SelectionDAG.cpp revision ba79d72eab446e64d360e8263d77732b5e13d556
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/Constants.h"
18#include "llvm/Analysis/ValueTracking.h"
19#include "llvm/Function.h"
20#include "llvm/GlobalAlias.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/Intrinsics.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Assembly/Writer.h"
25#include "llvm/CallingConv.h"
26#include "llvm/CodeGen/MachineBasicBlock.h"
27#include "llvm/CodeGen/MachineConstantPool.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
30#include "llvm/CodeGen/PseudoSourceValue.h"
31#include "llvm/Target/TargetRegisterInfo.h"
32#include "llvm/Target/TargetData.h"
33#include "llvm/Target/TargetFrameInfo.h"
34#include "llvm/Target/TargetLowering.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/Target/TargetInstrInfo.h"
37#include "llvm/Target/TargetIntrinsicInfo.h"
38#include "llvm/Target/TargetMachine.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/ManagedStatic.h"
43#include "llvm/Support/MathExtras.h"
44#include "llvm/Support/raw_ostream.h"
45#include "llvm/System/Mutex.h"
46#include "llvm/ADT/SetVector.h"
47#include "llvm/ADT/SmallPtrSet.h"
48#include "llvm/ADT/SmallSet.h"
49#include "llvm/ADT/SmallVector.h"
50#include "llvm/ADT/StringExtras.h"
51#include <algorithm>
52#include <cmath>
53using namespace llvm;
54
55/// makeVTList - Return an instance of the SDVTList struct initialized with the
56/// specified members.
57static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
58  SDVTList Res = {VTs, NumVTs};
59  return Res;
60}
61
62static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
63  switch (VT.getSimpleVT().SimpleTy) {
64  default: llvm_unreachable("Unknown FP format");
65  case MVT::f32:     return &APFloat::IEEEsingle;
66  case MVT::f64:     return &APFloat::IEEEdouble;
67  case MVT::f80:     return &APFloat::x87DoubleExtended;
68  case MVT::f128:    return &APFloat::IEEEquad;
69  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
70  }
71}
72
73SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
74
75//===----------------------------------------------------------------------===//
76//                              ConstantFPSDNode Class
77//===----------------------------------------------------------------------===//
78
79/// isExactlyValue - We don't rely on operator== working on double values, as
80/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
81/// As such, this method can be used to do an exact bit-for-bit comparison of
82/// two floating point values.
83bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
84  return getValueAPF().bitwiseIsEqual(V);
85}
86
87bool ConstantFPSDNode::isValueValidForType(EVT VT,
88                                           const APFloat& Val) {
89  assert(VT.isFloatingPoint() && "Can only convert between FP types");
90
91  // PPC long double cannot be converted to any other type.
92  if (VT == MVT::ppcf128 ||
93      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
94    return false;
95
96  // convert modifies in place, so make a copy.
97  APFloat Val2 = APFloat(Val);
98  bool losesInfo;
99  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
100                      &losesInfo);
101  return !losesInfo;
102}
103
104//===----------------------------------------------------------------------===//
105//                              ISD Namespace
106//===----------------------------------------------------------------------===//
107
108/// isBuildVectorAllOnes - Return true if the specified node is a
109/// BUILD_VECTOR where all of the elements are ~0 or undef.
110bool ISD::isBuildVectorAllOnes(const SDNode *N) {
111  // Look through a bit convert.
112  if (N->getOpcode() == ISD::BIT_CONVERT)
113    N = N->getOperand(0).getNode();
114
115  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
116
117  unsigned i = 0, e = N->getNumOperands();
118
119  // Skip over all of the undef values.
120  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
121    ++i;
122
123  // Do not accept an all-undef vector.
124  if (i == e) return false;
125
126  // Do not accept build_vectors that aren't all constants or which have non-~0
127  // elements.
128  SDValue NotZero = N->getOperand(i);
129  if (isa<ConstantSDNode>(NotZero)) {
130    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
131      return false;
132  } else if (isa<ConstantFPSDNode>(NotZero)) {
133    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
134                bitcastToAPInt().isAllOnesValue())
135      return false;
136  } else
137    return false;
138
139  // Okay, we have at least one ~0 value, check to see if the rest match or are
140  // undefs.
141  for (++i; i != e; ++i)
142    if (N->getOperand(i) != NotZero &&
143        N->getOperand(i).getOpcode() != ISD::UNDEF)
144      return false;
145  return true;
146}
147
148
149/// isBuildVectorAllZeros - Return true if the specified node is a
150/// BUILD_VECTOR where all of the elements are 0 or undef.
151bool ISD::isBuildVectorAllZeros(const SDNode *N) {
152  // Look through a bit convert.
153  if (N->getOpcode() == ISD::BIT_CONVERT)
154    N = N->getOperand(0).getNode();
155
156  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
157
158  unsigned i = 0, e = N->getNumOperands();
159
160  // Skip over all of the undef values.
161  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
162    ++i;
163
164  // Do not accept an all-undef vector.
165  if (i == e) return false;
166
167  // Do not accept build_vectors that aren't all constants or which have non-0
168  // elements.
169  SDValue Zero = N->getOperand(i);
170  if (isa<ConstantSDNode>(Zero)) {
171    if (!cast<ConstantSDNode>(Zero)->isNullValue())
172      return false;
173  } else if (isa<ConstantFPSDNode>(Zero)) {
174    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
175      return false;
176  } else
177    return false;
178
179  // Okay, we have at least one 0 value, check to see if the rest match or are
180  // undefs.
181  for (++i; i != e; ++i)
182    if (N->getOperand(i) != Zero &&
183        N->getOperand(i).getOpcode() != ISD::UNDEF)
184      return false;
185  return true;
186}
187
188/// isScalarToVector - Return true if the specified node is a
189/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
190/// element is not an undef.
191bool ISD::isScalarToVector(const SDNode *N) {
192  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
193    return true;
194
195  if (N->getOpcode() != ISD::BUILD_VECTOR)
196    return false;
197  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
198    return false;
199  unsigned NumElems = N->getNumOperands();
200  for (unsigned i = 1; i < NumElems; ++i) {
201    SDValue V = N->getOperand(i);
202    if (V.getOpcode() != ISD::UNDEF)
203      return false;
204  }
205  return true;
206}
207
208/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
209/// when given the operation for (X op Y).
210ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
211  // To perform this operation, we just need to swap the L and G bits of the
212  // operation.
213  unsigned OldL = (Operation >> 2) & 1;
214  unsigned OldG = (Operation >> 1) & 1;
215  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
216                       (OldL << 1) |       // New G bit
217                       (OldG << 2));       // New L bit.
218}
219
220/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
221/// 'op' is a valid SetCC operation.
222ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
223  unsigned Operation = Op;
224  if (isInteger)
225    Operation ^= 7;   // Flip L, G, E bits, but not U.
226  else
227    Operation ^= 15;  // Flip all of the condition bits.
228
229  if (Operation > ISD::SETTRUE2)
230    Operation &= ~8;  // Don't let N and U bits get set.
231
232  return ISD::CondCode(Operation);
233}
234
235
236/// isSignedOp - For an integer comparison, return 1 if the comparison is a
237/// signed operation and 2 if the result is an unsigned comparison.  Return zero
238/// if the operation does not depend on the sign of the input (setne and seteq).
239static int isSignedOp(ISD::CondCode Opcode) {
240  switch (Opcode) {
241  default: llvm_unreachable("Illegal integer setcc operation!");
242  case ISD::SETEQ:
243  case ISD::SETNE: return 0;
244  case ISD::SETLT:
245  case ISD::SETLE:
246  case ISD::SETGT:
247  case ISD::SETGE: return 1;
248  case ISD::SETULT:
249  case ISD::SETULE:
250  case ISD::SETUGT:
251  case ISD::SETUGE: return 2;
252  }
253}
254
255/// getSetCCOrOperation - Return the result of a logical OR between different
256/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
257/// returns SETCC_INVALID if it is not possible to represent the resultant
258/// comparison.
259ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
260                                       bool isInteger) {
261  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
262    // Cannot fold a signed integer setcc with an unsigned integer setcc.
263    return ISD::SETCC_INVALID;
264
265  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
266
267  // If the N and U bits get set then the resultant comparison DOES suddenly
268  // care about orderedness, and is true when ordered.
269  if (Op > ISD::SETTRUE2)
270    Op &= ~16;     // Clear the U bit if the N bit is set.
271
272  // Canonicalize illegal integer setcc's.
273  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
274    Op = ISD::SETNE;
275
276  return ISD::CondCode(Op);
277}
278
279/// getSetCCAndOperation - Return the result of a logical AND between different
280/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
281/// function returns zero if it is not possible to represent the resultant
282/// comparison.
283ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
284                                        bool isInteger) {
285  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
286    // Cannot fold a signed setcc with an unsigned setcc.
287    return ISD::SETCC_INVALID;
288
289  // Combine all of the condition bits.
290  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
291
292  // Canonicalize illegal integer setcc's.
293  if (isInteger) {
294    switch (Result) {
295    default: break;
296    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
297    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
298    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
299    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
300    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
301    }
302  }
303
304  return Result;
305}
306
307const TargetMachine &SelectionDAG::getTarget() const {
308  return MF->getTarget();
309}
310
311//===----------------------------------------------------------------------===//
312//                           SDNode Profile Support
313//===----------------------------------------------------------------------===//
314
315/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
316///
317static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
318  ID.AddInteger(OpC);
319}
320
321/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
322/// solely with their pointer.
323static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
324  ID.AddPointer(VTList.VTs);
325}
326
327/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
328///
329static void AddNodeIDOperands(FoldingSetNodeID &ID,
330                              const SDValue *Ops, unsigned NumOps) {
331  for (; NumOps; --NumOps, ++Ops) {
332    ID.AddPointer(Ops->getNode());
333    ID.AddInteger(Ops->getResNo());
334  }
335}
336
337/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
338///
339static void AddNodeIDOperands(FoldingSetNodeID &ID,
340                              const SDUse *Ops, unsigned NumOps) {
341  for (; NumOps; --NumOps, ++Ops) {
342    ID.AddPointer(Ops->getNode());
343    ID.AddInteger(Ops->getResNo());
344  }
345}
346
347static void AddNodeIDNode(FoldingSetNodeID &ID,
348                          unsigned short OpC, SDVTList VTList,
349                          const SDValue *OpList, unsigned N) {
350  AddNodeIDOpcode(ID, OpC);
351  AddNodeIDValueTypes(ID, VTList);
352  AddNodeIDOperands(ID, OpList, N);
353}
354
355/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
356/// the NodeID data.
357static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
358  switch (N->getOpcode()) {
359  case ISD::TargetExternalSymbol:
360  case ISD::ExternalSymbol:
361    llvm_unreachable("Should only be used on nodes with operands");
362  default: break;  // Normal nodes don't need extra info.
363  case ISD::TargetConstant:
364  case ISD::Constant:
365    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
366    break;
367  case ISD::TargetConstantFP:
368  case ISD::ConstantFP: {
369    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
370    break;
371  }
372  case ISD::TargetGlobalAddress:
373  case ISD::GlobalAddress:
374  case ISD::TargetGlobalTLSAddress:
375  case ISD::GlobalTLSAddress: {
376    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
377    ID.AddPointer(GA->getGlobal());
378    ID.AddInteger(GA->getOffset());
379    ID.AddInteger(GA->getTargetFlags());
380    break;
381  }
382  case ISD::BasicBlock:
383    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
384    break;
385  case ISD::Register:
386    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
387    break;
388
389  case ISD::SRCVALUE:
390    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
391    break;
392  case ISD::FrameIndex:
393  case ISD::TargetFrameIndex:
394    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
395    break;
396  case ISD::JumpTable:
397  case ISD::TargetJumpTable:
398    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
399    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
400    break;
401  case ISD::ConstantPool:
402  case ISD::TargetConstantPool: {
403    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
404    ID.AddInteger(CP->getAlignment());
405    ID.AddInteger(CP->getOffset());
406    if (CP->isMachineConstantPoolEntry())
407      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
408    else
409      ID.AddPointer(CP->getConstVal());
410    ID.AddInteger(CP->getTargetFlags());
411    break;
412  }
413  case ISD::LOAD: {
414    const LoadSDNode *LD = cast<LoadSDNode>(N);
415    ID.AddInteger(LD->getMemoryVT().getRawBits());
416    ID.AddInteger(LD->getRawSubclassData());
417    break;
418  }
419  case ISD::STORE: {
420    const StoreSDNode *ST = cast<StoreSDNode>(N);
421    ID.AddInteger(ST->getMemoryVT().getRawBits());
422    ID.AddInteger(ST->getRawSubclassData());
423    break;
424  }
425  case ISD::ATOMIC_CMP_SWAP:
426  case ISD::ATOMIC_SWAP:
427  case ISD::ATOMIC_LOAD_ADD:
428  case ISD::ATOMIC_LOAD_SUB:
429  case ISD::ATOMIC_LOAD_AND:
430  case ISD::ATOMIC_LOAD_OR:
431  case ISD::ATOMIC_LOAD_XOR:
432  case ISD::ATOMIC_LOAD_NAND:
433  case ISD::ATOMIC_LOAD_MIN:
434  case ISD::ATOMIC_LOAD_MAX:
435  case ISD::ATOMIC_LOAD_UMIN:
436  case ISD::ATOMIC_LOAD_UMAX: {
437    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
438    ID.AddInteger(AT->getMemoryVT().getRawBits());
439    ID.AddInteger(AT->getRawSubclassData());
440    break;
441  }
442  case ISD::VECTOR_SHUFFLE: {
443    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
444    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
445         i != e; ++i)
446      ID.AddInteger(SVN->getMaskElt(i));
447    break;
448  }
449  case ISD::TargetBlockAddress:
450  case ISD::BlockAddress: {
451    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
452    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
453    break;
454  }
455  } // end switch (N->getOpcode())
456}
457
458/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
459/// data.
460static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
461  AddNodeIDOpcode(ID, N->getOpcode());
462  // Add the return value info.
463  AddNodeIDValueTypes(ID, N->getVTList());
464  // Add the operand info.
465  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
466
467  // Handle SDNode leafs with special info.
468  AddNodeIDCustom(ID, N);
469}
470
471/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
472/// the CSE map that carries volatility, temporalness, indexing mode, and
473/// extension/truncation information.
474///
475static inline unsigned
476encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
477                     bool isNonTemporal) {
478  assert((ConvType & 3) == ConvType &&
479         "ConvType may not require more than 2 bits!");
480  assert((AM & 7) == AM &&
481         "AM may not require more than 3 bits!");
482  return ConvType |
483         (AM << 2) |
484         (isVolatile << 5) |
485         (isNonTemporal << 6);
486}
487
488//===----------------------------------------------------------------------===//
489//                              SelectionDAG Class
490//===----------------------------------------------------------------------===//
491
492/// doNotCSE - Return true if CSE should not be performed for this node.
493static bool doNotCSE(SDNode *N) {
494  if (N->getValueType(0) == MVT::Flag)
495    return true; // Never CSE anything that produces a flag.
496
497  switch (N->getOpcode()) {
498  default: break;
499  case ISD::HANDLENODE:
500  case ISD::EH_LABEL:
501    return true;   // Never CSE these nodes.
502  }
503
504  // Check that remaining values produced are not flags.
505  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
506    if (N->getValueType(i) == MVT::Flag)
507      return true; // Never CSE anything that produces a flag.
508
509  return false;
510}
511
512/// RemoveDeadNodes - This method deletes all unreachable nodes in the
513/// SelectionDAG.
514void SelectionDAG::RemoveDeadNodes() {
515  // Create a dummy node (which is not added to allnodes), that adds a reference
516  // to the root node, preventing it from being deleted.
517  HandleSDNode Dummy(getRoot());
518
519  SmallVector<SDNode*, 128> DeadNodes;
520
521  // Add all obviously-dead nodes to the DeadNodes worklist.
522  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
523    if (I->use_empty())
524      DeadNodes.push_back(I);
525
526  RemoveDeadNodes(DeadNodes);
527
528  // If the root changed (e.g. it was a dead load, update the root).
529  setRoot(Dummy.getValue());
530}
531
532/// RemoveDeadNodes - This method deletes the unreachable nodes in the
533/// given list, and any nodes that become unreachable as a result.
534void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
535                                   DAGUpdateListener *UpdateListener) {
536
537  // Process the worklist, deleting the nodes and adding their uses to the
538  // worklist.
539  while (!DeadNodes.empty()) {
540    SDNode *N = DeadNodes.pop_back_val();
541
542    if (UpdateListener)
543      UpdateListener->NodeDeleted(N, 0);
544
545    // Take the node out of the appropriate CSE map.
546    RemoveNodeFromCSEMaps(N);
547
548    // Next, brutally remove the operand list.  This is safe to do, as there are
549    // no cycles in the graph.
550    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
551      SDUse &Use = *I++;
552      SDNode *Operand = Use.getNode();
553      Use.set(SDValue());
554
555      // Now that we removed this operand, see if there are no uses of it left.
556      if (Operand->use_empty())
557        DeadNodes.push_back(Operand);
558    }
559
560    DeallocateNode(N);
561  }
562}
563
564void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
565  SmallVector<SDNode*, 16> DeadNodes(1, N);
566  RemoveDeadNodes(DeadNodes, UpdateListener);
567}
568
569void SelectionDAG::DeleteNode(SDNode *N) {
570  // First take this out of the appropriate CSE map.
571  RemoveNodeFromCSEMaps(N);
572
573  // Finally, remove uses due to operands of this node, remove from the
574  // AllNodes list, and delete the node.
575  DeleteNodeNotInCSEMaps(N);
576}
577
578void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
579  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
580  assert(N->use_empty() && "Cannot delete a node that is not dead!");
581
582  // Drop all of the operands and decrement used node's use counts.
583  N->DropOperands();
584
585  DeallocateNode(N);
586}
587
588void SelectionDAG::DeallocateNode(SDNode *N) {
589  if (N->OperandsNeedDelete)
590    delete[] N->OperandList;
591
592  // Set the opcode to DELETED_NODE to help catch bugs when node
593  // memory is reallocated.
594  N->NodeType = ISD::DELETED_NODE;
595
596  NodeAllocator.Deallocate(AllNodes.remove(N));
597
598  // Remove the ordering of this node.
599  Ordering->remove(N);
600
601  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
602  SmallVector<SDDbgValue*, 2> &DbgVals = DbgInfo->getSDDbgValues(N);
603  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
604    DbgVals[i]->setIsInvalidated();
605}
606
607/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
608/// correspond to it.  This is useful when we're about to delete or repurpose
609/// the node.  We don't want future request for structurally identical nodes
610/// to return N anymore.
611bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
612  bool Erased = false;
613  switch (N->getOpcode()) {
614  case ISD::EntryToken:
615    llvm_unreachable("EntryToken should not be in CSEMaps!");
616    return false;
617  case ISD::HANDLENODE: return false;  // noop.
618  case ISD::CONDCODE:
619    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
620           "Cond code doesn't exist!");
621    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
622    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
623    break;
624  case ISD::ExternalSymbol:
625    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
626    break;
627  case ISD::TargetExternalSymbol: {
628    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
629    Erased = TargetExternalSymbols.erase(
630               std::pair<std::string,unsigned char>(ESN->getSymbol(),
631                                                    ESN->getTargetFlags()));
632    break;
633  }
634  case ISD::VALUETYPE: {
635    EVT VT = cast<VTSDNode>(N)->getVT();
636    if (VT.isExtended()) {
637      Erased = ExtendedValueTypeNodes.erase(VT);
638    } else {
639      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
640      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
641    }
642    break;
643  }
644  default:
645    // Remove it from the CSE Map.
646    Erased = CSEMap.RemoveNode(N);
647    break;
648  }
649#ifndef NDEBUG
650  // Verify that the node was actually in one of the CSE maps, unless it has a
651  // flag result (which cannot be CSE'd) or is one of the special cases that are
652  // not subject to CSE.
653  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
654      !N->isMachineOpcode() && !doNotCSE(N)) {
655    N->dump(this);
656    dbgs() << "\n";
657    llvm_unreachable("Node is not in map!");
658  }
659#endif
660  return Erased;
661}
662
663/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
664/// maps and modified in place. Add it back to the CSE maps, unless an identical
665/// node already exists, in which case transfer all its users to the existing
666/// node. This transfer can potentially trigger recursive merging.
667///
668void
669SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
670                                       DAGUpdateListener *UpdateListener) {
671  // For node types that aren't CSE'd, just act as if no identical node
672  // already exists.
673  if (!doNotCSE(N)) {
674    SDNode *Existing = CSEMap.GetOrInsertNode(N);
675    if (Existing != N) {
676      // If there was already an existing matching node, use ReplaceAllUsesWith
677      // to replace the dead one with the existing one.  This can cause
678      // recursive merging of other unrelated nodes down the line.
679      ReplaceAllUsesWith(N, Existing, UpdateListener);
680
681      // N is now dead.  Inform the listener if it exists and delete it.
682      if (UpdateListener)
683        UpdateListener->NodeDeleted(N, Existing);
684      DeleteNodeNotInCSEMaps(N);
685      return;
686    }
687  }
688
689  // If the node doesn't already exist, we updated it.  Inform a listener if
690  // it exists.
691  if (UpdateListener)
692    UpdateListener->NodeUpdated(N);
693}
694
695/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
696/// were replaced with those specified.  If this node is never memoized,
697/// return null, otherwise return a pointer to the slot it would take.  If a
698/// node already exists with these operands, the slot will be non-null.
699SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
700                                           void *&InsertPos) {
701  if (doNotCSE(N))
702    return 0;
703
704  SDValue Ops[] = { Op };
705  FoldingSetNodeID ID;
706  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
707  AddNodeIDCustom(ID, N);
708  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
709  return Node;
710}
711
712/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
713/// were replaced with those specified.  If this node is never memoized,
714/// return null, otherwise return a pointer to the slot it would take.  If a
715/// node already exists with these operands, the slot will be non-null.
716SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
717                                           SDValue Op1, SDValue Op2,
718                                           void *&InsertPos) {
719  if (doNotCSE(N))
720    return 0;
721
722  SDValue Ops[] = { Op1, Op2 };
723  FoldingSetNodeID ID;
724  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
725  AddNodeIDCustom(ID, N);
726  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
727  return Node;
728}
729
730
731/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
732/// were replaced with those specified.  If this node is never memoized,
733/// return null, otherwise return a pointer to the slot it would take.  If a
734/// node already exists with these operands, the slot will be non-null.
735SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
736                                           const SDValue *Ops,unsigned NumOps,
737                                           void *&InsertPos) {
738  if (doNotCSE(N))
739    return 0;
740
741  FoldingSetNodeID ID;
742  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
743  AddNodeIDCustom(ID, N);
744  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
745  return Node;
746}
747
748/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
749void SelectionDAG::VerifyNode(SDNode *N) {
750  switch (N->getOpcode()) {
751  default:
752    break;
753  case ISD::BUILD_PAIR: {
754    EVT VT = N->getValueType(0);
755    assert(N->getNumValues() == 1 && "Too many results!");
756    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
757           "Wrong return type!");
758    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
759    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
760           "Mismatched operand types!");
761    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
762           "Wrong operand type!");
763    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
764           "Wrong return type size");
765    break;
766  }
767  case ISD::BUILD_VECTOR: {
768    assert(N->getNumValues() == 1 && "Too many results!");
769    assert(N->getValueType(0).isVector() && "Wrong return type!");
770    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
771           "Wrong number of operands!");
772    EVT EltVT = N->getValueType(0).getVectorElementType();
773    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
774      assert((I->getValueType() == EltVT ||
775             (EltVT.isInteger() && I->getValueType().isInteger() &&
776              EltVT.bitsLE(I->getValueType()))) &&
777            "Wrong operand type!");
778    break;
779  }
780  }
781}
782
783/// getEVTAlignment - Compute the default alignment value for the
784/// given type.
785///
786unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
787  const Type *Ty = VT == MVT::iPTR ?
788                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
789                   VT.getTypeForEVT(*getContext());
790
791  return TLI.getTargetData()->getABITypeAlignment(Ty);
792}
793
794// EntryNode could meaningfully have debug info if we can find it...
795SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
796  : TLI(tli), FLI(fli),
797    EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
798    Root(getEntryNode()), Ordering(0) {
799  AllNodes.push_back(&EntryNode);
800  Ordering = new SDNodeOrdering();
801  DbgInfo = new SDDbgInfo();
802}
803
804void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi) {
805  MF = &mf;
806  MMI = mmi;
807  Context = &mf.getFunction()->getContext();
808}
809
810SelectionDAG::~SelectionDAG() {
811  allnodes_clear();
812  delete Ordering;
813  DbgInfo->clear();
814  delete DbgInfo;
815}
816
817void SelectionDAG::allnodes_clear() {
818  assert(&*AllNodes.begin() == &EntryNode);
819  AllNodes.remove(AllNodes.begin());
820  while (!AllNodes.empty())
821    DeallocateNode(AllNodes.begin());
822}
823
824void SelectionDAG::clear() {
825  allnodes_clear();
826  OperandAllocator.Reset();
827  CSEMap.clear();
828
829  ExtendedValueTypeNodes.clear();
830  ExternalSymbols.clear();
831  TargetExternalSymbols.clear();
832  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
833            static_cast<CondCodeSDNode*>(0));
834  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
835            static_cast<SDNode*>(0));
836
837  EntryNode.UseList = 0;
838  AllNodes.push_back(&EntryNode);
839  Root = getEntryNode();
840  delete Ordering;
841  Ordering = new SDNodeOrdering();
842  DbgInfo->clear();
843  delete DbgInfo;
844  DbgInfo = new SDDbgInfo();
845}
846
847SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
848  return VT.bitsGT(Op.getValueType()) ?
849    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
850    getNode(ISD::TRUNCATE, DL, VT, Op);
851}
852
853SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
854  return VT.bitsGT(Op.getValueType()) ?
855    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
856    getNode(ISD::TRUNCATE, DL, VT, Op);
857}
858
859SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
860  assert(!VT.isVector() &&
861         "getZeroExtendInReg should use the vector element type instead of "
862         "the vector type!");
863  if (Op.getValueType() == VT) return Op;
864  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
865  APInt Imm = APInt::getLowBitsSet(BitWidth,
866                                   VT.getSizeInBits());
867  return getNode(ISD::AND, DL, Op.getValueType(), Op,
868                 getConstant(Imm, Op.getValueType()));
869}
870
871/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
872///
873SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
874  EVT EltVT = VT.getScalarType();
875  SDValue NegOne =
876    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
877  return getNode(ISD::XOR, DL, VT, Val, NegOne);
878}
879
880SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
881  EVT EltVT = VT.getScalarType();
882  assert((EltVT.getSizeInBits() >= 64 ||
883         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
884         "getConstant with a uint64_t value that doesn't fit in the type!");
885  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
886}
887
888SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
889  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
890}
891
892SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
893  assert(VT.isInteger() && "Cannot create FP integer constant!");
894
895  EVT EltVT = VT.getScalarType();
896  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
897         "APInt size does not match type size!");
898
899  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
900  FoldingSetNodeID ID;
901  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
902  ID.AddPointer(&Val);
903  void *IP = 0;
904  SDNode *N = NULL;
905  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
906    if (!VT.isVector())
907      return SDValue(N, 0);
908
909  if (!N) {
910    N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
911    CSEMap.InsertNode(N, IP);
912    AllNodes.push_back(N);
913  }
914
915  SDValue Result(N, 0);
916  if (VT.isVector()) {
917    SmallVector<SDValue, 8> Ops;
918    Ops.assign(VT.getVectorNumElements(), Result);
919    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
920  }
921  return Result;
922}
923
924SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
925  return getConstant(Val, TLI.getPointerTy(), isTarget);
926}
927
928
929SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
930  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
931}
932
933SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
934  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
935
936  EVT EltVT = VT.getScalarType();
937
938  // Do the map lookup using the actual bit pattern for the floating point
939  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
940  // we don't have issues with SNANs.
941  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
942  FoldingSetNodeID ID;
943  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
944  ID.AddPointer(&V);
945  void *IP = 0;
946  SDNode *N = NULL;
947  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
948    if (!VT.isVector())
949      return SDValue(N, 0);
950
951  if (!N) {
952    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
953    CSEMap.InsertNode(N, IP);
954    AllNodes.push_back(N);
955  }
956
957  SDValue Result(N, 0);
958  if (VT.isVector()) {
959    SmallVector<SDValue, 8> Ops;
960    Ops.assign(VT.getVectorNumElements(), Result);
961    // FIXME DebugLoc info might be appropriate here
962    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
963  }
964  return Result;
965}
966
967SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
968  EVT EltVT = VT.getScalarType();
969  if (EltVT==MVT::f32)
970    return getConstantFP(APFloat((float)Val), VT, isTarget);
971  else
972    return getConstantFP(APFloat(Val), VT, isTarget);
973}
974
975SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
976                                       EVT VT, int64_t Offset,
977                                       bool isTargetGA,
978                                       unsigned char TargetFlags) {
979  assert((TargetFlags == 0 || isTargetGA) &&
980         "Cannot set target flags on target-independent globals");
981
982  // Truncate (with sign-extension) the offset value to the pointer size.
983  EVT PTy = TLI.getPointerTy();
984  unsigned BitWidth = PTy.getSizeInBits();
985  if (BitWidth < 64)
986    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
987
988  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
989  if (!GVar) {
990    // If GV is an alias then use the aliasee for determining thread-localness.
991    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
992      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
993  }
994
995  unsigned Opc;
996  if (GVar && GVar->isThreadLocal())
997    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
998  else
999    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1000
1001  FoldingSetNodeID ID;
1002  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1003  ID.AddPointer(GV);
1004  ID.AddInteger(Offset);
1005  ID.AddInteger(TargetFlags);
1006  void *IP = 0;
1007  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1008    return SDValue(E, 0);
1009
1010  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, GV, VT,
1011                                                      Offset, TargetFlags);
1012  CSEMap.InsertNode(N, IP);
1013  AllNodes.push_back(N);
1014  return SDValue(N, 0);
1015}
1016
1017SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1018  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1019  FoldingSetNodeID ID;
1020  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1021  ID.AddInteger(FI);
1022  void *IP = 0;
1023  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1024    return SDValue(E, 0);
1025
1026  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1027  CSEMap.InsertNode(N, IP);
1028  AllNodes.push_back(N);
1029  return SDValue(N, 0);
1030}
1031
1032SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1033                                   unsigned char TargetFlags) {
1034  assert((TargetFlags == 0 || isTarget) &&
1035         "Cannot set target flags on target-independent jump tables");
1036  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1037  FoldingSetNodeID ID;
1038  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1039  ID.AddInteger(JTI);
1040  ID.AddInteger(TargetFlags);
1041  void *IP = 0;
1042  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1043    return SDValue(E, 0);
1044
1045  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1046                                                  TargetFlags);
1047  CSEMap.InsertNode(N, IP);
1048  AllNodes.push_back(N);
1049  return SDValue(N, 0);
1050}
1051
1052SDValue SelectionDAG::getConstantPool(Constant *C, EVT VT,
1053                                      unsigned Alignment, int Offset,
1054                                      bool isTarget,
1055                                      unsigned char TargetFlags) {
1056  assert((TargetFlags == 0 || isTarget) &&
1057         "Cannot set target flags on target-independent globals");
1058  if (Alignment == 0)
1059    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1060  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1061  FoldingSetNodeID ID;
1062  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1063  ID.AddInteger(Alignment);
1064  ID.AddInteger(Offset);
1065  ID.AddPointer(C);
1066  ID.AddInteger(TargetFlags);
1067  void *IP = 0;
1068  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1069    return SDValue(E, 0);
1070
1071  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1072                                                     Alignment, TargetFlags);
1073  CSEMap.InsertNode(N, IP);
1074  AllNodes.push_back(N);
1075  return SDValue(N, 0);
1076}
1077
1078
1079SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1080                                      unsigned Alignment, int Offset,
1081                                      bool isTarget,
1082                                      unsigned char TargetFlags) {
1083  assert((TargetFlags == 0 || isTarget) &&
1084         "Cannot set target flags on target-independent globals");
1085  if (Alignment == 0)
1086    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1087  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1088  FoldingSetNodeID ID;
1089  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1090  ID.AddInteger(Alignment);
1091  ID.AddInteger(Offset);
1092  C->AddSelectionDAGCSEId(ID);
1093  ID.AddInteger(TargetFlags);
1094  void *IP = 0;
1095  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1096    return SDValue(E, 0);
1097
1098  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1099                                                     Alignment, TargetFlags);
1100  CSEMap.InsertNode(N, IP);
1101  AllNodes.push_back(N);
1102  return SDValue(N, 0);
1103}
1104
1105SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1106  FoldingSetNodeID ID;
1107  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1108  ID.AddPointer(MBB);
1109  void *IP = 0;
1110  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1111    return SDValue(E, 0);
1112
1113  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1114  CSEMap.InsertNode(N, IP);
1115  AllNodes.push_back(N);
1116  return SDValue(N, 0);
1117}
1118
1119SDValue SelectionDAG::getValueType(EVT VT) {
1120  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1121      ValueTypeNodes.size())
1122    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1123
1124  SDNode *&N = VT.isExtended() ?
1125    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1126
1127  if (N) return SDValue(N, 0);
1128  N = new (NodeAllocator) VTSDNode(VT);
1129  AllNodes.push_back(N);
1130  return SDValue(N, 0);
1131}
1132
1133SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1134  SDNode *&N = ExternalSymbols[Sym];
1135  if (N) return SDValue(N, 0);
1136  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1137  AllNodes.push_back(N);
1138  return SDValue(N, 0);
1139}
1140
1141SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1142                                              unsigned char TargetFlags) {
1143  SDNode *&N =
1144    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1145                                                               TargetFlags)];
1146  if (N) return SDValue(N, 0);
1147  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1148  AllNodes.push_back(N);
1149  return SDValue(N, 0);
1150}
1151
1152SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1153  if ((unsigned)Cond >= CondCodeNodes.size())
1154    CondCodeNodes.resize(Cond+1);
1155
1156  if (CondCodeNodes[Cond] == 0) {
1157    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1158    CondCodeNodes[Cond] = N;
1159    AllNodes.push_back(N);
1160  }
1161
1162  return SDValue(CondCodeNodes[Cond], 0);
1163}
1164
1165// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1166// the shuffle mask M that point at N1 to point at N2, and indices that point
1167// N2 to point at N1.
1168static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1169  std::swap(N1, N2);
1170  int NElts = M.size();
1171  for (int i = 0; i != NElts; ++i) {
1172    if (M[i] >= NElts)
1173      M[i] -= NElts;
1174    else if (M[i] >= 0)
1175      M[i] += NElts;
1176  }
1177}
1178
1179SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1180                                       SDValue N2, const int *Mask) {
1181  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1182  assert(VT.isVector() && N1.getValueType().isVector() &&
1183         "Vector Shuffle VTs must be a vectors");
1184  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1185         && "Vector Shuffle VTs must have same element type");
1186
1187  // Canonicalize shuffle undef, undef -> undef
1188  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1189    return getUNDEF(VT);
1190
1191  // Validate that all indices in Mask are within the range of the elements
1192  // input to the shuffle.
1193  unsigned NElts = VT.getVectorNumElements();
1194  SmallVector<int, 8> MaskVec;
1195  for (unsigned i = 0; i != NElts; ++i) {
1196    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1197    MaskVec.push_back(Mask[i]);
1198  }
1199
1200  // Canonicalize shuffle v, v -> v, undef
1201  if (N1 == N2) {
1202    N2 = getUNDEF(VT);
1203    for (unsigned i = 0; i != NElts; ++i)
1204      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1205  }
1206
1207  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1208  if (N1.getOpcode() == ISD::UNDEF)
1209    commuteShuffle(N1, N2, MaskVec);
1210
1211  // Canonicalize all index into lhs, -> shuffle lhs, undef
1212  // Canonicalize all index into rhs, -> shuffle rhs, undef
1213  bool AllLHS = true, AllRHS = true;
1214  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1215  for (unsigned i = 0; i != NElts; ++i) {
1216    if (MaskVec[i] >= (int)NElts) {
1217      if (N2Undef)
1218        MaskVec[i] = -1;
1219      else
1220        AllLHS = false;
1221    } else if (MaskVec[i] >= 0) {
1222      AllRHS = false;
1223    }
1224  }
1225  if (AllLHS && AllRHS)
1226    return getUNDEF(VT);
1227  if (AllLHS && !N2Undef)
1228    N2 = getUNDEF(VT);
1229  if (AllRHS) {
1230    N1 = getUNDEF(VT);
1231    commuteShuffle(N1, N2, MaskVec);
1232  }
1233
1234  // If Identity shuffle, or all shuffle in to undef, return that node.
1235  bool AllUndef = true;
1236  bool Identity = true;
1237  for (unsigned i = 0; i != NElts; ++i) {
1238    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1239    if (MaskVec[i] >= 0) AllUndef = false;
1240  }
1241  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1242    return N1;
1243  if (AllUndef)
1244    return getUNDEF(VT);
1245
1246  FoldingSetNodeID ID;
1247  SDValue Ops[2] = { N1, N2 };
1248  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1249  for (unsigned i = 0; i != NElts; ++i)
1250    ID.AddInteger(MaskVec[i]);
1251
1252  void* IP = 0;
1253  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1254    return SDValue(E, 0);
1255
1256  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1257  // SDNode doesn't have access to it.  This memory will be "leaked" when
1258  // the node is deallocated, but recovered when the NodeAllocator is released.
1259  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1260  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1261
1262  ShuffleVectorSDNode *N =
1263    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1264  CSEMap.InsertNode(N, IP);
1265  AllNodes.push_back(N);
1266  return SDValue(N, 0);
1267}
1268
1269SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1270                                       SDValue Val, SDValue DTy,
1271                                       SDValue STy, SDValue Rnd, SDValue Sat,
1272                                       ISD::CvtCode Code) {
1273  // If the src and dest types are the same and the conversion is between
1274  // integer types of the same sign or two floats, no conversion is necessary.
1275  if (DTy == STy &&
1276      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1277    return Val;
1278
1279  FoldingSetNodeID ID;
1280  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1281  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1282  void* IP = 0;
1283  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1284    return SDValue(E, 0);
1285
1286  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1287                                                           Code);
1288  CSEMap.InsertNode(N, IP);
1289  AllNodes.push_back(N);
1290  return SDValue(N, 0);
1291}
1292
1293SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1294  FoldingSetNodeID ID;
1295  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1296  ID.AddInteger(RegNo);
1297  void *IP = 0;
1298  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1299    return SDValue(E, 0);
1300
1301  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1302  CSEMap.InsertNode(N, IP);
1303  AllNodes.push_back(N);
1304  return SDValue(N, 0);
1305}
1306
1307SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1308  FoldingSetNodeID ID;
1309  SDValue Ops[] = { Root };
1310  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1311  ID.AddPointer(Label);
1312  void *IP = 0;
1313  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1314    return SDValue(E, 0);
1315
1316  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1317  CSEMap.InsertNode(N, IP);
1318  AllNodes.push_back(N);
1319  return SDValue(N, 0);
1320}
1321
1322
1323SDValue SelectionDAG::getBlockAddress(BlockAddress *BA, EVT VT,
1324                                      bool isTarget,
1325                                      unsigned char TargetFlags) {
1326  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1327
1328  FoldingSetNodeID ID;
1329  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1330  ID.AddPointer(BA);
1331  ID.AddInteger(TargetFlags);
1332  void *IP = 0;
1333  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1334    return SDValue(E, 0);
1335
1336  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1337  CSEMap.InsertNode(N, IP);
1338  AllNodes.push_back(N);
1339  return SDValue(N, 0);
1340}
1341
1342SDValue SelectionDAG::getSrcValue(const Value *V) {
1343  assert((!V || V->getType()->isPointerTy()) &&
1344         "SrcValue is not a pointer?");
1345
1346  FoldingSetNodeID ID;
1347  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1348  ID.AddPointer(V);
1349
1350  void *IP = 0;
1351  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1352    return SDValue(E, 0);
1353
1354  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1355  CSEMap.InsertNode(N, IP);
1356  AllNodes.push_back(N);
1357  return SDValue(N, 0);
1358}
1359
1360/// getShiftAmountOperand - Return the specified value casted to
1361/// the target's desired shift amount type.
1362SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1363  EVT OpTy = Op.getValueType();
1364  MVT ShTy = TLI.getShiftAmountTy();
1365  if (OpTy == ShTy || OpTy.isVector()) return Op;
1366
1367  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1368  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1369}
1370
1371/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1372/// specified value type.
1373SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1374  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1375  unsigned ByteSize = VT.getStoreSize();
1376  const Type *Ty = VT.getTypeForEVT(*getContext());
1377  unsigned StackAlign =
1378  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1379
1380  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1381  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1382}
1383
1384/// CreateStackTemporary - Create a stack temporary suitable for holding
1385/// either of the specified value types.
1386SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1387  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1388                            VT2.getStoreSizeInBits())/8;
1389  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1390  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1391  const TargetData *TD = TLI.getTargetData();
1392  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1393                            TD->getPrefTypeAlignment(Ty2));
1394
1395  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1396  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1397  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1398}
1399
1400SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1401                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1402  // These setcc operations always fold.
1403  switch (Cond) {
1404  default: break;
1405  case ISD::SETFALSE:
1406  case ISD::SETFALSE2: return getConstant(0, VT);
1407  case ISD::SETTRUE:
1408  case ISD::SETTRUE2:  return getConstant(1, VT);
1409
1410  case ISD::SETOEQ:
1411  case ISD::SETOGT:
1412  case ISD::SETOGE:
1413  case ISD::SETOLT:
1414  case ISD::SETOLE:
1415  case ISD::SETONE:
1416  case ISD::SETO:
1417  case ISD::SETUO:
1418  case ISD::SETUEQ:
1419  case ISD::SETUNE:
1420    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1421    break;
1422  }
1423
1424  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1425    const APInt &C2 = N2C->getAPIntValue();
1426    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1427      const APInt &C1 = N1C->getAPIntValue();
1428
1429      switch (Cond) {
1430      default: llvm_unreachable("Unknown integer setcc!");
1431      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1432      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1433      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1434      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1435      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1436      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1437      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1438      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1439      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1440      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1441      }
1442    }
1443  }
1444  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1445    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1446      // No compile time operations on this type yet.
1447      if (N1C->getValueType(0) == MVT::ppcf128)
1448        return SDValue();
1449
1450      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1451      switch (Cond) {
1452      default: break;
1453      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1454                          return getUNDEF(VT);
1455                        // fall through
1456      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1457      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1458                          return getUNDEF(VT);
1459                        // fall through
1460      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1461                                           R==APFloat::cmpLessThan, VT);
1462      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1463                          return getUNDEF(VT);
1464                        // fall through
1465      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1466      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1467                          return getUNDEF(VT);
1468                        // fall through
1469      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1470      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1471                          return getUNDEF(VT);
1472                        // fall through
1473      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1474                                           R==APFloat::cmpEqual, VT);
1475      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1476                          return getUNDEF(VT);
1477                        // fall through
1478      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1479                                           R==APFloat::cmpEqual, VT);
1480      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1481      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1482      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1483                                           R==APFloat::cmpEqual, VT);
1484      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1485      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1486                                           R==APFloat::cmpLessThan, VT);
1487      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1488                                           R==APFloat::cmpUnordered, VT);
1489      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1490      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1491      }
1492    } else {
1493      // Ensure that the constant occurs on the RHS.
1494      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1495    }
1496  }
1497
1498  // Could not fold it.
1499  return SDValue();
1500}
1501
1502/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1503/// use this predicate to simplify operations downstream.
1504bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1505  // This predicate is not safe for vector operations.
1506  if (Op.getValueType().isVector())
1507    return false;
1508
1509  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1510  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1511}
1512
1513/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1514/// this predicate to simplify operations downstream.  Mask is known to be zero
1515/// for bits that V cannot have.
1516bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1517                                     unsigned Depth) const {
1518  APInt KnownZero, KnownOne;
1519  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1520  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1521  return (KnownZero & Mask) == Mask;
1522}
1523
1524/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1525/// known to be either zero or one and return them in the KnownZero/KnownOne
1526/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1527/// processing.
1528void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1529                                     APInt &KnownZero, APInt &KnownOne,
1530                                     unsigned Depth) const {
1531  unsigned BitWidth = Mask.getBitWidth();
1532  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1533         "Mask size mismatches value type size!");
1534
1535  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1536  if (Depth == 6 || Mask == 0)
1537    return;  // Limit search depth.
1538
1539  APInt KnownZero2, KnownOne2;
1540
1541  switch (Op.getOpcode()) {
1542  case ISD::Constant:
1543    // We know all of the bits for a constant!
1544    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1545    KnownZero = ~KnownOne & Mask;
1546    return;
1547  case ISD::AND:
1548    // If either the LHS or the RHS are Zero, the result is zero.
1549    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1550    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1551                      KnownZero2, KnownOne2, Depth+1);
1552    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1553    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1554
1555    // Output known-1 bits are only known if set in both the LHS & RHS.
1556    KnownOne &= KnownOne2;
1557    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1558    KnownZero |= KnownZero2;
1559    return;
1560  case ISD::OR:
1561    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1562    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1563                      KnownZero2, KnownOne2, Depth+1);
1564    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1565    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1566
1567    // Output known-0 bits are only known if clear in both the LHS & RHS.
1568    KnownZero &= KnownZero2;
1569    // Output known-1 are known to be set if set in either the LHS | RHS.
1570    KnownOne |= KnownOne2;
1571    return;
1572  case ISD::XOR: {
1573    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1574    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1575    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1576    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1577
1578    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1579    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1580    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1581    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1582    KnownZero = KnownZeroOut;
1583    return;
1584  }
1585  case ISD::MUL: {
1586    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1587    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1588    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1589    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1590    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1591
1592    // If low bits are zero in either operand, output low known-0 bits.
1593    // Also compute a conserative estimate for high known-0 bits.
1594    // More trickiness is possible, but this is sufficient for the
1595    // interesting case of alignment computation.
1596    KnownOne.clear();
1597    unsigned TrailZ = KnownZero.countTrailingOnes() +
1598                      KnownZero2.countTrailingOnes();
1599    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1600                               KnownZero2.countLeadingOnes(),
1601                               BitWidth) - BitWidth;
1602
1603    TrailZ = std::min(TrailZ, BitWidth);
1604    LeadZ = std::min(LeadZ, BitWidth);
1605    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1606                APInt::getHighBitsSet(BitWidth, LeadZ);
1607    KnownZero &= Mask;
1608    return;
1609  }
1610  case ISD::UDIV: {
1611    // For the purposes of computing leading zeros we can conservatively
1612    // treat a udiv as a logical right shift by the power of 2 known to
1613    // be less than the denominator.
1614    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1615    ComputeMaskedBits(Op.getOperand(0),
1616                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1617    unsigned LeadZ = KnownZero2.countLeadingOnes();
1618
1619    KnownOne2.clear();
1620    KnownZero2.clear();
1621    ComputeMaskedBits(Op.getOperand(1),
1622                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1623    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1624    if (RHSUnknownLeadingOnes != BitWidth)
1625      LeadZ = std::min(BitWidth,
1626                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1627
1628    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1629    return;
1630  }
1631  case ISD::SELECT:
1632    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1633    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1634    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1635    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1636
1637    // Only known if known in both the LHS and RHS.
1638    KnownOne &= KnownOne2;
1639    KnownZero &= KnownZero2;
1640    return;
1641  case ISD::SELECT_CC:
1642    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1643    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1644    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1645    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1646
1647    // Only known if known in both the LHS and RHS.
1648    KnownOne &= KnownOne2;
1649    KnownZero &= KnownZero2;
1650    return;
1651  case ISD::SADDO:
1652  case ISD::UADDO:
1653  case ISD::SSUBO:
1654  case ISD::USUBO:
1655  case ISD::SMULO:
1656  case ISD::UMULO:
1657    if (Op.getResNo() != 1)
1658      return;
1659    // The boolean result conforms to getBooleanContents.  Fall through.
1660  case ISD::SETCC:
1661    // If we know the result of a setcc has the top bits zero, use this info.
1662    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1663        BitWidth > 1)
1664      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1665    return;
1666  case ISD::SHL:
1667    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1668    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1669      unsigned ShAmt = SA->getZExtValue();
1670
1671      // If the shift count is an invalid immediate, don't do anything.
1672      if (ShAmt >= BitWidth)
1673        return;
1674
1675      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1676                        KnownZero, KnownOne, Depth+1);
1677      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1678      KnownZero <<= ShAmt;
1679      KnownOne  <<= ShAmt;
1680      // low bits known zero.
1681      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1682    }
1683    return;
1684  case ISD::SRL:
1685    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1686    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1687      unsigned ShAmt = SA->getZExtValue();
1688
1689      // If the shift count is an invalid immediate, don't do anything.
1690      if (ShAmt >= BitWidth)
1691        return;
1692
1693      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1694                        KnownZero, KnownOne, Depth+1);
1695      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1696      KnownZero = KnownZero.lshr(ShAmt);
1697      KnownOne  = KnownOne.lshr(ShAmt);
1698
1699      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1700      KnownZero |= HighBits;  // High bits known zero.
1701    }
1702    return;
1703  case ISD::SRA:
1704    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1705      unsigned ShAmt = SA->getZExtValue();
1706
1707      // If the shift count is an invalid immediate, don't do anything.
1708      if (ShAmt >= BitWidth)
1709        return;
1710
1711      APInt InDemandedMask = (Mask << ShAmt);
1712      // If any of the demanded bits are produced by the sign extension, we also
1713      // demand the input sign bit.
1714      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1715      if (HighBits.getBoolValue())
1716        InDemandedMask |= APInt::getSignBit(BitWidth);
1717
1718      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1719                        Depth+1);
1720      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1721      KnownZero = KnownZero.lshr(ShAmt);
1722      KnownOne  = KnownOne.lshr(ShAmt);
1723
1724      // Handle the sign bits.
1725      APInt SignBit = APInt::getSignBit(BitWidth);
1726      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1727
1728      if (KnownZero.intersects(SignBit)) {
1729        KnownZero |= HighBits;  // New bits are known zero.
1730      } else if (KnownOne.intersects(SignBit)) {
1731        KnownOne  |= HighBits;  // New bits are known one.
1732      }
1733    }
1734    return;
1735  case ISD::SIGN_EXTEND_INREG: {
1736    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1737    unsigned EBits = EVT.getScalarType().getSizeInBits();
1738
1739    // Sign extension.  Compute the demanded bits in the result that are not
1740    // present in the input.
1741    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1742
1743    APInt InSignBit = APInt::getSignBit(EBits);
1744    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1745
1746    // If the sign extended bits are demanded, we know that the sign
1747    // bit is demanded.
1748    InSignBit.zext(BitWidth);
1749    if (NewBits.getBoolValue())
1750      InputDemandedBits |= InSignBit;
1751
1752    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1753                      KnownZero, KnownOne, Depth+1);
1754    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1755
1756    // If the sign bit of the input is known set or clear, then we know the
1757    // top bits of the result.
1758    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1759      KnownZero |= NewBits;
1760      KnownOne  &= ~NewBits;
1761    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1762      KnownOne  |= NewBits;
1763      KnownZero &= ~NewBits;
1764    } else {                              // Input sign bit unknown
1765      KnownZero &= ~NewBits;
1766      KnownOne  &= ~NewBits;
1767    }
1768    return;
1769  }
1770  case ISD::CTTZ:
1771  case ISD::CTLZ:
1772  case ISD::CTPOP: {
1773    unsigned LowBits = Log2_32(BitWidth)+1;
1774    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1775    KnownOne.clear();
1776    return;
1777  }
1778  case ISD::LOAD: {
1779    if (ISD::isZEXTLoad(Op.getNode())) {
1780      LoadSDNode *LD = cast<LoadSDNode>(Op);
1781      EVT VT = LD->getMemoryVT();
1782      unsigned MemBits = VT.getScalarType().getSizeInBits();
1783      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1784    }
1785    return;
1786  }
1787  case ISD::ZERO_EXTEND: {
1788    EVT InVT = Op.getOperand(0).getValueType();
1789    unsigned InBits = InVT.getScalarType().getSizeInBits();
1790    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1791    APInt InMask    = Mask;
1792    InMask.trunc(InBits);
1793    KnownZero.trunc(InBits);
1794    KnownOne.trunc(InBits);
1795    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1796    KnownZero.zext(BitWidth);
1797    KnownOne.zext(BitWidth);
1798    KnownZero |= NewBits;
1799    return;
1800  }
1801  case ISD::SIGN_EXTEND: {
1802    EVT InVT = Op.getOperand(0).getValueType();
1803    unsigned InBits = InVT.getScalarType().getSizeInBits();
1804    APInt InSignBit = APInt::getSignBit(InBits);
1805    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1806    APInt InMask = Mask;
1807    InMask.trunc(InBits);
1808
1809    // If any of the sign extended bits are demanded, we know that the sign
1810    // bit is demanded. Temporarily set this bit in the mask for our callee.
1811    if (NewBits.getBoolValue())
1812      InMask |= InSignBit;
1813
1814    KnownZero.trunc(InBits);
1815    KnownOne.trunc(InBits);
1816    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1817
1818    // Note if the sign bit is known to be zero or one.
1819    bool SignBitKnownZero = KnownZero.isNegative();
1820    bool SignBitKnownOne  = KnownOne.isNegative();
1821    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1822           "Sign bit can't be known to be both zero and one!");
1823
1824    // If the sign bit wasn't actually demanded by our caller, we don't
1825    // want it set in the KnownZero and KnownOne result values. Reset the
1826    // mask and reapply it to the result values.
1827    InMask = Mask;
1828    InMask.trunc(InBits);
1829    KnownZero &= InMask;
1830    KnownOne  &= InMask;
1831
1832    KnownZero.zext(BitWidth);
1833    KnownOne.zext(BitWidth);
1834
1835    // If the sign bit is known zero or one, the top bits match.
1836    if (SignBitKnownZero)
1837      KnownZero |= NewBits;
1838    else if (SignBitKnownOne)
1839      KnownOne  |= NewBits;
1840    return;
1841  }
1842  case ISD::ANY_EXTEND: {
1843    EVT InVT = Op.getOperand(0).getValueType();
1844    unsigned InBits = InVT.getScalarType().getSizeInBits();
1845    APInt InMask = Mask;
1846    InMask.trunc(InBits);
1847    KnownZero.trunc(InBits);
1848    KnownOne.trunc(InBits);
1849    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1850    KnownZero.zext(BitWidth);
1851    KnownOne.zext(BitWidth);
1852    return;
1853  }
1854  case ISD::TRUNCATE: {
1855    EVT InVT = Op.getOperand(0).getValueType();
1856    unsigned InBits = InVT.getScalarType().getSizeInBits();
1857    APInt InMask = Mask;
1858    InMask.zext(InBits);
1859    KnownZero.zext(InBits);
1860    KnownOne.zext(InBits);
1861    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1862    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1863    KnownZero.trunc(BitWidth);
1864    KnownOne.trunc(BitWidth);
1865    break;
1866  }
1867  case ISD::AssertZext: {
1868    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1869    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1870    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1871                      KnownOne, Depth+1);
1872    KnownZero |= (~InMask) & Mask;
1873    return;
1874  }
1875  case ISD::FGETSIGN:
1876    // All bits are zero except the low bit.
1877    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1878    return;
1879
1880  case ISD::SUB: {
1881    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1882      // We know that the top bits of C-X are clear if X contains less bits
1883      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1884      // positive if we can prove that X is >= 0 and < 16.
1885      if (CLHS->getAPIntValue().isNonNegative()) {
1886        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1887        // NLZ can't be BitWidth with no sign bit
1888        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1889        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1890                          Depth+1);
1891
1892        // If all of the MaskV bits are known to be zero, then we know the
1893        // output top bits are zero, because we now know that the output is
1894        // from [0-C].
1895        if ((KnownZero2 & MaskV) == MaskV) {
1896          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1897          // Top bits known zero.
1898          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1899        }
1900      }
1901    }
1902  }
1903  // fall through
1904  case ISD::ADD: {
1905    // Output known-0 bits are known if clear or set in both the low clear bits
1906    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1907    // low 3 bits clear.
1908    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1909    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1910    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1911    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1912
1913    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1914    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1915    KnownZeroOut = std::min(KnownZeroOut,
1916                            KnownZero2.countTrailingOnes());
1917
1918    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1919    return;
1920  }
1921  case ISD::SREM:
1922    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1923      const APInt &RA = Rem->getAPIntValue().abs();
1924      if (RA.isPowerOf2()) {
1925        APInt LowBits = RA - 1;
1926        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1927        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1928
1929        // The low bits of the first operand are unchanged by the srem.
1930        KnownZero = KnownZero2 & LowBits;
1931        KnownOne = KnownOne2 & LowBits;
1932
1933        // If the first operand is non-negative or has all low bits zero, then
1934        // the upper bits are all zero.
1935        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1936          KnownZero |= ~LowBits;
1937
1938        // If the first operand is negative and not all low bits are zero, then
1939        // the upper bits are all one.
1940        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1941          KnownOne |= ~LowBits;
1942
1943        KnownZero &= Mask;
1944        KnownOne &= Mask;
1945
1946        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1947      }
1948    }
1949    return;
1950  case ISD::UREM: {
1951    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1952      const APInt &RA = Rem->getAPIntValue();
1953      if (RA.isPowerOf2()) {
1954        APInt LowBits = (RA - 1);
1955        APInt Mask2 = LowBits & Mask;
1956        KnownZero |= ~LowBits & Mask;
1957        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1958        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1959        break;
1960      }
1961    }
1962
1963    // Since the result is less than or equal to either operand, any leading
1964    // zero bits in either operand must also exist in the result.
1965    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1966    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1967                      Depth+1);
1968    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1969                      Depth+1);
1970
1971    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1972                                KnownZero2.countLeadingOnes());
1973    KnownOne.clear();
1974    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1975    return;
1976  }
1977  default:
1978    // Allow the target to implement this method for its nodes.
1979    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1980  case ISD::INTRINSIC_WO_CHAIN:
1981  case ISD::INTRINSIC_W_CHAIN:
1982  case ISD::INTRINSIC_VOID:
1983      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
1984                                         Depth);
1985    }
1986    return;
1987  }
1988}
1989
1990/// ComputeNumSignBits - Return the number of times the sign bit of the
1991/// register is replicated into the other bits.  We know that at least 1 bit
1992/// is always equal to the sign bit (itself), but other cases can give us
1993/// information.  For example, immediately after an "SRA X, 2", we know that
1994/// the top 3 bits are all equal to each other, so we return 3.
1995unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1996  EVT VT = Op.getValueType();
1997  assert(VT.isInteger() && "Invalid VT!");
1998  unsigned VTBits = VT.getScalarType().getSizeInBits();
1999  unsigned Tmp, Tmp2;
2000  unsigned FirstAnswer = 1;
2001
2002  if (Depth == 6)
2003    return 1;  // Limit search depth.
2004
2005  switch (Op.getOpcode()) {
2006  default: break;
2007  case ISD::AssertSext:
2008    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2009    return VTBits-Tmp+1;
2010  case ISD::AssertZext:
2011    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2012    return VTBits-Tmp;
2013
2014  case ISD::Constant: {
2015    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2016    // If negative, return # leading ones.
2017    if (Val.isNegative())
2018      return Val.countLeadingOnes();
2019
2020    // Return # leading zeros.
2021    return Val.countLeadingZeros();
2022  }
2023
2024  case ISD::SIGN_EXTEND:
2025    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2026    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2027
2028  case ISD::SIGN_EXTEND_INREG:
2029    // Max of the input and what this extends.
2030    Tmp =
2031      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2032    Tmp = VTBits-Tmp+1;
2033
2034    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2035    return std::max(Tmp, Tmp2);
2036
2037  case ISD::SRA:
2038    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2039    // SRA X, C   -> adds C sign bits.
2040    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2041      Tmp += C->getZExtValue();
2042      if (Tmp > VTBits) Tmp = VTBits;
2043    }
2044    return Tmp;
2045  case ISD::SHL:
2046    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2047      // shl destroys sign bits.
2048      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2049      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2050          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2051      return Tmp - C->getZExtValue();
2052    }
2053    break;
2054  case ISD::AND:
2055  case ISD::OR:
2056  case ISD::XOR:    // NOT is handled here.
2057    // Logical binary ops preserve the number of sign bits at the worst.
2058    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2059    if (Tmp != 1) {
2060      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2061      FirstAnswer = std::min(Tmp, Tmp2);
2062      // We computed what we know about the sign bits as our first
2063      // answer. Now proceed to the generic code that uses
2064      // ComputeMaskedBits, and pick whichever answer is better.
2065    }
2066    break;
2067
2068  case ISD::SELECT:
2069    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2070    if (Tmp == 1) return 1;  // Early out.
2071    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2072    return std::min(Tmp, Tmp2);
2073
2074  case ISD::SADDO:
2075  case ISD::UADDO:
2076  case ISD::SSUBO:
2077  case ISD::USUBO:
2078  case ISD::SMULO:
2079  case ISD::UMULO:
2080    if (Op.getResNo() != 1)
2081      break;
2082    // The boolean result conforms to getBooleanContents.  Fall through.
2083  case ISD::SETCC:
2084    // If setcc returns 0/-1, all bits are sign bits.
2085    if (TLI.getBooleanContents() ==
2086        TargetLowering::ZeroOrNegativeOneBooleanContent)
2087      return VTBits;
2088    break;
2089  case ISD::ROTL:
2090  case ISD::ROTR:
2091    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2092      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2093
2094      // Handle rotate right by N like a rotate left by 32-N.
2095      if (Op.getOpcode() == ISD::ROTR)
2096        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2097
2098      // If we aren't rotating out all of the known-in sign bits, return the
2099      // number that are left.  This handles rotl(sext(x), 1) for example.
2100      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2101      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2102    }
2103    break;
2104  case ISD::ADD:
2105    // Add can have at most one carry bit.  Thus we know that the output
2106    // is, at worst, one more bit than the inputs.
2107    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2108    if (Tmp == 1) return 1;  // Early out.
2109
2110    // Special case decrementing a value (ADD X, -1):
2111    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2112      if (CRHS->isAllOnesValue()) {
2113        APInt KnownZero, KnownOne;
2114        APInt Mask = APInt::getAllOnesValue(VTBits);
2115        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2116
2117        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2118        // sign bits set.
2119        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2120          return VTBits;
2121
2122        // If we are subtracting one from a positive number, there is no carry
2123        // out of the result.
2124        if (KnownZero.isNegative())
2125          return Tmp;
2126      }
2127
2128    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2129    if (Tmp2 == 1) return 1;
2130      return std::min(Tmp, Tmp2)-1;
2131    break;
2132
2133  case ISD::SUB:
2134    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2135    if (Tmp2 == 1) return 1;
2136
2137    // Handle NEG.
2138    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2139      if (CLHS->isNullValue()) {
2140        APInt KnownZero, KnownOne;
2141        APInt Mask = APInt::getAllOnesValue(VTBits);
2142        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2143        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2144        // sign bits set.
2145        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2146          return VTBits;
2147
2148        // If the input is known to be positive (the sign bit is known clear),
2149        // the output of the NEG has the same number of sign bits as the input.
2150        if (KnownZero.isNegative())
2151          return Tmp2;
2152
2153        // Otherwise, we treat this like a SUB.
2154      }
2155
2156    // Sub can have at most one carry bit.  Thus we know that the output
2157    // is, at worst, one more bit than the inputs.
2158    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2159    if (Tmp == 1) return 1;  // Early out.
2160      return std::min(Tmp, Tmp2)-1;
2161    break;
2162  case ISD::TRUNCATE:
2163    // FIXME: it's tricky to do anything useful for this, but it is an important
2164    // case for targets like X86.
2165    break;
2166  }
2167
2168  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2169  if (Op.getOpcode() == ISD::LOAD) {
2170    LoadSDNode *LD = cast<LoadSDNode>(Op);
2171    unsigned ExtType = LD->getExtensionType();
2172    switch (ExtType) {
2173    default: break;
2174    case ISD::SEXTLOAD:    // '17' bits known
2175      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2176      return VTBits-Tmp+1;
2177    case ISD::ZEXTLOAD:    // '16' bits known
2178      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2179      return VTBits-Tmp;
2180    }
2181  }
2182
2183  // Allow the target to implement this method for its nodes.
2184  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2185      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2186      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2187      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2188    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2189    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2190  }
2191
2192  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2193  // use this information.
2194  APInt KnownZero, KnownOne;
2195  APInt Mask = APInt::getAllOnesValue(VTBits);
2196  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2197
2198  if (KnownZero.isNegative()) {        // sign bit is 0
2199    Mask = KnownZero;
2200  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2201    Mask = KnownOne;
2202  } else {
2203    // Nothing known.
2204    return FirstAnswer;
2205  }
2206
2207  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2208  // the number of identical bits in the top of the input value.
2209  Mask = ~Mask;
2210  Mask <<= Mask.getBitWidth()-VTBits;
2211  // Return # leading zeros.  We use 'min' here in case Val was zero before
2212  // shifting.  We don't want to return '64' as for an i32 "0".
2213  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2214}
2215
2216bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2217  // If we're told that NaNs won't happen, assume they won't.
2218  if (FiniteOnlyFPMath())
2219    return true;
2220
2221  // If the value is a constant, we can obviously see if it is a NaN or not.
2222  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2223    return !C->getValueAPF().isNaN();
2224
2225  // TODO: Recognize more cases here.
2226
2227  return false;
2228}
2229
2230bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2231  // If the value is a constant, we can obviously see if it is a zero or not.
2232  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2233    return !C->isZero();
2234
2235  // TODO: Recognize more cases here.
2236
2237  return false;
2238}
2239
2240bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2241  // Check the obvious case.
2242  if (A == B) return true;
2243
2244  // For for negative and positive zero.
2245  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2246    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2247      if (CA->isZero() && CB->isZero()) return true;
2248
2249  // Otherwise they may not be equal.
2250  return false;
2251}
2252
2253bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2254  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2255  if (!GA) return false;
2256  if (GA->getOffset() != 0) return false;
2257  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2258  if (!GV) return false;
2259  MachineModuleInfo *MMI = getMachineModuleInfo();
2260  return MMI && MMI->hasDebugInfo();
2261}
2262
2263
2264/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2265/// element of the result of the vector shuffle.
2266SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2267                                          unsigned i) {
2268  EVT VT = N->getValueType(0);
2269  DebugLoc dl = N->getDebugLoc();
2270  if (N->getMaskElt(i) < 0)
2271    return getUNDEF(VT.getVectorElementType());
2272  unsigned Index = N->getMaskElt(i);
2273  unsigned NumElems = VT.getVectorNumElements();
2274  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2275  Index %= NumElems;
2276
2277  if (V.getOpcode() == ISD::BIT_CONVERT) {
2278    V = V.getOperand(0);
2279    EVT VVT = V.getValueType();
2280    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2281      return SDValue();
2282  }
2283  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2284    return (Index == 0) ? V.getOperand(0)
2285                      : getUNDEF(VT.getVectorElementType());
2286  if (V.getOpcode() == ISD::BUILD_VECTOR)
2287    return V.getOperand(Index);
2288  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2289    return getShuffleScalarElt(SVN, Index);
2290  return SDValue();
2291}
2292
2293
2294/// getNode - Gets or creates the specified node.
2295///
2296SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2297  FoldingSetNodeID ID;
2298  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2299  void *IP = 0;
2300  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2301    return SDValue(E, 0);
2302
2303  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2304  CSEMap.InsertNode(N, IP);
2305
2306  AllNodes.push_back(N);
2307#ifndef NDEBUG
2308  VerifyNode(N);
2309#endif
2310  return SDValue(N, 0);
2311}
2312
2313SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2314                              EVT VT, SDValue Operand) {
2315  // Constant fold unary operations with an integer constant operand.
2316  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2317    const APInt &Val = C->getAPIntValue();
2318    switch (Opcode) {
2319    default: break;
2320    case ISD::SIGN_EXTEND:
2321      return getConstant(APInt(Val).sextOrTrunc(VT.getSizeInBits()), VT);
2322    case ISD::ANY_EXTEND:
2323    case ISD::ZERO_EXTEND:
2324    case ISD::TRUNCATE:
2325      return getConstant(APInt(Val).zextOrTrunc(VT.getSizeInBits()), VT);
2326    case ISD::UINT_TO_FP:
2327    case ISD::SINT_TO_FP: {
2328      const uint64_t zero[] = {0, 0};
2329      // No compile time operations on ppcf128.
2330      if (VT == MVT::ppcf128) break;
2331      APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2332      (void)apf.convertFromAPInt(Val,
2333                                 Opcode==ISD::SINT_TO_FP,
2334                                 APFloat::rmNearestTiesToEven);
2335      return getConstantFP(apf, VT);
2336    }
2337    case ISD::BIT_CONVERT:
2338      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2339        return getConstantFP(Val.bitsToFloat(), VT);
2340      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2341        return getConstantFP(Val.bitsToDouble(), VT);
2342      break;
2343    case ISD::BSWAP:
2344      return getConstant(Val.byteSwap(), VT);
2345    case ISD::CTPOP:
2346      return getConstant(Val.countPopulation(), VT);
2347    case ISD::CTLZ:
2348      return getConstant(Val.countLeadingZeros(), VT);
2349    case ISD::CTTZ:
2350      return getConstant(Val.countTrailingZeros(), VT);
2351    }
2352  }
2353
2354  // Constant fold unary operations with a floating point constant operand.
2355  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2356    APFloat V = C->getValueAPF();    // make copy
2357    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2358      switch (Opcode) {
2359      case ISD::FNEG:
2360        V.changeSign();
2361        return getConstantFP(V, VT);
2362      case ISD::FABS:
2363        V.clearSign();
2364        return getConstantFP(V, VT);
2365      case ISD::FP_ROUND:
2366      case ISD::FP_EXTEND: {
2367        bool ignored;
2368        // This can return overflow, underflow, or inexact; we don't care.
2369        // FIXME need to be more flexible about rounding mode.
2370        (void)V.convert(*EVTToAPFloatSemantics(VT),
2371                        APFloat::rmNearestTiesToEven, &ignored);
2372        return getConstantFP(V, VT);
2373      }
2374      case ISD::FP_TO_SINT:
2375      case ISD::FP_TO_UINT: {
2376        integerPart x[2];
2377        bool ignored;
2378        assert(integerPartWidth >= 64);
2379        // FIXME need to be more flexible about rounding mode.
2380        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2381                              Opcode==ISD::FP_TO_SINT,
2382                              APFloat::rmTowardZero, &ignored);
2383        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2384          break;
2385        APInt api(VT.getSizeInBits(), 2, x);
2386        return getConstant(api, VT);
2387      }
2388      case ISD::BIT_CONVERT:
2389        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2390          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2391        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2392          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2393        break;
2394      }
2395    }
2396  }
2397
2398  unsigned OpOpcode = Operand.getNode()->getOpcode();
2399  switch (Opcode) {
2400  case ISD::TokenFactor:
2401  case ISD::MERGE_VALUES:
2402  case ISD::CONCAT_VECTORS:
2403    return Operand;         // Factor, merge or concat of one node?  No need.
2404  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2405  case ISD::FP_EXTEND:
2406    assert(VT.isFloatingPoint() &&
2407           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2408    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2409    assert((!VT.isVector() ||
2410            VT.getVectorNumElements() ==
2411            Operand.getValueType().getVectorNumElements()) &&
2412           "Vector element count mismatch!");
2413    if (Operand.getOpcode() == ISD::UNDEF)
2414      return getUNDEF(VT);
2415    break;
2416  case ISD::SIGN_EXTEND:
2417    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2418           "Invalid SIGN_EXTEND!");
2419    if (Operand.getValueType() == VT) return Operand;   // noop extension
2420    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2421           "Invalid sext node, dst < src!");
2422    assert((!VT.isVector() ||
2423            VT.getVectorNumElements() ==
2424            Operand.getValueType().getVectorNumElements()) &&
2425           "Vector element count mismatch!");
2426    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2427      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2428    break;
2429  case ISD::ZERO_EXTEND:
2430    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2431           "Invalid ZERO_EXTEND!");
2432    if (Operand.getValueType() == VT) return Operand;   // noop extension
2433    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2434           "Invalid zext node, dst < src!");
2435    assert((!VT.isVector() ||
2436            VT.getVectorNumElements() ==
2437            Operand.getValueType().getVectorNumElements()) &&
2438           "Vector element count mismatch!");
2439    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2440      return getNode(ISD::ZERO_EXTEND, DL, VT,
2441                     Operand.getNode()->getOperand(0));
2442    break;
2443  case ISD::ANY_EXTEND:
2444    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2445           "Invalid ANY_EXTEND!");
2446    if (Operand.getValueType() == VT) return Operand;   // noop extension
2447    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2448           "Invalid anyext node, dst < src!");
2449    assert((!VT.isVector() ||
2450            VT.getVectorNumElements() ==
2451            Operand.getValueType().getVectorNumElements()) &&
2452           "Vector element count mismatch!");
2453    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2454      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2455      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2456    break;
2457  case ISD::TRUNCATE:
2458    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2459           "Invalid TRUNCATE!");
2460    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2461    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2462           "Invalid truncate node, src < dst!");
2463    assert((!VT.isVector() ||
2464            VT.getVectorNumElements() ==
2465            Operand.getValueType().getVectorNumElements()) &&
2466           "Vector element count mismatch!");
2467    if (OpOpcode == ISD::TRUNCATE)
2468      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2469    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2470             OpOpcode == ISD::ANY_EXTEND) {
2471      // If the source is smaller than the dest, we still need an extend.
2472      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2473            .bitsLT(VT.getScalarType()))
2474        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2475      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2476        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2477      else
2478        return Operand.getNode()->getOperand(0);
2479    }
2480    break;
2481  case ISD::BIT_CONVERT:
2482    // Basic sanity checking.
2483    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2484           && "Cannot BIT_CONVERT between types of different sizes!");
2485    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2486    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2487      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2488    if (OpOpcode == ISD::UNDEF)
2489      return getUNDEF(VT);
2490    break;
2491  case ISD::SCALAR_TO_VECTOR:
2492    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2493           (VT.getVectorElementType() == Operand.getValueType() ||
2494            (VT.getVectorElementType().isInteger() &&
2495             Operand.getValueType().isInteger() &&
2496             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2497           "Illegal SCALAR_TO_VECTOR node!");
2498    if (OpOpcode == ISD::UNDEF)
2499      return getUNDEF(VT);
2500    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2501    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2502        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2503        Operand.getConstantOperandVal(1) == 0 &&
2504        Operand.getOperand(0).getValueType() == VT)
2505      return Operand.getOperand(0);
2506    break;
2507  case ISD::FNEG:
2508    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2509    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2510      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2511                     Operand.getNode()->getOperand(0));
2512    if (OpOpcode == ISD::FNEG)  // --X -> X
2513      return Operand.getNode()->getOperand(0);
2514    break;
2515  case ISD::FABS:
2516    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2517      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2518    break;
2519  }
2520
2521  SDNode *N;
2522  SDVTList VTs = getVTList(VT);
2523  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2524    FoldingSetNodeID ID;
2525    SDValue Ops[1] = { Operand };
2526    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2527    void *IP = 0;
2528    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2529      return SDValue(E, 0);
2530
2531    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2532    CSEMap.InsertNode(N, IP);
2533  } else {
2534    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2535  }
2536
2537  AllNodes.push_back(N);
2538#ifndef NDEBUG
2539  VerifyNode(N);
2540#endif
2541  return SDValue(N, 0);
2542}
2543
2544SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2545                                             EVT VT,
2546                                             ConstantSDNode *Cst1,
2547                                             ConstantSDNode *Cst2) {
2548  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2549
2550  switch (Opcode) {
2551  case ISD::ADD:  return getConstant(C1 + C2, VT);
2552  case ISD::SUB:  return getConstant(C1 - C2, VT);
2553  case ISD::MUL:  return getConstant(C1 * C2, VT);
2554  case ISD::UDIV:
2555    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2556    break;
2557  case ISD::UREM:
2558    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2559    break;
2560  case ISD::SDIV:
2561    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2562    break;
2563  case ISD::SREM:
2564    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2565    break;
2566  case ISD::AND:  return getConstant(C1 & C2, VT);
2567  case ISD::OR:   return getConstant(C1 | C2, VT);
2568  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2569  case ISD::SHL:  return getConstant(C1 << C2, VT);
2570  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2571  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2572  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2573  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2574  default: break;
2575  }
2576
2577  return SDValue();
2578}
2579
2580SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2581                              SDValue N1, SDValue N2) {
2582  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2583  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2584  switch (Opcode) {
2585  default: break;
2586  case ISD::TokenFactor:
2587    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2588           N2.getValueType() == MVT::Other && "Invalid token factor!");
2589    // Fold trivial token factors.
2590    if (N1.getOpcode() == ISD::EntryToken) return N2;
2591    if (N2.getOpcode() == ISD::EntryToken) return N1;
2592    if (N1 == N2) return N1;
2593    break;
2594  case ISD::CONCAT_VECTORS:
2595    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2596    // one big BUILD_VECTOR.
2597    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2598        N2.getOpcode() == ISD::BUILD_VECTOR) {
2599      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2600      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2601      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2602    }
2603    break;
2604  case ISD::AND:
2605    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2606           N1.getValueType() == VT && "Binary operator types must match!");
2607    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2608    // worth handling here.
2609    if (N2C && N2C->isNullValue())
2610      return N2;
2611    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2612      return N1;
2613    break;
2614  case ISD::OR:
2615  case ISD::XOR:
2616  case ISD::ADD:
2617  case ISD::SUB:
2618    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2619           N1.getValueType() == VT && "Binary operator types must match!");
2620    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2621    // it's worth handling here.
2622    if (N2C && N2C->isNullValue())
2623      return N1;
2624    break;
2625  case ISD::UDIV:
2626  case ISD::UREM:
2627  case ISD::MULHU:
2628  case ISD::MULHS:
2629  case ISD::MUL:
2630  case ISD::SDIV:
2631  case ISD::SREM:
2632    assert(VT.isInteger() && "This operator does not apply to FP types!");
2633    // fall through
2634  case ISD::FADD:
2635  case ISD::FSUB:
2636  case ISD::FMUL:
2637  case ISD::FDIV:
2638  case ISD::FREM:
2639    if (UnsafeFPMath) {
2640      if (Opcode == ISD::FADD) {
2641        // 0+x --> x
2642        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2643          if (CFP->getValueAPF().isZero())
2644            return N2;
2645        // x+0 --> x
2646        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2647          if (CFP->getValueAPF().isZero())
2648            return N1;
2649      } else if (Opcode == ISD::FSUB) {
2650        // x-0 --> x
2651        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2652          if (CFP->getValueAPF().isZero())
2653            return N1;
2654      }
2655    }
2656    assert(N1.getValueType() == N2.getValueType() &&
2657           N1.getValueType() == VT && "Binary operator types must match!");
2658    break;
2659  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2660    assert(N1.getValueType() == VT &&
2661           N1.getValueType().isFloatingPoint() &&
2662           N2.getValueType().isFloatingPoint() &&
2663           "Invalid FCOPYSIGN!");
2664    break;
2665  case ISD::SHL:
2666  case ISD::SRA:
2667  case ISD::SRL:
2668  case ISD::ROTL:
2669  case ISD::ROTR:
2670    assert(VT == N1.getValueType() &&
2671           "Shift operators return type must be the same as their first arg");
2672    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2673           "Shifts only work on integers");
2674
2675    // Always fold shifts of i1 values so the code generator doesn't need to
2676    // handle them.  Since we know the size of the shift has to be less than the
2677    // size of the value, the shift/rotate count is guaranteed to be zero.
2678    if (VT == MVT::i1)
2679      return N1;
2680    if (N2C && N2C->isNullValue())
2681      return N1;
2682    break;
2683  case ISD::FP_ROUND_INREG: {
2684    EVT EVT = cast<VTSDNode>(N2)->getVT();
2685    assert(VT == N1.getValueType() && "Not an inreg round!");
2686    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2687           "Cannot FP_ROUND_INREG integer types");
2688    assert(EVT.isVector() == VT.isVector() &&
2689           "FP_ROUND_INREG type should be vector iff the operand "
2690           "type is vector!");
2691    assert((!EVT.isVector() ||
2692            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2693           "Vector element counts must match in FP_ROUND_INREG");
2694    assert(EVT.bitsLE(VT) && "Not rounding down!");
2695    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2696    break;
2697  }
2698  case ISD::FP_ROUND:
2699    assert(VT.isFloatingPoint() &&
2700           N1.getValueType().isFloatingPoint() &&
2701           VT.bitsLE(N1.getValueType()) &&
2702           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2703    if (N1.getValueType() == VT) return N1;  // noop conversion.
2704    break;
2705  case ISD::AssertSext:
2706  case ISD::AssertZext: {
2707    EVT EVT = cast<VTSDNode>(N2)->getVT();
2708    assert(VT == N1.getValueType() && "Not an inreg extend!");
2709    assert(VT.isInteger() && EVT.isInteger() &&
2710           "Cannot *_EXTEND_INREG FP types");
2711    assert(!EVT.isVector() &&
2712           "AssertSExt/AssertZExt type should be the vector element type "
2713           "rather than the vector type!");
2714    assert(EVT.bitsLE(VT) && "Not extending!");
2715    if (VT == EVT) return N1; // noop assertion.
2716    break;
2717  }
2718  case ISD::SIGN_EXTEND_INREG: {
2719    EVT EVT = cast<VTSDNode>(N2)->getVT();
2720    assert(VT == N1.getValueType() && "Not an inreg extend!");
2721    assert(VT.isInteger() && EVT.isInteger() &&
2722           "Cannot *_EXTEND_INREG FP types");
2723    assert(EVT.isVector() == VT.isVector() &&
2724           "SIGN_EXTEND_INREG type should be vector iff the operand "
2725           "type is vector!");
2726    assert((!EVT.isVector() ||
2727            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2728           "Vector element counts must match in SIGN_EXTEND_INREG");
2729    assert(EVT.bitsLE(VT) && "Not extending!");
2730    if (EVT == VT) return N1;  // Not actually extending
2731
2732    if (N1C) {
2733      APInt Val = N1C->getAPIntValue();
2734      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2735      Val <<= Val.getBitWidth()-FromBits;
2736      Val = Val.ashr(Val.getBitWidth()-FromBits);
2737      return getConstant(Val, VT);
2738    }
2739    break;
2740  }
2741  case ISD::EXTRACT_VECTOR_ELT:
2742    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2743    if (N1.getOpcode() == ISD::UNDEF)
2744      return getUNDEF(VT);
2745
2746    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2747    // expanding copies of large vectors from registers.
2748    if (N2C &&
2749        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2750        N1.getNumOperands() > 0) {
2751      unsigned Factor =
2752        N1.getOperand(0).getValueType().getVectorNumElements();
2753      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2754                     N1.getOperand(N2C->getZExtValue() / Factor),
2755                     getConstant(N2C->getZExtValue() % Factor,
2756                                 N2.getValueType()));
2757    }
2758
2759    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2760    // expanding large vector constants.
2761    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2762      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2763      EVT VEltTy = N1.getValueType().getVectorElementType();
2764      if (Elt.getValueType() != VEltTy) {
2765        // If the vector element type is not legal, the BUILD_VECTOR operands
2766        // are promoted and implicitly truncated.  Make that explicit here.
2767        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2768      }
2769      if (VT != VEltTy) {
2770        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2771        // result is implicitly extended.
2772        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2773      }
2774      return Elt;
2775    }
2776
2777    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2778    // operations are lowered to scalars.
2779    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2780      // If the indices are the same, return the inserted element else
2781      // if the indices are known different, extract the element from
2782      // the original vector.
2783      if (N1.getOperand(2) == N2) {
2784        if (VT == N1.getOperand(1).getValueType())
2785          return N1.getOperand(1);
2786        else
2787          return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2788      } else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2789                 isa<ConstantSDNode>(N2))
2790        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2791    }
2792    break;
2793  case ISD::EXTRACT_ELEMENT:
2794    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2795    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2796           (N1.getValueType().isInteger() == VT.isInteger()) &&
2797           "Wrong types for EXTRACT_ELEMENT!");
2798
2799    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2800    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2801    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2802    if (N1.getOpcode() == ISD::BUILD_PAIR)
2803      return N1.getOperand(N2C->getZExtValue());
2804
2805    // EXTRACT_ELEMENT of a constant int is also very common.
2806    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2807      unsigned ElementSize = VT.getSizeInBits();
2808      unsigned Shift = ElementSize * N2C->getZExtValue();
2809      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2810      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2811    }
2812    break;
2813  case ISD::EXTRACT_SUBVECTOR:
2814    if (N1.getValueType() == VT) // Trivial extraction.
2815      return N1;
2816    break;
2817  }
2818
2819  if (N1C) {
2820    if (N2C) {
2821      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2822      if (SV.getNode()) return SV;
2823    } else {      // Cannonicalize constant to RHS if commutative
2824      if (isCommutativeBinOp(Opcode)) {
2825        std::swap(N1C, N2C);
2826        std::swap(N1, N2);
2827      }
2828    }
2829  }
2830
2831  // Constant fold FP operations.
2832  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2833  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2834  if (N1CFP) {
2835    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2836      // Cannonicalize constant to RHS if commutative
2837      std::swap(N1CFP, N2CFP);
2838      std::swap(N1, N2);
2839    } else if (N2CFP && VT != MVT::ppcf128) {
2840      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2841      APFloat::opStatus s;
2842      switch (Opcode) {
2843      case ISD::FADD:
2844        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2845        if (s != APFloat::opInvalidOp)
2846          return getConstantFP(V1, VT);
2847        break;
2848      case ISD::FSUB:
2849        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2850        if (s!=APFloat::opInvalidOp)
2851          return getConstantFP(V1, VT);
2852        break;
2853      case ISD::FMUL:
2854        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2855        if (s!=APFloat::opInvalidOp)
2856          return getConstantFP(V1, VT);
2857        break;
2858      case ISD::FDIV:
2859        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2860        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2861          return getConstantFP(V1, VT);
2862        break;
2863      case ISD::FREM :
2864        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2865        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2866          return getConstantFP(V1, VT);
2867        break;
2868      case ISD::FCOPYSIGN:
2869        V1.copySign(V2);
2870        return getConstantFP(V1, VT);
2871      default: break;
2872      }
2873    }
2874  }
2875
2876  // Canonicalize an UNDEF to the RHS, even over a constant.
2877  if (N1.getOpcode() == ISD::UNDEF) {
2878    if (isCommutativeBinOp(Opcode)) {
2879      std::swap(N1, N2);
2880    } else {
2881      switch (Opcode) {
2882      case ISD::FP_ROUND_INREG:
2883      case ISD::SIGN_EXTEND_INREG:
2884      case ISD::SUB:
2885      case ISD::FSUB:
2886      case ISD::FDIV:
2887      case ISD::FREM:
2888      case ISD::SRA:
2889        return N1;     // fold op(undef, arg2) -> undef
2890      case ISD::UDIV:
2891      case ISD::SDIV:
2892      case ISD::UREM:
2893      case ISD::SREM:
2894      case ISD::SRL:
2895      case ISD::SHL:
2896        if (!VT.isVector())
2897          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2898        // For vectors, we can't easily build an all zero vector, just return
2899        // the LHS.
2900        return N2;
2901      }
2902    }
2903  }
2904
2905  // Fold a bunch of operators when the RHS is undef.
2906  if (N2.getOpcode() == ISD::UNDEF) {
2907    switch (Opcode) {
2908    case ISD::XOR:
2909      if (N1.getOpcode() == ISD::UNDEF)
2910        // Handle undef ^ undef -> 0 special case. This is a common
2911        // idiom (misuse).
2912        return getConstant(0, VT);
2913      // fallthrough
2914    case ISD::ADD:
2915    case ISD::ADDC:
2916    case ISD::ADDE:
2917    case ISD::SUB:
2918    case ISD::UDIV:
2919    case ISD::SDIV:
2920    case ISD::UREM:
2921    case ISD::SREM:
2922      return N2;       // fold op(arg1, undef) -> undef
2923    case ISD::FADD:
2924    case ISD::FSUB:
2925    case ISD::FMUL:
2926    case ISD::FDIV:
2927    case ISD::FREM:
2928      if (UnsafeFPMath)
2929        return N2;
2930      break;
2931    case ISD::MUL:
2932    case ISD::AND:
2933    case ISD::SRL:
2934    case ISD::SHL:
2935      if (!VT.isVector())
2936        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2937      // For vectors, we can't easily build an all zero vector, just return
2938      // the LHS.
2939      return N1;
2940    case ISD::OR:
2941      if (!VT.isVector())
2942        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2943      // For vectors, we can't easily build an all one vector, just return
2944      // the LHS.
2945      return N1;
2946    case ISD::SRA:
2947      return N1;
2948    }
2949  }
2950
2951  // Memoize this node if possible.
2952  SDNode *N;
2953  SDVTList VTs = getVTList(VT);
2954  if (VT != MVT::Flag) {
2955    SDValue Ops[] = { N1, N2 };
2956    FoldingSetNodeID ID;
2957    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2958    void *IP = 0;
2959    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2960      return SDValue(E, 0);
2961
2962    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
2963    CSEMap.InsertNode(N, IP);
2964  } else {
2965    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
2966  }
2967
2968  AllNodes.push_back(N);
2969#ifndef NDEBUG
2970  VerifyNode(N);
2971#endif
2972  return SDValue(N, 0);
2973}
2974
2975SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2976                              SDValue N1, SDValue N2, SDValue N3) {
2977  // Perform various simplifications.
2978  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2979  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2980  switch (Opcode) {
2981  case ISD::CONCAT_VECTORS:
2982    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2983    // one big BUILD_VECTOR.
2984    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2985        N2.getOpcode() == ISD::BUILD_VECTOR &&
2986        N3.getOpcode() == ISD::BUILD_VECTOR) {
2987      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2988      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2989      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2990      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2991    }
2992    break;
2993  case ISD::SETCC: {
2994    // Use FoldSetCC to simplify SETCC's.
2995    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2996    if (Simp.getNode()) return Simp;
2997    break;
2998  }
2999  case ISD::SELECT:
3000    if (N1C) {
3001     if (N1C->getZExtValue())
3002        return N2;             // select true, X, Y -> X
3003      else
3004        return N3;             // select false, X, Y -> Y
3005    }
3006
3007    if (N2 == N3) return N2;   // select C, X, X -> X
3008    break;
3009  case ISD::BRCOND:
3010    if (N2C) {
3011      if (N2C->getZExtValue()) // Unconditional branch
3012        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
3013      else
3014        return N1;         // Never-taken branch
3015    }
3016    break;
3017  case ISD::VECTOR_SHUFFLE:
3018    llvm_unreachable("should use getVectorShuffle constructor!");
3019    break;
3020  case ISD::BIT_CONVERT:
3021    // Fold bit_convert nodes from a type to themselves.
3022    if (N1.getValueType() == VT)
3023      return N1;
3024    break;
3025  }
3026
3027  // Memoize node if it doesn't produce a flag.
3028  SDNode *N;
3029  SDVTList VTs = getVTList(VT);
3030  if (VT != MVT::Flag) {
3031    SDValue Ops[] = { N1, N2, N3 };
3032    FoldingSetNodeID ID;
3033    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3034    void *IP = 0;
3035    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3036      return SDValue(E, 0);
3037
3038    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3039    CSEMap.InsertNode(N, IP);
3040  } else {
3041    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3042  }
3043
3044  AllNodes.push_back(N);
3045#ifndef NDEBUG
3046  VerifyNode(N);
3047#endif
3048  return SDValue(N, 0);
3049}
3050
3051SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3052                              SDValue N1, SDValue N2, SDValue N3,
3053                              SDValue N4) {
3054  SDValue Ops[] = { N1, N2, N3, N4 };
3055  return getNode(Opcode, DL, VT, Ops, 4);
3056}
3057
3058SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3059                              SDValue N1, SDValue N2, SDValue N3,
3060                              SDValue N4, SDValue N5) {
3061  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3062  return getNode(Opcode, DL, VT, Ops, 5);
3063}
3064
3065/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3066/// the incoming stack arguments to be loaded from the stack.
3067SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3068  SmallVector<SDValue, 8> ArgChains;
3069
3070  // Include the original chain at the beginning of the list. When this is
3071  // used by target LowerCall hooks, this helps legalize find the
3072  // CALLSEQ_BEGIN node.
3073  ArgChains.push_back(Chain);
3074
3075  // Add a chain value for each stack argument.
3076  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3077       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3078    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3079      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3080        if (FI->getIndex() < 0)
3081          ArgChains.push_back(SDValue(L, 1));
3082
3083  // Build a tokenfactor for all the chains.
3084  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3085                 &ArgChains[0], ArgChains.size());
3086}
3087
3088/// getMemsetValue - Vectorized representation of the memset value
3089/// operand.
3090static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3091                              DebugLoc dl) {
3092  assert(Value.getOpcode() != ISD::UNDEF);
3093
3094  unsigned NumBits = VT.getScalarType().getSizeInBits();
3095  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3096    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3097    unsigned Shift = 8;
3098    for (unsigned i = NumBits; i > 8; i >>= 1) {
3099      Val = (Val << Shift) | Val;
3100      Shift <<= 1;
3101    }
3102    if (VT.isInteger())
3103      return DAG.getConstant(Val, VT);
3104    return DAG.getConstantFP(APFloat(Val), VT);
3105  }
3106
3107  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3108  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3109  unsigned Shift = 8;
3110  for (unsigned i = NumBits; i > 8; i >>= 1) {
3111    Value = DAG.getNode(ISD::OR, dl, VT,
3112                        DAG.getNode(ISD::SHL, dl, VT, Value,
3113                                    DAG.getConstant(Shift,
3114                                                    TLI.getShiftAmountTy())),
3115                        Value);
3116    Shift <<= 1;
3117  }
3118
3119  return Value;
3120}
3121
3122/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3123/// used when a memcpy is turned into a memset when the source is a constant
3124/// string ptr.
3125static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3126                                  const TargetLowering &TLI,
3127                                  std::string &Str, unsigned Offset) {
3128  // Handle vector with all elements zero.
3129  if (Str.empty()) {
3130    if (VT.isInteger())
3131      return DAG.getConstant(0, VT);
3132    else if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
3133             VT.getSimpleVT().SimpleTy == MVT::f64)
3134      return DAG.getConstantFP(0.0, VT);
3135    else if (VT.isVector()) {
3136      unsigned NumElts = VT.getVectorNumElements();
3137      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3138      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3139                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3140                                                             EltVT, NumElts)));
3141    } else
3142      llvm_unreachable("Expected type!");
3143  }
3144
3145  assert(!VT.isVector() && "Can't handle vector type here!");
3146  unsigned NumBits = VT.getSizeInBits();
3147  unsigned MSB = NumBits / 8;
3148  uint64_t Val = 0;
3149  if (TLI.isLittleEndian())
3150    Offset = Offset + MSB - 1;
3151  for (unsigned i = 0; i != MSB; ++i) {
3152    Val = (Val << 8) | (unsigned char)Str[Offset];
3153    Offset += TLI.isLittleEndian() ? -1 : 1;
3154  }
3155  return DAG.getConstant(Val, VT);
3156}
3157
3158/// getMemBasePlusOffset - Returns base and offset node for the
3159///
3160static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3161                                      SelectionDAG &DAG) {
3162  EVT VT = Base.getValueType();
3163  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3164                     VT, Base, DAG.getConstant(Offset, VT));
3165}
3166
3167/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3168///
3169static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3170  unsigned SrcDelta = 0;
3171  GlobalAddressSDNode *G = NULL;
3172  if (Src.getOpcode() == ISD::GlobalAddress)
3173    G = cast<GlobalAddressSDNode>(Src);
3174  else if (Src.getOpcode() == ISD::ADD &&
3175           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3176           Src.getOperand(1).getOpcode() == ISD::Constant) {
3177    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3178    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3179  }
3180  if (!G)
3181    return false;
3182
3183  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3184  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3185    return true;
3186
3187  return false;
3188}
3189
3190/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3191/// to replace the memset / memcpy. Return true if the number of memory ops
3192/// is below the threshold. It returns the types of the sequence of
3193/// memory ops to perform memset / memcpy by reference.
3194static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3195                                     unsigned Limit, uint64_t Size,
3196                                     unsigned DstAlign, unsigned SrcAlign,
3197                                     bool NonScalarIntSafe,
3198                                     SelectionDAG &DAG,
3199                                     const TargetLowering &TLI) {
3200  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3201         "Expecting memcpy / memset source to meet alignment requirement!");
3202  // If 'SrcAlign' is zero, that means the memory operation does not need load
3203  // the value, i.e. memset or memcpy from constant string. Otherwise, it's
3204  // the inferred alignment of the source. 'DstAlign', on the other hand, is the
3205  // specified alignment of the memory operation. If it is zero, that means
3206  // it's possible to change the alignment of the destination.
3207  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3208                                   NonScalarIntSafe, DAG);
3209
3210  if (VT == MVT::Other) {
3211    VT = TLI.getPointerTy();
3212    const Type *Ty = VT.getTypeForEVT(*DAG.getContext());
3213    if (DstAlign >= TLI.getTargetData()->getABITypeAlignment(Ty) ||
3214        TLI.allowsUnalignedMemoryAccesses(VT)) {
3215      VT = MVT::i64;
3216    } else {
3217      switch (DstAlign & 7) {
3218      case 0:  VT = MVT::i64; break;
3219      case 4:  VT = MVT::i32; break;
3220      case 2:  VT = MVT::i16; break;
3221      default: VT = MVT::i8;  break;
3222      }
3223    }
3224
3225    MVT LVT = MVT::i64;
3226    while (!TLI.isTypeLegal(LVT))
3227      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3228    assert(LVT.isInteger());
3229
3230    if (VT.bitsGT(LVT))
3231      VT = LVT;
3232  }
3233
3234  unsigned NumMemOps = 0;
3235  while (Size != 0) {
3236    unsigned VTSize = VT.getSizeInBits() / 8;
3237    while (VTSize > Size) {
3238      // For now, only use non-vector load / store's for the left-over pieces.
3239      if (VT.isVector() || VT.isFloatingPoint()) {
3240        VT = MVT::i64;
3241        while (!TLI.isTypeLegal(VT))
3242          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3243        VTSize = VT.getSizeInBits() / 8;
3244      } else {
3245        // This can result in a type that is not legal on the target, e.g.
3246        // 1 or 2 bytes on PPC.
3247        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3248        VTSize >>= 1;
3249      }
3250    }
3251
3252    if (++NumMemOps > Limit)
3253      return false;
3254    MemOps.push_back(VT);
3255    Size -= VTSize;
3256  }
3257
3258  return true;
3259}
3260
3261static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3262                                       SDValue Chain, SDValue Dst,
3263                                       SDValue Src, uint64_t Size,
3264                                       unsigned Align, bool isVol,
3265                                       bool AlwaysInline,
3266                                       const Value *DstSV, uint64_t DstSVOff,
3267                                       const Value *SrcSV, uint64_t SrcSVOff) {
3268  // Turn a memcpy of undef to nop.
3269  if (Src.getOpcode() == ISD::UNDEF)
3270    return Chain;
3271
3272  // Expand memcpy to a series of load and store ops if the size operand falls
3273  // below a certain threshold.
3274  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3275  std::vector<EVT> MemOps;
3276  uint64_t Limit = -1ULL;
3277  if (!AlwaysInline)
3278    Limit = TLI.getMaxStoresPerMemcpy();
3279  bool DstAlignCanChange = false;
3280  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3281  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3282  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3283    DstAlignCanChange = true;
3284  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3285  if (Align > SrcAlign)
3286    SrcAlign = Align;
3287  std::string Str;
3288  bool CopyFromStr = isMemSrcFromString(Src, Str);
3289  bool isZeroStr = CopyFromStr && Str.empty();
3290  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3291                                (DstAlignCanChange ? 0 : Align),
3292                                (isZeroStr ? 0 : SrcAlign), true, DAG, TLI))
3293    return SDValue();
3294
3295  if (DstAlignCanChange) {
3296    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3297    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3298    if (NewAlign > Align) {
3299      // Give the stack frame object a larger alignment if needed.
3300      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3301        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3302      Align = NewAlign;
3303    }
3304  }
3305
3306  SmallVector<SDValue, 8> OutChains;
3307  unsigned NumMemOps = MemOps.size();
3308  uint64_t SrcOff = 0, DstOff = 0;
3309  for (unsigned i = 0; i != NumMemOps; ++i) {
3310    EVT VT = MemOps[i];
3311    unsigned VTSize = VT.getSizeInBits() / 8;
3312    SDValue Value, Store;
3313
3314    if (CopyFromStr &&
3315        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3316      // It's unlikely a store of a vector immediate can be done in a single
3317      // instruction. It would require a load from a constantpool first.
3318      // We only handle zero vectors here.
3319      // FIXME: Handle other cases where store of vector immediate is done in
3320      // a single instruction.
3321      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3322      Store = DAG.getStore(Chain, dl, Value,
3323                           getMemBasePlusOffset(Dst, DstOff, DAG),
3324                           DstSV, DstSVOff + DstOff, isVol, false, Align);
3325    } else {
3326      // The type might not be legal for the target.  This should only happen
3327      // if the type is smaller than a legal type, as on PPC, so the right
3328      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3329      // to Load/Store if NVT==VT.
3330      // FIXME does the case above also need this?
3331      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3332      assert(NVT.bitsGE(VT));
3333      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3334                             getMemBasePlusOffset(Src, SrcOff, DAG),
3335                             SrcSV, SrcSVOff + SrcOff, VT, isVol, false,
3336                             MinAlign(SrcAlign, SrcOff));
3337      Store = DAG.getTruncStore(Chain, dl, Value,
3338                                getMemBasePlusOffset(Dst, DstOff, DAG),
3339                                DstSV, DstSVOff + DstOff, VT, isVol, false,
3340                                Align);
3341    }
3342    OutChains.push_back(Store);
3343    SrcOff += VTSize;
3344    DstOff += VTSize;
3345  }
3346
3347  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3348                     &OutChains[0], OutChains.size());
3349}
3350
3351static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3352                                        SDValue Chain, SDValue Dst,
3353                                        SDValue Src, uint64_t Size,
3354                                        unsigned Align,  bool isVol,
3355                                        bool AlwaysInline,
3356                                        const Value *DstSV, uint64_t DstSVOff,
3357                                        const Value *SrcSV, uint64_t SrcSVOff) {
3358  // Turn a memmove of undef to nop.
3359  if (Src.getOpcode() == ISD::UNDEF)
3360    return Chain;
3361
3362  // Expand memmove to a series of load and store ops if the size operand falls
3363  // below a certain threshold.
3364  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3365  std::vector<EVT> MemOps;
3366  uint64_t Limit = -1ULL;
3367  if (!AlwaysInline)
3368    Limit = TLI.getMaxStoresPerMemmove();
3369  bool DstAlignCanChange = false;
3370  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3371  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3372  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3373    DstAlignCanChange = true;
3374  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3375  if (Align > SrcAlign)
3376    SrcAlign = Align;
3377
3378  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3379                                (DstAlignCanChange ? 0 : Align),
3380                                SrcAlign, true, DAG, TLI))
3381    return SDValue();
3382
3383  if (DstAlignCanChange) {
3384    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3385    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3386    if (NewAlign > Align) {
3387      // Give the stack frame object a larger alignment if needed.
3388      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3389        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3390      Align = NewAlign;
3391    }
3392  }
3393
3394  uint64_t SrcOff = 0, DstOff = 0;
3395  SmallVector<SDValue, 8> LoadValues;
3396  SmallVector<SDValue, 8> LoadChains;
3397  SmallVector<SDValue, 8> OutChains;
3398  unsigned NumMemOps = MemOps.size();
3399  for (unsigned i = 0; i < NumMemOps; i++) {
3400    EVT VT = MemOps[i];
3401    unsigned VTSize = VT.getSizeInBits() / 8;
3402    SDValue Value, Store;
3403
3404    Value = DAG.getLoad(VT, dl, Chain,
3405                        getMemBasePlusOffset(Src, SrcOff, DAG),
3406                        SrcSV, SrcSVOff + SrcOff, isVol, false, SrcAlign);
3407    LoadValues.push_back(Value);
3408    LoadChains.push_back(Value.getValue(1));
3409    SrcOff += VTSize;
3410  }
3411  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3412                      &LoadChains[0], LoadChains.size());
3413  OutChains.clear();
3414  for (unsigned i = 0; i < NumMemOps; i++) {
3415    EVT VT = MemOps[i];
3416    unsigned VTSize = VT.getSizeInBits() / 8;
3417    SDValue Value, Store;
3418
3419    Store = DAG.getStore(Chain, dl, LoadValues[i],
3420                         getMemBasePlusOffset(Dst, DstOff, DAG),
3421                         DstSV, DstSVOff + DstOff, isVol, false, Align);
3422    OutChains.push_back(Store);
3423    DstOff += VTSize;
3424  }
3425
3426  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3427                     &OutChains[0], OutChains.size());
3428}
3429
3430static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3431                               SDValue Chain, SDValue Dst,
3432                               SDValue Src, uint64_t Size,
3433                               unsigned Align, bool isVol,
3434                               const Value *DstSV, uint64_t DstSVOff) {
3435  // Turn a memset of undef to nop.
3436  if (Src.getOpcode() == ISD::UNDEF)
3437    return Chain;
3438
3439  // Expand memset to a series of load/store ops if the size operand
3440  // falls below a certain threshold.
3441  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3442  std::vector<EVT> MemOps;
3443  bool DstAlignCanChange = false;
3444  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3445  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3446  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3447    DstAlignCanChange = true;
3448  bool NonScalarIntSafe =
3449    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3450  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(),
3451                                Size, (DstAlignCanChange ? 0 : Align), 0,
3452                                NonScalarIntSafe, DAG, TLI))
3453    return SDValue();
3454
3455  if (DstAlignCanChange) {
3456    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3457    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3458    if (NewAlign > Align) {
3459      // Give the stack frame object a larger alignment if needed.
3460      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3461        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3462      Align = NewAlign;
3463    }
3464  }
3465
3466  SmallVector<SDValue, 8> OutChains;
3467  uint64_t DstOff = 0;
3468  unsigned NumMemOps = MemOps.size();
3469  for (unsigned i = 0; i < NumMemOps; i++) {
3470    EVT VT = MemOps[i];
3471    unsigned VTSize = VT.getSizeInBits() / 8;
3472    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3473    SDValue Store = DAG.getStore(Chain, dl, Value,
3474                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3475                                 DstSV, DstSVOff + DstOff, isVol, false, 0);
3476    OutChains.push_back(Store);
3477    DstOff += VTSize;
3478  }
3479
3480  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3481                     &OutChains[0], OutChains.size());
3482}
3483
3484SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3485                                SDValue Src, SDValue Size,
3486                                unsigned Align, bool isVol, bool AlwaysInline,
3487                                const Value *DstSV, uint64_t DstSVOff,
3488                                const Value *SrcSV, uint64_t SrcSVOff) {
3489
3490  // Check to see if we should lower the memcpy to loads and stores first.
3491  // For cases within the target-specified limits, this is the best choice.
3492  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3493  if (ConstantSize) {
3494    // Memcpy with size zero? Just return the original chain.
3495    if (ConstantSize->isNullValue())
3496      return Chain;
3497
3498    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3499                                             ConstantSize->getZExtValue(),Align,
3500                                isVol, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3501    if (Result.getNode())
3502      return Result;
3503  }
3504
3505  // Then check to see if we should lower the memcpy with target-specific
3506  // code. If the target chooses to do this, this is the next best.
3507  SDValue Result =
3508    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3509                                isVol, AlwaysInline,
3510                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3511  if (Result.getNode())
3512    return Result;
3513
3514  // If we really need inline code and the target declined to provide it,
3515  // use a (potentially long) sequence of loads and stores.
3516  if (AlwaysInline) {
3517    assert(ConstantSize && "AlwaysInline requires a constant size!");
3518    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3519                                   ConstantSize->getZExtValue(), Align, isVol,
3520                                   true, DstSV, DstSVOff, SrcSV, SrcSVOff);
3521  }
3522
3523  // Emit a library call.
3524  assert(!isVol && "library memcpy does not support volatile");
3525  TargetLowering::ArgListTy Args;
3526  TargetLowering::ArgListEntry Entry;
3527  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3528  Entry.Node = Dst; Args.push_back(Entry);
3529  Entry.Node = Src; Args.push_back(Entry);
3530  Entry.Node = Size; Args.push_back(Entry);
3531  // FIXME: pass in DebugLoc
3532  std::pair<SDValue,SDValue> CallResult =
3533    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3534                    false, false, false, false, 0,
3535                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3536                    /*isReturnValueUsed=*/false,
3537                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3538                                      TLI.getPointerTy()),
3539                    Args, *this, dl);
3540  return CallResult.second;
3541}
3542
3543SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3544                                 SDValue Src, SDValue Size,
3545                                 unsigned Align, bool isVol,
3546                                 const Value *DstSV, uint64_t DstSVOff,
3547                                 const Value *SrcSV, uint64_t SrcSVOff) {
3548
3549  // Check to see if we should lower the memmove to loads and stores first.
3550  // For cases within the target-specified limits, this is the best choice.
3551  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3552  if (ConstantSize) {
3553    // Memmove with size zero? Just return the original chain.
3554    if (ConstantSize->isNullValue())
3555      return Chain;
3556
3557    SDValue Result =
3558      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3559                               ConstantSize->getZExtValue(), Align, isVol,
3560                               false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3561    if (Result.getNode())
3562      return Result;
3563  }
3564
3565  // Then check to see if we should lower the memmove with target-specific
3566  // code. If the target chooses to do this, this is the next best.
3567  SDValue Result =
3568    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3569                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3570  if (Result.getNode())
3571    return Result;
3572
3573  // Emit a library call.
3574  assert(!isVol && "library memmove does not support volatile");
3575  TargetLowering::ArgListTy Args;
3576  TargetLowering::ArgListEntry Entry;
3577  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3578  Entry.Node = Dst; Args.push_back(Entry);
3579  Entry.Node = Src; Args.push_back(Entry);
3580  Entry.Node = Size; Args.push_back(Entry);
3581  // FIXME:  pass in DebugLoc
3582  std::pair<SDValue,SDValue> CallResult =
3583    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3584                    false, false, false, false, 0,
3585                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3586                    /*isReturnValueUsed=*/false,
3587                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3588                                      TLI.getPointerTy()),
3589                    Args, *this, dl);
3590  return CallResult.second;
3591}
3592
3593SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3594                                SDValue Src, SDValue Size,
3595                                unsigned Align, bool isVol,
3596                                const Value *DstSV, uint64_t DstSVOff) {
3597
3598  // Check to see if we should lower the memset to stores first.
3599  // For cases within the target-specified limits, this is the best choice.
3600  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3601  if (ConstantSize) {
3602    // Memset with size zero? Just return the original chain.
3603    if (ConstantSize->isNullValue())
3604      return Chain;
3605
3606    SDValue Result =
3607      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3608                      Align, isVol, DstSV, DstSVOff);
3609
3610    if (Result.getNode())
3611      return Result;
3612  }
3613
3614  // Then check to see if we should lower the memset with target-specific
3615  // code. If the target chooses to do this, this is the next best.
3616  SDValue Result =
3617    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3618                                DstSV, DstSVOff);
3619  if (Result.getNode())
3620    return Result;
3621
3622  // Emit a library call.
3623  assert(!isVol && "library memset does not support volatile");
3624  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3625  TargetLowering::ArgListTy Args;
3626  TargetLowering::ArgListEntry Entry;
3627  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3628  Args.push_back(Entry);
3629  // Extend or truncate the argument to be an i32 value for the call.
3630  if (Src.getValueType().bitsGT(MVT::i32))
3631    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3632  else
3633    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3634  Entry.Node = Src;
3635  Entry.Ty = Type::getInt32Ty(*getContext());
3636  Entry.isSExt = true;
3637  Args.push_back(Entry);
3638  Entry.Node = Size;
3639  Entry.Ty = IntPtrTy;
3640  Entry.isSExt = false;
3641  Args.push_back(Entry);
3642  // FIXME: pass in DebugLoc
3643  std::pair<SDValue,SDValue> CallResult =
3644    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3645                    false, false, false, false, 0,
3646                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3647                    /*isReturnValueUsed=*/false,
3648                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3649                                      TLI.getPointerTy()),
3650                    Args, *this, dl);
3651  return CallResult.second;
3652}
3653
3654SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3655                                SDValue Chain,
3656                                SDValue Ptr, SDValue Cmp,
3657                                SDValue Swp, const Value* PtrVal,
3658                                unsigned Alignment) {
3659  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3660    Alignment = getEVTAlignment(MemVT);
3661
3662  // Check if the memory reference references a frame index
3663  if (!PtrVal)
3664    if (const FrameIndexSDNode *FI =
3665          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3666      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3667
3668  MachineFunction &MF = getMachineFunction();
3669  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3670
3671  // For now, atomics are considered to be volatile always.
3672  Flags |= MachineMemOperand::MOVolatile;
3673
3674  MachineMemOperand *MMO =
3675    MF.getMachineMemOperand(PtrVal, Flags, 0,
3676                            MemVT.getStoreSize(), Alignment);
3677
3678  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3679}
3680
3681SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3682                                SDValue Chain,
3683                                SDValue Ptr, SDValue Cmp,
3684                                SDValue Swp, MachineMemOperand *MMO) {
3685  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3686  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3687
3688  EVT VT = Cmp.getValueType();
3689
3690  SDVTList VTs = getVTList(VT, MVT::Other);
3691  FoldingSetNodeID ID;
3692  ID.AddInteger(MemVT.getRawBits());
3693  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3694  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3695  void* IP = 0;
3696  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3697    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3698    return SDValue(E, 0);
3699  }
3700  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3701                                               Ptr, Cmp, Swp, MMO);
3702  CSEMap.InsertNode(N, IP);
3703  AllNodes.push_back(N);
3704  return SDValue(N, 0);
3705}
3706
3707SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3708                                SDValue Chain,
3709                                SDValue Ptr, SDValue Val,
3710                                const Value* PtrVal,
3711                                unsigned Alignment) {
3712  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3713    Alignment = getEVTAlignment(MemVT);
3714
3715  // Check if the memory reference references a frame index
3716  if (!PtrVal)
3717    if (const FrameIndexSDNode *FI =
3718          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3719      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3720
3721  MachineFunction &MF = getMachineFunction();
3722  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3723
3724  // For now, atomics are considered to be volatile always.
3725  Flags |= MachineMemOperand::MOVolatile;
3726
3727  MachineMemOperand *MMO =
3728    MF.getMachineMemOperand(PtrVal, Flags, 0,
3729                            MemVT.getStoreSize(), Alignment);
3730
3731  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3732}
3733
3734SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3735                                SDValue Chain,
3736                                SDValue Ptr, SDValue Val,
3737                                MachineMemOperand *MMO) {
3738  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3739          Opcode == ISD::ATOMIC_LOAD_SUB ||
3740          Opcode == ISD::ATOMIC_LOAD_AND ||
3741          Opcode == ISD::ATOMIC_LOAD_OR ||
3742          Opcode == ISD::ATOMIC_LOAD_XOR ||
3743          Opcode == ISD::ATOMIC_LOAD_NAND ||
3744          Opcode == ISD::ATOMIC_LOAD_MIN ||
3745          Opcode == ISD::ATOMIC_LOAD_MAX ||
3746          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3747          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3748          Opcode == ISD::ATOMIC_SWAP) &&
3749         "Invalid Atomic Op");
3750
3751  EVT VT = Val.getValueType();
3752
3753  SDVTList VTs = getVTList(VT, MVT::Other);
3754  FoldingSetNodeID ID;
3755  ID.AddInteger(MemVT.getRawBits());
3756  SDValue Ops[] = {Chain, Ptr, Val};
3757  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3758  void* IP = 0;
3759  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3760    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3761    return SDValue(E, 0);
3762  }
3763  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3764                                               Ptr, Val, MMO);
3765  CSEMap.InsertNode(N, IP);
3766  AllNodes.push_back(N);
3767  return SDValue(N, 0);
3768}
3769
3770/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3771/// Allowed to return something different (and simpler) if Simplify is true.
3772SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3773                                     DebugLoc dl) {
3774  if (NumOps == 1)
3775    return Ops[0];
3776
3777  SmallVector<EVT, 4> VTs;
3778  VTs.reserve(NumOps);
3779  for (unsigned i = 0; i < NumOps; ++i)
3780    VTs.push_back(Ops[i].getValueType());
3781  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3782                 Ops, NumOps);
3783}
3784
3785SDValue
3786SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3787                                  const EVT *VTs, unsigned NumVTs,
3788                                  const SDValue *Ops, unsigned NumOps,
3789                                  EVT MemVT, const Value *srcValue, int SVOff,
3790                                  unsigned Align, bool Vol,
3791                                  bool ReadMem, bool WriteMem) {
3792  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3793                             MemVT, srcValue, SVOff, Align, Vol,
3794                             ReadMem, WriteMem);
3795}
3796
3797SDValue
3798SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3799                                  const SDValue *Ops, unsigned NumOps,
3800                                  EVT MemVT, const Value *srcValue, int SVOff,
3801                                  unsigned Align, bool Vol,
3802                                  bool ReadMem, bool WriteMem) {
3803  if (Align == 0)  // Ensure that codegen never sees alignment 0
3804    Align = getEVTAlignment(MemVT);
3805
3806  MachineFunction &MF = getMachineFunction();
3807  unsigned Flags = 0;
3808  if (WriteMem)
3809    Flags |= MachineMemOperand::MOStore;
3810  if (ReadMem)
3811    Flags |= MachineMemOperand::MOLoad;
3812  if (Vol)
3813    Flags |= MachineMemOperand::MOVolatile;
3814  MachineMemOperand *MMO =
3815    MF.getMachineMemOperand(srcValue, Flags, SVOff,
3816                            MemVT.getStoreSize(), Align);
3817
3818  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3819}
3820
3821SDValue
3822SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3823                                  const SDValue *Ops, unsigned NumOps,
3824                                  EVT MemVT, MachineMemOperand *MMO) {
3825  assert((Opcode == ISD::INTRINSIC_VOID ||
3826          Opcode == ISD::INTRINSIC_W_CHAIN ||
3827          (Opcode <= INT_MAX &&
3828           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3829         "Opcode is not a memory-accessing opcode!");
3830
3831  // Memoize the node unless it returns a flag.
3832  MemIntrinsicSDNode *N;
3833  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3834    FoldingSetNodeID ID;
3835    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3836    void *IP = 0;
3837    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3838      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3839      return SDValue(E, 0);
3840    }
3841
3842    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3843                                               MemVT, MMO);
3844    CSEMap.InsertNode(N, IP);
3845  } else {
3846    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3847                                               MemVT, MMO);
3848  }
3849  AllNodes.push_back(N);
3850  return SDValue(N, 0);
3851}
3852
3853SDValue
3854SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3855                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3856                      SDValue Ptr, SDValue Offset,
3857                      const Value *SV, int SVOffset, EVT MemVT,
3858                      bool isVolatile, bool isNonTemporal,
3859                      unsigned Alignment) {
3860  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3861    Alignment = getEVTAlignment(VT);
3862
3863  // Check if the memory reference references a frame index
3864  if (!SV)
3865    if (const FrameIndexSDNode *FI =
3866          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3867      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3868
3869  MachineFunction &MF = getMachineFunction();
3870  unsigned Flags = MachineMemOperand::MOLoad;
3871  if (isVolatile)
3872    Flags |= MachineMemOperand::MOVolatile;
3873  if (isNonTemporal)
3874    Flags |= MachineMemOperand::MONonTemporal;
3875  MachineMemOperand *MMO =
3876    MF.getMachineMemOperand(SV, Flags, SVOffset,
3877                            MemVT.getStoreSize(), Alignment);
3878  return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
3879}
3880
3881SDValue
3882SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3883                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3884                      SDValue Ptr, SDValue Offset, EVT MemVT,
3885                      MachineMemOperand *MMO) {
3886  if (VT == MemVT) {
3887    ExtType = ISD::NON_EXTLOAD;
3888  } else if (ExtType == ISD::NON_EXTLOAD) {
3889    assert(VT == MemVT && "Non-extending load from different memory type!");
3890  } else {
3891    // Extending load.
3892    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
3893           "Should only be an extending load, not truncating!");
3894    assert(VT.isInteger() == MemVT.isInteger() &&
3895           "Cannot convert from FP to Int or Int -> FP!");
3896    assert(VT.isVector() == MemVT.isVector() &&
3897           "Cannot use trunc store to convert to or from a vector!");
3898    assert((!VT.isVector() ||
3899            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
3900           "Cannot use trunc store to change the number of vector elements!");
3901  }
3902
3903  bool Indexed = AM != ISD::UNINDEXED;
3904  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3905         "Unindexed load with an offset!");
3906
3907  SDVTList VTs = Indexed ?
3908    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3909  SDValue Ops[] = { Chain, Ptr, Offset };
3910  FoldingSetNodeID ID;
3911  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3912  ID.AddInteger(MemVT.getRawBits());
3913  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
3914                                     MMO->isNonTemporal()));
3915  void *IP = 0;
3916  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3917    cast<LoadSDNode>(E)->refineAlignment(MMO);
3918    return SDValue(E, 0);
3919  }
3920  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
3921                                             MemVT, MMO);
3922  CSEMap.InsertNode(N, IP);
3923  AllNodes.push_back(N);
3924  return SDValue(N, 0);
3925}
3926
3927SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3928                              SDValue Chain, SDValue Ptr,
3929                              const Value *SV, int SVOffset,
3930                              bool isVolatile, bool isNonTemporal,
3931                              unsigned Alignment) {
3932  SDValue Undef = getUNDEF(Ptr.getValueType());
3933  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3934                 SV, SVOffset, VT, isVolatile, isNonTemporal, Alignment);
3935}
3936
3937SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3938                                 SDValue Chain, SDValue Ptr,
3939                                 const Value *SV,
3940                                 int SVOffset, EVT MemVT,
3941                                 bool isVolatile, bool isNonTemporal,
3942                                 unsigned Alignment) {
3943  SDValue Undef = getUNDEF(Ptr.getValueType());
3944  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3945                 SV, SVOffset, MemVT, isVolatile, isNonTemporal, Alignment);
3946}
3947
3948SDValue
3949SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3950                             SDValue Offset, ISD::MemIndexedMode AM) {
3951  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3952  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3953         "Load is already a indexed load!");
3954  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3955                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3956                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3957                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
3958}
3959
3960SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3961                               SDValue Ptr, const Value *SV, int SVOffset,
3962                               bool isVolatile, bool isNonTemporal,
3963                               unsigned Alignment) {
3964  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3965    Alignment = getEVTAlignment(Val.getValueType());
3966
3967  // Check if the memory reference references a frame index
3968  if (!SV)
3969    if (const FrameIndexSDNode *FI =
3970          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3971      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3972
3973  MachineFunction &MF = getMachineFunction();
3974  unsigned Flags = MachineMemOperand::MOStore;
3975  if (isVolatile)
3976    Flags |= MachineMemOperand::MOVolatile;
3977  if (isNonTemporal)
3978    Flags |= MachineMemOperand::MONonTemporal;
3979  MachineMemOperand *MMO =
3980    MF.getMachineMemOperand(SV, Flags, SVOffset,
3981                            Val.getValueType().getStoreSize(), Alignment);
3982
3983  return getStore(Chain, dl, Val, Ptr, MMO);
3984}
3985
3986SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3987                               SDValue Ptr, MachineMemOperand *MMO) {
3988  EVT VT = Val.getValueType();
3989  SDVTList VTs = getVTList(MVT::Other);
3990  SDValue Undef = getUNDEF(Ptr.getValueType());
3991  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3992  FoldingSetNodeID ID;
3993  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3994  ID.AddInteger(VT.getRawBits());
3995  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
3996                                     MMO->isNonTemporal()));
3997  void *IP = 0;
3998  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3999    cast<StoreSDNode>(E)->refineAlignment(MMO);
4000    return SDValue(E, 0);
4001  }
4002  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4003                                              false, VT, MMO);
4004  CSEMap.InsertNode(N, IP);
4005  AllNodes.push_back(N);
4006  return SDValue(N, 0);
4007}
4008
4009SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4010                                    SDValue Ptr, const Value *SV,
4011                                    int SVOffset, EVT SVT,
4012                                    bool isVolatile, bool isNonTemporal,
4013                                    unsigned Alignment) {
4014  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4015    Alignment = getEVTAlignment(SVT);
4016
4017  // Check if the memory reference references a frame index
4018  if (!SV)
4019    if (const FrameIndexSDNode *FI =
4020          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
4021      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
4022
4023  MachineFunction &MF = getMachineFunction();
4024  unsigned Flags = MachineMemOperand::MOStore;
4025  if (isVolatile)
4026    Flags |= MachineMemOperand::MOVolatile;
4027  if (isNonTemporal)
4028    Flags |= MachineMemOperand::MONonTemporal;
4029  MachineMemOperand *MMO =
4030    MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
4031
4032  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4033}
4034
4035SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4036                                    SDValue Ptr, EVT SVT,
4037                                    MachineMemOperand *MMO) {
4038  EVT VT = Val.getValueType();
4039
4040  if (VT == SVT)
4041    return getStore(Chain, dl, Val, Ptr, MMO);
4042
4043  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4044         "Should only be a truncating store, not extending!");
4045  assert(VT.isInteger() == SVT.isInteger() &&
4046         "Can't do FP-INT conversion!");
4047  assert(VT.isVector() == SVT.isVector() &&
4048         "Cannot use trunc store to convert to or from a vector!");
4049  assert((!VT.isVector() ||
4050          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4051         "Cannot use trunc store to change the number of vector elements!");
4052
4053  SDVTList VTs = getVTList(MVT::Other);
4054  SDValue Undef = getUNDEF(Ptr.getValueType());
4055  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4056  FoldingSetNodeID ID;
4057  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4058  ID.AddInteger(SVT.getRawBits());
4059  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4060                                     MMO->isNonTemporal()));
4061  void *IP = 0;
4062  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4063    cast<StoreSDNode>(E)->refineAlignment(MMO);
4064    return SDValue(E, 0);
4065  }
4066  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4067                                              true, SVT, MMO);
4068  CSEMap.InsertNode(N, IP);
4069  AllNodes.push_back(N);
4070  return SDValue(N, 0);
4071}
4072
4073SDValue
4074SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4075                              SDValue Offset, ISD::MemIndexedMode AM) {
4076  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4077  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4078         "Store is already a indexed store!");
4079  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4080  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4081  FoldingSetNodeID ID;
4082  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4083  ID.AddInteger(ST->getMemoryVT().getRawBits());
4084  ID.AddInteger(ST->getRawSubclassData());
4085  void *IP = 0;
4086  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4087    return SDValue(E, 0);
4088
4089  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4090                                              ST->isTruncatingStore(),
4091                                              ST->getMemoryVT(),
4092                                              ST->getMemOperand());
4093  CSEMap.InsertNode(N, IP);
4094  AllNodes.push_back(N);
4095  return SDValue(N, 0);
4096}
4097
4098SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4099                               SDValue Chain, SDValue Ptr,
4100                               SDValue SV) {
4101  SDValue Ops[] = { Chain, Ptr, SV };
4102  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
4103}
4104
4105SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4106                              const SDUse *Ops, unsigned NumOps) {
4107  switch (NumOps) {
4108  case 0: return getNode(Opcode, DL, VT);
4109  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4110  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4111  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4112  default: break;
4113  }
4114
4115  // Copy from an SDUse array into an SDValue array for use with
4116  // the regular getNode logic.
4117  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4118  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4119}
4120
4121SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4122                              const SDValue *Ops, unsigned NumOps) {
4123  switch (NumOps) {
4124  case 0: return getNode(Opcode, DL, VT);
4125  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4126  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4127  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4128  default: break;
4129  }
4130
4131  switch (Opcode) {
4132  default: break;
4133  case ISD::SELECT_CC: {
4134    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4135    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4136           "LHS and RHS of condition must have same type!");
4137    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4138           "True and False arms of SelectCC must have same type!");
4139    assert(Ops[2].getValueType() == VT &&
4140           "select_cc node must be of same type as true and false value!");
4141    break;
4142  }
4143  case ISD::BR_CC: {
4144    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4145    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4146           "LHS/RHS of comparison should match types!");
4147    break;
4148  }
4149  }
4150
4151  // Memoize nodes.
4152  SDNode *N;
4153  SDVTList VTs = getVTList(VT);
4154
4155  if (VT != MVT::Flag) {
4156    FoldingSetNodeID ID;
4157    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4158    void *IP = 0;
4159
4160    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4161      return SDValue(E, 0);
4162
4163    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4164    CSEMap.InsertNode(N, IP);
4165  } else {
4166    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4167  }
4168
4169  AllNodes.push_back(N);
4170#ifndef NDEBUG
4171  VerifyNode(N);
4172#endif
4173  return SDValue(N, 0);
4174}
4175
4176SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4177                              const std::vector<EVT> &ResultTys,
4178                              const SDValue *Ops, unsigned NumOps) {
4179  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4180                 Ops, NumOps);
4181}
4182
4183SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4184                              const EVT *VTs, unsigned NumVTs,
4185                              const SDValue *Ops, unsigned NumOps) {
4186  if (NumVTs == 1)
4187    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4188  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4189}
4190
4191SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4192                              const SDValue *Ops, unsigned NumOps) {
4193  if (VTList.NumVTs == 1)
4194    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4195
4196#if 0
4197  switch (Opcode) {
4198  // FIXME: figure out how to safely handle things like
4199  // int foo(int x) { return 1 << (x & 255); }
4200  // int bar() { return foo(256); }
4201  case ISD::SRA_PARTS:
4202  case ISD::SRL_PARTS:
4203  case ISD::SHL_PARTS:
4204    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4205        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4206      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4207    else if (N3.getOpcode() == ISD::AND)
4208      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4209        // If the and is only masking out bits that cannot effect the shift,
4210        // eliminate the and.
4211        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4212        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4213          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4214      }
4215    break;
4216  }
4217#endif
4218
4219  // Memoize the node unless it returns a flag.
4220  SDNode *N;
4221  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4222    FoldingSetNodeID ID;
4223    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4224    void *IP = 0;
4225    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4226      return SDValue(E, 0);
4227
4228    if (NumOps == 1) {
4229      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4230    } else if (NumOps == 2) {
4231      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4232    } else if (NumOps == 3) {
4233      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4234                                            Ops[2]);
4235    } else {
4236      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4237    }
4238    CSEMap.InsertNode(N, IP);
4239  } else {
4240    if (NumOps == 1) {
4241      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4242    } else if (NumOps == 2) {
4243      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4244    } else if (NumOps == 3) {
4245      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4246                                            Ops[2]);
4247    } else {
4248      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4249    }
4250  }
4251  AllNodes.push_back(N);
4252#ifndef NDEBUG
4253  VerifyNode(N);
4254#endif
4255  return SDValue(N, 0);
4256}
4257
4258SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4259  return getNode(Opcode, DL, VTList, 0, 0);
4260}
4261
4262SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4263                              SDValue N1) {
4264  SDValue Ops[] = { N1 };
4265  return getNode(Opcode, DL, VTList, Ops, 1);
4266}
4267
4268SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4269                              SDValue N1, SDValue N2) {
4270  SDValue Ops[] = { N1, N2 };
4271  return getNode(Opcode, DL, VTList, Ops, 2);
4272}
4273
4274SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4275                              SDValue N1, SDValue N2, SDValue N3) {
4276  SDValue Ops[] = { N1, N2, N3 };
4277  return getNode(Opcode, DL, VTList, Ops, 3);
4278}
4279
4280SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4281                              SDValue N1, SDValue N2, SDValue N3,
4282                              SDValue N4) {
4283  SDValue Ops[] = { N1, N2, N3, N4 };
4284  return getNode(Opcode, DL, VTList, Ops, 4);
4285}
4286
4287SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4288                              SDValue N1, SDValue N2, SDValue N3,
4289                              SDValue N4, SDValue N5) {
4290  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4291  return getNode(Opcode, DL, VTList, Ops, 5);
4292}
4293
4294SDVTList SelectionDAG::getVTList(EVT VT) {
4295  return makeVTList(SDNode::getValueTypeList(VT), 1);
4296}
4297
4298SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4299  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4300       E = VTList.rend(); I != E; ++I)
4301    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4302      return *I;
4303
4304  EVT *Array = Allocator.Allocate<EVT>(2);
4305  Array[0] = VT1;
4306  Array[1] = VT2;
4307  SDVTList Result = makeVTList(Array, 2);
4308  VTList.push_back(Result);
4309  return Result;
4310}
4311
4312SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4313  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4314       E = VTList.rend(); I != E; ++I)
4315    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4316                          I->VTs[2] == VT3)
4317      return *I;
4318
4319  EVT *Array = Allocator.Allocate<EVT>(3);
4320  Array[0] = VT1;
4321  Array[1] = VT2;
4322  Array[2] = VT3;
4323  SDVTList Result = makeVTList(Array, 3);
4324  VTList.push_back(Result);
4325  return Result;
4326}
4327
4328SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4329  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4330       E = VTList.rend(); I != E; ++I)
4331    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4332                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4333      return *I;
4334
4335  EVT *Array = Allocator.Allocate<EVT>(4);
4336  Array[0] = VT1;
4337  Array[1] = VT2;
4338  Array[2] = VT3;
4339  Array[3] = VT4;
4340  SDVTList Result = makeVTList(Array, 4);
4341  VTList.push_back(Result);
4342  return Result;
4343}
4344
4345SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4346  switch (NumVTs) {
4347    case 0: llvm_unreachable("Cannot have nodes without results!");
4348    case 1: return getVTList(VTs[0]);
4349    case 2: return getVTList(VTs[0], VTs[1]);
4350    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4351    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4352    default: break;
4353  }
4354
4355  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4356       E = VTList.rend(); I != E; ++I) {
4357    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4358      continue;
4359
4360    bool NoMatch = false;
4361    for (unsigned i = 2; i != NumVTs; ++i)
4362      if (VTs[i] != I->VTs[i]) {
4363        NoMatch = true;
4364        break;
4365      }
4366    if (!NoMatch)
4367      return *I;
4368  }
4369
4370  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4371  std::copy(VTs, VTs+NumVTs, Array);
4372  SDVTList Result = makeVTList(Array, NumVTs);
4373  VTList.push_back(Result);
4374  return Result;
4375}
4376
4377
4378/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4379/// specified operands.  If the resultant node already exists in the DAG,
4380/// this does not modify the specified node, instead it returns the node that
4381/// already exists.  If the resultant node does not exist in the DAG, the
4382/// input node is returned.  As a degenerate case, if you specify the same
4383/// input operands as the node already has, the input node is returned.
4384SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4385  SDNode *N = InN.getNode();
4386  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4387
4388  // Check to see if there is no change.
4389  if (Op == N->getOperand(0)) return InN;
4390
4391  // See if the modified node already exists.
4392  void *InsertPos = 0;
4393  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4394    return SDValue(Existing, InN.getResNo());
4395
4396  // Nope it doesn't.  Remove the node from its current place in the maps.
4397  if (InsertPos)
4398    if (!RemoveNodeFromCSEMaps(N))
4399      InsertPos = 0;
4400
4401  // Now we update the operands.
4402  N->OperandList[0].set(Op);
4403
4404  // If this gets put into a CSE map, add it.
4405  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4406  return InN;
4407}
4408
4409SDValue SelectionDAG::
4410UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4411  SDNode *N = InN.getNode();
4412  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4413
4414  // Check to see if there is no change.
4415  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4416    return InN;   // No operands changed, just return the input node.
4417
4418  // See if the modified node already exists.
4419  void *InsertPos = 0;
4420  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4421    return SDValue(Existing, InN.getResNo());
4422
4423  // Nope it doesn't.  Remove the node from its current place in the maps.
4424  if (InsertPos)
4425    if (!RemoveNodeFromCSEMaps(N))
4426      InsertPos = 0;
4427
4428  // Now we update the operands.
4429  if (N->OperandList[0] != Op1)
4430    N->OperandList[0].set(Op1);
4431  if (N->OperandList[1] != Op2)
4432    N->OperandList[1].set(Op2);
4433
4434  // If this gets put into a CSE map, add it.
4435  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4436  return InN;
4437}
4438
4439SDValue SelectionDAG::
4440UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4441  SDValue Ops[] = { Op1, Op2, Op3 };
4442  return UpdateNodeOperands(N, Ops, 3);
4443}
4444
4445SDValue SelectionDAG::
4446UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4447                   SDValue Op3, SDValue Op4) {
4448  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4449  return UpdateNodeOperands(N, Ops, 4);
4450}
4451
4452SDValue SelectionDAG::
4453UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4454                   SDValue Op3, SDValue Op4, SDValue Op5) {
4455  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4456  return UpdateNodeOperands(N, Ops, 5);
4457}
4458
4459SDValue SelectionDAG::
4460UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4461  SDNode *N = InN.getNode();
4462  assert(N->getNumOperands() == NumOps &&
4463         "Update with wrong number of operands");
4464
4465  // Check to see if there is no change.
4466  bool AnyChange = false;
4467  for (unsigned i = 0; i != NumOps; ++i) {
4468    if (Ops[i] != N->getOperand(i)) {
4469      AnyChange = true;
4470      break;
4471    }
4472  }
4473
4474  // No operands changed, just return the input node.
4475  if (!AnyChange) return InN;
4476
4477  // See if the modified node already exists.
4478  void *InsertPos = 0;
4479  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4480    return SDValue(Existing, InN.getResNo());
4481
4482  // Nope it doesn't.  Remove the node from its current place in the maps.
4483  if (InsertPos)
4484    if (!RemoveNodeFromCSEMaps(N))
4485      InsertPos = 0;
4486
4487  // Now we update the operands.
4488  for (unsigned i = 0; i != NumOps; ++i)
4489    if (N->OperandList[i] != Ops[i])
4490      N->OperandList[i].set(Ops[i]);
4491
4492  // If this gets put into a CSE map, add it.
4493  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4494  return InN;
4495}
4496
4497/// DropOperands - Release the operands and set this node to have
4498/// zero operands.
4499void SDNode::DropOperands() {
4500  // Unlike the code in MorphNodeTo that does this, we don't need to
4501  // watch for dead nodes here.
4502  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4503    SDUse &Use = *I++;
4504    Use.set(SDValue());
4505  }
4506}
4507
4508/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4509/// machine opcode.
4510///
4511SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4512                                   EVT VT) {
4513  SDVTList VTs = getVTList(VT);
4514  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4515}
4516
4517SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4518                                   EVT VT, SDValue Op1) {
4519  SDVTList VTs = getVTList(VT);
4520  SDValue Ops[] = { Op1 };
4521  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4522}
4523
4524SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4525                                   EVT VT, SDValue Op1,
4526                                   SDValue Op2) {
4527  SDVTList VTs = getVTList(VT);
4528  SDValue Ops[] = { Op1, Op2 };
4529  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4530}
4531
4532SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4533                                   EVT VT, SDValue Op1,
4534                                   SDValue Op2, SDValue Op3) {
4535  SDVTList VTs = getVTList(VT);
4536  SDValue Ops[] = { Op1, Op2, Op3 };
4537  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4538}
4539
4540SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4541                                   EVT VT, const SDValue *Ops,
4542                                   unsigned NumOps) {
4543  SDVTList VTs = getVTList(VT);
4544  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4545}
4546
4547SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4548                                   EVT VT1, EVT VT2, const SDValue *Ops,
4549                                   unsigned NumOps) {
4550  SDVTList VTs = getVTList(VT1, VT2);
4551  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4552}
4553
4554SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4555                                   EVT VT1, EVT VT2) {
4556  SDVTList VTs = getVTList(VT1, VT2);
4557  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4558}
4559
4560SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4561                                   EVT VT1, EVT VT2, EVT VT3,
4562                                   const SDValue *Ops, unsigned NumOps) {
4563  SDVTList VTs = getVTList(VT1, VT2, VT3);
4564  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4565}
4566
4567SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4568                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4569                                   const SDValue *Ops, unsigned NumOps) {
4570  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4571  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4572}
4573
4574SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4575                                   EVT VT1, EVT VT2,
4576                                   SDValue Op1) {
4577  SDVTList VTs = getVTList(VT1, VT2);
4578  SDValue Ops[] = { Op1 };
4579  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4580}
4581
4582SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4583                                   EVT VT1, EVT VT2,
4584                                   SDValue Op1, SDValue Op2) {
4585  SDVTList VTs = getVTList(VT1, VT2);
4586  SDValue Ops[] = { Op1, Op2 };
4587  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4588}
4589
4590SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4591                                   EVT VT1, EVT VT2,
4592                                   SDValue Op1, SDValue Op2,
4593                                   SDValue Op3) {
4594  SDVTList VTs = getVTList(VT1, VT2);
4595  SDValue Ops[] = { Op1, Op2, Op3 };
4596  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4597}
4598
4599SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4600                                   EVT VT1, EVT VT2, EVT VT3,
4601                                   SDValue Op1, SDValue Op2,
4602                                   SDValue Op3) {
4603  SDVTList VTs = getVTList(VT1, VT2, VT3);
4604  SDValue Ops[] = { Op1, Op2, Op3 };
4605  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4606}
4607
4608SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4609                                   SDVTList VTs, const SDValue *Ops,
4610                                   unsigned NumOps) {
4611  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4612  // Reset the NodeID to -1.
4613  N->setNodeId(-1);
4614  return N;
4615}
4616
4617/// MorphNodeTo - This *mutates* the specified node to have the specified
4618/// return type, opcode, and operands.
4619///
4620/// Note that MorphNodeTo returns the resultant node.  If there is already a
4621/// node of the specified opcode and operands, it returns that node instead of
4622/// the current one.  Note that the DebugLoc need not be the same.
4623///
4624/// Using MorphNodeTo is faster than creating a new node and swapping it in
4625/// with ReplaceAllUsesWith both because it often avoids allocating a new
4626/// node, and because it doesn't require CSE recalculation for any of
4627/// the node's users.
4628///
4629SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4630                                  SDVTList VTs, const SDValue *Ops,
4631                                  unsigned NumOps) {
4632  // If an identical node already exists, use it.
4633  void *IP = 0;
4634  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4635    FoldingSetNodeID ID;
4636    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4637    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4638      return ON;
4639  }
4640
4641  if (!RemoveNodeFromCSEMaps(N))
4642    IP = 0;
4643
4644  // Start the morphing.
4645  N->NodeType = Opc;
4646  N->ValueList = VTs.VTs;
4647  N->NumValues = VTs.NumVTs;
4648
4649  // Clear the operands list, updating used nodes to remove this from their
4650  // use list.  Keep track of any operands that become dead as a result.
4651  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4652  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4653    SDUse &Use = *I++;
4654    SDNode *Used = Use.getNode();
4655    Use.set(SDValue());
4656    if (Used->use_empty())
4657      DeadNodeSet.insert(Used);
4658  }
4659
4660  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4661    // Initialize the memory references information.
4662    MN->setMemRefs(0, 0);
4663    // If NumOps is larger than the # of operands we can have in a
4664    // MachineSDNode, reallocate the operand list.
4665    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4666      if (MN->OperandsNeedDelete)
4667        delete[] MN->OperandList;
4668      if (NumOps > array_lengthof(MN->LocalOperands))
4669        // We're creating a final node that will live unmorphed for the
4670        // remainder of the current SelectionDAG iteration, so we can allocate
4671        // the operands directly out of a pool with no recycling metadata.
4672        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4673                         Ops, NumOps);
4674      else
4675        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4676      MN->OperandsNeedDelete = false;
4677    } else
4678      MN->InitOperands(MN->OperandList, Ops, NumOps);
4679  } else {
4680    // If NumOps is larger than the # of operands we currently have, reallocate
4681    // the operand list.
4682    if (NumOps > N->NumOperands) {
4683      if (N->OperandsNeedDelete)
4684        delete[] N->OperandList;
4685      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4686      N->OperandsNeedDelete = true;
4687    } else
4688      N->InitOperands(N->OperandList, Ops, NumOps);
4689  }
4690
4691  // Delete any nodes that are still dead after adding the uses for the
4692  // new operands.
4693  if (!DeadNodeSet.empty()) {
4694    SmallVector<SDNode *, 16> DeadNodes;
4695    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4696         E = DeadNodeSet.end(); I != E; ++I)
4697      if ((*I)->use_empty())
4698        DeadNodes.push_back(*I);
4699    RemoveDeadNodes(DeadNodes);
4700  }
4701
4702  if (IP)
4703    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4704  return N;
4705}
4706
4707
4708/// getMachineNode - These are used for target selectors to create a new node
4709/// with specified return type(s), MachineInstr opcode, and operands.
4710///
4711/// Note that getMachineNode returns the resultant node.  If there is already a
4712/// node of the specified opcode and operands, it returns that node instead of
4713/// the current one.
4714MachineSDNode *
4715SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4716  SDVTList VTs = getVTList(VT);
4717  return getMachineNode(Opcode, dl, VTs, 0, 0);
4718}
4719
4720MachineSDNode *
4721SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4722  SDVTList VTs = getVTList(VT);
4723  SDValue Ops[] = { Op1 };
4724  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4725}
4726
4727MachineSDNode *
4728SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4729                             SDValue Op1, SDValue Op2) {
4730  SDVTList VTs = getVTList(VT);
4731  SDValue Ops[] = { Op1, Op2 };
4732  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4733}
4734
4735MachineSDNode *
4736SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4737                             SDValue Op1, SDValue Op2, SDValue Op3) {
4738  SDVTList VTs = getVTList(VT);
4739  SDValue Ops[] = { Op1, Op2, Op3 };
4740  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4741}
4742
4743MachineSDNode *
4744SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4745                             const SDValue *Ops, unsigned NumOps) {
4746  SDVTList VTs = getVTList(VT);
4747  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4748}
4749
4750MachineSDNode *
4751SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4752  SDVTList VTs = getVTList(VT1, VT2);
4753  return getMachineNode(Opcode, dl, VTs, 0, 0);
4754}
4755
4756MachineSDNode *
4757SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4758                             EVT VT1, EVT VT2, SDValue Op1) {
4759  SDVTList VTs = getVTList(VT1, VT2);
4760  SDValue Ops[] = { Op1 };
4761  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4762}
4763
4764MachineSDNode *
4765SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4766                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4767  SDVTList VTs = getVTList(VT1, VT2);
4768  SDValue Ops[] = { Op1, Op2 };
4769  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4770}
4771
4772MachineSDNode *
4773SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4774                             EVT VT1, EVT VT2, SDValue Op1,
4775                             SDValue Op2, SDValue Op3) {
4776  SDVTList VTs = getVTList(VT1, VT2);
4777  SDValue Ops[] = { Op1, Op2, Op3 };
4778  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4779}
4780
4781MachineSDNode *
4782SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4783                             EVT VT1, EVT VT2,
4784                             const SDValue *Ops, unsigned NumOps) {
4785  SDVTList VTs = getVTList(VT1, VT2);
4786  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4787}
4788
4789MachineSDNode *
4790SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4791                             EVT VT1, EVT VT2, EVT VT3,
4792                             SDValue Op1, SDValue Op2) {
4793  SDVTList VTs = getVTList(VT1, VT2, VT3);
4794  SDValue Ops[] = { Op1, Op2 };
4795  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4796}
4797
4798MachineSDNode *
4799SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4800                             EVT VT1, EVT VT2, EVT VT3,
4801                             SDValue Op1, SDValue Op2, SDValue Op3) {
4802  SDVTList VTs = getVTList(VT1, VT2, VT3);
4803  SDValue Ops[] = { Op1, Op2, Op3 };
4804  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4805}
4806
4807MachineSDNode *
4808SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4809                             EVT VT1, EVT VT2, EVT VT3,
4810                             const SDValue *Ops, unsigned NumOps) {
4811  SDVTList VTs = getVTList(VT1, VT2, VT3);
4812  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4813}
4814
4815MachineSDNode *
4816SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4817                             EVT VT2, EVT VT3, EVT VT4,
4818                             const SDValue *Ops, unsigned NumOps) {
4819  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4820  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4821}
4822
4823MachineSDNode *
4824SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4825                             const std::vector<EVT> &ResultTys,
4826                             const SDValue *Ops, unsigned NumOps) {
4827  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4828  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4829}
4830
4831MachineSDNode *
4832SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4833                             const SDValue *Ops, unsigned NumOps) {
4834  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4835  MachineSDNode *N;
4836  void *IP;
4837
4838  if (DoCSE) {
4839    FoldingSetNodeID ID;
4840    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4841    IP = 0;
4842    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4843      return cast<MachineSDNode>(E);
4844  }
4845
4846  // Allocate a new MachineSDNode.
4847  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
4848
4849  // Initialize the operands list.
4850  if (NumOps > array_lengthof(N->LocalOperands))
4851    // We're creating a final node that will live unmorphed for the
4852    // remainder of the current SelectionDAG iteration, so we can allocate
4853    // the operands directly out of a pool with no recycling metadata.
4854    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4855                    Ops, NumOps);
4856  else
4857    N->InitOperands(N->LocalOperands, Ops, NumOps);
4858  N->OperandsNeedDelete = false;
4859
4860  if (DoCSE)
4861    CSEMap.InsertNode(N, IP);
4862
4863  AllNodes.push_back(N);
4864#ifndef NDEBUG
4865  VerifyNode(N);
4866#endif
4867  return N;
4868}
4869
4870/// getTargetExtractSubreg - A convenience function for creating
4871/// TargetOpcode::EXTRACT_SUBREG nodes.
4872SDValue
4873SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4874                                     SDValue Operand) {
4875  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4876  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
4877                                  VT, Operand, SRIdxVal);
4878  return SDValue(Subreg, 0);
4879}
4880
4881/// getTargetInsertSubreg - A convenience function for creating
4882/// TargetOpcode::INSERT_SUBREG nodes.
4883SDValue
4884SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4885                                    SDValue Operand, SDValue Subreg) {
4886  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4887  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
4888                                  VT, Operand, Subreg, SRIdxVal);
4889  return SDValue(Result, 0);
4890}
4891
4892/// getNodeIfExists - Get the specified node if it's already available, or
4893/// else return NULL.
4894SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4895                                      const SDValue *Ops, unsigned NumOps) {
4896  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4897    FoldingSetNodeID ID;
4898    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4899    void *IP = 0;
4900    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4901      return E;
4902  }
4903  return NULL;
4904}
4905
4906/// getDbgValue - Creates a SDDbgValue node.
4907///
4908SDDbgValue *
4909SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
4910                          DebugLoc DL, unsigned O) {
4911  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
4912}
4913
4914SDDbgValue *
4915SelectionDAG::getDbgValue(MDNode *MDPtr, Value *C, uint64_t Off,
4916                          DebugLoc DL, unsigned O) {
4917  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
4918}
4919
4920SDDbgValue *
4921SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
4922                          DebugLoc DL, unsigned O) {
4923  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
4924}
4925
4926namespace {
4927
4928/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
4929/// pointed to by a use iterator is deleted, increment the use iterator
4930/// so that it doesn't dangle.
4931///
4932/// This class also manages a "downlink" DAGUpdateListener, to forward
4933/// messages to ReplaceAllUsesWith's callers.
4934///
4935class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
4936  SelectionDAG::DAGUpdateListener *DownLink;
4937  SDNode::use_iterator &UI;
4938  SDNode::use_iterator &UE;
4939
4940  virtual void NodeDeleted(SDNode *N, SDNode *E) {
4941    // Increment the iterator as needed.
4942    while (UI != UE && N == *UI)
4943      ++UI;
4944
4945    // Then forward the message.
4946    if (DownLink) DownLink->NodeDeleted(N, E);
4947  }
4948
4949  virtual void NodeUpdated(SDNode *N) {
4950    // Just forward the message.
4951    if (DownLink) DownLink->NodeUpdated(N);
4952  }
4953
4954public:
4955  RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
4956                     SDNode::use_iterator &ui,
4957                     SDNode::use_iterator &ue)
4958    : DownLink(dl), UI(ui), UE(ue) {}
4959};
4960
4961}
4962
4963/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4964/// This can cause recursive merging of nodes in the DAG.
4965///
4966/// This version assumes From has a single result value.
4967///
4968void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4969                                      DAGUpdateListener *UpdateListener) {
4970  SDNode *From = FromN.getNode();
4971  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4972         "Cannot replace with this method!");
4973  assert(From != To.getNode() && "Cannot replace uses of with self");
4974
4975  // Iterate over all the existing uses of From. New uses will be added
4976  // to the beginning of the use list, which we avoid visiting.
4977  // This specifically avoids visiting uses of From that arise while the
4978  // replacement is happening, because any such uses would be the result
4979  // of CSE: If an existing node looks like From after one of its operands
4980  // is replaced by To, we don't want to replace of all its users with To
4981  // too. See PR3018 for more info.
4982  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4983  RAUWUpdateListener Listener(UpdateListener, UI, UE);
4984  while (UI != UE) {
4985    SDNode *User = *UI;
4986
4987    // This node is about to morph, remove its old self from the CSE maps.
4988    RemoveNodeFromCSEMaps(User);
4989
4990    // A user can appear in a use list multiple times, and when this
4991    // happens the uses are usually next to each other in the list.
4992    // To help reduce the number of CSE recomputations, process all
4993    // the uses of this user that we can find this way.
4994    do {
4995      SDUse &Use = UI.getUse();
4996      ++UI;
4997      Use.set(To);
4998    } while (UI != UE && *UI == User);
4999
5000    // Now that we have modified User, add it back to the CSE maps.  If it
5001    // already exists there, recursively merge the results together.
5002    AddModifiedNodeToCSEMaps(User, &Listener);
5003  }
5004}
5005
5006/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5007/// This can cause recursive merging of nodes in the DAG.
5008///
5009/// This version assumes that for each value of From, there is a
5010/// corresponding value in To in the same position with the same type.
5011///
5012void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5013                                      DAGUpdateListener *UpdateListener) {
5014#ifndef NDEBUG
5015  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5016    assert((!From->hasAnyUseOfValue(i) ||
5017            From->getValueType(i) == To->getValueType(i)) &&
5018           "Cannot use this version of ReplaceAllUsesWith!");
5019#endif
5020
5021  // Handle the trivial case.
5022  if (From == To)
5023    return;
5024
5025  // Iterate over just the existing users of From. See the comments in
5026  // the ReplaceAllUsesWith above.
5027  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5028  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5029  while (UI != UE) {
5030    SDNode *User = *UI;
5031
5032    // This node is about to morph, remove its old self from the CSE maps.
5033    RemoveNodeFromCSEMaps(User);
5034
5035    // A user can appear in a use list multiple times, and when this
5036    // happens the uses are usually next to each other in the list.
5037    // To help reduce the number of CSE recomputations, process all
5038    // the uses of this user that we can find this way.
5039    do {
5040      SDUse &Use = UI.getUse();
5041      ++UI;
5042      Use.setNode(To);
5043    } while (UI != UE && *UI == User);
5044
5045    // Now that we have modified User, add it back to the CSE maps.  If it
5046    // already exists there, recursively merge the results together.
5047    AddModifiedNodeToCSEMaps(User, &Listener);
5048  }
5049}
5050
5051/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5052/// This can cause recursive merging of nodes in the DAG.
5053///
5054/// This version can replace From with any result values.  To must match the
5055/// number and types of values returned by From.
5056void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5057                                      const SDValue *To,
5058                                      DAGUpdateListener *UpdateListener) {
5059  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5060    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5061
5062  // Iterate over just the existing users of From. See the comments in
5063  // the ReplaceAllUsesWith above.
5064  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5065  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5066  while (UI != UE) {
5067    SDNode *User = *UI;
5068
5069    // This node is about to morph, remove its old self from the CSE maps.
5070    RemoveNodeFromCSEMaps(User);
5071
5072    // A user can appear in a use list multiple times, and when this
5073    // happens the uses are usually next to each other in the list.
5074    // To help reduce the number of CSE recomputations, process all
5075    // the uses of this user that we can find this way.
5076    do {
5077      SDUse &Use = UI.getUse();
5078      const SDValue &ToOp = To[Use.getResNo()];
5079      ++UI;
5080      Use.set(ToOp);
5081    } while (UI != UE && *UI == User);
5082
5083    // Now that we have modified User, add it back to the CSE maps.  If it
5084    // already exists there, recursively merge the results together.
5085    AddModifiedNodeToCSEMaps(User, &Listener);
5086  }
5087}
5088
5089/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5090/// uses of other values produced by From.getNode() alone.  The Deleted
5091/// vector is handled the same way as for ReplaceAllUsesWith.
5092void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5093                                             DAGUpdateListener *UpdateListener){
5094  // Handle the really simple, really trivial case efficiently.
5095  if (From == To) return;
5096
5097  // Handle the simple, trivial, case efficiently.
5098  if (From.getNode()->getNumValues() == 1) {
5099    ReplaceAllUsesWith(From, To, UpdateListener);
5100    return;
5101  }
5102
5103  // Iterate over just the existing users of From. See the comments in
5104  // the ReplaceAllUsesWith above.
5105  SDNode::use_iterator UI = From.getNode()->use_begin(),
5106                       UE = From.getNode()->use_end();
5107  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5108  while (UI != UE) {
5109    SDNode *User = *UI;
5110    bool UserRemovedFromCSEMaps = false;
5111
5112    // A user can appear in a use list multiple times, and when this
5113    // happens the uses are usually next to each other in the list.
5114    // To help reduce the number of CSE recomputations, process all
5115    // the uses of this user that we can find this way.
5116    do {
5117      SDUse &Use = UI.getUse();
5118
5119      // Skip uses of different values from the same node.
5120      if (Use.getResNo() != From.getResNo()) {
5121        ++UI;
5122        continue;
5123      }
5124
5125      // If this node hasn't been modified yet, it's still in the CSE maps,
5126      // so remove its old self from the CSE maps.
5127      if (!UserRemovedFromCSEMaps) {
5128        RemoveNodeFromCSEMaps(User);
5129        UserRemovedFromCSEMaps = true;
5130      }
5131
5132      ++UI;
5133      Use.set(To);
5134    } while (UI != UE && *UI == User);
5135
5136    // We are iterating over all uses of the From node, so if a use
5137    // doesn't use the specific value, no changes are made.
5138    if (!UserRemovedFromCSEMaps)
5139      continue;
5140
5141    // Now that we have modified User, add it back to the CSE maps.  If it
5142    // already exists there, recursively merge the results together.
5143    AddModifiedNodeToCSEMaps(User, &Listener);
5144  }
5145}
5146
5147namespace {
5148  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5149  /// to record information about a use.
5150  struct UseMemo {
5151    SDNode *User;
5152    unsigned Index;
5153    SDUse *Use;
5154  };
5155
5156  /// operator< - Sort Memos by User.
5157  bool operator<(const UseMemo &L, const UseMemo &R) {
5158    return (intptr_t)L.User < (intptr_t)R.User;
5159  }
5160}
5161
5162/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5163/// uses of other values produced by From.getNode() alone.  The same value
5164/// may appear in both the From and To list.  The Deleted vector is
5165/// handled the same way as for ReplaceAllUsesWith.
5166void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5167                                              const SDValue *To,
5168                                              unsigned Num,
5169                                              DAGUpdateListener *UpdateListener){
5170  // Handle the simple, trivial case efficiently.
5171  if (Num == 1)
5172    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5173
5174  // Read up all the uses and make records of them. This helps
5175  // processing new uses that are introduced during the
5176  // replacement process.
5177  SmallVector<UseMemo, 4> Uses;
5178  for (unsigned i = 0; i != Num; ++i) {
5179    unsigned FromResNo = From[i].getResNo();
5180    SDNode *FromNode = From[i].getNode();
5181    for (SDNode::use_iterator UI = FromNode->use_begin(),
5182         E = FromNode->use_end(); UI != E; ++UI) {
5183      SDUse &Use = UI.getUse();
5184      if (Use.getResNo() == FromResNo) {
5185        UseMemo Memo = { *UI, i, &Use };
5186        Uses.push_back(Memo);
5187      }
5188    }
5189  }
5190
5191  // Sort the uses, so that all the uses from a given User are together.
5192  std::sort(Uses.begin(), Uses.end());
5193
5194  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5195       UseIndex != UseIndexEnd; ) {
5196    // We know that this user uses some value of From.  If it is the right
5197    // value, update it.
5198    SDNode *User = Uses[UseIndex].User;
5199
5200    // This node is about to morph, remove its old self from the CSE maps.
5201    RemoveNodeFromCSEMaps(User);
5202
5203    // The Uses array is sorted, so all the uses for a given User
5204    // are next to each other in the list.
5205    // To help reduce the number of CSE recomputations, process all
5206    // the uses of this user that we can find this way.
5207    do {
5208      unsigned i = Uses[UseIndex].Index;
5209      SDUse &Use = *Uses[UseIndex].Use;
5210      ++UseIndex;
5211
5212      Use.set(To[i]);
5213    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5214
5215    // Now that we have modified User, add it back to the CSE maps.  If it
5216    // already exists there, recursively merge the results together.
5217    AddModifiedNodeToCSEMaps(User, UpdateListener);
5218  }
5219}
5220
5221/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5222/// based on their topological order. It returns the maximum id and a vector
5223/// of the SDNodes* in assigned order by reference.
5224unsigned SelectionDAG::AssignTopologicalOrder() {
5225
5226  unsigned DAGSize = 0;
5227
5228  // SortedPos tracks the progress of the algorithm. Nodes before it are
5229  // sorted, nodes after it are unsorted. When the algorithm completes
5230  // it is at the end of the list.
5231  allnodes_iterator SortedPos = allnodes_begin();
5232
5233  // Visit all the nodes. Move nodes with no operands to the front of
5234  // the list immediately. Annotate nodes that do have operands with their
5235  // operand count. Before we do this, the Node Id fields of the nodes
5236  // may contain arbitrary values. After, the Node Id fields for nodes
5237  // before SortedPos will contain the topological sort index, and the
5238  // Node Id fields for nodes At SortedPos and after will contain the
5239  // count of outstanding operands.
5240  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5241    SDNode *N = I++;
5242    checkForCycles(N);
5243    unsigned Degree = N->getNumOperands();
5244    if (Degree == 0) {
5245      // A node with no uses, add it to the result array immediately.
5246      N->setNodeId(DAGSize++);
5247      allnodes_iterator Q = N;
5248      if (Q != SortedPos)
5249        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5250      assert(SortedPos != AllNodes.end() && "Overran node list");
5251      ++SortedPos;
5252    } else {
5253      // Temporarily use the Node Id as scratch space for the degree count.
5254      N->setNodeId(Degree);
5255    }
5256  }
5257
5258  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5259  // such that by the time the end is reached all nodes will be sorted.
5260  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5261    SDNode *N = I;
5262    checkForCycles(N);
5263    // N is in sorted position, so all its uses have one less operand
5264    // that needs to be sorted.
5265    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5266         UI != UE; ++UI) {
5267      SDNode *P = *UI;
5268      unsigned Degree = P->getNodeId();
5269      assert(Degree != 0 && "Invalid node degree");
5270      --Degree;
5271      if (Degree == 0) {
5272        // All of P's operands are sorted, so P may sorted now.
5273        P->setNodeId(DAGSize++);
5274        if (P != SortedPos)
5275          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5276        assert(SortedPos != AllNodes.end() && "Overran node list");
5277        ++SortedPos;
5278      } else {
5279        // Update P's outstanding operand count.
5280        P->setNodeId(Degree);
5281      }
5282    }
5283    if (I == SortedPos) {
5284#ifndef NDEBUG
5285      SDNode *S = ++I;
5286      dbgs() << "Overran sorted position:\n";
5287      S->dumprFull();
5288#endif
5289      llvm_unreachable(0);
5290    }
5291  }
5292
5293  assert(SortedPos == AllNodes.end() &&
5294         "Topological sort incomplete!");
5295  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5296         "First node in topological sort is not the entry token!");
5297  assert(AllNodes.front().getNodeId() == 0 &&
5298         "First node in topological sort has non-zero id!");
5299  assert(AllNodes.front().getNumOperands() == 0 &&
5300         "First node in topological sort has operands!");
5301  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5302         "Last node in topologic sort has unexpected id!");
5303  assert(AllNodes.back().use_empty() &&
5304         "Last node in topologic sort has users!");
5305  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5306  return DAGSize;
5307}
5308
5309/// AssignOrdering - Assign an order to the SDNode.
5310void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5311  assert(SD && "Trying to assign an order to a null node!");
5312  Ordering->add(SD, Order);
5313}
5314
5315/// GetOrdering - Get the order for the SDNode.
5316unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5317  assert(SD && "Trying to get the order of a null node!");
5318  return Ordering->getOrder(SD);
5319}
5320
5321/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5322/// value is produced by SD.
5323void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD) {
5324  DbgInfo->add(DB, SD);
5325  if (SD)
5326    SD->setHasDebugValue(true);
5327}
5328
5329//===----------------------------------------------------------------------===//
5330//                              SDNode Class
5331//===----------------------------------------------------------------------===//
5332
5333HandleSDNode::~HandleSDNode() {
5334  DropOperands();
5335}
5336
5337GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
5338                                         EVT VT, int64_t o, unsigned char TF)
5339  : SDNode(Opc, DebugLoc(), getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5340  TheGlobal = const_cast<GlobalValue*>(GA);
5341}
5342
5343MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5344                     MachineMemOperand *mmo)
5345 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5346  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5347                                      MMO->isNonTemporal());
5348  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5349  assert(isNonTemporal() == MMO->isNonTemporal() &&
5350         "Non-temporal encoding error!");
5351  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5352}
5353
5354MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5355                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5356                     MachineMemOperand *mmo)
5357   : SDNode(Opc, dl, VTs, Ops, NumOps),
5358     MemoryVT(memvt), MMO(mmo) {
5359  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5360                                      MMO->isNonTemporal());
5361  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5362  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5363}
5364
5365/// Profile - Gather unique data for the node.
5366///
5367void SDNode::Profile(FoldingSetNodeID &ID) const {
5368  AddNodeIDNode(ID, this);
5369}
5370
5371namespace {
5372  struct EVTArray {
5373    std::vector<EVT> VTs;
5374
5375    EVTArray() {
5376      VTs.reserve(MVT::LAST_VALUETYPE);
5377      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5378        VTs.push_back(MVT((MVT::SimpleValueType)i));
5379    }
5380  };
5381}
5382
5383static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5384static ManagedStatic<EVTArray> SimpleVTArray;
5385static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5386
5387/// getValueTypeList - Return a pointer to the specified value type.
5388///
5389const EVT *SDNode::getValueTypeList(EVT VT) {
5390  if (VT.isExtended()) {
5391    sys::SmartScopedLock<true> Lock(*VTMutex);
5392    return &(*EVTs->insert(VT).first);
5393  } else {
5394    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5395  }
5396}
5397
5398/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5399/// indicated value.  This method ignores uses of other values defined by this
5400/// operation.
5401bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5402  assert(Value < getNumValues() && "Bad value!");
5403
5404  // TODO: Only iterate over uses of a given value of the node
5405  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5406    if (UI.getUse().getResNo() == Value) {
5407      if (NUses == 0)
5408        return false;
5409      --NUses;
5410    }
5411  }
5412
5413  // Found exactly the right number of uses?
5414  return NUses == 0;
5415}
5416
5417
5418/// hasAnyUseOfValue - Return true if there are any use of the indicated
5419/// value. This method ignores uses of other values defined by this operation.
5420bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5421  assert(Value < getNumValues() && "Bad value!");
5422
5423  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5424    if (UI.getUse().getResNo() == Value)
5425      return true;
5426
5427  return false;
5428}
5429
5430
5431/// isOnlyUserOf - Return true if this node is the only use of N.
5432///
5433bool SDNode::isOnlyUserOf(SDNode *N) const {
5434  bool Seen = false;
5435  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5436    SDNode *User = *I;
5437    if (User == this)
5438      Seen = true;
5439    else
5440      return false;
5441  }
5442
5443  return Seen;
5444}
5445
5446/// isOperand - Return true if this node is an operand of N.
5447///
5448bool SDValue::isOperandOf(SDNode *N) const {
5449  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5450    if (*this == N->getOperand(i))
5451      return true;
5452  return false;
5453}
5454
5455bool SDNode::isOperandOf(SDNode *N) const {
5456  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5457    if (this == N->OperandList[i].getNode())
5458      return true;
5459  return false;
5460}
5461
5462/// reachesChainWithoutSideEffects - Return true if this operand (which must
5463/// be a chain) reaches the specified operand without crossing any
5464/// side-effecting instructions.  In practice, this looks through token
5465/// factors and non-volatile loads.  In order to remain efficient, this only
5466/// looks a couple of nodes in, it does not do an exhaustive search.
5467bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5468                                               unsigned Depth) const {
5469  if (*this == Dest) return true;
5470
5471  // Don't search too deeply, we just want to be able to see through
5472  // TokenFactor's etc.
5473  if (Depth == 0) return false;
5474
5475  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5476  // of the operands of the TF reach dest, then we can do the xform.
5477  if (getOpcode() == ISD::TokenFactor) {
5478    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5479      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5480        return true;
5481    return false;
5482  }
5483
5484  // Loads don't have side effects, look through them.
5485  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5486    if (!Ld->isVolatile())
5487      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5488  }
5489  return false;
5490}
5491
5492/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5493/// is either an operand of N or it can be reached by traversing up the operands.
5494/// NOTE: this is an expensive method. Use it carefully.
5495bool SDNode::isPredecessorOf(SDNode *N) const {
5496  SmallPtrSet<SDNode *, 32> Visited;
5497  SmallVector<SDNode *, 16> Worklist;
5498  Worklist.push_back(N);
5499
5500  do {
5501    N = Worklist.pop_back_val();
5502    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5503      SDNode *Op = N->getOperand(i).getNode();
5504      if (Op == this)
5505        return true;
5506      if (Visited.insert(Op))
5507        Worklist.push_back(Op);
5508    }
5509  } while (!Worklist.empty());
5510
5511  return false;
5512}
5513
5514uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5515  assert(Num < NumOperands && "Invalid child # of SDNode!");
5516  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5517}
5518
5519std::string SDNode::getOperationName(const SelectionDAG *G) const {
5520  switch (getOpcode()) {
5521  default:
5522    if (getOpcode() < ISD::BUILTIN_OP_END)
5523      return "<<Unknown DAG Node>>";
5524    if (isMachineOpcode()) {
5525      if (G)
5526        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5527          if (getMachineOpcode() < TII->getNumOpcodes())
5528            return TII->get(getMachineOpcode()).getName();
5529      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5530    }
5531    if (G) {
5532      const TargetLowering &TLI = G->getTargetLoweringInfo();
5533      const char *Name = TLI.getTargetNodeName(getOpcode());
5534      if (Name) return Name;
5535      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5536    }
5537    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5538
5539#ifndef NDEBUG
5540  case ISD::DELETED_NODE:
5541    return "<<Deleted Node!>>";
5542#endif
5543  case ISD::PREFETCH:      return "Prefetch";
5544  case ISD::MEMBARRIER:    return "MemBarrier";
5545  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5546  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5547  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5548  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5549  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5550  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5551  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5552  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5553  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5554  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5555  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5556  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5557  case ISD::PCMARKER:      return "PCMarker";
5558  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5559  case ISD::SRCVALUE:      return "SrcValue";
5560  case ISD::EntryToken:    return "EntryToken";
5561  case ISD::TokenFactor:   return "TokenFactor";
5562  case ISD::AssertSext:    return "AssertSext";
5563  case ISD::AssertZext:    return "AssertZext";
5564
5565  case ISD::BasicBlock:    return "BasicBlock";
5566  case ISD::VALUETYPE:     return "ValueType";
5567  case ISD::Register:      return "Register";
5568
5569  case ISD::Constant:      return "Constant";
5570  case ISD::ConstantFP:    return "ConstantFP";
5571  case ISD::GlobalAddress: return "GlobalAddress";
5572  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5573  case ISD::FrameIndex:    return "FrameIndex";
5574  case ISD::JumpTable:     return "JumpTable";
5575  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5576  case ISD::RETURNADDR: return "RETURNADDR";
5577  case ISD::FRAMEADDR: return "FRAMEADDR";
5578  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5579  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5580  case ISD::LSDAADDR: return "LSDAADDR";
5581  case ISD::EHSELECTION: return "EHSELECTION";
5582  case ISD::EH_RETURN: return "EH_RETURN";
5583  case ISD::ConstantPool:  return "ConstantPool";
5584  case ISD::ExternalSymbol: return "ExternalSymbol";
5585  case ISD::BlockAddress:  return "BlockAddress";
5586  case ISD::INTRINSIC_WO_CHAIN:
5587  case ISD::INTRINSIC_VOID:
5588  case ISD::INTRINSIC_W_CHAIN: {
5589    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5590    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5591    if (IID < Intrinsic::num_intrinsics)
5592      return Intrinsic::getName((Intrinsic::ID)IID);
5593    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5594      return TII->getName(IID);
5595    llvm_unreachable("Invalid intrinsic ID");
5596  }
5597
5598  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5599  case ISD::TargetConstant: return "TargetConstant";
5600  case ISD::TargetConstantFP:return "TargetConstantFP";
5601  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5602  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5603  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5604  case ISD::TargetJumpTable:  return "TargetJumpTable";
5605  case ISD::TargetConstantPool:  return "TargetConstantPool";
5606  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5607  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5608
5609  case ISD::CopyToReg:     return "CopyToReg";
5610  case ISD::CopyFromReg:   return "CopyFromReg";
5611  case ISD::UNDEF:         return "undef";
5612  case ISD::MERGE_VALUES:  return "merge_values";
5613  case ISD::INLINEASM:     return "inlineasm";
5614  case ISD::EH_LABEL:      return "eh_label";
5615  case ISD::HANDLENODE:    return "handlenode";
5616
5617  // Unary operators
5618  case ISD::FABS:   return "fabs";
5619  case ISD::FNEG:   return "fneg";
5620  case ISD::FSQRT:  return "fsqrt";
5621  case ISD::FSIN:   return "fsin";
5622  case ISD::FCOS:   return "fcos";
5623  case ISD::FPOWI:  return "fpowi";
5624  case ISD::FPOW:   return "fpow";
5625  case ISD::FTRUNC: return "ftrunc";
5626  case ISD::FFLOOR: return "ffloor";
5627  case ISD::FCEIL:  return "fceil";
5628  case ISD::FRINT:  return "frint";
5629  case ISD::FNEARBYINT: return "fnearbyint";
5630
5631  // Binary operators
5632  case ISD::ADD:    return "add";
5633  case ISD::SUB:    return "sub";
5634  case ISD::MUL:    return "mul";
5635  case ISD::MULHU:  return "mulhu";
5636  case ISD::MULHS:  return "mulhs";
5637  case ISD::SDIV:   return "sdiv";
5638  case ISD::UDIV:   return "udiv";
5639  case ISD::SREM:   return "srem";
5640  case ISD::UREM:   return "urem";
5641  case ISD::SMUL_LOHI:  return "smul_lohi";
5642  case ISD::UMUL_LOHI:  return "umul_lohi";
5643  case ISD::SDIVREM:    return "sdivrem";
5644  case ISD::UDIVREM:    return "udivrem";
5645  case ISD::AND:    return "and";
5646  case ISD::OR:     return "or";
5647  case ISD::XOR:    return "xor";
5648  case ISD::SHL:    return "shl";
5649  case ISD::SRA:    return "sra";
5650  case ISD::SRL:    return "srl";
5651  case ISD::ROTL:   return "rotl";
5652  case ISD::ROTR:   return "rotr";
5653  case ISD::FADD:   return "fadd";
5654  case ISD::FSUB:   return "fsub";
5655  case ISD::FMUL:   return "fmul";
5656  case ISD::FDIV:   return "fdiv";
5657  case ISD::FREM:   return "frem";
5658  case ISD::FCOPYSIGN: return "fcopysign";
5659  case ISD::FGETSIGN:  return "fgetsign";
5660
5661  case ISD::SETCC:       return "setcc";
5662  case ISD::VSETCC:      return "vsetcc";
5663  case ISD::SELECT:      return "select";
5664  case ISD::SELECT_CC:   return "select_cc";
5665  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5666  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5667  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5668  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5669  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5670  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5671  case ISD::CARRY_FALSE:         return "carry_false";
5672  case ISD::ADDC:        return "addc";
5673  case ISD::ADDE:        return "adde";
5674  case ISD::SADDO:       return "saddo";
5675  case ISD::UADDO:       return "uaddo";
5676  case ISD::SSUBO:       return "ssubo";
5677  case ISD::USUBO:       return "usubo";
5678  case ISD::SMULO:       return "smulo";
5679  case ISD::UMULO:       return "umulo";
5680  case ISD::SUBC:        return "subc";
5681  case ISD::SUBE:        return "sube";
5682  case ISD::SHL_PARTS:   return "shl_parts";
5683  case ISD::SRA_PARTS:   return "sra_parts";
5684  case ISD::SRL_PARTS:   return "srl_parts";
5685
5686  // Conversion operators.
5687  case ISD::SIGN_EXTEND: return "sign_extend";
5688  case ISD::ZERO_EXTEND: return "zero_extend";
5689  case ISD::ANY_EXTEND:  return "any_extend";
5690  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5691  case ISD::TRUNCATE:    return "truncate";
5692  case ISD::FP_ROUND:    return "fp_round";
5693  case ISD::FLT_ROUNDS_: return "flt_rounds";
5694  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5695  case ISD::FP_EXTEND:   return "fp_extend";
5696
5697  case ISD::SINT_TO_FP:  return "sint_to_fp";
5698  case ISD::UINT_TO_FP:  return "uint_to_fp";
5699  case ISD::FP_TO_SINT:  return "fp_to_sint";
5700  case ISD::FP_TO_UINT:  return "fp_to_uint";
5701  case ISD::BIT_CONVERT: return "bit_convert";
5702  case ISD::FP16_TO_FP32: return "fp16_to_fp32";
5703  case ISD::FP32_TO_FP16: return "fp32_to_fp16";
5704
5705  case ISD::CONVERT_RNDSAT: {
5706    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5707    default: llvm_unreachable("Unknown cvt code!");
5708    case ISD::CVT_FF:  return "cvt_ff";
5709    case ISD::CVT_FS:  return "cvt_fs";
5710    case ISD::CVT_FU:  return "cvt_fu";
5711    case ISD::CVT_SF:  return "cvt_sf";
5712    case ISD::CVT_UF:  return "cvt_uf";
5713    case ISD::CVT_SS:  return "cvt_ss";
5714    case ISD::CVT_SU:  return "cvt_su";
5715    case ISD::CVT_US:  return "cvt_us";
5716    case ISD::CVT_UU:  return "cvt_uu";
5717    }
5718  }
5719
5720    // Control flow instructions
5721  case ISD::BR:      return "br";
5722  case ISD::BRIND:   return "brind";
5723  case ISD::BR_JT:   return "br_jt";
5724  case ISD::BRCOND:  return "brcond";
5725  case ISD::BR_CC:   return "br_cc";
5726  case ISD::CALLSEQ_START:  return "callseq_start";
5727  case ISD::CALLSEQ_END:    return "callseq_end";
5728
5729    // Other operators
5730  case ISD::LOAD:               return "load";
5731  case ISD::STORE:              return "store";
5732  case ISD::VAARG:              return "vaarg";
5733  case ISD::VACOPY:             return "vacopy";
5734  case ISD::VAEND:              return "vaend";
5735  case ISD::VASTART:            return "vastart";
5736  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5737  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5738  case ISD::BUILD_PAIR:         return "build_pair";
5739  case ISD::STACKSAVE:          return "stacksave";
5740  case ISD::STACKRESTORE:       return "stackrestore";
5741  case ISD::TRAP:               return "trap";
5742
5743  // Bit manipulation
5744  case ISD::BSWAP:   return "bswap";
5745  case ISD::CTPOP:   return "ctpop";
5746  case ISD::CTTZ:    return "cttz";
5747  case ISD::CTLZ:    return "ctlz";
5748
5749  // Trampolines
5750  case ISD::TRAMPOLINE: return "trampoline";
5751
5752  case ISD::CONDCODE:
5753    switch (cast<CondCodeSDNode>(this)->get()) {
5754    default: llvm_unreachable("Unknown setcc condition!");
5755    case ISD::SETOEQ:  return "setoeq";
5756    case ISD::SETOGT:  return "setogt";
5757    case ISD::SETOGE:  return "setoge";
5758    case ISD::SETOLT:  return "setolt";
5759    case ISD::SETOLE:  return "setole";
5760    case ISD::SETONE:  return "setone";
5761
5762    case ISD::SETO:    return "seto";
5763    case ISD::SETUO:   return "setuo";
5764    case ISD::SETUEQ:  return "setue";
5765    case ISD::SETUGT:  return "setugt";
5766    case ISD::SETUGE:  return "setuge";
5767    case ISD::SETULT:  return "setult";
5768    case ISD::SETULE:  return "setule";
5769    case ISD::SETUNE:  return "setune";
5770
5771    case ISD::SETEQ:   return "seteq";
5772    case ISD::SETGT:   return "setgt";
5773    case ISD::SETGE:   return "setge";
5774    case ISD::SETLT:   return "setlt";
5775    case ISD::SETLE:   return "setle";
5776    case ISD::SETNE:   return "setne";
5777    }
5778  }
5779}
5780
5781const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5782  switch (AM) {
5783  default:
5784    return "";
5785  case ISD::PRE_INC:
5786    return "<pre-inc>";
5787  case ISD::PRE_DEC:
5788    return "<pre-dec>";
5789  case ISD::POST_INC:
5790    return "<post-inc>";
5791  case ISD::POST_DEC:
5792    return "<post-dec>";
5793  }
5794}
5795
5796std::string ISD::ArgFlagsTy::getArgFlagsString() {
5797  std::string S = "< ";
5798
5799  if (isZExt())
5800    S += "zext ";
5801  if (isSExt())
5802    S += "sext ";
5803  if (isInReg())
5804    S += "inreg ";
5805  if (isSRet())
5806    S += "sret ";
5807  if (isByVal())
5808    S += "byval ";
5809  if (isNest())
5810    S += "nest ";
5811  if (getByValAlign())
5812    S += "byval-align:" + utostr(getByValAlign()) + " ";
5813  if (getOrigAlign())
5814    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5815  if (getByValSize())
5816    S += "byval-size:" + utostr(getByValSize()) + " ";
5817  return S + ">";
5818}
5819
5820void SDNode::dump() const { dump(0); }
5821void SDNode::dump(const SelectionDAG *G) const {
5822  print(dbgs(), G);
5823}
5824
5825void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5826  OS << (void*)this << ": ";
5827
5828  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5829    if (i) OS << ",";
5830    if (getValueType(i) == MVT::Other)
5831      OS << "ch";
5832    else
5833      OS << getValueType(i).getEVTString();
5834  }
5835  OS << " = " << getOperationName(G);
5836}
5837
5838void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5839  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5840    if (!MN->memoperands_empty()) {
5841      OS << "<";
5842      OS << "Mem:";
5843      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5844           e = MN->memoperands_end(); i != e; ++i) {
5845        OS << **i;
5846        if (next(i) != e)
5847          OS << " ";
5848      }
5849      OS << ">";
5850    }
5851  } else if (const ShuffleVectorSDNode *SVN =
5852               dyn_cast<ShuffleVectorSDNode>(this)) {
5853    OS << "<";
5854    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5855      int Idx = SVN->getMaskElt(i);
5856      if (i) OS << ",";
5857      if (Idx < 0)
5858        OS << "u";
5859      else
5860        OS << Idx;
5861    }
5862    OS << ">";
5863  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5864    OS << '<' << CSDN->getAPIntValue() << '>';
5865  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5866    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5867      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5868    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5869      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5870    else {
5871      OS << "<APFloat(";
5872      CSDN->getValueAPF().bitcastToAPInt().dump();
5873      OS << ")>";
5874    }
5875  } else if (const GlobalAddressSDNode *GADN =
5876             dyn_cast<GlobalAddressSDNode>(this)) {
5877    int64_t offset = GADN->getOffset();
5878    OS << '<';
5879    WriteAsOperand(OS, GADN->getGlobal());
5880    OS << '>';
5881    if (offset > 0)
5882      OS << " + " << offset;
5883    else
5884      OS << " " << offset;
5885    if (unsigned int TF = GADN->getTargetFlags())
5886      OS << " [TF=" << TF << ']';
5887  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5888    OS << "<" << FIDN->getIndex() << ">";
5889  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5890    OS << "<" << JTDN->getIndex() << ">";
5891    if (unsigned int TF = JTDN->getTargetFlags())
5892      OS << " [TF=" << TF << ']';
5893  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5894    int offset = CP->getOffset();
5895    if (CP->isMachineConstantPoolEntry())
5896      OS << "<" << *CP->getMachineCPVal() << ">";
5897    else
5898      OS << "<" << *CP->getConstVal() << ">";
5899    if (offset > 0)
5900      OS << " + " << offset;
5901    else
5902      OS << " " << offset;
5903    if (unsigned int TF = CP->getTargetFlags())
5904      OS << " [TF=" << TF << ']';
5905  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5906    OS << "<";
5907    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5908    if (LBB)
5909      OS << LBB->getName() << " ";
5910    OS << (const void*)BBDN->getBasicBlock() << ">";
5911  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5912    if (G && R->getReg() &&
5913        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5914      OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5915    } else {
5916      OS << " %reg" << R->getReg();
5917    }
5918  } else if (const ExternalSymbolSDNode *ES =
5919             dyn_cast<ExternalSymbolSDNode>(this)) {
5920    OS << "'" << ES->getSymbol() << "'";
5921    if (unsigned int TF = ES->getTargetFlags())
5922      OS << " [TF=" << TF << ']';
5923  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5924    if (M->getValue())
5925      OS << "<" << M->getValue() << ">";
5926    else
5927      OS << "<null>";
5928  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5929    OS << ":" << N->getVT().getEVTString();
5930  }
5931  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5932    OS << "<" << *LD->getMemOperand();
5933
5934    bool doExt = true;
5935    switch (LD->getExtensionType()) {
5936    default: doExt = false; break;
5937    case ISD::EXTLOAD: OS << ", anyext"; break;
5938    case ISD::SEXTLOAD: OS << ", sext"; break;
5939    case ISD::ZEXTLOAD: OS << ", zext"; break;
5940    }
5941    if (doExt)
5942      OS << " from " << LD->getMemoryVT().getEVTString();
5943
5944    const char *AM = getIndexedModeName(LD->getAddressingMode());
5945    if (*AM)
5946      OS << ", " << AM;
5947
5948    OS << ">";
5949  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5950    OS << "<" << *ST->getMemOperand();
5951
5952    if (ST->isTruncatingStore())
5953      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
5954
5955    const char *AM = getIndexedModeName(ST->getAddressingMode());
5956    if (*AM)
5957      OS << ", " << AM;
5958
5959    OS << ">";
5960  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
5961    OS << "<" << *M->getMemOperand() << ">";
5962  } else if (const BlockAddressSDNode *BA =
5963               dyn_cast<BlockAddressSDNode>(this)) {
5964    OS << "<";
5965    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
5966    OS << ", ";
5967    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
5968    OS << ">";
5969    if (unsigned int TF = BA->getTargetFlags())
5970      OS << " [TF=" << TF << ']';
5971  }
5972
5973  if (G)
5974    if (unsigned Order = G->GetOrdering(this))
5975      OS << " [ORD=" << Order << ']';
5976
5977  if (getNodeId() != -1)
5978    OS << " [ID=" << getNodeId() << ']';
5979}
5980
5981void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5982  print_types(OS, G);
5983  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5984    if (i) OS << ", "; else OS << " ";
5985    OS << (void*)getOperand(i).getNode();
5986    if (unsigned RN = getOperand(i).getResNo())
5987      OS << ":" << RN;
5988  }
5989  print_details(OS, G);
5990}
5991
5992static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
5993                                  const SelectionDAG *G, unsigned depth,
5994                                  unsigned indent)
5995{
5996  if (depth == 0)
5997    return;
5998
5999  OS.indent(indent);
6000
6001  N->print(OS, G);
6002
6003  if (depth < 1)
6004    return;
6005
6006  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6007    OS << '\n';
6008    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
6009  }
6010}
6011
6012void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
6013                            unsigned depth) const {
6014  printrWithDepthHelper(OS, this, G, depth, 0);
6015}
6016
6017void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6018  // Don't print impossibly deep things.
6019  printrWithDepth(OS, G, 100);
6020}
6021
6022void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6023  printrWithDepth(dbgs(), G, depth);
6024}
6025
6026void SDNode::dumprFull(const SelectionDAG *G) const {
6027  // Don't print impossibly deep things.
6028  dumprWithDepth(G, 100);
6029}
6030
6031static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6032  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6033    if (N->getOperand(i).getNode()->hasOneUse())
6034      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6035    else
6036      dbgs() << "\n" << std::string(indent+2, ' ')
6037           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6038
6039
6040  dbgs() << "\n";
6041  dbgs().indent(indent);
6042  N->dump(G);
6043}
6044
6045SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6046  assert(N->getNumValues() == 1 &&
6047         "Can't unroll a vector with multiple results!");
6048
6049  EVT VT = N->getValueType(0);
6050  unsigned NE = VT.getVectorNumElements();
6051  EVT EltVT = VT.getVectorElementType();
6052  DebugLoc dl = N->getDebugLoc();
6053
6054  SmallVector<SDValue, 8> Scalars;
6055  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6056
6057  // If ResNE is 0, fully unroll the vector op.
6058  if (ResNE == 0)
6059    ResNE = NE;
6060  else if (NE > ResNE)
6061    NE = ResNE;
6062
6063  unsigned i;
6064  for (i= 0; i != NE; ++i) {
6065    for (unsigned j = 0; j != N->getNumOperands(); ++j) {
6066      SDValue Operand = N->getOperand(j);
6067      EVT OperandVT = Operand.getValueType();
6068      if (OperandVT.isVector()) {
6069        // A vector operand; extract a single element.
6070        EVT OperandEltVT = OperandVT.getVectorElementType();
6071        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6072                              OperandEltVT,
6073                              Operand,
6074                              getConstant(i, MVT::i32));
6075      } else {
6076        // A scalar operand; just use it as is.
6077        Operands[j] = Operand;
6078      }
6079    }
6080
6081    switch (N->getOpcode()) {
6082    default:
6083      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6084                                &Operands[0], Operands.size()));
6085      break;
6086    case ISD::SHL:
6087    case ISD::SRA:
6088    case ISD::SRL:
6089    case ISD::ROTL:
6090    case ISD::ROTR:
6091      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6092                                getShiftAmountOperand(Operands[1])));
6093      break;
6094    case ISD::SIGN_EXTEND_INREG:
6095    case ISD::FP_ROUND_INREG: {
6096      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6097      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6098                                Operands[0],
6099                                getValueType(ExtVT)));
6100    }
6101    }
6102  }
6103
6104  for (; i < ResNE; ++i)
6105    Scalars.push_back(getUNDEF(EltVT));
6106
6107  return getNode(ISD::BUILD_VECTOR, dl,
6108                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6109                 &Scalars[0], Scalars.size());
6110}
6111
6112
6113/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6114/// location that is 'Dist' units away from the location that the 'Base' load
6115/// is loading from.
6116bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6117                                     unsigned Bytes, int Dist) const {
6118  if (LD->getChain() != Base->getChain())
6119    return false;
6120  EVT VT = LD->getValueType(0);
6121  if (VT.getSizeInBits() / 8 != Bytes)
6122    return false;
6123
6124  SDValue Loc = LD->getOperand(1);
6125  SDValue BaseLoc = Base->getOperand(1);
6126  if (Loc.getOpcode() == ISD::FrameIndex) {
6127    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6128      return false;
6129    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6130    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6131    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6132    int FS  = MFI->getObjectSize(FI);
6133    int BFS = MFI->getObjectSize(BFI);
6134    if (FS != BFS || FS != (int)Bytes) return false;
6135    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6136  }
6137  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
6138    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
6139    if (V && (V->getSExtValue() == Dist*Bytes))
6140      return true;
6141  }
6142
6143  GlobalValue *GV1 = NULL;
6144  GlobalValue *GV2 = NULL;
6145  int64_t Offset1 = 0;
6146  int64_t Offset2 = 0;
6147  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6148  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6149  if (isGA1 && isGA2 && GV1 == GV2)
6150    return Offset1 == (Offset2 + Dist*Bytes);
6151  return false;
6152}
6153
6154
6155/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6156/// it cannot be inferred.
6157unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6158  // If this is a GlobalAddress + cst, return the alignment.
6159  GlobalValue *GV;
6160  int64_t GVOffset = 0;
6161  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6162    // If GV has specified alignment, then use it. Otherwise, use the preferred
6163    // alignment.
6164    unsigned Align = GV->getAlignment();
6165    if (!Align) {
6166      if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6167        if (GVar->hasInitializer()) {
6168          const TargetData *TD = TLI.getTargetData();
6169          Align = TD->getPreferredAlignment(GVar);
6170        }
6171      }
6172    }
6173    return MinAlign(Align, GVOffset);
6174  }
6175
6176  // If this is a direct reference to a stack slot, use information about the
6177  // stack slot's alignment.
6178  int FrameIdx = 1 << 31;
6179  int64_t FrameOffset = 0;
6180  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6181    FrameIdx = FI->getIndex();
6182  } else if (Ptr.getOpcode() == ISD::ADD &&
6183             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6184             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6185    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6186    FrameOffset = Ptr.getConstantOperandVal(1);
6187  }
6188
6189  if (FrameIdx != (1 << 31)) {
6190    // FIXME: Handle FI+CST.
6191    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6192    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6193                                    FrameOffset);
6194    if (MFI.isFixedObjectIndex(FrameIdx)) {
6195      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx) + FrameOffset;
6196
6197      // The alignment of the frame index can be determined from its offset from
6198      // the incoming frame position.  If the frame object is at offset 32 and
6199      // the stack is guaranteed to be 16-byte aligned, then we know that the
6200      // object is 16-byte aligned.
6201      unsigned StackAlign = getTarget().getFrameInfo()->getStackAlignment();
6202      unsigned Align = MinAlign(ObjectOffset, StackAlign);
6203
6204      // Finally, the frame object itself may have a known alignment.  Factor
6205      // the alignment + offset into a new alignment.  For example, if we know
6206      // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
6207      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
6208      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
6209      return std::max(Align, FIInfoAlign);
6210    }
6211    return FIInfoAlign;
6212  }
6213
6214  return 0;
6215}
6216
6217void SelectionDAG::dump() const {
6218  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6219
6220  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6221       I != E; ++I) {
6222    const SDNode *N = I;
6223    if (!N->hasOneUse() && N != getRoot().getNode())
6224      DumpNodes(N, 2, this);
6225  }
6226
6227  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6228
6229  dbgs() << "\n\n";
6230}
6231
6232void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6233  print_types(OS, G);
6234  print_details(OS, G);
6235}
6236
6237typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6238static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6239                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6240  if (!once.insert(N))          // If we've been here before, return now.
6241    return;
6242
6243  // Dump the current SDNode, but don't end the line yet.
6244  OS << std::string(indent, ' ');
6245  N->printr(OS, G);
6246
6247  // Having printed this SDNode, walk the children:
6248  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6249    const SDNode *child = N->getOperand(i).getNode();
6250
6251    if (i) OS << ",";
6252    OS << " ";
6253
6254    if (child->getNumOperands() == 0) {
6255      // This child has no grandchildren; print it inline right here.
6256      child->printr(OS, G);
6257      once.insert(child);
6258    } else {         // Just the address. FIXME: also print the child's opcode.
6259      OS << (void*)child;
6260      if (unsigned RN = N->getOperand(i).getResNo())
6261        OS << ":" << RN;
6262    }
6263  }
6264
6265  OS << "\n";
6266
6267  // Dump children that have grandchildren on their own line(s).
6268  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6269    const SDNode *child = N->getOperand(i).getNode();
6270    DumpNodesr(OS, child, indent+2, G, once);
6271  }
6272}
6273
6274void SDNode::dumpr() const {
6275  VisitedSDNodeSet once;
6276  DumpNodesr(dbgs(), this, 0, 0, once);
6277}
6278
6279void SDNode::dumpr(const SelectionDAG *G) const {
6280  VisitedSDNodeSet once;
6281  DumpNodesr(dbgs(), this, 0, G, once);
6282}
6283
6284
6285// getAddressSpace - Return the address space this GlobalAddress belongs to.
6286unsigned GlobalAddressSDNode::getAddressSpace() const {
6287  return getGlobal()->getType()->getAddressSpace();
6288}
6289
6290
6291const Type *ConstantPoolSDNode::getType() const {
6292  if (isMachineConstantPoolEntry())
6293    return Val.MachineCPVal->getType();
6294  return Val.ConstVal->getType();
6295}
6296
6297bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6298                                        APInt &SplatUndef,
6299                                        unsigned &SplatBitSize,
6300                                        bool &HasAnyUndefs,
6301                                        unsigned MinSplatBits,
6302                                        bool isBigEndian) {
6303  EVT VT = getValueType(0);
6304  assert(VT.isVector() && "Expected a vector type");
6305  unsigned sz = VT.getSizeInBits();
6306  if (MinSplatBits > sz)
6307    return false;
6308
6309  SplatValue = APInt(sz, 0);
6310  SplatUndef = APInt(sz, 0);
6311
6312  // Get the bits.  Bits with undefined values (when the corresponding element
6313  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6314  // in SplatValue.  If any of the values are not constant, give up and return
6315  // false.
6316  unsigned int nOps = getNumOperands();
6317  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6318  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6319
6320  for (unsigned j = 0; j < nOps; ++j) {
6321    unsigned i = isBigEndian ? nOps-1-j : j;
6322    SDValue OpVal = getOperand(i);
6323    unsigned BitPos = j * EltBitSize;
6324
6325    if (OpVal.getOpcode() == ISD::UNDEF)
6326      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6327    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6328      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
6329                     zextOrTrunc(sz) << BitPos);
6330    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6331      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6332     else
6333      return false;
6334  }
6335
6336  // The build_vector is all constants or undefs.  Find the smallest element
6337  // size that splats the vector.
6338
6339  HasAnyUndefs = (SplatUndef != 0);
6340  while (sz > 8) {
6341
6342    unsigned HalfSize = sz / 2;
6343    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
6344    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
6345    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
6346    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
6347
6348    // If the two halves do not match (ignoring undef bits), stop here.
6349    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6350        MinSplatBits > HalfSize)
6351      break;
6352
6353    SplatValue = HighValue | LowValue;
6354    SplatUndef = HighUndef & LowUndef;
6355
6356    sz = HalfSize;
6357  }
6358
6359  SplatBitSize = sz;
6360  return true;
6361}
6362
6363bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6364  // Find the first non-undef value in the shuffle mask.
6365  unsigned i, e;
6366  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6367    /* search */;
6368
6369  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6370
6371  // Make sure all remaining elements are either undef or the same as the first
6372  // non-undef value.
6373  for (int Idx = Mask[i]; i != e; ++i)
6374    if (Mask[i] >= 0 && Mask[i] != Idx)
6375      return false;
6376  return true;
6377}
6378
6379#ifdef XDEBUG
6380static void checkForCyclesHelper(const SDNode *N,
6381                                 SmallPtrSet<const SDNode*, 32> &Visited,
6382                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6383  // If this node has already been checked, don't check it again.
6384  if (Checked.count(N))
6385    return;
6386
6387  // If a node has already been visited on this depth-first walk, reject it as
6388  // a cycle.
6389  if (!Visited.insert(N)) {
6390    dbgs() << "Offending node:\n";
6391    N->dumprFull();
6392    errs() << "Detected cycle in SelectionDAG\n";
6393    abort();
6394  }
6395
6396  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6397    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6398
6399  Checked.insert(N);
6400  Visited.erase(N);
6401}
6402#endif
6403
6404void llvm::checkForCycles(const llvm::SDNode *N) {
6405#ifdef XDEBUG
6406  assert(N && "Checking nonexistant SDNode");
6407  SmallPtrSet<const SDNode*, 32> visited;
6408  SmallPtrSet<const SDNode*, 32> checked;
6409  checkForCyclesHelper(N, visited, checked);
6410#endif
6411}
6412
6413void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6414  checkForCycles(DAG->getRoot().getNode());
6415}
6416