SplitKit.cpp revision b5a457c4cbc71db6ae313ef1bf8eadac65767ab0
1//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the SplitAnalysis class as well as mutator functions for
11// live range splitting.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "SplitKit.h"
17#include "LiveRangeEdit.h"
18#include "VirtRegMap.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/CodeGen/LiveIntervalAnalysis.h"
21#include "llvm/CodeGen/MachineDominators.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/raw_ostream.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Target/TargetMachine.h"
28
29using namespace llvm;
30
31STATISTIC(NumFinished, "Number of splits finished");
32STATISTIC(NumSimple,   "Number of splits that were simple");
33STATISTIC(NumCopies,   "Number of copies inserted for splitting");
34STATISTIC(NumRemats,   "Number of rematerialized defs for splitting");
35STATISTIC(NumRepairs,  "Number of invalid live ranges repaired");
36
37//===----------------------------------------------------------------------===//
38//                                 Split Analysis
39//===----------------------------------------------------------------------===//
40
41SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm,
42                             const LiveIntervals &lis,
43                             const MachineLoopInfo &mli)
44  : MF(vrm.getMachineFunction()),
45    VRM(vrm),
46    LIS(lis),
47    Loops(mli),
48    TII(*MF.getTarget().getInstrInfo()),
49    CurLI(0),
50    LastSplitPoint(MF.getNumBlockIDs()) {}
51
52void SplitAnalysis::clear() {
53  UseSlots.clear();
54  UseBlocks.clear();
55  ThroughBlocks.clear();
56  CurLI = 0;
57  DidRepairRange = false;
58}
59
60SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) {
61  const MachineBasicBlock *MBB = MF.getBlockNumbered(Num);
62  const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor();
63  std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num];
64
65  // Compute split points on the first call. The pair is independent of the
66  // current live interval.
67  if (!LSP.first.isValid()) {
68    MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator();
69    if (FirstTerm == MBB->end())
70      LSP.first = LIS.getMBBEndIdx(MBB);
71    else
72      LSP.first = LIS.getInstructionIndex(FirstTerm);
73
74    // If there is a landing pad successor, also find the call instruction.
75    if (!LPad)
76      return LSP.first;
77    // There may not be a call instruction (?) in which case we ignore LPad.
78    LSP.second = LSP.first;
79    for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin();
80         I != E;) {
81      --I;
82      if (I->getDesc().isCall()) {
83        LSP.second = LIS.getInstructionIndex(I);
84        break;
85      }
86    }
87  }
88
89  // If CurLI is live into a landing pad successor, move the last split point
90  // back to the call that may throw.
91  if (LPad && LSP.second.isValid() && LIS.isLiveInToMBB(*CurLI, LPad))
92    return LSP.second;
93  else
94    return LSP.first;
95}
96
97/// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
98void SplitAnalysis::analyzeUses() {
99  assert(UseSlots.empty() && "Call clear first");
100
101  // First get all the defs from the interval values. This provides the correct
102  // slots for early clobbers.
103  for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(),
104       E = CurLI->vni_end(); I != E; ++I)
105    if (!(*I)->isPHIDef() && !(*I)->isUnused())
106      UseSlots.push_back((*I)->def);
107
108  // Get use slots form the use-def chain.
109  const MachineRegisterInfo &MRI = MF.getRegInfo();
110  for (MachineRegisterInfo::use_nodbg_iterator
111       I = MRI.use_nodbg_begin(CurLI->reg), E = MRI.use_nodbg_end(); I != E;
112       ++I)
113    if (!I.getOperand().isUndef())
114      UseSlots.push_back(LIS.getInstructionIndex(&*I).getDefIndex());
115
116  array_pod_sort(UseSlots.begin(), UseSlots.end());
117
118  // Remove duplicates, keeping the smaller slot for each instruction.
119  // That is what we want for early clobbers.
120  UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
121                             SlotIndex::isSameInstr),
122                 UseSlots.end());
123
124  // Compute per-live block info.
125  if (!calcLiveBlockInfo()) {
126    // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
127    // I am looking at you, RegisterCoalescer!
128    DidRepairRange = true;
129    ++NumRepairs;
130    DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
131    const_cast<LiveIntervals&>(LIS)
132      .shrinkToUses(const_cast<LiveInterval*>(CurLI));
133    UseBlocks.clear();
134    ThroughBlocks.clear();
135    bool fixed = calcLiveBlockInfo();
136    (void)fixed;
137    assert(fixed && "Couldn't fix broken live interval");
138  }
139
140  DEBUG(dbgs() << "Analyze counted "
141               << UseSlots.size() << " instrs in "
142               << UseBlocks.size() << " blocks, through "
143               << NumThroughBlocks << " blocks.\n");
144}
145
146/// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
147/// where CurLI is live.
148bool SplitAnalysis::calcLiveBlockInfo() {
149  ThroughBlocks.resize(MF.getNumBlockIDs());
150  NumThroughBlocks = NumGapBlocks = 0;
151  if (CurLI->empty())
152    return true;
153
154  LiveInterval::const_iterator LVI = CurLI->begin();
155  LiveInterval::const_iterator LVE = CurLI->end();
156
157  SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
158  UseI = UseSlots.begin();
159  UseE = UseSlots.end();
160
161  // Loop over basic blocks where CurLI is live.
162  MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start);
163  for (;;) {
164    BlockInfo BI;
165    BI.MBB = MFI;
166    SlotIndex Start, Stop;
167    tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
168
169    // If the block contains no uses, the range must be live through. At one
170    // point, RegisterCoalescer could create dangling ranges that ended
171    // mid-block.
172    if (UseI == UseE || *UseI >= Stop) {
173      ++NumThroughBlocks;
174      ThroughBlocks.set(BI.MBB->getNumber());
175      // The range shouldn't end mid-block if there are no uses. This shouldn't
176      // happen.
177      if (LVI->end < Stop)
178        return false;
179    } else {
180      // This block has uses. Find the first and last uses in the block.
181      BI.FirstInstr = *UseI;
182      assert(BI.FirstInstr >= Start);
183      do ++UseI;
184      while (UseI != UseE && *UseI < Stop);
185      BI.LastInstr = UseI[-1];
186      assert(BI.LastInstr < Stop);
187
188      // LVI is the first live segment overlapping MBB.
189      BI.LiveIn = LVI->start <= Start;
190
191      // When not live in, the first use should be a def.
192      if (!BI.LiveIn) {
193        assert(LVI->start == LVI->valno->def && "Dangling LiveRange start");
194        assert(LVI->start == BI.FirstInstr && "First instr should be a def");
195        BI.FirstDef = BI.FirstInstr;
196      }
197
198      // Look for gaps in the live range.
199      BI.LiveOut = true;
200      while (LVI->end < Stop) {
201        SlotIndex LastStop = LVI->end;
202        if (++LVI == LVE || LVI->start >= Stop) {
203          BI.LiveOut = false;
204          BI.LastInstr = LastStop;
205          break;
206        }
207
208        if (LastStop < LVI->start) {
209          // There is a gap in the live range. Create duplicate entries for the
210          // live-in snippet and the live-out snippet.
211          ++NumGapBlocks;
212
213          // Push the Live-in part.
214          BI.LiveOut = false;
215          UseBlocks.push_back(BI);
216          UseBlocks.back().LastInstr = LastStop;
217
218          // Set up BI for the live-out part.
219          BI.LiveIn = false;
220          BI.LiveOut = true;
221          BI.FirstInstr = BI.FirstDef = LVI->start;
222        }
223
224        // A LiveRange that starts in the middle of the block must be a def.
225        assert(LVI->start == LVI->valno->def && "Dangling LiveRange start");
226        if (!BI.FirstDef)
227          BI.FirstDef = LVI->start;
228      }
229
230      UseBlocks.push_back(BI);
231
232      // LVI is now at LVE or LVI->end >= Stop.
233      if (LVI == LVE)
234        break;
235    }
236
237    // Live segment ends exactly at Stop. Move to the next segment.
238    if (LVI->end == Stop && ++LVI == LVE)
239      break;
240
241    // Pick the next basic block.
242    if (LVI->start < Stop)
243      ++MFI;
244    else
245      MFI = LIS.getMBBFromIndex(LVI->start);
246  }
247
248  assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
249  return true;
250}
251
252unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
253  if (cli->empty())
254    return 0;
255  LiveInterval *li = const_cast<LiveInterval*>(cli);
256  LiveInterval::iterator LVI = li->begin();
257  LiveInterval::iterator LVE = li->end();
258  unsigned Count = 0;
259
260  // Loop over basic blocks where li is live.
261  MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start);
262  SlotIndex Stop = LIS.getMBBEndIdx(MFI);
263  for (;;) {
264    ++Count;
265    LVI = li->advanceTo(LVI, Stop);
266    if (LVI == LVE)
267      return Count;
268    do {
269      ++MFI;
270      Stop = LIS.getMBBEndIdx(MFI);
271    } while (Stop <= LVI->start);
272  }
273}
274
275bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
276  unsigned OrigReg = VRM.getOriginal(CurLI->reg);
277  const LiveInterval &Orig = LIS.getInterval(OrigReg);
278  assert(!Orig.empty() && "Splitting empty interval?");
279  LiveInterval::const_iterator I = Orig.find(Idx);
280
281  // Range containing Idx should begin at Idx.
282  if (I != Orig.end() && I->start <= Idx)
283    return I->start == Idx;
284
285  // Range does not contain Idx, previous must end at Idx.
286  return I != Orig.begin() && (--I)->end == Idx;
287}
288
289void SplitAnalysis::analyze(const LiveInterval *li) {
290  clear();
291  CurLI = li;
292  analyzeUses();
293}
294
295
296//===----------------------------------------------------------------------===//
297//                               Split Editor
298//===----------------------------------------------------------------------===//
299
300/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
301SplitEditor::SplitEditor(SplitAnalysis &sa,
302                         LiveIntervals &lis,
303                         VirtRegMap &vrm,
304                         MachineDominatorTree &mdt)
305  : SA(sa), LIS(lis), VRM(vrm),
306    MRI(vrm.getMachineFunction().getRegInfo()),
307    MDT(mdt),
308    TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
309    TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
310    Edit(0),
311    OpenIdx(0),
312    SpillMode(SM_Partition),
313    RegAssign(Allocator)
314{}
315
316void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
317  Edit = &LRE;
318  SpillMode = SM;
319  OpenIdx = 0;
320  RegAssign.clear();
321  Values.clear();
322  LRCalc.reset(&VRM.getMachineFunction());
323
324  // We don't need an AliasAnalysis since we will only be performing
325  // cheap-as-a-copy remats anyway.
326  Edit->anyRematerializable(LIS, TII, 0);
327}
328
329void SplitEditor::dump() const {
330  if (RegAssign.empty()) {
331    dbgs() << " empty\n";
332    return;
333  }
334
335  for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
336    dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
337  dbgs() << '\n';
338}
339
340VNInfo *SplitEditor::defValue(unsigned RegIdx,
341                              const VNInfo *ParentVNI,
342                              SlotIndex Idx) {
343  assert(ParentVNI && "Mapping  NULL value");
344  assert(Idx.isValid() && "Invalid SlotIndex");
345  assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
346  LiveInterval *LI = Edit->get(RegIdx);
347
348  // Create a new value.
349  VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator());
350
351  // Use insert for lookup, so we can add missing values with a second lookup.
352  std::pair<ValueMap::iterator, bool> InsP =
353    Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), VNI));
354
355  // This was the first time (RegIdx, ParentVNI) was mapped.
356  // Keep it as a simple def without any liveness.
357  if (InsP.second)
358    return VNI;
359
360  // If the previous value was a simple mapping, add liveness for it now.
361  if (VNInfo *OldVNI = InsP.first->second) {
362    SlotIndex Def = OldVNI->def;
363    LI->addRange(LiveRange(Def, Def.getNextSlot(), OldVNI));
364    // No longer a simple mapping.
365    InsP.first->second = 0;
366  }
367
368  // This is a complex mapping, add liveness for VNI
369  SlotIndex Def = VNI->def;
370  LI->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
371
372  return VNI;
373}
374
375void SplitEditor::markComplexMapped(unsigned RegIdx, const VNInfo *ParentVNI) {
376  assert(ParentVNI && "Mapping  NULL value");
377  VNInfo *&VNI = Values[std::make_pair(RegIdx, ParentVNI->id)];
378
379  // ParentVNI was either unmapped or already complex mapped. Either way.
380  if (!VNI)
381    return;
382
383  // This was previously a single mapping. Make sure the old def is represented
384  // by a trivial live range.
385  SlotIndex Def = VNI->def;
386  Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
387  VNI = 0;
388}
389
390// extendRange - Extend the live range to reach Idx.
391// Potentially create phi-def values.
392void SplitEditor::extendRange(unsigned RegIdx, SlotIndex Idx) {
393  LRCalc.extend(Edit->get(RegIdx), Idx.getNextSlot(),
394                LIS.getSlotIndexes(), &MDT, &LIS.getVNInfoAllocator());
395}
396
397VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
398                                   VNInfo *ParentVNI,
399                                   SlotIndex UseIdx,
400                                   MachineBasicBlock &MBB,
401                                   MachineBasicBlock::iterator I) {
402  MachineInstr *CopyMI = 0;
403  SlotIndex Def;
404  LiveInterval *LI = Edit->get(RegIdx);
405
406  // We may be trying to avoid interference that ends at a deleted instruction,
407  // so always begin RegIdx 0 early and all others late.
408  bool Late = RegIdx != 0;
409
410  // Attempt cheap-as-a-copy rematerialization.
411  LiveRangeEdit::Remat RM(ParentVNI);
412  if (Edit->canRematerializeAt(RM, UseIdx, true, LIS)) {
413    Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI, Late);
414    ++NumRemats;
415  } else {
416    // Can't remat, just insert a copy from parent.
417    CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
418               .addReg(Edit->getReg());
419    Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late)
420            .getDefIndex();
421    ++NumCopies;
422  }
423
424  // Define the value in Reg.
425  VNInfo *VNI = defValue(RegIdx, ParentVNI, Def);
426  VNI->setCopy(CopyMI);
427  return VNI;
428}
429
430/// Create a new virtual register and live interval.
431unsigned SplitEditor::openIntv() {
432  // Create the complement as index 0.
433  if (Edit->empty())
434    Edit->create(LIS, VRM);
435
436  // Create the open interval.
437  OpenIdx = Edit->size();
438  Edit->create(LIS, VRM);
439  return OpenIdx;
440}
441
442void SplitEditor::selectIntv(unsigned Idx) {
443  assert(Idx != 0 && "Cannot select the complement interval");
444  assert(Idx < Edit->size() && "Can only select previously opened interval");
445  DEBUG(dbgs() << "    selectIntv " << OpenIdx << " -> " << Idx << '\n');
446  OpenIdx = Idx;
447}
448
449SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
450  assert(OpenIdx && "openIntv not called before enterIntvBefore");
451  DEBUG(dbgs() << "    enterIntvBefore " << Idx);
452  Idx = Idx.getBaseIndex();
453  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
454  if (!ParentVNI) {
455    DEBUG(dbgs() << ": not live\n");
456    return Idx;
457  }
458  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
459  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
460  assert(MI && "enterIntvBefore called with invalid index");
461
462  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
463  return VNI->def;
464}
465
466SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
467  assert(OpenIdx && "openIntv not called before enterIntvAfter");
468  DEBUG(dbgs() << "    enterIntvAfter " << Idx);
469  Idx = Idx.getBoundaryIndex();
470  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
471  if (!ParentVNI) {
472    DEBUG(dbgs() << ": not live\n");
473    return Idx;
474  }
475  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
476  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
477  assert(MI && "enterIntvAfter called with invalid index");
478
479  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
480                              llvm::next(MachineBasicBlock::iterator(MI)));
481  return VNI->def;
482}
483
484SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
485  assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
486  SlotIndex End = LIS.getMBBEndIdx(&MBB);
487  SlotIndex Last = End.getPrevSlot();
488  DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
489  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
490  if (!ParentVNI) {
491    DEBUG(dbgs() << ": not live\n");
492    return End;
493  }
494  DEBUG(dbgs() << ": valno " << ParentVNI->id);
495  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
496                              LIS.getLastSplitPoint(Edit->getParent(), &MBB));
497  RegAssign.insert(VNI->def, End, OpenIdx);
498  DEBUG(dump());
499  return VNI->def;
500}
501
502/// useIntv - indicate that all instructions in MBB should use OpenLI.
503void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
504  useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
505}
506
507void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
508  assert(OpenIdx && "openIntv not called before useIntv");
509  DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
510  RegAssign.insert(Start, End, OpenIdx);
511  DEBUG(dump());
512}
513
514SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
515  assert(OpenIdx && "openIntv not called before leaveIntvAfter");
516  DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
517
518  // The interval must be live beyond the instruction at Idx.
519  Idx = Idx.getBoundaryIndex();
520  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
521  if (!ParentVNI) {
522    DEBUG(dbgs() << ": not live\n");
523    return Idx.getNextSlot();
524  }
525  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
526
527  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
528  assert(MI && "No instruction at index");
529  VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(),
530                              llvm::next(MachineBasicBlock::iterator(MI)));
531  return VNI->def;
532}
533
534SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
535  assert(OpenIdx && "openIntv not called before leaveIntvBefore");
536  DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
537
538  // The interval must be live into the instruction at Idx.
539  Idx = Idx.getBaseIndex();
540  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
541  if (!ParentVNI) {
542    DEBUG(dbgs() << ": not live\n");
543    return Idx.getNextSlot();
544  }
545  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
546
547  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
548  assert(MI && "No instruction at index");
549  VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
550  return VNI->def;
551}
552
553SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
554  assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
555  SlotIndex Start = LIS.getMBBStartIdx(&MBB);
556  DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
557
558  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
559  if (!ParentVNI) {
560    DEBUG(dbgs() << ": not live\n");
561    return Start;
562  }
563
564  VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
565                              MBB.SkipPHIsAndLabels(MBB.begin()));
566  RegAssign.insert(Start, VNI->def, OpenIdx);
567  DEBUG(dump());
568  return VNI->def;
569}
570
571void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
572  assert(OpenIdx && "openIntv not called before overlapIntv");
573  const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
574  assert(ParentVNI == Edit->getParent().getVNInfoAt(End.getPrevSlot()) &&
575         "Parent changes value in extended range");
576  assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
577         "Range cannot span basic blocks");
578
579  // The complement interval will be extended as needed by extendRange().
580  if (ParentVNI)
581    markComplexMapped(0, ParentVNI);
582  DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
583  RegAssign.insert(Start, End, OpenIdx);
584  DEBUG(dump());
585}
586
587/// transferValues - Transfer all possible values to the new live ranges.
588/// Values that were rematerialized are left alone, they need extendRange().
589bool SplitEditor::transferValues() {
590  bool Skipped = false;
591  RegAssignMap::const_iterator AssignI = RegAssign.begin();
592  for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(),
593         ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) {
594    DEBUG(dbgs() << "  blit " << *ParentI << ':');
595    VNInfo *ParentVNI = ParentI->valno;
596    // RegAssign has holes where RegIdx 0 should be used.
597    SlotIndex Start = ParentI->start;
598    AssignI.advanceTo(Start);
599    do {
600      unsigned RegIdx;
601      SlotIndex End = ParentI->end;
602      if (!AssignI.valid()) {
603        RegIdx = 0;
604      } else if (AssignI.start() <= Start) {
605        RegIdx = AssignI.value();
606        if (AssignI.stop() < End) {
607          End = AssignI.stop();
608          ++AssignI;
609        }
610      } else {
611        RegIdx = 0;
612        End = std::min(End, AssignI.start());
613      }
614
615      // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
616      DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx);
617      LiveInterval *LI = Edit->get(RegIdx);
618
619      // Check for a simply defined value that can be blitted directly.
620      if (VNInfo *VNI = Values.lookup(std::make_pair(RegIdx, ParentVNI->id))) {
621        DEBUG(dbgs() << ':' << VNI->id);
622        LI->addRange(LiveRange(Start, End, VNI));
623        Start = End;
624        continue;
625      }
626
627      // Skip rematerialized values, we need to use extendRange() and
628      // extendPHIKillRanges() to completely recompute the live ranges.
629      if (Edit->didRematerialize(ParentVNI)) {
630        DEBUG(dbgs() << "(remat)");
631        Skipped = true;
632        Start = End;
633        continue;
634      }
635
636      // This value has multiple defs in RegIdx, but it wasn't rematerialized,
637      // so the live range is accurate. Add live-in blocks in [Start;End) to the
638      // LiveInBlocks.
639      MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start);
640      SlotIndex BlockStart, BlockEnd;
641      tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB);
642
643      // The first block may be live-in, or it may have its own def.
644      if (Start != BlockStart) {
645        VNInfo *VNI = LI->extendInBlock(BlockStart,
646                                        std::min(BlockEnd, End).getPrevSlot());
647        assert(VNI && "Missing def for complex mapped value");
648        DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber());
649        // MBB has its own def. Is it also live-out?
650        if (BlockEnd <= End)
651          LRCalc.setLiveOutValue(MBB, VNI);
652
653        // Skip to the next block for live-in.
654        ++MBB;
655        BlockStart = BlockEnd;
656      }
657
658      // Handle the live-in blocks covered by [Start;End).
659      assert(Start <= BlockStart && "Expected live-in block");
660      while (BlockStart < End) {
661        DEBUG(dbgs() << ">BB#" << MBB->getNumber());
662        BlockEnd = LIS.getMBBEndIdx(MBB);
663        if (BlockStart == ParentVNI->def) {
664          // This block has the def of a parent PHI, so it isn't live-in.
665          assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
666          VNInfo *VNI = LI->extendInBlock(BlockStart,
667                                         std::min(BlockEnd, End).getPrevSlot());
668          assert(VNI && "Missing def for complex mapped parent PHI");
669          if (End >= BlockEnd)
670            LRCalc.setLiveOutValue(MBB, VNI); // Live-out as well.
671        } else {
672          // This block needs a live-in value.  The last block covered may not
673          // be live-out.
674          if (End < BlockEnd)
675            LRCalc.addLiveInBlock(LI, MDT[MBB], End);
676          else {
677            // Live-through, and we don't know the value.
678            LRCalc.addLiveInBlock(LI, MDT[MBB]);
679            LRCalc.setLiveOutValue(MBB, 0);
680          }
681        }
682        BlockStart = BlockEnd;
683        ++MBB;
684      }
685      Start = End;
686    } while (Start != ParentI->end);
687    DEBUG(dbgs() << '\n');
688  }
689
690  LRCalc.calculateValues(LIS.getSlotIndexes(), &MDT, &LIS.getVNInfoAllocator());
691
692  return Skipped;
693}
694
695void SplitEditor::extendPHIKillRanges() {
696    // Extend live ranges to be live-out for successor PHI values.
697  for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
698       E = Edit->getParent().vni_end(); I != E; ++I) {
699    const VNInfo *PHIVNI = *I;
700    if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
701      continue;
702    unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
703    MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
704    for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
705         PE = MBB->pred_end(); PI != PE; ++PI) {
706      SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot();
707      // The predecessor may not have a live-out value. That is OK, like an
708      // undef PHI operand.
709      if (Edit->getParent().liveAt(End)) {
710        assert(RegAssign.lookup(End) == RegIdx &&
711               "Different register assignment in phi predecessor");
712        extendRange(RegIdx, End);
713      }
714    }
715  }
716}
717
718/// rewriteAssigned - Rewrite all uses of Edit->getReg().
719void SplitEditor::rewriteAssigned(bool ExtendRanges) {
720  for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
721       RE = MRI.reg_end(); RI != RE;) {
722    MachineOperand &MO = RI.getOperand();
723    MachineInstr *MI = MO.getParent();
724    ++RI;
725    // LiveDebugVariables should have handled all DBG_VALUE instructions.
726    if (MI->isDebugValue()) {
727      DEBUG(dbgs() << "Zapping " << *MI);
728      MO.setReg(0);
729      continue;
730    }
731
732    // <undef> operands don't really read the register, so it doesn't matter
733    // which register we choose.  When the use operand is tied to a def, we must
734    // use the same register as the def, so just do that always.
735    SlotIndex Idx = LIS.getInstructionIndex(MI);
736    if (MO.isDef() || MO.isUndef())
737      Idx = MO.isEarlyClobber() ? Idx.getUseIndex() : Idx.getDefIndex();
738
739    // Rewrite to the mapped register at Idx.
740    unsigned RegIdx = RegAssign.lookup(Idx);
741    MO.setReg(Edit->get(RegIdx)->reg);
742    DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'
743                 << Idx << ':' << RegIdx << '\t' << *MI);
744
745    // Extend liveness to Idx if the instruction reads reg.
746    if (!ExtendRanges || MO.isUndef())
747      continue;
748
749    // Skip instructions that don't read Reg.
750    if (MO.isDef()) {
751      if (!MO.getSubReg() && !MO.isEarlyClobber())
752        continue;
753      // We may wan't to extend a live range for a partial redef, or for a use
754      // tied to an early clobber.
755      Idx = Idx.getPrevSlot();
756      if (!Edit->getParent().liveAt(Idx))
757        continue;
758    } else
759      Idx = Idx.getUseIndex();
760
761    extendRange(RegIdx, Idx);
762  }
763}
764
765void SplitEditor::deleteRematVictims() {
766  SmallVector<MachineInstr*, 8> Dead;
767  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
768    LiveInterval *LI = *I;
769    for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end();
770           LII != LIE; ++LII) {
771      // Dead defs end at the store slot.
772      if (LII->end != LII->valno->def.getNextSlot())
773        continue;
774      MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def);
775      assert(MI && "Missing instruction for dead def");
776      MI->addRegisterDead(LI->reg, &TRI);
777
778      if (!MI->allDefsAreDead())
779        continue;
780
781      DEBUG(dbgs() << "All defs dead: " << *MI);
782      Dead.push_back(MI);
783    }
784  }
785
786  if (Dead.empty())
787    return;
788
789  Edit->eliminateDeadDefs(Dead, LIS, VRM, TII);
790}
791
792void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
793  ++NumFinished;
794
795  // At this point, the live intervals in Edit contain VNInfos corresponding to
796  // the inserted copies.
797
798  // Add the original defs from the parent interval.
799  for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
800         E = Edit->getParent().vni_end(); I != E; ++I) {
801    const VNInfo *ParentVNI = *I;
802    if (ParentVNI->isUnused())
803      continue;
804    unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
805    VNInfo *VNI = defValue(RegIdx, ParentVNI, ParentVNI->def);
806    VNI->setIsPHIDef(ParentVNI->isPHIDef());
807    VNI->setCopy(ParentVNI->getCopy());
808
809    // Mark rematted values as complex everywhere to force liveness computation.
810    // The new live ranges may be truncated.
811    if (Edit->didRematerialize(ParentVNI))
812      for (unsigned i = 0, e = Edit->size(); i != e; ++i)
813        markComplexMapped(i, ParentVNI);
814  }
815
816  // Transfer the simply mapped values, check if any are skipped.
817  bool Skipped = transferValues();
818  if (Skipped)
819    extendPHIKillRanges();
820  else
821    ++NumSimple;
822
823  // Rewrite virtual registers, possibly extending ranges.
824  rewriteAssigned(Skipped);
825
826  // Delete defs that were rematted everywhere.
827  if (Skipped)
828    deleteRematVictims();
829
830  // Get rid of unused values and set phi-kill flags.
831  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I)
832    (*I)->RenumberValues(LIS);
833
834  // Provide a reverse mapping from original indices to Edit ranges.
835  if (LRMap) {
836    LRMap->clear();
837    for (unsigned i = 0, e = Edit->size(); i != e; ++i)
838      LRMap->push_back(i);
839  }
840
841  // Now check if any registers were separated into multiple components.
842  ConnectedVNInfoEqClasses ConEQ(LIS);
843  for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
844    // Don't use iterators, they are invalidated by create() below.
845    LiveInterval *li = Edit->get(i);
846    unsigned NumComp = ConEQ.Classify(li);
847    if (NumComp <= 1)
848      continue;
849    DEBUG(dbgs() << "  " << NumComp << " components: " << *li << '\n');
850    SmallVector<LiveInterval*, 8> dups;
851    dups.push_back(li);
852    for (unsigned j = 1; j != NumComp; ++j)
853      dups.push_back(&Edit->create(LIS, VRM));
854    ConEQ.Distribute(&dups[0], MRI);
855    // The new intervals all map back to i.
856    if (LRMap)
857      LRMap->resize(Edit->size(), i);
858  }
859
860  // Calculate spill weight and allocation hints for new intervals.
861  Edit->calculateRegClassAndHint(VRM.getMachineFunction(), LIS, SA.Loops);
862
863  assert(!LRMap || LRMap->size() == Edit->size());
864}
865
866
867//===----------------------------------------------------------------------===//
868//                            Single Block Splitting
869//===----------------------------------------------------------------------===//
870
871bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
872                                           bool SingleInstrs) const {
873  // Always split for multiple instructions.
874  if (!BI.isOneInstr())
875    return true;
876  // Don't split for single instructions unless explicitly requested.
877  if (!SingleInstrs)
878    return false;
879  // Splitting a live-through range always makes progress.
880  if (BI.LiveIn && BI.LiveOut)
881    return true;
882  // No point in isolating a copy. It has no register class constraints.
883  if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
884    return false;
885  // Finally, don't isolate an end point that was created by earlier splits.
886  return isOriginalEndpoint(BI.FirstInstr);
887}
888
889void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
890  openIntv();
891  SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
892  SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
893    LastSplitPoint));
894  if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
895    useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
896  } else {
897      // The last use is after the last valid split point.
898    SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
899    useIntv(SegStart, SegStop);
900    overlapIntv(SegStop, BI.LastInstr);
901  }
902}
903
904
905//===----------------------------------------------------------------------===//
906//                    Global Live Range Splitting Support
907//===----------------------------------------------------------------------===//
908
909// These methods support a method of global live range splitting that uses a
910// global algorithm to decide intervals for CFG edges. They will insert split
911// points and color intervals in basic blocks while avoiding interference.
912//
913// Note that splitSingleBlock is also useful for blocks where both CFG edges
914// are on the stack.
915
916void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
917                                        unsigned IntvIn, SlotIndex LeaveBefore,
918                                        unsigned IntvOut, SlotIndex EnterAfter){
919  SlotIndex Start, Stop;
920  tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
921
922  DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop
923               << ") intf " << LeaveBefore << '-' << EnterAfter
924               << ", live-through " << IntvIn << " -> " << IntvOut);
925
926  assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
927
928  assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
929  assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
930  assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
931
932  MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
933
934  if (!IntvOut) {
935    DEBUG(dbgs() << ", spill on entry.\n");
936    //
937    //        <<<<<<<<<    Possible LeaveBefore interference.
938    //    |-----------|    Live through.
939    //    -____________    Spill on entry.
940    //
941    selectIntv(IntvIn);
942    SlotIndex Idx = leaveIntvAtTop(*MBB);
943    assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
944    (void)Idx;
945    return;
946  }
947
948  if (!IntvIn) {
949    DEBUG(dbgs() << ", reload on exit.\n");
950    //
951    //    >>>>>>>          Possible EnterAfter interference.
952    //    |-----------|    Live through.
953    //    ___________--    Reload on exit.
954    //
955    selectIntv(IntvOut);
956    SlotIndex Idx = enterIntvAtEnd(*MBB);
957    assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
958    (void)Idx;
959    return;
960  }
961
962  if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
963    DEBUG(dbgs() << ", straight through.\n");
964    //
965    //    |-----------|    Live through.
966    //    -------------    Straight through, same intv, no interference.
967    //
968    selectIntv(IntvOut);
969    useIntv(Start, Stop);
970    return;
971  }
972
973  // We cannot legally insert splits after LSP.
974  SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
975  assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
976
977  if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
978                  LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
979    DEBUG(dbgs() << ", switch avoiding interference.\n");
980    //
981    //    >>>>     <<<<    Non-overlapping EnterAfter/LeaveBefore interference.
982    //    |-----------|    Live through.
983    //    ------=======    Switch intervals between interference.
984    //
985    selectIntv(IntvOut);
986    SlotIndex Idx;
987    if (LeaveBefore && LeaveBefore < LSP) {
988      Idx = enterIntvBefore(LeaveBefore);
989      useIntv(Idx, Stop);
990    } else {
991      Idx = enterIntvAtEnd(*MBB);
992    }
993    selectIntv(IntvIn);
994    useIntv(Start, Idx);
995    assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
996    assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
997    return;
998  }
999
1000  DEBUG(dbgs() << ", create local intv for interference.\n");
1001  //
1002  //    >>><><><><<<<    Overlapping EnterAfter/LeaveBefore interference.
1003  //    |-----------|    Live through.
1004  //    ==---------==    Switch intervals before/after interference.
1005  //
1006  assert(LeaveBefore <= EnterAfter && "Missed case");
1007
1008  selectIntv(IntvOut);
1009  SlotIndex Idx = enterIntvAfter(EnterAfter);
1010  useIntv(Idx, Stop);
1011  assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1012
1013  selectIntv(IntvIn);
1014  Idx = leaveIntvBefore(LeaveBefore);
1015  useIntv(Start, Idx);
1016  assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1017}
1018
1019
1020void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1021                                  unsigned IntvIn, SlotIndex LeaveBefore) {
1022  SlotIndex Start, Stop;
1023  tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1024
1025  DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1026               << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1027               << ", reg-in " << IntvIn << ", leave before " << LeaveBefore
1028               << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1029
1030  assert(IntvIn && "Must have register in");
1031  assert(BI.LiveIn && "Must be live-in");
1032  assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1033
1034  if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1035    DEBUG(dbgs() << " before interference.\n");
1036    //
1037    //               <<<    Interference after kill.
1038    //     |---o---x   |    Killed in block.
1039    //     =========        Use IntvIn everywhere.
1040    //
1041    selectIntv(IntvIn);
1042    useIntv(Start, BI.LastInstr);
1043    return;
1044  }
1045
1046  SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1047
1048  if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1049    //
1050    //               <<<    Possible interference after last use.
1051    //     |---o---o---|    Live-out on stack.
1052    //     =========____    Leave IntvIn after last use.
1053    //
1054    //                 <    Interference after last use.
1055    //     |---o---o--o|    Live-out on stack, late last use.
1056    //     ============     Copy to stack after LSP, overlap IntvIn.
1057    //            \_____    Stack interval is live-out.
1058    //
1059    if (BI.LastInstr < LSP) {
1060      DEBUG(dbgs() << ", spill after last use before interference.\n");
1061      selectIntv(IntvIn);
1062      SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
1063      useIntv(Start, Idx);
1064      assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1065    } else {
1066      DEBUG(dbgs() << ", spill before last split point.\n");
1067      selectIntv(IntvIn);
1068      SlotIndex Idx = leaveIntvBefore(LSP);
1069      overlapIntv(Idx, BI.LastInstr);
1070      useIntv(Start, Idx);
1071      assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1072    }
1073    return;
1074  }
1075
1076  // The interference is overlapping somewhere we wanted to use IntvIn. That
1077  // means we need to create a local interval that can be allocated a
1078  // different register.
1079  unsigned LocalIntv = openIntv();
1080  (void)LocalIntv;
1081  DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1082
1083  if (!BI.LiveOut || BI.LastInstr < LSP) {
1084    //
1085    //           <<<<<<<    Interference overlapping uses.
1086    //     |---o---o---|    Live-out on stack.
1087    //     =====----____    Leave IntvIn before interference, then spill.
1088    //
1089    SlotIndex To = leaveIntvAfter(BI.LastInstr);
1090    SlotIndex From = enterIntvBefore(LeaveBefore);
1091    useIntv(From, To);
1092    selectIntv(IntvIn);
1093    useIntv(Start, From);
1094    assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1095    return;
1096  }
1097
1098  //           <<<<<<<    Interference overlapping uses.
1099  //     |---o---o--o|    Live-out on stack, late last use.
1100  //     =====-------     Copy to stack before LSP, overlap LocalIntv.
1101  //            \_____    Stack interval is live-out.
1102  //
1103  SlotIndex To = leaveIntvBefore(LSP);
1104  overlapIntv(To, BI.LastInstr);
1105  SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1106  useIntv(From, To);
1107  selectIntv(IntvIn);
1108  useIntv(Start, From);
1109  assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1110}
1111
1112void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1113                                   unsigned IntvOut, SlotIndex EnterAfter) {
1114  SlotIndex Start, Stop;
1115  tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1116
1117  DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1118               << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1119               << ", reg-out " << IntvOut << ", enter after " << EnterAfter
1120               << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1121
1122  SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1123
1124  assert(IntvOut && "Must have register out");
1125  assert(BI.LiveOut && "Must be live-out");
1126  assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1127
1128  if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1129    DEBUG(dbgs() << " after interference.\n");
1130    //
1131    //    >>>>             Interference before def.
1132    //    |   o---o---|    Defined in block.
1133    //        =========    Use IntvOut everywhere.
1134    //
1135    selectIntv(IntvOut);
1136    useIntv(BI.FirstInstr, Stop);
1137    return;
1138  }
1139
1140  if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1141    DEBUG(dbgs() << ", reload after interference.\n");
1142    //
1143    //    >>>>             Interference before def.
1144    //    |---o---o---|    Live-through, stack-in.
1145    //    ____=========    Enter IntvOut before first use.
1146    //
1147    selectIntv(IntvOut);
1148    SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
1149    useIntv(Idx, Stop);
1150    assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1151    return;
1152  }
1153
1154  // The interference is overlapping somewhere we wanted to use IntvOut. That
1155  // means we need to create a local interval that can be allocated a
1156  // different register.
1157  DEBUG(dbgs() << ", interference overlaps uses.\n");
1158  //
1159  //    >>>>>>>          Interference overlapping uses.
1160  //    |---o---o---|    Live-through, stack-in.
1161  //    ____---======    Create local interval for interference range.
1162  //
1163  selectIntv(IntvOut);
1164  SlotIndex Idx = enterIntvAfter(EnterAfter);
1165  useIntv(Idx, Stop);
1166  assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1167
1168  openIntv();
1169  SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
1170  useIntv(From, Idx);
1171}
1172