VirtRegMap.cpp revision 7ebc06bfd8df4cd7c477af1e5fec196c32efcfea
1//===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the VirtRegMap class.
11//
12// It also contains implementations of the the Spiller interface, which, given a
13// virtual register map and a machine function, eliminates all virtual
14// references by replacing them with physical register references - adding spill
15// code as necessary.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "spiller"
20#include "VirtRegMap.h"
21#include "llvm/Function.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Support/CommandLine.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/Compiler.h"
31#include "llvm/ADT/BitVector.h"
32#include "llvm/ADT/Statistic.h"
33#include "llvm/ADT/STLExtras.h"
34#include "llvm/ADT/SmallSet.h"
35#include <algorithm>
36using namespace llvm;
37
38STATISTIC(NumSpills, "Number of register spills");
39STATISTIC(NumPSpills,"Number of physical register spills");
40STATISTIC(NumReMats, "Number of re-materialization");
41STATISTIC(NumDRM   , "Number of re-materializable defs elided");
42STATISTIC(NumStores, "Number of stores added");
43STATISTIC(NumLoads , "Number of loads added");
44STATISTIC(NumReused, "Number of values reused");
45STATISTIC(NumDSE   , "Number of dead stores elided");
46STATISTIC(NumDCE   , "Number of copies elided");
47STATISTIC(NumDSS   , "Number of dead spill slots removed");
48
49namespace {
50  enum SpillerName { simple, local };
51
52  static cl::opt<SpillerName>
53  SpillerOpt("spiller",
54             cl::desc("Spiller to use: (default: local)"),
55             cl::Prefix,
56             cl::values(clEnumVal(simple, "  simple spiller"),
57                        clEnumVal(local,  "  local spiller"),
58                        clEnumValEnd),
59             cl::init(local));
60}
61
62//===----------------------------------------------------------------------===//
63//  VirtRegMap implementation
64//===----------------------------------------------------------------------===//
65
66VirtRegMap::VirtRegMap(MachineFunction &mf)
67  : TII(*mf.getTarget().getInstrInfo()), MF(mf),
68    Virt2PhysMap(NO_PHYS_REG), Virt2StackSlotMap(NO_STACK_SLOT),
69    Virt2ReMatIdMap(NO_STACK_SLOT), Virt2SplitMap(0),
70    Virt2SplitKillMap(0), ReMatMap(NULL), ReMatId(MAX_STACK_SLOT+1),
71    LowSpillSlot(NO_STACK_SLOT), HighSpillSlot(NO_STACK_SLOT) {
72  SpillSlotToUsesMap.resize(8);
73  ImplicitDefed.resize(MF.getRegInfo().getLastVirtReg()+1-
74                       TargetRegisterInfo::FirstVirtualRegister);
75  grow();
76}
77
78void VirtRegMap::grow() {
79  unsigned LastVirtReg = MF.getRegInfo().getLastVirtReg();
80  Virt2PhysMap.grow(LastVirtReg);
81  Virt2StackSlotMap.grow(LastVirtReg);
82  Virt2ReMatIdMap.grow(LastVirtReg);
83  Virt2SplitMap.grow(LastVirtReg);
84  Virt2SplitKillMap.grow(LastVirtReg);
85  ReMatMap.grow(LastVirtReg);
86  ImplicitDefed.resize(LastVirtReg-TargetRegisterInfo::FirstVirtualRegister+1);
87}
88
89int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
90  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
91  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
92         "attempt to assign stack slot to already spilled register");
93  const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(virtReg);
94  int SS = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
95                                                RC->getAlignment());
96  if (LowSpillSlot == NO_STACK_SLOT)
97    LowSpillSlot = SS;
98  if (HighSpillSlot == NO_STACK_SLOT || SS > HighSpillSlot)
99    HighSpillSlot = SS;
100  unsigned Idx = SS-LowSpillSlot;
101  while (Idx >= SpillSlotToUsesMap.size())
102    SpillSlotToUsesMap.resize(SpillSlotToUsesMap.size()*2);
103  Virt2StackSlotMap[virtReg] = SS;
104  ++NumSpills;
105  return SS;
106}
107
108void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int SS) {
109  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
110  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
111         "attempt to assign stack slot to already spilled register");
112  assert((SS >= 0 ||
113          (SS >= MF.getFrameInfo()->getObjectIndexBegin())) &&
114         "illegal fixed frame index");
115  Virt2StackSlotMap[virtReg] = SS;
116}
117
118int VirtRegMap::assignVirtReMatId(unsigned virtReg) {
119  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
120  assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT &&
121         "attempt to assign re-mat id to already spilled register");
122  Virt2ReMatIdMap[virtReg] = ReMatId;
123  return ReMatId++;
124}
125
126void VirtRegMap::assignVirtReMatId(unsigned virtReg, int id) {
127  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
128  assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT &&
129         "attempt to assign re-mat id to already spilled register");
130  Virt2ReMatIdMap[virtReg] = id;
131}
132
133int VirtRegMap::getEmergencySpillSlot(const TargetRegisterClass *RC) {
134  std::map<const TargetRegisterClass*, int>::iterator I =
135    EmergencySpillSlots.find(RC);
136  if (I != EmergencySpillSlots.end())
137    return I->second;
138  int SS = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
139                                                RC->getAlignment());
140  if (LowSpillSlot == NO_STACK_SLOT)
141    LowSpillSlot = SS;
142  if (HighSpillSlot == NO_STACK_SLOT || SS > HighSpillSlot)
143    HighSpillSlot = SS;
144  I->second = SS;
145  return SS;
146}
147
148void VirtRegMap::addSpillSlotUse(int FI, MachineInstr *MI) {
149  if (!MF.getFrameInfo()->isFixedObjectIndex(FI)) {
150    assert(FI >= 0 && "Spill slot index should not be negative!");
151    SpillSlotToUsesMap[FI-LowSpillSlot].insert(MI);
152  }
153}
154
155void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *OldMI,
156                            MachineInstr *NewMI, ModRef MRInfo) {
157  // Move previous memory references folded to new instruction.
158  MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(NewMI);
159  for (MI2VirtMapTy::iterator I = MI2VirtMap.lower_bound(OldMI),
160         E = MI2VirtMap.end(); I != E && I->first == OldMI; ) {
161    MI2VirtMap.insert(IP, std::make_pair(NewMI, I->second));
162    MI2VirtMap.erase(I++);
163  }
164
165  // add new memory reference
166  MI2VirtMap.insert(IP, std::make_pair(NewMI, std::make_pair(VirtReg, MRInfo)));
167}
168
169void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *MI, ModRef MRInfo) {
170  MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(MI);
171  MI2VirtMap.insert(IP, std::make_pair(MI, std::make_pair(VirtReg, MRInfo)));
172}
173
174void VirtRegMap::RemoveMachineInstrFromMaps(MachineInstr *MI) {
175  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
176    MachineOperand &MO = MI->getOperand(i);
177    if (!MO.isFrameIndex())
178      continue;
179    int FI = MO.getIndex();
180    if (MF.getFrameInfo()->isFixedObjectIndex(FI))
181      continue;
182    SpillSlotToUsesMap[FI-LowSpillSlot].erase(MI);
183  }
184  MI2VirtMap.erase(MI);
185  SpillPt2VirtMap.erase(MI);
186  RestorePt2VirtMap.erase(MI);
187  EmergencySpillMap.erase(MI);
188}
189
190void VirtRegMap::print(std::ostream &OS) const {
191  const TargetRegisterInfo* TRI = MF.getTarget().getRegisterInfo();
192
193  OS << "********** REGISTER MAP **********\n";
194  for (unsigned i = TargetRegisterInfo::FirstVirtualRegister,
195         e = MF.getRegInfo().getLastVirtReg(); i <= e; ++i) {
196    if (Virt2PhysMap[i] != (unsigned)VirtRegMap::NO_PHYS_REG)
197      OS << "[reg" << i << " -> " << TRI->getName(Virt2PhysMap[i])
198         << "]\n";
199  }
200
201  for (unsigned i = TargetRegisterInfo::FirstVirtualRegister,
202         e = MF.getRegInfo().getLastVirtReg(); i <= e; ++i)
203    if (Virt2StackSlotMap[i] != VirtRegMap::NO_STACK_SLOT)
204      OS << "[reg" << i << " -> fi#" << Virt2StackSlotMap[i] << "]\n";
205  OS << '\n';
206}
207
208void VirtRegMap::dump() const {
209  print(cerr);
210}
211
212
213//===----------------------------------------------------------------------===//
214// Simple Spiller Implementation
215//===----------------------------------------------------------------------===//
216
217Spiller::~Spiller() {}
218
219namespace {
220  struct VISIBILITY_HIDDEN SimpleSpiller : public Spiller {
221    bool runOnMachineFunction(MachineFunction& mf, VirtRegMap &VRM);
222  };
223}
224
225bool SimpleSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
226  DOUT << "********** REWRITE MACHINE CODE **********\n";
227  DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
228  const TargetMachine &TM = MF.getTarget();
229  const TargetInstrInfo &TII = *TM.getInstrInfo();
230
231
232  // LoadedRegs - Keep track of which vregs are loaded, so that we only load
233  // each vreg once (in the case where a spilled vreg is used by multiple
234  // operands).  This is always smaller than the number of operands to the
235  // current machine instr, so it should be small.
236  std::vector<unsigned> LoadedRegs;
237
238  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
239       MBBI != E; ++MBBI) {
240    DOUT << MBBI->getBasicBlock()->getName() << ":\n";
241    MachineBasicBlock &MBB = *MBBI;
242    for (MachineBasicBlock::iterator MII = MBB.begin(),
243           E = MBB.end(); MII != E; ++MII) {
244      MachineInstr &MI = *MII;
245      for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
246        MachineOperand &MO = MI.getOperand(i);
247        if (MO.isRegister() && MO.getReg()) {
248          if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
249            unsigned VirtReg = MO.getReg();
250            unsigned PhysReg = VRM.getPhys(VirtReg);
251            if (!VRM.isAssignedReg(VirtReg)) {
252              int StackSlot = VRM.getStackSlot(VirtReg);
253              const TargetRegisterClass* RC =
254                MF.getRegInfo().getRegClass(VirtReg);
255
256              if (MO.isUse() &&
257                  std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
258                  == LoadedRegs.end()) {
259                TII.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
260                MachineInstr *LoadMI = prior(MII);
261                VRM.addSpillSlotUse(StackSlot, LoadMI);
262                LoadedRegs.push_back(VirtReg);
263                ++NumLoads;
264                DOUT << '\t' << *LoadMI;
265              }
266
267              if (MO.isDef()) {
268                TII.storeRegToStackSlot(MBB, next(MII), PhysReg, true,
269                                        StackSlot, RC);
270                MachineInstr *StoreMI = next(MII);
271                VRM.addSpillSlotUse(StackSlot, StoreMI);
272                ++NumStores;
273              }
274            }
275            MF.getRegInfo().setPhysRegUsed(PhysReg);
276            MI.getOperand(i).setReg(PhysReg);
277          } else {
278            MF.getRegInfo().setPhysRegUsed(MO.getReg());
279          }
280        }
281      }
282
283      DOUT << '\t' << MI;
284      LoadedRegs.clear();
285    }
286  }
287  return true;
288}
289
290//===----------------------------------------------------------------------===//
291//  Local Spiller Implementation
292//===----------------------------------------------------------------------===//
293
294namespace {
295  class AvailableSpills;
296
297  /// LocalSpiller - This spiller does a simple pass over the machine basic
298  /// block to attempt to keep spills in registers as much as possible for
299  /// blocks that have low register pressure (the vreg may be spilled due to
300  /// register pressure in other blocks).
301  class VISIBILITY_HIDDEN LocalSpiller : public Spiller {
302    MachineRegisterInfo *RegInfo;
303    const TargetRegisterInfo *TRI;
304    const TargetInstrInfo *TII;
305  public:
306    bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
307      RegInfo = &MF.getRegInfo();
308      TRI = MF.getTarget().getRegisterInfo();
309      TII = MF.getTarget().getInstrInfo();
310      DOUT << "\n**** Local spiller rewriting function '"
311           << MF.getFunction()->getName() << "':\n";
312      DOUT << "**** Machine Instrs (NOTE! Does not include spills and reloads!)"
313              " ****\n";
314      DEBUG(MF.dump());
315
316      for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
317           MBB != E; ++MBB)
318        RewriteMBB(*MBB, VRM);
319
320      // Mark unused spill slots.
321      MachineFrameInfo *MFI = MF.getFrameInfo();
322      int SS = VRM.getLowSpillSlot();
323      if (SS != VirtRegMap::NO_STACK_SLOT)
324        for (int e = VRM.getHighSpillSlot(); SS <= e; ++SS)
325          if (!VRM.isSpillSlotUsed(SS)) {
326            MFI->RemoveStackObject(SS);
327            ++NumDSS;
328          }
329
330      DOUT << "**** Post Machine Instrs ****\n";
331      DEBUG(MF.dump());
332
333      return true;
334    }
335  private:
336    bool PrepForUnfoldOpti(MachineBasicBlock &MBB,
337                           MachineBasicBlock::iterator &MII,
338                           std::vector<MachineInstr*> &MaybeDeadStores,
339                           AvailableSpills &Spills, BitVector &RegKills,
340                           std::vector<MachineOperand*> &KillOps,
341                           VirtRegMap &VRM);
342    void SpillRegToStackSlot(MachineBasicBlock &MBB,
343                             MachineBasicBlock::iterator &MII,
344                             int Idx, unsigned PhysReg, int StackSlot,
345                             const TargetRegisterClass *RC,
346                             bool isAvailable, MachineInstr *&LastStore,
347                             AvailableSpills &Spills,
348                             SmallSet<MachineInstr*, 4> &ReMatDefs,
349                             BitVector &RegKills,
350                             std::vector<MachineOperand*> &KillOps,
351                             VirtRegMap &VRM);
352    void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM);
353  };
354}
355
356/// AvailableSpills - As the local spiller is scanning and rewriting an MBB from
357/// top down, keep track of which spills slots or remat are available in each
358/// register.
359///
360/// Note that not all physregs are created equal here.  In particular, some
361/// physregs are reloads that we are allowed to clobber or ignore at any time.
362/// Other physregs are values that the register allocated program is using that
363/// we cannot CHANGE, but we can read if we like.  We keep track of this on a
364/// per-stack-slot / remat id basis as the low bit in the value of the
365/// SpillSlotsAvailable entries.  The predicate 'canClobberPhysReg()' checks
366/// this bit and addAvailable sets it if.
367namespace {
368class VISIBILITY_HIDDEN AvailableSpills {
369  const TargetRegisterInfo *TRI;
370  const TargetInstrInfo *TII;
371
372  // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
373  // or remat'ed virtual register values that are still available, due to being
374  // loaded or stored to, but not invalidated yet.
375  std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
376
377  // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
378  // indicating which stack slot values are currently held by a physreg.  This
379  // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
380  // physreg is modified.
381  std::multimap<unsigned, int> PhysRegsAvailable;
382
383  void disallowClobberPhysRegOnly(unsigned PhysReg);
384
385  void ClobberPhysRegOnly(unsigned PhysReg);
386public:
387  AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii)
388    : TRI(tri), TII(tii) {
389  }
390
391  const TargetRegisterInfo *getRegInfo() const { return TRI; }
392
393  /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
394  /// available in a  physical register, return that PhysReg, otherwise
395  /// return 0.
396  unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
397    std::map<int, unsigned>::const_iterator I =
398      SpillSlotsOrReMatsAvailable.find(Slot);
399    if (I != SpillSlotsOrReMatsAvailable.end()) {
400      return I->second >> 1;  // Remove the CanClobber bit.
401    }
402    return 0;
403  }
404
405  /// addAvailable - Mark that the specified stack slot / remat is available in
406  /// the specified physreg.  If CanClobber is true, the physreg can be modified
407  /// at any time without changing the semantics of the program.
408  void addAvailable(int SlotOrReMat, MachineInstr *MI, unsigned Reg,
409                    bool CanClobber = true) {
410    // If this stack slot is thought to be available in some other physreg,
411    // remove its record.
412    ModifyStackSlotOrReMat(SlotOrReMat);
413
414    PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
415    SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) | (unsigned)CanClobber;
416
417    if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
418      DOUT << "Remembering RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1;
419    else
420      DOUT << "Remembering SS#" << SlotOrReMat;
421    DOUT << " in physreg " << TRI->getName(Reg) << "\n";
422  }
423
424  /// canClobberPhysReg - Return true if the spiller is allowed to change the
425  /// value of the specified stackslot register if it desires.  The specified
426  /// stack slot must be available in a physreg for this query to make sense.
427  bool canClobberPhysReg(int SlotOrReMat) const {
428    assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
429           "Value not available!");
430    return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
431  }
432
433  /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
434  /// stackslot register. The register is still available but is no longer
435  /// allowed to be modifed.
436  void disallowClobberPhysReg(unsigned PhysReg);
437
438  /// ClobberPhysReg - This is called when the specified physreg changes
439  /// value.  We use this to invalidate any info about stuff that lives in
440  /// it and any of its aliases.
441  void ClobberPhysReg(unsigned PhysReg);
442
443  /// ModifyStackSlotOrReMat - This method is called when the value in a stack
444  /// slot changes.  This removes information about which register the previous
445  /// value for this slot lives in (as the previous value is dead now).
446  void ModifyStackSlotOrReMat(int SlotOrReMat);
447};
448}
449
450/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
451/// stackslot register. The register is still available but is no longer
452/// allowed to be modifed.
453void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
454  std::multimap<unsigned, int>::iterator I =
455    PhysRegsAvailable.lower_bound(PhysReg);
456  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
457    int SlotOrReMat = I->second;
458    I++;
459    assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
460           "Bidirectional map mismatch!");
461    SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
462    DOUT << "PhysReg " << TRI->getName(PhysReg)
463         << " copied, it is available for use but can no longer be modified\n";
464  }
465}
466
467/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
468/// stackslot register and its aliases. The register and its aliases may
469/// still available but is no longer allowed to be modifed.
470void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
471  for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
472    disallowClobberPhysRegOnly(*AS);
473  disallowClobberPhysRegOnly(PhysReg);
474}
475
476/// ClobberPhysRegOnly - This is called when the specified physreg changes
477/// value.  We use this to invalidate any info about stuff we thing lives in it.
478void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
479  std::multimap<unsigned, int>::iterator I =
480    PhysRegsAvailable.lower_bound(PhysReg);
481  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
482    int SlotOrReMat = I->second;
483    PhysRegsAvailable.erase(I++);
484    assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
485           "Bidirectional map mismatch!");
486    SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
487    DOUT << "PhysReg " << TRI->getName(PhysReg)
488         << " clobbered, invalidating ";
489    if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
490      DOUT << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 << "\n";
491    else
492      DOUT << "SS#" << SlotOrReMat << "\n";
493  }
494}
495
496/// ClobberPhysReg - This is called when the specified physreg changes
497/// value.  We use this to invalidate any info about stuff we thing lives in
498/// it and any of its aliases.
499void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
500  for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
501    ClobberPhysRegOnly(*AS);
502  ClobberPhysRegOnly(PhysReg);
503}
504
505/// ModifyStackSlotOrReMat - This method is called when the value in a stack
506/// slot changes.  This removes information about which register the previous
507/// value for this slot lives in (as the previous value is dead now).
508void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
509  std::map<int, unsigned>::iterator It =
510    SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
511  if (It == SpillSlotsOrReMatsAvailable.end()) return;
512  unsigned Reg = It->second >> 1;
513  SpillSlotsOrReMatsAvailable.erase(It);
514
515  // This register may hold the value of multiple stack slots, only remove this
516  // stack slot from the set of values the register contains.
517  std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
518  for (; ; ++I) {
519    assert(I != PhysRegsAvailable.end() && I->first == Reg &&
520           "Map inverse broken!");
521    if (I->second == SlotOrReMat) break;
522  }
523  PhysRegsAvailable.erase(I);
524}
525
526
527
528/// InvalidateKills - MI is going to be deleted. If any of its operands are
529/// marked kill, then invalidate the information.
530static void InvalidateKills(MachineInstr &MI, BitVector &RegKills,
531                            std::vector<MachineOperand*> &KillOps,
532                            SmallVector<unsigned, 2> *KillRegs = NULL) {
533  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
534    MachineOperand &MO = MI.getOperand(i);
535    if (!MO.isRegister() || !MO.isUse() || !MO.isKill())
536      continue;
537    unsigned Reg = MO.getReg();
538    if (KillRegs)
539      KillRegs->push_back(Reg);
540    if (KillOps[Reg] == &MO) {
541      RegKills.reset(Reg);
542      KillOps[Reg] = NULL;
543    }
544  }
545}
546
547/// InvalidateKill - A MI that defines the specified register is being deleted,
548/// invalidate the register kill information.
549static void InvalidateKill(unsigned Reg, BitVector &RegKills,
550                           std::vector<MachineOperand*> &KillOps) {
551  if (RegKills[Reg]) {
552    KillOps[Reg]->setIsKill(false);
553    KillOps[Reg] = NULL;
554    RegKills.reset(Reg);
555  }
556}
557
558/// InvalidateRegDef - If the def operand of the specified def MI is now dead
559/// (since it's spill instruction is removed), mark it isDead. Also checks if
560/// the def MI has other definition operands that are not dead. Returns it by
561/// reference.
562static bool InvalidateRegDef(MachineBasicBlock::iterator I,
563                             MachineInstr &NewDef, unsigned Reg,
564                             bool &HasLiveDef) {
565  // Due to remat, it's possible this reg isn't being reused. That is,
566  // the def of this reg (by prev MI) is now dead.
567  MachineInstr *DefMI = I;
568  MachineOperand *DefOp = NULL;
569  for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
570    MachineOperand &MO = DefMI->getOperand(i);
571    if (MO.isRegister() && MO.isDef()) {
572      if (MO.getReg() == Reg)
573        DefOp = &MO;
574      else if (!MO.isDead())
575        HasLiveDef = true;
576    }
577  }
578  if (!DefOp)
579    return false;
580
581  bool FoundUse = false, Done = false;
582  MachineBasicBlock::iterator E = NewDef;
583  ++I; ++E;
584  for (; !Done && I != E; ++I) {
585    MachineInstr *NMI = I;
586    for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
587      MachineOperand &MO = NMI->getOperand(j);
588      if (!MO.isRegister() || MO.getReg() != Reg)
589        continue;
590      if (MO.isUse())
591        FoundUse = true;
592      Done = true; // Stop after scanning all the operands of this MI.
593    }
594  }
595  if (!FoundUse) {
596    // Def is dead!
597    DefOp->setIsDead();
598    return true;
599  }
600  return false;
601}
602
603/// UpdateKills - Track and update kill info. If a MI reads a register that is
604/// marked kill, then it must be due to register reuse. Transfer the kill info
605/// over.
606static void UpdateKills(MachineInstr &MI, BitVector &RegKills,
607                        std::vector<MachineOperand*> &KillOps) {
608  const TargetInstrDesc &TID = MI.getDesc();
609  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
610    MachineOperand &MO = MI.getOperand(i);
611    if (!MO.isRegister() || !MO.isUse())
612      continue;
613    unsigned Reg = MO.getReg();
614    if (Reg == 0)
615      continue;
616
617    if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) {
618      // That can't be right. Register is killed but not re-defined and it's
619      // being reused. Let's fix that.
620      KillOps[Reg]->setIsKill(false);
621      KillOps[Reg] = NULL;
622      RegKills.reset(Reg);
623      if (i < TID.getNumOperands() &&
624          TID.getOperandConstraint(i, TOI::TIED_TO) == -1)
625        // Unless it's a two-address operand, this is the new kill.
626        MO.setIsKill();
627    }
628    if (MO.isKill()) {
629      RegKills.set(Reg);
630      KillOps[Reg] = &MO;
631    }
632  }
633
634  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
635    const MachineOperand &MO = MI.getOperand(i);
636    if (!MO.isRegister() || !MO.isDef())
637      continue;
638    unsigned Reg = MO.getReg();
639    RegKills.reset(Reg);
640    KillOps[Reg] = NULL;
641  }
642}
643
644/// ReMaterialize - Re-materialize definition for Reg targetting DestReg.
645///
646static void ReMaterialize(MachineBasicBlock &MBB,
647                          MachineBasicBlock::iterator &MII,
648                          unsigned DestReg, unsigned Reg,
649                          const TargetInstrInfo *TII,
650                          const TargetRegisterInfo *TRI,
651                          VirtRegMap &VRM) {
652  TII->reMaterialize(MBB, MII, DestReg, VRM.getReMaterializedMI(Reg));
653  MachineInstr *NewMI = prior(MII);
654  for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
655    MachineOperand &MO = NewMI->getOperand(i);
656    if (!MO.isRegister() || MO.getReg() == 0)
657      continue;
658    unsigned VirtReg = MO.getReg();
659    if (TargetRegisterInfo::isPhysicalRegister(VirtReg))
660      continue;
661    assert(MO.isUse());
662    unsigned SubIdx = MO.getSubReg();
663    unsigned Phys = VRM.getPhys(VirtReg);
664    assert(Phys);
665    unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
666    MO.setReg(RReg);
667  }
668  ++NumReMats;
669}
670
671
672// ReusedOp - For each reused operand, we keep track of a bit of information, in
673// case we need to rollback upon processing a new operand.  See comments below.
674namespace {
675  struct ReusedOp {
676    // The MachineInstr operand that reused an available value.
677    unsigned Operand;
678
679    // StackSlotOrReMat - The spill slot or remat id of the value being reused.
680    unsigned StackSlotOrReMat;
681
682    // PhysRegReused - The physical register the value was available in.
683    unsigned PhysRegReused;
684
685    // AssignedPhysReg - The physreg that was assigned for use by the reload.
686    unsigned AssignedPhysReg;
687
688    // VirtReg - The virtual register itself.
689    unsigned VirtReg;
690
691    ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
692             unsigned vreg)
693      : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
694        AssignedPhysReg(apr), VirtReg(vreg) {}
695  };
696
697  /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
698  /// is reused instead of reloaded.
699  class VISIBILITY_HIDDEN ReuseInfo {
700    MachineInstr &MI;
701    std::vector<ReusedOp> Reuses;
702    BitVector PhysRegsClobbered;
703  public:
704    ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) {
705      PhysRegsClobbered.resize(tri->getNumRegs());
706    }
707
708    bool hasReuses() const {
709      return !Reuses.empty();
710    }
711
712    /// addReuse - If we choose to reuse a virtual register that is already
713    /// available instead of reloading it, remember that we did so.
714    void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
715                  unsigned PhysRegReused, unsigned AssignedPhysReg,
716                  unsigned VirtReg) {
717      // If the reload is to the assigned register anyway, no undo will be
718      // required.
719      if (PhysRegReused == AssignedPhysReg) return;
720
721      // Otherwise, remember this.
722      Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused,
723                                AssignedPhysReg, VirtReg));
724    }
725
726    void markClobbered(unsigned PhysReg) {
727      PhysRegsClobbered.set(PhysReg);
728    }
729
730    bool isClobbered(unsigned PhysReg) const {
731      return PhysRegsClobbered.test(PhysReg);
732    }
733
734    /// GetRegForReload - We are about to emit a reload into PhysReg.  If there
735    /// is some other operand that is using the specified register, either pick
736    /// a new register to use, or evict the previous reload and use this reg.
737    unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
738                             AvailableSpills &Spills,
739                             std::vector<MachineInstr*> &MaybeDeadStores,
740                             SmallSet<unsigned, 8> &Rejected,
741                             BitVector &RegKills,
742                             std::vector<MachineOperand*> &KillOps,
743                             VirtRegMap &VRM) {
744      const TargetInstrInfo* TII = MI->getParent()->getParent()->getTarget()
745                                   .getInstrInfo();
746
747      if (Reuses.empty()) return PhysReg;  // This is most often empty.
748
749      for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
750        ReusedOp &Op = Reuses[ro];
751        // If we find some other reuse that was supposed to use this register
752        // exactly for its reload, we can change this reload to use ITS reload
753        // register. That is, unless its reload register has already been
754        // considered and subsequently rejected because it has also been reused
755        // by another operand.
756        if (Op.PhysRegReused == PhysReg &&
757            Rejected.count(Op.AssignedPhysReg) == 0) {
758          // Yup, use the reload register that we didn't use before.
759          unsigned NewReg = Op.AssignedPhysReg;
760          Rejected.insert(PhysReg);
761          return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores, Rejected,
762                                 RegKills, KillOps, VRM);
763        } else {
764          // Otherwise, we might also have a problem if a previously reused
765          // value aliases the new register.  If so, codegen the previous reload
766          // and use this one.
767          unsigned PRRU = Op.PhysRegReused;
768          const TargetRegisterInfo *TRI = Spills.getRegInfo();
769          if (TRI->areAliases(PRRU, PhysReg)) {
770            // Okay, we found out that an alias of a reused register
771            // was used.  This isn't good because it means we have
772            // to undo a previous reuse.
773            MachineBasicBlock *MBB = MI->getParent();
774            const TargetRegisterClass *AliasRC =
775              MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);
776
777            // Copy Op out of the vector and remove it, we're going to insert an
778            // explicit load for it.
779            ReusedOp NewOp = Op;
780            Reuses.erase(Reuses.begin()+ro);
781
782            // Ok, we're going to try to reload the assigned physreg into the
783            // slot that we were supposed to in the first place.  However, that
784            // register could hold a reuse.  Check to see if it conflicts or
785            // would prefer us to use a different register.
786            unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg,
787                                                  MI, Spills, MaybeDeadStores,
788                                              Rejected, RegKills, KillOps, VRM);
789
790            MachineBasicBlock::iterator MII = MI;
791            if (NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT) {
792              ReMaterialize(*MBB, MII, NewPhysReg, NewOp.VirtReg, TII, TRI,VRM);
793            } else {
794              TII->loadRegFromStackSlot(*MBB, MII, NewPhysReg,
795                                        NewOp.StackSlotOrReMat, AliasRC);
796              MachineInstr *LoadMI = prior(MII);
797              VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI);
798              // Any stores to this stack slot are not dead anymore.
799              MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;
800              ++NumLoads;
801            }
802            Spills.ClobberPhysReg(NewPhysReg);
803            Spills.ClobberPhysReg(NewOp.PhysRegReused);
804
805            MI->getOperand(NewOp.Operand).setReg(NewPhysReg);
806
807            Spills.addAvailable(NewOp.StackSlotOrReMat, MI, NewPhysReg);
808            --MII;
809            UpdateKills(*MII, RegKills, KillOps);
810            DOUT << '\t' << *MII;
811
812            DOUT << "Reuse undone!\n";
813            --NumReused;
814
815            // Finally, PhysReg is now available, go ahead and use it.
816            return PhysReg;
817          }
818        }
819      }
820      return PhysReg;
821    }
822
823    /// GetRegForReload - Helper for the above GetRegForReload(). Add a
824    /// 'Rejected' set to remember which registers have been considered and
825    /// rejected for the reload. This avoids infinite looping in case like
826    /// this:
827    /// t1 := op t2, t3
828    /// t2 <- assigned r0 for use by the reload but ended up reuse r1
829    /// t3 <- assigned r1 for use by the reload but ended up reuse r0
830    /// t1 <- desires r1
831    ///       sees r1 is taken by t2, tries t2's reload register r0
832    ///       sees r0 is taken by t3, tries t3's reload register r1
833    ///       sees r1 is taken by t2, tries t2's reload register r0 ...
834    unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
835                             AvailableSpills &Spills,
836                             std::vector<MachineInstr*> &MaybeDeadStores,
837                             BitVector &RegKills,
838                             std::vector<MachineOperand*> &KillOps,
839                             VirtRegMap &VRM) {
840      SmallSet<unsigned, 8> Rejected;
841      return GetRegForReload(PhysReg, MI, Spills, MaybeDeadStores, Rejected,
842                             RegKills, KillOps, VRM);
843    }
844  };
845}
846
847/// PrepForUnfoldOpti - Turn a store folding instruction into a load folding
848/// instruction. e.g.
849///     xorl  %edi, %eax
850///     movl  %eax, -32(%ebp)
851///     movl  -36(%ebp), %eax
852///     orl   %eax, -32(%ebp)
853/// ==>
854///     xorl  %edi, %eax
855///     orl   -36(%ebp), %eax
856///     mov   %eax, -32(%ebp)
857/// This enables unfolding optimization for a subsequent instruction which will
858/// also eliminate the newly introduced store instruction.
859bool LocalSpiller::PrepForUnfoldOpti(MachineBasicBlock &MBB,
860                                     MachineBasicBlock::iterator &MII,
861                                    std::vector<MachineInstr*> &MaybeDeadStores,
862                                     AvailableSpills &Spills,
863                                     BitVector &RegKills,
864                                     std::vector<MachineOperand*> &KillOps,
865                                     VirtRegMap &VRM) {
866  MachineFunction &MF = *MBB.getParent();
867  MachineInstr &MI = *MII;
868  unsigned UnfoldedOpc = 0;
869  unsigned UnfoldPR = 0;
870  unsigned UnfoldVR = 0;
871  int FoldedSS = VirtRegMap::NO_STACK_SLOT;
872  VirtRegMap::MI2VirtMapTy::const_iterator I, End;
873  for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
874    // Only transform a MI that folds a single register.
875    if (UnfoldedOpc)
876      return false;
877    UnfoldVR = I->second.first;
878    VirtRegMap::ModRef MR = I->second.second;
879    // MI2VirtMap be can updated which invalidate the iterator.
880    // Increment the iterator first.
881    ++I;
882    if (VRM.isAssignedReg(UnfoldVR))
883      continue;
884    // If this reference is not a use, any previous store is now dead.
885    // Otherwise, the store to this stack slot is not dead anymore.
886    FoldedSS = VRM.getStackSlot(UnfoldVR);
887    MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
888    if (DeadStore && (MR & VirtRegMap::isModRef)) {
889      unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
890      if (!PhysReg || !DeadStore->readsRegister(PhysReg))
891        continue;
892      UnfoldPR = PhysReg;
893      UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
894                                                    false, true);
895    }
896  }
897
898  if (!UnfoldedOpc)
899    return false;
900
901  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
902    MachineOperand &MO = MI.getOperand(i);
903    if (!MO.isRegister() || MO.getReg() == 0 || !MO.isUse())
904      continue;
905    unsigned VirtReg = MO.getReg();
906    if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
907      continue;
908    if (VRM.isAssignedReg(VirtReg)) {
909      unsigned PhysReg = VRM.getPhys(VirtReg);
910      if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR))
911        return false;
912    } else if (VRM.isReMaterialized(VirtReg))
913      continue;
914    int SS = VRM.getStackSlot(VirtReg);
915    unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
916    if (PhysReg) {
917      if (TRI->regsOverlap(PhysReg, UnfoldPR))
918        return false;
919      continue;
920    }
921    PhysReg = VRM.getPhys(VirtReg);
922    if (!TRI->regsOverlap(PhysReg, UnfoldPR))
923      continue;
924
925    // Ok, we'll need to reload the value into a register which makes
926    // it impossible to perform the store unfolding optimization later.
927    // Let's see if it is possible to fold the load if the store is
928    // unfolded. This allows us to perform the store unfolding
929    // optimization.
930    SmallVector<MachineInstr*, 4> NewMIs;
931    if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
932      assert(NewMIs.size() == 1);
933      MachineInstr *NewMI = NewMIs.back();
934      NewMIs.clear();
935      int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false);
936      assert(Idx != -1);
937      SmallVector<unsigned, 2> Ops;
938      Ops.push_back(Idx);
939      MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, NewMI, Ops, SS);
940      if (FoldedMI) {
941        VRM.addSpillSlotUse(SS, FoldedMI);
942        if (!VRM.hasPhys(UnfoldVR))
943          VRM.assignVirt2Phys(UnfoldVR, UnfoldPR);
944        VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
945        MII = MBB.insert(MII, FoldedMI);
946        VRM.RemoveMachineInstrFromMaps(&MI);
947        MBB.erase(&MI);
948        return true;
949      }
950      delete NewMI;
951    }
952  }
953  return false;
954}
955
956/// findSuperReg - Find the SubReg's super-register of given register class
957/// where its SubIdx sub-register is SubReg.
958static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
959                             unsigned SubIdx, const TargetRegisterInfo *TRI) {
960  for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
961       I != E; ++I) {
962    unsigned Reg = *I;
963    if (TRI->getSubReg(Reg, SubIdx) == SubReg)
964      return Reg;
965  }
966  return 0;
967}
968
969/// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
970/// the last store to the same slot is now dead. If so, remove the last store.
971void LocalSpiller::SpillRegToStackSlot(MachineBasicBlock &MBB,
972                                  MachineBasicBlock::iterator &MII,
973                                  int Idx, unsigned PhysReg, int StackSlot,
974                                  const TargetRegisterClass *RC,
975                                  bool isAvailable, MachineInstr *&LastStore,
976                                  AvailableSpills &Spills,
977                                  SmallSet<MachineInstr*, 4> &ReMatDefs,
978                                  BitVector &RegKills,
979                                  std::vector<MachineOperand*> &KillOps,
980                                  VirtRegMap &VRM) {
981  TII->storeRegToStackSlot(MBB, next(MII), PhysReg, true, StackSlot, RC);
982  MachineInstr *StoreMI = next(MII);
983  VRM.addSpillSlotUse(StackSlot, StoreMI);
984  DOUT << "Store:\t" << *StoreMI;
985
986  // If there is a dead store to this stack slot, nuke it now.
987  if (LastStore) {
988    DOUT << "Removed dead store:\t" << *LastStore;
989    ++NumDSE;
990    SmallVector<unsigned, 2> KillRegs;
991    InvalidateKills(*LastStore, RegKills, KillOps, &KillRegs);
992    MachineBasicBlock::iterator PrevMII = LastStore;
993    bool CheckDef = PrevMII != MBB.begin();
994    if (CheckDef)
995      --PrevMII;
996    VRM.RemoveMachineInstrFromMaps(LastStore);
997    MBB.erase(LastStore);
998    if (CheckDef) {
999      // Look at defs of killed registers on the store. Mark the defs
1000      // as dead since the store has been deleted and they aren't
1001      // being reused.
1002      for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
1003        bool HasOtherDef = false;
1004        if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef)) {
1005          MachineInstr *DeadDef = PrevMII;
1006          if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
1007            // FIXME: This assumes a remat def does not have side
1008            // effects.
1009            VRM.RemoveMachineInstrFromMaps(DeadDef);
1010            MBB.erase(DeadDef);
1011            ++NumDRM;
1012          }
1013        }
1014      }
1015    }
1016  }
1017
1018  LastStore = next(MII);
1019
1020  // If the stack slot value was previously available in some other
1021  // register, change it now.  Otherwise, make the register available,
1022  // in PhysReg.
1023  Spills.ModifyStackSlotOrReMat(StackSlot);
1024  Spills.ClobberPhysReg(PhysReg);
1025  Spills.addAvailable(StackSlot, LastStore, PhysReg, isAvailable);
1026  ++NumStores;
1027}
1028
1029/// rewriteMBB - Keep track of which spills are available even after the
1030/// register allocator is done with them.  If possible, avid reloading vregs.
1031void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) {
1032  DOUT << MBB.getBasicBlock()->getName() << ":\n";
1033
1034  MachineFunction &MF = *MBB.getParent();
1035
1036  // Spills - Keep track of which spilled values are available in physregs so
1037  // that we can choose to reuse the physregs instead of emitting reloads.
1038  AvailableSpills Spills(TRI, TII);
1039
1040  // MaybeDeadStores - When we need to write a value back into a stack slot,
1041  // keep track of the inserted store.  If the stack slot value is never read
1042  // (because the value was used from some available register, for example), and
1043  // subsequently stored to, the original store is dead.  This map keeps track
1044  // of inserted stores that are not used.  If we see a subsequent store to the
1045  // same stack slot, the original store is deleted.
1046  std::vector<MachineInstr*> MaybeDeadStores;
1047  MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
1048
1049  // ReMatDefs - These are rematerializable def MIs which are not deleted.
1050  SmallSet<MachineInstr*, 4> ReMatDefs;
1051
1052  // Keep track of kill information.
1053  BitVector RegKills(TRI->getNumRegs());
1054  std::vector<MachineOperand*>  KillOps;
1055  KillOps.resize(TRI->getNumRegs(), NULL);
1056
1057  for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
1058       MII != E; ) {
1059    MachineBasicBlock::iterator NextMII = MII; ++NextMII;
1060
1061    VirtRegMap::MI2VirtMapTy::const_iterator I, End;
1062    bool Erased = false;
1063    bool BackTracked = false;
1064    if (PrepForUnfoldOpti(MBB, MII,
1065                          MaybeDeadStores, Spills, RegKills, KillOps, VRM))
1066      NextMII = next(MII);
1067
1068    MachineInstr &MI = *MII;
1069    const TargetInstrDesc &TID = MI.getDesc();
1070
1071    if (VRM.hasEmergencySpills(&MI)) {
1072      // Spill physical register(s) in the rare case the allocator has run out
1073      // of registers to allocate.
1074      SmallSet<int, 4> UsedSS;
1075      std::vector<unsigned> &EmSpills = VRM.getEmergencySpills(&MI);
1076      for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) {
1077        unsigned PhysReg = EmSpills[i];
1078        const TargetRegisterClass *RC =
1079          TRI->getPhysicalRegisterRegClass(PhysReg);
1080        assert(RC && "Unable to determine register class!");
1081        int SS = VRM.getEmergencySpillSlot(RC);
1082        if (UsedSS.count(SS))
1083          assert(0 && "Need to spill more than one physical registers!");
1084        UsedSS.insert(SS);
1085        TII->storeRegToStackSlot(MBB, MII, PhysReg, true, SS, RC);
1086        MachineInstr *StoreMI = prior(MII);
1087        VRM.addSpillSlotUse(SS, StoreMI);
1088        TII->loadRegFromStackSlot(MBB, next(MII), PhysReg, SS, RC);
1089        MachineInstr *LoadMI = next(MII);
1090        VRM.addSpillSlotUse(SS, LoadMI);
1091        ++NumPSpills;
1092      }
1093      NextMII = next(MII);
1094    }
1095
1096    // Insert restores here if asked to.
1097    if (VRM.isRestorePt(&MI)) {
1098      std::vector<unsigned> &RestoreRegs = VRM.getRestorePtRestores(&MI);
1099      for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
1100        unsigned VirtReg = RestoreRegs[e-i-1];  // Reverse order.
1101        if (!VRM.getPreSplitReg(VirtReg))
1102          continue; // Split interval spilled again.
1103        unsigned Phys = VRM.getPhys(VirtReg);
1104        RegInfo->setPhysRegUsed(Phys);
1105        if (VRM.isReMaterialized(VirtReg)) {
1106          ReMaterialize(MBB, MII, Phys, VirtReg, TII, TRI, VRM);
1107        } else {
1108          const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1109          int SS = VRM.getStackSlot(VirtReg);
1110          TII->loadRegFromStackSlot(MBB, &MI, Phys, SS, RC);
1111          MachineInstr *LoadMI = prior(MII);
1112          VRM.addSpillSlotUse(SS, LoadMI);
1113          ++NumLoads;
1114        }
1115        // This invalidates Phys.
1116        Spills.ClobberPhysReg(Phys);
1117        UpdateKills(*prior(MII), RegKills, KillOps);
1118        DOUT << '\t' << *prior(MII);
1119      }
1120    }
1121
1122    // Insert spills here if asked to.
1123    if (VRM.isSpillPt(&MI)) {
1124      std::vector<std::pair<unsigned,bool> > &SpillRegs =
1125        VRM.getSpillPtSpills(&MI);
1126      for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
1127        unsigned VirtReg = SpillRegs[i].first;
1128        bool isKill = SpillRegs[i].second;
1129        if (!VRM.getPreSplitReg(VirtReg))
1130          continue; // Split interval spilled again.
1131        const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1132        unsigned Phys = VRM.getPhys(VirtReg);
1133        int StackSlot = VRM.getStackSlot(VirtReg);
1134        TII->storeRegToStackSlot(MBB, next(MII), Phys, isKill, StackSlot, RC);
1135        MachineInstr *StoreMI = next(MII);
1136        VRM.addSpillSlotUse(StackSlot, StoreMI);
1137        DOUT << "Store:\t" << *StoreMI;
1138        VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1139      }
1140      NextMII = next(MII);
1141    }
1142
1143    /// ReusedOperands - Keep track of operand reuse in case we need to undo
1144    /// reuse.
1145    ReuseInfo ReusedOperands(MI, TRI);
1146    SmallVector<unsigned, 4> VirtUseOps;
1147    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1148      MachineOperand &MO = MI.getOperand(i);
1149      if (!MO.isRegister() || MO.getReg() == 0)
1150        continue;   // Ignore non-register operands.
1151
1152      unsigned VirtReg = MO.getReg();
1153      if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
1154        // Ignore physregs for spilling, but remember that it is used by this
1155        // function.
1156        RegInfo->setPhysRegUsed(VirtReg);
1157        continue;
1158      }
1159
1160      // We want to process implicit virtual register uses first.
1161      if (MO.isImplicit())
1162        // If the virtual register is implicitly defined, emit a implicit_def
1163        // before so scavenger knows it's "defined".
1164        VirtUseOps.insert(VirtUseOps.begin(), i);
1165      else
1166        VirtUseOps.push_back(i);
1167    }
1168
1169    // Process all of the spilled uses and all non spilled reg references.
1170    for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
1171      unsigned i = VirtUseOps[j];
1172      MachineOperand &MO = MI.getOperand(i);
1173      unsigned VirtReg = MO.getReg();
1174      assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
1175             "Not a virtual register?");
1176
1177      unsigned SubIdx = MO.getSubReg();
1178      if (VRM.isAssignedReg(VirtReg)) {
1179        // This virtual register was assigned a physreg!
1180        unsigned Phys = VRM.getPhys(VirtReg);
1181        RegInfo->setPhysRegUsed(Phys);
1182        if (MO.isDef())
1183          ReusedOperands.markClobbered(Phys);
1184        unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
1185        MI.getOperand(i).setReg(RReg);
1186        if (VRM.isImplicitlyDefined(VirtReg))
1187          BuildMI(MBB, MI, TII->get(TargetInstrInfo::IMPLICIT_DEF), RReg);
1188        continue;
1189      }
1190
1191      // This virtual register is now known to be a spilled value.
1192      if (!MO.isUse())
1193        continue;  // Handle defs in the loop below (handle use&def here though)
1194
1195      bool DoReMat = VRM.isReMaterialized(VirtReg);
1196      int SSorRMId = DoReMat
1197        ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
1198      int ReuseSlot = SSorRMId;
1199
1200      // Check to see if this stack slot is available.
1201      unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1202
1203      // If this is a sub-register use, make sure the reuse register is in the
1204      // right register class. For example, for x86 not all of the 32-bit
1205      // registers have accessible sub-registers.
1206      // Similarly so for EXTRACT_SUBREG. Consider this:
1207      // EDI = op
1208      // MOV32_mr fi#1, EDI
1209      // ...
1210      //       = EXTRACT_SUBREG fi#1
1211      // fi#1 is available in EDI, but it cannot be reused because it's not in
1212      // the right register file.
1213      if (PhysReg &&
1214          (SubIdx || MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)) {
1215        const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1216        if (!RC->contains(PhysReg))
1217          PhysReg = 0;
1218      }
1219
1220      if (PhysReg) {
1221        // This spilled operand might be part of a two-address operand.  If this
1222        // is the case, then changing it will necessarily require changing the
1223        // def part of the instruction as well.  However, in some cases, we
1224        // aren't allowed to modify the reused register.  If none of these cases
1225        // apply, reuse it.
1226        bool CanReuse = true;
1227        int ti = TID.getOperandConstraint(i, TOI::TIED_TO);
1228        if (ti != -1 &&
1229            MI.getOperand(ti).isRegister() &&
1230            MI.getOperand(ti).getReg() == VirtReg) {
1231          // Okay, we have a two address operand.  We can reuse this physreg as
1232          // long as we are allowed to clobber the value and there isn't an
1233          // earlier def that has already clobbered the physreg.
1234          CanReuse = Spills.canClobberPhysReg(ReuseSlot) &&
1235            !ReusedOperands.isClobbered(PhysReg);
1236        }
1237
1238        if (CanReuse) {
1239          // If this stack slot value is already available, reuse it!
1240          if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1241            DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1242          else
1243            DOUT << "Reusing SS#" << ReuseSlot;
1244          DOUT << " from physreg "
1245               << TRI->getName(PhysReg) << " for vreg"
1246               << VirtReg <<" instead of reloading into physreg "
1247               << TRI->getName(VRM.getPhys(VirtReg)) << "\n";
1248          unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1249          MI.getOperand(i).setReg(RReg);
1250
1251          // The only technical detail we have is that we don't know that
1252          // PhysReg won't be clobbered by a reloaded stack slot that occurs
1253          // later in the instruction.  In particular, consider 'op V1, V2'.
1254          // If V1 is available in physreg R0, we would choose to reuse it
1255          // here, instead of reloading it into the register the allocator
1256          // indicated (say R1).  However, V2 might have to be reloaded
1257          // later, and it might indicate that it needs to live in R0.  When
1258          // this occurs, we need to have information available that
1259          // indicates it is safe to use R1 for the reload instead of R0.
1260          //
1261          // To further complicate matters, we might conflict with an alias,
1262          // or R0 and R1 might not be compatible with each other.  In this
1263          // case, we actually insert a reload for V1 in R1, ensuring that
1264          // we can get at R0 or its alias.
1265          ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
1266                                  VRM.getPhys(VirtReg), VirtReg);
1267          if (ti != -1)
1268            // Only mark it clobbered if this is a use&def operand.
1269            ReusedOperands.markClobbered(PhysReg);
1270          ++NumReused;
1271
1272          if (MI.getOperand(i).isKill() &&
1273              ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
1274            // This was the last use and the spilled value is still available
1275            // for reuse. That means the spill was unnecessary!
1276            MachineInstr* DeadStore = MaybeDeadStores[ReuseSlot];
1277            if (DeadStore) {
1278              DOUT << "Removed dead store:\t" << *DeadStore;
1279              InvalidateKills(*DeadStore, RegKills, KillOps);
1280              VRM.RemoveMachineInstrFromMaps(DeadStore);
1281              MBB.erase(DeadStore);
1282              MaybeDeadStores[ReuseSlot] = NULL;
1283              ++NumDSE;
1284            }
1285          }
1286          continue;
1287        }  // CanReuse
1288
1289        // Otherwise we have a situation where we have a two-address instruction
1290        // whose mod/ref operand needs to be reloaded.  This reload is already
1291        // available in some register "PhysReg", but if we used PhysReg as the
1292        // operand to our 2-addr instruction, the instruction would modify
1293        // PhysReg.  This isn't cool if something later uses PhysReg and expects
1294        // to get its initial value.
1295        //
1296        // To avoid this problem, and to avoid doing a load right after a store,
1297        // we emit a copy from PhysReg into the designated register for this
1298        // operand.
1299        unsigned DesignatedReg = VRM.getPhys(VirtReg);
1300        assert(DesignatedReg && "Must map virtreg to physreg!");
1301
1302        // Note that, if we reused a register for a previous operand, the
1303        // register we want to reload into might not actually be
1304        // available.  If this occurs, use the register indicated by the
1305        // reuser.
1306        if (ReusedOperands.hasReuses())
1307          DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI,
1308                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1309
1310        // If the mapped designated register is actually the physreg we have
1311        // incoming, we don't need to inserted a dead copy.
1312        if (DesignatedReg == PhysReg) {
1313          // If this stack slot value is already available, reuse it!
1314          if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1315            DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1316          else
1317            DOUT << "Reusing SS#" << ReuseSlot;
1318          DOUT << " from physreg " << TRI->getName(PhysReg)
1319               << " for vreg" << VirtReg
1320               << " instead of reloading into same physreg.\n";
1321          unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1322          MI.getOperand(i).setReg(RReg);
1323          ReusedOperands.markClobbered(RReg);
1324          ++NumReused;
1325          continue;
1326        }
1327
1328        const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1329        RegInfo->setPhysRegUsed(DesignatedReg);
1330        ReusedOperands.markClobbered(DesignatedReg);
1331        TII->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC, RC);
1332
1333        MachineInstr *CopyMI = prior(MII);
1334        UpdateKills(*CopyMI, RegKills, KillOps);
1335
1336        // This invalidates DesignatedReg.
1337        Spills.ClobberPhysReg(DesignatedReg);
1338
1339        Spills.addAvailable(ReuseSlot, &MI, DesignatedReg);
1340        unsigned RReg =
1341          SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
1342        MI.getOperand(i).setReg(RReg);
1343        DOUT << '\t' << *prior(MII);
1344        ++NumReused;
1345        continue;
1346      } // if (PhysReg)
1347
1348      // Otherwise, reload it and remember that we have it.
1349      PhysReg = VRM.getPhys(VirtReg);
1350      assert(PhysReg && "Must map virtreg to physreg!");
1351
1352      // Note that, if we reused a register for a previous operand, the
1353      // register we want to reload into might not actually be
1354      // available.  If this occurs, use the register indicated by the
1355      // reuser.
1356      if (ReusedOperands.hasReuses())
1357        PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
1358                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1359
1360      RegInfo->setPhysRegUsed(PhysReg);
1361      ReusedOperands.markClobbered(PhysReg);
1362      if (DoReMat) {
1363        ReMaterialize(MBB, MII, PhysReg, VirtReg, TII, TRI, VRM);
1364      } else {
1365        const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1366        TII->loadRegFromStackSlot(MBB, &MI, PhysReg, SSorRMId, RC);
1367        MachineInstr *LoadMI = prior(MII);
1368        VRM.addSpillSlotUse(SSorRMId, LoadMI);
1369        ++NumLoads;
1370      }
1371      // This invalidates PhysReg.
1372      Spills.ClobberPhysReg(PhysReg);
1373
1374      // Any stores to this stack slot are not dead anymore.
1375      if (!DoReMat)
1376        MaybeDeadStores[SSorRMId] = NULL;
1377      Spills.addAvailable(SSorRMId, &MI, PhysReg);
1378      // Assumes this is the last use. IsKill will be unset if reg is reused
1379      // unless it's a two-address operand.
1380      if (TID.getOperandConstraint(i, TOI::TIED_TO) == -1)
1381        MI.getOperand(i).setIsKill();
1382      unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1383      MI.getOperand(i).setReg(RReg);
1384      UpdateKills(*prior(MII), RegKills, KillOps);
1385      DOUT << '\t' << *prior(MII);
1386    }
1387
1388    DOUT << '\t' << MI;
1389
1390
1391    // If we have folded references to memory operands, make sure we clear all
1392    // physical registers that may contain the value of the spilled virtual
1393    // register
1394    SmallSet<int, 2> FoldedSS;
1395    for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
1396      unsigned VirtReg = I->second.first;
1397      VirtRegMap::ModRef MR = I->second.second;
1398      DOUT << "Folded vreg: " << VirtReg << "  MR: " << MR;
1399
1400      // MI2VirtMap be can updated which invalidate the iterator.
1401      // Increment the iterator first.
1402      ++I;
1403      int SS = VRM.getStackSlot(VirtReg);
1404      if (SS == VirtRegMap::NO_STACK_SLOT)
1405        continue;
1406      FoldedSS.insert(SS);
1407      DOUT << " - StackSlot: " << SS << "\n";
1408
1409      // If this folded instruction is just a use, check to see if it's a
1410      // straight load from the virt reg slot.
1411      if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
1412        int FrameIdx;
1413        unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
1414        if (DestReg && FrameIdx == SS) {
1415          // If this spill slot is available, turn it into a copy (or nothing)
1416          // instead of leaving it as a load!
1417          if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
1418            DOUT << "Promoted Load To Copy: " << MI;
1419            if (DestReg != InReg) {
1420              const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1421              TII->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC);
1422              // Revisit the copy so we make sure to notice the effects of the
1423              // operation on the destreg (either needing to RA it if it's
1424              // virtual or needing to clobber any values if it's physical).
1425              NextMII = &MI;
1426              --NextMII;  // backtrack to the copy.
1427              BackTracked = true;
1428            } else {
1429              DOUT << "Removing now-noop copy: " << MI;
1430              // Unset last kill since it's being reused.
1431              InvalidateKill(InReg, RegKills, KillOps);
1432            }
1433
1434            VRM.RemoveMachineInstrFromMaps(&MI);
1435            MBB.erase(&MI);
1436            Erased = true;
1437            goto ProcessNextInst;
1438          }
1439        } else {
1440          unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1441          SmallVector<MachineInstr*, 4> NewMIs;
1442          if (PhysReg &&
1443              TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) {
1444            MBB.insert(MII, NewMIs[0]);
1445            VRM.RemoveMachineInstrFromMaps(&MI);
1446            MBB.erase(&MI);
1447            Erased = true;
1448            --NextMII;  // backtrack to the unfolded instruction.
1449            BackTracked = true;
1450            goto ProcessNextInst;
1451          }
1452        }
1453      }
1454
1455      // If this reference is not a use, any previous store is now dead.
1456      // Otherwise, the store to this stack slot is not dead anymore.
1457      MachineInstr* DeadStore = MaybeDeadStores[SS];
1458      if (DeadStore) {
1459        bool isDead = !(MR & VirtRegMap::isRef);
1460        MachineInstr *NewStore = NULL;
1461        if (MR & VirtRegMap::isModRef) {
1462          unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1463          SmallVector<MachineInstr*, 4> NewMIs;
1464          // We can reuse this physreg as long as we are allowed to clobber
1465          // the value and there isn't an earlier def that has already clobbered
1466          // the physreg.
1467          if (PhysReg &&
1468              !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable!
1469            MachineOperand *KillOpnd =
1470              DeadStore->findRegisterUseOperand(PhysReg, true);
1471            // Note, if the store is storing a sub-register, it's possible the
1472            // super-register is needed below.
1473            if (KillOpnd && !KillOpnd->getSubReg() &&
1474                TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){
1475              MBB.insert(MII, NewMIs[0]);
1476              NewStore = NewMIs[1];
1477              MBB.insert(MII, NewStore);
1478              VRM.addSpillSlotUse(SS, NewStore);
1479              VRM.RemoveMachineInstrFromMaps(&MI);
1480              MBB.erase(&MI);
1481              Erased = true;
1482              --NextMII;
1483              --NextMII;  // backtrack to the unfolded instruction.
1484              BackTracked = true;
1485              isDead = true;
1486            }
1487          }
1488        }
1489
1490        if (isDead) {  // Previous store is dead.
1491          // If we get here, the store is dead, nuke it now.
1492          DOUT << "Removed dead store:\t" << *DeadStore;
1493          InvalidateKills(*DeadStore, RegKills, KillOps);
1494          VRM.RemoveMachineInstrFromMaps(DeadStore);
1495          MBB.erase(DeadStore);
1496          if (!NewStore)
1497            ++NumDSE;
1498        }
1499
1500        MaybeDeadStores[SS] = NULL;
1501        if (NewStore) {
1502          // Treat this store as a spill merged into a copy. That makes the
1503          // stack slot value available.
1504          VRM.virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
1505          goto ProcessNextInst;
1506        }
1507      }
1508
1509      // If the spill slot value is available, and this is a new definition of
1510      // the value, the value is not available anymore.
1511      if (MR & VirtRegMap::isMod) {
1512        // Notice that the value in this stack slot has been modified.
1513        Spills.ModifyStackSlotOrReMat(SS);
1514
1515        // If this is *just* a mod of the value, check to see if this is just a
1516        // store to the spill slot (i.e. the spill got merged into the copy). If
1517        // so, realize that the vreg is available now, and add the store to the
1518        // MaybeDeadStore info.
1519        int StackSlot;
1520        if (!(MR & VirtRegMap::isRef)) {
1521          if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
1522            assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
1523                   "Src hasn't been allocated yet?");
1524            // Okay, this is certainly a store of SrcReg to [StackSlot].  Mark
1525            // this as a potentially dead store in case there is a subsequent
1526            // store into the stack slot without a read from it.
1527            MaybeDeadStores[StackSlot] = &MI;
1528
1529            // If the stack slot value was previously available in some other
1530            // register, change it now.  Otherwise, make the register available,
1531            // in PhysReg.
1532            Spills.addAvailable(StackSlot, &MI, SrcReg, false/*don't clobber*/);
1533          }
1534        }
1535      }
1536    }
1537
1538    // Process all of the spilled defs.
1539    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1540      MachineOperand &MO = MI.getOperand(i);
1541      if (!(MO.isRegister() && MO.getReg() && MO.isDef()))
1542        continue;
1543
1544      unsigned VirtReg = MO.getReg();
1545      if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) {
1546        // Check to see if this is a noop copy.  If so, eliminate the
1547        // instruction before considering the dest reg to be changed.
1548        unsigned Src, Dst;
1549        if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
1550          ++NumDCE;
1551          DOUT << "Removing now-noop copy: " << MI;
1552          VRM.RemoveMachineInstrFromMaps(&MI);
1553          MBB.erase(&MI);
1554          Erased = true;
1555          Spills.disallowClobberPhysReg(VirtReg);
1556          goto ProcessNextInst;
1557        }
1558
1559        // If it's not a no-op copy, it clobbers the value in the destreg.
1560        Spills.ClobberPhysReg(VirtReg);
1561        ReusedOperands.markClobbered(VirtReg);
1562
1563        // Check to see if this instruction is a load from a stack slot into
1564        // a register.  If so, this provides the stack slot value in the reg.
1565        int FrameIdx;
1566        if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
1567          assert(DestReg == VirtReg && "Unknown load situation!");
1568
1569          // If it is a folded reference, then it's not safe to clobber.
1570          bool Folded = FoldedSS.count(FrameIdx);
1571          // Otherwise, if it wasn't available, remember that it is now!
1572          Spills.addAvailable(FrameIdx, &MI, DestReg, !Folded);
1573          goto ProcessNextInst;
1574        }
1575
1576        continue;
1577      }
1578
1579      unsigned SubIdx = MO.getSubReg();
1580      bool DoReMat = VRM.isReMaterialized(VirtReg);
1581      if (DoReMat)
1582        ReMatDefs.insert(&MI);
1583
1584      // The only vregs left are stack slot definitions.
1585      int StackSlot = VRM.getStackSlot(VirtReg);
1586      const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1587
1588      // If this def is part of a two-address operand, make sure to execute
1589      // the store from the correct physical register.
1590      unsigned PhysReg;
1591      int TiedOp = MI.getDesc().findTiedToSrcOperand(i);
1592      if (TiedOp != -1) {
1593        PhysReg = MI.getOperand(TiedOp).getReg();
1594        if (SubIdx) {
1595          unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI);
1596          assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
1597                 "Can't find corresponding super-register!");
1598          PhysReg = SuperReg;
1599        }
1600      } else {
1601        PhysReg = VRM.getPhys(VirtReg);
1602        if (ReusedOperands.isClobbered(PhysReg)) {
1603          // Another def has taken the assigned physreg. It must have been a
1604          // use&def which got it due to reuse. Undo the reuse!
1605          PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
1606                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1607        }
1608      }
1609
1610      assert(PhysReg && "VR not assigned a physical register?");
1611      RegInfo->setPhysRegUsed(PhysReg);
1612      unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1613      ReusedOperands.markClobbered(RReg);
1614      MI.getOperand(i).setReg(RReg);
1615
1616      if (!MO.isDead()) {
1617        MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
1618        SpillRegToStackSlot(MBB, MII, -1, PhysReg, StackSlot, RC, true,
1619                          LastStore, Spills, ReMatDefs, RegKills, KillOps, VRM);
1620        NextMII = next(MII);
1621
1622        // Check to see if this is a noop copy.  If so, eliminate the
1623        // instruction before considering the dest reg to be changed.
1624        {
1625          unsigned Src, Dst;
1626          if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
1627            ++NumDCE;
1628            DOUT << "Removing now-noop copy: " << MI;
1629            VRM.RemoveMachineInstrFromMaps(&MI);
1630            MBB.erase(&MI);
1631            Erased = true;
1632            UpdateKills(*LastStore, RegKills, KillOps);
1633            goto ProcessNextInst;
1634          }
1635        }
1636      }
1637    }
1638  ProcessNextInst:
1639    if (!Erased && !BackTracked) {
1640      for (MachineBasicBlock::iterator II = MI; II != NextMII; ++II)
1641        UpdateKills(*II, RegKills, KillOps);
1642    }
1643    MII = NextMII;
1644  }
1645}
1646
1647llvm::Spiller* llvm::createSpiller() {
1648  switch (SpillerOpt) {
1649  default: assert(0 && "Unreachable!");
1650  case local:
1651    return new LocalSpiller();
1652  case simple:
1653    return new SimpleSpiller();
1654  }
1655}
1656