SplitKit.cpp revision a2e79ef908e0f4179cda9e85e2f75057181bf321
1//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the SplitAnalysis class as well as mutator functions for
11// live range splitting.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "SplitKit.h"
17#include "LiveRangeEdit.h"
18#include "VirtRegMap.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/CodeGen/LiveIntervalAnalysis.h"
21#include "llvm/CodeGen/MachineDominators.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/raw_ostream.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Target/TargetMachine.h"
28
29using namespace llvm;
30
31STATISTIC(NumFinished, "Number of splits finished");
32STATISTIC(NumSimple,   "Number of splits that were simple");
33STATISTIC(NumCopies,   "Number of copies inserted for splitting");
34STATISTIC(NumRemats,   "Number of rematerialized defs for splitting");
35STATISTIC(NumRepairs,  "Number of invalid live ranges repaired");
36
37//===----------------------------------------------------------------------===//
38//                                 Split Analysis
39//===----------------------------------------------------------------------===//
40
41SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm,
42                             const LiveIntervals &lis,
43                             const MachineLoopInfo &mli)
44  : MF(vrm.getMachineFunction()),
45    VRM(vrm),
46    LIS(lis),
47    Loops(mli),
48    TII(*MF.getTarget().getInstrInfo()),
49    CurLI(0),
50    LastSplitPoint(MF.getNumBlockIDs()) {}
51
52void SplitAnalysis::clear() {
53  UseSlots.clear();
54  UseBlocks.clear();
55  ThroughBlocks.clear();
56  CurLI = 0;
57  DidRepairRange = false;
58}
59
60SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) {
61  const MachineBasicBlock *MBB = MF.getBlockNumbered(Num);
62  const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor();
63  std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num];
64
65  // Compute split points on the first call. The pair is independent of the
66  // current live interval.
67  if (!LSP.first.isValid()) {
68    MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator();
69    if (FirstTerm == MBB->end())
70      LSP.first = LIS.getMBBEndIdx(MBB);
71    else
72      LSP.first = LIS.getInstructionIndex(FirstTerm);
73
74    // If there is a landing pad successor, also find the call instruction.
75    if (!LPad)
76      return LSP.first;
77    // There may not be a call instruction (?) in which case we ignore LPad.
78    LSP.second = LSP.first;
79    for (MachineBasicBlock::const_iterator I = FirstTerm, E = MBB->begin();
80         I != E; --I)
81      if (I->getDesc().isCall()) {
82        LSP.second = LIS.getInstructionIndex(I);
83        break;
84      }
85  }
86
87  // If CurLI is live into a landing pad successor, move the last split point
88  // back to the call that may throw.
89  if (LPad && LSP.second.isValid() && LIS.isLiveInToMBB(*CurLI, LPad))
90    return LSP.second;
91  else
92    return LSP.first;
93}
94
95/// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
96void SplitAnalysis::analyzeUses() {
97  assert(UseSlots.empty() && "Call clear first");
98
99  // First get all the defs from the interval values. This provides the correct
100  // slots for early clobbers.
101  for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(),
102       E = CurLI->vni_end(); I != E; ++I)
103    if (!(*I)->isPHIDef() && !(*I)->isUnused())
104      UseSlots.push_back((*I)->def);
105
106  // Get use slots form the use-def chain.
107  const MachineRegisterInfo &MRI = MF.getRegInfo();
108  for (MachineRegisterInfo::use_nodbg_iterator
109       I = MRI.use_nodbg_begin(CurLI->reg), E = MRI.use_nodbg_end(); I != E;
110       ++I)
111    if (!I.getOperand().isUndef())
112      UseSlots.push_back(LIS.getInstructionIndex(&*I).getDefIndex());
113
114  array_pod_sort(UseSlots.begin(), UseSlots.end());
115
116  // Remove duplicates, keeping the smaller slot for each instruction.
117  // That is what we want for early clobbers.
118  UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
119                             SlotIndex::isSameInstr),
120                 UseSlots.end());
121
122  // Compute per-live block info.
123  if (!calcLiveBlockInfo()) {
124    // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
125    // I am looking at you, SimpleRegisterCoalescing!
126    DidRepairRange = true;
127    ++NumRepairs;
128    DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
129    const_cast<LiveIntervals&>(LIS)
130      .shrinkToUses(const_cast<LiveInterval*>(CurLI));
131    UseBlocks.clear();
132    ThroughBlocks.clear();
133    bool fixed = calcLiveBlockInfo();
134    (void)fixed;
135    assert(fixed && "Couldn't fix broken live interval");
136  }
137
138  DEBUG(dbgs() << "Analyze counted "
139               << UseSlots.size() << " instrs in "
140               << UseBlocks.size() << " blocks, through "
141               << NumThroughBlocks << " blocks.\n");
142}
143
144/// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
145/// where CurLI is live.
146bool SplitAnalysis::calcLiveBlockInfo() {
147  ThroughBlocks.resize(MF.getNumBlockIDs());
148  NumThroughBlocks = NumGapBlocks = 0;
149  if (CurLI->empty())
150    return true;
151
152  LiveInterval::const_iterator LVI = CurLI->begin();
153  LiveInterval::const_iterator LVE = CurLI->end();
154
155  SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
156  UseI = UseSlots.begin();
157  UseE = UseSlots.end();
158
159  // Loop over basic blocks where CurLI is live.
160  MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start);
161  for (;;) {
162    BlockInfo BI;
163    BI.MBB = MFI;
164    SlotIndex Start, Stop;
165    tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
166
167    // If the block contains no uses, the range must be live through. At one
168    // point, SimpleRegisterCoalescing could create dangling ranges that ended
169    // mid-block.
170    if (UseI == UseE || *UseI >= Stop) {
171      ++NumThroughBlocks;
172      ThroughBlocks.set(BI.MBB->getNumber());
173      // The range shouldn't end mid-block if there are no uses. This shouldn't
174      // happen.
175      if (LVI->end < Stop)
176        return false;
177    } else {
178      // This block has uses. Find the first and last uses in the block.
179      BI.FirstUse = *UseI;
180      assert(BI.FirstUse >= Start);
181      do ++UseI;
182      while (UseI != UseE && *UseI < Stop);
183      BI.LastUse = UseI[-1];
184      assert(BI.LastUse < Stop);
185
186      // LVI is the first live segment overlapping MBB.
187      BI.LiveIn = LVI->start <= Start;
188
189      // Look for gaps in the live range.
190      BI.LiveOut = true;
191      while (LVI->end < Stop) {
192        SlotIndex LastStop = LVI->end;
193        if (++LVI == LVE || LVI->start >= Stop) {
194          BI.LiveOut = false;
195          BI.LastUse = LastStop;
196          break;
197        }
198        if (LastStop < LVI->start) {
199          // There is a gap in the live range. Create duplicate entries for the
200          // live-in snippet and the live-out snippet.
201          ++NumGapBlocks;
202
203          // Push the Live-in part.
204          BI.LiveThrough = false;
205          BI.LiveOut = false;
206          UseBlocks.push_back(BI);
207          UseBlocks.back().LastUse = LastStop;
208
209          // Set up BI for the live-out part.
210          BI.LiveIn = false;
211          BI.LiveOut = true;
212          BI.FirstUse = LVI->start;
213        }
214      }
215
216      // Don't set LiveThrough when the block has a gap.
217      BI.LiveThrough = BI.LiveIn && BI.LiveOut;
218      UseBlocks.push_back(BI);
219
220      // LVI is now at LVE or LVI->end >= Stop.
221      if (LVI == LVE)
222        break;
223    }
224
225    // Live segment ends exactly at Stop. Move to the next segment.
226    if (LVI->end == Stop && ++LVI == LVE)
227      break;
228
229    // Pick the next basic block.
230    if (LVI->start < Stop)
231      ++MFI;
232    else
233      MFI = LIS.getMBBFromIndex(LVI->start);
234  }
235
236  assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
237  return true;
238}
239
240unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
241  if (cli->empty())
242    return 0;
243  LiveInterval *li = const_cast<LiveInterval*>(cli);
244  LiveInterval::iterator LVI = li->begin();
245  LiveInterval::iterator LVE = li->end();
246  unsigned Count = 0;
247
248  // Loop over basic blocks where li is live.
249  MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start);
250  SlotIndex Stop = LIS.getMBBEndIdx(MFI);
251  for (;;) {
252    ++Count;
253    LVI = li->advanceTo(LVI, Stop);
254    if (LVI == LVE)
255      return Count;
256    do {
257      ++MFI;
258      Stop = LIS.getMBBEndIdx(MFI);
259    } while (Stop <= LVI->start);
260  }
261}
262
263bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
264  unsigned OrigReg = VRM.getOriginal(CurLI->reg);
265  const LiveInterval &Orig = LIS.getInterval(OrigReg);
266  assert(!Orig.empty() && "Splitting empty interval?");
267  LiveInterval::const_iterator I = Orig.find(Idx);
268
269  // Range containing Idx should begin at Idx.
270  if (I != Orig.end() && I->start <= Idx)
271    return I->start == Idx;
272
273  // Range does not contain Idx, previous must end at Idx.
274  return I != Orig.begin() && (--I)->end == Idx;
275}
276
277void SplitAnalysis::analyze(const LiveInterval *li) {
278  clear();
279  CurLI = li;
280  analyzeUses();
281}
282
283
284//===----------------------------------------------------------------------===//
285//                               Split Editor
286//===----------------------------------------------------------------------===//
287
288/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
289SplitEditor::SplitEditor(SplitAnalysis &sa,
290                         LiveIntervals &lis,
291                         VirtRegMap &vrm,
292                         MachineDominatorTree &mdt)
293  : SA(sa), LIS(lis), VRM(vrm),
294    MRI(vrm.getMachineFunction().getRegInfo()),
295    MDT(mdt),
296    TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
297    TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
298    Edit(0),
299    OpenIdx(0),
300    RegAssign(Allocator)
301{}
302
303void SplitEditor::reset(LiveRangeEdit &lre) {
304  Edit = &lre;
305  OpenIdx = 0;
306  RegAssign.clear();
307  Values.clear();
308
309  // We don't need to clear LiveOutCache, only LiveOutSeen entries are read.
310  LiveOutSeen.clear();
311
312  // We don't need an AliasAnalysis since we will only be performing
313  // cheap-as-a-copy remats anyway.
314  Edit->anyRematerializable(LIS, TII, 0);
315}
316
317void SplitEditor::dump() const {
318  if (RegAssign.empty()) {
319    dbgs() << " empty\n";
320    return;
321  }
322
323  for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
324    dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
325  dbgs() << '\n';
326}
327
328VNInfo *SplitEditor::defValue(unsigned RegIdx,
329                              const VNInfo *ParentVNI,
330                              SlotIndex Idx) {
331  assert(ParentVNI && "Mapping  NULL value");
332  assert(Idx.isValid() && "Invalid SlotIndex");
333  assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
334  LiveInterval *LI = Edit->get(RegIdx);
335
336  // Create a new value.
337  VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator());
338
339  // Use insert for lookup, so we can add missing values with a second lookup.
340  std::pair<ValueMap::iterator, bool> InsP =
341    Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), VNI));
342
343  // This was the first time (RegIdx, ParentVNI) was mapped.
344  // Keep it as a simple def without any liveness.
345  if (InsP.second)
346    return VNI;
347
348  // If the previous value was a simple mapping, add liveness for it now.
349  if (VNInfo *OldVNI = InsP.first->second) {
350    SlotIndex Def = OldVNI->def;
351    LI->addRange(LiveRange(Def, Def.getNextSlot(), OldVNI));
352    // No longer a simple mapping.
353    InsP.first->second = 0;
354  }
355
356  // This is a complex mapping, add liveness for VNI
357  SlotIndex Def = VNI->def;
358  LI->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
359
360  return VNI;
361}
362
363void SplitEditor::markComplexMapped(unsigned RegIdx, const VNInfo *ParentVNI) {
364  assert(ParentVNI && "Mapping  NULL value");
365  VNInfo *&VNI = Values[std::make_pair(RegIdx, ParentVNI->id)];
366
367  // ParentVNI was either unmapped or already complex mapped. Either way.
368  if (!VNI)
369    return;
370
371  // This was previously a single mapping. Make sure the old def is represented
372  // by a trivial live range.
373  SlotIndex Def = VNI->def;
374  Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
375  VNI = 0;
376}
377
378// extendRange - Extend the live range to reach Idx.
379// Potentially create phi-def values.
380void SplitEditor::extendRange(unsigned RegIdx, SlotIndex Idx) {
381  assert(Idx.isValid() && "Invalid SlotIndex");
382  MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx);
383  assert(IdxMBB && "No MBB at Idx");
384  LiveInterval *LI = Edit->get(RegIdx);
385
386  // Is there a def in the same MBB we can extend?
387  if (LI->extendInBlock(LIS.getMBBStartIdx(IdxMBB), Idx))
388    return;
389
390  // Now for the fun part. We know that ParentVNI potentially has multiple defs,
391  // and we may need to create even more phi-defs to preserve VNInfo SSA form.
392  // Perform a search for all predecessor blocks where we know the dominating
393  // VNInfo.
394  VNInfo *VNI = findReachingDefs(LI, IdxMBB, Idx.getNextSlot());
395
396  // When there were multiple different values, we may need new PHIs.
397  if (!VNI)
398    return updateSSA();
399
400  // Poor man's SSA update for the single-value case.
401  LiveOutPair LOP(VNI, MDT[LIS.getMBBFromIndex(VNI->def)]);
402  for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(),
403         E = LiveInBlocks.end(); I != E; ++I) {
404    MachineBasicBlock *MBB = I->DomNode->getBlock();
405    SlotIndex Start = LIS.getMBBStartIdx(MBB);
406    if (I->Kill.isValid())
407      LI->addRange(LiveRange(Start, I->Kill, VNI));
408    else {
409      LiveOutCache[MBB] = LOP;
410      LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
411    }
412  }
413}
414
415/// findReachingDefs - Search the CFG for known live-out values.
416/// Add required live-in blocks to LiveInBlocks.
417VNInfo *SplitEditor::findReachingDefs(LiveInterval *LI,
418                                      MachineBasicBlock *KillMBB,
419                                      SlotIndex Kill) {
420  // Initialize the live-out cache the first time it is needed.
421  if (LiveOutSeen.empty()) {
422    unsigned N = VRM.getMachineFunction().getNumBlockIDs();
423    LiveOutSeen.resize(N);
424    LiveOutCache.resize(N);
425  }
426
427  // Blocks where LI should be live-in.
428  SmallVector<MachineBasicBlock*, 16> WorkList(1, KillMBB);
429
430  // Remember if we have seen more than one value.
431  bool UniqueVNI = true;
432  VNInfo *TheVNI = 0;
433
434  // Using LiveOutCache as a visited set, perform a BFS for all reaching defs.
435  for (unsigned i = 0; i != WorkList.size(); ++i) {
436    MachineBasicBlock *MBB = WorkList[i];
437    assert(!MBB->pred_empty() && "Value live-in to entry block?");
438    for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
439           PE = MBB->pred_end(); PI != PE; ++PI) {
440       MachineBasicBlock *Pred = *PI;
441       LiveOutPair &LOP = LiveOutCache[Pred];
442
443       // Is this a known live-out block?
444       if (LiveOutSeen.test(Pred->getNumber())) {
445         if (VNInfo *VNI = LOP.first) {
446           if (TheVNI && TheVNI != VNI)
447             UniqueVNI = false;
448           TheVNI = VNI;
449         }
450         continue;
451       }
452
453       // First time. LOP is garbage and must be cleared below.
454       LiveOutSeen.set(Pred->getNumber());
455
456       // Does Pred provide a live-out value?
457       SlotIndex Start, Last;
458       tie(Start, Last) = LIS.getSlotIndexes()->getMBBRange(Pred);
459       Last = Last.getPrevSlot();
460       VNInfo *VNI = LI->extendInBlock(Start, Last);
461       LOP.first = VNI;
462       if (VNI) {
463         LOP.second = MDT[LIS.getMBBFromIndex(VNI->def)];
464         if (TheVNI && TheVNI != VNI)
465           UniqueVNI = false;
466         TheVNI = VNI;
467         continue;
468       }
469       LOP.second = 0;
470
471       // No, we need a live-in value for Pred as well
472       if (Pred != KillMBB)
473          WorkList.push_back(Pred);
474       else
475          // Loopback to KillMBB, so value is really live through.
476         Kill = SlotIndex();
477    }
478  }
479
480  // Transfer WorkList to LiveInBlocks in reverse order.
481  // This ordering works best with updateSSA().
482  LiveInBlocks.clear();
483  LiveInBlocks.reserve(WorkList.size());
484  while(!WorkList.empty())
485    LiveInBlocks.push_back(MDT[WorkList.pop_back_val()]);
486
487  // The kill block may not be live-through.
488  assert(LiveInBlocks.back().DomNode->getBlock() == KillMBB);
489  LiveInBlocks.back().Kill = Kill;
490
491  return UniqueVNI ? TheVNI : 0;
492}
493
494void SplitEditor::updateSSA() {
495  // This is essentially the same iterative algorithm that SSAUpdater uses,
496  // except we already have a dominator tree, so we don't have to recompute it.
497  unsigned Changes;
498  do {
499    Changes = 0;
500    // Propagate live-out values down the dominator tree, inserting phi-defs
501    // when necessary.
502    for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(),
503           E = LiveInBlocks.end(); I != E; ++I) {
504      MachineDomTreeNode *Node = I->DomNode;
505      // Skip block if the live-in value has already been determined.
506      if (!Node)
507        continue;
508      MachineBasicBlock *MBB = Node->getBlock();
509      MachineDomTreeNode *IDom = Node->getIDom();
510      LiveOutPair IDomValue;
511
512      // We need a live-in value to a block with no immediate dominator?
513      // This is probably an unreachable block that has survived somehow.
514      bool needPHI = !IDom || !LiveOutSeen.test(IDom->getBlock()->getNumber());
515
516      // IDom dominates all of our predecessors, but it may not be their
517      // immediate dominator. Check if any of them have live-out values that are
518      // properly dominated by IDom. If so, we need a phi-def here.
519      if (!needPHI) {
520        IDomValue = LiveOutCache[IDom->getBlock()];
521        for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
522               PE = MBB->pred_end(); PI != PE; ++PI) {
523          LiveOutPair Value = LiveOutCache[*PI];
524          if (!Value.first || Value.first == IDomValue.first)
525            continue;
526          // This predecessor is carrying something other than IDomValue.
527          // It could be because IDomValue hasn't propagated yet, or it could be
528          // because MBB is in the dominance frontier of that value.
529          if (MDT.dominates(IDom, Value.second)) {
530            needPHI = true;
531            break;
532          }
533        }
534      }
535
536      // The value may be live-through even if Kill is set, as can happen when
537      // we are called from extendRange. In that case LiveOutSeen is true, and
538      // LiveOutCache indicates a foreign or missing value.
539      LiveOutPair &LOP = LiveOutCache[MBB];
540
541      // Create a phi-def if required.
542      if (needPHI) {
543        ++Changes;
544        SlotIndex Start = LIS.getMBBStartIdx(MBB);
545        unsigned RegIdx = RegAssign.lookup(Start);
546        LiveInterval *LI = Edit->get(RegIdx);
547        VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator());
548        VNI->setIsPHIDef(true);
549        I->Value = VNI;
550        // This block is done, we know the final value.
551        I->DomNode = 0;
552        if (I->Kill.isValid())
553          LI->addRange(LiveRange(Start, I->Kill, VNI));
554        else {
555          LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
556          LOP = LiveOutPair(VNI, Node);
557        }
558      } else if (IDomValue.first) {
559        // No phi-def here. Remember incoming value.
560        I->Value = IDomValue.first;
561        if (I->Kill.isValid())
562          continue;
563        // Propagate IDomValue if needed:
564        // MBB is live-out and doesn't define its own value.
565        if (LOP.second != Node && LOP.first != IDomValue.first) {
566          ++Changes;
567          LOP = IDomValue;
568        }
569      }
570    }
571  } while (Changes);
572
573  // The values in LiveInBlocks are now accurate. No more phi-defs are needed
574  // for these blocks, so we can color the live ranges.
575  for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(),
576         E = LiveInBlocks.end(); I != E; ++I) {
577    if (!I->DomNode)
578      continue;
579    assert(I->Value && "No live-in value found");
580    MachineBasicBlock *MBB = I->DomNode->getBlock();
581    SlotIndex Start = LIS.getMBBStartIdx(MBB);
582    unsigned RegIdx = RegAssign.lookup(Start);
583    LiveInterval *LI = Edit->get(RegIdx);
584    LI->addRange(LiveRange(Start, I->Kill.isValid() ?
585                                  I->Kill : LIS.getMBBEndIdx(MBB), I->Value));
586  }
587}
588
589VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
590                                   VNInfo *ParentVNI,
591                                   SlotIndex UseIdx,
592                                   MachineBasicBlock &MBB,
593                                   MachineBasicBlock::iterator I) {
594  MachineInstr *CopyMI = 0;
595  SlotIndex Def;
596  LiveInterval *LI = Edit->get(RegIdx);
597
598  // We may be trying to avoid interference that ends at a deleted instruction,
599  // so always begin RegIdx 0 early and all others late.
600  bool Late = RegIdx != 0;
601
602  // Attempt cheap-as-a-copy rematerialization.
603  LiveRangeEdit::Remat RM(ParentVNI);
604  if (Edit->canRematerializeAt(RM, UseIdx, true, LIS)) {
605    Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI, Late);
606    ++NumRemats;
607  } else {
608    // Can't remat, just insert a copy from parent.
609    CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
610               .addReg(Edit->getReg());
611    Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late)
612            .getDefIndex();
613    ++NumCopies;
614  }
615
616  // Define the value in Reg.
617  VNInfo *VNI = defValue(RegIdx, ParentVNI, Def);
618  VNI->setCopy(CopyMI);
619  return VNI;
620}
621
622/// Create a new virtual register and live interval.
623unsigned SplitEditor::openIntv() {
624  // Create the complement as index 0.
625  if (Edit->empty())
626    Edit->create(LIS, VRM);
627
628  // Create the open interval.
629  OpenIdx = Edit->size();
630  Edit->create(LIS, VRM);
631  return OpenIdx;
632}
633
634void SplitEditor::selectIntv(unsigned Idx) {
635  assert(Idx != 0 && "Cannot select the complement interval");
636  assert(Idx < Edit->size() && "Can only select previously opened interval");
637  OpenIdx = Idx;
638}
639
640SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
641  assert(OpenIdx && "openIntv not called before enterIntvBefore");
642  DEBUG(dbgs() << "    enterIntvBefore " << Idx);
643  Idx = Idx.getBaseIndex();
644  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
645  if (!ParentVNI) {
646    DEBUG(dbgs() << ": not live\n");
647    return Idx;
648  }
649  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
650  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
651  assert(MI && "enterIntvBefore called with invalid index");
652
653  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
654  return VNI->def;
655}
656
657SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
658  assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
659  SlotIndex End = LIS.getMBBEndIdx(&MBB);
660  SlotIndex Last = End.getPrevSlot();
661  DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
662  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
663  if (!ParentVNI) {
664    DEBUG(dbgs() << ": not live\n");
665    return End;
666  }
667  DEBUG(dbgs() << ": valno " << ParentVNI->id);
668  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
669                              LIS.getLastSplitPoint(Edit->getParent(), &MBB));
670  RegAssign.insert(VNI->def, End, OpenIdx);
671  DEBUG(dump());
672  return VNI->def;
673}
674
675/// useIntv - indicate that all instructions in MBB should use OpenLI.
676void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
677  useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
678}
679
680void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
681  assert(OpenIdx && "openIntv not called before useIntv");
682  DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
683  RegAssign.insert(Start, End, OpenIdx);
684  DEBUG(dump());
685}
686
687SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
688  assert(OpenIdx && "openIntv not called before leaveIntvAfter");
689  DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
690
691  // The interval must be live beyond the instruction at Idx.
692  Idx = Idx.getBoundaryIndex();
693  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
694  if (!ParentVNI) {
695    DEBUG(dbgs() << ": not live\n");
696    return Idx.getNextSlot();
697  }
698  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
699
700  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
701  assert(MI && "No instruction at index");
702  VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(),
703                              llvm::next(MachineBasicBlock::iterator(MI)));
704  return VNI->def;
705}
706
707SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
708  assert(OpenIdx && "openIntv not called before leaveIntvBefore");
709  DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
710
711  // The interval must be live into the instruction at Idx.
712  Idx = Idx.getBoundaryIndex();
713  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
714  if (!ParentVNI) {
715    DEBUG(dbgs() << ": not live\n");
716    return Idx.getNextSlot();
717  }
718  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
719
720  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
721  assert(MI && "No instruction at index");
722  VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
723  return VNI->def;
724}
725
726SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
727  assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
728  SlotIndex Start = LIS.getMBBStartIdx(&MBB);
729  DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
730
731  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
732  if (!ParentVNI) {
733    DEBUG(dbgs() << ": not live\n");
734    return Start;
735  }
736
737  VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
738                              MBB.SkipPHIsAndLabels(MBB.begin()));
739  RegAssign.insert(Start, VNI->def, OpenIdx);
740  DEBUG(dump());
741  return VNI->def;
742}
743
744void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
745  assert(OpenIdx && "openIntv not called before overlapIntv");
746  const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
747  assert(ParentVNI == Edit->getParent().getVNInfoAt(End.getPrevSlot()) &&
748         "Parent changes value in extended range");
749  assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
750         "Range cannot span basic blocks");
751
752  // The complement interval will be extended as needed by extendRange().
753  if (ParentVNI)
754    markComplexMapped(0, ParentVNI);
755  DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
756  RegAssign.insert(Start, End, OpenIdx);
757  DEBUG(dump());
758}
759
760/// transferValues - Transfer all possible values to the new live ranges.
761/// Values that were rematerialized are left alone, they need extendRange().
762bool SplitEditor::transferValues() {
763  bool Skipped = false;
764  LiveInBlocks.clear();
765  RegAssignMap::const_iterator AssignI = RegAssign.begin();
766  for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(),
767         ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) {
768    DEBUG(dbgs() << "  blit " << *ParentI << ':');
769    VNInfo *ParentVNI = ParentI->valno;
770    // RegAssign has holes where RegIdx 0 should be used.
771    SlotIndex Start = ParentI->start;
772    AssignI.advanceTo(Start);
773    do {
774      unsigned RegIdx;
775      SlotIndex End = ParentI->end;
776      if (!AssignI.valid()) {
777        RegIdx = 0;
778      } else if (AssignI.start() <= Start) {
779        RegIdx = AssignI.value();
780        if (AssignI.stop() < End) {
781          End = AssignI.stop();
782          ++AssignI;
783        }
784      } else {
785        RegIdx = 0;
786        End = std::min(End, AssignI.start());
787      }
788
789      // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
790      DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx);
791      LiveInterval *LI = Edit->get(RegIdx);
792
793      // Check for a simply defined value that can be blitted directly.
794      if (VNInfo *VNI = Values.lookup(std::make_pair(RegIdx, ParentVNI->id))) {
795        DEBUG(dbgs() << ':' << VNI->id);
796        LI->addRange(LiveRange(Start, End, VNI));
797        Start = End;
798        continue;
799      }
800
801      // Skip rematerialized values, we need to use extendRange() and
802      // extendPHIKillRanges() to completely recompute the live ranges.
803      if (Edit->didRematerialize(ParentVNI)) {
804        DEBUG(dbgs() << "(remat)");
805        Skipped = true;
806        Start = End;
807        continue;
808      }
809
810      // Initialize the live-out cache the first time it is needed.
811      if (LiveOutSeen.empty()) {
812        unsigned N = VRM.getMachineFunction().getNumBlockIDs();
813        LiveOutSeen.resize(N);
814        LiveOutCache.resize(N);
815      }
816
817      // This value has multiple defs in RegIdx, but it wasn't rematerialized,
818      // so the live range is accurate. Add live-in blocks in [Start;End) to the
819      // LiveInBlocks.
820      MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start);
821      SlotIndex BlockStart, BlockEnd;
822      tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB);
823
824      // The first block may be live-in, or it may have its own def.
825      if (Start != BlockStart) {
826        VNInfo *VNI = LI->extendInBlock(BlockStart,
827                                        std::min(BlockEnd, End).getPrevSlot());
828        assert(VNI && "Missing def for complex mapped value");
829        DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber());
830        // MBB has its own def. Is it also live-out?
831        if (BlockEnd <= End) {
832          LiveOutSeen.set(MBB->getNumber());
833          LiveOutCache[MBB] = LiveOutPair(VNI, MDT[MBB]);
834        }
835        // Skip to the next block for live-in.
836        ++MBB;
837        BlockStart = BlockEnd;
838      }
839
840      // Handle the live-in blocks covered by [Start;End).
841      assert(Start <= BlockStart && "Expected live-in block");
842      while (BlockStart < End) {
843        DEBUG(dbgs() << ">BB#" << MBB->getNumber());
844        BlockEnd = LIS.getMBBEndIdx(MBB);
845        if (BlockStart == ParentVNI->def) {
846          // This block has the def of a parent PHI, so it isn't live-in.
847          assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
848          VNInfo *VNI = LI->extendInBlock(BlockStart,
849                                         std::min(BlockEnd, End).getPrevSlot());
850          assert(VNI && "Missing def for complex mapped parent PHI");
851          if (End >= BlockEnd) {
852            // Live-out as well.
853            LiveOutSeen.set(MBB->getNumber());
854            LiveOutCache[MBB] = LiveOutPair(VNI, MDT[MBB]);
855          }
856        } else {
857          // This block needs a live-in value.
858          LiveInBlocks.push_back(MDT[MBB]);
859          // The last block covered may not be live-out.
860          if (End < BlockEnd)
861            LiveInBlocks.back().Kill = End;
862          else {
863            // Live-out, but we need updateSSA to tell us the value.
864            LiveOutSeen.set(MBB->getNumber());
865            LiveOutCache[MBB] = LiveOutPair((VNInfo*)0,
866                                            (MachineDomTreeNode*)0);
867          }
868        }
869        BlockStart = BlockEnd;
870        ++MBB;
871      }
872      Start = End;
873    } while (Start != ParentI->end);
874    DEBUG(dbgs() << '\n');
875  }
876
877  if (!LiveInBlocks.empty())
878    updateSSA();
879
880  return Skipped;
881}
882
883void SplitEditor::extendPHIKillRanges() {
884    // Extend live ranges to be live-out for successor PHI values.
885  for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
886       E = Edit->getParent().vni_end(); I != E; ++I) {
887    const VNInfo *PHIVNI = *I;
888    if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
889      continue;
890    unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
891    MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
892    for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
893         PE = MBB->pred_end(); PI != PE; ++PI) {
894      SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot();
895      // The predecessor may not have a live-out value. That is OK, like an
896      // undef PHI operand.
897      if (Edit->getParent().liveAt(End)) {
898        assert(RegAssign.lookup(End) == RegIdx &&
899               "Different register assignment in phi predecessor");
900        extendRange(RegIdx, End);
901      }
902    }
903  }
904}
905
906/// rewriteAssigned - Rewrite all uses of Edit->getReg().
907void SplitEditor::rewriteAssigned(bool ExtendRanges) {
908  for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
909       RE = MRI.reg_end(); RI != RE;) {
910    MachineOperand &MO = RI.getOperand();
911    MachineInstr *MI = MO.getParent();
912    ++RI;
913    // LiveDebugVariables should have handled all DBG_VALUE instructions.
914    if (MI->isDebugValue()) {
915      DEBUG(dbgs() << "Zapping " << *MI);
916      MO.setReg(0);
917      continue;
918    }
919
920    // <undef> operands don't really read the register, so just assign them to
921    // the complement.
922    if (MO.isUse() && MO.isUndef()) {
923      MO.setReg(Edit->get(0)->reg);
924      continue;
925    }
926
927    SlotIndex Idx = LIS.getInstructionIndex(MI);
928    if (MO.isDef())
929      Idx = MO.isEarlyClobber() ? Idx.getUseIndex() : Idx.getDefIndex();
930
931    // Rewrite to the mapped register at Idx.
932    unsigned RegIdx = RegAssign.lookup(Idx);
933    MO.setReg(Edit->get(RegIdx)->reg);
934    DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'
935                 << Idx << ':' << RegIdx << '\t' << *MI);
936
937    // Extend liveness to Idx if the instruction reads reg.
938    if (!ExtendRanges)
939      continue;
940
941    // Skip instructions that don't read Reg.
942    if (MO.isDef()) {
943      if (!MO.getSubReg() && !MO.isEarlyClobber())
944        continue;
945      // We may wan't to extend a live range for a partial redef, or for a use
946      // tied to an early clobber.
947      Idx = Idx.getPrevSlot();
948      if (!Edit->getParent().liveAt(Idx))
949        continue;
950    } else
951      Idx = Idx.getUseIndex();
952
953    extendRange(RegIdx, Idx);
954  }
955}
956
957void SplitEditor::deleteRematVictims() {
958  SmallVector<MachineInstr*, 8> Dead;
959  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
960    LiveInterval *LI = *I;
961    for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end();
962           LII != LIE; ++LII) {
963      // Dead defs end at the store slot.
964      if (LII->end != LII->valno->def.getNextSlot())
965        continue;
966      MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def);
967      assert(MI && "Missing instruction for dead def");
968      MI->addRegisterDead(LI->reg, &TRI);
969
970      if (!MI->allDefsAreDead())
971        continue;
972
973      DEBUG(dbgs() << "All defs dead: " << *MI);
974      Dead.push_back(MI);
975    }
976  }
977
978  if (Dead.empty())
979    return;
980
981  Edit->eliminateDeadDefs(Dead, LIS, VRM, TII);
982}
983
984void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
985  ++NumFinished;
986
987  // At this point, the live intervals in Edit contain VNInfos corresponding to
988  // the inserted copies.
989
990  // Add the original defs from the parent interval.
991  for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
992         E = Edit->getParent().vni_end(); I != E; ++I) {
993    const VNInfo *ParentVNI = *I;
994    if (ParentVNI->isUnused())
995      continue;
996    unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
997    VNInfo *VNI = defValue(RegIdx, ParentVNI, ParentVNI->def);
998    VNI->setIsPHIDef(ParentVNI->isPHIDef());
999    VNI->setCopy(ParentVNI->getCopy());
1000
1001    // Mark rematted values as complex everywhere to force liveness computation.
1002    // The new live ranges may be truncated.
1003    if (Edit->didRematerialize(ParentVNI))
1004      for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1005        markComplexMapped(i, ParentVNI);
1006  }
1007
1008#ifndef NDEBUG
1009  // Every new interval must have a def by now, otherwise the split is bogus.
1010  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I)
1011    assert((*I)->hasAtLeastOneValue() && "Split interval has no value");
1012#endif
1013
1014  // Transfer the simply mapped values, check if any are skipped.
1015  bool Skipped = transferValues();
1016  if (Skipped)
1017    extendPHIKillRanges();
1018  else
1019    ++NumSimple;
1020
1021  // Rewrite virtual registers, possibly extending ranges.
1022  rewriteAssigned(Skipped);
1023
1024  // Delete defs that were rematted everywhere.
1025  if (Skipped)
1026    deleteRematVictims();
1027
1028  // Get rid of unused values and set phi-kill flags.
1029  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I)
1030    (*I)->RenumberValues(LIS);
1031
1032  // Provide a reverse mapping from original indices to Edit ranges.
1033  if (LRMap) {
1034    LRMap->clear();
1035    for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1036      LRMap->push_back(i);
1037  }
1038
1039  // Now check if any registers were separated into multiple components.
1040  ConnectedVNInfoEqClasses ConEQ(LIS);
1041  for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1042    // Don't use iterators, they are invalidated by create() below.
1043    LiveInterval *li = Edit->get(i);
1044    unsigned NumComp = ConEQ.Classify(li);
1045    if (NumComp <= 1)
1046      continue;
1047    DEBUG(dbgs() << "  " << NumComp << " components: " << *li << '\n');
1048    SmallVector<LiveInterval*, 8> dups;
1049    dups.push_back(li);
1050    for (unsigned j = 1; j != NumComp; ++j)
1051      dups.push_back(&Edit->create(LIS, VRM));
1052    ConEQ.Distribute(&dups[0], MRI);
1053    // The new intervals all map back to i.
1054    if (LRMap)
1055      LRMap->resize(Edit->size(), i);
1056  }
1057
1058  // Calculate spill weight and allocation hints for new intervals.
1059  Edit->calculateRegClassAndHint(VRM.getMachineFunction(), LIS, SA.Loops);
1060
1061  assert(!LRMap || LRMap->size() == Edit->size());
1062}
1063
1064
1065//===----------------------------------------------------------------------===//
1066//                            Single Block Splitting
1067//===----------------------------------------------------------------------===//
1068
1069/// getMultiUseBlocks - if CurLI has more than one use in a basic block, it
1070/// may be an advantage to split CurLI for the duration of the block.
1071bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) {
1072  // If CurLI is local to one block, there is no point to splitting it.
1073  if (UseBlocks.size() <= 1)
1074    return false;
1075  // Add blocks with multiple uses.
1076  for (unsigned i = 0, e = UseBlocks.size(); i != e; ++i) {
1077    const BlockInfo &BI = UseBlocks[i];
1078    if (BI.FirstUse == BI.LastUse)
1079      continue;
1080    Blocks.insert(BI.MBB);
1081  }
1082  return !Blocks.empty();
1083}
1084
1085void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1086  openIntv();
1087  SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
1088  SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstUse,
1089    LastSplitPoint));
1090  if (!BI.LiveOut || BI.LastUse < LastSplitPoint) {
1091    useIntv(SegStart, leaveIntvAfter(BI.LastUse));
1092  } else {
1093      // The last use is after the last valid split point.
1094    SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1095    useIntv(SegStart, SegStop);
1096    overlapIntv(SegStop, BI.LastUse);
1097  }
1098}
1099
1100/// splitSingleBlocks - Split CurLI into a separate live interval inside each
1101/// basic block in Blocks.
1102void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
1103  DEBUG(dbgs() << "  splitSingleBlocks for " << Blocks.size() << " blocks.\n");
1104  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA.getUseBlocks();
1105  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1106    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1107    if (Blocks.count(BI.MBB))
1108      splitSingleBlock(BI);
1109  }
1110  finish();
1111}
1112