VirtRegMap.cpp revision 4c71dfe356716e6bc1993ef5efdced08b68fe612
1//===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the VirtRegMap class.
11//
12// It also contains implementations of the the Spiller interface, which, given a
13// virtual register map and a machine function, eliminates all virtual
14// references by replacing them with physical register references - adding spill
15// code as necessary.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "spiller"
20#include "VirtRegMap.h"
21#include "llvm/Function.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Support/CommandLine.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/Support/Compiler.h"
30#include "llvm/ADT/BitVector.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/ADT/SmallSet.h"
34#include <algorithm>
35using namespace llvm;
36
37STATISTIC(NumSpills, "Number of register spills");
38STATISTIC(NumReMats, "Number of re-materialization");
39STATISTIC(NumDRM   , "Number of re-materializable defs elided");
40STATISTIC(NumStores, "Number of stores added");
41STATISTIC(NumLoads , "Number of loads added");
42STATISTIC(NumReused, "Number of values reused");
43STATISTIC(NumDSE   , "Number of dead stores elided");
44STATISTIC(NumDCE   , "Number of copies elided");
45
46namespace {
47  enum SpillerName { simple, local };
48
49  static cl::opt<SpillerName>
50  SpillerOpt("spiller",
51             cl::desc("Spiller to use: (default: local)"),
52             cl::Prefix,
53             cl::values(clEnumVal(simple, "  simple spiller"),
54                        clEnumVal(local,  "  local spiller"),
55                        clEnumValEnd),
56             cl::init(local));
57}
58
59//===----------------------------------------------------------------------===//
60//  VirtRegMap implementation
61//===----------------------------------------------------------------------===//
62
63VirtRegMap::VirtRegMap(MachineFunction &mf)
64  : TII(*mf.getTarget().getInstrInfo()), MF(mf),
65    Virt2PhysMap(NO_PHYS_REG), Virt2StackSlotMap(NO_STACK_SLOT),
66    Virt2ReMatIdMap(NO_STACK_SLOT), Virt2SplitMap(0),
67    Virt2SplitKillMap(0), ReMatMap(NULL), ReMatId(MAX_STACK_SLOT+1) {
68  grow();
69}
70
71void VirtRegMap::grow() {
72  unsigned LastVirtReg = MF.getRegInfo().getLastVirtReg();
73  Virt2PhysMap.grow(LastVirtReg);
74  Virt2StackSlotMap.grow(LastVirtReg);
75  Virt2ReMatIdMap.grow(LastVirtReg);
76  Virt2SplitMap.grow(LastVirtReg);
77  Virt2SplitKillMap.grow(LastVirtReg);
78  ReMatMap.grow(LastVirtReg);
79}
80
81int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
82  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
83  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
84         "attempt to assign stack slot to already spilled register");
85  const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(virtReg);
86  int frameIndex = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
87                                                        RC->getAlignment());
88  Virt2StackSlotMap[virtReg] = frameIndex;
89  ++NumSpills;
90  return frameIndex;
91}
92
93void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int frameIndex) {
94  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
95  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
96         "attempt to assign stack slot to already spilled register");
97  assert((frameIndex >= 0 ||
98          (frameIndex >= MF.getFrameInfo()->getObjectIndexBegin())) &&
99         "illegal fixed frame index");
100  Virt2StackSlotMap[virtReg] = frameIndex;
101}
102
103int VirtRegMap::assignVirtReMatId(unsigned virtReg) {
104  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
105  assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT &&
106         "attempt to assign re-mat id to already spilled register");
107  Virt2ReMatIdMap[virtReg] = ReMatId;
108  return ReMatId++;
109}
110
111void VirtRegMap::assignVirtReMatId(unsigned virtReg, int id) {
112  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
113  assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT &&
114         "attempt to assign re-mat id to already spilled register");
115  Virt2ReMatIdMap[virtReg] = id;
116}
117
118void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *OldMI,
119                            MachineInstr *NewMI, ModRef MRInfo) {
120  // Move previous memory references folded to new instruction.
121  MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(NewMI);
122  for (MI2VirtMapTy::iterator I = MI2VirtMap.lower_bound(OldMI),
123         E = MI2VirtMap.end(); I != E && I->first == OldMI; ) {
124    MI2VirtMap.insert(IP, std::make_pair(NewMI, I->second));
125    MI2VirtMap.erase(I++);
126  }
127
128  // add new memory reference
129  MI2VirtMap.insert(IP, std::make_pair(NewMI, std::make_pair(VirtReg, MRInfo)));
130}
131
132void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *MI, ModRef MRInfo) {
133  MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(MI);
134  MI2VirtMap.insert(IP, std::make_pair(MI, std::make_pair(VirtReg, MRInfo)));
135}
136
137void VirtRegMap::print(std::ostream &OS) const {
138  const TargetRegisterInfo* TRI = MF.getTarget().getRegisterInfo();
139
140  OS << "********** REGISTER MAP **********\n";
141  for (unsigned i = TargetRegisterInfo::FirstVirtualRegister,
142         e = MF.getRegInfo().getLastVirtReg(); i <= e; ++i) {
143    if (Virt2PhysMap[i] != (unsigned)VirtRegMap::NO_PHYS_REG)
144      OS << "[reg" << i << " -> " << TRI->getName(Virt2PhysMap[i]) << "]\n";
145
146  }
147
148  for (unsigned i = TargetRegisterInfo::FirstVirtualRegister,
149         e = MF.getRegInfo().getLastVirtReg(); i <= e; ++i)
150    if (Virt2StackSlotMap[i] != VirtRegMap::NO_STACK_SLOT)
151      OS << "[reg" << i << " -> fi#" << Virt2StackSlotMap[i] << "]\n";
152  OS << '\n';
153}
154
155void VirtRegMap::dump() const {
156  print(DOUT);
157}
158
159
160//===----------------------------------------------------------------------===//
161// Simple Spiller Implementation
162//===----------------------------------------------------------------------===//
163
164Spiller::~Spiller() {}
165
166namespace {
167  struct VISIBILITY_HIDDEN SimpleSpiller : public Spiller {
168    bool runOnMachineFunction(MachineFunction& mf, VirtRegMap &VRM);
169  };
170}
171
172bool SimpleSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
173  DOUT << "********** REWRITE MACHINE CODE **********\n";
174  DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
175  const TargetMachine &TM = MF.getTarget();
176  const TargetInstrInfo &TII = *TM.getInstrInfo();
177
178
179  // LoadedRegs - Keep track of which vregs are loaded, so that we only load
180  // each vreg once (in the case where a spilled vreg is used by multiple
181  // operands).  This is always smaller than the number of operands to the
182  // current machine instr, so it should be small.
183  std::vector<unsigned> LoadedRegs;
184
185  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
186       MBBI != E; ++MBBI) {
187    DOUT << MBBI->getBasicBlock()->getName() << ":\n";
188    MachineBasicBlock &MBB = *MBBI;
189    for (MachineBasicBlock::iterator MII = MBB.begin(),
190           E = MBB.end(); MII != E; ++MII) {
191      MachineInstr &MI = *MII;
192      for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
193        MachineOperand &MO = MI.getOperand(i);
194        if (MO.isRegister() && MO.getReg()) {
195          if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
196            unsigned VirtReg = MO.getReg();
197            unsigned PhysReg = VRM.getPhys(VirtReg);
198            if (!VRM.isAssignedReg(VirtReg)) {
199              int StackSlot = VRM.getStackSlot(VirtReg);
200              const TargetRegisterClass* RC =
201                MF.getRegInfo().getRegClass(VirtReg);
202
203              if (MO.isUse() &&
204                  std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
205                  == LoadedRegs.end()) {
206                TII.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
207                LoadedRegs.push_back(VirtReg);
208                ++NumLoads;
209                DOUT << '\t' << *prior(MII);
210              }
211
212              if (MO.isDef()) {
213                TII.storeRegToStackSlot(MBB, next(MII), PhysReg, true,
214                                        StackSlot, RC);
215                ++NumStores;
216              }
217            }
218            MF.getRegInfo().setPhysRegUsed(PhysReg);
219            MI.getOperand(i).setReg(PhysReg);
220          } else {
221            MF.getRegInfo().setPhysRegUsed(MO.getReg());
222          }
223        }
224      }
225
226      DOUT << '\t' << MI;
227      LoadedRegs.clear();
228    }
229  }
230  return true;
231}
232
233//===----------------------------------------------------------------------===//
234//  Local Spiller Implementation
235//===----------------------------------------------------------------------===//
236
237namespace {
238  class AvailableSpills;
239
240  /// LocalSpiller - This spiller does a simple pass over the machine basic
241  /// block to attempt to keep spills in registers as much as possible for
242  /// blocks that have low register pressure (the vreg may be spilled due to
243  /// register pressure in other blocks).
244  class VISIBILITY_HIDDEN LocalSpiller : public Spiller {
245    MachineRegisterInfo *RegInfo;
246    const TargetRegisterInfo *TRI;
247    const TargetInstrInfo *TII;
248  public:
249    bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
250      RegInfo = &MF.getRegInfo();
251      TRI = MF.getTarget().getRegisterInfo();
252      TII = MF.getTarget().getInstrInfo();
253      DOUT << "\n**** Local spiller rewriting function '"
254           << MF.getFunction()->getName() << "':\n";
255      DOUT << "**** Machine Instrs (NOTE! Does not include spills and reloads!)"
256              " ****\n";
257      DEBUG(MF.dump());
258
259      for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
260           MBB != E; ++MBB)
261        RewriteMBB(*MBB, VRM);
262
263      DOUT << "**** Post Machine Instrs ****\n";
264      DEBUG(MF.dump());
265
266      return true;
267    }
268  private:
269    bool PrepForUnfoldOpti(MachineBasicBlock &MBB,
270                           MachineBasicBlock::iterator &MII,
271                           std::vector<MachineInstr*> &MaybeDeadStores,
272                           AvailableSpills &Spills, BitVector &RegKills,
273                           std::vector<MachineOperand*> &KillOps,
274                           VirtRegMap &VRM);
275    void SpillRegToStackSlot(MachineBasicBlock &MBB,
276                             MachineBasicBlock::iterator &MII,
277                             int Idx, unsigned PhysReg, int StackSlot,
278                             const TargetRegisterClass *RC,
279                             bool isAvailable, MachineInstr *&LastStore,
280                             AvailableSpills &Spills,
281                             SmallSet<MachineInstr*, 4> &ReMatDefs,
282                             BitVector &RegKills,
283                             std::vector<MachineOperand*> &KillOps,
284                             VirtRegMap &VRM);
285    void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM);
286  };
287}
288
289/// AvailableSpills - As the local spiller is scanning and rewriting an MBB from
290/// top down, keep track of which spills slots or remat are available in each
291/// register.
292///
293/// Note that not all physregs are created equal here.  In particular, some
294/// physregs are reloads that we are allowed to clobber or ignore at any time.
295/// Other physregs are values that the register allocated program is using that
296/// we cannot CHANGE, but we can read if we like.  We keep track of this on a
297/// per-stack-slot / remat id basis as the low bit in the value of the
298/// SpillSlotsAvailable entries.  The predicate 'canClobberPhysReg()' checks
299/// this bit and addAvailable sets it if.
300namespace {
301class VISIBILITY_HIDDEN AvailableSpills {
302  const TargetRegisterInfo *TRI;
303  const TargetInstrInfo *TII;
304
305  // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
306  // or remat'ed virtual register values that are still available, due to being
307  // loaded or stored to, but not invalidated yet.
308  std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
309
310  // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
311  // indicating which stack slot values are currently held by a physreg.  This
312  // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
313  // physreg is modified.
314  std::multimap<unsigned, int> PhysRegsAvailable;
315
316  void disallowClobberPhysRegOnly(unsigned PhysReg);
317
318  void ClobberPhysRegOnly(unsigned PhysReg);
319public:
320  AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii)
321    : TRI(tri), TII(tii) {
322  }
323
324  const TargetRegisterInfo *getRegInfo() const { return TRI; }
325
326  /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
327  /// available in a  physical register, return that PhysReg, otherwise
328  /// return 0.
329  unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
330    std::map<int, unsigned>::const_iterator I =
331      SpillSlotsOrReMatsAvailable.find(Slot);
332    if (I != SpillSlotsOrReMatsAvailable.end()) {
333      return I->second >> 1;  // Remove the CanClobber bit.
334    }
335    return 0;
336  }
337
338  /// addAvailable - Mark that the specified stack slot / remat is available in
339  /// the specified physreg.  If CanClobber is true, the physreg can be modified
340  /// at any time without changing the semantics of the program.
341  void addAvailable(int SlotOrReMat, MachineInstr *MI, unsigned Reg,
342                    bool CanClobber = true) {
343    // If this stack slot is thought to be available in some other physreg,
344    // remove its record.
345    ModifyStackSlotOrReMat(SlotOrReMat);
346
347    PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
348    SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) | (unsigned)CanClobber;
349
350    if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
351      DOUT << "Remembering RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1;
352    else
353      DOUT << "Remembering SS#" << SlotOrReMat;
354    DOUT << " in physreg " << TRI->getName(Reg) << "\n";
355  }
356
357  /// canClobberPhysReg - Return true if the spiller is allowed to change the
358  /// value of the specified stackslot register if it desires.  The specified
359  /// stack slot must be available in a physreg for this query to make sense.
360  bool canClobberPhysReg(int SlotOrReMat) const {
361    assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
362           "Value not available!");
363    return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
364  }
365
366  /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
367  /// stackslot register. The register is still available but is no longer
368  /// allowed to be modifed.
369  void disallowClobberPhysReg(unsigned PhysReg);
370
371  /// ClobberPhysReg - This is called when the specified physreg changes
372  /// value.  We use this to invalidate any info about stuff that lives in
373  /// it and any of its aliases.
374  void ClobberPhysReg(unsigned PhysReg);
375
376  /// ModifyStackSlotOrReMat - This method is called when the value in a stack
377  /// slot changes.  This removes information about which register the previous
378  /// value for this slot lives in (as the previous value is dead now).
379  void ModifyStackSlotOrReMat(int SlotOrReMat);
380};
381}
382
383/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
384/// stackslot register. The register is still available but is no longer
385/// allowed to be modifed.
386void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
387  std::multimap<unsigned, int>::iterator I =
388    PhysRegsAvailable.lower_bound(PhysReg);
389  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
390    int SlotOrReMat = I->second;
391    I++;
392    assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
393           "Bidirectional map mismatch!");
394    SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
395    DOUT << "PhysReg " << TRI->getName(PhysReg)
396         << " copied, it is available for use but can no longer be modified\n";
397  }
398}
399
400/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
401/// stackslot register and its aliases. The register and its aliases may
402/// still available but is no longer allowed to be modifed.
403void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
404  for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
405    disallowClobberPhysRegOnly(*AS);
406  disallowClobberPhysRegOnly(PhysReg);
407}
408
409/// ClobberPhysRegOnly - This is called when the specified physreg changes
410/// value.  We use this to invalidate any info about stuff we thing lives in it.
411void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
412  std::multimap<unsigned, int>::iterator I =
413    PhysRegsAvailable.lower_bound(PhysReg);
414  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
415    int SlotOrReMat = I->second;
416    PhysRegsAvailable.erase(I++);
417    assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
418           "Bidirectional map mismatch!");
419    SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
420    DOUT << "PhysReg " << TRI->getName(PhysReg)
421         << " clobbered, invalidating ";
422    if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
423      DOUT << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 << "\n";
424    else
425      DOUT << "SS#" << SlotOrReMat << "\n";
426  }
427}
428
429/// ClobberPhysReg - This is called when the specified physreg changes
430/// value.  We use this to invalidate any info about stuff we thing lives in
431/// it and any of its aliases.
432void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
433  for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
434    ClobberPhysRegOnly(*AS);
435  ClobberPhysRegOnly(PhysReg);
436}
437
438/// ModifyStackSlotOrReMat - This method is called when the value in a stack
439/// slot changes.  This removes information about which register the previous
440/// value for this slot lives in (as the previous value is dead now).
441void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
442  std::map<int, unsigned>::iterator It =
443    SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
444  if (It == SpillSlotsOrReMatsAvailable.end()) return;
445  unsigned Reg = It->second >> 1;
446  SpillSlotsOrReMatsAvailable.erase(It);
447
448  // This register may hold the value of multiple stack slots, only remove this
449  // stack slot from the set of values the register contains.
450  std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
451  for (; ; ++I) {
452    assert(I != PhysRegsAvailable.end() && I->first == Reg &&
453           "Map inverse broken!");
454    if (I->second == SlotOrReMat) break;
455  }
456  PhysRegsAvailable.erase(I);
457}
458
459
460
461/// InvalidateKills - MI is going to be deleted. If any of its operands are
462/// marked kill, then invalidate the information.
463static void InvalidateKills(MachineInstr &MI, BitVector &RegKills,
464                            std::vector<MachineOperand*> &KillOps,
465                            SmallVector<unsigned, 2> *KillRegs = NULL) {
466  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
467    MachineOperand &MO = MI.getOperand(i);
468    if (!MO.isRegister() || !MO.isUse() || !MO.isKill())
469      continue;
470    unsigned Reg = MO.getReg();
471    if (KillRegs)
472      KillRegs->push_back(Reg);
473    if (KillOps[Reg] == &MO) {
474      RegKills.reset(Reg);
475      KillOps[Reg] = NULL;
476    }
477  }
478}
479
480/// InvalidateKill - A MI that defines the specified register is being deleted,
481/// invalidate the register kill information.
482static void InvalidateKill(unsigned Reg, BitVector &RegKills,
483                           std::vector<MachineOperand*> &KillOps) {
484  if (RegKills[Reg]) {
485    KillOps[Reg]->setIsKill(false);
486    KillOps[Reg] = NULL;
487    RegKills.reset(Reg);
488  }
489}
490
491/// InvalidateRegDef - If the def operand of the specified def MI is now dead
492/// (since it's spill instruction is removed), mark it isDead. Also checks if
493/// the def MI has other definition operands that are not dead. Returns it by
494/// reference.
495static bool InvalidateRegDef(MachineBasicBlock::iterator I,
496                             MachineInstr &NewDef, unsigned Reg,
497                             bool &HasLiveDef) {
498  // Due to remat, it's possible this reg isn't being reused. That is,
499  // the def of this reg (by prev MI) is now dead.
500  MachineInstr *DefMI = I;
501  MachineOperand *DefOp = NULL;
502  for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
503    MachineOperand &MO = DefMI->getOperand(i);
504    if (MO.isRegister() && MO.isDef()) {
505      if (MO.getReg() == Reg)
506        DefOp = &MO;
507      else if (!MO.isDead())
508        HasLiveDef = true;
509    }
510  }
511  if (!DefOp)
512    return false;
513
514  bool FoundUse = false, Done = false;
515  MachineBasicBlock::iterator E = NewDef;
516  ++I; ++E;
517  for (; !Done && I != E; ++I) {
518    MachineInstr *NMI = I;
519    for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
520      MachineOperand &MO = NMI->getOperand(j);
521      if (!MO.isRegister() || MO.getReg() != Reg)
522        continue;
523      if (MO.isUse())
524        FoundUse = true;
525      Done = true; // Stop after scanning all the operands of this MI.
526    }
527  }
528  if (!FoundUse) {
529    // Def is dead!
530    DefOp->setIsDead();
531    return true;
532  }
533  return false;
534}
535
536/// UpdateKills - Track and update kill info. If a MI reads a register that is
537/// marked kill, then it must be due to register reuse. Transfer the kill info
538/// over.
539static void UpdateKills(MachineInstr &MI, BitVector &RegKills,
540                        std::vector<MachineOperand*> &KillOps) {
541  const TargetInstrDesc &TID = MI.getDesc();
542  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
543    MachineOperand &MO = MI.getOperand(i);
544    if (!MO.isRegister() || !MO.isUse())
545      continue;
546    unsigned Reg = MO.getReg();
547    if (Reg == 0)
548      continue;
549
550    if (RegKills[Reg]) {
551      // That can't be right. Register is killed but not re-defined and it's
552      // being reused. Let's fix that.
553      KillOps[Reg]->setIsKill(false);
554      KillOps[Reg] = NULL;
555      RegKills.reset(Reg);
556      if (i < TID.getNumOperands() &&
557          TID.getOperandConstraint(i, TOI::TIED_TO) == -1)
558        // Unless it's a two-address operand, this is the new kill.
559        MO.setIsKill();
560    }
561    if (MO.isKill()) {
562      RegKills.set(Reg);
563      KillOps[Reg] = &MO;
564    }
565  }
566
567  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
568    const MachineOperand &MO = MI.getOperand(i);
569    if (!MO.isRegister() || !MO.isDef())
570      continue;
571    unsigned Reg = MO.getReg();
572    RegKills.reset(Reg);
573    KillOps[Reg] = NULL;
574  }
575}
576
577
578// ReusedOp - For each reused operand, we keep track of a bit of information, in
579// case we need to rollback upon processing a new operand.  See comments below.
580namespace {
581  struct ReusedOp {
582    // The MachineInstr operand that reused an available value.
583    unsigned Operand;
584
585    // StackSlotOrReMat - The spill slot or remat id of the value being reused.
586    unsigned StackSlotOrReMat;
587
588    // PhysRegReused - The physical register the value was available in.
589    unsigned PhysRegReused;
590
591    // AssignedPhysReg - The physreg that was assigned for use by the reload.
592    unsigned AssignedPhysReg;
593
594    // VirtReg - The virtual register itself.
595    unsigned VirtReg;
596
597    ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
598             unsigned vreg)
599      : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
600        AssignedPhysReg(apr), VirtReg(vreg) {}
601  };
602
603  /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
604  /// is reused instead of reloaded.
605  class VISIBILITY_HIDDEN ReuseInfo {
606    MachineInstr &MI;
607    std::vector<ReusedOp> Reuses;
608    BitVector PhysRegsClobbered;
609  public:
610    ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) {
611      PhysRegsClobbered.resize(tri->getNumRegs());
612    }
613
614    bool hasReuses() const {
615      return !Reuses.empty();
616    }
617
618    /// addReuse - If we choose to reuse a virtual register that is already
619    /// available instead of reloading it, remember that we did so.
620    void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
621                  unsigned PhysRegReused, unsigned AssignedPhysReg,
622                  unsigned VirtReg) {
623      // If the reload is to the assigned register anyway, no undo will be
624      // required.
625      if (PhysRegReused == AssignedPhysReg) return;
626
627      // Otherwise, remember this.
628      Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused,
629                                AssignedPhysReg, VirtReg));
630    }
631
632    void markClobbered(unsigned PhysReg) {
633      PhysRegsClobbered.set(PhysReg);
634    }
635
636    bool isClobbered(unsigned PhysReg) const {
637      return PhysRegsClobbered.test(PhysReg);
638    }
639
640    /// GetRegForReload - We are about to emit a reload into PhysReg.  If there
641    /// is some other operand that is using the specified register, either pick
642    /// a new register to use, or evict the previous reload and use this reg.
643    unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
644                             AvailableSpills &Spills,
645                             std::vector<MachineInstr*> &MaybeDeadStores,
646                             SmallSet<unsigned, 8> &Rejected,
647                             BitVector &RegKills,
648                             std::vector<MachineOperand*> &KillOps,
649                             VirtRegMap &VRM) {
650      const TargetInstrInfo* TII = MI->getParent()->getParent()->getTarget()
651                                   .getInstrInfo();
652
653      if (Reuses.empty()) return PhysReg;  // This is most often empty.
654
655      for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
656        ReusedOp &Op = Reuses[ro];
657        // If we find some other reuse that was supposed to use this register
658        // exactly for its reload, we can change this reload to use ITS reload
659        // register. That is, unless its reload register has already been
660        // considered and subsequently rejected because it has also been reused
661        // by another operand.
662        if (Op.PhysRegReused == PhysReg &&
663            Rejected.count(Op.AssignedPhysReg) == 0) {
664          // Yup, use the reload register that we didn't use before.
665          unsigned NewReg = Op.AssignedPhysReg;
666          Rejected.insert(PhysReg);
667          return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores, Rejected,
668                                 RegKills, KillOps, VRM);
669        } else {
670          // Otherwise, we might also have a problem if a previously reused
671          // value aliases the new register.  If so, codegen the previous reload
672          // and use this one.
673          unsigned PRRU = Op.PhysRegReused;
674          const TargetRegisterInfo *TRI = Spills.getRegInfo();
675          if (TRI->areAliases(PRRU, PhysReg)) {
676            // Okay, we found out that an alias of a reused register
677            // was used.  This isn't good because it means we have
678            // to undo a previous reuse.
679            MachineBasicBlock *MBB = MI->getParent();
680            const TargetRegisterClass *AliasRC =
681              MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);
682
683            // Copy Op out of the vector and remove it, we're going to insert an
684            // explicit load for it.
685            ReusedOp NewOp = Op;
686            Reuses.erase(Reuses.begin()+ro);
687
688            // Ok, we're going to try to reload the assigned physreg into the
689            // slot that we were supposed to in the first place.  However, that
690            // register could hold a reuse.  Check to see if it conflicts or
691            // would prefer us to use a different register.
692            unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg,
693                                                  MI, Spills, MaybeDeadStores,
694                                              Rejected, RegKills, KillOps, VRM);
695
696            if (NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT) {
697              TRI->reMaterialize(*MBB, MI, NewPhysReg,
698                                 VRM.getReMaterializedMI(NewOp.VirtReg));
699              ++NumReMats;
700            } else {
701              TII->loadRegFromStackSlot(*MBB, MI, NewPhysReg,
702                                        NewOp.StackSlotOrReMat, AliasRC);
703              // Any stores to this stack slot are not dead anymore.
704              MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;
705              ++NumLoads;
706            }
707            Spills.ClobberPhysReg(NewPhysReg);
708            Spills.ClobberPhysReg(NewOp.PhysRegReused);
709
710            MI->getOperand(NewOp.Operand).setReg(NewPhysReg);
711
712            Spills.addAvailable(NewOp.StackSlotOrReMat, MI, NewPhysReg);
713            MachineBasicBlock::iterator MII = MI;
714            --MII;
715            UpdateKills(*MII, RegKills, KillOps);
716            DOUT << '\t' << *MII;
717
718            DOUT << "Reuse undone!\n";
719            --NumReused;
720
721            // Finally, PhysReg is now available, go ahead and use it.
722            return PhysReg;
723          }
724        }
725      }
726      return PhysReg;
727    }
728
729    /// GetRegForReload - Helper for the above GetRegForReload(). Add a
730    /// 'Rejected' set to remember which registers have been considered and
731    /// rejected for the reload. This avoids infinite looping in case like
732    /// this:
733    /// t1 := op t2, t3
734    /// t2 <- assigned r0 for use by the reload but ended up reuse r1
735    /// t3 <- assigned r1 for use by the reload but ended up reuse r0
736    /// t1 <- desires r1
737    ///       sees r1 is taken by t2, tries t2's reload register r0
738    ///       sees r0 is taken by t3, tries t3's reload register r1
739    ///       sees r1 is taken by t2, tries t2's reload register r0 ...
740    unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
741                             AvailableSpills &Spills,
742                             std::vector<MachineInstr*> &MaybeDeadStores,
743                             BitVector &RegKills,
744                             std::vector<MachineOperand*> &KillOps,
745                             VirtRegMap &VRM) {
746      SmallSet<unsigned, 8> Rejected;
747      return GetRegForReload(PhysReg, MI, Spills, MaybeDeadStores, Rejected,
748                             RegKills, KillOps, VRM);
749    }
750  };
751}
752
753/// PrepForUnfoldOpti - Turn a store folding instruction into a load folding
754/// instruction. e.g.
755///     xorl  %edi, %eax
756///     movl  %eax, -32(%ebp)
757///     movl  -36(%ebp), %eax
758///	orl   %eax, -32(%ebp)
759/// ==>
760///     xorl  %edi, %eax
761///     orl   -36(%ebp), %eax
762///     mov   %eax, -32(%ebp)
763/// This enables unfolding optimization for a subsequent instruction which will
764/// also eliminate the newly introduced store instruction.
765bool LocalSpiller::PrepForUnfoldOpti(MachineBasicBlock &MBB,
766                                     MachineBasicBlock::iterator &MII,
767                                    std::vector<MachineInstr*> &MaybeDeadStores,
768                                     AvailableSpills &Spills,
769                                     BitVector &RegKills,
770                                     std::vector<MachineOperand*> &KillOps,
771                                     VirtRegMap &VRM) {
772  MachineFunction &MF = *MBB.getParent();
773  MachineInstr &MI = *MII;
774  unsigned UnfoldedOpc = 0;
775  unsigned UnfoldPR = 0;
776  unsigned UnfoldVR = 0;
777  int FoldedSS = VirtRegMap::NO_STACK_SLOT;
778  VirtRegMap::MI2VirtMapTy::const_iterator I, End;
779  for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
780    // Only transform a MI that folds a single register.
781    if (UnfoldedOpc)
782      return false;
783    UnfoldVR = I->second.first;
784    VirtRegMap::ModRef MR = I->second.second;
785    if (VRM.isAssignedReg(UnfoldVR))
786      continue;
787    // If this reference is not a use, any previous store is now dead.
788    // Otherwise, the store to this stack slot is not dead anymore.
789    FoldedSS = VRM.getStackSlot(UnfoldVR);
790    MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
791    if (DeadStore && (MR & VirtRegMap::isModRef)) {
792      unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
793      if (!PhysReg ||
794          DeadStore->findRegisterUseOperandIdx(PhysReg, true) == -1)
795        continue;
796      UnfoldPR = PhysReg;
797      UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
798                                                    false, true);
799    }
800  }
801
802  if (!UnfoldedOpc)
803    return false;
804
805  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
806    MachineOperand &MO = MI.getOperand(i);
807    if (!MO.isRegister() || MO.getReg() == 0 || !MO.isUse())
808      continue;
809    unsigned VirtReg = MO.getReg();
810    if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
811      continue;
812    if (VRM.isAssignedReg(VirtReg)) {
813      unsigned PhysReg = VRM.getPhys(VirtReg);
814      if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR))
815        return false;
816    } else if (VRM.isReMaterialized(VirtReg))
817      continue;
818    int SS = VRM.getStackSlot(VirtReg);
819    unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
820    if (PhysReg) {
821      if (TRI->regsOverlap(PhysReg, UnfoldPR))
822        return false;
823      continue;
824    }
825    PhysReg = VRM.getPhys(VirtReg);
826    if (!TRI->regsOverlap(PhysReg, UnfoldPR))
827      continue;
828
829    // Ok, we'll need to reload the value into a register which makes
830    // it impossible to perform the store unfolding optimization later.
831    // Let's see if it is possible to fold the load if the store is
832    // unfolded. This allows us to perform the store unfolding
833    // optimization.
834    SmallVector<MachineInstr*, 4> NewMIs;
835    if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
836      assert(NewMIs.size() == 1);
837      MachineInstr *NewMI = NewMIs.back();
838      NewMIs.clear();
839      int Idx = NewMI->findRegisterUseOperandIdx(VirtReg);
840      assert(Idx != -1);
841      SmallVector<unsigned, 2> Ops;
842      Ops.push_back(Idx);
843      MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, NewMI, Ops, SS);
844      if (FoldedMI) {
845        if (!VRM.hasPhys(UnfoldVR))
846          VRM.assignVirt2Phys(UnfoldVR, UnfoldPR);
847        VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
848        MII = MBB.insert(MII, FoldedMI);
849        VRM.RemoveMachineInstrFromMaps(&MI);
850        MBB.erase(&MI);
851        return true;
852      }
853      delete NewMI;
854    }
855  }
856  return false;
857}
858
859/// findSuperReg - Find the SubReg's super-register of given register class
860/// where its SubIdx sub-register is SubReg.
861static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
862                             unsigned SubIdx, const TargetRegisterInfo *TRI) {
863  for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
864       I != E; ++I) {
865    unsigned Reg = *I;
866    if (TRI->getSubReg(Reg, SubIdx) == SubReg)
867      return Reg;
868  }
869  return 0;
870}
871
872/// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
873/// the last store to the same slot is now dead. If so, remove the last store.
874void LocalSpiller::SpillRegToStackSlot(MachineBasicBlock &MBB,
875                                  MachineBasicBlock::iterator &MII,
876                                  int Idx, unsigned PhysReg, int StackSlot,
877                                  const TargetRegisterClass *RC,
878                                  bool isAvailable, MachineInstr *&LastStore,
879                                  AvailableSpills &Spills,
880                                  SmallSet<MachineInstr*, 4> &ReMatDefs,
881                                  BitVector &RegKills,
882                                  std::vector<MachineOperand*> &KillOps,
883                                  VirtRegMap &VRM) {
884  TII->storeRegToStackSlot(MBB, next(MII), PhysReg, true, StackSlot, RC);
885  DOUT << "Store:\t" << *next(MII);
886
887  // If there is a dead store to this stack slot, nuke it now.
888  if (LastStore) {
889    DOUT << "Removed dead store:\t" << *LastStore;
890    ++NumDSE;
891    SmallVector<unsigned, 2> KillRegs;
892    InvalidateKills(*LastStore, RegKills, KillOps, &KillRegs);
893    MachineBasicBlock::iterator PrevMII = LastStore;
894    bool CheckDef = PrevMII != MBB.begin();
895    if (CheckDef)
896      --PrevMII;
897    MBB.erase(LastStore);
898    VRM.RemoveMachineInstrFromMaps(LastStore);
899    if (CheckDef) {
900      // Look at defs of killed registers on the store. Mark the defs
901      // as dead since the store has been deleted and they aren't
902      // being reused.
903      for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
904        bool HasOtherDef = false;
905        if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef)) {
906          MachineInstr *DeadDef = PrevMII;
907          if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
908            // FIXME: This assumes a remat def does not have side
909            // effects.
910            MBB.erase(DeadDef);
911            VRM.RemoveMachineInstrFromMaps(DeadDef);
912            ++NumDRM;
913          }
914        }
915      }
916    }
917  }
918
919  LastStore = next(MII);
920
921  // If the stack slot value was previously available in some other
922  // register, change it now.  Otherwise, make the register available,
923  // in PhysReg.
924  Spills.ModifyStackSlotOrReMat(StackSlot);
925  Spills.ClobberPhysReg(PhysReg);
926  Spills.addAvailable(StackSlot, LastStore, PhysReg, isAvailable);
927  ++NumStores;
928}
929
930/// rewriteMBB - Keep track of which spills are available even after the
931/// register allocator is done with them.  If possible, avid reloading vregs.
932void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) {
933  DOUT << MBB.getBasicBlock()->getName() << ":\n";
934
935  MachineFunction &MF = *MBB.getParent();
936
937  // Spills - Keep track of which spilled values are available in physregs so
938  // that we can choose to reuse the physregs instead of emitting reloads.
939  AvailableSpills Spills(TRI, TII);
940
941  // MaybeDeadStores - When we need to write a value back into a stack slot,
942  // keep track of the inserted store.  If the stack slot value is never read
943  // (because the value was used from some available register, for example), and
944  // subsequently stored to, the original store is dead.  This map keeps track
945  // of inserted stores that are not used.  If we see a subsequent store to the
946  // same stack slot, the original store is deleted.
947  std::vector<MachineInstr*> MaybeDeadStores;
948  MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
949
950  // ReMatDefs - These are rematerializable def MIs which are not deleted.
951  SmallSet<MachineInstr*, 4> ReMatDefs;
952
953  // Keep track of kill information.
954  BitVector RegKills(TRI->getNumRegs());
955  std::vector<MachineOperand*>  KillOps;
956  KillOps.resize(TRI->getNumRegs(), NULL);
957
958  for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
959       MII != E; ) {
960    MachineBasicBlock::iterator NextMII = MII; ++NextMII;
961
962    VirtRegMap::MI2VirtMapTy::const_iterator I, End;
963    bool Erased = false;
964    bool BackTracked = false;
965    if (PrepForUnfoldOpti(MBB, MII,
966                          MaybeDeadStores, Spills, RegKills, KillOps, VRM))
967      NextMII = next(MII);
968
969    MachineInstr &MI = *MII;
970    const TargetInstrDesc &TID = MI.getDesc();
971
972    // Insert restores here if asked to.
973    if (VRM.isRestorePt(&MI)) {
974      std::vector<unsigned> &RestoreRegs = VRM.getRestorePtRestores(&MI);
975      for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
976        unsigned VirtReg = RestoreRegs[i];
977        if (!VRM.getPreSplitReg(VirtReg))
978          continue; // Split interval spilled again.
979        unsigned Phys = VRM.getPhys(VirtReg);
980        RegInfo->setPhysRegUsed(Phys);
981        if (VRM.isReMaterialized(VirtReg)) {
982          TRI->reMaterialize(MBB, &MI, Phys,
983                             VRM.getReMaterializedMI(VirtReg));
984          ++NumReMats;
985        } else {
986          const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
987          TII->loadRegFromStackSlot(MBB, &MI, Phys, VRM.getStackSlot(VirtReg),
988                                    RC);
989          ++NumLoads;
990        }
991        // This invalidates Phys.
992        Spills.ClobberPhysReg(Phys);
993        UpdateKills(*prior(MII), RegKills, KillOps);
994        DOUT << '\t' << *prior(MII);
995      }
996    }
997
998    // Insert spills here if asked to.
999    if (VRM.isSpillPt(&MI)) {
1000      std::vector<std::pair<unsigned,bool> > &SpillRegs =
1001        VRM.getSpillPtSpills(&MI);
1002      for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
1003        unsigned VirtReg = SpillRegs[i].first;
1004        bool isKill = SpillRegs[i].second;
1005        if (!VRM.getPreSplitReg(VirtReg))
1006          continue; // Split interval spilled again.
1007        const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1008        unsigned Phys = VRM.getPhys(VirtReg);
1009        int StackSlot = VRM.getStackSlot(VirtReg);
1010        TII->storeRegToStackSlot(MBB, next(MII), Phys, isKill, StackSlot, RC);
1011        MachineInstr *StoreMI = next(MII);
1012        DOUT << "Store:\t" << StoreMI;
1013        VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1014      }
1015      NextMII = next(MII);
1016    }
1017
1018    /// ReusedOperands - Keep track of operand reuse in case we need to undo
1019    /// reuse.
1020    ReuseInfo ReusedOperands(MI, TRI);
1021    // Process all of the spilled uses and all non spilled reg references.
1022    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1023      MachineOperand &MO = MI.getOperand(i);
1024      if (!MO.isRegister() || MO.getReg() == 0)
1025        continue;   // Ignore non-register operands.
1026
1027      unsigned VirtReg = MO.getReg();
1028      if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
1029        // Ignore physregs for spilling, but remember that it is used by this
1030        // function.
1031        RegInfo->setPhysRegUsed(VirtReg);
1032        continue;
1033      }
1034
1035      assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
1036             "Not a virtual or a physical register?");
1037
1038      unsigned SubIdx = MO.getSubReg();
1039      if (VRM.isAssignedReg(VirtReg)) {
1040        // This virtual register was assigned a physreg!
1041        unsigned Phys = VRM.getPhys(VirtReg);
1042        RegInfo->setPhysRegUsed(Phys);
1043        if (MO.isDef())
1044          ReusedOperands.markClobbered(Phys);
1045        unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
1046        MI.getOperand(i).setReg(RReg);
1047        continue;
1048      }
1049
1050      // This virtual register is now known to be a spilled value.
1051      if (!MO.isUse())
1052        continue;  // Handle defs in the loop below (handle use&def here though)
1053
1054      bool DoReMat = VRM.isReMaterialized(VirtReg);
1055      int SSorRMId = DoReMat
1056        ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
1057      int ReuseSlot = SSorRMId;
1058
1059      // Check to see if this stack slot is available.
1060      unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1061
1062      // If this is a sub-register use, make sure the reuse register is in the
1063      // right register class. For example, for x86 not all of the 32-bit
1064      // registers have accessible sub-registers.
1065      // Similarly so for EXTRACT_SUBREG. Consider this:
1066      // EDI = op
1067      // MOV32_mr fi#1, EDI
1068      // ...
1069      //       = EXTRACT_SUBREG fi#1
1070      // fi#1 is available in EDI, but it cannot be reused because it's not in
1071      // the right register file.
1072      if (PhysReg &&
1073          (SubIdx || MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)) {
1074        const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1075        if (!RC->contains(PhysReg))
1076          PhysReg = 0;
1077      }
1078
1079      if (PhysReg) {
1080        // This spilled operand might be part of a two-address operand.  If this
1081        // is the case, then changing it will necessarily require changing the
1082        // def part of the instruction as well.  However, in some cases, we
1083        // aren't allowed to modify the reused register.  If none of these cases
1084        // apply, reuse it.
1085        bool CanReuse = true;
1086        int ti = TID.getOperandConstraint(i, TOI::TIED_TO);
1087        if (ti != -1 &&
1088            MI.getOperand(ti).isRegister() &&
1089            MI.getOperand(ti).getReg() == VirtReg) {
1090          // Okay, we have a two address operand.  We can reuse this physreg as
1091          // long as we are allowed to clobber the value and there isn't an
1092          // earlier def that has already clobbered the physreg.
1093          CanReuse = Spills.canClobberPhysReg(ReuseSlot) &&
1094            !ReusedOperands.isClobbered(PhysReg);
1095        }
1096
1097        if (CanReuse) {
1098          // If this stack slot value is already available, reuse it!
1099          if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1100            DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1101          else
1102            DOUT << "Reusing SS#" << ReuseSlot;
1103          DOUT << " from physreg "
1104               << TRI->getName(PhysReg) << " for vreg"
1105               << VirtReg <<" instead of reloading into physreg "
1106               << TRI->getName(VRM.getPhys(VirtReg)) << "\n";
1107          unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1108          MI.getOperand(i).setReg(RReg);
1109
1110          // The only technical detail we have is that we don't know that
1111          // PhysReg won't be clobbered by a reloaded stack slot that occurs
1112          // later in the instruction.  In particular, consider 'op V1, V2'.
1113          // If V1 is available in physreg R0, we would choose to reuse it
1114          // here, instead of reloading it into the register the allocator
1115          // indicated (say R1).  However, V2 might have to be reloaded
1116          // later, and it might indicate that it needs to live in R0.  When
1117          // this occurs, we need to have information available that
1118          // indicates it is safe to use R1 for the reload instead of R0.
1119          //
1120          // To further complicate matters, we might conflict with an alias,
1121          // or R0 and R1 might not be compatible with each other.  In this
1122          // case, we actually insert a reload for V1 in R1, ensuring that
1123          // we can get at R0 or its alias.
1124          ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
1125                                  VRM.getPhys(VirtReg), VirtReg);
1126          if (ti != -1)
1127            // Only mark it clobbered if this is a use&def operand.
1128            ReusedOperands.markClobbered(PhysReg);
1129          ++NumReused;
1130
1131          if (MI.getOperand(i).isKill() &&
1132              ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
1133            // This was the last use and the spilled value is still available
1134            // for reuse. That means the spill was unnecessary!
1135            MachineInstr* DeadStore = MaybeDeadStores[ReuseSlot];
1136            if (DeadStore) {
1137              DOUT << "Removed dead store:\t" << *DeadStore;
1138              InvalidateKills(*DeadStore, RegKills, KillOps);
1139              VRM.RemoveMachineInstrFromMaps(DeadStore);
1140              MBB.erase(DeadStore);
1141              MaybeDeadStores[ReuseSlot] = NULL;
1142              ++NumDSE;
1143            }
1144          }
1145          continue;
1146        }  // CanReuse
1147
1148        // Otherwise we have a situation where we have a two-address instruction
1149        // whose mod/ref operand needs to be reloaded.  This reload is already
1150        // available in some register "PhysReg", but if we used PhysReg as the
1151        // operand to our 2-addr instruction, the instruction would modify
1152        // PhysReg.  This isn't cool if something later uses PhysReg and expects
1153        // to get its initial value.
1154        //
1155        // To avoid this problem, and to avoid doing a load right after a store,
1156        // we emit a copy from PhysReg into the designated register for this
1157        // operand.
1158        unsigned DesignatedReg = VRM.getPhys(VirtReg);
1159        assert(DesignatedReg && "Must map virtreg to physreg!");
1160
1161        // Note that, if we reused a register for a previous operand, the
1162        // register we want to reload into might not actually be
1163        // available.  If this occurs, use the register indicated by the
1164        // reuser.
1165        if (ReusedOperands.hasReuses())
1166          DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI,
1167                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1168
1169        // If the mapped designated register is actually the physreg we have
1170        // incoming, we don't need to inserted a dead copy.
1171        if (DesignatedReg == PhysReg) {
1172          // If this stack slot value is already available, reuse it!
1173          if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1174            DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1175          else
1176            DOUT << "Reusing SS#" << ReuseSlot;
1177          DOUT << " from physreg " << TRI->getName(PhysReg) << " for vreg"
1178               << VirtReg
1179               << " instead of reloading into same physreg.\n";
1180          unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1181          MI.getOperand(i).setReg(RReg);
1182          ReusedOperands.markClobbered(RReg);
1183          ++NumReused;
1184          continue;
1185        }
1186
1187        const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1188        RegInfo->setPhysRegUsed(DesignatedReg);
1189        ReusedOperands.markClobbered(DesignatedReg);
1190        TII->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC, RC);
1191
1192        MachineInstr *CopyMI = prior(MII);
1193        UpdateKills(*CopyMI, RegKills, KillOps);
1194
1195        // This invalidates DesignatedReg.
1196        Spills.ClobberPhysReg(DesignatedReg);
1197
1198        Spills.addAvailable(ReuseSlot, &MI, DesignatedReg);
1199        unsigned RReg =
1200          SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
1201        MI.getOperand(i).setReg(RReg);
1202        DOUT << '\t' << *prior(MII);
1203        ++NumReused;
1204        continue;
1205      } // if (PhysReg)
1206
1207      // Otherwise, reload it and remember that we have it.
1208      PhysReg = VRM.getPhys(VirtReg);
1209      assert(PhysReg && "Must map virtreg to physreg!");
1210
1211      // Note that, if we reused a register for a previous operand, the
1212      // register we want to reload into might not actually be
1213      // available.  If this occurs, use the register indicated by the
1214      // reuser.
1215      if (ReusedOperands.hasReuses())
1216        PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
1217                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1218
1219      RegInfo->setPhysRegUsed(PhysReg);
1220      ReusedOperands.markClobbered(PhysReg);
1221      if (DoReMat) {
1222        TRI->reMaterialize(MBB, &MI, PhysReg, VRM.getReMaterializedMI(VirtReg));
1223        ++NumReMats;
1224      } else {
1225        const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1226        TII->loadRegFromStackSlot(MBB, &MI, PhysReg, SSorRMId, RC);
1227        ++NumLoads;
1228      }
1229      // This invalidates PhysReg.
1230      Spills.ClobberPhysReg(PhysReg);
1231
1232      // Any stores to this stack slot are not dead anymore.
1233      if (!DoReMat)
1234        MaybeDeadStores[SSorRMId] = NULL;
1235      Spills.addAvailable(SSorRMId, &MI, PhysReg);
1236      // Assumes this is the last use. IsKill will be unset if reg is reused
1237      // unless it's a two-address operand.
1238      if (TID.getOperandConstraint(i, TOI::TIED_TO) == -1)
1239        MI.getOperand(i).setIsKill();
1240      unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1241      MI.getOperand(i).setReg(RReg);
1242      UpdateKills(*prior(MII), RegKills, KillOps);
1243      DOUT << '\t' << *prior(MII);
1244    }
1245
1246    DOUT << '\t' << MI;
1247
1248
1249    // If we have folded references to memory operands, make sure we clear all
1250    // physical registers that may contain the value of the spilled virtual
1251    // register
1252    SmallSet<int, 2> FoldedSS;
1253    for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
1254      unsigned VirtReg = I->second.first;
1255      VirtRegMap::ModRef MR = I->second.second;
1256      DOUT << "Folded vreg: " << VirtReg << "  MR: " << MR;
1257
1258      int SS = VRM.getStackSlot(VirtReg);
1259      if (SS == VirtRegMap::NO_STACK_SLOT)
1260        continue;
1261      FoldedSS.insert(SS);
1262      DOUT << " - StackSlot: " << SS << "\n";
1263
1264      // If this folded instruction is just a use, check to see if it's a
1265      // straight load from the virt reg slot.
1266      if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
1267        int FrameIdx;
1268        unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
1269        if (DestReg && FrameIdx == SS) {
1270          // If this spill slot is available, turn it into a copy (or nothing)
1271          // instead of leaving it as a load!
1272          if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
1273            DOUT << "Promoted Load To Copy: " << MI;
1274            if (DestReg != InReg) {
1275              const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1276              TII->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC);
1277              // Revisit the copy so we make sure to notice the effects of the
1278              // operation on the destreg (either needing to RA it if it's
1279              // virtual or needing to clobber any values if it's physical).
1280              NextMII = &MI;
1281              --NextMII;  // backtrack to the copy.
1282              BackTracked = true;
1283            } else {
1284              DOUT << "Removing now-noop copy: " << MI;
1285              // Unset last kill since it's being reused.
1286              InvalidateKill(InReg, RegKills, KillOps);
1287            }
1288
1289            VRM.RemoveMachineInstrFromMaps(&MI);
1290            MBB.erase(&MI);
1291            Erased = true;
1292            goto ProcessNextInst;
1293          }
1294        } else {
1295          unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1296          SmallVector<MachineInstr*, 4> NewMIs;
1297          if (PhysReg &&
1298              TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) {
1299            MBB.insert(MII, NewMIs[0]);
1300            VRM.RemoveMachineInstrFromMaps(&MI);
1301            MBB.erase(&MI);
1302            Erased = true;
1303            --NextMII;  // backtrack to the unfolded instruction.
1304            BackTracked = true;
1305            goto ProcessNextInst;
1306          }
1307        }
1308      }
1309
1310      // If this reference is not a use, any previous store is now dead.
1311      // Otherwise, the store to this stack slot is not dead anymore.
1312      MachineInstr* DeadStore = MaybeDeadStores[SS];
1313      if (DeadStore) {
1314        bool isDead = !(MR & VirtRegMap::isRef);
1315        MachineInstr *NewStore = NULL;
1316        if (MR & VirtRegMap::isModRef) {
1317          unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1318          SmallVector<MachineInstr*, 4> NewMIs;
1319          // We can reuse this physreg as long as we are allowed to clobber
1320          // the value and there isn't an earlier def that has already clobbered
1321          // the physreg.
1322          if (PhysReg &&
1323              !TII->isStoreToStackSlot(&MI, SS) && // Not profitable!
1324              DeadStore->findRegisterUseOperandIdx(PhysReg, true) != -1 &&
1325              TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true, NewMIs)) {
1326            MBB.insert(MII, NewMIs[0]);
1327            NewStore = NewMIs[1];
1328            MBB.insert(MII, NewStore);
1329            VRM.RemoveMachineInstrFromMaps(&MI);
1330            MBB.erase(&MI);
1331            Erased = true;
1332            --NextMII;
1333            --NextMII;  // backtrack to the unfolded instruction.
1334            BackTracked = true;
1335            isDead = true;
1336          }
1337        }
1338
1339        if (isDead) {  // Previous store is dead.
1340          // If we get here, the store is dead, nuke it now.
1341          DOUT << "Removed dead store:\t" << *DeadStore;
1342          InvalidateKills(*DeadStore, RegKills, KillOps);
1343          VRM.RemoveMachineInstrFromMaps(DeadStore);
1344          MBB.erase(DeadStore);
1345          if (!NewStore)
1346            ++NumDSE;
1347        }
1348
1349        MaybeDeadStores[SS] = NULL;
1350        if (NewStore) {
1351          // Treat this store as a spill merged into a copy. That makes the
1352          // stack slot value available.
1353          VRM.virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
1354          goto ProcessNextInst;
1355        }
1356      }
1357
1358      // If the spill slot value is available, and this is a new definition of
1359      // the value, the value is not available anymore.
1360      if (MR & VirtRegMap::isMod) {
1361        // Notice that the value in this stack slot has been modified.
1362        Spills.ModifyStackSlotOrReMat(SS);
1363
1364        // If this is *just* a mod of the value, check to see if this is just a
1365        // store to the spill slot (i.e. the spill got merged into the copy). If
1366        // so, realize that the vreg is available now, and add the store to the
1367        // MaybeDeadStore info.
1368        int StackSlot;
1369        if (!(MR & VirtRegMap::isRef)) {
1370          if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
1371            assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
1372                   "Src hasn't been allocated yet?");
1373            // Okay, this is certainly a store of SrcReg to [StackSlot].  Mark
1374            // this as a potentially dead store in case there is a subsequent
1375            // store into the stack slot without a read from it.
1376            MaybeDeadStores[StackSlot] = &MI;
1377
1378            // If the stack slot value was previously available in some other
1379            // register, change it now.  Otherwise, make the register available,
1380            // in PhysReg.
1381            Spills.addAvailable(StackSlot, &MI, SrcReg, false/*don't clobber*/);
1382          }
1383        }
1384      }
1385    }
1386
1387    // Process all of the spilled defs.
1388    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1389      MachineOperand &MO = MI.getOperand(i);
1390      if (!(MO.isRegister() && MO.getReg() && MO.isDef()))
1391        continue;
1392
1393      unsigned VirtReg = MO.getReg();
1394      if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) {
1395        // Check to see if this is a noop copy.  If so, eliminate the
1396        // instruction before considering the dest reg to be changed.
1397        unsigned Src, Dst;
1398        if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
1399          ++NumDCE;
1400          DOUT << "Removing now-noop copy: " << MI;
1401          MBB.erase(&MI);
1402          Erased = true;
1403          VRM.RemoveMachineInstrFromMaps(&MI);
1404          Spills.disallowClobberPhysReg(VirtReg);
1405          goto ProcessNextInst;
1406        }
1407
1408        // If it's not a no-op copy, it clobbers the value in the destreg.
1409        Spills.ClobberPhysReg(VirtReg);
1410        ReusedOperands.markClobbered(VirtReg);
1411
1412        // Check to see if this instruction is a load from a stack slot into
1413        // a register.  If so, this provides the stack slot value in the reg.
1414        int FrameIdx;
1415        if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
1416          assert(DestReg == VirtReg && "Unknown load situation!");
1417
1418          // If it is a folded reference, then it's not safe to clobber.
1419          bool Folded = FoldedSS.count(FrameIdx);
1420          // Otherwise, if it wasn't available, remember that it is now!
1421          Spills.addAvailable(FrameIdx, &MI, DestReg, !Folded);
1422          goto ProcessNextInst;
1423        }
1424
1425        continue;
1426      }
1427
1428      unsigned SubIdx = MO.getSubReg();
1429      bool DoReMat = VRM.isReMaterialized(VirtReg);
1430      if (DoReMat)
1431        ReMatDefs.insert(&MI);
1432
1433      // The only vregs left are stack slot definitions.
1434      int StackSlot = VRM.getStackSlot(VirtReg);
1435      const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1436
1437      // If this def is part of a two-address operand, make sure to execute
1438      // the store from the correct physical register.
1439      unsigned PhysReg;
1440      int TiedOp = MI.getDesc().findTiedToSrcOperand(i);
1441      if (TiedOp != -1) {
1442        PhysReg = MI.getOperand(TiedOp).getReg();
1443        if (SubIdx) {
1444          unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI);
1445          assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
1446                 "Can't find corresponding super-register!");
1447          PhysReg = SuperReg;
1448        }
1449      } else {
1450        PhysReg = VRM.getPhys(VirtReg);
1451        if (ReusedOperands.isClobbered(PhysReg)) {
1452          // Another def has taken the assigned physreg. It must have been a
1453          // use&def which got it due to reuse. Undo the reuse!
1454          PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
1455                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1456        }
1457      }
1458
1459      RegInfo->setPhysRegUsed(PhysReg);
1460      unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1461      ReusedOperands.markClobbered(RReg);
1462      MI.getOperand(i).setReg(RReg);
1463
1464      if (!MO.isDead()) {
1465        MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
1466        SpillRegToStackSlot(MBB, MII, -1, PhysReg, StackSlot, RC, true,
1467                          LastStore, Spills, ReMatDefs, RegKills, KillOps, VRM);
1468        NextMII = next(MII);
1469
1470        // Check to see if this is a noop copy.  If so, eliminate the
1471        // instruction before considering the dest reg to be changed.
1472        {
1473          unsigned Src, Dst;
1474          if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
1475            ++NumDCE;
1476            DOUT << "Removing now-noop copy: " << MI;
1477            MBB.erase(&MI);
1478            Erased = true;
1479            VRM.RemoveMachineInstrFromMaps(&MI);
1480            UpdateKills(*LastStore, RegKills, KillOps);
1481            goto ProcessNextInst;
1482          }
1483        }
1484      }
1485    }
1486  ProcessNextInst:
1487    if (!Erased && !BackTracked) {
1488      for (MachineBasicBlock::iterator II = MI; II != NextMII; ++II)
1489        UpdateKills(*II, RegKills, KillOps);
1490    }
1491    MII = NextMII;
1492  }
1493}
1494
1495llvm::Spiller* llvm::createSpiller() {
1496  switch (SpillerOpt) {
1497  default: assert(0 && "Unreachable!");
1498  case local:
1499    return new LocalSpiller();
1500  case simple:
1501    return new SimpleSpiller();
1502  }
1503}
1504