base.getValueType();
2924  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
2925                     VT, Base, DAG.getConstant(Offset, VT));
2926}
2927
2928/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2929///
2930static bool isMemSrcFromString(SDValue Src, std::string &Str) {
2931  unsigned SrcDelta = 0;
2932  GlobalAddressSDNode *G = NULL;
2933  if (Src.getOpcode() == ISD::GlobalAddress)
2934    G = cast<GlobalAddressSDNode>(Src);
2935  else if (Src.getOpcode() == ISD::ADD &&
2936           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2937           Src.getOperand(1).getOpcode() == ISD::Constant) {
2938    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2939    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
2940  }
2941  if (!G)
2942    return false;
2943
2944  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2945  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
2946    return true;
2947
2948  return false;
2949}
2950
2951/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2952/// to replace the memset / memcpy is below the threshold. It also returns the
2953/// types of the sequence of memory ops to perform memset / memcpy.
2954static
2955bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2956                              SDValue Dst, SDValue Src,
2957                              unsigned Limit, uint64_t Size, unsigned &Align,
2958                              std::string &Str, bool &isSrcStr,
2959                              SelectionDAG &DAG,
2960                              const TargetLowering &TLI) {
2961  isSrcStr = isMemSrcFromString(Src, Str);
2962  bool isSrcConst = isa<ConstantSDNode>(Src);
2963  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2964  MVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2965  if (VT != MVT::iAny) {
2966    unsigned NewAlign = (unsigned)
2967      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
2968    // If source is a string constant, this will require an unaligned load.
2969    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2970      if (Dst.getOpcode() != ISD::FrameIndex) {
2971        // Can't change destination alignment. It requires a unaligned store.
2972        if (AllowUnalign)
2973          VT = MVT::iAny;
2974      } else {
2975        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2976        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2977        if (MFI->isFixedObjectIndex(FI)) {
2978          // Can't change destination alignment. It requires a unaligned store.
2979          if (AllowUnalign)
2980            VT = MVT::iAny;
2981        } else {
2982          // Give the stack frame object a larger alignment if needed.
2983          if (MFI->getObjectAlignment(FI) < NewAlign)
2984            MFI->setObjectAlignment(FI, NewAlign);
2985          Align = NewAlign;
2986        }
2987      }
2988    }
2989  }
2990
2991  if (VT == MVT::iAny) {
2992    if (AllowUnalign) {
2993      VT = MVT::i64;
2994    } else {
2995      switch (Align & 7) {
2996      case 0:  VT = MVT::i64; break;
2997      case 4:  VT = MVT::i32; break;
2998      case 2:  VT = MVT::i16; break;
2999      default: VT = MVT::i8;  break;
3000      }
3001    }
3002
3003    MVT LVT = MVT::i64;
3004    while (!TLI.isTypeLegal(LVT))
3005      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
3006    assert(LVT.isInteger());
3007
3008    if (VT.bitsGT(LVT))
3009      VT = LVT;
3010  }
3011
3012  unsigned NumMemOps = 0;
3013  while (Size != 0) {
3014    unsigned VTSize = VT.getSizeInBits() / 8;
3015    while (VTSize > Size) {
3016      // For now, only use non-vector load / store's for the left-over pieces.
3017      if (VT.isVector()) {
3018        VT = MVT::i64;
3019        while (!TLI.isTypeLegal(VT))
3020          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3021        VTSize = VT.getSizeInBits() / 8;
3022      } else {
3023        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3024        VTSize >>= 1;
3025      }
3026    }
3027
3028    if (++NumMemOps > Limit)
3029      return false;
3030    MemOps.push_back(VT);
3031    Size -= VTSize;
3032  }
3033
3034  return true;
3035}
3036
3037static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3038                                         SDValue Chain, SDValue Dst,
3039                                         SDValue Src, uint64_t Size,
3040                                         unsigned Align, bool AlwaysInline,
3041                                         const Value *DstSV, uint64_t DstSVOff,
3042                                         const Value *SrcSV, uint64_t SrcSVOff){
3043  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3044
3045  // Expand memcpy to a series of load and store ops if the size operand falls
3046  // below a certain threshold.
3047  std::vector<MVT> MemOps;
3048  uint64_t Limit = -1ULL;
3049  if (!AlwaysInline)
3050    Limit = TLI.getMaxStoresPerMemcpy();
3051  unsigned DstAlign = Align;  // Destination alignment can change.
3052  std::string Str;
3053  bool CopyFromStr;
3054  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3055                                Str, CopyFromStr, DAG, TLI))
3056    return SDValue();
3057
3058
3059  bool isZeroStr = CopyFromStr && Str.empty();
3060  SmallVector<SDValue, 8> OutChains;
3061  unsigned NumMemOps = MemOps.size();
3062  uint64_t SrcOff = 0, DstOff = 0;
3063  for (unsigned i = 0; i < NumMemOps; i++) {
3064    MVT VT = MemOps[i];
3065    unsigned VTSize = VT.getSizeInBits() / 8;
3066    SDValue Value, Store;
3067
3068    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3069      // It's unlikely a store of a vector immediate can be done in a single
3070      // instruction. It would require a load from a constantpool first.
3071      // We also handle store a vector with all zero's.
3072      // FIXME: Handle other cases where store of vector immediate is done in
3073      // a single instruction.
3074      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3075      Store = DAG.getStore(Chain, dl, Value,
3076                           getMemBasePlusOffset(Dst, DstOff, DAG),
3077                           DstSV, DstSVOff + DstOff, false, DstAlign);
3078    } else {
3079      Value = DAG.getLoad(VT, dl, Chain,
3080                          getMemBasePlusOffset(Src, SrcOff, DAG),
3081                          SrcSV, SrcSVOff + SrcOff, false, Align);
3082      Store = DAG.getStore(Chain, dl, Value,
3083                           getMemBasePlusOffset(Dst, DstOff, DAG),
3084                           DstSV, DstSVOff + DstOff, false, DstAlign);
3085    }
3086    OutChains.push_back(Store);
3087    SrcOff += VTSize;
3088    DstOff += VTSize;
3089  }
3090
3091  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3092                     &OutChains[0], OutChains.size());
3093}
3094
3095static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3096                                          SDValue Chain, SDValue Dst,
3097                                          SDValue Src, uint64_t Size,
3098                                          unsigned Align, bool AlwaysInline,
3099                                          const Value *DstSV, uint64_t DstSVOff,
3100                                          const Value *SrcSV, uint64_t SrcSVOff){
3101  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3102
3103  // Expand memmove to a series of load and store ops if the size operand falls
3104  // below a certain threshold.
3105  std::vector<MVT> MemOps;
3106  uint64_t Limit = -1ULL;
3107  if (!AlwaysInline)
3108    Limit = TLI.getMaxStoresPerMemmove();
3109  unsigned DstAlign = Align;  // Destination alignment can change.
3110  std::string Str;
3111  bool CopyFromStr;
3112  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3113                                Str, CopyFromStr, DAG, TLI))
3114    return SDValue();
3115
3116  uint64_t SrcOff = 0, DstOff = 0;
3117
3118  SmallVector<SDValue, 8> LoadValues;
3119  SmallVector<SDValue, 8> LoadChains;
3120  SmallVector<SDValue, 8> OutChains;
3121  unsigned NumMemOps = MemOps.size();
3122  for (unsigned i = 0; i < NumMemOps; i++) {
3123    MVT VT = MemOps[i];
3124    unsigned VTSize = VT.getSizeInBits() / 8;
3125    SDValue Value, Store;
3126
3127    Value = DAG.getLoad(VT, dl, Chain,
3128                        getMemBasePlusOffset(Src, SrcOff, DAG),
3129                        SrcSV, SrcSVOff + SrcOff, false, Align);
3130    LoadValues.push_back(Value);
3131    LoadChains.push_back(Value.getValue(1));
3132    SrcOff += VTSize;
3133  }
3134  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3135                      &LoadChains[0], LoadChains.size());
3136  OutChains.clear();
3137  for (unsigned i = 0; i < NumMemOps; i++) {
3138    MVT VT = MemOps[i];
3139    unsigned VTSize = VT.getSizeInBits() / 8;
3140    SDValue Value, Store;
3141
3142    Store = DAG.getStore(Chain, dl, LoadValues[i],
3143                         getMemBasePlusOffset(Dst, DstOff, DAG),
3144                         DstSV, DstSVOff + DstOff, false, DstAlign);
3145    OutChains.push_back(Store);
3146    DstOff += VTSize;
3147  }
3148
3149  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3150                     &OutChains[0], OutChains.size());
3151}
3152
3153static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3154                                 SDValue Chain, SDValue Dst,
3155                                 SDValue Src, uint64_t Size,
3156                                 unsigned Align,
3157                                 const Value *DstSV, uint64_t DstSVOff) {
3158  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3159
3160  // Expand memset to a series of load/store ops if the size operand
3161  // falls below a certain threshold.
3162  std::vector<MVT> MemOps;
3163  std::string Str;
3164  bool CopyFromStr;
3165  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3166                                Size, Align, Str, CopyFromStr, DAG, TLI))
3167    return SDValue();
3168
3169  SmallVector<SDValue, 8> OutChains;
3170  uint64_t DstOff = 0;
3171
3172  unsigned NumMemOps = MemOps.size();
3173  for (unsigned i = 0; i < NumMemOps; i++) {
3174    MVT VT = MemOps[i];
3175    unsigned VTSize = VT.getSizeInBits() / 8;
3176    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3177    SDValue Store = DAG.getStore(Chain, dl, Value,
3178                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3179                                 DstSV, DstSVOff + DstOff);
3180    OutChains.push_back(Store);
3181    DstOff += VTSize;
3182  }
3183
3184  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3185                     &OutChains[0], OutChains.size());
3186}
3187
3188SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3189                                SDValue Src, SDValue Size,
3190                                unsigned Align, bool AlwaysInline,
3191                                const Value *DstSV, uint64_t DstSVOff,
3192                                const Value *SrcSV, uint64_t SrcSVOff) {
3193
3194  // Check to see if we should lower the memcpy to loads and stores first.
3195  // For cases within the target-specified limits, this is the best choice.
3196  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3197  if (ConstantSize) {
3198    // Memcpy with size zero? Just return the original chain.
3199    if (ConstantSize->isNullValue())
3200      return Chain;
3201
3202    SDValue Result =
3203      getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3204                              ConstantSize->getZExtValue(),
3205                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3206    if (Result.getNode())
3207      return Result;
3208  }
3209
3210  // Then check to see if we should lower the memcpy with target-specific
3211  // code. If the target chooses to do this, this is the next best.
3212  SDValue Result =
3213    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3214                                AlwaysInline,
3215                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3216  if (Result.getNode())
3217    return Result;
3218
3219  // If we really need inline code and the target declined to provide it,
3220  // use a (potentially long) sequence of loads and stores.
3221  if (AlwaysInline) {
3222    assert(ConstantSize && "AlwaysInline requires a constant size!");
3223    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3224                                   ConstantSize->getZExtValue(), Align, true,
3225                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3226  }
3227
3228  // Emit a library call.
3229  TargetLowering::ArgListTy Args;
3230  TargetLowering::ArgListEntry Entry;
3231  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3232  Entry.Node = Dst; Args.push_back(Entry);
3233  Entry.Node = Src; Args.push_back(Entry);
3234  Entry.Node = Size; Args.push_back(Entry);
3235  // FIXME: pass in DebugLoc
3236  std::pair<SDValue,SDValue> CallResult =
3237    TLI.LowerCallTo(Chain, Type::VoidTy,
3238                    false, false, false, false, CallingConv::C, false,
3239                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3240                    Args, *this, dl);
3241  return CallResult.second;
3242}
3243
3244SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3245                                 SDValue Src, SDValue Size,
3246                                 unsigned Align,
3247                                 const Value *DstSV, uint64_t DstSVOff,
3248                                 const Value *SrcSV, uint64_t SrcSVOff) {
3249
3250  // Check to see if we should lower the memmove to loads and stores first.
3251  // For cases within the target-specified limits, this is the best choice.
3252  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3253  if (ConstantSize) {
3254    // Memmove with size zero? Just return the original chain.
3255    if (ConstantSize->isNullValue())
3256      return Chain;
3257
3258    SDValue Result =
3259      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3260                               ConstantSize->getZExtValue(),
3261                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3262    if (Result.getNode())
3263      return Result;
3264  }
3265
3266  // Then check to see if we should lower the memmove with target-specific
3267  // code. If the target chooses to do this, this is the next best.
3268  SDValue Result =
3269    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3270                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3271  if (Result.getNode())
3272    return Result;
3273
3274  // Emit a library call.
3275  TargetLowering::ArgListTy Args;
3276  TargetLowering::ArgListEntry Entry;
3277  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3278  Entry.Node = Dst; Args.push_back(Entry);
3279  Entry.Node = Src; Args.push_back(Entry);
3280  Entry.Node = Size; Args.push_back(Entry);
3281  // FIXME:  pass in DebugLoc
3282  std::pair<SDValue,SDValue> CallResult =
3283    TLI.LowerCallTo(Chain, Type::VoidTy,
3284                    false, false, false, false, CallingConv::C, false,
3285                    getExternalSymbol("memmove", TLI.getPointerTy()),
3286                    Args, *this, dl);
3287  return CallResult.second;
3288}
3289
3290SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3291                                SDValue Src, SDValue Size,
3292                                unsigned Align,
3293                                const Value *DstSV, uint64_t DstSVOff) {
3294
3295  // Check to see if we should lower the memset to stores first.
3296  // For cases within the target-specified limits, this is the best choice.
3297  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3298  if (ConstantSize) {
3299    // Memset with size zero? Just return the original chain.
3300    if (ConstantSize->isNullValue())
3301      return Chain;
3302
3303    SDValue Result =
3304      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3305                      Align, DstSV, DstSVOff);
3306    if (Result.getNode())
3307      return Result;
3308  }
3309
3310  // Then check to see if we should lower the memset with target-specific
3311  // code. If the target chooses to do this, this is the next best.
3312  SDValue Result =
3313    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3314                                DstSV, DstSVOff);
3315  if (Result.getNode())
3316    return Result;
3317
3318  // Emit a library call.
3319  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3320  TargetLowering::ArgListTy Args;
3321  TargetLowering::ArgListEntry Entry;
3322  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3323  Args.push_back(Entry);
3324  // Extend or truncate the argument to be an i32 value for the call.
3325  if (Src.getValueType().bitsGT(MVT::i32))
3326    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3327  else
3328    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3329  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3330  Args.push_back(Entry);
3331  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3332  Args.push_back(Entry);
3333  // FIXME: pass in DebugLoc
3334  std::pair<SDValue,SDValue> CallResult =
3335    TLI.LowerCallTo(Chain, Type::VoidTy,
3336                    false, false, false, false, CallingConv::C, false,
3337                    getExternalSymbol("memset", TLI.getPointerTy()),
3338                    Args, *this, dl);
3339  return CallResult.second;
3340}
3341
3342SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3343                                SDValue Chain,
3344                                SDValue Ptr, SDValue Cmp,
3345                                SDValue Swp, const Value* PtrVal,
3346                                unsigned Alignment) {
3347  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3348  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3349
3350  MVT VT = Cmp.getValueType();
3351
3352  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3353    Alignment = getMVTAlignment(MemVT);
3354
3355  SDVTList VTs = getVTList(VT, MVT::Other);
3356  FoldingSetNodeID ID;
3357  ID.AddInteger(MemVT.getRawBits());
3358  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3359  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3360  void* IP = 0;
3361  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3362    return SDValue(E, 0);
3363  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3364  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3365                       Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3366  CSEMap.InsertNode(N, IP);
3367  AllNodes.push_back(N);
3368  return SDValue(N, 0);
3369}
3370
3371SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3372                                SDValue Chain,
3373                                SDValue Ptr, SDValue Val,
3374                                const Value* PtrVal,
3375                                unsigned Alignment) {
3376  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3377          Opcode == ISD::ATOMIC_LOAD_SUB ||
3378          Opcode == ISD::ATOMIC_LOAD_AND ||
3379          Opcode == ISD::ATOMIC_LOAD_OR ||
3380          Opcode == ISD::ATOMIC_LOAD_XOR ||
3381          Opcode == ISD::ATOMIC_LOAD_NAND ||
3382          Opcode == ISD::ATOMIC_LOAD_MIN ||
3383          Opcode == ISD::ATOMIC_LOAD_MAX ||
3384          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3385          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3386          Opcode == ISD::ATOMIC_SWAP) &&
3387         "Invalid Atomic Op");
3388
3389  MVT VT = Val.getValueType();
3390
3391  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3392    Alignment = getMVTAlignment(MemVT);
3393
3394  SDVTList VTs = getVTList(VT, MVT::Other);
3395  FoldingSetNodeID ID;
3396  ID.AddInteger(MemVT.getRawBits());
3397  SDValue Ops[] = {Chain, Ptr, Val};
3398  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3399  void* IP = 0;
3400  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3401    return SDValue(E, 0);
3402  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3403  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3404                       Chain, Ptr, Val, PtrVal, Alignment);
3405  CSEMap.InsertNode(N, IP);
3406  AllNodes.push_back(N);
3407  return SDValue(N, 0);
3408}
3409
3410/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3411/// Allowed to return something different (and simpler) if Simplify is true.
3412SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3413                                     DebugLoc dl) {
3414  if (NumOps == 1)
3415    return Ops[0];
3416
3417  SmallVector<MVT, 4> VTs;
3418  VTs.reserve(NumOps);
3419  for (unsigned i = 0; i < NumOps; ++i)
3420    VTs.push_back(Ops[i].getValueType());
3421  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3422                 Ops, NumOps);
3423}
3424
3425SDValue
3426SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3427                                  const MVT *VTs, unsigned NumVTs,
3428                                  const SDValue *Ops, unsigned NumOps,
3429                                  MVT MemVT, const Value *srcValue, int SVOff,
3430                                  unsigned Align, bool Vol,
3431                                  bool ReadMem, bool WriteMem) {
3432  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3433                             MemVT, srcValue, SVOff, Align, Vol,
3434                             ReadMem, WriteMem);
3435}
3436
3437SDValue
3438SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3439                                  const SDValue *Ops, unsigned NumOps,
3440                                  MVT MemVT, const Value *srcValue, int SVOff,
3441                                  unsigned Align, bool Vol,
3442                                  bool ReadMem, bool WriteMem) {
3443  // Memoize the node unless it returns a flag.
3444  MemIntrinsicSDNode *N;
3445  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3446    FoldingSetNodeID ID;
3447    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3448    void *IP = 0;
3449    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3450      return SDValue(E, 0);
3451
3452    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3453    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3454                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3455    CSEMap.InsertNode(N, IP);
3456  } else {
3457    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3458    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3459                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3460  }
3461  AllNodes.push_back(N);
3462  return SDValue(N, 0);
3463}
3464
3465SDValue
3466SelectionDAG::getCall(unsigned CallingConv, DebugLoc dl, bool IsVarArgs,
3467                      bool IsTailCall, bool IsInreg, SDVTList VTs,
3468                      const SDValue *Operands, unsigned NumOperands) {
3469  // Do not include isTailCall in the folding set profile.
3470  FoldingSetNodeID ID;
3471  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3472  ID.AddInteger(CallingConv);
3473  ID.AddInteger(IsVarArgs);
3474  void *IP = 0;
3475  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3476    // Instead of including isTailCall in the folding set, we just
3477    // set the flag of the existing node.
3478    if (!IsTailCall)
3479      cast<CallSDNode>(E)->setNotTailCall();
3480    return SDValue(E, 0);
3481  }
3482  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3483  new (N) CallSDNode(CallingConv, dl, IsVarArgs, IsTailCall, IsInreg,
3484                     VTs, Operands, NumOperands);
3485  CSEMap.InsertNode(N, IP);
3486  AllNodes.push_back(N);
3487  return SDValue(N, 0);
3488}
3489
3490SDValue
3491SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3492                      ISD::LoadExtType ExtType, MVT VT, SDValue Chain,
3493                      SDValue Ptr, SDValue Offset,
3494                      const Value *SV, int SVOffset, MVT EVT,
3495                      bool isVolatile, unsigned Alignment) {
3496  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3497    Alignment = getMVTAlignment(VT);
3498
3499  if (VT == EVT) {
3500    ExtType = ISD::NON_EXTLOAD;
3501  } else if (ExtType == ISD::NON_EXTLOAD) {
3502    assert(VT == EVT && "Non-extending load from different memory type!");
3503  } else {
3504    // Extending load.
3505    if (VT.isVector())
3506      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3507             "Invalid vector extload!");
3508    else
3509      assert(EVT.bitsLT(VT) &&
3510             "Should only be an extending load, not truncating!");
3511    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3512           "Cannot sign/zero extend a FP/Vector load!");
3513    assert(VT.isInteger() == EVT.isInteger() &&
3514           "Cannot convert from FP to Int or Int -> FP!");
3515  }
3516
3517  bool Indexed = AM != ISD::UNINDEXED;
3518  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3519         "Unindexed load with an offset!");
3520
3521  SDVTList VTs = Indexed ?
3522    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3523  SDValue Ops[] = { Chain, Ptr, Offset };
3524  FoldingSetNodeID ID;
3525  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3526  ID.AddInteger(EVT.getRawBits());
3527  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, isVolatile, Alignment));
3528  void *IP = 0;
3529  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3530    return SDValue(E, 0);
3531  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3532  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, EVT, SV, SVOffset,
3533                     Alignment, isVolatile);
3534  CSEMap.InsertNode(N, IP);
3535  AllNodes.push_back(N);
3536  return SDValue(N, 0);
3537}
3538
3539SDValue SelectionDAG::getLoad(MVT VT, DebugLoc dl,
3540                              SDValue Chain, SDValue Ptr,
3541                              const Value *SV, int SVOffset,
3542                              bool isVolatile, unsigned Alignment) {
3543  SDValue Undef = getUNDEF(Ptr.getValueType());
3544  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3545                 SV, SVOffset, VT, isVolatile, Alignment);
3546}
3547
3548SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, MVT VT,
3549                                 SDValue Chain, SDValue Ptr,
3550                                 const Value *SV,
3551                                 int SVOffset, MVT EVT,
3552                                 bool isVolatile, unsigned Alignment) {
3553  SDValue Undef = getUNDEF(Ptr.getValueType());
3554  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3555                 SV, SVOffset, EVT, isVolatile, Alignment);
3556}
3557
3558SDValue
3559SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3560                             SDValue Offset, ISD::MemIndexedMode AM) {
3561  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3562  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3563         "Load is already a indexed load!");
3564  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3565                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3566                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3567                 LD->isVolatile(), LD->getAlignment());
3568}
3569
3570SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3571                               SDValue Ptr, const Value *SV, int SVOffset,
3572                               bool isVolatile, unsigned Alignment) {
3573  MVT VT = Val.getValueType();
3574
3575  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3576    Alignment = getMVTAlignment(VT);
3577
3578  SDVTList VTs = getVTList(MVT::Other);
3579  SDValue Undef = getUNDEF(Ptr.getValueType());
3580  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3581  FoldingSetNodeID ID;
3582  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3583  ID.AddInteger(VT.getRawBits());
3584  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED,
3585                                     isVolatile, Alignment));
3586  void *IP = 0;
3587  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3588    return SDValue(E, 0);
3589  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3590  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false,
3591                      VT, SV, SVOffset, Alignment, isVolatile);
3592  CSEMap.InsertNode(N, IP);
3593  AllNodes.push_back(N);
3594  return SDValue(N, 0);
3595}
3596
3597SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3598                                    SDValue Ptr, const Value *SV,
3599                                    int SVOffset, MVT SVT,
3600                                    bool isVolatile, unsigned Alignment) {
3601  MVT VT = Val.getValueType();
3602
3603  if (VT == SVT)
3604    return getStore(Chain, dl, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3605
3606  assert(VT.bitsGT(SVT) && "Not a truncation?");
3607  assert(VT.isInteger() == SVT.isInteger() &&
3608         "Can't do FP-INT conversion!");
3609
3610  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3611    Alignment = getMVTAlignment(VT);
3612
3613  SDVTList VTs = getVTList(MVT::Other);
3614  SDValue Undef = getUNDEF(Ptr.getValueType());
3615  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3616  FoldingSetNodeID ID;
3617  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3618  ID.AddInteger(SVT.getRawBits());
3619  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED,
3620                                     isVolatile, Alignment));
3621  void *IP = 0;
3622  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3623    return SDValue(E, 0);
3624  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3625  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true,
3626                      SVT, SV, SVOffset, Alignment, isVolatile);
3627  CSEMap.InsertNode(N, IP);
3628  AllNodes.push_back(N);
3629  return SDValue(N, 0);
3630}
3631
3632SDValue
3633SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
3634                              SDValue Offset, ISD::MemIndexedMode AM) {
3635  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3636  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3637         "Store is already a indexed store!");
3638  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3639  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3640  FoldingSetNodeID ID;
3641  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3642  ID.AddInteger(ST->getMemoryVT().getRawBits());
3643  ID.AddInteger(ST->getRawSubclassData());
3644  void *IP = 0;
3645  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3646    return SDValue(E, 0);
3647  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3648  new (N) StoreSDNode(Ops, dl, VTs, AM,
3649                      ST->isTruncatingStore(), ST->getMemoryVT(),
3650                      ST->getSrcValue(), ST->getSrcValueOffset(),
3651                      ST->getAlignment(), ST->isVolatile());
3652  CSEMap.InsertNode(N, IP);
3653  AllNodes.push_back(N);
3654  return SDValue(N, 0);
3655}
3656
3657SDValue SelectionDAG::getVAArg(MVT VT, DebugLoc dl,
3658                               SDValue Chain, SDValue Ptr,
3659                               SDValue SV) {
3660  SDValue Ops[] = { Chain, Ptr, SV };
3661  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
3662}
3663
3664SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
3665                              const SDUse *Ops, unsigned NumOps) {
3666  switch (NumOps) {
3667  case 0: return getNode(Opcode, DL, VT);
3668  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3669  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3670  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3671  default: break;
3672  }
3673
3674  // Copy from an SDUse array into an SDValue array for use with
3675  // the regular getNode logic.
3676  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3677  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
3678}
3679
3680SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
3681                              const SDValue *Ops, unsigned NumOps) {
3682  switch (NumOps) {
3683  case 0: return getNode(Opcode, DL, VT);
3684  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3685  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3686  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3687  default: break;
3688  }
3689
3690  switch (Opcode) {
3691  default: break;
3692  case ISD::SELECT_CC: {
3693    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3694    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3695           "LHS and RHS of condition must have same type!");
3696    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3697           "True and False arms of SelectCC must have same type!");
3698    assert(Ops[2].getValueType() == VT &&
3699           "select_cc node must be of same type as true and false value!");
3700    break;
3701  }
3702  case ISD::BR_CC: {
3703    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3704    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3705           "LHS/RHS of comparison should match types!");
3706    break;
3707  }
3708  }
3709
3710  // Memoize nodes.
3711  SDNode *N;
3712  SDVTList VTs = getVTList(VT);
3713
3714  if (VT != MVT::Flag) {
3715    FoldingSetNodeID ID;
3716    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3717    void *IP = 0;
3718
3719    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3720      return SDValue(E, 0);
3721
3722    N = NodeAllocator.Allocate<SDNode>();
3723    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3724    CSEMap.InsertNode(N, IP);
3725  } else {
3726    N = NodeAllocator.Allocate<SDNode>();
3727    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3728  }
3729
3730  AllNodes.push_back(N);
3731#ifndef NDEBUG
3732  VerifyNode(N);
3733#endif
3734  return SDValue(N, 0);
3735}
3736
3737SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3738                              const std::vector<MVT> &ResultTys,
3739                              const SDValue *Ops, unsigned NumOps) {
3740  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
3741                 Ops, NumOps);
3742}
3743
3744SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3745                              const MVT *VTs, unsigned NumVTs,
3746                              const SDValue *Ops, unsigned NumOps) {
3747  if (NumVTs == 1)
3748    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
3749  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
3750}
3751
3752SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3753                              const SDValue *Ops, unsigned NumOps) {
3754  if (VTList.NumVTs == 1)
3755    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
3756
3757  switch (Opcode) {
3758  // FIXME: figure out how to safely handle things like
3759  // int foo(int x) { return 1 << (x & 255); }
3760  // int bar() { return foo(256); }
3761#if 0
3762  case ISD::SRA_PARTS:
3763  case ISD::SRL_PARTS:
3764  case ISD::SHL_PARTS:
3765    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3766        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3767      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3768    else if (N3.getOpcode() == ISD::AND)
3769      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3770        // If the and is only masking out bits that cannot effect the shift,
3771        // eliminate the and.
3772        unsigned NumBits = VT.getSizeInBits()*2;
3773        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3774          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3775      }
3776    break;
3777#endif
3778  }
3779
3780  // Memoize the node unless it returns a flag.
3781  SDNode *N;
3782  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3783    FoldingSetNodeID ID;
3784    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3785    void *IP = 0;
3786    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3787      return SDValue(E, 0);
3788    if (NumOps == 1) {
3789      N = NodeAllocator.Allocate<UnarySDNode>();
3790      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3791    } else if (NumOps == 2) {
3792      N = NodeAllocator.Allocate<BinarySDNode>();
3793      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3794    } else if (NumOps == 3) {
3795      N = NodeAllocator.Allocate<TernarySDNode>();
3796      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3797    } else {
3798      N = NodeAllocator.Allocate<SDNode>();
3799      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3800    }
3801    CSEMap.InsertNode(N, IP);
3802  } else {
3803    if (NumOps == 1) {
3804      N = NodeAllocator.Allocate<UnarySDNode>();
3805      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3806    } else if (NumOps == 2) {
3807      N = NodeAllocator.Allocate<BinarySDNode>();
3808      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3809    } else if (NumOps == 3) {
3810      N = NodeAllocator.Allocate<TernarySDNode>();
3811      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3812    } else {
3813      N = NodeAllocator.Allocate<SDNode>();
3814      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3815    }
3816  }
3817  AllNodes.push_back(N);
3818#ifndef NDEBUG
3819  VerifyNode(N);
3820#endif
3821  return SDValue(N, 0);
3822}
3823
3824SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
3825  return getNode(Opcode, DL, VTList, 0, 0);
3826}
3827
3828SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3829                              SDValue N1) {
3830  SDValue Ops[] = { N1 };
3831  return getNode(Opcode, DL, VTList, Ops, 1);
3832}
3833
3834SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3835                              SDValue N1, SDValue N2) {
3836  SDValue Ops[] = { N1, N2 };
3837  return getNode(Opcode, DL, VTList, Ops, 2);
3838}
3839
3840SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3841                              SDValue N1, SDValue N2, SDValue N3) {
3842  SDValue Ops[] = { N1, N2, N3 };
3843  return getNode(Opcode, DL, VTList, Ops, 3);
3844}
3845
3846SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3847                              SDValue N1, SDValue N2, SDValue N3,
3848                              SDValue N4) {
3849  SDValue Ops[] = { N1, N2, N3, N4 };
3850  return getNode(Opcode, DL, VTList, Ops, 4);
3851}
3852
3853SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3854                              SDValue N1, SDValue N2, SDValue N3,
3855                              SDValue N4, SDValue N5) {
3856  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3857  return getNode(Opcode, DL, VTList, Ops, 5);
3858}
3859
3860SDVTList SelectionDAG::getVTList(MVT VT) {
3861  return makeVTList(SDNode::getValueTypeList(VT), 1);
3862}
3863
3864SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3865  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3866       E = VTList.rend(); I != E; ++I)
3867    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
3868      return *I;
3869
3870  MVT *Array = Allocator.Allocate<MVT>(2);
3871  Array[0] = VT1;
3872  Array[1] = VT2;
3873  SDVTList Result = makeVTList(Array, 2);
3874  VTList.push_back(Result);
3875  return Result;
3876}
3877
3878SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
3879  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3880       E = VTList.rend(); I != E; ++I)
3881    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3882                          I->VTs[2] == VT3)
3883      return *I;
3884
3885  MVT *Array = Allocator.Allocate<MVT>(3);
3886  Array[0] = VT1;
3887  Array[1] = VT2;
3888  Array[2] = VT3;
3889  SDVTList Result = makeVTList(Array, 3);
3890  VTList.push_back(Result);
3891  return Result;
3892}
3893
3894SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3, MVT VT4) {
3895  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3896       E = VTList.rend(); I != E; ++I)
3897    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3898                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
3899      return *I;
3900
3901  MVT *Array = Allocator.Allocate<MVT>(3);
3902  Array[0] = VT1;
3903  Array[1] = VT2;
3904  Array[2] = VT3;
3905  Array[3] = VT4;
3906  SDVTList Result = makeVTList(Array, 4);
3907  VTList.push_back(Result);
3908  return Result;
3909}
3910
3911SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
3912  switch (NumVTs) {
3913    case 0: assert(0 && "Cannot have nodes without results!");
3914    case 1: return getVTList(VTs[0]);
3915    case 2: return getVTList(VTs[0], VTs[1]);
3916    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3917    default: break;
3918  }
3919
3920  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3921       E = VTList.rend(); I != E; ++I) {
3922    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
3923      continue;
3924
3925    bool NoMatch = false;
3926    for (unsigned i = 2; i != NumVTs; ++i)
3927      if (VTs[i] != I->VTs[i]) {
3928        NoMatch = true;
3929        break;
3930      }
3931    if (!NoMatch)
3932      return *I;
3933  }
3934
3935  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
3936  std::copy(VTs, VTs+NumVTs, Array);
3937  SDVTList Result = makeVTList(Array, NumVTs);
3938  VTList.push_back(Result);
3939  return Result;
3940}
3941
3942
3943/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3944/// specified operands.  If the resultant node already exists in the DAG,
3945/// this does not modify the specified node, instead it returns the node that
3946/// already exists.  If the resultant node does not exist in the DAG, the
3947/// input node is returned.  As a degenerate case, if you specify the same
3948/// input operands as the node already has, the input node is returned.
3949SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
3950  SDNode *N = InN.getNode();
3951  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3952
3953  // Check to see if there is no change.
3954  if (Op == N->getOperand(0)) return InN;
3955
3956  // See if the modified node already exists.
3957  void *InsertPos = 0;
3958  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3959    return SDValue(Existing, InN.getResNo());
3960
3961  // Nope it doesn't.  Remove the node from its current place in the maps.
3962  if (InsertPos)
3963    if (!RemoveNodeFromCSEMaps(N))
3964      InsertPos = 0;
3965
3966  // Now we update the operands.
3967  N->OperandList[0].set(Op);
3968
3969  // If this gets put into a CSE map, add it.
3970  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3971  return InN;
3972}
3973
3974SDValue SelectionDAG::
3975UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
3976  SDNode *N = InN.getNode();
3977  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3978
3979  // Check to see if there is no change.
3980  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3981    return InN;   // No operands changed, just return the input node.
3982
3983  // See if the modified node already exists.
3984  void *InsertPos = 0;
3985  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3986    return SDValue(Existing, InN.getResNo());
3987
3988  // Nope it doesn't.  Remove the node from its current place in the maps.
3989  if (InsertPos)
3990    if (!RemoveNodeFromCSEMaps(N))
3991      InsertPos = 0;
3992
3993  // Now we update the operands.
3994  if (N->OperandList[0] != Op1)
3995    N->OperandList[0].set(Op1);
3996  if (N->OperandList[1] != Op2)
3997    N->OperandList[1].set(Op2);
3998
3999  // If this gets put into a CSE map, add it.
4000  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4001  return InN;
4002}
4003
4004SDValue SelectionDAG::
4005UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4006  SDValue Ops[] = { Op1, Op2, Op3 };
4007  return UpdateNodeOperands(N, Ops, 3);
4008}
4009
4010SDValue SelectionDAG::
4011UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4012                   SDValue Op3, SDValue Op4) {
4013  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4014  return UpdateNodeOperands(N, Ops, 4);
4015}
4016
4017SDValue SelectionDAG::
4018UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4019                   SDValue Op3, SDValue Op4, SDValue Op5) {
4020  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4021  return UpdateNodeOperands(N, Ops, 5);
4022}
4023
4024SDValue SelectionDAG::
4025UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4026  SDNode *N = InN.getNode();
4027  assert(N->getNumOperands() == NumOps &&
4028         "Update with wrong number of operands");
4029
4030  // Check to see if there is no change.
4031  bool AnyChange = false;
4032  for (unsigned i = 0; i != NumOps; ++i) {
4033    if (Ops[i] != N->getOperand(i)) {
4034      AnyChange = true;
4035      break;
4036    }
4037  }
4038
4039  // No operands changed, just return the input node.
4040  if (!AnyChange) return InN;
4041
4042  // See if the modified node already exists.
4043  void *InsertPos = 0;
4044  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4045    return SDValue(Existing, InN.getResNo());
4046
4047  // Nope it doesn't.  Remove the node from its current place in the maps.
4048  if (InsertPos)
4049    if (!RemoveNodeFromCSEMaps(N))
4050      InsertPos = 0;
4051
4052  // Now we update the operands.
4053  for (unsigned i = 0; i != NumOps; ++i)
4054    if (N->OperandList[i] != Ops[i])
4055      N->OperandList[i].set(Ops[i]);
4056
4057  // If this gets put into a CSE map, add it.
4058  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4059  return InN;
4060}
4061
4062/// DropOperands - Release the operands and set this node to have
4063/// zero operands.
4064void SDNode::DropOperands() {
4065  // Unlike the code in MorphNodeTo that does this, we don't need to
4066  // watch for dead nodes here.
4067  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4068    SDUse &Use = *I++;
4069    Use.set(SDValue());
4070  }
4071}
4072
4073/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4074/// machine opcode.
4075///
4076SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4077                                   MVT VT) {
4078  SDVTList VTs = getVTList(VT);
4079  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4080}
4081
4082SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4083                                   MVT VT, SDValue Op1) {
4084  SDVTList VTs = getVTList(VT);
4085  SDValue Ops[] = { Op1 };
4086  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4087}
4088
4089SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4090                                   MVT VT, SDValue Op1,
4091                                   SDValue Op2) {
4092  SDVTList VTs = getVTList(VT);
4093  SDValue Ops[] = { Op1, Op2 };
4094  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4095}
4096
4097SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4098                                   MVT VT, SDValue Op1,
4099                                   SDValue Op2, SDValue Op3) {
4100  SDVTList VTs = getVTList(VT);
4101  SDValue Ops[] = { Op1, Op2, Op3 };
4102  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4103}
4104
4105SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4106                                   MVT VT, const SDValue *Ops,
4107                                   unsigned NumOps) {
4108  SDVTList VTs = getVTList(VT);
4109  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4110}
4111
4112SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4113                                   MVT VT1, MVT VT2, const SDValue *Ops,
4114                                   unsigned NumOps) {
4115  SDVTList VTs = getVTList(VT1, VT2);
4116  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4117}
4118
4119SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4120                                   MVT VT1, MVT VT2) {
4121  SDVTList VTs = getVTList(VT1, VT2);
4122  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4123}
4124
4125SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4126                                   MVT VT1, MVT VT2, MVT VT3,
4127                                   const SDValue *Ops, unsigned NumOps) {
4128  SDVTList VTs = getVTList(VT1, VT2, VT3);
4129  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4130}
4131
4132SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4133                                   MVT VT1, MVT VT2, MVT VT3, MVT VT4,
4134                                   const SDValue *Ops, unsigned NumOps) {
4135  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4136  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4137}
4138
4139SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4140                                   MVT VT1, MVT VT2,
4141                                   SDValue Op1) {
4142  SDVTList VTs = getVTList(VT1, VT2);
4143  SDValue Ops[] = { Op1 };
4144  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4145}
4146
4147SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4148                                   MVT VT1, MVT VT2,
4149                                   SDValue Op1, SDValue Op2) {
4150  SDVTList VTs = getVTList(VT1, VT2);
4151  SDValue Ops[] = { Op1, Op2 };
4152  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4153}
4154
4155SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4156                                   MVT VT1, MVT VT2,
4157                                   SDValue Op1, SDValue Op2,
4158                                   SDValue Op3) {
4159  SDVTList VTs = getVTList(VT1, VT2);
4160  SDValue Ops[] = { Op1, Op2, Op3 };
4161  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4162}
4163
4164SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4165                                   MVT VT1, MVT VT2, MVT VT3,
4166                                   SDValue Op1, SDValue Op2,
4167                                   SDValue Op3) {
4168  SDVTList VTs = getVTList(VT1, VT2, VT3);
4169  SDValue Ops[] = { Op1, Op2, Op3 };
4170  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4171}
4172
4173SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4174                                   SDVTList VTs, const SDValue *Ops,
4175                                   unsigned NumOps) {
4176  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4177}
4178
4179SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4180                                  MVT VT) {
4181  SDVTList VTs = getVTList(VT);
4182  return MorphNodeTo(N, Opc, VTs, 0, 0);
4183}
4184
4185SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4186                                  MVT VT, SDValue Op1) {
4187  SDVTList VTs = getVTList(VT);
4188  SDValue Ops[] = { Op1 };
4189  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4190}
4191
4192SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4193                                  MVT VT, SDValue Op1,
4194                                  SDValue Op2) {
4195  SDVTList VTs = getVTList(VT);
4196  SDValue Ops[] = { Op1, Op2 };
4197  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4198}
4199
4200SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4201                                  MVT VT, SDValue Op1,
4202                                  SDValue Op2, SDValue Op3) {
4203  SDVTList VTs = getVTList(VT);
4204  SDValue Ops[] = { Op1, Op2, Op3 };
4205  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4206}
4207
4208SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4209                                  MVT VT, const SDValue *Ops,
4210                                  unsigned NumOps) {
4211  SDVTList VTs = getVTList(VT);
4212  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4213}
4214
4215SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4216                                  MVT VT1, MVT VT2, const SDValue *Ops,
4217                                  unsigned NumOps) {
4218  SDVTList VTs = getVTList(VT1, VT2);
4219  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4220}
4221
4222SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4223                                  MVT VT1, MVT VT2) {
4224  SDVTList VTs = getVTList(VT1, VT2);
4225  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4226}
4227
4228SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4229                                  MVT VT1, MVT VT2, MVT VT3,
4230                                  const SDValue *Ops, unsigned NumOps) {
4231  SDVTList VTs = getVTList(VT1, VT2, VT3);
4232  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4233}
4234
4235SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4236                                  MVT VT1, MVT VT2,
4237                                  SDValue Op1) {
4238  SDVTList VTs = getVTList(VT1, VT2);
4239  SDValue Ops[] = { Op1 };
4240  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4241}
4242
4243SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4244                                  MVT VT1, MVT VT2,
4245                                  SDValue Op1, SDValue Op2) {
4246  SDVTList VTs = getVTList(VT1, VT2);
4247  SDValue Ops[] = { Op1, Op2 };
4248  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4249}
4250
4251SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4252                                  MVT VT1, MVT VT2,
4253                                  SDValue Op1, SDValue Op2,
4254                                  SDValue Op3) {
4255  SDVTList VTs = getVTList(VT1, VT2);
4256  SDValue Ops[] = { Op1, Op2, Op3 };
4257  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4258}
4259
4260/// MorphNodeTo - These *mutate* the specified node to have the specified
4261/// return type, opcode, and operands.
4262///
4263/// Note that MorphNodeTo returns the resultant node.  If there is already a
4264/// node of the specified opcode and operands, it returns that node instead of
4265/// the current one.  Note that the DebugLoc need not be the same.
4266///
4267/// Using MorphNodeTo is faster than creating a new node and swapping it in
4268/// with ReplaceAllUsesWith both because it often avoids allocating a new
4269/// node, and because it doesn't require CSE recalculation for any of
4270/// the node's users.
4271///
4272SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4273                                  SDVTList VTs, const SDValue *Ops,
4274                                  unsigned NumOps) {
4275  // If an identical node already exists, use it.
4276  void *IP = 0;
4277  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4278    FoldingSetNodeID ID;
4279    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4280    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4281      return ON;
4282  }
4283
4284  if (!RemoveNodeFromCSEMaps(N))
4285    IP = 0;
4286
4287  // Start the morphing.
4288  N->NodeType = Opc;
4289  N->ValueList = VTs.VTs;
4290  N->NumValues = VTs.NumVTs;
4291
4292  // Clear the operands list, updating used nodes to remove this from their
4293  // use list.  Keep track of any operands that become dead as a result.
4294  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4295  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4296    SDUse &Use = *I++;
4297    SDNode *Used = Use.getNode();
4298    Use.set(SDValue());
4299    if (Used->use_empty())
4300      DeadNodeSet.insert(Used);
4301  }
4302
4303  // If NumOps is larger than the # of operands we currently have, reallocate
4304  // the operand list.
4305  if (NumOps > N->NumOperands) {
4306    if (N->OperandsNeedDelete)
4307      delete[] N->OperandList;
4308
4309    if (N->isMachineOpcode()) {
4310      // We're creating a final node that will live unmorphed for the
4311      // remainder of the current SelectionDAG iteration, so we can allocate
4312      // the operands directly out of a pool with no recycling metadata.
4313      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4314      N->OperandsNeedDelete = false;
4315    } else {
4316      N->OperandList = new SDUse[NumOps];
4317      N->OperandsNeedDelete = true;
4318    }
4319  }
4320
4321  // Assign the new operands.
4322  N->NumOperands = NumOps;
4323  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4324    N->OperandList[i].setUser(N);
4325    N->OperandList[i].setInitial(Ops[i]);
4326  }
4327
4328  // Delete any nodes that are still dead after adding the uses for the
4329  // new operands.
4330  SmallVector<SDNode *, 16> DeadNodes;
4331  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4332       E = DeadNodeSet.end(); I != E; ++I)
4333    if ((*I)->use_empty())
4334      DeadNodes.push_back(*I);
4335  RemoveDeadNodes(DeadNodes);
4336
4337  if (IP)
4338    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4339  return N;
4340}
4341
4342
4343/// getTargetNode - These are used for target selectors to create a new node
4344/// with specified return type(s), target opcode, and operands.
4345///
4346/// Note that getTargetNode returns the resultant node.  If there is already a
4347/// node of the specified opcode and operands, it returns that node instead of
4348/// the current one.
4349SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT) {
4350  return getNode(~Opcode, dl, VT).getNode();
4351}
4352
4353SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4354                                    SDValue Op1) {
4355  return getNode(~Opcode, dl, VT, Op1).getNode();
4356}
4357
4358SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4359                                    SDValue Op1, SDValue Op2) {
4360  return getNode(~Opcode, dl, VT, Op1, Op2).getNode();
4361}
4362
4363SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4364                                    SDValue Op1, SDValue Op2,
4365                                    SDValue Op3) {
4366  return getNode(~Opcode, dl, VT, Op1, Op2, Op3).getNode();
4367}
4368
4369SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4370                                    const SDValue *Ops, unsigned NumOps) {
4371  return getNode(~Opcode, dl, VT, Ops, NumOps).getNode();
4372}
4373
4374SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4375                                    MVT VT1, MVT VT2) {
4376  SDVTList VTs = getVTList(VT1, VT2);
4377  SDValue Op;
4378  return getNode(~Opcode, dl, VTs, &Op, 0).getNode();
4379}
4380
4381SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4382                                    MVT VT2, SDValue Op1) {
4383  SDVTList VTs = getVTList(VT1, VT2);
4384  return getNode(~Opcode, dl, VTs, &Op1, 1).getNode();
4385}
4386
4387SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4388                                    MVT VT2, SDValue Op1,
4389                                    SDValue Op2) {
4390  SDVTList VTs = getVTList(VT1, VT2);
4391  SDValue Ops[] = { Op1, Op2 };
4392  return getNode(~Opcode, dl, VTs, Ops, 2).getNode();
4393}
4394
4395SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4396                                    MVT VT2, SDValue Op1,
4397                                    SDValue Op2, SDValue Op3) {
4398  SDVTList VTs = getVTList(VT1, VT2);
4399  SDValue Ops[] = { Op1, Op2, Op3 };
4400  return getNode(~Opcode, dl, VTs, Ops, 3).getNode();
4401}
4402
4403SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4404                                    MVT VT1, MVT VT2,
4405                                    const SDValue *Ops, unsigned NumOps) {
4406  SDVTList VTs = getVTList(VT1, VT2);
4407  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4408}
4409
4410SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4411                                    MVT VT1, MVT VT2, MVT VT3,
4412                                    SDValue Op1, SDValue Op2) {
4413  SDVTList VTs = getVTList(VT1, VT2, VT3);
4414  SDValue Ops[] = { Op1, Op2 };
4415  return getNode(~Opcode, dl, VTs, Ops, 2).getNode();
4416}
4417
4418SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4419                                    MVT VT1, MVT VT2, MVT VT3,
4420                                    SDValue Op1, SDValue Op2,
4421                                    SDValue Op3) {
4422  SDVTList VTs = getVTList(VT1, VT2, VT3);
4423  SDValue Ops[] = { Op1, Op2, Op3 };
4424  return getNode(~Opcode, dl, VTs, Ops, 3).getNode();
4425}
4426
4427SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4428                                    MVT VT1, MVT VT2, MVT VT3,
4429                                    const SDValue *Ops, unsigned NumOps) {
4430  SDVTList VTs = getVTList(VT1, VT2, VT3);
4431  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4432}
4433
4434SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4435                                    MVT VT2, MVT VT3, MVT VT4,
4436                                    const SDValue *Ops, unsigned NumOps) {
4437  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4438  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4439}
4440
4441SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4442                                    const std::vector<MVT> &ResultTys,
4443                                    const SDValue *Ops, unsigned NumOps) {
4444  return getNode(~Opcode, dl, ResultTys, Ops, NumOps).getNode();
4445}
4446
4447/// getNodeIfExists - Get the specified node if it's already available, or
4448/// else return NULL.
4449SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4450                                      const SDValue *Ops, unsigned NumOps) {
4451  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4452    FoldingSetNodeID ID;
4453    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4454    void *IP = 0;
4455    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4456      return E;
4457  }
4458  return NULL;
4459}
4460
4461/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4462/// This can cause recursive merging of nodes in the DAG.
4463///
4464/// This version assumes From has a single result value.
4465///
4466void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4467                                      DAGUpdateListener *UpdateListener) {
4468  SDNode *From = FromN.getNode();
4469  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4470         "Cannot replace with this method!");
4471  assert(From != To.getNode() && "Cannot replace uses of with self");
4472
4473  // Iterate over all the existing uses of From. New uses will be added
4474  // to the beginning of the use list, which we avoid visiting.
4475  // This specifically avoids visiting uses of From that arise while the
4476  // replacement is happening, because any such uses would be the result
4477  // of CSE: If an existing node looks like From after one of its operands
4478  // is replaced by To, we don't want to replace of all its users with To
4479  // too. See PR3018 for more info.
4480  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4481  while (UI != UE) {
4482    SDNode *User = *UI;
4483
4484    // This node is about to morph, remove its old self from the CSE maps.
4485    RemoveNodeFromCSEMaps(User);
4486
4487    // A user can appear in a use list multiple times, and when this
4488    // happens the uses are usually next to each other in the list.
4489    // To help reduce the number of CSE recomputations, process all
4490    // the uses of this user that we can find this way.
4491    do {
4492      SDUse &Use = UI.getUse();
4493      ++UI;
4494      Use.set(To);
4495    } while (UI != UE && *UI == User);
4496
4497    // Now that we have modified User, add it back to the CSE maps.  If it
4498    // already exists there, recursively merge the results together.
4499    AddModifiedNodeToCSEMaps(User, UpdateListener);
4500  }
4501}
4502
4503/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4504/// This can cause recursive merging of nodes in the DAG.
4505///
4506/// This version assumes that for each value of From, there is a
4507/// corresponding value in To in the same position with the same type.
4508///
4509void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4510                                      DAGUpdateListener *UpdateListener) {
4511#ifndef NDEBUG
4512  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
4513    assert((!From->hasAnyUseOfValue(i) ||
4514            From->getValueType(i) == To->getValueType(i)) &&
4515           "Cannot use this version of ReplaceAllUsesWith!");
4516#endif
4517
4518  // Handle the trivial case.
4519  if (From == To)
4520    return;
4521
4522  // Iterate over just the existing users of From. See the comments in
4523  // the ReplaceAllUsesWith above.
4524  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4525  while (UI != UE) {
4526    SDNode *User = *UI;
4527
4528    // This node is about to morph, remove its old self from the CSE maps.
4529    RemoveNodeFromCSEMaps(User);
4530
4531    // A user can appear in a use list multiple times, and when this
4532    // happens the uses are usually next to each other in the list.
4533    // To help reduce the number of CSE recomputations, process all
4534    // the uses of this user that we can find this way.
4535    do {
4536      SDUse &Use = UI.getUse();
4537      ++UI;
4538      Use.setNode(To);
4539    } while (UI != UE && *UI == User);
4540
4541    // Now that we have modified User, add it back to the CSE maps.  If it
4542    // already exists there, recursively merge the results together.
4543    AddModifiedNodeToCSEMaps(User, UpdateListener);
4544  }
4545}
4546
4547/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4548/// This can cause recursive merging of nodes in the DAG.
4549///
4550/// This version can replace From with any result values.  To must match the
4551/// number and types of values returned by From.
4552void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4553                                      const SDValue *To,
4554                                      DAGUpdateListener *UpdateListener) {
4555  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4556    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4557
4558  // Iterate over just the existing users of From. See the comments in
4559  // the ReplaceAllUsesWith above.
4560  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4561  while (UI != UE) {
4562    SDNode *User = *UI;
4563
4564    // This node is about to morph, remove its old self from the CSE maps.
4565    RemoveNodeFromCSEMaps(User);
4566
4567    // A user can appear in a use list multiple times, and when this
4568    // happens the uses are usually next to each other in the list.
4569    // To help reduce the number of CSE recomputations, process all
4570    // the uses of this user that we can find this way.
4571    do {
4572      SDUse &Use = UI.getUse();
4573      const SDValue &ToOp = To[Use.getResNo()];
4574      ++UI;
4575      Use.set(ToOp);
4576    } while (UI != UE && *UI == User);
4577
4578    // Now that we have modified User, add it back to the CSE maps.  If it
4579    // already exists there, recursively merge the results together.
4580    AddModifiedNodeToCSEMaps(User, UpdateListener);
4581  }
4582}
4583
4584/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4585/// uses of other values produced by From.getNode() alone.  The Deleted
4586/// vector is handled the same way as for ReplaceAllUsesWith.
4587void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4588                                             DAGUpdateListener *UpdateListener){
4589  // Handle the really simple, really trivial case efficiently.
4590  if (From == To) return;
4591
4592  // Handle the simple, trivial, case efficiently.
4593  if (From.getNode()->getNumValues() == 1) {
4594    ReplaceAllUsesWith(From, To, UpdateListener);
4595    return;
4596  }
4597
4598  // Iterate over just the existing users of From. See the comments in
4599  // the ReplaceAllUsesWith above.
4600  SDNode::use_iterator UI = From.getNode()->use_begin(),
4601                       UE = From.getNode()->use_end();
4602  while (UI != UE) {
4603    SDNode *User = *UI;
4604    bool UserRemovedFromCSEMaps = false;
4605
4606    // A user can appear in a use list multiple times, and when this
4607    // happens the uses are usually next to each other in the list.
4608    // To help reduce the number of CSE recomputations, process all
4609    // the uses of this user that we can find this way.
4610    do {
4611      SDUse &Use = UI.getUse();
4612
4613      // Skip uses of different values from the same node.
4614      if (Use.getResNo() != From.getResNo()) {
4615        ++UI;
4616        continue;
4617      }
4618
4619      // If this node hasn't been modified yet, it's still in the CSE maps,
4620      // so remove its old self from the CSE maps.
4621      if (!UserRemovedFromCSEMaps) {
4622        RemoveNodeFromCSEMaps(User);
4623        UserRemovedFromCSEMaps = true;
4624      }
4625
4626      ++UI;
4627      Use.set(To);
4628    } while (UI != UE && *UI == User);
4629
4630    // We are iterating over all uses of the From node, so if a use
4631    // doesn't use the specific value, no changes are made.
4632    if (!UserRemovedFromCSEMaps)
4633      continue;
4634
4635    // Now that we have modified User, add it back to the CSE maps.  If it
4636    // already exists there, recursively merge the results together.
4637    AddModifiedNodeToCSEMaps(User, UpdateListener);
4638  }
4639}
4640
4641namespace {
4642  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
4643  /// to record information about a use.
4644  struct UseMemo {
4645    SDNode *User;
4646    unsigned Index;
4647    SDUse *Use;
4648  };
4649
4650  /// operator< - Sort Memos by User.
4651  bool operator<(const UseMemo &L, const UseMemo &R) {
4652    return (intptr_t)L.User < (intptr_t)R.User;
4653  }
4654}
4655
4656/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4657/// uses of other values produced by From.getNode() alone.  The same value
4658/// may appear in both the From and To list.  The Deleted vector is
4659/// handled the same way as for ReplaceAllUsesWith.
4660void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4661                                              const SDValue *To,
4662                                              unsigned Num,
4663                                              DAGUpdateListener *UpdateListener){
4664  // Handle the simple, trivial case efficiently.
4665  if (Num == 1)
4666    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4667
4668  // Read up all the uses and make records of them. This helps
4669  // processing new uses that are introduced during the
4670  // replacement process.
4671  SmallVector<UseMemo, 4> Uses;
4672  for (unsigned i = 0; i != Num; ++i) {
4673    unsigned FromResNo = From[i].getResNo();
4674    SDNode *FromNode = From[i].getNode();
4675    for (SDNode::use_iterator UI = FromNode->use_begin(),
4676         E = FromNode->use_end(); UI != E; ++UI) {
4677      SDUse &Use = UI.getUse();
4678      if (Use.getResNo() == FromResNo) {
4679        UseMemo Memo = { *UI, i, &Use };
4680        Uses.push_back(Memo);
4681      }
4682    }
4683  }
4684
4685  // Sort the uses, so that all the uses from a given User are together.
4686  std::sort(Uses.begin(), Uses.end());
4687
4688  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
4689       UseIndex != UseIndexEnd; ) {
4690    // We know that this user uses some value of From.  If it is the right
4691    // value, update it.
4692    SDNode *User = Uses[UseIndex].User;
4693
4694    // This node is about to morph, remove its old self from the CSE maps.
4695    RemoveNodeFromCSEMaps(User);
4696
4697    // The Uses array is sorted, so all the uses for a given User
4698    // are next to each other in the list.
4699    // To help reduce the number of CSE recomputations, process all
4700    // the uses of this user that we can find this way.
4701    do {
4702      unsigned i = Uses[UseIndex].Index;
4703      SDUse &Use = *Uses[UseIndex].Use;
4704      ++UseIndex;
4705
4706      Use.set(To[i]);
4707    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
4708
4709    // Now that we have modified User, add it back to the CSE maps.  If it
4710    // already exists there, recursively merge the results together.
4711    AddModifiedNodeToCSEMaps(User, UpdateListener);
4712  }
4713}
4714
4715/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4716/// based on their topological order. It returns the maximum id and a vector
4717/// of the SDNodes* in assigned order by reference.
4718unsigned SelectionDAG::AssignTopologicalOrder() {
4719
4720  unsigned DAGSize = 0;
4721
4722  // SortedPos tracks the progress of the algorithm. Nodes before it are
4723  // sorted, nodes after it are unsorted. When the algorithm completes
4724  // it is at the end of the list.
4725  allnodes_iterator SortedPos = allnodes_begin();
4726
4727  // Visit all the nodes. Move nodes with no operands to the front of
4728  // the list immediately. Annotate nodes that do have operands with their
4729  // operand count. Before we do this, the Node Id fields of the nodes
4730  // may contain arbitrary values. After, the Node Id fields for nodes
4731  // before SortedPos will contain the topological sort index, and the
4732  // Node Id fields for nodes At SortedPos and after will contain the
4733  // count of outstanding operands.
4734  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
4735    SDNode *N = I++;
4736    unsigned Degree = N->getNumOperands();
4737    if (Degree == 0) {
4738      // A node with no uses, add it to the result array immediately.
4739      N->setNodeId(DAGSize++);
4740      allnodes_iterator Q = N;
4741      if (Q != SortedPos)
4742        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
4743      ++SortedPos;
4744    } else {
4745      // Temporarily use the Node Id as scratch space for the degree count.
4746      N->setNodeId(Degree);
4747    }
4748  }
4749
4750  // Visit all the nodes. As we iterate, moves nodes into sorted order,
4751  // such that by the time the end is reached all nodes will be sorted.
4752  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
4753    SDNode *N = I;
4754    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4755         UI != UE; ++UI) {
4756      SDNode *P = *UI;
4757      unsigned Degree = P->getNodeId();
4758      --Degree;
4759      if (Degree == 0) {
4760        // All of P's operands are sorted, so P may sorted now.
4761        P->setNodeId(DAGSize++);
4762        if (P != SortedPos)
4763          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
4764        ++SortedPos;
4765      } else {
4766        // Update P's outstanding operand count.
4767        P->setNodeId(Degree);
4768      }
4769    }
4770  }
4771
4772  assert(SortedPos == AllNodes.end() &&
4773         "Topological sort incomplete!");
4774  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
4775         "First node in topological sort is not the entry token!");
4776  assert(AllNodes.front().getNodeId() == 0 &&
4777         "First node in topological sort has non-zero id!");
4778  assert(AllNodes.front().getNumOperands() == 0 &&
4779         "First node in topological sort has operands!");
4780  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
4781         "Last node in topologic sort has unexpected id!");
4782  assert(AllNodes.back().use_empty() &&
4783         "Last node in topologic sort has users!");
4784  assert(DAGSize == allnodes_size() && "Node count mismatch!");
4785  return DAGSize;
4786}
4787
4788
4789
4790//===----------------------------------------------------------------------===//
4791//                              SDNode Class
4792//===----------------------------------------------------------------------===//
4793
4794HandleSDNode::~HandleSDNode() {
4795  DropOperands();
4796}
4797
4798GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4799                                         MVT VT, int64_t o)
4800  : SDNode(isa<GlobalVariable>(GA) &&
4801           cast<GlobalVariable>(GA)->isThreadLocal() ?
4802           // Thread Local
4803           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4804           // Non Thread Local
4805           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4806           DebugLoc::getUnknownLoc(), getSDVTList(VT)), Offset(o) {
4807  TheGlobal = const_cast<GlobalValue*>(GA);
4808}
4809
4810MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, MVT memvt,
4811                     const Value *srcValue, int SVO,
4812                     unsigned alignment, bool vol)
4813 : SDNode(Opc, dl, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4814  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4815  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4816  assert(getAlignment() == alignment && "Alignment representation error!");
4817  assert(isVolatile() == vol && "Volatile representation error!");
4818}
4819
4820MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
4821                     const SDValue *Ops,
4822                     unsigned NumOps, MVT memvt, const Value *srcValue,
4823                     int SVO, unsigned alignment, bool vol)
4824   : SDNode(Opc, dl, VTs, Ops, NumOps),
4825     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4826  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4827  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4828  assert(getAlignment() == alignment && "Alignment representation error!");
4829  assert(isVolatile() == vol && "Volatile representation error!");
4830}
4831
4832/// getMemOperand - Return a MachineMemOperand object describing the memory
4833/// reference performed by this memory reference.
4834MachineMemOperand MemSDNode::getMemOperand() const {
4835  int Flags = 0;
4836  if (isa<LoadSDNode>(this))
4837    Flags = MachineMemOperand::MOLoad;
4838  else if (isa<StoreSDNode>(this))
4839    Flags = MachineMemOperand::MOStore;
4840  else if (isa<AtomicSDNode>(this)) {
4841    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4842  }
4843  else {
4844    const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
4845    assert(MemIntrinNode && "Unknown MemSDNode opcode!");
4846    if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
4847    if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
4848  }
4849
4850  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4851  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4852
4853  // Check if the memory reference references a frame index
4854  const FrameIndexSDNode *FI =
4855  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
4856  if (!getSrcValue() && FI)
4857    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4858                             Flags, 0, Size, getAlignment());
4859  else
4860    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4861                             Size, getAlignment());
4862}
4863
4864/// Profile - Gather unique data for the node.
4865///
4866void SDNode::Profile(FoldingSetNodeID &ID) const {
4867  AddNodeIDNode(ID, this);
4868}
4869
4870/// getValueTypeList - Return a pointer to the specified value type.
4871///
4872const MVT *SDNode::getValueTypeList(MVT VT) {
4873  if (VT.isExtended()) {
4874    static std::set<MVT, MVT::compareRawBits> EVTs;
4875    return &(*EVTs.insert(VT).first);
4876  } else {
4877    static MVT VTs[MVT::LAST_VALUETYPE];
4878    VTs[VT.getSimpleVT()] = VT;
4879    return &VTs[VT.getSimpleVT()];
4880  }
4881}
4882
4883/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4884/// indicated value.  This method ignores uses of other values defined by this
4885/// operation.
4886bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4887  assert(Value < getNumValues() && "Bad value!");
4888
4889  // TODO: Only iterate over uses of a given value of the node
4890  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4891    if (UI.getUse().getResNo() == Value) {
4892      if (NUses == 0)
4893        return false;
4894      --NUses;
4895    }
4896  }
4897
4898  // Found exactly the right number of uses?
4899  return NUses == 0;
4900}
4901
4902
4903/// hasAnyUseOfValue - Return true if there are any use of the indicated
4904/// value. This method ignores uses of other values defined by this operation.
4905bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4906  assert(Value < getNumValues() && "Bad value!");
4907
4908  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
4909    if (UI.getUse().getResNo() == Value)
4910      return true;
4911
4912  return false;
4913}
4914
4915
4916/// isOnlyUserOf - Return true if this node is the only use of N.
4917///
4918bool SDNode::isOnlyUserOf(SDNode *N) const {
4919  bool Seen = false;
4920  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4921    SDNode *User = *I;
4922    if (User == this)
4923      Seen = true;
4924    else
4925      return false;
4926  }
4927
4928  return Seen;
4929}
4930
4931/// isOperand - Return true if this node is an operand of N.
4932///
4933bool SDValue::isOperandOf(SDNode *N) const {
4934  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4935    if (*this == N->getOperand(i))
4936      return true;
4937  return false;
4938}
4939
4940bool SDNode::isOperandOf(SDNode *N) const {
4941  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4942    if (this == N->OperandList[i].getNode())
4943      return true;
4944  return false;
4945}
4946
4947/// reachesChainWithoutSideEffects - Return true if this operand (which must
4948/// be a chain) reaches the specified operand without crossing any
4949/// side-effecting instructions.  In practice, this looks through token
4950/// factors and non-volatile loads.  In order to remain efficient, this only
4951/// looks a couple of nodes in, it does not do an exhaustive search.
4952bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
4953                                               unsigned Depth) const {
4954  if (*this == Dest) return true;
4955
4956  // Don't search too deeply, we just want to be able to see through
4957  // TokenFactor's etc.
4958  if (Depth == 0) return false;
4959
4960  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4961  // of the operands of the TF reach dest, then we can do the xform.
4962  if (getOpcode() == ISD::TokenFactor) {
4963    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4964      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4965        return true;
4966    return false;
4967  }
4968
4969  // Loads don't have side effects, look through them.
4970  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4971    if (!Ld->isVolatile())
4972      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4973  }
4974  return false;
4975}
4976
4977
4978static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4979                            SmallPtrSet<SDNode *, 32> &Visited) {
4980  if (found || !Visited.insert(N))
4981    return;
4982
4983  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4984    SDNode *Op = N->getOperand(i).getNode();
4985    if (Op == P) {
4986      found = true;
4987      return;
4988    }
4989    findPredecessor(Op, P, found, Visited);
4990  }
4991}
4992
4993/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4994/// is either an operand of N or it can be reached by recursively traversing
4995/// up the operands.
4996/// NOTE: this is an expensive method. Use it carefully.
4997bool SDNode::isPredecessorOf(SDNode *N) const {
4998  SmallPtrSet<SDNode *, 32> Visited;
4999  bool found = false;
5000  findPredecessor(N, this, found, Visited);
5001  return found;
5002}
5003
5004uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5005  assert(Num < NumOperands && "Invalid child # of SDNode!");
5006  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5007}
5008
5009std::string SDNode::getOperationName(const SelectionDAG *G) const {
5010  switch (getOpcode()) {
5011  default:
5012    if (getOpcode() < ISD::BUILTIN_OP_END)
5013      return "<<Unknown DAG Node>>";
5014    if (isMachineOpcode()) {
5015      if (G)
5016        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5017          if (getMachineOpcode() < TII->getNumOpcodes())
5018            return TII->get(getMachineOpcode()).getName();
5019      return "<<Unknown Machine Node>>";
5020    }
5021    if (G) {
5022      const TargetLowering &TLI = G->getTargetLoweringInfo();
5023      const char *Name = TLI.getTargetNodeName(getOpcode());
5024      if (Name) return Name;
5025      return "<<Unknown Target Node>>";
5026    }
5027    return "<<Unknown Node>>";
5028
5029#ifndef NDEBUG
5030  case ISD::DELETED_NODE:
5031    return "<<Deleted Node!>>";
5032#endif
5033  case ISD::PREFETCH:      return "Prefetch";
5034  case ISD::MEMBARRIER:    return "MemBarrier";
5035  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5036  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5037  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5038  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5039  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5040  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5041  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5042  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5043  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5044  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5045  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5046  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5047  case ISD::PCMARKER:      return "PCMarker";
5048  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5049  case ISD::SRCVALUE:      return "SrcValue";
5050  case ISD::MEMOPERAND:    return "MemOperand";
5051  case ISD::EntryToken:    return "EntryToken";
5052  case ISD::TokenFactor:   return "TokenFactor";
5053  case ISD::AssertSext:    return "AssertSext";
5054  case ISD::AssertZext:    return "AssertZext";
5055
5056  case ISD::BasicBlock:    return "BasicBlock";
5057  case ISD::ARG_FLAGS:     return "ArgFlags";
5058  case ISD::VALUETYPE:     return "ValueType";
5059  case ISD::Register:      return "Register";
5060
5061  case ISD::Constant:      return "Constant";
5062  case ISD::ConstantFP:    return "ConstantFP";
5063  case ISD::GlobalAddress: return "GlobalAddress";
5064  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5065  case ISD::FrameIndex:    return "FrameIndex";
5066  case ISD::JumpTable:     return "JumpTable";
5067  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5068  case ISD::RETURNADDR: return "RETURNADDR";
5069  case ISD::FRAMEADDR: return "FRAMEADDR";
5070  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5071  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5072  case ISD::EHSELECTION: return "EHSELECTION";
5073  case ISD::EH_RETURN: return "EH_RETURN";
5074  case ISD::ConstantPool:  return "ConstantPool";
5075  case ISD::ExternalSymbol: return "ExternalSymbol";
5076  case ISD::INTRINSIC_WO_CHAIN: {
5077    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5078    return Intrinsic::getName((Intrinsic::ID)IID);
5079  }
5080  case ISD::INTRINSIC_VOID:
5081  case ISD::INTRINSIC_W_CHAIN: {
5082    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5083    return Intrinsic::getName((Intrinsic::ID)IID);
5084  }
5085
5086  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5087  case ISD::TargetConstant: return "TargetConstant";
5088  case ISD::TargetConstantFP:return "TargetConstantFP";
5089  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5090  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5091  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5092  case ISD::TargetJumpTable:  return "TargetJumpTable";
5093  case ISD::TargetConstantPool:  return "TargetConstantPool";
5094  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5095
5096  case ISD::CopyToReg:     return "CopyToReg";
5097  case ISD::CopyFromReg:   return "CopyFromReg";
5098  case ISD::UNDEF:         return "undef";
5099  case ISD::MERGE_VALUES:  return "merge_values";
5100  case ISD::INLINEASM:     return "inlineasm";
5101  case ISD::DBG_LABEL:     return "dbg_label";
5102  case ISD::EH_LABEL:      return "eh_label";
5103  case ISD::DECLARE:       return "declare";
5104  case ISD::HANDLENODE:    return "handlenode";
5105  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5106  case ISD::CALL:          return "call";
5107
5108  // Unary operators
5109  case ISD::FABS:   return "fabs";
5110  case ISD::FNEG:   return "fneg";
5111  case ISD::FSQRT:  return "fsqrt";
5112  case ISD::FSIN:   return "fsin";
5113  case ISD::FCOS:   return "fcos";
5114  case ISD::FPOWI:  return "fpowi";
5115  case ISD::FPOW:   return "fpow";
5116  case ISD::FTRUNC: return "ftrunc";
5117  case ISD::FFLOOR: return "ffloor";
5118  case ISD::FCEIL:  return "fceil";
5119  case ISD::FRINT:  return "frint";
5120  case ISD::FNEARBYINT: return "fnearbyint";
5121
5122  // Binary operators
5123  case ISD::ADD:    return "add";
5124  case ISD::SUB:    return "sub";
5125  case ISD::MUL:    return "mul";
5126  case ISD::MULHU:  return "mulhu";
5127  case ISD::MULHS:  return "mulhs";
5128  case ISD::SDIV:   return "sdiv";
5129  case ISD::UDIV:   return "udiv";
5130  case ISD::SREM:   return "srem";
5131  case ISD::UREM:   return "urem";
5132  case ISD::SMUL_LOHI:  return "smul_lohi";
5133  case ISD::UMUL_LOHI:  return "umul_lohi";
5134  case ISD::SDIVREM:    return "sdivrem";
5135  case ISD::UDIVREM:    return "udivrem";
5136  case ISD::AND:    return "and";
5137  case ISD::OR:     return "or";
5138  case ISD::XOR:    return "xor";
5139  case ISD::SHL:    return "shl";
5140  case ISD::SRA:    return "sra";
5141  case ISD::SRL:    return "srl";
5142  case ISD::ROTL:   return "rotl";
5143  case ISD::ROTR:   return "rotr";
5144  case ISD::FADD:   return "fadd";
5145  case ISD::FSUB:   return "fsub";
5146  case ISD::FMUL:   return "fmul";
5147  case ISD::FDIV:   return "fdiv";
5148  case ISD::FREM:   return "frem";
5149  case ISD::FCOPYSIGN: return "fcopysign";
5150  case ISD::FGETSIGN:  return "fgetsign";
5151
5152  case ISD::SETCC:       return "setcc";
5153  case ISD::VSETCC:      return "vsetcc";
5154  case ISD::SELECT:      return "select";
5155  case ISD::SELECT_CC:   return "select_cc";
5156  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5157  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5158  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5159  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5160  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5161  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5162  case ISD::CARRY_FALSE:         return "carry_false";
5163  case ISD::ADDC:        return "addc";
5164  case ISD::ADDE:        return "adde";
5165  case ISD::SADDO:       return "saddo";
5166  case ISD::UADDO:       return "uaddo";
5167  case ISD::SSUBO:       return "ssubo";
5168  case ISD::USUBO:       return "usubo";
5169  case ISD::SMULO:       return "smulo";
5170  case ISD::UMULO:       return "umulo";
5171  case ISD::SUBC:        return "subc";
5172  case ISD::SUBE:        return "sube";
5173  case ISD::SHL_PARTS:   return "shl_parts";
5174  case ISD::SRA_PARTS:   return "sra_parts";
5175  case ISD::SRL_PARTS:   return "srl_parts";
5176
5177  // Conversion operators.
5178  case ISD::SIGN_EXTEND: return "sign_extend";
5179  case ISD::ZERO_EXTEND: return "zero_extend";
5180  case ISD::ANY_EXTEND:  return "any_extend";
5181  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5182  case ISD::TRUNCATE:    return "truncate";
5183  case ISD::FP_ROUND:    return "fp_round";
5184  case ISD::FLT_ROUNDS_: return "flt_rounds";
5185  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5186  case ISD::FP_EXTEND:   return "fp_extend";
5187
5188  case ISD::SINT_TO_FP:  return "sint_to_fp";
5189  case ISD::UINT_TO_FP:  return "uint_to_fp";
5190  case ISD::FP_TO_SINT:  return "fp_to_sint";
5191  case ISD::FP_TO_UINT:  return "fp_to_uint";
5192  case ISD::BIT_CONVERT: return "bit_convert";
5193
5194  case ISD::CONVERT_RNDSAT: {
5195    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5196    default: assert(0 && "Unknown cvt code!");
5197    case ISD::CVT_FF:  return "cvt_ff";
5198    case ISD::CVT_FS:  return "cvt_fs";
5199    case ISD::CVT_FU:  return "cvt_fu";
5200    case ISD::CVT_SF:  return "cvt_sf";
5201    case ISD::CVT_UF:  return "cvt_uf";
5202    case ISD::CVT_SS:  return "cvt_ss";
5203    case ISD::CVT_SU:  return "cvt_su";
5204    case ISD::CVT_US:  return "cvt_us";
5205    case ISD::CVT_UU:  return "cvt_uu";
5206    }
5207  }
5208
5209    // Control flow instructions
5210  case ISD::BR:      return "br";
5211  case ISD::BRIND:   return "brind";
5212  case ISD::BR_JT:   return "br_jt";
5213  case ISD::BRCOND:  return "brcond";
5214  case ISD::BR_CC:   return "br_cc";
5215  case ISD::RET:     return "ret";
5216  case ISD::CALLSEQ_START:  return "callseq_start";
5217  case ISD::CALLSEQ_END:    return "callseq_end";
5218
5219    // Other operators
5220  case ISD::LOAD:               return "load";
5221  case ISD::STORE:              return "store";
5222  case ISD::VAARG:              return "vaarg";
5223  case ISD::VACOPY:             return "vacopy";
5224  case ISD::VAEND:              return "vaend";
5225  case ISD::VASTART:            return "vastart";
5226  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5227  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5228  case ISD::BUILD_PAIR:         return "build_pair";
5229  case ISD::STACKSAVE:          return "stacksave";
5230  case ISD::STACKRESTORE:       return "stackrestore";
5231  case ISD::TRAP:               return "trap";
5232
5233  // Bit manipulation
5234  case ISD::BSWAP:   return "bswap";
5235  case ISD::CTPOP:   return "ctpop";
5236  case ISD::CTTZ:    return "cttz";
5237  case ISD::CTLZ:    return "ctlz";
5238
5239  // Debug info
5240  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5241  case ISD::DEBUG_LOC: return "debug_loc";
5242
5243  // Trampolines
5244  case ISD::TRAMPOLINE: return "trampoline";
5245
5246  case ISD::CONDCODE:
5247    switch (cast<CondCodeSDNode>(this)->get()) {
5248    default: assert(0 && "Unknown setcc condition!");
5249    case ISD::SETOEQ:  return "setoeq";
5250    case ISD::SETOGT:  return "setogt";
5251    case ISD::SETOGE:  return "setoge";
5252    case ISD::SETOLT:  return "setolt";
5253    case ISD::SETOLE:  return "setole";
5254    case ISD::SETONE:  return "setone";
5255
5256    case ISD::SETO:    return "seto";
5257    case ISD::SETUO:   return "setuo";
5258    case ISD::SETUEQ:  return "setue";
5259    case ISD::SETUGT:  return "setugt";
5260    case ISD::SETUGE:  return "setuge";
5261    case ISD::SETULT:  return "setult";
5262    case ISD::SETULE:  return "setule";
5263    case ISD::SETUNE:  return "setune";
5264
5265    case ISD::SETEQ:   return "seteq";
5266    case ISD::SETGT:   return "setgt";
5267    case ISD::SETGE:   return "setge";
5268    case ISD::SETLT:   return "setlt";
5269    case ISD::SETLE:   return "setle";
5270    case ISD::SETNE:   return "setne";
5271    }
5272  }
5273}
5274
5275const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5276  switch (AM) {
5277  default:
5278    return "";
5279  case ISD::PRE_INC:
5280    return "<pre-inc>";
5281  case ISD::PRE_DEC:
5282    return "<pre-dec>";
5283  case ISD::POST_INC:
5284    return "<post-inc>";
5285  case ISD::POST_DEC:
5286    return "<post-dec>";
5287  }
5288}
5289
5290std::string ISD::ArgFlagsTy::getArgFlagsString() {
5291  std::string S = "< ";
5292
5293  if (isZExt())
5294    S += "zext ";
5295  if (isSExt())
5296    S += "sext ";
5297  if (isInReg())
5298    S += "inreg ";
5299  if (isSRet())
5300    S += "sret ";
5301  if (isByVal())
5302    S += "byval ";
5303  if (isNest())
5304    S += "nest ";
5305  if (getByValAlign())
5306    S += "byval-align:" + utostr(getByValAlign()) + " ";
5307  if (getOrigAlign())
5308    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5309  if (getByValSize())
5310    S += "byval-size:" + utostr(getByValSize()) + " ";
5311  return S + ">";
5312}
5313
5314void SDNode::dump() const { dump(0); }
5315void SDNode::dump(const SelectionDAG *G) const {
5316  print(errs(), G);
5317}
5318
5319void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5320  OS << (void*)this << ": ";
5321
5322  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5323    if (i) OS << ",";
5324    if (getValueType(i) == MVT::Other)
5325      OS << "ch";
5326    else
5327      OS << getValueType(i).getMVTString();
5328  }
5329  OS << " = " << getOperationName(G);
5330}
5331
5332void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5333  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5334    SDNode *Mask = getOperand(2).getNode();
5335    OS << "<";
5336    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
5337      if (i) OS << ",";
5338      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
5339        OS << "u";
5340      else
5341        OS << cast<ConstantSDNode>(Mask->getOperand(i))->getZExtValue();
5342    }
5343    OS << ">";
5344  }
5345
5346  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5347    OS << '<' << CSDN->getAPIntValue() << '>';
5348  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5349    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5350      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5351    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5352      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5353    else {
5354      OS << "<APFloat(";
5355      CSDN->getValueAPF().bitcastToAPInt().dump();
5356      OS << ")>";
5357    }
5358  } else if (const GlobalAddressSDNode *GADN =
5359             dyn_cast<GlobalAddressSDNode>(this)) {
5360    int64_t offset = GADN->getOffset();
5361    OS << '<';
5362    WriteAsOperand(OS, GADN->getGlobal());
5363    OS << '>';
5364    if (offset > 0)
5365      OS << " + " << offset;
5366    else
5367      OS << " " << offset;
5368  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5369    OS << "<" << FIDN->getIndex() << ">";
5370  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5371    OS << "<" << JTDN->getIndex() << ">";
5372  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5373    int offset = CP->getOffset();
5374    if (CP->isMachineConstantPoolEntry())
5375      OS << "<" << *CP->getMachineCPVal() << ">";
5376    else
5377      OS << "<" << *CP->getConstVal() << ">";
5378    if (offset > 0)
5379      OS << " + " << offset;
5380    else
5381      OS << " " << offset;
5382  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5383    OS << "<";
5384    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5385    if (LBB)
5386      OS << LBB->getName() << " ";
5387    OS << (const void*)BBDN->getBasicBlock() << ">";
5388  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5389    if (G && R->getReg() &&
5390        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5391      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5392    } else {
5393      OS << " #" << R->getReg();
5394    }
5395  } else if (const ExternalSymbolSDNode *ES =
5396             dyn_cast<ExternalSymbolSDNode>(this)) {
5397    OS << "'" << ES->getSymbol() << "'";
5398  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5399    if (M->getValue())
5400      OS << "<" << M->getValue() << ">";
5401    else
5402      OS << "<null>";
5403  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5404    if (M->MO.getValue())
5405      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5406    else
5407      OS << "<null:" << M->MO.getOffset() << ">";
5408  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5409    OS << N->getArgFlags().getArgFlagsString();
5410  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5411    OS << ":" << N->getVT().getMVTString();
5412  }
5413  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5414    const Value *SrcValue = LD->getSrcValue();
5415    int SrcOffset = LD->getSrcValueOffset();
5416    OS << " <";
5417    if (SrcValue)
5418      OS << SrcValue;
5419    else
5420      OS << "null";
5421    OS << ":" << SrcOffset << ">";
5422
5423    bool doExt = true;
5424    switch (LD->getExtensionType()) {
5425    default: doExt = false; break;
5426    case ISD::EXTLOAD: OS << " <anyext "; break;
5427    case ISD::SEXTLOAD: OS << " <sext "; break;
5428    case ISD::ZEXTLOAD: OS << " <zext "; break;
5429    }
5430    if (doExt)
5431      OS << LD->getMemoryVT().getMVTString() << ">";
5432
5433    const char *AM = getIndexedModeName(LD->getAddressingMode());
5434    if (*AM)
5435      OS << " " << AM;
5436    if (LD->isVolatile())
5437      OS << " <volatile>";
5438    OS << " alignment=" << LD->getAlignment();
5439  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5440    const Value *SrcValue = ST->getSrcValue();
5441    int SrcOffset = ST->getSrcValueOffset();
5442    OS << " <";
5443    if (SrcValue)
5444      OS << SrcValue;
5445    else
5446      OS << "null";
5447    OS << ":" << SrcOffset << ">";
5448
5449    if (ST->isTruncatingStore())
5450      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5451
5452    const char *AM = getIndexedModeName(ST->getAddressingMode());
5453    if (*AM)
5454      OS << " " << AM;
5455    if (ST->isVolatile())
5456      OS << " <volatile>";
5457    OS << " alignment=" << ST->getAlignment();
5458  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5459    const Value *SrcValue = AT->getSrcValue();
5460    int SrcOffset = AT->getSrcValueOffset();
5461    OS << " <";
5462    if (SrcValue)
5463      OS << SrcValue;
5464    else
5465      OS << "null";
5466    OS << ":" << SrcOffset << ">";
5467    if (AT->isVolatile())
5468      OS << " <volatile>";
5469    OS << " alignment=" << AT->getAlignment();
5470  }
5471}
5472
5473void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5474  print_types(OS, G);
5475  OS << " ";
5476  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5477    if (i) OS << ", ";
5478    OS << (void*)getOperand(i).getNode();
5479    if (unsigned RN = getOperand(i).getResNo())
5480      OS << ":" << RN;
5481  }
5482  print_details(OS, G);
5483}
5484
5485static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5486  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5487    if (N->getOperand(i).getNode()->hasOneUse())
5488      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5489    else
5490      cerr << "\n" << std::string(indent+2, ' ')
5491           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5492
5493
5494  cerr << "\n" << std::string(indent, ' ');
5495  N->dump(G);
5496}
5497
5498void SelectionDAG::dump() const {
5499  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5500
5501  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5502       I != E; ++I) {
5503    const SDNode *N = I;
5504    if (!N->hasOneUse() && N != getRoot().getNode())
5505      DumpNodes(N, 2, this);
5506  }
5507
5508  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5509
5510  cerr << "\n\n";
5511}
5512
5513void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
5514  print_types(OS, G);
5515  print_details(OS, G);
5516}
5517
5518typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
5519static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
5520		       const SelectionDAG *G, VisitedSDNodeSet &once) {
5521  if (!once.insert(N))	// If we've been here before, return now.
5522    return;
5523  // Dump the current SDNode, but don't end the line yet.
5524  OS << std::string(indent, ' ');
5525  N->printr(OS, G);
5526  // Having printed this SDNode, walk the children:
5527  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5528    const SDNode *child = N->getOperand(i).getNode();
5529    if (i) OS << ",";
5530    OS << " ";
5531    if (child->getNumOperands() == 0) {
5532      // This child has no grandchildren; print it inline right here.
5533      child->printr(OS, G);
5534      once.insert(child);
5535    } else {	// Just the address.  FIXME: also print the child's opcode
5536      OS << (void*)child;
5537      if (unsigned RN = N->getOperand(i).getResNo())
5538	OS << ":" << RN;
5539    }
5540  }
5541  OS << "\n";
5542  // Dump children that have grandchildren on their own line(s).
5543  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5544    const SDNode *child = N->getOperand(i).getNode();
5545    DumpNodesr(OS, child, indent+2, G, once);
5546  }
5547}
5548
5549void SDNode::dumpr() const {
5550  VisitedSDNodeSet once;
5551  DumpNodesr(errs(), this, 0, 0, once);
5552}
5553
5554const Type *ConstantPoolSDNode::getType() const {
5555  if (isMachineConstantPoolEntry())
5556    return Val.MachineCPVal->getType();
5557  return Val.ConstVal->getType();
5558}
5559
5560bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
5561                                        APInt &SplatUndef,
5562                                        unsigned &SplatBitSize,
5563                                        bool &HasAnyUndefs,
5564                                        unsigned MinSplatBits) {
5565  MVT VT = getValueType(0);
5566  assert(VT.isVector() && "Expected a vector type");
5567  unsigned sz = VT.getSizeInBits();
5568  if (MinSplatBits > sz)
5569    return false;
5570
5571  SplatValue = APInt(sz, 0);
5572  SplatUndef = APInt(sz, 0);
5573
5574  // Get the bits.  Bits with undefined values (when the corresponding element
5575  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
5576  // in SplatValue.  If any of the values are not constant, give up and return
5577  // false.
5578  unsigned int nOps = getNumOperands();
5579  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
5580  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
5581  for (unsigned i = 0; i < nOps; ++i) {
5582    SDValue OpVal = getOperand(i);
5583    unsigned BitPos = i * EltBitSize;
5584
5585    if (OpVal.getOpcode() == ISD::UNDEF)
5586      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos +EltBitSize);
5587    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
5588      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
5589                     zextOrTrunc(sz) << BitPos);
5590    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
5591      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
5592     else
5593      return false;
5594  }
5595
5596  // The build_vector is all constants or undefs.  Find the smallest element
5597  // size that splats the vector.
5598
5599  HasAnyUndefs = (SplatUndef != 0);
5600  while (sz > 8) {
5601
5602    unsigned HalfSize = sz / 2;
5603    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
5604    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
5605    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
5606    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
5607
5608    // If the two halves do not match (ignoring undef bits), stop here.
5609    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
5610        MinSplatBits > HalfSize)
5611      break;
5612
5613    SplatValue = HighValue | LowValue;
5614    SplatUndef = HighUndef & LowUndef;
5615
5616    sz = HalfSize;
5617  }
5618
5619  SplatBitSize = sz;
5620  return true;
5621}
5622