SplitKit.cpp revision 1c38ba6355a019b7fc3baa0d0ab31e8ba11f7db1
1//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the SplitAnalysis class as well as mutator functions for
11// live range splitting.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "SplitKit.h"
17#include "LiveRangeEdit.h"
18#include "VirtRegMap.h"
19#include "llvm/CodeGen/CalcSpillWeights.h"
20#include "llvm/CodeGen/LiveIntervalAnalysis.h"
21#include "llvm/CodeGen/MachineDominators.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/Support/CommandLine.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/raw_ostream.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Target/TargetMachine.h"
29
30using namespace llvm;
31
32static cl::opt<bool>
33AllowSplit("spiller-splits-edges",
34           cl::desc("Allow critical edge splitting during spilling"));
35
36//===----------------------------------------------------------------------===//
37//                                 Split Analysis
38//===----------------------------------------------------------------------===//
39
40SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm,
41                             const LiveIntervals &lis,
42                             const MachineLoopInfo &mli)
43  : MF(vrm.getMachineFunction()),
44    VRM(vrm),
45    LIS(lis),
46    Loops(mli),
47    TII(*MF.getTarget().getInstrInfo()),
48    CurLI(0) {}
49
50void SplitAnalysis::clear() {
51  UseSlots.clear();
52  UsingInstrs.clear();
53  UsingBlocks.clear();
54  LiveBlocks.clear();
55  CurLI = 0;
56}
57
58bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) {
59  MachineBasicBlock *T, *F;
60  SmallVector<MachineOperand, 4> Cond;
61  return !TII.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond);
62}
63
64/// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
65void SplitAnalysis::analyzeUses() {
66  const MachineRegisterInfo &MRI = MF.getRegInfo();
67  for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(CurLI->reg),
68       E = MRI.reg_end(); I != E; ++I) {
69    MachineOperand &MO = I.getOperand();
70    if (MO.isUse() && MO.isUndef())
71      continue;
72    MachineInstr *MI = MO.getParent();
73    if (MI->isDebugValue() || !UsingInstrs.insert(MI))
74      continue;
75    UseSlots.push_back(LIS.getInstructionIndex(MI).getDefIndex());
76    MachineBasicBlock *MBB = MI->getParent();
77    UsingBlocks[MBB]++;
78  }
79  array_pod_sort(UseSlots.begin(), UseSlots.end());
80  calcLiveBlockInfo();
81  DEBUG(dbgs() << "  counted "
82               << UsingInstrs.size() << " instrs, "
83               << UsingBlocks.size() << " blocks.\n");
84}
85
86/// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
87/// where CurLI is live.
88void SplitAnalysis::calcLiveBlockInfo() {
89  if (CurLI->empty())
90    return;
91
92  LiveInterval::const_iterator LVI = CurLI->begin();
93  LiveInterval::const_iterator LVE = CurLI->end();
94
95  SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
96  UseI = UseSlots.begin();
97  UseE = UseSlots.end();
98
99  // Loop over basic blocks where CurLI is live.
100  MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start);
101  for (;;) {
102    BlockInfo BI;
103    BI.MBB = MFI;
104    SlotIndex Start, Stop;
105    tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
106
107    // The last split point is the latest possible insertion point that dominates
108    // all successor blocks. If interference reaches LastSplitPoint, it is not
109    // possible to insert a split or reload that makes CurLI live in the
110    // outgoing bundle.
111    MachineBasicBlock::iterator LSP = LIS.getLastSplitPoint(*CurLI, BI.MBB);
112    if (LSP == BI.MBB->end())
113      BI.LastSplitPoint = Stop;
114    else
115      BI.LastSplitPoint = LIS.getInstructionIndex(LSP);
116
117    // LVI is the first live segment overlapping MBB.
118    BI.LiveIn = LVI->start <= Start;
119    if (!BI.LiveIn)
120      BI.Def = LVI->start;
121
122    // Find the first and last uses in the block.
123    BI.Uses = hasUses(MFI);
124    if (BI.Uses && UseI != UseE) {
125      BI.FirstUse = *UseI;
126      assert(BI.FirstUse >= Start);
127      do ++UseI;
128      while (UseI != UseE && *UseI < Stop);
129      BI.LastUse = UseI[-1];
130      assert(BI.LastUse < Stop);
131    }
132
133    // Look for gaps in the live range.
134    bool hasGap = false;
135    BI.LiveOut = true;
136    while (LVI->end < Stop) {
137      SlotIndex LastStop = LVI->end;
138      if (++LVI == LVE || LVI->start >= Stop) {
139        BI.Kill = LastStop;
140        BI.LiveOut = false;
141        break;
142      }
143      if (LastStop < LVI->start) {
144        hasGap = true;
145        BI.Kill = LastStop;
146        BI.Def = LVI->start;
147      }
148    }
149
150    // Don't set LiveThrough when the block has a gap.
151    BI.LiveThrough = !hasGap && BI.LiveIn && BI.LiveOut;
152    LiveBlocks.push_back(BI);
153
154    // LVI is now at LVE or LVI->end >= Stop.
155    if (LVI == LVE)
156      break;
157
158    // Live segment ends exactly at Stop. Move to the next segment.
159    if (LVI->end == Stop && ++LVI == LVE)
160      break;
161
162    // Pick the next basic block.
163    if (LVI->start < Stop)
164      ++MFI;
165    else
166      MFI = LIS.getMBBFromIndex(LVI->start);
167  }
168}
169
170bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
171  unsigned OrigReg = VRM.getOriginal(CurLI->reg);
172  const LiveInterval &Orig = LIS.getInterval(OrigReg);
173  assert(!Orig.empty() && "Splitting empty interval?");
174  LiveInterval::const_iterator I = Orig.find(Idx);
175
176  // Range containing Idx should begin at Idx.
177  if (I != Orig.end() && I->start <= Idx)
178    return I->start == Idx;
179
180  // Range does not contain Idx, previous must end at Idx.
181  return I != Orig.begin() && (--I)->end == Idx;
182}
183
184void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const {
185  for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) {
186    unsigned count = UsingBlocks.lookup(*I);
187    OS << " BB#" << (*I)->getNumber();
188    if (count)
189      OS << '(' << count << ')';
190  }
191}
192
193void SplitAnalysis::analyze(const LiveInterval *li) {
194  clear();
195  CurLI = li;
196  analyzeUses();
197}
198
199
200//===----------------------------------------------------------------------===//
201//                               Split Editor
202//===----------------------------------------------------------------------===//
203
204/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
205SplitEditor::SplitEditor(SplitAnalysis &sa,
206                         LiveIntervals &lis,
207                         VirtRegMap &vrm,
208                         MachineDominatorTree &mdt,
209                         LiveRangeEdit &edit)
210  : SA(sa), LIS(lis), VRM(vrm),
211    MRI(vrm.getMachineFunction().getRegInfo()),
212    MDT(mdt),
213    TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
214    TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
215    Edit(edit),
216    OpenIdx(0),
217    RegAssign(Allocator)
218{
219  // We don't need an AliasAnalysis since we will only be performing
220  // cheap-as-a-copy remats anyway.
221  Edit.anyRematerializable(LIS, TII, 0);
222}
223
224void SplitEditor::dump() const {
225  if (RegAssign.empty()) {
226    dbgs() << " empty\n";
227    return;
228  }
229
230  for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
231    dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
232  dbgs() << '\n';
233}
234
235VNInfo *SplitEditor::defValue(unsigned RegIdx,
236                              const VNInfo *ParentVNI,
237                              SlotIndex Idx) {
238  assert(ParentVNI && "Mapping  NULL value");
239  assert(Idx.isValid() && "Invalid SlotIndex");
240  assert(Edit.getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
241  LiveInterval *LI = Edit.get(RegIdx);
242
243  // Create a new value.
244  VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator());
245
246  // Preserve the PHIDef bit.
247  if (ParentVNI->isPHIDef() && Idx == ParentVNI->def)
248    VNI->setIsPHIDef(true);
249
250  // Use insert for lookup, so we can add missing values with a second lookup.
251  std::pair<ValueMap::iterator, bool> InsP =
252    Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), VNI));
253
254  // This was the first time (RegIdx, ParentVNI) was mapped.
255  // Keep it as a simple def without any liveness.
256  if (InsP.second)
257    return VNI;
258
259  // If the previous value was a simple mapping, add liveness for it now.
260  if (VNInfo *OldVNI = InsP.first->second) {
261    SlotIndex Def = OldVNI->def;
262    LI->addRange(LiveRange(Def, Def.getNextSlot(), OldVNI));
263    // No longer a simple mapping.
264    InsP.first->second = 0;
265  }
266
267  // This is a complex mapping, add liveness for VNI
268  SlotIndex Def = VNI->def;
269  LI->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
270
271  return VNI;
272}
273
274void SplitEditor::markComplexMapped(unsigned RegIdx, const VNInfo *ParentVNI) {
275  assert(ParentVNI && "Mapping  NULL value");
276  VNInfo *&VNI = Values[std::make_pair(RegIdx, ParentVNI->id)];
277
278  // ParentVNI was either unmapped or already complex mapped. Either way.
279  if (!VNI)
280    return;
281
282  // This was previously a single mapping. Make sure the old def is represented
283  // by a trivial live range.
284  SlotIndex Def = VNI->def;
285  Edit.get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
286  VNI = 0;
287}
288
289// extendRange - Extend the live range to reach Idx.
290// Potentially create phi-def values.
291void SplitEditor::extendRange(unsigned RegIdx, SlotIndex Idx) {
292  assert(Idx.isValid() && "Invalid SlotIndex");
293  MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx);
294  assert(IdxMBB && "No MBB at Idx");
295  LiveInterval *LI = Edit.get(RegIdx);
296
297  // Is there a def in the same MBB we can extend?
298  if (LI->extendInBlock(LIS.getMBBStartIdx(IdxMBB), Idx))
299    return;
300
301  // Now for the fun part. We know that ParentVNI potentially has multiple defs,
302  // and we may need to create even more phi-defs to preserve VNInfo SSA form.
303  // Perform a search for all predecessor blocks where we know the dominating
304  // VNInfo. Insert phi-def VNInfos along the path back to IdxMBB.
305  DEBUG(dbgs() << "\n  Reaching defs for BB#" << IdxMBB->getNumber()
306               << " at " << Idx << " in " << *LI << '\n');
307
308  // Blocks where LI should be live-in.
309  SmallVector<MachineDomTreeNode*, 16> LiveIn;
310  LiveIn.push_back(MDT[IdxMBB]);
311
312  // Using LiveOutCache as a visited set, perform a BFS for all reaching defs.
313  for (unsigned i = 0; i != LiveIn.size(); ++i) {
314    MachineBasicBlock *MBB = LiveIn[i]->getBlock();
315    for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
316           PE = MBB->pred_end(); PI != PE; ++PI) {
317       MachineBasicBlock *Pred = *PI;
318       // Is this a known live-out block?
319       std::pair<LiveOutMap::iterator,bool> LOIP =
320         LiveOutCache.insert(std::make_pair(Pred, LiveOutPair()));
321       // Yes, we have been here before.
322       if (!LOIP.second)
323         continue;
324
325       // Does Pred provide a live-out value?
326       SlotIndex Start, Last;
327       tie(Start, Last) = LIS.getSlotIndexes()->getMBBRange(Pred);
328       Last = Last.getPrevSlot();
329       if (VNInfo *VNI = LI->extendInBlock(Start, Last)) {
330         MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(VNI->def);
331         LiveOutPair &LOP = LOIP.first->second;
332         LOP.first = VNI;
333         LOP.second = MDT[DefMBB];
334         continue;
335       }
336       // No, we need a live-in value for Pred as well
337       if (Pred != IdxMBB)
338         LiveIn.push_back(MDT[Pred]);
339    }
340  }
341
342  // We may need to add phi-def values to preserve the SSA form.
343  VNInfo *IdxVNI = updateSSA(RegIdx, LiveIn, Idx, IdxMBB);
344
345#ifndef NDEBUG
346  // Check the LiveOutCache invariants.
347  for (LiveOutMap::iterator I = LiveOutCache.begin(), E = LiveOutCache.end();
348         I != E; ++I) {
349    assert(I->first && "Null MBB entry in cache");
350    assert(I->second.first && "Null VNInfo in cache");
351    assert(I->second.second && "Null DomTreeNode in cache");
352    if (I->second.second->getBlock() == I->first)
353      continue;
354    for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(),
355           PE = I->first->pred_end(); PI != PE; ++PI)
356      assert(LiveOutCache.lookup(*PI) == I->second && "Bad invariant");
357  }
358#endif
359
360  // Since we went through the trouble of a full BFS visiting all reaching defs,
361  // the values in LiveIn are now accurate. No more phi-defs are needed
362  // for these blocks, so we can color the live ranges.
363  for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) {
364    MachineBasicBlock *MBB = LiveIn[i]->getBlock();
365    SlotIndex Start = LIS.getMBBStartIdx(MBB);
366    VNInfo *VNI = LiveOutCache.lookup(MBB).first;
367
368    // Anything in LiveIn other than IdxMBB is live-through.
369    // In IdxMBB, we should stop at Idx unless the same value is live-out.
370    if (MBB == IdxMBB && IdxVNI != VNI)
371      LI->addRange(LiveRange(Start, Idx.getNextSlot(), IdxVNI));
372    else
373      LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
374  }
375}
376
377VNInfo *SplitEditor::updateSSA(unsigned RegIdx,
378                               SmallVectorImpl<MachineDomTreeNode*> &LiveIn,
379                               SlotIndex Idx,
380                               const MachineBasicBlock *IdxMBB) {
381  // This is essentially the same iterative algorithm that SSAUpdater uses,
382  // except we already have a dominator tree, so we don't have to recompute it.
383  LiveInterval *LI = Edit.get(RegIdx);
384  VNInfo *IdxVNI = 0;
385  unsigned Changes;
386  do {
387    Changes = 0;
388    DEBUG(dbgs() << "  Iterating over " << LiveIn.size() << " blocks.\n");
389    // Propagate live-out values down the dominator tree, inserting phi-defs
390    // when necessary. Since LiveIn was created by a BFS, going backwards makes
391    // it more likely for us to visit immediate dominators before their
392    // children.
393    for (unsigned i = LiveIn.size(); i; --i) {
394      MachineDomTreeNode *Node = LiveIn[i-1];
395      MachineBasicBlock *MBB = Node->getBlock();
396      MachineDomTreeNode *IDom = Node->getIDom();
397      LiveOutPair IDomValue;
398      // We need a live-in value to a block with no immediate dominator?
399      // This is probably an unreachable block that has survived somehow.
400      bool needPHI = !IDom;
401
402      // Get the IDom live-out value.
403      if (!needPHI) {
404        LiveOutMap::iterator I = LiveOutCache.find(IDom->getBlock());
405        if (I != LiveOutCache.end())
406          IDomValue = I->second;
407        else
408          // If IDom is outside our set of live-out blocks, there must be new
409          // defs, and we need a phi-def here.
410          needPHI = true;
411      }
412
413      // IDom dominates all of our predecessors, but it may not be the immediate
414      // dominator. Check if any of them have live-out values that are properly
415      // dominated by IDom. If so, we need a phi-def here.
416      if (!needPHI) {
417        for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
418               PE = MBB->pred_end(); PI != PE; ++PI) {
419          LiveOutPair Value = LiveOutCache[*PI];
420          if (!Value.first || Value.first == IDomValue.first)
421            continue;
422          // This predecessor is carrying something other than IDomValue.
423          // It could be because IDomValue hasn't propagated yet, or it could be
424          // because MBB is in the dominance frontier of that value.
425          if (MDT.dominates(IDom, Value.second)) {
426            needPHI = true;
427            break;
428          }
429        }
430      }
431
432      // Create a phi-def if required.
433      if (needPHI) {
434        ++Changes;
435        SlotIndex Start = LIS.getMBBStartIdx(MBB);
436        VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator());
437        VNI->setIsPHIDef(true);
438        DEBUG(dbgs() << "    - BB#" << MBB->getNumber()
439                     << " phi-def #" << VNI->id << " at " << Start << '\n');
440        // We no longer need LI to be live-in.
441        LiveIn.erase(LiveIn.begin()+(i-1));
442        // Blocks in LiveIn are either IdxMBB, or have a value live-through.
443        if (MBB == IdxMBB)
444          IdxVNI = VNI;
445        // Check if we need to update live-out info.
446        LiveOutMap::iterator I = LiveOutCache.find(MBB);
447        if (I == LiveOutCache.end() || I->second.second == Node) {
448          // We already have a live-out defined in MBB, so this must be IdxMBB.
449          assert(MBB == IdxMBB && "Adding phi-def to known live-out");
450          LI->addRange(LiveRange(Start, Idx.getNextSlot(), VNI));
451        } else {
452          // This phi-def is also live-out, so color the whole block.
453          LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
454          I->second = LiveOutPair(VNI, Node);
455        }
456      } else if (IDomValue.first) {
457        // No phi-def here. Remember incoming value for IdxMBB.
458        if (MBB == IdxMBB)
459          IdxVNI = IDomValue.first;
460        // Propagate IDomValue if needed:
461        // MBB is live-out and doesn't define its own value.
462        LiveOutMap::iterator I = LiveOutCache.find(MBB);
463        if (I != LiveOutCache.end() && I->second.second != Node &&
464            I->second.first != IDomValue.first) {
465          ++Changes;
466          I->second = IDomValue;
467          DEBUG(dbgs() << "    - BB#" << MBB->getNumber()
468                       << " idom valno #" << IDomValue.first->id
469                       << " from BB#" << IDom->getBlock()->getNumber() << '\n');
470        }
471      }
472    }
473    DEBUG(dbgs() << "  - made " << Changes << " changes.\n");
474  } while (Changes);
475
476  assert(IdxVNI && "Didn't find value for Idx");
477  return IdxVNI;
478}
479
480VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
481                                   VNInfo *ParentVNI,
482                                   SlotIndex UseIdx,
483                                   MachineBasicBlock &MBB,
484                                   MachineBasicBlock::iterator I) {
485  MachineInstr *CopyMI = 0;
486  SlotIndex Def;
487  LiveInterval *LI = Edit.get(RegIdx);
488
489  // Attempt cheap-as-a-copy rematerialization.
490  LiveRangeEdit::Remat RM(ParentVNI);
491  if (Edit.canRematerializeAt(RM, UseIdx, true, LIS)) {
492    Def = Edit.rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI);
493  } else {
494    // Can't remat, just insert a copy from parent.
495    CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
496               .addReg(Edit.getReg());
497    Def = LIS.InsertMachineInstrInMaps(CopyMI).getDefIndex();
498  }
499
500  // Temporarily mark all values as complex mapped.
501  markComplexMapped(RegIdx, ParentVNI);
502
503  // Define the value in Reg.
504  VNInfo *VNI = defValue(RegIdx, ParentVNI, Def);
505  VNI->setCopy(CopyMI);
506  return VNI;
507}
508
509/// Create a new virtual register and live interval.
510void SplitEditor::openIntv() {
511  assert(!OpenIdx && "Previous LI not closed before openIntv");
512
513  // Create the complement as index 0.
514  if (Edit.empty())
515    Edit.create(MRI, LIS, VRM);
516
517  // Create the open interval.
518  OpenIdx = Edit.size();
519  Edit.create(MRI, LIS, VRM);
520}
521
522SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
523  assert(OpenIdx && "openIntv not called before enterIntvBefore");
524  DEBUG(dbgs() << "    enterIntvBefore " << Idx);
525  Idx = Idx.getBaseIndex();
526  VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx);
527  if (!ParentVNI) {
528    DEBUG(dbgs() << ": not live\n");
529    return Idx;
530  }
531  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
532  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
533  assert(MI && "enterIntvBefore called with invalid index");
534
535  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
536  return VNI->def;
537}
538
539SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
540  assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
541  SlotIndex End = LIS.getMBBEndIdx(&MBB);
542  SlotIndex Last = End.getPrevSlot();
543  DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
544  VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Last);
545  if (!ParentVNI) {
546    DEBUG(dbgs() << ": not live\n");
547    return End;
548  }
549  DEBUG(dbgs() << ": valno " << ParentVNI->id);
550  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
551                              LIS.getLastSplitPoint(Edit.getParent(), &MBB));
552  RegAssign.insert(VNI->def, End, OpenIdx);
553  DEBUG(dump());
554  return VNI->def;
555}
556
557/// useIntv - indicate that all instructions in MBB should use OpenLI.
558void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
559  useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
560}
561
562void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
563  assert(OpenIdx && "openIntv not called before useIntv");
564  DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
565  RegAssign.insert(Start, End, OpenIdx);
566  DEBUG(dump());
567}
568
569SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
570  assert(OpenIdx && "openIntv not called before leaveIntvAfter");
571  DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
572
573  // The interval must be live beyond the instruction at Idx.
574  Idx = Idx.getBoundaryIndex();
575  VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx);
576  if (!ParentVNI) {
577    DEBUG(dbgs() << ": not live\n");
578    return Idx.getNextSlot();
579  }
580  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
581
582  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
583  assert(MI && "No instruction at index");
584  VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(),
585                              llvm::next(MachineBasicBlock::iterator(MI)));
586  return VNI->def;
587}
588
589SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
590  assert(OpenIdx && "openIntv not called before leaveIntvBefore");
591  DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
592
593  // The interval must be live into the instruction at Idx.
594  Idx = Idx.getBoundaryIndex();
595  VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx);
596  if (!ParentVNI) {
597    DEBUG(dbgs() << ": not live\n");
598    return Idx.getNextSlot();
599  }
600  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
601
602  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
603  assert(MI && "No instruction at index");
604  VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
605  return VNI->def;
606}
607
608SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
609  assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
610  SlotIndex Start = LIS.getMBBStartIdx(&MBB);
611  DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
612
613  VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Start);
614  if (!ParentVNI) {
615    DEBUG(dbgs() << ": not live\n");
616    return Start;
617  }
618
619  VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
620                              MBB.SkipPHIsAndLabels(MBB.begin()));
621  RegAssign.insert(Start, VNI->def, OpenIdx);
622  DEBUG(dump());
623  return VNI->def;
624}
625
626void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
627  assert(OpenIdx && "openIntv not called before overlapIntv");
628  assert(Edit.getParent().getVNInfoAt(Start) ==
629         Edit.getParent().getVNInfoAt(End.getPrevSlot()) &&
630         "Parent changes value in extended range");
631  assert(Edit.get(0)->getVNInfoAt(Start) && "Start must come from leaveIntv*");
632  assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
633         "Range cannot span basic blocks");
634
635  // Treat this as useIntv() for now.
636  // The complement interval will be extended as needed by extendRange().
637  DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
638  RegAssign.insert(Start, End, OpenIdx);
639  DEBUG(dump());
640}
641
642/// closeIntv - Indicate that we are done editing the currently open
643/// LiveInterval, and ranges can be trimmed.
644void SplitEditor::closeIntv() {
645  assert(OpenIdx && "openIntv not called before closeIntv");
646  OpenIdx = 0;
647}
648
649/// rewriteAssigned - Rewrite all uses of Edit.getReg().
650void SplitEditor::rewriteAssigned() {
651  for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit.getReg()),
652       RE = MRI.reg_end(); RI != RE;) {
653    MachineOperand &MO = RI.getOperand();
654    MachineInstr *MI = MO.getParent();
655    ++RI;
656    // LiveDebugVariables should have handled all DBG_VALUE instructions.
657    if (MI->isDebugValue()) {
658      DEBUG(dbgs() << "Zapping " << *MI);
659      MO.setReg(0);
660      continue;
661    }
662
663    // <undef> operands don't really read the register, so just assign them to
664    // the complement.
665    if (MO.isUse() && MO.isUndef()) {
666      MO.setReg(Edit.get(0)->reg);
667      continue;
668    }
669
670    SlotIndex Idx = LIS.getInstructionIndex(MI);
671    Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
672
673    // Rewrite to the mapped register at Idx.
674    unsigned RegIdx = RegAssign.lookup(Idx);
675    MO.setReg(Edit.get(RegIdx)->reg);
676    DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'
677                 << Idx << ':' << RegIdx << '\t' << *MI);
678
679    // Extend liveness to Idx.
680    extendRange(RegIdx, Idx);
681  }
682}
683
684/// rewriteSplit - Rewrite uses of Intvs[0] according to the ConEQ mapping.
685void SplitEditor::rewriteComponents(const SmallVectorImpl<LiveInterval*> &Intvs,
686                                    const ConnectedVNInfoEqClasses &ConEq) {
687  for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Intvs[0]->reg),
688       RE = MRI.reg_end(); RI != RE;) {
689    MachineOperand &MO = RI.getOperand();
690    MachineInstr *MI = MO.getParent();
691    ++RI;
692    if (MO.isUse() && MO.isUndef())
693      continue;
694    // DBG_VALUE instructions should have been eliminated earlier.
695    SlotIndex Idx = LIS.getInstructionIndex(MI);
696    Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
697    DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'
698                 << Idx << ':');
699    const VNInfo *VNI = Intvs[0]->getVNInfoAt(Idx);
700    assert(VNI && "Interval not live at use.");
701    MO.setReg(Intvs[ConEq.getEqClass(VNI)]->reg);
702    DEBUG(dbgs() << VNI->id << '\t' << *MI);
703  }
704}
705
706void SplitEditor::finish() {
707  assert(OpenIdx == 0 && "Previous LI not closed before rewrite");
708
709  // At this point, the live intervals in Edit contain VNInfos corresponding to
710  // the inserted copies.
711
712  // Add the original defs from the parent interval.
713  for (LiveInterval::const_vni_iterator I = Edit.getParent().vni_begin(),
714         E = Edit.getParent().vni_end(); I != E; ++I) {
715    const VNInfo *ParentVNI = *I;
716    if (ParentVNI->isUnused())
717      continue;
718    unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
719    // Mark all values as complex to force liveness computation.
720    // This should really only be necessary for remat victims, but we are lazy.
721    markComplexMapped(RegIdx, ParentVNI);
722    defValue(RegIdx, ParentVNI, ParentVNI->def);
723  }
724
725#ifndef NDEBUG
726  // Every new interval must have a def by now, otherwise the split is bogus.
727  for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I)
728    assert((*I)->hasAtLeastOneValue() && "Split interval has no value");
729#endif
730
731  // FIXME: Don't recompute the liveness of all values, infer it from the
732  // overlaps between the parent live interval and RegAssign.
733  // The extendRange algorithm is only necessary when:
734  // - The parent value maps to multiple defs, and new phis are needed, or
735  // - The value has been rematerialized before some uses, and we want to
736  //   minimize the live range so it only reaches the remaining uses.
737  // All other values have simple liveness that can be computed from RegAssign
738  // and the parent live interval.
739
740  // Extend live ranges to be live-out for successor PHI values.
741  for (LiveInterval::const_vni_iterator I = Edit.getParent().vni_begin(),
742       E = Edit.getParent().vni_end(); I != E; ++I) {
743    const VNInfo *PHIVNI = *I;
744    if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
745      continue;
746    unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
747    MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
748    DEBUG(dbgs() << "  map phi in BB#" << MBB->getNumber() << '@' << PHIVNI->def
749                 << " -> " << RegIdx << '\n');
750    for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
751         PE = MBB->pred_end(); PI != PE; ++PI) {
752      SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot();
753      DEBUG(dbgs() << "    pred BB#" << (*PI)->getNumber() << '@' << End);
754      // The predecessor may not have a live-out value. That is OK, like an
755      // undef PHI operand.
756      if (Edit.getParent().liveAt(End)) {
757        DEBUG(dbgs() << " has parent live out\n");
758        assert(RegAssign.lookup(End) == RegIdx &&
759               "Different register assignment in phi predecessor");
760        extendRange(RegIdx, End);
761      } else
762        DEBUG(dbgs() << " is not live-out\n");
763    }
764    DEBUG(dbgs() << "    " << *Edit.get(RegIdx) << '\n');
765  }
766
767  // Rewrite instructions.
768  rewriteAssigned();
769
770  // FIXME: Delete defs that were rematted everywhere.
771
772  // Get rid of unused values and set phi-kill flags.
773  for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I)
774    (*I)->RenumberValues(LIS);
775
776  // Now check if any registers were separated into multiple components.
777  ConnectedVNInfoEqClasses ConEQ(LIS);
778  for (unsigned i = 0, e = Edit.size(); i != e; ++i) {
779    // Don't use iterators, they are invalidated by create() below.
780    LiveInterval *li = Edit.get(i);
781    unsigned NumComp = ConEQ.Classify(li);
782    if (NumComp <= 1)
783      continue;
784    DEBUG(dbgs() << "  " << NumComp << " components: " << *li << '\n');
785    SmallVector<LiveInterval*, 8> dups;
786    dups.push_back(li);
787    for (unsigned i = 1; i != NumComp; ++i)
788      dups.push_back(&Edit.create(MRI, LIS, VRM));
789    rewriteComponents(dups, ConEQ);
790    ConEQ.Distribute(&dups[0]);
791  }
792
793  // Calculate spill weight and allocation hints for new intervals.
794  VirtRegAuxInfo vrai(VRM.getMachineFunction(), LIS, SA.Loops);
795  for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I){
796    LiveInterval &li = **I;
797    vrai.CalculateRegClass(li.reg);
798    vrai.CalculateWeightAndHint(li);
799    DEBUG(dbgs() << "  new interval " << MRI.getRegClass(li.reg)->getName()
800                 << ":" << li << '\n');
801  }
802}
803
804
805//===----------------------------------------------------------------------===//
806//                            Single Block Splitting
807//===----------------------------------------------------------------------===//
808
809/// getMultiUseBlocks - if CurLI has more than one use in a basic block, it
810/// may be an advantage to split CurLI for the duration of the block.
811bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) {
812  // If CurLI is local to one block, there is no point to splitting it.
813  if (LiveBlocks.size() <= 1)
814    return false;
815  // Add blocks with multiple uses.
816  for (unsigned i = 0, e = LiveBlocks.size(); i != e; ++i) {
817    const BlockInfo &BI = LiveBlocks[i];
818    if (!BI.Uses)
819      continue;
820    unsigned Instrs = UsingBlocks.lookup(BI.MBB);
821    if (Instrs <= 1)
822      continue;
823    if (Instrs == 2 && BI.LiveIn && BI.LiveOut && !BI.LiveThrough)
824      continue;
825    Blocks.insert(BI.MBB);
826  }
827  return !Blocks.empty();
828}
829
830/// splitSingleBlocks - Split CurLI into a separate live interval inside each
831/// basic block in Blocks.
832void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
833  DEBUG(dbgs() << "  splitSingleBlocks for " << Blocks.size() << " blocks.\n");
834
835  for (unsigned i = 0, e = SA.LiveBlocks.size(); i != e; ++i) {
836    const SplitAnalysis::BlockInfo &BI = SA.LiveBlocks[i];
837    if (!BI.Uses || !Blocks.count(BI.MBB))
838      continue;
839
840    openIntv();
841    SlotIndex SegStart = enterIntvBefore(BI.FirstUse);
842    if (!BI.LiveOut || BI.LastUse < BI.LastSplitPoint) {
843      useIntv(SegStart, leaveIntvAfter(BI.LastUse));
844    } else {
845      // The last use is after the last valid split point.
846      SlotIndex SegStop = leaveIntvBefore(BI.LastSplitPoint);
847      useIntv(SegStart, SegStop);
848      overlapIntv(SegStop, BI.LastUse);
849    }
850    closeIntv();
851  }
852  finish();
853}
854