SelectionDAG.cpp revision c53361294957b63a9c1e405256c6f0a81db1685c
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetInstrInfo.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/ADT/SetVector.h"
36#include "llvm/ADT/SmallPtrSet.h"
37#include "llvm/ADT/SmallSet.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/StringExtras.h"
40#include <algorithm>
41#include <cmath>
42using namespace llvm;
43
44/// makeVTList - Return an instance of the SDVTList struct initialized with the
45/// specified members.
46static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
47  SDVTList Res = {VTs, NumVTs};
48  return Res;
49}
50
51static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
52  switch (VT.getSimpleVT()) {
53  default: assert(0 && "Unknown FP format");
54  case MVT::f32:     return &APFloat::IEEEsingle;
55  case MVT::f64:     return &APFloat::IEEEdouble;
56  case MVT::f80:     return &APFloat::x87DoubleExtended;
57  case MVT::f128:    return &APFloat::IEEEquad;
58  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
59  }
60}
61
62SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
63
64//===----------------------------------------------------------------------===//
65//                              ConstantFPSDNode Class
66//===----------------------------------------------------------------------===//
67
68/// isExactlyValue - We don't rely on operator== working on double values, as
69/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
70/// As such, this method can be used to do an exact bit-for-bit comparison of
71/// two floating point values.
72bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
73  return getValueAPF().bitwiseIsEqual(V);
74}
75
76bool ConstantFPSDNode::isValueValidForType(MVT VT,
77                                           const APFloat& Val) {
78  assert(VT.isFloatingPoint() && "Can only convert between FP types");
79
80  // PPC long double cannot be converted to any other type.
81  if (VT == MVT::ppcf128 ||
82      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
83    return false;
84
85  // convert modifies in place, so make a copy.
86  APFloat Val2 = APFloat(Val);
87  bool losesInfo;
88  (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
89                      &losesInfo);
90  return !losesInfo;
91}
92
93//===----------------------------------------------------------------------===//
94//                              ISD Namespace
95//===----------------------------------------------------------------------===//
96
97/// isBuildVectorAllOnes - Return true if the specified node is a
98/// BUILD_VECTOR where all of the elements are ~0 or undef.
99bool ISD::isBuildVectorAllOnes(const SDNode *N) {
100  // Look through a bit convert.
101  if (N->getOpcode() == ISD::BIT_CONVERT)
102    N = N->getOperand(0).getNode();
103
104  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
105
106  unsigned i = 0, e = N->getNumOperands();
107
108  // Skip over all of the undef values.
109  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
110    ++i;
111
112  // Do not accept an all-undef vector.
113  if (i == e) return false;
114
115  // Do not accept build_vectors that aren't all constants or which have non-~0
116  // elements.
117  SDValue NotZero = N->getOperand(i);
118  if (isa<ConstantSDNode>(NotZero)) {
119    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
120      return false;
121  } else if (isa<ConstantFPSDNode>(NotZero)) {
122    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
123                bitcastToAPInt().isAllOnesValue())
124      return false;
125  } else
126    return false;
127
128  // Okay, we have at least one ~0 value, check to see if the rest match or are
129  // undefs.
130  for (++i; i != e; ++i)
131    if (N->getOperand(i) != NotZero &&
132        N->getOperand(i).getOpcode() != ISD::UNDEF)
133      return false;
134  return true;
135}
136
137
138/// isBuildVectorAllZeros - Return true if the specified node is a
139/// BUILD_VECTOR where all of the elements are 0 or undef.
140bool ISD::isBuildVectorAllZeros(const SDNode *N) {
141  // Look through a bit convert.
142  if (N->getOpcode() == ISD::BIT_CONVERT)
143    N = N->getOperand(0).getNode();
144
145  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
146
147  unsigned i = 0, e = N->getNumOperands();
148
149  // Skip over all of the undef values.
150  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
151    ++i;
152
153  // Do not accept an all-undef vector.
154  if (i == e) return false;
155
156  // Do not accept build_vectors that aren't all constants or which have non-~0
157  // elements.
158  SDValue Zero = N->getOperand(i);
159  if (isa<ConstantSDNode>(Zero)) {
160    if (!cast<ConstantSDNode>(Zero)->isNullValue())
161      return false;
162  } else if (isa<ConstantFPSDNode>(Zero)) {
163    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
164      return false;
165  } else
166    return false;
167
168  // Okay, we have at least one ~0 value, check to see if the rest match or are
169  // undefs.
170  for (++i; i != e; ++i)
171    if (N->getOperand(i) != Zero &&
172        N->getOperand(i).getOpcode() != ISD::UNDEF)
173      return false;
174  return true;
175}
176
177/// isScalarToVector - Return true if the specified node is a
178/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
179/// element is not an undef.
180bool ISD::isScalarToVector(const SDNode *N) {
181  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
182    return true;
183
184  if (N->getOpcode() != ISD::BUILD_VECTOR)
185    return false;
186  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
187    return false;
188  unsigned NumElems = N->getNumOperands();
189  for (unsigned i = 1; i < NumElems; ++i) {
190    SDValue V = N->getOperand(i);
191    if (V.getOpcode() != ISD::UNDEF)
192      return false;
193  }
194  return true;
195}
196
197
198/// isDebugLabel - Return true if the specified node represents a debug
199/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
200bool ISD::isDebugLabel(const SDNode *N) {
201  SDValue Zero;
202  if (N->getOpcode() == ISD::DBG_LABEL)
203    return true;
204  if (N->isMachineOpcode() &&
205      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
206    return true;
207  return false;
208}
209
210/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
211/// when given the operation for (X op Y).
212ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
213  // To perform this operation, we just need to swap the L and G bits of the
214  // operation.
215  unsigned OldL = (Operation >> 2) & 1;
216  unsigned OldG = (Operation >> 1) & 1;
217  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
218                       (OldL << 1) |       // New G bit
219                       (OldG << 2));       // New L bit.
220}
221
222/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
223/// 'op' is a valid SetCC operation.
224ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
225  unsigned Operation = Op;
226  if (isInteger)
227    Operation ^= 7;   // Flip L, G, E bits, but not U.
228  else
229    Operation ^= 15;  // Flip all of the condition bits.
230
231  if (Operation > ISD::SETTRUE2)
232    Operation &= ~8;  // Don't let N and U bits get set.
233
234  return ISD::CondCode(Operation);
235}
236
237
238/// isSignedOp - For an integer comparison, return 1 if the comparison is a
239/// signed operation and 2 if the result is an unsigned comparison.  Return zero
240/// if the operation does not depend on the sign of the input (setne and seteq).
241static int isSignedOp(ISD::CondCode Opcode) {
242  switch (Opcode) {
243  default: assert(0 && "Illegal integer setcc operation!");
244  case ISD::SETEQ:
245  case ISD::SETNE: return 0;
246  case ISD::SETLT:
247  case ISD::SETLE:
248  case ISD::SETGT:
249  case ISD::SETGE: return 1;
250  case ISD::SETULT:
251  case ISD::SETULE:
252  case ISD::SETUGT:
253  case ISD::SETUGE: return 2;
254  }
255}
256
257/// getSetCCOrOperation - Return the result of a logical OR between different
258/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
259/// returns SETCC_INVALID if it is not possible to represent the resultant
260/// comparison.
261ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
262                                       bool isInteger) {
263  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
264    // Cannot fold a signed integer setcc with an unsigned integer setcc.
265    return ISD::SETCC_INVALID;
266
267  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
268
269  // If the N and U bits get set then the resultant comparison DOES suddenly
270  // care about orderedness, and is true when ordered.
271  if (Op > ISD::SETTRUE2)
272    Op &= ~16;     // Clear the U bit if the N bit is set.
273
274  // Canonicalize illegal integer setcc's.
275  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
276    Op = ISD::SETNE;
277
278  return ISD::CondCode(Op);
279}
280
281/// getSetCCAndOperation - Return the result of a logical AND between different
282/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
283/// function returns zero if it is not possible to represent the resultant
284/// comparison.
285ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
286                                        bool isInteger) {
287  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
288    // Cannot fold a signed setcc with an unsigned setcc.
289    return ISD::SETCC_INVALID;
290
291  // Combine all of the condition bits.
292  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
293
294  // Canonicalize illegal integer setcc's.
295  if (isInteger) {
296    switch (Result) {
297    default: break;
298    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
299    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
300    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
301    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
302    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
303    }
304  }
305
306  return Result;
307}
308
309const TargetMachine &SelectionDAG::getTarget() const {
310  return MF->getTarget();
311}
312
313//===----------------------------------------------------------------------===//
314//                           SDNode Profile Support
315//===----------------------------------------------------------------------===//
316
317/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
318///
319static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
320  ID.AddInteger(OpC);
321}
322
323/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
324/// solely with their pointer.
325static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
326  ID.AddPointer(VTList.VTs);
327}
328
329/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
330///
331static void AddNodeIDOperands(FoldingSetNodeID &ID,
332                              const SDValue *Ops, unsigned NumOps) {
333  for (; NumOps; --NumOps, ++Ops) {
334    ID.AddPointer(Ops->getNode());
335    ID.AddInteger(Ops->getResNo());
336  }
337}
338
339/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
340///
341static void AddNodeIDOperands(FoldingSetNodeID &ID,
342                              const SDUse *Ops, unsigned NumOps) {
343  for (; NumOps; --NumOps, ++Ops) {
344    ID.AddPointer(Ops->getVal());
345    ID.AddInteger(Ops->getSDValue().getResNo());
346  }
347}
348
349static void AddNodeIDNode(FoldingSetNodeID &ID,
350                          unsigned short OpC, SDVTList VTList,
351                          const SDValue *OpList, unsigned N) {
352  AddNodeIDOpcode(ID, OpC);
353  AddNodeIDValueTypes(ID, VTList);
354  AddNodeIDOperands(ID, OpList, N);
355}
356
357/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
358/// the NodeID data.
359static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
360  switch (N->getOpcode()) {
361  default: break;  // Normal nodes don't need extra info.
362  case ISD::ARG_FLAGS:
363    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
364    break;
365  case ISD::TargetConstant:
366  case ISD::Constant:
367    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
368    break;
369  case ISD::TargetConstantFP:
370  case ISD::ConstantFP: {
371    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
372    break;
373  }
374  case ISD::TargetGlobalAddress:
375  case ISD::GlobalAddress:
376  case ISD::TargetGlobalTLSAddress:
377  case ISD::GlobalTLSAddress: {
378    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
379    ID.AddPointer(GA->getGlobal());
380    ID.AddInteger(GA->getOffset());
381    break;
382  }
383  case ISD::BasicBlock:
384    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
385    break;
386  case ISD::Register:
387    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
388    break;
389  case ISD::DBG_STOPPOINT: {
390    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
391    ID.AddInteger(DSP->getLine());
392    ID.AddInteger(DSP->getColumn());
393    ID.AddPointer(DSP->getCompileUnit());
394    break;
395  }
396  case ISD::SRCVALUE:
397    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
398    break;
399  case ISD::MEMOPERAND: {
400    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
401    MO.Profile(ID);
402    break;
403  }
404  case ISD::FrameIndex:
405  case ISD::TargetFrameIndex:
406    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
407    break;
408  case ISD::JumpTable:
409  case ISD::TargetJumpTable:
410    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
411    break;
412  case ISD::ConstantPool:
413  case ISD::TargetConstantPool: {
414    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
415    ID.AddInteger(CP->getAlignment());
416    ID.AddInteger(CP->getOffset());
417    if (CP->isMachineConstantPoolEntry())
418      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
419    else
420      ID.AddPointer(CP->getConstVal());
421    break;
422  }
423  case ISD::CALL: {
424    const CallSDNode *Call = cast<CallSDNode>(N);
425    ID.AddInteger(Call->getCallingConv());
426    ID.AddInteger(Call->isVarArg());
427    break;
428  }
429  case ISD::LOAD: {
430    const LoadSDNode *LD = cast<LoadSDNode>(N);
431    ID.AddInteger(LD->getAddressingMode());
432    ID.AddInteger(LD->getExtensionType());
433    ID.AddInteger(LD->getMemoryVT().getRawBits());
434    ID.AddInteger(LD->getRawFlags());
435    break;
436  }
437  case ISD::STORE: {
438    const StoreSDNode *ST = cast<StoreSDNode>(N);
439    ID.AddInteger(ST->getAddressingMode());
440    ID.AddInteger(ST->isTruncatingStore());
441    ID.AddInteger(ST->getMemoryVT().getRawBits());
442    ID.AddInteger(ST->getRawFlags());
443    break;
444  }
445  case ISD::ATOMIC_CMP_SWAP:
446  case ISD::ATOMIC_SWAP:
447  case ISD::ATOMIC_LOAD_ADD:
448  case ISD::ATOMIC_LOAD_SUB:
449  case ISD::ATOMIC_LOAD_AND:
450  case ISD::ATOMIC_LOAD_OR:
451  case ISD::ATOMIC_LOAD_XOR:
452  case ISD::ATOMIC_LOAD_NAND:
453  case ISD::ATOMIC_LOAD_MIN:
454  case ISD::ATOMIC_LOAD_MAX:
455  case ISD::ATOMIC_LOAD_UMIN:
456  case ISD::ATOMIC_LOAD_UMAX: {
457    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
458    ID.AddInteger(AT->getRawFlags());
459    break;
460  }
461  } // end switch (N->getOpcode())
462}
463
464/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
465/// data.
466static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
467  AddNodeIDOpcode(ID, N->getOpcode());
468  // Add the return value info.
469  AddNodeIDValueTypes(ID, N->getVTList());
470  // Add the operand info.
471  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
472
473  // Handle SDNode leafs with special info.
474  AddNodeIDCustom(ID, N);
475}
476
477/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
478/// the CSE map that carries both alignment and volatility information.
479///
480static inline unsigned
481encodeMemSDNodeFlags(bool isVolatile, unsigned Alignment) {
482  return isVolatile | ((Log2_32(Alignment) + 1) << 1);
483}
484
485//===----------------------------------------------------------------------===//
486//                              SelectionDAG Class
487//===----------------------------------------------------------------------===//
488
489/// doNotCSE - Return true if CSE should not be performed for this node.
490static bool doNotCSE(SDNode *N) {
491  if (N->getValueType(0) == MVT::Flag)
492    return true; // Never CSE anything that produces a flag.
493
494  switch (N->getOpcode()) {
495  default: break;
496  case ISD::HANDLENODE:
497  case ISD::DBG_LABEL:
498  case ISD::DBG_STOPPOINT:
499  case ISD::EH_LABEL:
500  case ISD::DECLARE:
501    return true;   // Never CSE these nodes.
502  }
503
504  // Check that remaining values produced are not flags.
505  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
506    if (N->getValueType(i) == MVT::Flag)
507      return true; // Never CSE anything that produces a flag.
508
509  return false;
510}
511
512/// RemoveDeadNodes - This method deletes all unreachable nodes in the
513/// SelectionDAG.
514void SelectionDAG::RemoveDeadNodes() {
515  // Create a dummy node (which is not added to allnodes), that adds a reference
516  // to the root node, preventing it from being deleted.
517  HandleSDNode Dummy(getRoot());
518
519  SmallVector<SDNode*, 128> DeadNodes;
520
521  // Add all obviously-dead nodes to the DeadNodes worklist.
522  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
523    if (I->use_empty())
524      DeadNodes.push_back(I);
525
526  RemoveDeadNodes(DeadNodes);
527
528  // If the root changed (e.g. it was a dead load, update the root).
529  setRoot(Dummy.getValue());
530}
531
532/// RemoveDeadNodes - This method deletes the unreachable nodes in the
533/// given list, and any nodes that become unreachable as a result.
534void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
535                                   DAGUpdateListener *UpdateListener) {
536
537  // Process the worklist, deleting the nodes and adding their uses to the
538  // worklist.
539  while (!DeadNodes.empty()) {
540    SDNode *N = DeadNodes.back();
541    DeadNodes.pop_back();
542
543    if (UpdateListener)
544      UpdateListener->NodeDeleted(N, 0);
545
546    // Take the node out of the appropriate CSE map.
547    RemoveNodeFromCSEMaps(N);
548
549    // Next, brutally remove the operand list.  This is safe to do, as there are
550    // no cycles in the graph.
551    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
552      SDNode *Operand = I->getVal();
553      Operand->removeUser(std::distance(N->op_begin(), I), N);
554
555      // Now that we removed this operand, see if there are no uses of it left.
556      if (Operand->use_empty())
557        DeadNodes.push_back(Operand);
558    }
559
560    DeallocateNode(N);
561  }
562}
563
564void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
565  SmallVector<SDNode*, 16> DeadNodes(1, N);
566  RemoveDeadNodes(DeadNodes, UpdateListener);
567}
568
569void SelectionDAG::DeleteNode(SDNode *N) {
570  assert(N->use_empty() && "Cannot delete a node that is not dead!");
571
572  // First take this out of the appropriate CSE map.
573  RemoveNodeFromCSEMaps(N);
574
575  // Finally, remove uses due to operands of this node, remove from the
576  // AllNodes list, and delete the node.
577  DeleteNodeNotInCSEMaps(N);
578}
579
580void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
581  assert(N != AllNodes.begin());
582
583  // Drop all of the operands and decrement used node's use counts.
584  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
585    I->getVal()->removeUser(std::distance(N->op_begin(), I), N);
586
587  DeallocateNode(N);
588}
589
590void SelectionDAG::DeallocateNode(SDNode *N) {
591  if (N->OperandsNeedDelete)
592    delete[] N->OperandList;
593
594  // Set the opcode to DELETED_NODE to help catch bugs when node
595  // memory is reallocated.
596  N->NodeType = ISD::DELETED_NODE;
597
598  NodeAllocator.Deallocate(AllNodes.remove(N));
599}
600
601/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
602/// correspond to it.  This is useful when we're about to delete or repurpose
603/// the node.  We don't want future request for structurally identical nodes
604/// to return N anymore.
605bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
606  bool Erased = false;
607  switch (N->getOpcode()) {
608  case ISD::EntryToken:
609    assert(0 && "EntryToken should not be in CSEMaps!");
610    return false;
611  case ISD::HANDLENODE: return false;  // noop.
612  case ISD::CONDCODE:
613    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
614           "Cond code doesn't exist!");
615    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
616    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
617    break;
618  case ISD::ExternalSymbol:
619    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
620    break;
621  case ISD::TargetExternalSymbol:
622    Erased =
623      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
624    break;
625  case ISD::VALUETYPE: {
626    MVT VT = cast<VTSDNode>(N)->getVT();
627    if (VT.isExtended()) {
628      Erased = ExtendedValueTypeNodes.erase(VT);
629    } else {
630      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
631      ValueTypeNodes[VT.getSimpleVT()] = 0;
632    }
633    break;
634  }
635  default:
636    // Remove it from the CSE Map.
637    Erased = CSEMap.RemoveNode(N);
638    break;
639  }
640#ifndef NDEBUG
641  // Verify that the node was actually in one of the CSE maps, unless it has a
642  // flag result (which cannot be CSE'd) or is one of the special cases that are
643  // not subject to CSE.
644  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
645      !N->isMachineOpcode() && !doNotCSE(N)) {
646    N->dump(this);
647    cerr << "\n";
648    assert(0 && "Node is not in map!");
649  }
650#endif
651  return Erased;
652}
653
654/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
655/// has been taken out and modified in some way.  If the specified node already
656/// exists in the CSE maps, do not modify the maps, but return the existing node
657/// instead.  If it doesn't exist, add it and return null.
658///
659SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
660  assert(N->getNumOperands() && "This is a leaf node!");
661
662  if (doNotCSE(N))
663    return 0;
664
665  SDNode *New = CSEMap.GetOrInsertNode(N);
666  if (New != N) return New;  // Node already existed.
667  return 0;
668}
669
670/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
671/// were replaced with those specified.  If this node is never memoized,
672/// return null, otherwise return a pointer to the slot it would take.  If a
673/// node already exists with these operands, the slot will be non-null.
674SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
675                                           void *&InsertPos) {
676  if (doNotCSE(N))
677    return 0;
678
679  SDValue Ops[] = { Op };
680  FoldingSetNodeID ID;
681  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
682  AddNodeIDCustom(ID, N);
683  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
684}
685
686/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
687/// were replaced with those specified.  If this node is never memoized,
688/// return null, otherwise return a pointer to the slot it would take.  If a
689/// node already exists with these operands, the slot will be non-null.
690SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
691                                           SDValue Op1, SDValue Op2,
692                                           void *&InsertPos) {
693  if (doNotCSE(N))
694    return 0;
695
696  SDValue Ops[] = { Op1, Op2 };
697  FoldingSetNodeID ID;
698  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
699  AddNodeIDCustom(ID, N);
700  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
701}
702
703
704/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
705/// were replaced with those specified.  If this node is never memoized,
706/// return null, otherwise return a pointer to the slot it would take.  If a
707/// node already exists with these operands, the slot will be non-null.
708SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
709                                           const SDValue *Ops,unsigned NumOps,
710                                           void *&InsertPos) {
711  if (doNotCSE(N))
712    return 0;
713
714  FoldingSetNodeID ID;
715  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
716  AddNodeIDCustom(ID, N);
717  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
718}
719
720/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
721void SelectionDAG::VerifyNode(SDNode *N) {
722  switch (N->getOpcode()) {
723  default:
724    break;
725  case ISD::BUILD_PAIR: {
726    MVT VT = N->getValueType(0);
727    assert(N->getNumValues() == 1 && "Too many results!");
728    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
729           "Wrong return type!");
730    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
731    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
732           "Mismatched operand types!");
733    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
734           "Wrong operand type!");
735    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
736           "Wrong return type size");
737    break;
738  }
739  case ISD::BUILD_VECTOR: {
740    assert(N->getNumValues() == 1 && "Too many results!");
741    assert(N->getValueType(0).isVector() && "Wrong return type!");
742    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
743           "Wrong number of operands!");
744    // FIXME: Change vector_shuffle to a variadic node with mask elements being
745    // operands of the node.  Currently the mask is a BUILD_VECTOR passed as an
746    // operand, and it is not always possible to legalize it.  Turning off the
747    // following checks at least makes it possible to legalize most of the time.
748//    MVT EltVT = N->getValueType(0).getVectorElementType();
749//    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
750//      assert(I->getSDValue().getValueType() == EltVT &&
751//             "Wrong operand type!");
752    break;
753  }
754  }
755}
756
757/// getMVTAlignment - Compute the default alignment value for the
758/// given type.
759///
760unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
761  const Type *Ty = VT == MVT::iPTR ?
762                   PointerType::get(Type::Int8Ty, 0) :
763                   VT.getTypeForMVT();
764
765  return TLI.getTargetData()->getABITypeAlignment(Ty);
766}
767
768SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
769  : TLI(tli), FLI(fli),
770    EntryNode(ISD::EntryToken, getVTList(MVT::Other)),
771    Root(getEntryNode()) {
772  AllNodes.push_back(&EntryNode);
773}
774
775void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
776                        DwarfWriter *dw) {
777  MF = &mf;
778  MMI = mmi;
779  DW = dw;
780}
781
782SelectionDAG::~SelectionDAG() {
783  allnodes_clear();
784}
785
786void SelectionDAG::allnodes_clear() {
787  assert(&*AllNodes.begin() == &EntryNode);
788  AllNodes.remove(AllNodes.begin());
789  while (!AllNodes.empty())
790    DeallocateNode(AllNodes.begin());
791}
792
793void SelectionDAG::clear() {
794  allnodes_clear();
795  OperandAllocator.Reset();
796  CSEMap.clear();
797
798  ExtendedValueTypeNodes.clear();
799  ExternalSymbols.clear();
800  TargetExternalSymbols.clear();
801  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
802            static_cast<CondCodeSDNode*>(0));
803  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
804            static_cast<SDNode*>(0));
805
806  EntryNode.Uses = 0;
807  AllNodes.push_back(&EntryNode);
808  Root = getEntryNode();
809}
810
811SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, MVT VT) {
812  if (Op.getValueType() == VT) return Op;
813  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
814                                   VT.getSizeInBits());
815  return getNode(ISD::AND, Op.getValueType(), Op,
816                 getConstant(Imm, Op.getValueType()));
817}
818
819SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
820  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
821  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
822}
823
824SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
825  return getConstant(*ConstantInt::get(Val), VT, isT);
826}
827
828SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
829  assert(VT.isInteger() && "Cannot create FP integer constant!");
830
831  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
832  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
833         "APInt size does not match type size!");
834
835  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
836  FoldingSetNodeID ID;
837  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
838  ID.AddPointer(&Val);
839  void *IP = 0;
840  SDNode *N = NULL;
841  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
842    if (!VT.isVector())
843      return SDValue(N, 0);
844  if (!N) {
845    N = NodeAllocator.Allocate<ConstantSDNode>();
846    new (N) ConstantSDNode(isT, &Val, EltVT);
847    CSEMap.InsertNode(N, IP);
848    AllNodes.push_back(N);
849  }
850
851  SDValue Result(N, 0);
852  if (VT.isVector()) {
853    SmallVector<SDValue, 8> Ops;
854    Ops.assign(VT.getVectorNumElements(), Result);
855    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
856  }
857  return Result;
858}
859
860SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
861  return getConstant(Val, TLI.getPointerTy(), isTarget);
862}
863
864
865SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
866  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
867}
868
869SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
870  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
871
872  MVT EltVT =
873    VT.isVector() ? VT.getVectorElementType() : VT;
874
875  // Do the map lookup using the actual bit pattern for the floating point
876  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
877  // we don't have issues with SNANs.
878  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
879  FoldingSetNodeID ID;
880  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
881  ID.AddPointer(&V);
882  void *IP = 0;
883  SDNode *N = NULL;
884  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
885    if (!VT.isVector())
886      return SDValue(N, 0);
887  if (!N) {
888    N = NodeAllocator.Allocate<ConstantFPSDNode>();
889    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
890    CSEMap.InsertNode(N, IP);
891    AllNodes.push_back(N);
892  }
893
894  SDValue Result(N, 0);
895  if (VT.isVector()) {
896    SmallVector<SDValue, 8> Ops;
897    Ops.assign(VT.getVectorNumElements(), Result);
898    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
899  }
900  return Result;
901}
902
903SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
904  MVT EltVT =
905    VT.isVector() ? VT.getVectorElementType() : VT;
906  if (EltVT==MVT::f32)
907    return getConstantFP(APFloat((float)Val), VT, isTarget);
908  else
909    return getConstantFP(APFloat(Val), VT, isTarget);
910}
911
912SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
913                                       MVT VT, int64_t Offset,
914                                       bool isTargetGA) {
915  unsigned Opc;
916
917  // Truncate (with sign-extension) the offset value to the pointer size.
918  unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
919  if (BitWidth < 64)
920    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
921
922  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
923  if (!GVar) {
924    // If GV is an alias then use the aliasee for determining thread-localness.
925    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
926      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
927  }
928
929  if (GVar && GVar->isThreadLocal())
930    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
931  else
932    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
933
934  FoldingSetNodeID ID;
935  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
936  ID.AddPointer(GV);
937  ID.AddInteger(Offset);
938  void *IP = 0;
939  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
940   return SDValue(E, 0);
941  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
942  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
943  CSEMap.InsertNode(N, IP);
944  AllNodes.push_back(N);
945  return SDValue(N, 0);
946}
947
948SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
949  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
950  FoldingSetNodeID ID;
951  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
952  ID.AddInteger(FI);
953  void *IP = 0;
954  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
955    return SDValue(E, 0);
956  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
957  new (N) FrameIndexSDNode(FI, VT, isTarget);
958  CSEMap.InsertNode(N, IP);
959  AllNodes.push_back(N);
960  return SDValue(N, 0);
961}
962
963SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
964  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
965  FoldingSetNodeID ID;
966  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
967  ID.AddInteger(JTI);
968  void *IP = 0;
969  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
970    return SDValue(E, 0);
971  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
972  new (N) JumpTableSDNode(JTI, VT, isTarget);
973  CSEMap.InsertNode(N, IP);
974  AllNodes.push_back(N);
975  return SDValue(N, 0);
976}
977
978SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
979                                      unsigned Alignment, int Offset,
980                                      bool isTarget) {
981  if (Alignment == 0)
982    Alignment =
983      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
984  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
985  FoldingSetNodeID ID;
986  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
987  ID.AddInteger(Alignment);
988  ID.AddInteger(Offset);
989  ID.AddPointer(C);
990  void *IP = 0;
991  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
992    return SDValue(E, 0);
993  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
994  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
995  CSEMap.InsertNode(N, IP);
996  AllNodes.push_back(N);
997  return SDValue(N, 0);
998}
999
1000
1001SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1002                                      unsigned Alignment, int Offset,
1003                                      bool isTarget) {
1004  if (Alignment == 0)
1005    Alignment =
1006      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1007  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1008  FoldingSetNodeID ID;
1009  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1010  ID.AddInteger(Alignment);
1011  ID.AddInteger(Offset);
1012  C->AddSelectionDAGCSEId(ID);
1013  void *IP = 0;
1014  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1015    return SDValue(E, 0);
1016  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1017  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1018  CSEMap.InsertNode(N, IP);
1019  AllNodes.push_back(N);
1020  return SDValue(N, 0);
1021}
1022
1023
1024SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1025  FoldingSetNodeID ID;
1026  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1027  ID.AddPointer(MBB);
1028  void *IP = 0;
1029  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1030    return SDValue(E, 0);
1031  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1032  new (N) BasicBlockSDNode(MBB);
1033  CSEMap.InsertNode(N, IP);
1034  AllNodes.push_back(N);
1035  return SDValue(N, 0);
1036}
1037
1038SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1039  FoldingSetNodeID ID;
1040  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1041  ID.AddInteger(Flags.getRawBits());
1042  void *IP = 0;
1043  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1044    return SDValue(E, 0);
1045  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1046  new (N) ARG_FLAGSSDNode(Flags);
1047  CSEMap.InsertNode(N, IP);
1048  AllNodes.push_back(N);
1049  return SDValue(N, 0);
1050}
1051
1052SDValue SelectionDAG::getValueType(MVT VT) {
1053  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1054    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1055
1056  SDNode *&N = VT.isExtended() ?
1057    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1058
1059  if (N) return SDValue(N, 0);
1060  N = NodeAllocator.Allocate<VTSDNode>();
1061  new (N) VTSDNode(VT);
1062  AllNodes.push_back(N);
1063  return SDValue(N, 0);
1064}
1065
1066SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1067  SDNode *&N = ExternalSymbols[Sym];
1068  if (N) return SDValue(N, 0);
1069  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1070  new (N) ExternalSymbolSDNode(false, Sym, VT);
1071  AllNodes.push_back(N);
1072  return SDValue(N, 0);
1073}
1074
1075SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1076  SDNode *&N = TargetExternalSymbols[Sym];
1077  if (N) return SDValue(N, 0);
1078  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1079  new (N) ExternalSymbolSDNode(true, Sym, VT);
1080  AllNodes.push_back(N);
1081  return SDValue(N, 0);
1082}
1083
1084SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1085  if ((unsigned)Cond >= CondCodeNodes.size())
1086    CondCodeNodes.resize(Cond+1);
1087
1088  if (CondCodeNodes[Cond] == 0) {
1089    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1090    new (N) CondCodeSDNode(Cond);
1091    CondCodeNodes[Cond] = N;
1092    AllNodes.push_back(N);
1093  }
1094  return SDValue(CondCodeNodes[Cond], 0);
1095}
1096
1097SDValue SelectionDAG::getConvertRndSat(MVT VT, SDValue Val, SDValue DTy,
1098                                       SDValue STy, SDValue Rnd, SDValue Sat,
1099                                       ISD::CvtCode Code) {
1100  // If the src and dest types are the same, no conversion is necessary.
1101  if (DTy == STy)
1102    return Val;
1103
1104  FoldingSetNodeID ID;
1105  void* IP = 0;
1106  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1107    return SDValue(E, 0);
1108  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1109  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1110  new (N) CvtRndSatSDNode(VT, Ops, 5, Code);
1111  CSEMap.InsertNode(N, IP);
1112  AllNodes.push_back(N);
1113  return SDValue(N, 0);
1114}
1115
1116SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1117  FoldingSetNodeID ID;
1118  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1119  ID.AddInteger(RegNo);
1120  void *IP = 0;
1121  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1122    return SDValue(E, 0);
1123  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1124  new (N) RegisterSDNode(RegNo, VT);
1125  CSEMap.InsertNode(N, IP);
1126  AllNodes.push_back(N);
1127  return SDValue(N, 0);
1128}
1129
1130SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1131                                      unsigned Line, unsigned Col,
1132                                      Value *CU) {
1133  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1134  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1135  AllNodes.push_back(N);
1136  return SDValue(N, 0);
1137}
1138
1139SDValue SelectionDAG::getLabel(unsigned Opcode,
1140                               SDValue Root,
1141                               unsigned LabelID) {
1142  FoldingSetNodeID ID;
1143  SDValue Ops[] = { Root };
1144  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1145  ID.AddInteger(LabelID);
1146  void *IP = 0;
1147  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1148    return SDValue(E, 0);
1149  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1150  new (N) LabelSDNode(Opcode, Root, LabelID);
1151  CSEMap.InsertNode(N, IP);
1152  AllNodes.push_back(N);
1153  return SDValue(N, 0);
1154}
1155
1156SDValue SelectionDAG::getSrcValue(const Value *V) {
1157  assert((!V || isa<PointerType>(V->getType())) &&
1158         "SrcValue is not a pointer?");
1159
1160  FoldingSetNodeID ID;
1161  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1162  ID.AddPointer(V);
1163
1164  void *IP = 0;
1165  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1166    return SDValue(E, 0);
1167
1168  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1169  new (N) SrcValueSDNode(V);
1170  CSEMap.InsertNode(N, IP);
1171  AllNodes.push_back(N);
1172  return SDValue(N, 0);
1173}
1174
1175SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1176#ifndef NDEBUG
1177  const Value *v = MO.getValue();
1178  assert((!v || isa<PointerType>(v->getType())) &&
1179         "SrcValue is not a pointer?");
1180#endif
1181
1182  FoldingSetNodeID ID;
1183  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1184  MO.Profile(ID);
1185
1186  void *IP = 0;
1187  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1188    return SDValue(E, 0);
1189
1190  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1191  new (N) MemOperandSDNode(MO);
1192  CSEMap.InsertNode(N, IP);
1193  AllNodes.push_back(N);
1194  return SDValue(N, 0);
1195}
1196
1197/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1198/// specified value type.
1199SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1200  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1201  unsigned ByteSize = VT.getStoreSizeInBits()/8;
1202  const Type *Ty = VT.getTypeForMVT();
1203  unsigned StackAlign =
1204  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1205
1206  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1207  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1208}
1209
1210/// CreateStackTemporary - Create a stack temporary suitable for holding
1211/// either of the specified value types.
1212SDValue SelectionDAG::CreateStackTemporary(MVT VT1, MVT VT2) {
1213  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1214                            VT2.getStoreSizeInBits())/8;
1215  const Type *Ty1 = VT1.getTypeForMVT();
1216  const Type *Ty2 = VT2.getTypeForMVT();
1217  const TargetData *TD = TLI.getTargetData();
1218  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1219                            TD->getPrefTypeAlignment(Ty2));
1220
1221  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1222  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align);
1223  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1224}
1225
1226SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1227                                SDValue N2, ISD::CondCode Cond) {
1228  // These setcc operations always fold.
1229  switch (Cond) {
1230  default: break;
1231  case ISD::SETFALSE:
1232  case ISD::SETFALSE2: return getConstant(0, VT);
1233  case ISD::SETTRUE:
1234  case ISD::SETTRUE2:  return getConstant(1, VT);
1235
1236  case ISD::SETOEQ:
1237  case ISD::SETOGT:
1238  case ISD::SETOGE:
1239  case ISD::SETOLT:
1240  case ISD::SETOLE:
1241  case ISD::SETONE:
1242  case ISD::SETO:
1243  case ISD::SETUO:
1244  case ISD::SETUEQ:
1245  case ISD::SETUNE:
1246    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1247    break;
1248  }
1249
1250  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1251    const APInt &C2 = N2C->getAPIntValue();
1252    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1253      const APInt &C1 = N1C->getAPIntValue();
1254
1255      switch (Cond) {
1256      default: assert(0 && "Unknown integer setcc!");
1257      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1258      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1259      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1260      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1261      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1262      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1263      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1264      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1265      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1266      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1267      }
1268    }
1269  }
1270  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1271    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1272      // No compile time operations on this type yet.
1273      if (N1C->getValueType(0) == MVT::ppcf128)
1274        return SDValue();
1275
1276      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1277      switch (Cond) {
1278      default: break;
1279      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1280                          return getNode(ISD::UNDEF, VT);
1281                        // fall through
1282      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1283      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1284                          return getNode(ISD::UNDEF, VT);
1285                        // fall through
1286      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1287                                           R==APFloat::cmpLessThan, VT);
1288      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1289                          return getNode(ISD::UNDEF, VT);
1290                        // fall through
1291      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1292      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1293                          return getNode(ISD::UNDEF, VT);
1294                        // fall through
1295      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1296      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1297                          return getNode(ISD::UNDEF, VT);
1298                        // fall through
1299      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1300                                           R==APFloat::cmpEqual, VT);
1301      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1302                          return getNode(ISD::UNDEF, VT);
1303                        // fall through
1304      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1305                                           R==APFloat::cmpEqual, VT);
1306      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1307      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1308      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1309                                           R==APFloat::cmpEqual, VT);
1310      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1311      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1312                                           R==APFloat::cmpLessThan, VT);
1313      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1314                                           R==APFloat::cmpUnordered, VT);
1315      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1316      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1317      }
1318    } else {
1319      // Ensure that the constant occurs on the RHS.
1320      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1321    }
1322  }
1323
1324  // Could not fold it.
1325  return SDValue();
1326}
1327
1328/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1329/// use this predicate to simplify operations downstream.
1330bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1331  unsigned BitWidth = Op.getValueSizeInBits();
1332  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1333}
1334
1335/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1336/// this predicate to simplify operations downstream.  Mask is known to be zero
1337/// for bits that V cannot have.
1338bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1339                                     unsigned Depth) const {
1340  APInt KnownZero, KnownOne;
1341  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1342  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1343  return (KnownZero & Mask) == Mask;
1344}
1345
1346/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1347/// known to be either zero or one and return them in the KnownZero/KnownOne
1348/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1349/// processing.
1350void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1351                                     APInt &KnownZero, APInt &KnownOne,
1352                                     unsigned Depth) const {
1353  unsigned BitWidth = Mask.getBitWidth();
1354  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1355         "Mask size mismatches value type size!");
1356
1357  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1358  if (Depth == 6 || Mask == 0)
1359    return;  // Limit search depth.
1360
1361  APInt KnownZero2, KnownOne2;
1362
1363  switch (Op.getOpcode()) {
1364  case ISD::Constant:
1365    // We know all of the bits for a constant!
1366    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1367    KnownZero = ~KnownOne & Mask;
1368    return;
1369  case ISD::AND:
1370    // If either the LHS or the RHS are Zero, the result is zero.
1371    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1372    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1373                      KnownZero2, KnownOne2, Depth+1);
1374    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1375    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1376
1377    // Output known-1 bits are only known if set in both the LHS & RHS.
1378    KnownOne &= KnownOne2;
1379    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1380    KnownZero |= KnownZero2;
1381    return;
1382  case ISD::OR:
1383    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1384    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1385                      KnownZero2, KnownOne2, Depth+1);
1386    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1387    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1388
1389    // Output known-0 bits are only known if clear in both the LHS & RHS.
1390    KnownZero &= KnownZero2;
1391    // Output known-1 are known to be set if set in either the LHS | RHS.
1392    KnownOne |= KnownOne2;
1393    return;
1394  case ISD::XOR: {
1395    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1396    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1397    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1398    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1399
1400    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1401    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1402    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1403    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1404    KnownZero = KnownZeroOut;
1405    return;
1406  }
1407  case ISD::MUL: {
1408    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1409    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1410    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1411    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1412    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1413
1414    // If low bits are zero in either operand, output low known-0 bits.
1415    // Also compute a conserative estimate for high known-0 bits.
1416    // More trickiness is possible, but this is sufficient for the
1417    // interesting case of alignment computation.
1418    KnownOne.clear();
1419    unsigned TrailZ = KnownZero.countTrailingOnes() +
1420                      KnownZero2.countTrailingOnes();
1421    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1422                               KnownZero2.countLeadingOnes(),
1423                               BitWidth) - BitWidth;
1424
1425    TrailZ = std::min(TrailZ, BitWidth);
1426    LeadZ = std::min(LeadZ, BitWidth);
1427    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1428                APInt::getHighBitsSet(BitWidth, LeadZ);
1429    KnownZero &= Mask;
1430    return;
1431  }
1432  case ISD::UDIV: {
1433    // For the purposes of computing leading zeros we can conservatively
1434    // treat a udiv as a logical right shift by the power of 2 known to
1435    // be less than the denominator.
1436    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1437    ComputeMaskedBits(Op.getOperand(0),
1438                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1439    unsigned LeadZ = KnownZero2.countLeadingOnes();
1440
1441    KnownOne2.clear();
1442    KnownZero2.clear();
1443    ComputeMaskedBits(Op.getOperand(1),
1444                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1445    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1446    if (RHSUnknownLeadingOnes != BitWidth)
1447      LeadZ = std::min(BitWidth,
1448                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1449
1450    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1451    return;
1452  }
1453  case ISD::SELECT:
1454    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1455    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1456    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1457    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1458
1459    // Only known if known in both the LHS and RHS.
1460    KnownOne &= KnownOne2;
1461    KnownZero &= KnownZero2;
1462    return;
1463  case ISD::SELECT_CC:
1464    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1465    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1466    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1467    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1468
1469    // Only known if known in both the LHS and RHS.
1470    KnownOne &= KnownOne2;
1471    KnownZero &= KnownZero2;
1472    return;
1473  case ISD::SADDO:
1474  case ISD::UADDO:
1475  case ISD::SSUBO:
1476  case ISD::USUBO:
1477  case ISD::SMULO:
1478  case ISD::UMULO:
1479    if (Op.getResNo() != 1)
1480      return;
1481    // The boolean result conforms to getBooleanContents.  Fall through.
1482  case ISD::SETCC:
1483    // If we know the result of a setcc has the top bits zero, use this info.
1484    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1485        BitWidth > 1)
1486      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1487    return;
1488  case ISD::SHL:
1489    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1490    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1491      unsigned ShAmt = SA->getZExtValue();
1492
1493      // If the shift count is an invalid immediate, don't do anything.
1494      if (ShAmt >= BitWidth)
1495        return;
1496
1497      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1498                        KnownZero, KnownOne, Depth+1);
1499      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1500      KnownZero <<= ShAmt;
1501      KnownOne  <<= ShAmt;
1502      // low bits known zero.
1503      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1504    }
1505    return;
1506  case ISD::SRL:
1507    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1508    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1509      unsigned ShAmt = SA->getZExtValue();
1510
1511      // If the shift count is an invalid immediate, don't do anything.
1512      if (ShAmt >= BitWidth)
1513        return;
1514
1515      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1516                        KnownZero, KnownOne, Depth+1);
1517      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1518      KnownZero = KnownZero.lshr(ShAmt);
1519      KnownOne  = KnownOne.lshr(ShAmt);
1520
1521      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1522      KnownZero |= HighBits;  // High bits known zero.
1523    }
1524    return;
1525  case ISD::SRA:
1526    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1527      unsigned ShAmt = SA->getZExtValue();
1528
1529      // If the shift count is an invalid immediate, don't do anything.
1530      if (ShAmt >= BitWidth)
1531        return;
1532
1533      APInt InDemandedMask = (Mask << ShAmt);
1534      // If any of the demanded bits are produced by the sign extension, we also
1535      // demand the input sign bit.
1536      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1537      if (HighBits.getBoolValue())
1538        InDemandedMask |= APInt::getSignBit(BitWidth);
1539
1540      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1541                        Depth+1);
1542      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1543      KnownZero = KnownZero.lshr(ShAmt);
1544      KnownOne  = KnownOne.lshr(ShAmt);
1545
1546      // Handle the sign bits.
1547      APInt SignBit = APInt::getSignBit(BitWidth);
1548      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1549
1550      if (KnownZero.intersects(SignBit)) {
1551        KnownZero |= HighBits;  // New bits are known zero.
1552      } else if (KnownOne.intersects(SignBit)) {
1553        KnownOne  |= HighBits;  // New bits are known one.
1554      }
1555    }
1556    return;
1557  case ISD::SIGN_EXTEND_INREG: {
1558    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1559    unsigned EBits = EVT.getSizeInBits();
1560
1561    // Sign extension.  Compute the demanded bits in the result that are not
1562    // present in the input.
1563    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1564
1565    APInt InSignBit = APInt::getSignBit(EBits);
1566    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1567
1568    // If the sign extended bits are demanded, we know that the sign
1569    // bit is demanded.
1570    InSignBit.zext(BitWidth);
1571    if (NewBits.getBoolValue())
1572      InputDemandedBits |= InSignBit;
1573
1574    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1575                      KnownZero, KnownOne, Depth+1);
1576    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1577
1578    // If the sign bit of the input is known set or clear, then we know the
1579    // top bits of the result.
1580    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1581      KnownZero |= NewBits;
1582      KnownOne  &= ~NewBits;
1583    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1584      KnownOne  |= NewBits;
1585      KnownZero &= ~NewBits;
1586    } else {                              // Input sign bit unknown
1587      KnownZero &= ~NewBits;
1588      KnownOne  &= ~NewBits;
1589    }
1590    return;
1591  }
1592  case ISD::CTTZ:
1593  case ISD::CTLZ:
1594  case ISD::CTPOP: {
1595    unsigned LowBits = Log2_32(BitWidth)+1;
1596    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1597    KnownOne.clear();
1598    return;
1599  }
1600  case ISD::LOAD: {
1601    if (ISD::isZEXTLoad(Op.getNode())) {
1602      LoadSDNode *LD = cast<LoadSDNode>(Op);
1603      MVT VT = LD->getMemoryVT();
1604      unsigned MemBits = VT.getSizeInBits();
1605      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1606    }
1607    return;
1608  }
1609  case ISD::ZERO_EXTEND: {
1610    MVT InVT = Op.getOperand(0).getValueType();
1611    unsigned InBits = InVT.getSizeInBits();
1612    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1613    APInt InMask    = Mask;
1614    InMask.trunc(InBits);
1615    KnownZero.trunc(InBits);
1616    KnownOne.trunc(InBits);
1617    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1618    KnownZero.zext(BitWidth);
1619    KnownOne.zext(BitWidth);
1620    KnownZero |= NewBits;
1621    return;
1622  }
1623  case ISD::SIGN_EXTEND: {
1624    MVT InVT = Op.getOperand(0).getValueType();
1625    unsigned InBits = InVT.getSizeInBits();
1626    APInt InSignBit = APInt::getSignBit(InBits);
1627    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1628    APInt InMask = Mask;
1629    InMask.trunc(InBits);
1630
1631    // If any of the sign extended bits are demanded, we know that the sign
1632    // bit is demanded. Temporarily set this bit in the mask for our callee.
1633    if (NewBits.getBoolValue())
1634      InMask |= InSignBit;
1635
1636    KnownZero.trunc(InBits);
1637    KnownOne.trunc(InBits);
1638    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1639
1640    // Note if the sign bit is known to be zero or one.
1641    bool SignBitKnownZero = KnownZero.isNegative();
1642    bool SignBitKnownOne  = KnownOne.isNegative();
1643    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1644           "Sign bit can't be known to be both zero and one!");
1645
1646    // If the sign bit wasn't actually demanded by our caller, we don't
1647    // want it set in the KnownZero and KnownOne result values. Reset the
1648    // mask and reapply it to the result values.
1649    InMask = Mask;
1650    InMask.trunc(InBits);
1651    KnownZero &= InMask;
1652    KnownOne  &= InMask;
1653
1654    KnownZero.zext(BitWidth);
1655    KnownOne.zext(BitWidth);
1656
1657    // If the sign bit is known zero or one, the top bits match.
1658    if (SignBitKnownZero)
1659      KnownZero |= NewBits;
1660    else if (SignBitKnownOne)
1661      KnownOne  |= NewBits;
1662    return;
1663  }
1664  case ISD::ANY_EXTEND: {
1665    MVT InVT = Op.getOperand(0).getValueType();
1666    unsigned InBits = InVT.getSizeInBits();
1667    APInt InMask = Mask;
1668    InMask.trunc(InBits);
1669    KnownZero.trunc(InBits);
1670    KnownOne.trunc(InBits);
1671    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1672    KnownZero.zext(BitWidth);
1673    KnownOne.zext(BitWidth);
1674    return;
1675  }
1676  case ISD::TRUNCATE: {
1677    MVT InVT = Op.getOperand(0).getValueType();
1678    unsigned InBits = InVT.getSizeInBits();
1679    APInt InMask = Mask;
1680    InMask.zext(InBits);
1681    KnownZero.zext(InBits);
1682    KnownOne.zext(InBits);
1683    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1684    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1685    KnownZero.trunc(BitWidth);
1686    KnownOne.trunc(BitWidth);
1687    break;
1688  }
1689  case ISD::AssertZext: {
1690    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1691    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1692    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1693                      KnownOne, Depth+1);
1694    KnownZero |= (~InMask) & Mask;
1695    return;
1696  }
1697  case ISD::FGETSIGN:
1698    // All bits are zero except the low bit.
1699    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1700    return;
1701
1702  case ISD::SUB: {
1703    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1704      // We know that the top bits of C-X are clear if X contains less bits
1705      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1706      // positive if we can prove that X is >= 0 and < 16.
1707      if (CLHS->getAPIntValue().isNonNegative()) {
1708        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1709        // NLZ can't be BitWidth with no sign bit
1710        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1711        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1712                          Depth+1);
1713
1714        // If all of the MaskV bits are known to be zero, then we know the
1715        // output top bits are zero, because we now know that the output is
1716        // from [0-C].
1717        if ((KnownZero2 & MaskV) == MaskV) {
1718          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1719          // Top bits known zero.
1720          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1721        }
1722      }
1723    }
1724  }
1725  // fall through
1726  case ISD::ADD: {
1727    // Output known-0 bits are known if clear or set in both the low clear bits
1728    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1729    // low 3 bits clear.
1730    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1731    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1732    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1733    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1734
1735    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1736    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1737    KnownZeroOut = std::min(KnownZeroOut,
1738                            KnownZero2.countTrailingOnes());
1739
1740    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1741    return;
1742  }
1743  case ISD::SREM:
1744    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1745      const APInt &RA = Rem->getAPIntValue();
1746      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1747        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1748        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1749        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1750
1751        // If the sign bit of the first operand is zero, the sign bit of
1752        // the result is zero. If the first operand has no one bits below
1753        // the second operand's single 1 bit, its sign will be zero.
1754        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1755          KnownZero2 |= ~LowBits;
1756
1757        KnownZero |= KnownZero2 & Mask;
1758
1759        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1760      }
1761    }
1762    return;
1763  case ISD::UREM: {
1764    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1765      const APInt &RA = Rem->getAPIntValue();
1766      if (RA.isPowerOf2()) {
1767        APInt LowBits = (RA - 1);
1768        APInt Mask2 = LowBits & Mask;
1769        KnownZero |= ~LowBits & Mask;
1770        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1771        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1772        break;
1773      }
1774    }
1775
1776    // Since the result is less than or equal to either operand, any leading
1777    // zero bits in either operand must also exist in the result.
1778    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1779    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1780                      Depth+1);
1781    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1782                      Depth+1);
1783
1784    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1785                                KnownZero2.countLeadingOnes());
1786    KnownOne.clear();
1787    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1788    return;
1789  }
1790  default:
1791    // Allow the target to implement this method for its nodes.
1792    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1793  case ISD::INTRINSIC_WO_CHAIN:
1794  case ISD::INTRINSIC_W_CHAIN:
1795  case ISD::INTRINSIC_VOID:
1796      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1797    }
1798    return;
1799  }
1800}
1801
1802/// ComputeNumSignBits - Return the number of times the sign bit of the
1803/// register is replicated into the other bits.  We know that at least 1 bit
1804/// is always equal to the sign bit (itself), but other cases can give us
1805/// information.  For example, immediately after an "SRA X, 2", we know that
1806/// the top 3 bits are all equal to each other, so we return 3.
1807unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1808  MVT VT = Op.getValueType();
1809  assert(VT.isInteger() && "Invalid VT!");
1810  unsigned VTBits = VT.getSizeInBits();
1811  unsigned Tmp, Tmp2;
1812  unsigned FirstAnswer = 1;
1813
1814  if (Depth == 6)
1815    return 1;  // Limit search depth.
1816
1817  switch (Op.getOpcode()) {
1818  default: break;
1819  case ISD::AssertSext:
1820    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1821    return VTBits-Tmp+1;
1822  case ISD::AssertZext:
1823    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1824    return VTBits-Tmp;
1825
1826  case ISD::Constant: {
1827    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1828    // If negative, return # leading ones.
1829    if (Val.isNegative())
1830      return Val.countLeadingOnes();
1831
1832    // Return # leading zeros.
1833    return Val.countLeadingZeros();
1834  }
1835
1836  case ISD::SIGN_EXTEND:
1837    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1838    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1839
1840  case ISD::SIGN_EXTEND_INREG:
1841    // Max of the input and what this extends.
1842    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1843    Tmp = VTBits-Tmp+1;
1844
1845    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1846    return std::max(Tmp, Tmp2);
1847
1848  case ISD::SRA:
1849    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1850    // SRA X, C   -> adds C sign bits.
1851    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1852      Tmp += C->getZExtValue();
1853      if (Tmp > VTBits) Tmp = VTBits;
1854    }
1855    return Tmp;
1856  case ISD::SHL:
1857    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1858      // shl destroys sign bits.
1859      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1860      if (C->getZExtValue() >= VTBits ||      // Bad shift.
1861          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
1862      return Tmp - C->getZExtValue();
1863    }
1864    break;
1865  case ISD::AND:
1866  case ISD::OR:
1867  case ISD::XOR:    // NOT is handled here.
1868    // Logical binary ops preserve the number of sign bits at the worst.
1869    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1870    if (Tmp != 1) {
1871      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1872      FirstAnswer = std::min(Tmp, Tmp2);
1873      // We computed what we know about the sign bits as our first
1874      // answer. Now proceed to the generic code that uses
1875      // ComputeMaskedBits, and pick whichever answer is better.
1876    }
1877    break;
1878
1879  case ISD::SELECT:
1880    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1881    if (Tmp == 1) return 1;  // Early out.
1882    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1883    return std::min(Tmp, Tmp2);
1884
1885  case ISD::SADDO:
1886  case ISD::UADDO:
1887  case ISD::SSUBO:
1888  case ISD::USUBO:
1889  case ISD::SMULO:
1890  case ISD::UMULO:
1891    if (Op.getResNo() != 1)
1892      break;
1893    // The boolean result conforms to getBooleanContents.  Fall through.
1894  case ISD::SETCC:
1895    // If setcc returns 0/-1, all bits are sign bits.
1896    if (TLI.getBooleanContents() ==
1897        TargetLowering::ZeroOrNegativeOneBooleanContent)
1898      return VTBits;
1899    break;
1900  case ISD::ROTL:
1901  case ISD::ROTR:
1902    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1903      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
1904
1905      // Handle rotate right by N like a rotate left by 32-N.
1906      if (Op.getOpcode() == ISD::ROTR)
1907        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1908
1909      // If we aren't rotating out all of the known-in sign bits, return the
1910      // number that are left.  This handles rotl(sext(x), 1) for example.
1911      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1912      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1913    }
1914    break;
1915  case ISD::ADD:
1916    // Add can have at most one carry bit.  Thus we know that the output
1917    // is, at worst, one more bit than the inputs.
1918    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1919    if (Tmp == 1) return 1;  // Early out.
1920
1921    // Special case decrementing a value (ADD X, -1):
1922    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1923      if (CRHS->isAllOnesValue()) {
1924        APInt KnownZero, KnownOne;
1925        APInt Mask = APInt::getAllOnesValue(VTBits);
1926        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1927
1928        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1929        // sign bits set.
1930        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1931          return VTBits;
1932
1933        // If we are subtracting one from a positive number, there is no carry
1934        // out of the result.
1935        if (KnownZero.isNegative())
1936          return Tmp;
1937      }
1938
1939    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1940    if (Tmp2 == 1) return 1;
1941      return std::min(Tmp, Tmp2)-1;
1942    break;
1943
1944  case ISD::SUB:
1945    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1946    if (Tmp2 == 1) return 1;
1947
1948    // Handle NEG.
1949    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1950      if (CLHS->isNullValue()) {
1951        APInt KnownZero, KnownOne;
1952        APInt Mask = APInt::getAllOnesValue(VTBits);
1953        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1954        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1955        // sign bits set.
1956        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1957          return VTBits;
1958
1959        // If the input is known to be positive (the sign bit is known clear),
1960        // the output of the NEG has the same number of sign bits as the input.
1961        if (KnownZero.isNegative())
1962          return Tmp2;
1963
1964        // Otherwise, we treat this like a SUB.
1965      }
1966
1967    // Sub can have at most one carry bit.  Thus we know that the output
1968    // is, at worst, one more bit than the inputs.
1969    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1970    if (Tmp == 1) return 1;  // Early out.
1971      return std::min(Tmp, Tmp2)-1;
1972    break;
1973  case ISD::TRUNCATE:
1974    // FIXME: it's tricky to do anything useful for this, but it is an important
1975    // case for targets like X86.
1976    break;
1977  }
1978
1979  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1980  if (Op.getOpcode() == ISD::LOAD) {
1981    LoadSDNode *LD = cast<LoadSDNode>(Op);
1982    unsigned ExtType = LD->getExtensionType();
1983    switch (ExtType) {
1984    default: break;
1985    case ISD::SEXTLOAD:    // '17' bits known
1986      Tmp = LD->getMemoryVT().getSizeInBits();
1987      return VTBits-Tmp+1;
1988    case ISD::ZEXTLOAD:    // '16' bits known
1989      Tmp = LD->getMemoryVT().getSizeInBits();
1990      return VTBits-Tmp;
1991    }
1992  }
1993
1994  // Allow the target to implement this method for its nodes.
1995  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1996      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1997      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1998      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1999    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2000    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2001  }
2002
2003  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2004  // use this information.
2005  APInt KnownZero, KnownOne;
2006  APInt Mask = APInt::getAllOnesValue(VTBits);
2007  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2008
2009  if (KnownZero.isNegative()) {        // sign bit is 0
2010    Mask = KnownZero;
2011  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2012    Mask = KnownOne;
2013  } else {
2014    // Nothing known.
2015    return FirstAnswer;
2016  }
2017
2018  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2019  // the number of identical bits in the top of the input value.
2020  Mask = ~Mask;
2021  Mask <<= Mask.getBitWidth()-VTBits;
2022  // Return # leading zeros.  We use 'min' here in case Val was zero before
2023  // shifting.  We don't want to return '64' as for an i32 "0".
2024  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2025}
2026
2027
2028bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2029  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2030  if (!GA) return false;
2031  if (GA->getOffset() != 0) return false;
2032  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2033  if (!GV) return false;
2034  MachineModuleInfo *MMI = getMachineModuleInfo();
2035  return MMI && MMI->hasDebugInfo();
2036}
2037
2038
2039/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2040/// element of the result of the vector shuffle.
2041SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
2042  MVT VT = N->getValueType(0);
2043  SDValue PermMask = N->getOperand(2);
2044  SDValue Idx = PermMask.getOperand(i);
2045  if (Idx.getOpcode() == ISD::UNDEF)
2046    return getNode(ISD::UNDEF, VT.getVectorElementType());
2047  unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
2048  unsigned NumElems = PermMask.getNumOperands();
2049  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2050  Index %= NumElems;
2051
2052  if (V.getOpcode() == ISD::BIT_CONVERT) {
2053    V = V.getOperand(0);
2054    MVT VVT = V.getValueType();
2055    if (!VVT.isVector() || VVT.getVectorNumElements() != NumElems)
2056      return SDValue();
2057  }
2058  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2059    return (Index == 0) ? V.getOperand(0)
2060                      : getNode(ISD::UNDEF, VT.getVectorElementType());
2061  if (V.getOpcode() == ISD::BUILD_VECTOR)
2062    return V.getOperand(Index);
2063  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
2064    return getShuffleScalarElt(V.getNode(), Index);
2065  return SDValue();
2066}
2067
2068
2069/// getNode - Gets or creates the specified node.
2070///
2071SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT) {
2072  FoldingSetNodeID ID;
2073  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2074  void *IP = 0;
2075  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2076    return SDValue(E, 0);
2077  SDNode *N = NodeAllocator.Allocate<SDNode>();
2078  new (N) SDNode(Opcode, SDNode::getSDVTList(VT));
2079  CSEMap.InsertNode(N, IP);
2080
2081  AllNodes.push_back(N);
2082#ifndef NDEBUG
2083  VerifyNode(N);
2084#endif
2085  return SDValue(N, 0);
2086}
2087
2088SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, SDValue Operand) {
2089  // Constant fold unary operations with an integer constant operand.
2090  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2091    const APInt &Val = C->getAPIntValue();
2092    unsigned BitWidth = VT.getSizeInBits();
2093    switch (Opcode) {
2094    default: break;
2095    case ISD::SIGN_EXTEND:
2096      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2097    case ISD::ANY_EXTEND:
2098    case ISD::ZERO_EXTEND:
2099    case ISD::TRUNCATE:
2100      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2101    case ISD::UINT_TO_FP:
2102    case ISD::SINT_TO_FP: {
2103      const uint64_t zero[] = {0, 0};
2104      // No compile time operations on this type.
2105      if (VT==MVT::ppcf128)
2106        break;
2107      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2108      (void)apf.convertFromAPInt(Val,
2109                                 Opcode==ISD::SINT_TO_FP,
2110                                 APFloat::rmNearestTiesToEven);
2111      return getConstantFP(apf, VT);
2112    }
2113    case ISD::BIT_CONVERT:
2114      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2115        return getConstantFP(Val.bitsToFloat(), VT);
2116      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2117        return getConstantFP(Val.bitsToDouble(), VT);
2118      break;
2119    case ISD::BSWAP:
2120      return getConstant(Val.byteSwap(), VT);
2121    case ISD::CTPOP:
2122      return getConstant(Val.countPopulation(), VT);
2123    case ISD::CTLZ:
2124      return getConstant(Val.countLeadingZeros(), VT);
2125    case ISD::CTTZ:
2126      return getConstant(Val.countTrailingZeros(), VT);
2127    }
2128  }
2129
2130  // Constant fold unary operations with a floating point constant operand.
2131  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2132    APFloat V = C->getValueAPF();    // make copy
2133    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2134      switch (Opcode) {
2135      case ISD::FNEG:
2136        V.changeSign();
2137        return getConstantFP(V, VT);
2138      case ISD::FABS:
2139        V.clearSign();
2140        return getConstantFP(V, VT);
2141      case ISD::FP_ROUND:
2142      case ISD::FP_EXTEND: {
2143        bool ignored;
2144        // This can return overflow, underflow, or inexact; we don't care.
2145        // FIXME need to be more flexible about rounding mode.
2146        (void)V.convert(*MVTToAPFloatSemantics(VT),
2147                        APFloat::rmNearestTiesToEven, &ignored);
2148        return getConstantFP(V, VT);
2149      }
2150      case ISD::FP_TO_SINT:
2151      case ISD::FP_TO_UINT: {
2152        integerPart x;
2153        bool ignored;
2154        assert(integerPartWidth >= 64);
2155        // FIXME need to be more flexible about rounding mode.
2156        APFloat::opStatus s = V.convertToInteger(&x, 64U,
2157                              Opcode==ISD::FP_TO_SINT,
2158                              APFloat::rmTowardZero, &ignored);
2159        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2160          break;
2161        return getConstant(x, VT);
2162      }
2163      case ISD::BIT_CONVERT:
2164        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2165          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2166        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2167          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2168        break;
2169      }
2170    }
2171  }
2172
2173  unsigned OpOpcode = Operand.getNode()->getOpcode();
2174  switch (Opcode) {
2175  case ISD::TokenFactor:
2176  case ISD::MERGE_VALUES:
2177  case ISD::CONCAT_VECTORS:
2178    return Operand;         // Factor, merge or concat of one node?  No need.
2179  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2180  case ISD::FP_EXTEND:
2181    assert(VT.isFloatingPoint() &&
2182           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2183    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2184    if (Operand.getOpcode() == ISD::UNDEF)
2185      return getNode(ISD::UNDEF, VT);
2186    break;
2187  case ISD::SIGN_EXTEND:
2188    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2189           "Invalid SIGN_EXTEND!");
2190    if (Operand.getValueType() == VT) return Operand;   // noop extension
2191    assert(Operand.getValueType().bitsLT(VT)
2192           && "Invalid sext node, dst < src!");
2193    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2194      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2195    break;
2196  case ISD::ZERO_EXTEND:
2197    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2198           "Invalid ZERO_EXTEND!");
2199    if (Operand.getValueType() == VT) return Operand;   // noop extension
2200    assert(Operand.getValueType().bitsLT(VT)
2201           && "Invalid zext node, dst < src!");
2202    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2203      return getNode(ISD::ZERO_EXTEND, VT, Operand.getNode()->getOperand(0));
2204    break;
2205  case ISD::ANY_EXTEND:
2206    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2207           "Invalid ANY_EXTEND!");
2208    if (Operand.getValueType() == VT) return Operand;   // noop extension
2209    assert(Operand.getValueType().bitsLT(VT)
2210           && "Invalid anyext node, dst < src!");
2211    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2212      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2213      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2214    break;
2215  case ISD::TRUNCATE:
2216    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2217           "Invalid TRUNCATE!");
2218    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2219    assert(Operand.getValueType().bitsGT(VT)
2220           && "Invalid truncate node, src < dst!");
2221    if (OpOpcode == ISD::TRUNCATE)
2222      return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2223    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2224             OpOpcode == ISD::ANY_EXTEND) {
2225      // If the source is smaller than the dest, we still need an extend.
2226      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2227        return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2228      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2229        return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2230      else
2231        return Operand.getNode()->getOperand(0);
2232    }
2233    break;
2234  case ISD::BIT_CONVERT:
2235    // Basic sanity checking.
2236    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2237           && "Cannot BIT_CONVERT between types of different sizes!");
2238    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2239    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2240      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
2241    if (OpOpcode == ISD::UNDEF)
2242      return getNode(ISD::UNDEF, VT);
2243    break;
2244  case ISD::SCALAR_TO_VECTOR:
2245    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2246           VT.getVectorElementType() == Operand.getValueType() &&
2247           "Illegal SCALAR_TO_VECTOR node!");
2248    if (OpOpcode == ISD::UNDEF)
2249      return getNode(ISD::UNDEF, VT);
2250    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2251    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2252        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2253        Operand.getConstantOperandVal(1) == 0 &&
2254        Operand.getOperand(0).getValueType() == VT)
2255      return Operand.getOperand(0);
2256    break;
2257  case ISD::FNEG:
2258    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
2259      return getNode(ISD::FSUB, VT, Operand.getNode()->getOperand(1),
2260                     Operand.getNode()->getOperand(0));
2261    if (OpOpcode == ISD::FNEG)  // --X -> X
2262      return Operand.getNode()->getOperand(0);
2263    break;
2264  case ISD::FABS:
2265    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2266      return getNode(ISD::FABS, VT, Operand.getNode()->getOperand(0));
2267    break;
2268  }
2269
2270  SDNode *N;
2271  SDVTList VTs = getVTList(VT);
2272  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2273    FoldingSetNodeID ID;
2274    SDValue Ops[1] = { Operand };
2275    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2276    void *IP = 0;
2277    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2278      return SDValue(E, 0);
2279    N = NodeAllocator.Allocate<UnarySDNode>();
2280    new (N) UnarySDNode(Opcode, VTs, Operand);
2281    CSEMap.InsertNode(N, IP);
2282  } else {
2283    N = NodeAllocator.Allocate<UnarySDNode>();
2284    new (N) UnarySDNode(Opcode, VTs, Operand);
2285  }
2286
2287  AllNodes.push_back(N);
2288#ifndef NDEBUG
2289  VerifyNode(N);
2290#endif
2291  return SDValue(N, 0);
2292}
2293
2294SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2295                                             MVT VT,
2296                                             ConstantSDNode *Cst1,
2297                                             ConstantSDNode *Cst2) {
2298  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2299
2300  switch (Opcode) {
2301  case ISD::ADD:  return getConstant(C1 + C2, VT);
2302  case ISD::SUB:  return getConstant(C1 - C2, VT);
2303  case ISD::MUL:  return getConstant(C1 * C2, VT);
2304  case ISD::UDIV:
2305    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2306    break;
2307  case ISD::UREM:
2308    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2309    break;
2310  case ISD::SDIV:
2311    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2312    break;
2313  case ISD::SREM:
2314    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2315    break;
2316  case ISD::AND:  return getConstant(C1 & C2, VT);
2317  case ISD::OR:   return getConstant(C1 | C2, VT);
2318  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2319  case ISD::SHL:  return getConstant(C1 << C2, VT);
2320  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2321  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2322  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2323  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2324  default: break;
2325  }
2326
2327  return SDValue();
2328}
2329
2330SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2331                              SDValue N1, SDValue N2) {
2332  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2333  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2334  switch (Opcode) {
2335  default: break;
2336  case ISD::TokenFactor:
2337    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2338           N2.getValueType() == MVT::Other && "Invalid token factor!");
2339    // Fold trivial token factors.
2340    if (N1.getOpcode() == ISD::EntryToken) return N2;
2341    if (N2.getOpcode() == ISD::EntryToken) return N1;
2342    if (N1 == N2) return N1;
2343    break;
2344  case ISD::CONCAT_VECTORS:
2345    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2346    // one big BUILD_VECTOR.
2347    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2348        N2.getOpcode() == ISD::BUILD_VECTOR) {
2349      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2350      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2351      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2352    }
2353    break;
2354  case ISD::AND:
2355    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2356           N1.getValueType() == VT && "Binary operator types must match!");
2357    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2358    // worth handling here.
2359    if (N2C && N2C->isNullValue())
2360      return N2;
2361    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2362      return N1;
2363    break;
2364  case ISD::OR:
2365  case ISD::XOR:
2366  case ISD::ADD:
2367  case ISD::SUB:
2368    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2369           N1.getValueType() == VT && "Binary operator types must match!");
2370    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2371    // it's worth handling here.
2372    if (N2C && N2C->isNullValue())
2373      return N1;
2374    break;
2375  case ISD::UDIV:
2376  case ISD::UREM:
2377  case ISD::MULHU:
2378  case ISD::MULHS:
2379    assert(VT.isInteger() && "This operator does not apply to FP types!");
2380    // fall through
2381  case ISD::MUL:
2382  case ISD::SDIV:
2383  case ISD::SREM:
2384  case ISD::FADD:
2385  case ISD::FSUB:
2386  case ISD::FMUL:
2387  case ISD::FDIV:
2388  case ISD::FREM:
2389    assert(N1.getValueType() == N2.getValueType() &&
2390           N1.getValueType() == VT && "Binary operator types must match!");
2391    break;
2392  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2393    assert(N1.getValueType() == VT &&
2394           N1.getValueType().isFloatingPoint() &&
2395           N2.getValueType().isFloatingPoint() &&
2396           "Invalid FCOPYSIGN!");
2397    break;
2398  case ISD::SHL:
2399  case ISD::SRA:
2400  case ISD::SRL:
2401  case ISD::ROTL:
2402  case ISD::ROTR:
2403    assert(VT == N1.getValueType() &&
2404           "Shift operators return type must be the same as their first arg");
2405    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2406           "Shifts only work on integers");
2407    assert((N2.getValueType() == TLI.getShiftAmountTy() ||
2408            (N2.getValueType().isVector() && N2.getValueType().isInteger())) &&
2409           "Wrong type for shift amount");
2410
2411    // Always fold shifts of i1 values so the code generator doesn't need to
2412    // handle them.  Since we know the size of the shift has to be less than the
2413    // size of the value, the shift/rotate count is guaranteed to be zero.
2414    if (VT == MVT::i1)
2415      return N1;
2416    break;
2417  case ISD::FP_ROUND_INREG: {
2418    MVT EVT = cast<VTSDNode>(N2)->getVT();
2419    assert(VT == N1.getValueType() && "Not an inreg round!");
2420    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2421           "Cannot FP_ROUND_INREG integer types");
2422    assert(EVT.bitsLE(VT) && "Not rounding down!");
2423    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2424    break;
2425  }
2426  case ISD::FP_ROUND:
2427    assert(VT.isFloatingPoint() &&
2428           N1.getValueType().isFloatingPoint() &&
2429           VT.bitsLE(N1.getValueType()) &&
2430           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2431    if (N1.getValueType() == VT) return N1;  // noop conversion.
2432    break;
2433  case ISD::AssertSext:
2434  case ISD::AssertZext: {
2435    MVT EVT = cast<VTSDNode>(N2)->getVT();
2436    assert(VT == N1.getValueType() && "Not an inreg extend!");
2437    assert(VT.isInteger() && EVT.isInteger() &&
2438           "Cannot *_EXTEND_INREG FP types");
2439    assert(EVT.bitsLE(VT) && "Not extending!");
2440    if (VT == EVT) return N1; // noop assertion.
2441    break;
2442  }
2443  case ISD::SIGN_EXTEND_INREG: {
2444    MVT EVT = cast<VTSDNode>(N2)->getVT();
2445    assert(VT == N1.getValueType() && "Not an inreg extend!");
2446    assert(VT.isInteger() && EVT.isInteger() &&
2447           "Cannot *_EXTEND_INREG FP types");
2448    assert(EVT.bitsLE(VT) && "Not extending!");
2449    if (EVT == VT) return N1;  // Not actually extending
2450
2451    if (N1C) {
2452      APInt Val = N1C->getAPIntValue();
2453      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2454      Val <<= Val.getBitWidth()-FromBits;
2455      Val = Val.ashr(Val.getBitWidth()-FromBits);
2456      return getConstant(Val, VT);
2457    }
2458    break;
2459  }
2460  case ISD::EXTRACT_VECTOR_ELT:
2461    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2462    if (N1.getOpcode() == ISD::UNDEF)
2463      return getNode(ISD::UNDEF, VT);
2464
2465    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2466    // expanding copies of large vectors from registers.
2467    if (N2C &&
2468        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2469        N1.getNumOperands() > 0) {
2470      unsigned Factor =
2471        N1.getOperand(0).getValueType().getVectorNumElements();
2472      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2473                     N1.getOperand(N2C->getZExtValue() / Factor),
2474                     getConstant(N2C->getZExtValue() % Factor,
2475                                 N2.getValueType()));
2476    }
2477
2478    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2479    // expanding large vector constants.
2480    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR)
2481      return N1.getOperand(N2C->getZExtValue());
2482
2483    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2484    // operations are lowered to scalars.
2485    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2486      if (N1.getOperand(2) == N2)
2487        return N1.getOperand(1);
2488      else
2489        return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2490    }
2491    break;
2492  case ISD::EXTRACT_ELEMENT:
2493    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2494    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2495           (N1.getValueType().isInteger() == VT.isInteger()) &&
2496           "Wrong types for EXTRACT_ELEMENT!");
2497
2498    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2499    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2500    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2501    if (N1.getOpcode() == ISD::BUILD_PAIR)
2502      return N1.getOperand(N2C->getZExtValue());
2503
2504    // EXTRACT_ELEMENT of a constant int is also very common.
2505    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2506      unsigned ElementSize = VT.getSizeInBits();
2507      unsigned Shift = ElementSize * N2C->getZExtValue();
2508      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2509      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2510    }
2511    break;
2512  case ISD::EXTRACT_SUBVECTOR:
2513    if (N1.getValueType() == VT) // Trivial extraction.
2514      return N1;
2515    break;
2516  }
2517
2518  if (N1C) {
2519    if (N2C) {
2520      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2521      if (SV.getNode()) return SV;
2522    } else {      // Cannonicalize constant to RHS if commutative
2523      if (isCommutativeBinOp(Opcode)) {
2524        std::swap(N1C, N2C);
2525        std::swap(N1, N2);
2526      }
2527    }
2528  }
2529
2530  // Constant fold FP operations.
2531  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2532  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2533  if (N1CFP) {
2534    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2535      // Cannonicalize constant to RHS if commutative
2536      std::swap(N1CFP, N2CFP);
2537      std::swap(N1, N2);
2538    } else if (N2CFP && VT != MVT::ppcf128) {
2539      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2540      APFloat::opStatus s;
2541      switch (Opcode) {
2542      case ISD::FADD:
2543        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2544        if (s != APFloat::opInvalidOp)
2545          return getConstantFP(V1, VT);
2546        break;
2547      case ISD::FSUB:
2548        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2549        if (s!=APFloat::opInvalidOp)
2550          return getConstantFP(V1, VT);
2551        break;
2552      case ISD::FMUL:
2553        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2554        if (s!=APFloat::opInvalidOp)
2555          return getConstantFP(V1, VT);
2556        break;
2557      case ISD::FDIV:
2558        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2559        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2560          return getConstantFP(V1, VT);
2561        break;
2562      case ISD::FREM :
2563        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2564        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2565          return getConstantFP(V1, VT);
2566        break;
2567      case ISD::FCOPYSIGN:
2568        V1.copySign(V2);
2569        return getConstantFP(V1, VT);
2570      default: break;
2571      }
2572    }
2573  }
2574
2575  // Canonicalize an UNDEF to the RHS, even over a constant.
2576  if (N1.getOpcode() == ISD::UNDEF) {
2577    if (isCommutativeBinOp(Opcode)) {
2578      std::swap(N1, N2);
2579    } else {
2580      switch (Opcode) {
2581      case ISD::FP_ROUND_INREG:
2582      case ISD::SIGN_EXTEND_INREG:
2583      case ISD::SUB:
2584      case ISD::FSUB:
2585      case ISD::FDIV:
2586      case ISD::FREM:
2587      case ISD::SRA:
2588        return N1;     // fold op(undef, arg2) -> undef
2589      case ISD::UDIV:
2590      case ISD::SDIV:
2591      case ISD::UREM:
2592      case ISD::SREM:
2593      case ISD::SRL:
2594      case ISD::SHL:
2595        if (!VT.isVector())
2596          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2597        // For vectors, we can't easily build an all zero vector, just return
2598        // the LHS.
2599        return N2;
2600      }
2601    }
2602  }
2603
2604  // Fold a bunch of operators when the RHS is undef.
2605  if (N2.getOpcode() == ISD::UNDEF) {
2606    switch (Opcode) {
2607    case ISD::XOR:
2608      if (N1.getOpcode() == ISD::UNDEF)
2609        // Handle undef ^ undef -> 0 special case. This is a common
2610        // idiom (misuse).
2611        return getConstant(0, VT);
2612      // fallthrough
2613    case ISD::ADD:
2614    case ISD::ADDC:
2615    case ISD::ADDE:
2616    case ISD::SUB:
2617    case ISD::FADD:
2618    case ISD::FSUB:
2619    case ISD::FMUL:
2620    case ISD::FDIV:
2621    case ISD::FREM:
2622    case ISD::UDIV:
2623    case ISD::SDIV:
2624    case ISD::UREM:
2625    case ISD::SREM:
2626      return N2;       // fold op(arg1, undef) -> undef
2627    case ISD::MUL:
2628    case ISD::AND:
2629    case ISD::SRL:
2630    case ISD::SHL:
2631      if (!VT.isVector())
2632        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2633      // For vectors, we can't easily build an all zero vector, just return
2634      // the LHS.
2635      return N1;
2636    case ISD::OR:
2637      if (!VT.isVector())
2638        return getConstant(VT.getIntegerVTBitMask(), VT);
2639      // For vectors, we can't easily build an all one vector, just return
2640      // the LHS.
2641      return N1;
2642    case ISD::SRA:
2643      return N1;
2644    }
2645  }
2646
2647  // Memoize this node if possible.
2648  SDNode *N;
2649  SDVTList VTs = getVTList(VT);
2650  if (VT != MVT::Flag) {
2651    SDValue Ops[] = { N1, N2 };
2652    FoldingSetNodeID ID;
2653    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2654    void *IP = 0;
2655    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2656      return SDValue(E, 0);
2657    N = NodeAllocator.Allocate<BinarySDNode>();
2658    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2659    CSEMap.InsertNode(N, IP);
2660  } else {
2661    N = NodeAllocator.Allocate<BinarySDNode>();
2662    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2663  }
2664
2665  AllNodes.push_back(N);
2666#ifndef NDEBUG
2667  VerifyNode(N);
2668#endif
2669  return SDValue(N, 0);
2670}
2671
2672SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2673                              SDValue N1, SDValue N2, SDValue N3) {
2674  // Perform various simplifications.
2675  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2676  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2677  switch (Opcode) {
2678  case ISD::CONCAT_VECTORS:
2679    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2680    // one big BUILD_VECTOR.
2681    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2682        N2.getOpcode() == ISD::BUILD_VECTOR &&
2683        N3.getOpcode() == ISD::BUILD_VECTOR) {
2684      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2685      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2686      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2687      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2688    }
2689    break;
2690  case ISD::SETCC: {
2691    // Use FoldSetCC to simplify SETCC's.
2692    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2693    if (Simp.getNode()) return Simp;
2694    break;
2695  }
2696  case ISD::SELECT:
2697    if (N1C) {
2698     if (N1C->getZExtValue())
2699        return N2;             // select true, X, Y -> X
2700      else
2701        return N3;             // select false, X, Y -> Y
2702    }
2703
2704    if (N2 == N3) return N2;   // select C, X, X -> X
2705    break;
2706  case ISD::BRCOND:
2707    if (N2C) {
2708      if (N2C->getZExtValue()) // Unconditional branch
2709        return getNode(ISD::BR, MVT::Other, N1, N3);
2710      else
2711        return N1;         // Never-taken branch
2712    }
2713    break;
2714  case ISD::VECTOR_SHUFFLE:
2715    assert(N1.getValueType() == N2.getValueType() &&
2716           N1.getValueType().isVector() &&
2717           VT.isVector() && N3.getValueType().isVector() &&
2718           N3.getOpcode() == ISD::BUILD_VECTOR &&
2719           VT.getVectorNumElements() == N3.getNumOperands() &&
2720           "Illegal VECTOR_SHUFFLE node!");
2721    break;
2722  case ISD::BIT_CONVERT:
2723    // Fold bit_convert nodes from a type to themselves.
2724    if (N1.getValueType() == VT)
2725      return N1;
2726    break;
2727  }
2728
2729  // Memoize node if it doesn't produce a flag.
2730  SDNode *N;
2731  SDVTList VTs = getVTList(VT);
2732  if (VT != MVT::Flag) {
2733    SDValue Ops[] = { N1, N2, N3 };
2734    FoldingSetNodeID ID;
2735    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2736    void *IP = 0;
2737    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2738      return SDValue(E, 0);
2739    N = NodeAllocator.Allocate<TernarySDNode>();
2740    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2741    CSEMap.InsertNode(N, IP);
2742  } else {
2743    N = NodeAllocator.Allocate<TernarySDNode>();
2744    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2745  }
2746  AllNodes.push_back(N);
2747#ifndef NDEBUG
2748  VerifyNode(N);
2749#endif
2750  return SDValue(N, 0);
2751}
2752
2753SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2754                              SDValue N1, SDValue N2, SDValue N3,
2755                              SDValue N4) {
2756  SDValue Ops[] = { N1, N2, N3, N4 };
2757  return getNode(Opcode, VT, Ops, 4);
2758}
2759
2760SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2761                              SDValue N1, SDValue N2, SDValue N3,
2762                              SDValue N4, SDValue N5) {
2763  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2764  return getNode(Opcode, VT, Ops, 5);
2765}
2766
2767/// getMemsetValue - Vectorized representation of the memset value
2768/// operand.
2769static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG) {
2770  unsigned NumBits = VT.isVector() ?
2771    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2772  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2773    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2774    unsigned Shift = 8;
2775    for (unsigned i = NumBits; i > 8; i >>= 1) {
2776      Val = (Val << Shift) | Val;
2777      Shift <<= 1;
2778    }
2779    if (VT.isInteger())
2780      return DAG.getConstant(Val, VT);
2781    return DAG.getConstantFP(APFloat(Val), VT);
2782  }
2783
2784  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2785  Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2786  unsigned Shift = 8;
2787  for (unsigned i = NumBits; i > 8; i >>= 1) {
2788    Value = DAG.getNode(ISD::OR, VT,
2789                        DAG.getNode(ISD::SHL, VT, Value,
2790                                    DAG.getConstant(Shift,
2791                                                    TLI.getShiftAmountTy())),
2792                        Value);
2793    Shift <<= 1;
2794  }
2795
2796  return Value;
2797}
2798
2799/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2800/// used when a memcpy is turned into a memset when the source is a constant
2801/// string ptr.
2802static SDValue getMemsetStringVal(MVT VT, SelectionDAG &DAG,
2803                                    const TargetLowering &TLI,
2804                                    std::string &Str, unsigned Offset) {
2805  // Handle vector with all elements zero.
2806  if (Str.empty()) {
2807    if (VT.isInteger())
2808      return DAG.getConstant(0, VT);
2809    unsigned NumElts = VT.getVectorNumElements();
2810    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2811    return DAG.getNode(ISD::BIT_CONVERT, VT,
2812                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2813  }
2814
2815  assert(!VT.isVector() && "Can't handle vector type here!");
2816  unsigned NumBits = VT.getSizeInBits();
2817  unsigned MSB = NumBits / 8;
2818  uint64_t Val = 0;
2819  if (TLI.isLittleEndian())
2820    Offset = Offset + MSB - 1;
2821  for (unsigned i = 0; i != MSB; ++i) {
2822    Val = (Val << 8) | (unsigned char)Str[Offset];
2823    Offset += TLI.isLittleEndian() ? -1 : 1;
2824  }
2825  return DAG.getConstant(Val, VT);
2826}
2827
2828/// getMemBasePlusOffset - Returns base and offset node for the
2829///
2830static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
2831                                      SelectionDAG &DAG) {
2832  MVT VT = Base.getValueType();
2833  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2834}
2835
2836/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2837///
2838static bool isMemSrcFromString(SDValue Src, std::string &Str) {
2839  unsigned SrcDelta = 0;
2840  GlobalAddressSDNode *G = NULL;
2841  if (Src.getOpcode() == ISD::GlobalAddress)
2842    G = cast<GlobalAddressSDNode>(Src);
2843  else if (Src.getOpcode() == ISD::ADD &&
2844           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2845           Src.getOperand(1).getOpcode() == ISD::Constant) {
2846    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2847    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
2848  }
2849  if (!G)
2850    return false;
2851
2852  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2853  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
2854    return true;
2855
2856  return false;
2857}
2858
2859/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2860/// to replace the memset / memcpy is below the threshold. It also returns the
2861/// types of the sequence of memory ops to perform memset / memcpy.
2862static
2863bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2864                              SDValue Dst, SDValue Src,
2865                              unsigned Limit, uint64_t Size, unsigned &Align,
2866                              std::string &Str, bool &isSrcStr,
2867                              SelectionDAG &DAG,
2868                              const TargetLowering &TLI) {
2869  isSrcStr = isMemSrcFromString(Src, Str);
2870  bool isSrcConst = isa<ConstantSDNode>(Src);
2871  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2872  MVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2873  if (VT != MVT::iAny) {
2874    unsigned NewAlign = (unsigned)
2875      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
2876    // If source is a string constant, this will require an unaligned load.
2877    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2878      if (Dst.getOpcode() != ISD::FrameIndex) {
2879        // Can't change destination alignment. It requires a unaligned store.
2880        if (AllowUnalign)
2881          VT = MVT::iAny;
2882      } else {
2883        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2884        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2885        if (MFI->isFixedObjectIndex(FI)) {
2886          // Can't change destination alignment. It requires a unaligned store.
2887          if (AllowUnalign)
2888            VT = MVT::iAny;
2889        } else {
2890          // Give the stack frame object a larger alignment if needed.
2891          if (MFI->getObjectAlignment(FI) < NewAlign)
2892            MFI->setObjectAlignment(FI, NewAlign);
2893          Align = NewAlign;
2894        }
2895      }
2896    }
2897  }
2898
2899  if (VT == MVT::iAny) {
2900    if (AllowUnalign) {
2901      VT = MVT::i64;
2902    } else {
2903      switch (Align & 7) {
2904      case 0:  VT = MVT::i64; break;
2905      case 4:  VT = MVT::i32; break;
2906      case 2:  VT = MVT::i16; break;
2907      default: VT = MVT::i8;  break;
2908      }
2909    }
2910
2911    MVT LVT = MVT::i64;
2912    while (!TLI.isTypeLegal(LVT))
2913      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
2914    assert(LVT.isInteger());
2915
2916    if (VT.bitsGT(LVT))
2917      VT = LVT;
2918  }
2919
2920  unsigned NumMemOps = 0;
2921  while (Size != 0) {
2922    unsigned VTSize = VT.getSizeInBits() / 8;
2923    while (VTSize > Size) {
2924      // For now, only use non-vector load / store's for the left-over pieces.
2925      if (VT.isVector()) {
2926        VT = MVT::i64;
2927        while (!TLI.isTypeLegal(VT))
2928          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2929        VTSize = VT.getSizeInBits() / 8;
2930      } else {
2931        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2932        VTSize >>= 1;
2933      }
2934    }
2935
2936    if (++NumMemOps > Limit)
2937      return false;
2938    MemOps.push_back(VT);
2939    Size -= VTSize;
2940  }
2941
2942  return true;
2943}
2944
2945static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG,
2946                                         SDValue Chain, SDValue Dst,
2947                                         SDValue Src, uint64_t Size,
2948                                         unsigned Align, bool AlwaysInline,
2949                                         const Value *DstSV, uint64_t DstSVOff,
2950                                         const Value *SrcSV, uint64_t SrcSVOff){
2951  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2952
2953  // Expand memcpy to a series of load and store ops if the size operand falls
2954  // below a certain threshold.
2955  std::vector<MVT> MemOps;
2956  uint64_t Limit = -1ULL;
2957  if (!AlwaysInline)
2958    Limit = TLI.getMaxStoresPerMemcpy();
2959  unsigned DstAlign = Align;  // Destination alignment can change.
2960  std::string Str;
2961  bool CopyFromStr;
2962  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2963                                Str, CopyFromStr, DAG, TLI))
2964    return SDValue();
2965
2966
2967  bool isZeroStr = CopyFromStr && Str.empty();
2968  SmallVector<SDValue, 8> OutChains;
2969  unsigned NumMemOps = MemOps.size();
2970  uint64_t SrcOff = 0, DstOff = 0;
2971  for (unsigned i = 0; i < NumMemOps; i++) {
2972    MVT VT = MemOps[i];
2973    unsigned VTSize = VT.getSizeInBits() / 8;
2974    SDValue Value, Store;
2975
2976    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
2977      // It's unlikely a store of a vector immediate can be done in a single
2978      // instruction. It would require a load from a constantpool first.
2979      // We also handle store a vector with all zero's.
2980      // FIXME: Handle other cases where store of vector immediate is done in
2981      // a single instruction.
2982      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2983      Store = DAG.getStore(Chain, Value,
2984                           getMemBasePlusOffset(Dst, DstOff, DAG),
2985                           DstSV, DstSVOff + DstOff, false, DstAlign);
2986    } else {
2987      Value = DAG.getLoad(VT, Chain,
2988                          getMemBasePlusOffset(Src, SrcOff, DAG),
2989                          SrcSV, SrcSVOff + SrcOff, false, Align);
2990      Store = DAG.getStore(Chain, Value,
2991                           getMemBasePlusOffset(Dst, DstOff, DAG),
2992                           DstSV, DstSVOff + DstOff, false, DstAlign);
2993    }
2994    OutChains.push_back(Store);
2995    SrcOff += VTSize;
2996    DstOff += VTSize;
2997  }
2998
2999  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3000                     &OutChains[0], OutChains.size());
3001}
3002
3003static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG,
3004                                          SDValue Chain, SDValue Dst,
3005                                          SDValue Src, uint64_t Size,
3006                                          unsigned Align, bool AlwaysInline,
3007                                          const Value *DstSV, uint64_t DstSVOff,
3008                                          const Value *SrcSV, uint64_t SrcSVOff){
3009  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3010
3011  // Expand memmove to a series of load and store ops if the size operand falls
3012  // below a certain threshold.
3013  std::vector<MVT> MemOps;
3014  uint64_t Limit = -1ULL;
3015  if (!AlwaysInline)
3016    Limit = TLI.getMaxStoresPerMemmove();
3017  unsigned DstAlign = Align;  // Destination alignment can change.
3018  std::string Str;
3019  bool CopyFromStr;
3020  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3021                                Str, CopyFromStr, DAG, TLI))
3022    return SDValue();
3023
3024  uint64_t SrcOff = 0, DstOff = 0;
3025
3026  SmallVector<SDValue, 8> LoadValues;
3027  SmallVector<SDValue, 8> LoadChains;
3028  SmallVector<SDValue, 8> OutChains;
3029  unsigned NumMemOps = MemOps.size();
3030  for (unsigned i = 0; i < NumMemOps; i++) {
3031    MVT VT = MemOps[i];
3032    unsigned VTSize = VT.getSizeInBits() / 8;
3033    SDValue Value, Store;
3034
3035    Value = DAG.getLoad(VT, Chain,
3036                        getMemBasePlusOffset(Src, SrcOff, DAG),
3037                        SrcSV, SrcSVOff + SrcOff, false, Align);
3038    LoadValues.push_back(Value);
3039    LoadChains.push_back(Value.getValue(1));
3040    SrcOff += VTSize;
3041  }
3042  Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3043                      &LoadChains[0], LoadChains.size());
3044  OutChains.clear();
3045  for (unsigned i = 0; i < NumMemOps; i++) {
3046    MVT VT = MemOps[i];
3047    unsigned VTSize = VT.getSizeInBits() / 8;
3048    SDValue Value, Store;
3049
3050    Store = DAG.getStore(Chain, LoadValues[i],
3051                         getMemBasePlusOffset(Dst, DstOff, DAG),
3052                         DstSV, DstSVOff + DstOff, false, DstAlign);
3053    OutChains.push_back(Store);
3054    DstOff += VTSize;
3055  }
3056
3057  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3058                     &OutChains[0], OutChains.size());
3059}
3060
3061static SDValue getMemsetStores(SelectionDAG &DAG,
3062                                 SDValue Chain, SDValue Dst,
3063                                 SDValue Src, uint64_t Size,
3064                                 unsigned Align,
3065                                 const Value *DstSV, uint64_t DstSVOff) {
3066  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3067
3068  // Expand memset to a series of load/store ops if the size operand
3069  // falls below a certain threshold.
3070  std::vector<MVT> MemOps;
3071  std::string Str;
3072  bool CopyFromStr;
3073  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3074                                Size, Align, Str, CopyFromStr, DAG, TLI))
3075    return SDValue();
3076
3077  SmallVector<SDValue, 8> OutChains;
3078  uint64_t DstOff = 0;
3079
3080  unsigned NumMemOps = MemOps.size();
3081  for (unsigned i = 0; i < NumMemOps; i++) {
3082    MVT VT = MemOps[i];
3083    unsigned VTSize = VT.getSizeInBits() / 8;
3084    SDValue Value = getMemsetValue(Src, VT, DAG);
3085    SDValue Store = DAG.getStore(Chain, Value,
3086                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3087                                 DstSV, DstSVOff + DstOff);
3088    OutChains.push_back(Store);
3089    DstOff += VTSize;
3090  }
3091
3092  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3093                     &OutChains[0], OutChains.size());
3094}
3095
3096SDValue SelectionDAG::getMemcpy(SDValue Chain, SDValue Dst,
3097                                SDValue Src, SDValue Size,
3098                                unsigned Align, bool AlwaysInline,
3099                                const Value *DstSV, uint64_t DstSVOff,
3100                                const Value *SrcSV, uint64_t SrcSVOff) {
3101
3102  // Check to see if we should lower the memcpy to loads and stores first.
3103  // For cases within the target-specified limits, this is the best choice.
3104  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3105  if (ConstantSize) {
3106    // Memcpy with size zero? Just return the original chain.
3107    if (ConstantSize->isNullValue())
3108      return Chain;
3109
3110    SDValue Result =
3111      getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3112                              ConstantSize->getZExtValue(),
3113                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3114    if (Result.getNode())
3115      return Result;
3116  }
3117
3118  // Then check to see if we should lower the memcpy with target-specific
3119  // code. If the target chooses to do this, this is the next best.
3120  SDValue Result =
3121    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
3122                                AlwaysInline,
3123                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3124  if (Result.getNode())
3125    return Result;
3126
3127  // If we really need inline code and the target declined to provide it,
3128  // use a (potentially long) sequence of loads and stores.
3129  if (AlwaysInline) {
3130    assert(ConstantSize && "AlwaysInline requires a constant size!");
3131    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3132                                   ConstantSize->getZExtValue(), Align, true,
3133                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3134  }
3135
3136  // Emit a library call.
3137  TargetLowering::ArgListTy Args;
3138  TargetLowering::ArgListEntry Entry;
3139  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3140  Entry.Node = Dst; Args.push_back(Entry);
3141  Entry.Node = Src; Args.push_back(Entry);
3142  Entry.Node = Size; Args.push_back(Entry);
3143  std::pair<SDValue,SDValue> CallResult =
3144    TLI.LowerCallTo(Chain, Type::VoidTy,
3145                    false, false, false, false, CallingConv::C, false,
3146                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3147                    Args, *this);
3148  return CallResult.second;
3149}
3150
3151SDValue SelectionDAG::getMemmove(SDValue Chain, SDValue Dst,
3152                                 SDValue Src, SDValue Size,
3153                                 unsigned Align,
3154                                 const Value *DstSV, uint64_t DstSVOff,
3155                                 const Value *SrcSV, uint64_t SrcSVOff) {
3156
3157  // Check to see if we should lower the memmove to loads and stores first.
3158  // For cases within the target-specified limits, this is the best choice.
3159  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3160  if (ConstantSize) {
3161    // Memmove with size zero? Just return the original chain.
3162    if (ConstantSize->isNullValue())
3163      return Chain;
3164
3165    SDValue Result =
3166      getMemmoveLoadsAndStores(*this, Chain, Dst, Src,
3167                               ConstantSize->getZExtValue(),
3168                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3169    if (Result.getNode())
3170      return Result;
3171  }
3172
3173  // Then check to see if we should lower the memmove with target-specific
3174  // code. If the target chooses to do this, this is the next best.
3175  SDValue Result =
3176    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
3177                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3178  if (Result.getNode())
3179    return Result;
3180
3181  // Emit a library call.
3182  TargetLowering::ArgListTy Args;
3183  TargetLowering::ArgListEntry Entry;
3184  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3185  Entry.Node = Dst; Args.push_back(Entry);
3186  Entry.Node = Src; Args.push_back(Entry);
3187  Entry.Node = Size; Args.push_back(Entry);
3188  std::pair<SDValue,SDValue> CallResult =
3189    TLI.LowerCallTo(Chain, Type::VoidTy,
3190                    false, false, false, false, CallingConv::C, false,
3191                    getExternalSymbol("memmove", TLI.getPointerTy()),
3192                    Args, *this);
3193  return CallResult.second;
3194}
3195
3196SDValue SelectionDAG::getMemset(SDValue Chain, SDValue Dst,
3197                                SDValue Src, SDValue Size,
3198                                unsigned Align,
3199                                const Value *DstSV, uint64_t DstSVOff) {
3200
3201  // Check to see if we should lower the memset to stores first.
3202  // For cases within the target-specified limits, this is the best choice.
3203  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3204  if (ConstantSize) {
3205    // Memset with size zero? Just return the original chain.
3206    if (ConstantSize->isNullValue())
3207      return Chain;
3208
3209    SDValue Result =
3210      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getZExtValue(),
3211                      Align, DstSV, DstSVOff);
3212    if (Result.getNode())
3213      return Result;
3214  }
3215
3216  // Then check to see if we should lower the memset with target-specific
3217  // code. If the target chooses to do this, this is the next best.
3218  SDValue Result =
3219    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
3220                                DstSV, DstSVOff);
3221  if (Result.getNode())
3222    return Result;
3223
3224  // Emit a library call.
3225  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3226  TargetLowering::ArgListTy Args;
3227  TargetLowering::ArgListEntry Entry;
3228  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3229  Args.push_back(Entry);
3230  // Extend or truncate the argument to be an i32 value for the call.
3231  if (Src.getValueType().bitsGT(MVT::i32))
3232    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
3233  else
3234    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
3235  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3236  Args.push_back(Entry);
3237  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3238  Args.push_back(Entry);
3239  std::pair<SDValue,SDValue> CallResult =
3240    TLI.LowerCallTo(Chain, Type::VoidTy,
3241                    false, false, false, false, CallingConv::C, false,
3242                    getExternalSymbol("memset", TLI.getPointerTy()),
3243                    Args, *this);
3244  return CallResult.second;
3245}
3246
3247SDValue SelectionDAG::getAtomic(unsigned Opcode, MVT MemVT,
3248                                SDValue Chain,
3249                                SDValue Ptr, SDValue Cmp,
3250                                SDValue Swp, const Value* PtrVal,
3251                                unsigned Alignment) {
3252  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3253  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3254
3255  MVT VT = Cmp.getValueType();
3256
3257  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3258    Alignment = getMVTAlignment(MemVT);
3259
3260  SDVTList VTs = getVTList(VT, MVT::Other);
3261  FoldingSetNodeID ID;
3262  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3263  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3264  void* IP = 0;
3265  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3266    return SDValue(E, 0);
3267  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3268  new (N) AtomicSDNode(Opcode, VTs, MemVT,
3269                       Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3270  CSEMap.InsertNode(N, IP);
3271  AllNodes.push_back(N);
3272  return SDValue(N, 0);
3273}
3274
3275SDValue SelectionDAG::getAtomic(unsigned Opcode, MVT MemVT,
3276                                SDValue Chain,
3277                                SDValue Ptr, SDValue Val,
3278                                const Value* PtrVal,
3279                                unsigned Alignment) {
3280  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3281          Opcode == ISD::ATOMIC_LOAD_SUB ||
3282          Opcode == ISD::ATOMIC_LOAD_AND ||
3283          Opcode == ISD::ATOMIC_LOAD_OR ||
3284          Opcode == ISD::ATOMIC_LOAD_XOR ||
3285          Opcode == ISD::ATOMIC_LOAD_NAND ||
3286          Opcode == ISD::ATOMIC_LOAD_MIN ||
3287          Opcode == ISD::ATOMIC_LOAD_MAX ||
3288          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3289          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3290          Opcode == ISD::ATOMIC_SWAP) &&
3291         "Invalid Atomic Op");
3292
3293  MVT VT = Val.getValueType();
3294
3295  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3296    Alignment = getMVTAlignment(MemVT);
3297
3298  SDVTList VTs = getVTList(VT, MVT::Other);
3299  FoldingSetNodeID ID;
3300  SDValue Ops[] = {Chain, Ptr, Val};
3301  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3302  void* IP = 0;
3303  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3304    return SDValue(E, 0);
3305  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3306  new (N) AtomicSDNode(Opcode, VTs, MemVT,
3307                       Chain, Ptr, Val, PtrVal, Alignment);
3308  CSEMap.InsertNode(N, IP);
3309  AllNodes.push_back(N);
3310  return SDValue(N, 0);
3311}
3312
3313/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3314/// Allowed to return something different (and simpler) if Simplify is true.
3315SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps) {
3316  if (NumOps == 1)
3317    return Ops[0];
3318
3319  SmallVector<MVT, 4> VTs;
3320  VTs.reserve(NumOps);
3321  for (unsigned i = 0; i < NumOps; ++i)
3322    VTs.push_back(Ops[i].getValueType());
3323  return getNode(ISD::MERGE_VALUES, getVTList(&VTs[0], NumOps), Ops, NumOps);
3324}
3325
3326SDValue
3327SelectionDAG::getMemIntrinsicNode(unsigned Opcode,
3328                                  const MVT *VTs, unsigned NumVTs,
3329                                  const SDValue *Ops, unsigned NumOps,
3330                                  MVT MemVT, const Value *srcValue, int SVOff,
3331                                  unsigned Align, bool Vol,
3332                                  bool ReadMem, bool WriteMem) {
3333  return getMemIntrinsicNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps,
3334                             MemVT, srcValue, SVOff, Align, Vol,
3335                             ReadMem, WriteMem);
3336}
3337
3338SDValue
3339SelectionDAG::getMemIntrinsicNode(unsigned Opcode, SDVTList VTList,
3340                                  const SDValue *Ops, unsigned NumOps,
3341                                  MVT MemVT, const Value *srcValue, int SVOff,
3342                                  unsigned Align, bool Vol,
3343                                  bool ReadMem, bool WriteMem) {
3344  // Memoize the node unless it returns a flag.
3345  MemIntrinsicSDNode *N;
3346  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3347    FoldingSetNodeID ID;
3348    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3349    void *IP = 0;
3350    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3351      return SDValue(E, 0);
3352
3353    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3354    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3355                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3356    CSEMap.InsertNode(N, IP);
3357  } else {
3358    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3359    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3360                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3361  }
3362  AllNodes.push_back(N);
3363  return SDValue(N, 0);
3364}
3365
3366SDValue
3367SelectionDAG::getCall(unsigned CallingConv, bool IsVarArgs, bool IsTailCall,
3368                      bool IsInreg, SDVTList VTs,
3369                      const SDValue *Operands, unsigned NumOperands) {
3370  // Do not include isTailCall in the folding set profile.
3371  FoldingSetNodeID ID;
3372  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3373  ID.AddInteger(CallingConv);
3374  ID.AddInteger(IsVarArgs);
3375  void *IP = 0;
3376  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3377    // Instead of including isTailCall in the folding set, we just
3378    // set the flag of the existing node.
3379    if (!IsTailCall)
3380      cast<CallSDNode>(E)->setNotTailCall();
3381    return SDValue(E, 0);
3382  }
3383  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3384  new (N) CallSDNode(CallingConv, IsVarArgs, IsTailCall, IsInreg,
3385                     VTs, Operands, NumOperands);
3386  CSEMap.InsertNode(N, IP);
3387  AllNodes.push_back(N);
3388  return SDValue(N, 0);
3389}
3390
3391SDValue
3392SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3393                      MVT VT, SDValue Chain,
3394                      SDValue Ptr, SDValue Offset,
3395                      const Value *SV, int SVOffset, MVT EVT,
3396                      bool isVolatile, unsigned Alignment) {
3397  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3398    Alignment = getMVTAlignment(VT);
3399
3400  if (VT == EVT) {
3401    ExtType = ISD::NON_EXTLOAD;
3402  } else if (ExtType == ISD::NON_EXTLOAD) {
3403    assert(VT == EVT && "Non-extending load from different memory type!");
3404  } else {
3405    // Extending load.
3406    if (VT.isVector())
3407      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3408             "Invalid vector extload!");
3409    else
3410      assert(EVT.bitsLT(VT) &&
3411             "Should only be an extending load, not truncating!");
3412    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3413           "Cannot sign/zero extend a FP/Vector load!");
3414    assert(VT.isInteger() == EVT.isInteger() &&
3415           "Cannot convert from FP to Int or Int -> FP!");
3416  }
3417
3418  bool Indexed = AM != ISD::UNINDEXED;
3419  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3420         "Unindexed load with an offset!");
3421
3422  SDVTList VTs = Indexed ?
3423    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3424  SDValue Ops[] = { Chain, Ptr, Offset };
3425  FoldingSetNodeID ID;
3426  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3427  ID.AddInteger(AM);
3428  ID.AddInteger(ExtType);
3429  ID.AddInteger(EVT.getRawBits());
3430  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3431  void *IP = 0;
3432  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3433    return SDValue(E, 0);
3434  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3435  new (N) LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
3436                     Alignment, isVolatile);
3437  CSEMap.InsertNode(N, IP);
3438  AllNodes.push_back(N);
3439  return SDValue(N, 0);
3440}
3441
3442SDValue SelectionDAG::getLoad(MVT VT,
3443                              SDValue Chain, SDValue Ptr,
3444                              const Value *SV, int SVOffset,
3445                              bool isVolatile, unsigned Alignment) {
3446  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3447  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3448                 SV, SVOffset, VT, isVolatile, Alignment);
3449}
3450
3451SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT VT,
3452                                 SDValue Chain, SDValue Ptr,
3453                                 const Value *SV,
3454                                 int SVOffset, MVT EVT,
3455                                 bool isVolatile, unsigned Alignment) {
3456  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3457  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
3458                 SV, SVOffset, EVT, isVolatile, Alignment);
3459}
3460
3461SDValue
3462SelectionDAG::getIndexedLoad(SDValue OrigLoad, SDValue Base,
3463                             SDValue Offset, ISD::MemIndexedMode AM) {
3464  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3465  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3466         "Load is already a indexed load!");
3467  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
3468                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3469                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3470                 LD->isVolatile(), LD->getAlignment());
3471}
3472
3473SDValue SelectionDAG::getStore(SDValue Chain, SDValue Val,
3474                               SDValue Ptr, const Value *SV, int SVOffset,
3475                               bool isVolatile, unsigned Alignment) {
3476  MVT VT = Val.getValueType();
3477
3478  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3479    Alignment = getMVTAlignment(VT);
3480
3481  SDVTList VTs = getVTList(MVT::Other);
3482  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3483  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3484  FoldingSetNodeID ID;
3485  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3486  ID.AddInteger(ISD::UNINDEXED);
3487  ID.AddInteger(false);
3488  ID.AddInteger(VT.getRawBits());
3489  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3490  void *IP = 0;
3491  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3492    return SDValue(E, 0);
3493  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3494  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
3495                      VT, SV, SVOffset, Alignment, isVolatile);
3496  CSEMap.InsertNode(N, IP);
3497  AllNodes.push_back(N);
3498  return SDValue(N, 0);
3499}
3500
3501SDValue SelectionDAG::getTruncStore(SDValue Chain, SDValue Val,
3502                                    SDValue Ptr, const Value *SV,
3503                                    int SVOffset, MVT SVT,
3504                                    bool isVolatile, unsigned Alignment) {
3505  MVT VT = Val.getValueType();
3506
3507  if (VT == SVT)
3508    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3509
3510  assert(VT.bitsGT(SVT) && "Not a truncation?");
3511  assert(VT.isInteger() == SVT.isInteger() &&
3512         "Can't do FP-INT conversion!");
3513
3514  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3515    Alignment = getMVTAlignment(VT);
3516
3517  SDVTList VTs = getVTList(MVT::Other);
3518  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3519  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3520  FoldingSetNodeID ID;
3521  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3522  ID.AddInteger(ISD::UNINDEXED);
3523  ID.AddInteger(1);
3524  ID.AddInteger(SVT.getRawBits());
3525  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3526  void *IP = 0;
3527  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3528    return SDValue(E, 0);
3529  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3530  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
3531                      SVT, SV, SVOffset, Alignment, isVolatile);
3532  CSEMap.InsertNode(N, IP);
3533  AllNodes.push_back(N);
3534  return SDValue(N, 0);
3535}
3536
3537SDValue
3538SelectionDAG::getIndexedStore(SDValue OrigStore, SDValue Base,
3539                              SDValue Offset, ISD::MemIndexedMode AM) {
3540  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3541  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3542         "Store is already a indexed store!");
3543  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3544  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3545  FoldingSetNodeID ID;
3546  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3547  ID.AddInteger(AM);
3548  ID.AddInteger(ST->isTruncatingStore());
3549  ID.AddInteger(ST->getMemoryVT().getRawBits());
3550  ID.AddInteger(ST->getRawFlags());
3551  void *IP = 0;
3552  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3553    return SDValue(E, 0);
3554  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3555  new (N) StoreSDNode(Ops, VTs, AM,
3556                      ST->isTruncatingStore(), ST->getMemoryVT(),
3557                      ST->getSrcValue(), ST->getSrcValueOffset(),
3558                      ST->getAlignment(), ST->isVolatile());
3559  CSEMap.InsertNode(N, IP);
3560  AllNodes.push_back(N);
3561  return SDValue(N, 0);
3562}
3563
3564SDValue SelectionDAG::getVAArg(MVT VT,
3565                               SDValue Chain, SDValue Ptr,
3566                               SDValue SV) {
3567  SDValue Ops[] = { Chain, Ptr, SV };
3568  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
3569}
3570
3571SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3572                              const SDUse *Ops, unsigned NumOps) {
3573  switch (NumOps) {
3574  case 0: return getNode(Opcode, VT);
3575  case 1: return getNode(Opcode, VT, Ops[0]);
3576  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3577  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3578  default: break;
3579  }
3580
3581  // Copy from an SDUse array into an SDValue array for use with
3582  // the regular getNode logic.
3583  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3584  return getNode(Opcode, VT, &NewOps[0], NumOps);
3585}
3586
3587SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3588                              const SDValue *Ops, unsigned NumOps) {
3589  switch (NumOps) {
3590  case 0: return getNode(Opcode, VT);
3591  case 1: return getNode(Opcode, VT, Ops[0]);
3592  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3593  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3594  default: break;
3595  }
3596
3597  switch (Opcode) {
3598  default: break;
3599  case ISD::SELECT_CC: {
3600    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3601    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3602           "LHS and RHS of condition must have same type!");
3603    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3604           "True and False arms of SelectCC must have same type!");
3605    assert(Ops[2].getValueType() == VT &&
3606           "select_cc node must be of same type as true and false value!");
3607    break;
3608  }
3609  case ISD::BR_CC: {
3610    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3611    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3612           "LHS/RHS of comparison should match types!");
3613    break;
3614  }
3615  }
3616
3617  // Memoize nodes.
3618  SDNode *N;
3619  SDVTList VTs = getVTList(VT);
3620  if (VT != MVT::Flag) {
3621    FoldingSetNodeID ID;
3622    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3623    void *IP = 0;
3624    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3625      return SDValue(E, 0);
3626    N = NodeAllocator.Allocate<SDNode>();
3627    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3628    CSEMap.InsertNode(N, IP);
3629  } else {
3630    N = NodeAllocator.Allocate<SDNode>();
3631    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3632  }
3633  AllNodes.push_back(N);
3634#ifndef NDEBUG
3635  VerifyNode(N);
3636#endif
3637  return SDValue(N, 0);
3638}
3639
3640SDValue SelectionDAG::getNode(unsigned Opcode,
3641                              const std::vector<MVT> &ResultTys,
3642                              const SDValue *Ops, unsigned NumOps) {
3643  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
3644                 Ops, NumOps);
3645}
3646
3647SDValue SelectionDAG::getNode(unsigned Opcode,
3648                              const MVT *VTs, unsigned NumVTs,
3649                              const SDValue *Ops, unsigned NumOps) {
3650  if (NumVTs == 1)
3651    return getNode(Opcode, VTs[0], Ops, NumOps);
3652  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
3653}
3654
3655SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3656                              const SDValue *Ops, unsigned NumOps) {
3657  if (VTList.NumVTs == 1)
3658    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
3659
3660  switch (Opcode) {
3661  // FIXME: figure out how to safely handle things like
3662  // int foo(int x) { return 1 << (x & 255); }
3663  // int bar() { return foo(256); }
3664#if 0
3665  case ISD::SRA_PARTS:
3666  case ISD::SRL_PARTS:
3667  case ISD::SHL_PARTS:
3668    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3669        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3670      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3671    else if (N3.getOpcode() == ISD::AND)
3672      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3673        // If the and is only masking out bits that cannot effect the shift,
3674        // eliminate the and.
3675        unsigned NumBits = VT.getSizeInBits()*2;
3676        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3677          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3678      }
3679    break;
3680#endif
3681  }
3682
3683  // Memoize the node unless it returns a flag.
3684  SDNode *N;
3685  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3686    FoldingSetNodeID ID;
3687    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3688    void *IP = 0;
3689    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3690      return SDValue(E, 0);
3691    if (NumOps == 1) {
3692      N = NodeAllocator.Allocate<UnarySDNode>();
3693      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3694    } else if (NumOps == 2) {
3695      N = NodeAllocator.Allocate<BinarySDNode>();
3696      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3697    } else if (NumOps == 3) {
3698      N = NodeAllocator.Allocate<TernarySDNode>();
3699      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3700    } else {
3701      N = NodeAllocator.Allocate<SDNode>();
3702      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3703    }
3704    CSEMap.InsertNode(N, IP);
3705  } else {
3706    if (NumOps == 1) {
3707      N = NodeAllocator.Allocate<UnarySDNode>();
3708      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3709    } else if (NumOps == 2) {
3710      N = NodeAllocator.Allocate<BinarySDNode>();
3711      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3712    } else if (NumOps == 3) {
3713      N = NodeAllocator.Allocate<TernarySDNode>();
3714      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3715    } else {
3716      N = NodeAllocator.Allocate<SDNode>();
3717      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3718    }
3719  }
3720  AllNodes.push_back(N);
3721#ifndef NDEBUG
3722  VerifyNode(N);
3723#endif
3724  return SDValue(N, 0);
3725}
3726
3727SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
3728  return getNode(Opcode, VTList, 0, 0);
3729}
3730
3731SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3732                                SDValue N1) {
3733  SDValue Ops[] = { N1 };
3734  return getNode(Opcode, VTList, Ops, 1);
3735}
3736
3737SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3738                              SDValue N1, SDValue N2) {
3739  SDValue Ops[] = { N1, N2 };
3740  return getNode(Opcode, VTList, Ops, 2);
3741}
3742
3743SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3744                              SDValue N1, SDValue N2, SDValue N3) {
3745  SDValue Ops[] = { N1, N2, N3 };
3746  return getNode(Opcode, VTList, Ops, 3);
3747}
3748
3749SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3750                              SDValue N1, SDValue N2, SDValue N3,
3751                              SDValue N4) {
3752  SDValue Ops[] = { N1, N2, N3, N4 };
3753  return getNode(Opcode, VTList, Ops, 4);
3754}
3755
3756SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3757                              SDValue N1, SDValue N2, SDValue N3,
3758                              SDValue N4, SDValue N5) {
3759  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3760  return getNode(Opcode, VTList, Ops, 5);
3761}
3762
3763SDVTList SelectionDAG::getVTList(MVT VT) {
3764  return makeVTList(SDNode::getValueTypeList(VT), 1);
3765}
3766
3767SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3768  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3769       E = VTList.rend(); I != E; ++I)
3770    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
3771      return *I;
3772
3773  MVT *Array = Allocator.Allocate<MVT>(2);
3774  Array[0] = VT1;
3775  Array[1] = VT2;
3776  SDVTList Result = makeVTList(Array, 2);
3777  VTList.push_back(Result);
3778  return Result;
3779}
3780
3781SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
3782  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3783       E = VTList.rend(); I != E; ++I)
3784    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3785                          I->VTs[2] == VT3)
3786      return *I;
3787
3788  MVT *Array = Allocator.Allocate<MVT>(3);
3789  Array[0] = VT1;
3790  Array[1] = VT2;
3791  Array[2] = VT3;
3792  SDVTList Result = makeVTList(Array, 3);
3793  VTList.push_back(Result);
3794  return Result;
3795}
3796
3797SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3, MVT VT4) {
3798  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3799       E = VTList.rend(); I != E; ++I)
3800    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3801                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
3802      return *I;
3803
3804  MVT *Array = Allocator.Allocate<MVT>(3);
3805  Array[0] = VT1;
3806  Array[1] = VT2;
3807  Array[2] = VT3;
3808  Array[3] = VT4;
3809  SDVTList Result = makeVTList(Array, 4);
3810  VTList.push_back(Result);
3811  return Result;
3812}
3813
3814SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
3815  switch (NumVTs) {
3816    case 0: assert(0 && "Cannot have nodes without results!");
3817    case 1: return getVTList(VTs[0]);
3818    case 2: return getVTList(VTs[0], VTs[1]);
3819    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3820    default: break;
3821  }
3822
3823  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3824       E = VTList.rend(); I != E; ++I) {
3825    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
3826      continue;
3827
3828    bool NoMatch = false;
3829    for (unsigned i = 2; i != NumVTs; ++i)
3830      if (VTs[i] != I->VTs[i]) {
3831        NoMatch = true;
3832        break;
3833      }
3834    if (!NoMatch)
3835      return *I;
3836  }
3837
3838  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
3839  std::copy(VTs, VTs+NumVTs, Array);
3840  SDVTList Result = makeVTList(Array, NumVTs);
3841  VTList.push_back(Result);
3842  return Result;
3843}
3844
3845
3846/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3847/// specified operands.  If the resultant node already exists in the DAG,
3848/// this does not modify the specified node, instead it returns the node that
3849/// already exists.  If the resultant node does not exist in the DAG, the
3850/// input node is returned.  As a degenerate case, if you specify the same
3851/// input operands as the node already has, the input node is returned.
3852SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
3853  SDNode *N = InN.getNode();
3854  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3855
3856  // Check to see if there is no change.
3857  if (Op == N->getOperand(0)) return InN;
3858
3859  // See if the modified node already exists.
3860  void *InsertPos = 0;
3861  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3862    return SDValue(Existing, InN.getResNo());
3863
3864  // Nope it doesn't.  Remove the node from its current place in the maps.
3865  if (InsertPos)
3866    if (!RemoveNodeFromCSEMaps(N))
3867      InsertPos = 0;
3868
3869  // Now we update the operands.
3870  N->OperandList[0].getVal()->removeUser(0, N);
3871  N->OperandList[0] = Op;
3872  N->OperandList[0].setUser(N);
3873  Op.getNode()->addUser(0, N);
3874
3875  // If this gets put into a CSE map, add it.
3876  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3877  return InN;
3878}
3879
3880SDValue SelectionDAG::
3881UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
3882  SDNode *N = InN.getNode();
3883  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3884
3885  // Check to see if there is no change.
3886  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3887    return InN;   // No operands changed, just return the input node.
3888
3889  // See if the modified node already exists.
3890  void *InsertPos = 0;
3891  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3892    return SDValue(Existing, InN.getResNo());
3893
3894  // Nope it doesn't.  Remove the node from its current place in the maps.
3895  if (InsertPos)
3896    if (!RemoveNodeFromCSEMaps(N))
3897      InsertPos = 0;
3898
3899  // Now we update the operands.
3900  if (N->OperandList[0] != Op1) {
3901    N->OperandList[0].getVal()->removeUser(0, N);
3902    N->OperandList[0] = Op1;
3903    N->OperandList[0].setUser(N);
3904    Op1.getNode()->addUser(0, N);
3905  }
3906  if (N->OperandList[1] != Op2) {
3907    N->OperandList[1].getVal()->removeUser(1, N);
3908    N->OperandList[1] = Op2;
3909    N->OperandList[1].setUser(N);
3910    Op2.getNode()->addUser(1, N);
3911  }
3912
3913  // If this gets put into a CSE map, add it.
3914  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3915  return InN;
3916}
3917
3918SDValue SelectionDAG::
3919UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
3920  SDValue Ops[] = { Op1, Op2, Op3 };
3921  return UpdateNodeOperands(N, Ops, 3);
3922}
3923
3924SDValue SelectionDAG::
3925UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3926                   SDValue Op3, SDValue Op4) {
3927  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
3928  return UpdateNodeOperands(N, Ops, 4);
3929}
3930
3931SDValue SelectionDAG::
3932UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3933                   SDValue Op3, SDValue Op4, SDValue Op5) {
3934  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
3935  return UpdateNodeOperands(N, Ops, 5);
3936}
3937
3938SDValue SelectionDAG::
3939UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
3940  SDNode *N = InN.getNode();
3941  assert(N->getNumOperands() == NumOps &&
3942         "Update with wrong number of operands");
3943
3944  // Check to see if there is no change.
3945  bool AnyChange = false;
3946  for (unsigned i = 0; i != NumOps; ++i) {
3947    if (Ops[i] != N->getOperand(i)) {
3948      AnyChange = true;
3949      break;
3950    }
3951  }
3952
3953  // No operands changed, just return the input node.
3954  if (!AnyChange) return InN;
3955
3956  // See if the modified node already exists.
3957  void *InsertPos = 0;
3958  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
3959    return SDValue(Existing, InN.getResNo());
3960
3961  // Nope it doesn't.  Remove the node from its current place in the maps.
3962  if (InsertPos)
3963    if (!RemoveNodeFromCSEMaps(N))
3964      InsertPos = 0;
3965
3966  // Now we update the operands.
3967  for (unsigned i = 0; i != NumOps; ++i) {
3968    if (N->OperandList[i] != Ops[i]) {
3969      N->OperandList[i].getVal()->removeUser(i, N);
3970      N->OperandList[i] = Ops[i];
3971      N->OperandList[i].setUser(N);
3972      Ops[i].getNode()->addUser(i, N);
3973    }
3974  }
3975
3976  // If this gets put into a CSE map, add it.
3977  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3978  return InN;
3979}
3980
3981/// DropOperands - Release the operands and set this node to have
3982/// zero operands.
3983void SDNode::DropOperands() {
3984  // Unlike the code in MorphNodeTo that does this, we don't need to
3985  // watch for dead nodes here.
3986  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
3987    I->getVal()->removeUser(std::distance(op_begin(), I), this);
3988
3989  NumOperands = 0;
3990}
3991
3992/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
3993/// machine opcode.
3994///
3995SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3996                                   MVT VT) {
3997  SDVTList VTs = getVTList(VT);
3998  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
3999}
4000
4001SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4002                                   MVT VT, SDValue Op1) {
4003  SDVTList VTs = getVTList(VT);
4004  SDValue Ops[] = { Op1 };
4005  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4006}
4007
4008SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4009                                   MVT VT, SDValue Op1,
4010                                   SDValue Op2) {
4011  SDVTList VTs = getVTList(VT);
4012  SDValue Ops[] = { Op1, Op2 };
4013  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4014}
4015
4016SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4017                                   MVT VT, SDValue Op1,
4018                                   SDValue Op2, SDValue Op3) {
4019  SDVTList VTs = getVTList(VT);
4020  SDValue Ops[] = { Op1, Op2, Op3 };
4021  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4022}
4023
4024SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4025                                   MVT VT, const SDValue *Ops,
4026                                   unsigned NumOps) {
4027  SDVTList VTs = getVTList(VT);
4028  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4029}
4030
4031SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4032                                   MVT VT1, MVT VT2, const SDValue *Ops,
4033                                   unsigned NumOps) {
4034  SDVTList VTs = getVTList(VT1, VT2);
4035  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4036}
4037
4038SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4039                                   MVT VT1, MVT VT2) {
4040  SDVTList VTs = getVTList(VT1, VT2);
4041  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4042}
4043
4044SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4045                                   MVT VT1, MVT VT2, MVT VT3,
4046                                   const SDValue *Ops, unsigned NumOps) {
4047  SDVTList VTs = getVTList(VT1, VT2, VT3);
4048  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4049}
4050
4051SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4052                                   MVT VT1, MVT VT2, MVT VT3, MVT VT4,
4053                                   const SDValue *Ops, unsigned NumOps) {
4054  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4055  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4056}
4057
4058SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4059                                   MVT VT1, MVT VT2,
4060                                   SDValue Op1) {
4061  SDVTList VTs = getVTList(VT1, VT2);
4062  SDValue Ops[] = { Op1 };
4063  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4064}
4065
4066SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4067                                   MVT VT1, MVT VT2,
4068                                   SDValue Op1, SDValue Op2) {
4069  SDVTList VTs = getVTList(VT1, VT2);
4070  SDValue Ops[] = { Op1, Op2 };
4071  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4072}
4073
4074SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4075                                   MVT VT1, MVT VT2,
4076                                   SDValue Op1, SDValue Op2,
4077                                   SDValue Op3) {
4078  SDVTList VTs = getVTList(VT1, VT2);
4079  SDValue Ops[] = { Op1, Op2, Op3 };
4080  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4081}
4082
4083SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4084                                   MVT VT1, MVT VT2, MVT VT3,
4085                                   SDValue Op1, SDValue Op2,
4086                                   SDValue Op3) {
4087  SDVTList VTs = getVTList(VT1, VT2, VT3);
4088  SDValue Ops[] = { Op1, Op2, Op3 };
4089  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4090}
4091
4092SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4093                                   SDVTList VTs, const SDValue *Ops,
4094                                   unsigned NumOps) {
4095  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4096}
4097
4098SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4099                                  MVT VT) {
4100  SDVTList VTs = getVTList(VT);
4101  return MorphNodeTo(N, Opc, VTs, 0, 0);
4102}
4103
4104SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4105                                  MVT VT, SDValue Op1) {
4106  SDVTList VTs = getVTList(VT);
4107  SDValue Ops[] = { Op1 };
4108  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4109}
4110
4111SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4112                                  MVT VT, SDValue Op1,
4113                                  SDValue Op2) {
4114  SDVTList VTs = getVTList(VT);
4115  SDValue Ops[] = { Op1, Op2 };
4116  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4117}
4118
4119SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4120                                  MVT VT, SDValue Op1,
4121                                  SDValue Op2, SDValue Op3) {
4122  SDVTList VTs = getVTList(VT);
4123  SDValue Ops[] = { Op1, Op2, Op3 };
4124  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4125}
4126
4127SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4128                                  MVT VT, const SDValue *Ops,
4129                                  unsigned NumOps) {
4130  SDVTList VTs = getVTList(VT);
4131  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4132}
4133
4134SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4135                                  MVT VT1, MVT VT2, const SDValue *Ops,
4136                                  unsigned NumOps) {
4137  SDVTList VTs = getVTList(VT1, VT2);
4138  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4139}
4140
4141SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4142                                  MVT VT1, MVT VT2) {
4143  SDVTList VTs = getVTList(VT1, VT2);
4144  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4145}
4146
4147SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4148                                  MVT VT1, MVT VT2, MVT VT3,
4149                                  const SDValue *Ops, unsigned NumOps) {
4150  SDVTList VTs = getVTList(VT1, VT2, VT3);
4151  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4152}
4153
4154SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4155                                  MVT VT1, MVT VT2,
4156                                  SDValue Op1) {
4157  SDVTList VTs = getVTList(VT1, VT2);
4158  SDValue Ops[] = { Op1 };
4159  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4160}
4161
4162SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4163                                  MVT VT1, MVT VT2,
4164                                  SDValue Op1, SDValue Op2) {
4165  SDVTList VTs = getVTList(VT1, VT2);
4166  SDValue Ops[] = { Op1, Op2 };
4167  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4168}
4169
4170SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4171                                  MVT VT1, MVT VT2,
4172                                  SDValue Op1, SDValue Op2,
4173                                  SDValue Op3) {
4174  SDVTList VTs = getVTList(VT1, VT2);
4175  SDValue Ops[] = { Op1, Op2, Op3 };
4176  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4177}
4178
4179/// MorphNodeTo - These *mutate* the specified node to have the specified
4180/// return type, opcode, and operands.
4181///
4182/// Note that MorphNodeTo returns the resultant node.  If there is already a
4183/// node of the specified opcode and operands, it returns that node instead of
4184/// the current one.
4185///
4186/// Using MorphNodeTo is faster than creating a new node and swapping it in
4187/// with ReplaceAllUsesWith both because it often avoids allocating a new
4188/// node, and because it doesn't require CSE recalculation for any of
4189/// the node's users.
4190///
4191SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4192                                  SDVTList VTs, const SDValue *Ops,
4193                                  unsigned NumOps) {
4194  // If an identical node already exists, use it.
4195  void *IP = 0;
4196  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4197    FoldingSetNodeID ID;
4198    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4199    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4200      return ON;
4201  }
4202
4203  if (!RemoveNodeFromCSEMaps(N))
4204    IP = 0;
4205
4206  // Start the morphing.
4207  N->NodeType = Opc;
4208  N->ValueList = VTs.VTs;
4209  N->NumValues = VTs.NumVTs;
4210
4211  // Clear the operands list, updating used nodes to remove this from their
4212  // use list.  Keep track of any operands that become dead as a result.
4213  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4214  for (SDNode::op_iterator B = N->op_begin(), I = B, E = N->op_end();
4215       I != E; ++I) {
4216    SDNode *Used = I->getVal();
4217    Used->removeUser(std::distance(B, I), N);
4218    if (Used->use_empty())
4219      DeadNodeSet.insert(Used);
4220  }
4221
4222  // If NumOps is larger than the # of operands we currently have, reallocate
4223  // the operand list.
4224  if (NumOps > N->NumOperands) {
4225    if (N->OperandsNeedDelete)
4226      delete[] N->OperandList;
4227
4228    if (N->isMachineOpcode()) {
4229      // We're creating a final node that will live unmorphed for the
4230      // remainder of the current SelectionDAG iteration, so we can allocate
4231      // the operands directly out of a pool with no recycling metadata.
4232      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4233      N->OperandsNeedDelete = false;
4234    } else {
4235      N->OperandList = new SDUse[NumOps];
4236      N->OperandsNeedDelete = true;
4237    }
4238  }
4239
4240  // Assign the new operands.
4241  N->NumOperands = NumOps;
4242  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4243    N->OperandList[i] = Ops[i];
4244    N->OperandList[i].setUser(N);
4245    SDNode *ToUse = N->OperandList[i].getVal();
4246    ToUse->addUser(i, N);
4247  }
4248
4249  // Delete any nodes that are still dead after adding the uses for the
4250  // new operands.
4251  SmallVector<SDNode *, 16> DeadNodes;
4252  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4253       E = DeadNodeSet.end(); I != E; ++I)
4254    if ((*I)->use_empty())
4255      DeadNodes.push_back(*I);
4256  RemoveDeadNodes(DeadNodes);
4257
4258  if (IP)
4259    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4260  return N;
4261}
4262
4263
4264/// getTargetNode - These are used for target selectors to create a new node
4265/// with specified return type(s), target opcode, and operands.
4266///
4267/// Note that getTargetNode returns the resultant node.  If there is already a
4268/// node of the specified opcode and operands, it returns that node instead of
4269/// the current one.
4270SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT) {
4271  return getNode(~Opcode, VT).getNode();
4272}
4273SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, SDValue Op1) {
4274  return getNode(~Opcode, VT, Op1).getNode();
4275}
4276SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4277                                    SDValue Op1, SDValue Op2) {
4278  return getNode(~Opcode, VT, Op1, Op2).getNode();
4279}
4280SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4281                                    SDValue Op1, SDValue Op2,
4282                                    SDValue Op3) {
4283  return getNode(~Opcode, VT, Op1, Op2, Op3).getNode();
4284}
4285SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4286                                    const SDValue *Ops, unsigned NumOps) {
4287  return getNode(~Opcode, VT, Ops, NumOps).getNode();
4288}
4289SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2) {
4290  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4291  SDValue Op;
4292  return getNode(~Opcode, VTs, 2, &Op, 0).getNode();
4293}
4294SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4295                                    MVT VT2, SDValue Op1) {
4296  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4297  return getNode(~Opcode, VTs, 2, &Op1, 1).getNode();
4298}
4299SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4300                                    MVT VT2, SDValue Op1,
4301                                    SDValue Op2) {
4302  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4303  SDValue Ops[] = { Op1, Op2 };
4304  return getNode(~Opcode, VTs, 2, Ops, 2).getNode();
4305}
4306SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4307                                    MVT VT2, SDValue Op1,
4308                                    SDValue Op2, SDValue Op3) {
4309  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4310  SDValue Ops[] = { Op1, Op2, Op3 };
4311  return getNode(~Opcode, VTs, 2, Ops, 3).getNode();
4312}
4313SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
4314                                    const SDValue *Ops, unsigned NumOps) {
4315  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4316  return getNode(~Opcode, VTs, 2, Ops, NumOps).getNode();
4317}
4318SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4319                                    SDValue Op1, SDValue Op2) {
4320  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4321  SDValue Ops[] = { Op1, Op2 };
4322  return getNode(~Opcode, VTs, 3, Ops, 2).getNode();
4323}
4324SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4325                                    SDValue Op1, SDValue Op2,
4326                                    SDValue Op3) {
4327  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4328  SDValue Ops[] = { Op1, Op2, Op3 };
4329  return getNode(~Opcode, VTs, 3, Ops, 3).getNode();
4330}
4331SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4332                                    const SDValue *Ops, unsigned NumOps) {
4333  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4334  return getNode(~Opcode, VTs, 3, Ops, NumOps).getNode();
4335}
4336SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4337                                    MVT VT2, MVT VT3, MVT VT4,
4338                                    const SDValue *Ops, unsigned NumOps) {
4339  std::vector<MVT> VTList;
4340  VTList.push_back(VT1);
4341  VTList.push_back(VT2);
4342  VTList.push_back(VT3);
4343  VTList.push_back(VT4);
4344  const MVT *VTs = getNodeValueTypes(VTList);
4345  return getNode(~Opcode, VTs, 4, Ops, NumOps).getNode();
4346}
4347SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
4348                                    const std::vector<MVT> &ResultTys,
4349                                    const SDValue *Ops, unsigned NumOps) {
4350  const MVT *VTs = getNodeValueTypes(ResultTys);
4351  return getNode(~Opcode, VTs, ResultTys.size(),
4352                 Ops, NumOps).getNode();
4353}
4354
4355/// getNodeIfExists - Get the specified node if it's already available, or
4356/// else return NULL.
4357SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4358                                      const SDValue *Ops, unsigned NumOps) {
4359  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4360    FoldingSetNodeID ID;
4361    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4362    void *IP = 0;
4363    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4364      return E;
4365  }
4366  return NULL;
4367}
4368
4369
4370/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4371/// This can cause recursive merging of nodes in the DAG.
4372///
4373/// This version assumes From has a single result value.
4374///
4375void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4376                                      DAGUpdateListener *UpdateListener) {
4377  SDNode *From = FromN.getNode();
4378  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4379         "Cannot replace with this method!");
4380  assert(From != To.getNode() && "Cannot replace uses of with self");
4381
4382  // Iterate over all the existing uses of From. This specifically avoids
4383  // visiting any new uses of From that arrise while the replacement is
4384  // happening, because any such uses would be the result of CSE: If an
4385  // existing node looks like From after one of its operands is replaced
4386  // by To, we don't want to replace of all its users with To too.
4387  // See PR3018 for more info.
4388  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4389  while (UI != UE) {
4390    SDNode *U = *UI;
4391    do ++UI; while (UI != UE && *UI == U);
4392
4393    // This node is about to morph, remove its old self from the CSE maps.
4394    RemoveNodeFromCSEMaps(U);
4395    int operandNum = 0;
4396    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4397         I != E; ++I, ++operandNum)
4398      if (I->getVal() == From) {
4399        From->removeUser(operandNum, U);
4400        *I = To;
4401        I->setUser(U);
4402        To.getNode()->addUser(operandNum, U);
4403      }
4404
4405    // Now that we have modified U, add it back to the CSE maps.  If it already
4406    // exists there, recursively merge the results together.
4407    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4408      ReplaceAllUsesWith(U, Existing, UpdateListener);
4409      // U is now dead.  Inform the listener if it exists and delete it.
4410      if (UpdateListener)
4411        UpdateListener->NodeDeleted(U, Existing);
4412      DeleteNodeNotInCSEMaps(U);
4413    } else {
4414      // If the node doesn't already exist, we updated it.  Inform a listener if
4415      // it exists.
4416      if (UpdateListener)
4417        UpdateListener->NodeUpdated(U);
4418    }
4419  }
4420}
4421
4422/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4423/// This can cause recursive merging of nodes in the DAG.
4424///
4425/// This version assumes From/To have matching types and numbers of result
4426/// values.
4427///
4428void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4429                                      DAGUpdateListener *UpdateListener) {
4430  assert(From->getVTList().VTs == To->getVTList().VTs &&
4431         From->getNumValues() == To->getNumValues() &&
4432         "Cannot use this version of ReplaceAllUsesWith!");
4433
4434  // Handle the trivial case.
4435  if (From == To)
4436    return;
4437
4438  // Iterate over just the existing users of From. See the comments in
4439  // the ReplaceAllUsesWith above.
4440  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4441  while (UI != UE) {
4442    SDNode *U = *UI;
4443    do ++UI; while (UI != UE && *UI == U);
4444
4445    // This node is about to morph, remove its old self from the CSE maps.
4446    RemoveNodeFromCSEMaps(U);
4447    int operandNum = 0;
4448    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4449         I != E; ++I, ++operandNum)
4450      if (I->getVal() == From) {
4451        From->removeUser(operandNum, U);
4452        I->getSDValue().setNode(To);
4453        To->addUser(operandNum, U);
4454      }
4455
4456    // Now that we have modified U, add it back to the CSE maps.  If it already
4457    // exists there, recursively merge the results together.
4458    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4459      ReplaceAllUsesWith(U, Existing, UpdateListener);
4460      // U is now dead.  Inform the listener if it exists and delete it.
4461      if (UpdateListener)
4462        UpdateListener->NodeDeleted(U, Existing);
4463      DeleteNodeNotInCSEMaps(U);
4464    } else {
4465      // If the node doesn't already exist, we updated it.  Inform a listener if
4466      // it exists.
4467      if (UpdateListener)
4468        UpdateListener->NodeUpdated(U);
4469    }
4470  }
4471}
4472
4473/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4474/// This can cause recursive merging of nodes in the DAG.
4475///
4476/// This version can replace From with any result values.  To must match the
4477/// number and types of values returned by From.
4478void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4479                                      const SDValue *To,
4480                                      DAGUpdateListener *UpdateListener) {
4481  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4482    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4483
4484  // Iterate over just the existing users of From. See the comments in
4485  // the ReplaceAllUsesWith above.
4486  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4487  while (UI != UE) {
4488    SDNode *U = *UI;
4489    do ++UI; while (UI != UE && *UI == U);
4490
4491    // This node is about to morph, remove its old self from the CSE maps.
4492    RemoveNodeFromCSEMaps(U);
4493    int operandNum = 0;
4494    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4495         I != E; ++I, ++operandNum)
4496      if (I->getVal() == From) {
4497        const SDValue &ToOp = To[I->getSDValue().getResNo()];
4498        From->removeUser(operandNum, U);
4499        *I = ToOp;
4500        I->setUser(U);
4501        ToOp.getNode()->addUser(operandNum, U);
4502      }
4503
4504    // Now that we have modified U, add it back to the CSE maps.  If it already
4505    // exists there, recursively merge the results together.
4506    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4507      ReplaceAllUsesWith(U, Existing, UpdateListener);
4508      // U is now dead.  Inform the listener if it exists and delete it.
4509      if (UpdateListener)
4510        UpdateListener->NodeDeleted(U, Existing);
4511      DeleteNodeNotInCSEMaps(U);
4512    } else {
4513      // If the node doesn't already exist, we updated it.  Inform a listener if
4514      // it exists.
4515      if (UpdateListener)
4516        UpdateListener->NodeUpdated(U);
4517    }
4518  }
4519}
4520
4521/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4522/// uses of other values produced by From.getVal() alone.  The Deleted vector is
4523/// handled the same way as for ReplaceAllUsesWith.
4524void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4525                                             DAGUpdateListener *UpdateListener){
4526  // Handle the really simple, really trivial case efficiently.
4527  if (From == To) return;
4528
4529  // Handle the simple, trivial, case efficiently.
4530  if (From.getNode()->getNumValues() == 1) {
4531    ReplaceAllUsesWith(From, To, UpdateListener);
4532    return;
4533  }
4534
4535  // Get all of the users of From.getNode().  We want these in a nice,
4536  // deterministically ordered and uniqued set, so we use a SmallSetVector.
4537  SmallSetVector<SDNode*, 16> Users(From.getNode()->use_begin(), From.getNode()->use_end());
4538
4539  while (!Users.empty()) {
4540    // We know that this user uses some value of From.  If it is the right
4541    // value, update it.
4542    SDNode *User = Users.back();
4543    Users.pop_back();
4544
4545    // Scan for an operand that matches From.
4546    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4547    for (; Op != E; ++Op)
4548      if (*Op == From) break;
4549
4550    // If there are no matches, the user must use some other result of From.
4551    if (Op == E) continue;
4552
4553    // Okay, we know this user needs to be updated.  Remove its old self
4554    // from the CSE maps.
4555    RemoveNodeFromCSEMaps(User);
4556
4557    // Update all operands that match "From" in case there are multiple uses.
4558    for (; Op != E; ++Op) {
4559      if (*Op == From) {
4560        From.getNode()->removeUser(Op-User->op_begin(), User);
4561        *Op = To;
4562        Op->setUser(User);
4563        To.getNode()->addUser(Op-User->op_begin(), User);
4564      }
4565    }
4566
4567    // Now that we have modified User, add it back to the CSE maps.  If it
4568    // already exists there, recursively merge the results together.
4569    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4570    if (!Existing) {
4571      if (UpdateListener) UpdateListener->NodeUpdated(User);
4572      continue;  // Continue on to next user.
4573    }
4574
4575    // If there was already an existing matching node, use ReplaceAllUsesWith
4576    // to replace the dead one with the existing one.  This can cause
4577    // recursive merging of other unrelated nodes down the line.
4578    ReplaceAllUsesWith(User, Existing, UpdateListener);
4579
4580    // User is now dead.  Notify a listener if present.
4581    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4582    DeleteNodeNotInCSEMaps(User);
4583  }
4584}
4585
4586/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4587/// uses of other values produced by From.getVal() alone.  The same value may
4588/// appear in both the From and To list.  The Deleted vector is
4589/// handled the same way as for ReplaceAllUsesWith.
4590void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4591                                              const SDValue *To,
4592                                              unsigned Num,
4593                                              DAGUpdateListener *UpdateListener){
4594  // Handle the simple, trivial case efficiently.
4595  if (Num == 1)
4596    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4597
4598  SmallVector<std::pair<SDNode *, unsigned>, 16> Users;
4599  for (unsigned i = 0; i != Num; ++i)
4600    for (SDNode::use_iterator UI = From[i].getNode()->use_begin(),
4601         E = From[i].getNode()->use_end(); UI != E; ++UI)
4602      Users.push_back(std::make_pair(*UI, i));
4603
4604  while (!Users.empty()) {
4605    // We know that this user uses some value of From.  If it is the right
4606    // value, update it.
4607    SDNode *User = Users.back().first;
4608    unsigned i = Users.back().second;
4609    Users.pop_back();
4610
4611    // Scan for an operand that matches From.
4612    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4613    for (; Op != E; ++Op)
4614      if (*Op == From[i]) break;
4615
4616    // If there are no matches, the user must use some other result of From.
4617    if (Op == E) continue;
4618
4619    // Okay, we know this user needs to be updated.  Remove its old self
4620    // from the CSE maps.
4621    RemoveNodeFromCSEMaps(User);
4622
4623    // Update all operands that match "From" in case there are multiple uses.
4624    for (; Op != E; ++Op) {
4625      if (*Op == From[i]) {
4626        From[i].getNode()->removeUser(Op-User->op_begin(), User);
4627        *Op = To[i];
4628        Op->setUser(User);
4629        To[i].getNode()->addUser(Op-User->op_begin(), User);
4630      }
4631    }
4632
4633    // Now that we have modified User, add it back to the CSE maps.  If it
4634    // already exists there, recursively merge the results together.
4635    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4636    if (!Existing) {
4637      if (UpdateListener) UpdateListener->NodeUpdated(User);
4638      continue;  // Continue on to next user.
4639    }
4640
4641    // If there was already an existing matching node, use ReplaceAllUsesWith
4642    // to replace the dead one with the existing one.  This can cause
4643    // recursive merging of other unrelated nodes down the line.
4644    ReplaceAllUsesWith(User, Existing, UpdateListener);
4645
4646    // User is now dead.  Notify a listener if present.
4647    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4648    DeleteNodeNotInCSEMaps(User);
4649  }
4650}
4651
4652/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4653/// based on their topological order. It returns the maximum id and a vector
4654/// of the SDNodes* in assigned order by reference.
4655unsigned SelectionDAG::AssignTopologicalOrder() {
4656
4657  unsigned DAGSize = 0;
4658
4659  // SortedPos tracks the progress of the algorithm. Nodes before it are
4660  // sorted, nodes after it are unsorted. When the algorithm completes
4661  // it is at the end of the list.
4662  allnodes_iterator SortedPos = allnodes_begin();
4663
4664  // Visit all the nodes. Move nodes with no operands to the front of
4665  // the list immediately. Annotate nodes that do have operands with their
4666  // operand count. Before we do this, the Node Id fields of the nodes
4667  // may contain arbitrary values. After, the Node Id fields for nodes
4668  // before SortedPos will contain the topological sort index, and the
4669  // Node Id fields for nodes At SortedPos and after will contain the
4670  // count of outstanding operands.
4671  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
4672    SDNode *N = I++;
4673    unsigned Degree = N->getNumOperands();
4674    if (Degree == 0) {
4675      // A node with no uses, add it to the result array immediately.
4676      N->setNodeId(DAGSize++);
4677      allnodes_iterator Q = N;
4678      if (Q != SortedPos)
4679        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
4680      ++SortedPos;
4681    } else {
4682      // Temporarily use the Node Id as scratch space for the degree count.
4683      N->setNodeId(Degree);
4684    }
4685  }
4686
4687  // Visit all the nodes. As we iterate, moves nodes into sorted order,
4688  // such that by the time the end is reached all nodes will be sorted.
4689  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
4690    SDNode *N = I;
4691    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4692         UI != UE; ++UI) {
4693      SDNode *P = *UI;
4694      unsigned Degree = P->getNodeId();
4695      --Degree;
4696      if (Degree == 0) {
4697        // All of P's operands are sorted, so P may sorted now.
4698        P->setNodeId(DAGSize++);
4699        if (P != SortedPos)
4700          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
4701        ++SortedPos;
4702      } else {
4703        // Update P's outstanding operand count.
4704        P->setNodeId(Degree);
4705      }
4706    }
4707  }
4708
4709  assert(SortedPos == AllNodes.end() &&
4710         "Topological sort incomplete!");
4711  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
4712         "First node in topological sort is not the entry token!");
4713  assert(AllNodes.front().getNodeId() == 0 &&
4714         "First node in topological sort has non-zero id!");
4715  assert(AllNodes.front().getNumOperands() == 0 &&
4716         "First node in topological sort has operands!");
4717  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
4718         "Last node in topologic sort has unexpected id!");
4719  assert(AllNodes.back().use_empty() &&
4720         "Last node in topologic sort has users!");
4721  assert(DAGSize == allnodes_size() && "Node count mismatch!");
4722  return DAGSize;
4723}
4724
4725
4726
4727//===----------------------------------------------------------------------===//
4728//                              SDNode Class
4729//===----------------------------------------------------------------------===//
4730
4731HandleSDNode::~HandleSDNode() {
4732  DropOperands();
4733}
4734
4735GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4736                                         MVT VT, int64_t o)
4737  : SDNode(isa<GlobalVariable>(GA) &&
4738           cast<GlobalVariable>(GA)->isThreadLocal() ?
4739           // Thread Local
4740           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4741           // Non Thread Local
4742           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4743           getSDVTList(VT)), Offset(o) {
4744  TheGlobal = const_cast<GlobalValue*>(GA);
4745}
4746
4747MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, MVT memvt,
4748                     const Value *srcValue, int SVO,
4749                     unsigned alignment, bool vol)
4750 : SDNode(Opc, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
4751   Flags(encodeMemSDNodeFlags(vol, alignment)) {
4752
4753  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4754  assert(getAlignment() == alignment && "Alignment representation error!");
4755  assert(isVolatile() == vol && "Volatile representation error!");
4756}
4757
4758MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, const SDValue *Ops,
4759                     unsigned NumOps, MVT memvt, const Value *srcValue,
4760                     int SVO, unsigned alignment, bool vol)
4761   : SDNode(Opc, VTs, Ops, NumOps),
4762     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
4763     Flags(vol | ((Log2_32(alignment) + 1) << 1)) {
4764  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4765  assert(getAlignment() == alignment && "Alignment representation error!");
4766  assert(isVolatile() == vol && "Volatile representation error!");
4767}
4768
4769/// getMemOperand - Return a MachineMemOperand object describing the memory
4770/// reference performed by this memory reference.
4771MachineMemOperand MemSDNode::getMemOperand() const {
4772  int Flags = 0;
4773  if (isa<LoadSDNode>(this))
4774    Flags = MachineMemOperand::MOLoad;
4775  else if (isa<StoreSDNode>(this))
4776    Flags = MachineMemOperand::MOStore;
4777  else if (isa<AtomicSDNode>(this)) {
4778    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4779  }
4780  else {
4781    const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
4782    assert(MemIntrinNode && "Unknown MemSDNode opcode!");
4783    if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
4784    if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
4785  }
4786
4787  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4788  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4789
4790  // Check if the memory reference references a frame index
4791  const FrameIndexSDNode *FI =
4792  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
4793  if (!getSrcValue() && FI)
4794    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4795                             Flags, 0, Size, getAlignment());
4796  else
4797    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4798                             Size, getAlignment());
4799}
4800
4801/// Profile - Gather unique data for the node.
4802///
4803void SDNode::Profile(FoldingSetNodeID &ID) const {
4804  AddNodeIDNode(ID, this);
4805}
4806
4807/// getValueTypeList - Return a pointer to the specified value type.
4808///
4809const MVT *SDNode::getValueTypeList(MVT VT) {
4810  if (VT.isExtended()) {
4811    static std::set<MVT, MVT::compareRawBits> EVTs;
4812    return &(*EVTs.insert(VT).first);
4813  } else {
4814    static MVT VTs[MVT::LAST_VALUETYPE];
4815    VTs[VT.getSimpleVT()] = VT;
4816    return &VTs[VT.getSimpleVT()];
4817  }
4818}
4819
4820/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4821/// indicated value.  This method ignores uses of other values defined by this
4822/// operation.
4823bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4824  assert(Value < getNumValues() && "Bad value!");
4825
4826  // TODO: Only iterate over uses of a given value of the node
4827  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4828    if (UI.getUse().getSDValue().getResNo() == Value) {
4829      if (NUses == 0)
4830        return false;
4831      --NUses;
4832    }
4833  }
4834
4835  // Found exactly the right number of uses?
4836  return NUses == 0;
4837}
4838
4839
4840/// hasAnyUseOfValue - Return true if there are any use of the indicated
4841/// value. This method ignores uses of other values defined by this operation.
4842bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4843  assert(Value < getNumValues() && "Bad value!");
4844
4845  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
4846    if (UI.getUse().getSDValue().getResNo() == Value)
4847      return true;
4848
4849  return false;
4850}
4851
4852
4853/// isOnlyUserOf - Return true if this node is the only use of N.
4854///
4855bool SDNode::isOnlyUserOf(SDNode *N) const {
4856  bool Seen = false;
4857  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4858    SDNode *User = *I;
4859    if (User == this)
4860      Seen = true;
4861    else
4862      return false;
4863  }
4864
4865  return Seen;
4866}
4867
4868/// isOperand - Return true if this node is an operand of N.
4869///
4870bool SDValue::isOperandOf(SDNode *N) const {
4871  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4872    if (*this == N->getOperand(i))
4873      return true;
4874  return false;
4875}
4876
4877bool SDNode::isOperandOf(SDNode *N) const {
4878  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4879    if (this == N->OperandList[i].getVal())
4880      return true;
4881  return false;
4882}
4883
4884/// reachesChainWithoutSideEffects - Return true if this operand (which must
4885/// be a chain) reaches the specified operand without crossing any
4886/// side-effecting instructions.  In practice, this looks through token
4887/// factors and non-volatile loads.  In order to remain efficient, this only
4888/// looks a couple of nodes in, it does not do an exhaustive search.
4889bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
4890                                               unsigned Depth) const {
4891  if (*this == Dest) return true;
4892
4893  // Don't search too deeply, we just want to be able to see through
4894  // TokenFactor's etc.
4895  if (Depth == 0) return false;
4896
4897  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4898  // of the operands of the TF reach dest, then we can do the xform.
4899  if (getOpcode() == ISD::TokenFactor) {
4900    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4901      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4902        return true;
4903    return false;
4904  }
4905
4906  // Loads don't have side effects, look through them.
4907  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4908    if (!Ld->isVolatile())
4909      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4910  }
4911  return false;
4912}
4913
4914
4915static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4916                            SmallPtrSet<SDNode *, 32> &Visited) {
4917  if (found || !Visited.insert(N))
4918    return;
4919
4920  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4921    SDNode *Op = N->getOperand(i).getNode();
4922    if (Op == P) {
4923      found = true;
4924      return;
4925    }
4926    findPredecessor(Op, P, found, Visited);
4927  }
4928}
4929
4930/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4931/// is either an operand of N or it can be reached by recursively traversing
4932/// up the operands.
4933/// NOTE: this is an expensive method. Use it carefully.
4934bool SDNode::isPredecessorOf(SDNode *N) const {
4935  SmallPtrSet<SDNode *, 32> Visited;
4936  bool found = false;
4937  findPredecessor(N, this, found, Visited);
4938  return found;
4939}
4940
4941uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4942  assert(Num < NumOperands && "Invalid child # of SDNode!");
4943  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
4944}
4945
4946std::string SDNode::getOperationName(const SelectionDAG *G) const {
4947  switch (getOpcode()) {
4948  default:
4949    if (getOpcode() < ISD::BUILTIN_OP_END)
4950      return "<<Unknown DAG Node>>";
4951    if (isMachineOpcode()) {
4952      if (G)
4953        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
4954          if (getMachineOpcode() < TII->getNumOpcodes())
4955            return TII->get(getMachineOpcode()).getName();
4956      return "<<Unknown Machine Node>>";
4957    }
4958    if (G) {
4959      const TargetLowering &TLI = G->getTargetLoweringInfo();
4960      const char *Name = TLI.getTargetNodeName(getOpcode());
4961      if (Name) return Name;
4962      return "<<Unknown Target Node>>";
4963    }
4964    return "<<Unknown Node>>";
4965
4966#ifndef NDEBUG
4967  case ISD::DELETED_NODE:
4968    return "<<Deleted Node!>>";
4969#endif
4970  case ISD::PREFETCH:      return "Prefetch";
4971  case ISD::MEMBARRIER:    return "MemBarrier";
4972  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
4973  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
4974  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
4975  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
4976  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
4977  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
4978  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
4979  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
4980  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
4981  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
4982  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
4983  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
4984  case ISD::PCMARKER:      return "PCMarker";
4985  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
4986  case ISD::SRCVALUE:      return "SrcValue";
4987  case ISD::MEMOPERAND:    return "MemOperand";
4988  case ISD::EntryToken:    return "EntryToken";
4989  case ISD::TokenFactor:   return "TokenFactor";
4990  case ISD::AssertSext:    return "AssertSext";
4991  case ISD::AssertZext:    return "AssertZext";
4992
4993  case ISD::BasicBlock:    return "BasicBlock";
4994  case ISD::ARG_FLAGS:     return "ArgFlags";
4995  case ISD::VALUETYPE:     return "ValueType";
4996  case ISD::Register:      return "Register";
4997
4998  case ISD::Constant:      return "Constant";
4999  case ISD::ConstantFP:    return "ConstantFP";
5000  case ISD::GlobalAddress: return "GlobalAddress";
5001  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5002  case ISD::FrameIndex:    return "FrameIndex";
5003  case ISD::JumpTable:     return "JumpTable";
5004  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5005  case ISD::RETURNADDR: return "RETURNADDR";
5006  case ISD::FRAMEADDR: return "FRAMEADDR";
5007  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5008  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5009  case ISD::EHSELECTION: return "EHSELECTION";
5010  case ISD::EH_RETURN: return "EH_RETURN";
5011  case ISD::ConstantPool:  return "ConstantPool";
5012  case ISD::ExternalSymbol: return "ExternalSymbol";
5013  case ISD::INTRINSIC_WO_CHAIN: {
5014    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5015    return Intrinsic::getName((Intrinsic::ID)IID);
5016  }
5017  case ISD::INTRINSIC_VOID:
5018  case ISD::INTRINSIC_W_CHAIN: {
5019    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5020    return Intrinsic::getName((Intrinsic::ID)IID);
5021  }
5022
5023  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5024  case ISD::TargetConstant: return "TargetConstant";
5025  case ISD::TargetConstantFP:return "TargetConstantFP";
5026  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5027  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5028  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5029  case ISD::TargetJumpTable:  return "TargetJumpTable";
5030  case ISD::TargetConstantPool:  return "TargetConstantPool";
5031  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5032
5033  case ISD::CopyToReg:     return "CopyToReg";
5034  case ISD::CopyFromReg:   return "CopyFromReg";
5035  case ISD::UNDEF:         return "undef";
5036  case ISD::MERGE_VALUES:  return "merge_values";
5037  case ISD::INLINEASM:     return "inlineasm";
5038  case ISD::DBG_LABEL:     return "dbg_label";
5039  case ISD::EH_LABEL:      return "eh_label";
5040  case ISD::DECLARE:       return "declare";
5041  case ISD::HANDLENODE:    return "handlenode";
5042  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5043  case ISD::CALL:          return "call";
5044
5045  // Unary operators
5046  case ISD::FABS:   return "fabs";
5047  case ISD::FNEG:   return "fneg";
5048  case ISD::FSQRT:  return "fsqrt";
5049  case ISD::FSIN:   return "fsin";
5050  case ISD::FCOS:   return "fcos";
5051  case ISD::FPOWI:  return "fpowi";
5052  case ISD::FPOW:   return "fpow";
5053  case ISD::FTRUNC: return "ftrunc";
5054  case ISD::FFLOOR: return "ffloor";
5055  case ISD::FCEIL:  return "fceil";
5056  case ISD::FRINT:  return "frint";
5057  case ISD::FNEARBYINT: return "fnearbyint";
5058
5059  // Binary operators
5060  case ISD::ADD:    return "add";
5061  case ISD::SUB:    return "sub";
5062  case ISD::MUL:    return "mul";
5063  case ISD::MULHU:  return "mulhu";
5064  case ISD::MULHS:  return "mulhs";
5065  case ISD::SDIV:   return "sdiv";
5066  case ISD::UDIV:   return "udiv";
5067  case ISD::SREM:   return "srem";
5068  case ISD::UREM:   return "urem";
5069  case ISD::SMUL_LOHI:  return "smul_lohi";
5070  case ISD::UMUL_LOHI:  return "umul_lohi";
5071  case ISD::SDIVREM:    return "sdivrem";
5072  case ISD::UDIVREM:    return "udivrem";
5073  case ISD::AND:    return "and";
5074  case ISD::OR:     return "or";
5075  case ISD::XOR:    return "xor";
5076  case ISD::SHL:    return "shl";
5077  case ISD::SRA:    return "sra";
5078  case ISD::SRL:    return "srl";
5079  case ISD::ROTL:   return "rotl";
5080  case ISD::ROTR:   return "rotr";
5081  case ISD::FADD:   return "fadd";
5082  case ISD::FSUB:   return "fsub";
5083  case ISD::FMUL:   return "fmul";
5084  case ISD::FDIV:   return "fdiv";
5085  case ISD::FREM:   return "frem";
5086  case ISD::FCOPYSIGN: return "fcopysign";
5087  case ISD::FGETSIGN:  return "fgetsign";
5088
5089  case ISD::SETCC:       return "setcc";
5090  case ISD::VSETCC:      return "vsetcc";
5091  case ISD::SELECT:      return "select";
5092  case ISD::SELECT_CC:   return "select_cc";
5093  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5094  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5095  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5096  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5097  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5098  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5099  case ISD::CARRY_FALSE:         return "carry_false";
5100  case ISD::ADDC:        return "addc";
5101  case ISD::ADDE:        return "adde";
5102  case ISD::SADDO:       return "saddo";
5103  case ISD::UADDO:       return "uaddo";
5104  case ISD::SSUBO:       return "ssubo";
5105  case ISD::USUBO:       return "usubo";
5106  case ISD::SMULO:       return "smulo";
5107  case ISD::UMULO:       return "umulo";
5108  case ISD::SUBC:        return "subc";
5109  case ISD::SUBE:        return "sube";
5110  case ISD::SHL_PARTS:   return "shl_parts";
5111  case ISD::SRA_PARTS:   return "sra_parts";
5112  case ISD::SRL_PARTS:   return "srl_parts";
5113
5114  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
5115  case ISD::INSERT_SUBREG:      return "insert_subreg";
5116
5117  // Conversion operators.
5118  case ISD::SIGN_EXTEND: return "sign_extend";
5119  case ISD::ZERO_EXTEND: return "zero_extend";
5120  case ISD::ANY_EXTEND:  return "any_extend";
5121  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5122  case ISD::TRUNCATE:    return "truncate";
5123  case ISD::FP_ROUND:    return "fp_round";
5124  case ISD::FLT_ROUNDS_: return "flt_rounds";
5125  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5126  case ISD::FP_EXTEND:   return "fp_extend";
5127
5128  case ISD::SINT_TO_FP:  return "sint_to_fp";
5129  case ISD::UINT_TO_FP:  return "uint_to_fp";
5130  case ISD::FP_TO_SINT:  return "fp_to_sint";
5131  case ISD::FP_TO_UINT:  return "fp_to_uint";
5132  case ISD::BIT_CONVERT: return "bit_convert";
5133
5134  case ISD::CONVERT_RNDSAT: {
5135    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5136    default: assert(0 && "Unknown cvt code!");
5137    case ISD::CVT_FF:  return "cvt_ff";
5138    case ISD::CVT_FS:  return "cvt_fs";
5139    case ISD::CVT_FU:  return "cvt_fu";
5140    case ISD::CVT_SF:  return "cvt_sf";
5141    case ISD::CVT_UF:  return "cvt_uf";
5142    case ISD::CVT_SS:  return "cvt_ss";
5143    case ISD::CVT_SU:  return "cvt_su";
5144    case ISD::CVT_US:  return "cvt_us";
5145    case ISD::CVT_UU:  return "cvt_uu";
5146    }
5147  }
5148
5149    // Control flow instructions
5150  case ISD::BR:      return "br";
5151  case ISD::BRIND:   return "brind";
5152  case ISD::BR_JT:   return "br_jt";
5153  case ISD::BRCOND:  return "brcond";
5154  case ISD::BR_CC:   return "br_cc";
5155  case ISD::RET:     return "ret";
5156  case ISD::CALLSEQ_START:  return "callseq_start";
5157  case ISD::CALLSEQ_END:    return "callseq_end";
5158
5159    // Other operators
5160  case ISD::LOAD:               return "load";
5161  case ISD::STORE:              return "store";
5162  case ISD::VAARG:              return "vaarg";
5163  case ISD::VACOPY:             return "vacopy";
5164  case ISD::VAEND:              return "vaend";
5165  case ISD::VASTART:            return "vastart";
5166  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5167  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5168  case ISD::BUILD_PAIR:         return "build_pair";
5169  case ISD::STACKSAVE:          return "stacksave";
5170  case ISD::STACKRESTORE:       return "stackrestore";
5171  case ISD::TRAP:               return "trap";
5172
5173  // Bit manipulation
5174  case ISD::BSWAP:   return "bswap";
5175  case ISD::CTPOP:   return "ctpop";
5176  case ISD::CTTZ:    return "cttz";
5177  case ISD::CTLZ:    return "ctlz";
5178
5179  // Debug info
5180  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5181  case ISD::DEBUG_LOC: return "debug_loc";
5182
5183  // Trampolines
5184  case ISD::TRAMPOLINE: return "trampoline";
5185
5186  case ISD::CONDCODE:
5187    switch (cast<CondCodeSDNode>(this)->get()) {
5188    default: assert(0 && "Unknown setcc condition!");
5189    case ISD::SETOEQ:  return "setoeq";
5190    case ISD::SETOGT:  return "setogt";
5191    case ISD::SETOGE:  return "setoge";
5192    case ISD::SETOLT:  return "setolt";
5193    case ISD::SETOLE:  return "setole";
5194    case ISD::SETONE:  return "setone";
5195
5196    case ISD::SETO:    return "seto";
5197    case ISD::SETUO:   return "setuo";
5198    case ISD::SETUEQ:  return "setue";
5199    case ISD::SETUGT:  return "setugt";
5200    case ISD::SETUGE:  return "setuge";
5201    case ISD::SETULT:  return "setult";
5202    case ISD::SETULE:  return "setule";
5203    case ISD::SETUNE:  return "setune";
5204
5205    case ISD::SETEQ:   return "seteq";
5206    case ISD::SETGT:   return "setgt";
5207    case ISD::SETGE:   return "setge";
5208    case ISD::SETLT:   return "setlt";
5209    case ISD::SETLE:   return "setle";
5210    case ISD::SETNE:   return "setne";
5211    }
5212  }
5213}
5214
5215const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5216  switch (AM) {
5217  default:
5218    return "";
5219  case ISD::PRE_INC:
5220    return "<pre-inc>";
5221  case ISD::PRE_DEC:
5222    return "<pre-dec>";
5223  case ISD::POST_INC:
5224    return "<post-inc>";
5225  case ISD::POST_DEC:
5226    return "<post-dec>";
5227  }
5228}
5229
5230std::string ISD::ArgFlagsTy::getArgFlagsString() {
5231  std::string S = "< ";
5232
5233  if (isZExt())
5234    S += "zext ";
5235  if (isSExt())
5236    S += "sext ";
5237  if (isInReg())
5238    S += "inreg ";
5239  if (isSRet())
5240    S += "sret ";
5241  if (isByVal())
5242    S += "byval ";
5243  if (isNest())
5244    S += "nest ";
5245  if (getByValAlign())
5246    S += "byval-align:" + utostr(getByValAlign()) + " ";
5247  if (getOrigAlign())
5248    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5249  if (getByValSize())
5250    S += "byval-size:" + utostr(getByValSize()) + " ";
5251  return S + ">";
5252}
5253
5254void SDNode::dump() const { dump(0); }
5255void SDNode::dump(const SelectionDAG *G) const {
5256  print(errs(), G);
5257  errs().flush();
5258}
5259
5260void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5261  OS << (void*)this << ": ";
5262
5263  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5264    if (i) OS << ",";
5265    if (getValueType(i) == MVT::Other)
5266      OS << "ch";
5267    else
5268      OS << getValueType(i).getMVTString();
5269  }
5270  OS << " = " << getOperationName(G);
5271
5272  OS << " ";
5273  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5274    if (i) OS << ", ";
5275    OS << (void*)getOperand(i).getNode();
5276    if (unsigned RN = getOperand(i).getResNo())
5277      OS << ":" << RN;
5278  }
5279
5280  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5281    SDNode *Mask = getOperand(2).getNode();
5282    OS << "<";
5283    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
5284      if (i) OS << ",";
5285      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
5286        OS << "u";
5287      else
5288        OS << cast<ConstantSDNode>(Mask->getOperand(i))->getZExtValue();
5289    }
5290    OS << ">";
5291  }
5292
5293  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5294    OS << '<' << CSDN->getAPIntValue() << '>';
5295  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5296    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5297      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5298    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5299      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5300    else {
5301      OS << "<APFloat(";
5302      CSDN->getValueAPF().bitcastToAPInt().dump();
5303      OS << ")>";
5304    }
5305  } else if (const GlobalAddressSDNode *GADN =
5306             dyn_cast<GlobalAddressSDNode>(this)) {
5307    int64_t offset = GADN->getOffset();
5308    OS << '<';
5309    WriteAsOperand(OS, GADN->getGlobal());
5310    OS << '>';
5311    if (offset > 0)
5312      OS << " + " << offset;
5313    else
5314      OS << " " << offset;
5315  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5316    OS << "<" << FIDN->getIndex() << ">";
5317  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5318    OS << "<" << JTDN->getIndex() << ">";
5319  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5320    int offset = CP->getOffset();
5321    if (CP->isMachineConstantPoolEntry())
5322      OS << "<" << *CP->getMachineCPVal() << ">";
5323    else
5324      OS << "<" << *CP->getConstVal() << ">";
5325    if (offset > 0)
5326      OS << " + " << offset;
5327    else
5328      OS << " " << offset;
5329  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5330    OS << "<";
5331    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5332    if (LBB)
5333      OS << LBB->getName() << " ";
5334    OS << (const void*)BBDN->getBasicBlock() << ">";
5335  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5336    if (G && R->getReg() &&
5337        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5338      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5339    } else {
5340      OS << " #" << R->getReg();
5341    }
5342  } else if (const ExternalSymbolSDNode *ES =
5343             dyn_cast<ExternalSymbolSDNode>(this)) {
5344    OS << "'" << ES->getSymbol() << "'";
5345  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5346    if (M->getValue())
5347      OS << "<" << M->getValue() << ">";
5348    else
5349      OS << "<null>";
5350  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5351    if (M->MO.getValue())
5352      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5353    else
5354      OS << "<null:" << M->MO.getOffset() << ">";
5355  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5356    OS << N->getArgFlags().getArgFlagsString();
5357  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5358    OS << ":" << N->getVT().getMVTString();
5359  }
5360  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5361    const Value *SrcValue = LD->getSrcValue();
5362    int SrcOffset = LD->getSrcValueOffset();
5363    OS << " <";
5364    if (SrcValue)
5365      OS << SrcValue;
5366    else
5367      OS << "null";
5368    OS << ":" << SrcOffset << ">";
5369
5370    bool doExt = true;
5371    switch (LD->getExtensionType()) {
5372    default: doExt = false; break;
5373    case ISD::EXTLOAD: OS << " <anyext "; break;
5374    case ISD::SEXTLOAD: OS << " <sext "; break;
5375    case ISD::ZEXTLOAD: OS << " <zext "; break;
5376    }
5377    if (doExt)
5378      OS << LD->getMemoryVT().getMVTString() << ">";
5379
5380    const char *AM = getIndexedModeName(LD->getAddressingMode());
5381    if (*AM)
5382      OS << " " << AM;
5383    if (LD->isVolatile())
5384      OS << " <volatile>";
5385    OS << " alignment=" << LD->getAlignment();
5386  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5387    const Value *SrcValue = ST->getSrcValue();
5388    int SrcOffset = ST->getSrcValueOffset();
5389    OS << " <";
5390    if (SrcValue)
5391      OS << SrcValue;
5392    else
5393      OS << "null";
5394    OS << ":" << SrcOffset << ">";
5395
5396    if (ST->isTruncatingStore())
5397      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5398
5399    const char *AM = getIndexedModeName(ST->getAddressingMode());
5400    if (*AM)
5401      OS << " " << AM;
5402    if (ST->isVolatile())
5403      OS << " <volatile>";
5404    OS << " alignment=" << ST->getAlignment();
5405  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5406    const Value *SrcValue = AT->getSrcValue();
5407    int SrcOffset = AT->getSrcValueOffset();
5408    OS << " <";
5409    if (SrcValue)
5410      OS << SrcValue;
5411    else
5412      OS << "null";
5413    OS << ":" << SrcOffset << ">";
5414    if (AT->isVolatile())
5415      OS << " <volatile>";
5416    OS << " alignment=" << AT->getAlignment();
5417  }
5418}
5419
5420static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5421  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5422    if (N->getOperand(i).getNode()->hasOneUse())
5423      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5424    else
5425      cerr << "\n" << std::string(indent+2, ' ')
5426           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5427
5428
5429  cerr << "\n" << std::string(indent, ' ');
5430  N->dump(G);
5431}
5432
5433void SelectionDAG::dump() const {
5434  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5435
5436  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5437       I != E; ++I) {
5438    const SDNode *N = I;
5439    if (!N->hasOneUse() && N != getRoot().getNode())
5440      DumpNodes(N, 2, this);
5441  }
5442
5443  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5444
5445  cerr << "\n\n";
5446}
5447
5448const Type *ConstantPoolSDNode::getType() const {
5449  if (isMachineConstantPoolEntry())
5450    return Val.MachineCPVal->getType();
5451  return Val.ConstVal->getType();
5452}
5453