VirtRegMap.cpp revision 81a038218171860ee4c382849c647d3dc841fe8b
1//===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the VirtRegMap class.
11//
12// It also contains implementations of the the Spiller interface, which, given a
13// virtual register map and a machine function, eliminates all virtual
14// references by replacing them with physical register references - adding spill
15// code as necessary.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "spiller"
20#include "VirtRegMap.h"
21#include "llvm/Function.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/SSARegMap.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Support/CommandLine.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/Support/Compiler.h"
30#include "llvm/ADT/BitVector.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/ADT/SmallSet.h"
34#include <algorithm>
35using namespace llvm;
36
37STATISTIC(NumSpills, "Number of register spills");
38STATISTIC(NumReMats, "Number of re-materialization");
39STATISTIC(NumDRM   , "Number of re-materializable defs elided");
40STATISTIC(NumStores, "Number of stores added");
41STATISTIC(NumLoads , "Number of loads added");
42STATISTIC(NumReused, "Number of values reused");
43STATISTIC(NumDSE   , "Number of dead stores elided");
44STATISTIC(NumDCE   , "Number of copies elided");
45
46namespace {
47  enum SpillerName { simple, local };
48
49  static cl::opt<SpillerName>
50  SpillerOpt("spiller",
51             cl::desc("Spiller to use: (default: local)"),
52             cl::Prefix,
53             cl::values(clEnumVal(simple, "  simple spiller"),
54                        clEnumVal(local,  "  local spiller"),
55                        clEnumValEnd),
56             cl::init(local));
57}
58
59//===----------------------------------------------------------------------===//
60//  VirtRegMap implementation
61//===----------------------------------------------------------------------===//
62
63VirtRegMap::VirtRegMap(MachineFunction &mf)
64  : TII(*mf.getTarget().getInstrInfo()), MF(mf),
65    Virt2PhysMap(NO_PHYS_REG), Virt2StackSlotMap(NO_STACK_SLOT),
66    Virt2ReMatIdMap(NO_STACK_SLOT), Virt2SplitMap(0),
67    ReMatMap(NULL), ReMatId(MAX_STACK_SLOT+1) {
68  grow();
69}
70
71void VirtRegMap::grow() {
72  unsigned LastVirtReg = MF.getSSARegMap()->getLastVirtReg();
73  Virt2PhysMap.grow(LastVirtReg);
74  Virt2StackSlotMap.grow(LastVirtReg);
75  Virt2ReMatIdMap.grow(LastVirtReg);
76  Virt2SplitMap.grow(LastVirtReg);
77  Virt2SpillPtsMap.grow(LastVirtReg);
78  ReMatMap.grow(LastVirtReg);
79}
80
81int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
82  assert(MRegisterInfo::isVirtualRegister(virtReg));
83  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
84         "attempt to assign stack slot to already spilled register");
85  const TargetRegisterClass* RC = MF.getSSARegMap()->getRegClass(virtReg);
86  int frameIndex = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
87                                                        RC->getAlignment());
88  Virt2StackSlotMap[virtReg] = frameIndex;
89  ++NumSpills;
90  return frameIndex;
91}
92
93void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int frameIndex) {
94  assert(MRegisterInfo::isVirtualRegister(virtReg));
95  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
96         "attempt to assign stack slot to already spilled register");
97  assert((frameIndex >= 0 ||
98          (frameIndex >= MF.getFrameInfo()->getObjectIndexBegin())) &&
99         "illegal fixed frame index");
100  Virt2StackSlotMap[virtReg] = frameIndex;
101}
102
103int VirtRegMap::assignVirtReMatId(unsigned virtReg) {
104  assert(MRegisterInfo::isVirtualRegister(virtReg));
105  assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT &&
106         "attempt to assign re-mat id to already spilled register");
107  Virt2ReMatIdMap[virtReg] = ReMatId;
108  return ReMatId++;
109}
110
111void VirtRegMap::assignVirtReMatId(unsigned virtReg, int id) {
112  assert(MRegisterInfo::isVirtualRegister(virtReg));
113  assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT &&
114         "attempt to assign re-mat id to already spilled register");
115  Virt2ReMatIdMap[virtReg] = id;
116}
117
118void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *OldMI,
119                            unsigned OpNo, MachineInstr *NewMI) {
120  // Move previous memory references folded to new instruction.
121  MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(NewMI);
122  for (MI2VirtMapTy::iterator I = MI2VirtMap.lower_bound(OldMI),
123         E = MI2VirtMap.end(); I != E && I->first == OldMI; ) {
124    MI2VirtMap.insert(IP, std::make_pair(NewMI, I->second));
125    MI2VirtMap.erase(I++);
126  }
127
128  ModRef MRInfo;
129  const TargetInstrDescriptor *TID = OldMI->getInstrDescriptor();
130  if (TID->getOperandConstraint(OpNo, TOI::TIED_TO) != -1 ||
131      TID->findTiedToSrcOperand(OpNo) != -1) {
132    // Folded a two-address operand.
133    MRInfo = isModRef;
134  } else if (OldMI->getOperand(OpNo).isDef()) {
135    MRInfo = isMod;
136  } else {
137    MRInfo = isRef;
138  }
139
140  // add new memory reference
141  MI2VirtMap.insert(IP, std::make_pair(NewMI, std::make_pair(VirtReg, MRInfo)));
142}
143
144void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *MI, ModRef MRInfo) {
145  MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(MI);
146  MI2VirtMap.insert(IP, std::make_pair(MI, std::make_pair(VirtReg, MRInfo)));
147}
148
149void VirtRegMap::print(std::ostream &OS) const {
150  const MRegisterInfo* MRI = MF.getTarget().getRegisterInfo();
151
152  OS << "********** REGISTER MAP **********\n";
153  for (unsigned i = MRegisterInfo::FirstVirtualRegister,
154         e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i) {
155    if (Virt2PhysMap[i] != (unsigned)VirtRegMap::NO_PHYS_REG)
156      OS << "[reg" << i << " -> " << MRI->getName(Virt2PhysMap[i]) << "]\n";
157
158  }
159
160  for (unsigned i = MRegisterInfo::FirstVirtualRegister,
161         e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i)
162    if (Virt2StackSlotMap[i] != VirtRegMap::NO_STACK_SLOT)
163      OS << "[reg" << i << " -> fi#" << Virt2StackSlotMap[i] << "]\n";
164  OS << '\n';
165}
166
167void VirtRegMap::dump() const {
168  print(DOUT);
169}
170
171
172//===----------------------------------------------------------------------===//
173// Simple Spiller Implementation
174//===----------------------------------------------------------------------===//
175
176Spiller::~Spiller() {}
177
178namespace {
179  struct VISIBILITY_HIDDEN SimpleSpiller : public Spiller {
180    bool runOnMachineFunction(MachineFunction& mf, VirtRegMap &VRM);
181  };
182}
183
184bool SimpleSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
185  DOUT << "********** REWRITE MACHINE CODE **********\n";
186  DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
187  const TargetMachine &TM = MF.getTarget();
188  const MRegisterInfo &MRI = *TM.getRegisterInfo();
189
190  // LoadedRegs - Keep track of which vregs are loaded, so that we only load
191  // each vreg once (in the case where a spilled vreg is used by multiple
192  // operands).  This is always smaller than the number of operands to the
193  // current machine instr, so it should be small.
194  std::vector<unsigned> LoadedRegs;
195
196  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
197       MBBI != E; ++MBBI) {
198    DOUT << MBBI->getBasicBlock()->getName() << ":\n";
199    MachineBasicBlock &MBB = *MBBI;
200    for (MachineBasicBlock::iterator MII = MBB.begin(),
201           E = MBB.end(); MII != E; ++MII) {
202      MachineInstr &MI = *MII;
203      for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
204        MachineOperand &MO = MI.getOperand(i);
205        if (MO.isRegister() && MO.getReg())
206          if (MRegisterInfo::isVirtualRegister(MO.getReg())) {
207            unsigned VirtReg = MO.getReg();
208            unsigned PhysReg = VRM.getPhys(VirtReg);
209            if (!VRM.isAssignedReg(VirtReg)) {
210              int StackSlot = VRM.getStackSlot(VirtReg);
211              const TargetRegisterClass* RC =
212                MF.getSSARegMap()->getRegClass(VirtReg);
213
214              if (MO.isUse() &&
215                  std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
216                  == LoadedRegs.end()) {
217                MRI.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
218                LoadedRegs.push_back(VirtReg);
219                ++NumLoads;
220                DOUT << '\t' << *prior(MII);
221              }
222
223              if (MO.isDef()) {
224                MRI.storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot, RC);
225                ++NumStores;
226              }
227            }
228            MF.setPhysRegUsed(PhysReg);
229            MI.getOperand(i).setReg(PhysReg);
230          } else {
231            MF.setPhysRegUsed(MO.getReg());
232          }
233      }
234
235      DOUT << '\t' << MI;
236      LoadedRegs.clear();
237    }
238  }
239  return true;
240}
241
242//===----------------------------------------------------------------------===//
243//  Local Spiller Implementation
244//===----------------------------------------------------------------------===//
245
246namespace {
247  class AvailableSpills;
248
249  /// LocalSpiller - This spiller does a simple pass over the machine basic
250  /// block to attempt to keep spills in registers as much as possible for
251  /// blocks that have low register pressure (the vreg may be spilled due to
252  /// register pressure in other blocks).
253  class VISIBILITY_HIDDEN LocalSpiller : public Spiller {
254    SSARegMap *RegMap;
255    const MRegisterInfo *MRI;
256    const TargetInstrInfo *TII;
257  public:
258    bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
259      RegMap = MF.getSSARegMap();
260      MRI = MF.getTarget().getRegisterInfo();
261      TII = MF.getTarget().getInstrInfo();
262      DOUT << "\n**** Local spiller rewriting function '"
263           << MF.getFunction()->getName() << "':\n";
264      DOUT << "**** Machine Instrs (NOTE! Does not include spills and reloads!) ****\n";
265      DEBUG(MF.dump());
266
267      for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
268           MBB != E; ++MBB)
269        RewriteMBB(*MBB, VRM);
270
271      DOUT << "**** Post Machine Instrs ****\n";
272      DEBUG(MF.dump());
273
274      return true;
275    }
276  private:
277    bool PrepForUnfoldOpti(MachineBasicBlock &MBB,
278                           MachineBasicBlock::iterator &MII,
279                           std::vector<MachineInstr*> &MaybeDeadStores,
280                           AvailableSpills &Spills, BitVector &RegKills,
281                           std::vector<MachineOperand*> &KillOps,
282                           VirtRegMap &VRM);
283    void SpillRegToStackSlot(MachineBasicBlock &MBB,
284                             MachineBasicBlock::iterator &MII,
285                             int Idx, unsigned PhysReg, int StackSlot,
286                             const TargetRegisterClass *RC,
287                             MachineInstr *&LastStore,
288                             AvailableSpills &Spills,
289                             SmallSet<MachineInstr*, 4> &ReMatDefs,
290                             BitVector &RegKills,
291                             std::vector<MachineOperand*> &KillOps,
292                             VirtRegMap &VRM);
293    void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM);
294  };
295}
296
297/// AvailableSpills - As the local spiller is scanning and rewriting an MBB from
298/// top down, keep track of which spills slots or remat are available in each
299/// register.
300///
301/// Note that not all physregs are created equal here.  In particular, some
302/// physregs are reloads that we are allowed to clobber or ignore at any time.
303/// Other physregs are values that the register allocated program is using that
304/// we cannot CHANGE, but we can read if we like.  We keep track of this on a
305/// per-stack-slot / remat id basis as the low bit in the value of the
306/// SpillSlotsAvailable entries.  The predicate 'canClobberPhysReg()' checks
307/// this bit and addAvailable sets it if.
308namespace {
309class VISIBILITY_HIDDEN AvailableSpills {
310  const MRegisterInfo *MRI;
311  const TargetInstrInfo *TII;
312
313  // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
314  // or remat'ed virtual register values that are still available, due to being
315  // loaded or stored to, but not invalidated yet.
316  std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
317
318  // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
319  // indicating which stack slot values are currently held by a physreg.  This
320  // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
321  // physreg is modified.
322  std::multimap<unsigned, int> PhysRegsAvailable;
323
324  void disallowClobberPhysRegOnly(unsigned PhysReg);
325
326  void ClobberPhysRegOnly(unsigned PhysReg);
327public:
328  AvailableSpills(const MRegisterInfo *mri, const TargetInstrInfo *tii)
329    : MRI(mri), TII(tii) {
330  }
331
332  const MRegisterInfo *getRegInfo() const { return MRI; }
333
334  /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
335  /// available in a  physical register, return that PhysReg, otherwise
336  /// return 0.
337  unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
338    std::map<int, unsigned>::const_iterator I =
339      SpillSlotsOrReMatsAvailable.find(Slot);
340    if (I != SpillSlotsOrReMatsAvailable.end()) {
341      return I->second >> 1;  // Remove the CanClobber bit.
342    }
343    return 0;
344  }
345
346  /// addAvailable - Mark that the specified stack slot / remat is available in
347  /// the specified physreg.  If CanClobber is true, the physreg can be modified
348  /// at any time without changing the semantics of the program.
349  void addAvailable(int SlotOrReMat, MachineInstr *MI, unsigned Reg,
350                    bool CanClobber = true) {
351    // If this stack slot is thought to be available in some other physreg,
352    // remove its record.
353    ModifyStackSlotOrReMat(SlotOrReMat);
354
355    PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
356    SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) | (unsigned)CanClobber;
357
358    if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
359      DOUT << "Remembering RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1;
360    else
361      DOUT << "Remembering SS#" << SlotOrReMat;
362    DOUT << " in physreg " << MRI->getName(Reg) << "\n";
363  }
364
365  /// canClobberPhysReg - Return true if the spiller is allowed to change the
366  /// value of the specified stackslot register if it desires.  The specified
367  /// stack slot must be available in a physreg for this query to make sense.
368  bool canClobberPhysReg(int SlotOrReMat) const {
369    assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
370           "Value not available!");
371    return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
372  }
373
374  /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
375  /// stackslot register. The register is still available but is no longer
376  /// allowed to be modifed.
377  void disallowClobberPhysReg(unsigned PhysReg);
378
379  /// ClobberPhysReg - This is called when the specified physreg changes
380  /// value.  We use this to invalidate any info about stuff that lives in
381  /// it and any of its aliases.
382  void ClobberPhysReg(unsigned PhysReg);
383
384  /// ModifyStackSlotOrReMat - This method is called when the value in a stack
385  /// slot changes.  This removes information about which register the previous
386  /// value for this slot lives in (as the previous value is dead now).
387  void ModifyStackSlotOrReMat(int SlotOrReMat);
388};
389}
390
391/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
392/// stackslot register. The register is still available but is no longer
393/// allowed to be modifed.
394void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
395  std::multimap<unsigned, int>::iterator I =
396    PhysRegsAvailable.lower_bound(PhysReg);
397  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
398    int SlotOrReMat = I->second;
399    I++;
400    assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
401           "Bidirectional map mismatch!");
402    SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
403    DOUT << "PhysReg " << MRI->getName(PhysReg)
404         << " copied, it is available for use but can no longer be modified\n";
405  }
406}
407
408/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
409/// stackslot register and its aliases. The register and its aliases may
410/// still available but is no longer allowed to be modifed.
411void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
412  for (const unsigned *AS = MRI->getAliasSet(PhysReg); *AS; ++AS)
413    disallowClobberPhysRegOnly(*AS);
414  disallowClobberPhysRegOnly(PhysReg);
415}
416
417/// ClobberPhysRegOnly - This is called when the specified physreg changes
418/// value.  We use this to invalidate any info about stuff we thing lives in it.
419void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
420  std::multimap<unsigned, int>::iterator I =
421    PhysRegsAvailable.lower_bound(PhysReg);
422  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
423    int SlotOrReMat = I->second;
424    PhysRegsAvailable.erase(I++);
425    assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
426           "Bidirectional map mismatch!");
427    SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
428    DOUT << "PhysReg " << MRI->getName(PhysReg)
429         << " clobbered, invalidating ";
430    if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
431      DOUT << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 << "\n";
432    else
433      DOUT << "SS#" << SlotOrReMat << "\n";
434  }
435}
436
437/// ClobberPhysReg - This is called when the specified physreg changes
438/// value.  We use this to invalidate any info about stuff we thing lives in
439/// it and any of its aliases.
440void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
441  for (const unsigned *AS = MRI->getAliasSet(PhysReg); *AS; ++AS)
442    ClobberPhysRegOnly(*AS);
443  ClobberPhysRegOnly(PhysReg);
444}
445
446/// ModifyStackSlotOrReMat - This method is called when the value in a stack
447/// slot changes.  This removes information about which register the previous
448/// value for this slot lives in (as the previous value is dead now).
449void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
450  std::map<int, unsigned>::iterator It =
451    SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
452  if (It == SpillSlotsOrReMatsAvailable.end()) return;
453  unsigned Reg = It->second >> 1;
454  SpillSlotsOrReMatsAvailable.erase(It);
455
456  // This register may hold the value of multiple stack slots, only remove this
457  // stack slot from the set of values the register contains.
458  std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
459  for (; ; ++I) {
460    assert(I != PhysRegsAvailable.end() && I->first == Reg &&
461           "Map inverse broken!");
462    if (I->second == SlotOrReMat) break;
463  }
464  PhysRegsAvailable.erase(I);
465}
466
467
468
469/// InvalidateKills - MI is going to be deleted. If any of its operands are
470/// marked kill, then invalidate the information.
471static void InvalidateKills(MachineInstr &MI, BitVector &RegKills,
472                            std::vector<MachineOperand*> &KillOps,
473                            SmallVector<unsigned, 2> *KillRegs = NULL) {
474  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
475    MachineOperand &MO = MI.getOperand(i);
476    if (!MO.isRegister() || !MO.isUse() || !MO.isKill())
477      continue;
478    unsigned Reg = MO.getReg();
479    if (KillRegs)
480      KillRegs->push_back(Reg);
481    if (KillOps[Reg] == &MO) {
482      RegKills.reset(Reg);
483      KillOps[Reg] = NULL;
484    }
485  }
486}
487
488/// InvalidateRegDef - If the def operand of the specified def MI is now dead
489/// (since it's spill instruction is removed), mark it isDead. Also checks if
490/// the def MI has other definition operands that are not dead. Returns it by
491/// reference.
492static bool InvalidateRegDef(MachineBasicBlock::iterator I,
493                             MachineInstr &NewDef, unsigned Reg,
494                             bool &HasLiveDef) {
495  // Due to remat, it's possible this reg isn't being reused. That is,
496  // the def of this reg (by prev MI) is now dead.
497  MachineInstr *DefMI = I;
498  MachineOperand *DefOp = NULL;
499  for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
500    MachineOperand &MO = DefMI->getOperand(i);
501    if (MO.isRegister() && MO.isDef()) {
502      if (MO.getReg() == Reg)
503        DefOp = &MO;
504      else if (!MO.isDead())
505        HasLiveDef = true;
506    }
507  }
508  if (!DefOp)
509    return false;
510
511  bool FoundUse = false, Done = false;
512  MachineBasicBlock::iterator E = NewDef;
513  ++I; ++E;
514  for (; !Done && I != E; ++I) {
515    MachineInstr *NMI = I;
516    for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
517      MachineOperand &MO = NMI->getOperand(j);
518      if (!MO.isRegister() || MO.getReg() != Reg)
519        continue;
520      if (MO.isUse())
521        FoundUse = true;
522      Done = true; // Stop after scanning all the operands of this MI.
523    }
524  }
525  if (!FoundUse) {
526    // Def is dead!
527    DefOp->setIsDead();
528    return true;
529  }
530  return false;
531}
532
533/// UpdateKills - Track and update kill info. If a MI reads a register that is
534/// marked kill, then it must be due to register reuse. Transfer the kill info
535/// over.
536static void UpdateKills(MachineInstr &MI, BitVector &RegKills,
537                        std::vector<MachineOperand*> &KillOps) {
538  const TargetInstrDescriptor *TID = MI.getInstrDescriptor();
539  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
540    MachineOperand &MO = MI.getOperand(i);
541    if (!MO.isRegister() || !MO.isUse())
542      continue;
543    unsigned Reg = MO.getReg();
544    if (Reg == 0)
545      continue;
546
547    if (RegKills[Reg]) {
548      // That can't be right. Register is killed but not re-defined and it's
549      // being reused. Let's fix that.
550      KillOps[Reg]->unsetIsKill();
551      if (i < TID->numOperands &&
552          TID->getOperandConstraint(i, TOI::TIED_TO) == -1)
553        // Unless it's a two-address operand, this is the new kill.
554        MO.setIsKill();
555    }
556
557    if (MO.isKill()) {
558      RegKills.set(Reg);
559      KillOps[Reg] = &MO;
560    }
561  }
562
563  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
564    const MachineOperand &MO = MI.getOperand(i);
565    if (!MO.isRegister() || !MO.isDef())
566      continue;
567    unsigned Reg = MO.getReg();
568    RegKills.reset(Reg);
569    KillOps[Reg] = NULL;
570  }
571}
572
573
574// ReusedOp - For each reused operand, we keep track of a bit of information, in
575// case we need to rollback upon processing a new operand.  See comments below.
576namespace {
577  struct ReusedOp {
578    // The MachineInstr operand that reused an available value.
579    unsigned Operand;
580
581    // StackSlotOrReMat - The spill slot or remat id of the value being reused.
582    unsigned StackSlotOrReMat;
583
584    // PhysRegReused - The physical register the value was available in.
585    unsigned PhysRegReused;
586
587    // AssignedPhysReg - The physreg that was assigned for use by the reload.
588    unsigned AssignedPhysReg;
589
590    // VirtReg - The virtual register itself.
591    unsigned VirtReg;
592
593    ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
594             unsigned vreg)
595      : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
596        AssignedPhysReg(apr), VirtReg(vreg) {}
597  };
598
599  /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
600  /// is reused instead of reloaded.
601  class VISIBILITY_HIDDEN ReuseInfo {
602    MachineInstr &MI;
603    std::vector<ReusedOp> Reuses;
604    BitVector PhysRegsClobbered;
605  public:
606    ReuseInfo(MachineInstr &mi, const MRegisterInfo *mri) : MI(mi) {
607      PhysRegsClobbered.resize(mri->getNumRegs());
608    }
609
610    bool hasReuses() const {
611      return !Reuses.empty();
612    }
613
614    /// addReuse - If we choose to reuse a virtual register that is already
615    /// available instead of reloading it, remember that we did so.
616    void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
617                  unsigned PhysRegReused, unsigned AssignedPhysReg,
618                  unsigned VirtReg) {
619      // If the reload is to the assigned register anyway, no undo will be
620      // required.
621      if (PhysRegReused == AssignedPhysReg) return;
622
623      // Otherwise, remember this.
624      Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused,
625                                AssignedPhysReg, VirtReg));
626    }
627
628    void markClobbered(unsigned PhysReg) {
629      PhysRegsClobbered.set(PhysReg);
630    }
631
632    bool isClobbered(unsigned PhysReg) const {
633      return PhysRegsClobbered.test(PhysReg);
634    }
635
636    /// GetRegForReload - We are about to emit a reload into PhysReg.  If there
637    /// is some other operand that is using the specified register, either pick
638    /// a new register to use, or evict the previous reload and use this reg.
639    unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
640                             AvailableSpills &Spills,
641                             std::vector<MachineInstr*> &MaybeDeadStores,
642                             SmallSet<unsigned, 8> &Rejected,
643                             BitVector &RegKills,
644                             std::vector<MachineOperand*> &KillOps,
645                             VirtRegMap &VRM) {
646      if (Reuses.empty()) return PhysReg;  // This is most often empty.
647
648      for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
649        ReusedOp &Op = Reuses[ro];
650        // If we find some other reuse that was supposed to use this register
651        // exactly for its reload, we can change this reload to use ITS reload
652        // register. That is, unless its reload register has already been
653        // considered and subsequently rejected because it has also been reused
654        // by another operand.
655        if (Op.PhysRegReused == PhysReg &&
656            Rejected.count(Op.AssignedPhysReg) == 0) {
657          // Yup, use the reload register that we didn't use before.
658          unsigned NewReg = Op.AssignedPhysReg;
659          Rejected.insert(PhysReg);
660          return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores, Rejected,
661                                 RegKills, KillOps, VRM);
662        } else {
663          // Otherwise, we might also have a problem if a previously reused
664          // value aliases the new register.  If so, codegen the previous reload
665          // and use this one.
666          unsigned PRRU = Op.PhysRegReused;
667          const MRegisterInfo *MRI = Spills.getRegInfo();
668          if (MRI->areAliases(PRRU, PhysReg)) {
669            // Okay, we found out that an alias of a reused register
670            // was used.  This isn't good because it means we have
671            // to undo a previous reuse.
672            MachineBasicBlock *MBB = MI->getParent();
673            const TargetRegisterClass *AliasRC =
674              MBB->getParent()->getSSARegMap()->getRegClass(Op.VirtReg);
675
676            // Copy Op out of the vector and remove it, we're going to insert an
677            // explicit load for it.
678            ReusedOp NewOp = Op;
679            Reuses.erase(Reuses.begin()+ro);
680
681            // Ok, we're going to try to reload the assigned physreg into the
682            // slot that we were supposed to in the first place.  However, that
683            // register could hold a reuse.  Check to see if it conflicts or
684            // would prefer us to use a different register.
685            unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg,
686                                                  MI, Spills, MaybeDeadStores,
687                                              Rejected, RegKills, KillOps, VRM);
688
689            if (NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT) {
690              MRI->reMaterialize(*MBB, MI, NewPhysReg,
691                                 VRM.getReMaterializedMI(NewOp.VirtReg));
692              ++NumReMats;
693            } else {
694              MRI->loadRegFromStackSlot(*MBB, MI, NewPhysReg,
695                                        NewOp.StackSlotOrReMat, AliasRC);
696              // Any stores to this stack slot are not dead anymore.
697              MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;
698              ++NumLoads;
699            }
700            Spills.ClobberPhysReg(NewPhysReg);
701            Spills.ClobberPhysReg(NewOp.PhysRegReused);
702
703            MI->getOperand(NewOp.Operand).setReg(NewPhysReg);
704
705            Spills.addAvailable(NewOp.StackSlotOrReMat, MI, NewPhysReg);
706            MachineBasicBlock::iterator MII = MI;
707            --MII;
708            UpdateKills(*MII, RegKills, KillOps);
709            DOUT << '\t' << *MII;
710
711            DOUT << "Reuse undone!\n";
712            --NumReused;
713
714            // Finally, PhysReg is now available, go ahead and use it.
715            return PhysReg;
716          }
717        }
718      }
719      return PhysReg;
720    }
721
722    /// GetRegForReload - Helper for the above GetRegForReload(). Add a
723    /// 'Rejected' set to remember which registers have been considered and
724    /// rejected for the reload. This avoids infinite looping in case like
725    /// this:
726    /// t1 := op t2, t3
727    /// t2 <- assigned r0 for use by the reload but ended up reuse r1
728    /// t3 <- assigned r1 for use by the reload but ended up reuse r0
729    /// t1 <- desires r1
730    ///       sees r1 is taken by t2, tries t2's reload register r0
731    ///       sees r0 is taken by t3, tries t3's reload register r1
732    ///       sees r1 is taken by t2, tries t2's reload register r0 ...
733    unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
734                             AvailableSpills &Spills,
735                             std::vector<MachineInstr*> &MaybeDeadStores,
736                             BitVector &RegKills,
737                             std::vector<MachineOperand*> &KillOps,
738                             VirtRegMap &VRM) {
739      SmallSet<unsigned, 8> Rejected;
740      return GetRegForReload(PhysReg, MI, Spills, MaybeDeadStores, Rejected,
741                             RegKills, KillOps, VRM);
742    }
743  };
744}
745
746/// PrepForUnfoldOpti - Turn a store folding instruction into a load folding
747/// instruction. e.g.
748///     xorl  %edi, %eax
749///     movl  %eax, -32(%ebp)
750///     movl  -36(%ebp), %eax
751///	orl   %eax, -32(%ebp)
752/// ==>
753///     xorl  %edi, %eax
754///     orl   -36(%ebp), %eax
755///     mov   %eax, -32(%ebp)
756/// This enables unfolding optimization for a subsequent instruction which will
757/// also eliminate the newly introduced store instruction.
758bool LocalSpiller::PrepForUnfoldOpti(MachineBasicBlock &MBB,
759                                     MachineBasicBlock::iterator &MII,
760                                    std::vector<MachineInstr*> &MaybeDeadStores,
761                                     AvailableSpills &Spills,
762                                     BitVector &RegKills,
763                                     std::vector<MachineOperand*> &KillOps,
764                                     VirtRegMap &VRM) {
765  MachineFunction &MF = *MBB.getParent();
766  MachineInstr &MI = *MII;
767  unsigned UnfoldedOpc = 0;
768  unsigned UnfoldPR = 0;
769  unsigned UnfoldVR = 0;
770  int FoldedSS = VirtRegMap::NO_STACK_SLOT;
771  VirtRegMap::MI2VirtMapTy::const_iterator I, End;
772  for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
773    // Only transform a MI that folds a single register.
774    if (UnfoldedOpc)
775      return false;
776    UnfoldVR = I->second.first;
777    VirtRegMap::ModRef MR = I->second.second;
778    if (VRM.isAssignedReg(UnfoldVR))
779      continue;
780    // If this reference is not a use, any previous store is now dead.
781    // Otherwise, the store to this stack slot is not dead anymore.
782    FoldedSS = VRM.getStackSlot(UnfoldVR);
783    MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
784    if (DeadStore && (MR & VirtRegMap::isModRef)) {
785      unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
786      if (!PhysReg ||
787          DeadStore->findRegisterUseOperandIdx(PhysReg, true) == -1)
788        continue;
789      UnfoldPR = PhysReg;
790      UnfoldedOpc = MRI->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
791                                                    false, true);
792    }
793  }
794
795  if (!UnfoldedOpc)
796    return false;
797
798  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
799    MachineOperand &MO = MI.getOperand(i);
800    if (!MO.isRegister() || MO.getReg() == 0 || !MO.isUse())
801      continue;
802    unsigned VirtReg = MO.getReg();
803    if (MRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
804      continue;
805    if (VRM.isAssignedReg(VirtReg)) {
806      unsigned PhysReg = VRM.getPhys(VirtReg);
807      if (PhysReg && MRI->regsOverlap(PhysReg, UnfoldPR))
808        return false;
809    } else if (VRM.isReMaterialized(VirtReg))
810      continue;
811    int SS = VRM.getStackSlot(VirtReg);
812    unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
813    if (PhysReg) {
814      if (MRI->regsOverlap(PhysReg, UnfoldPR))
815        return false;
816      continue;
817    }
818    PhysReg = VRM.getPhys(VirtReg);
819    if (!MRI->regsOverlap(PhysReg, UnfoldPR))
820      continue;
821
822    // Ok, we'll need to reload the value into a register which makes
823    // it impossible to perform the store unfolding optimization later.
824    // Let's see if it is possible to fold the load if the store is
825    // unfolded. This allows us to perform the store unfolding
826    // optimization.
827    SmallVector<MachineInstr*, 4> NewMIs;
828    if (MRI->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
829      assert(NewMIs.size() == 1);
830      MachineInstr *NewMI = NewMIs.back();
831      NewMIs.clear();
832      int Idx = NewMI->findRegisterUseOperandIdx(VirtReg);
833      assert(Idx != -1);
834      MachineInstr *FoldedMI = MRI->foldMemoryOperand(NewMI, Idx, SS);
835      if (FoldedMI) {
836        if (!VRM.hasPhys(UnfoldVR))
837          VRM.assignVirt2Phys(UnfoldVR, UnfoldPR);
838        VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
839        MII = MBB.insert(MII, FoldedMI);
840        VRM.RemoveFromFoldedVirtMap(&MI);
841        MBB.erase(&MI);
842        return true;
843      }
844      delete NewMI;
845    }
846  }
847  return false;
848}
849
850/// findSuperReg - Find the SubReg's super-register of given register class
851/// where its SubIdx sub-register is SubReg.
852static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
853                             unsigned SubIdx, const MRegisterInfo *MRI) {
854  for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
855       I != E; ++I) {
856    unsigned Reg = *I;
857    if (MRI->getSubReg(Reg, SubIdx) == SubReg)
858      return Reg;
859  }
860  return 0;
861}
862
863/// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
864/// the last store to the same slot is now dead. If so, remove the last store.
865void LocalSpiller::SpillRegToStackSlot(MachineBasicBlock &MBB,
866                                  MachineBasicBlock::iterator &MII,
867                                  int Idx, unsigned PhysReg, int StackSlot,
868                                  const TargetRegisterClass *RC,
869                                  MachineInstr *&LastStore,
870                                  AvailableSpills &Spills,
871                                  SmallSet<MachineInstr*, 4> &ReMatDefs,
872                                  BitVector &RegKills,
873                                  std::vector<MachineOperand*> &KillOps,
874                                  VirtRegMap &VRM) {
875  MRI->storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot, RC);
876  DOUT << "Store:\t" << *next(MII);
877
878  // If there is a dead store to this stack slot, nuke it now.
879  if (LastStore) {
880    DOUT << "Removed dead store:\t" << *LastStore;
881    ++NumDSE;
882    SmallVector<unsigned, 2> KillRegs;
883    InvalidateKills(*LastStore, RegKills, KillOps, &KillRegs);
884    MachineBasicBlock::iterator PrevMII = LastStore;
885    bool CheckDef = PrevMII != MBB.begin();
886    if (CheckDef)
887      --PrevMII;
888    MBB.erase(LastStore);
889    VRM.RemoveFromFoldedVirtMap(LastStore);
890    if (CheckDef) {
891      // Look at defs of killed registers on the store. Mark the defs
892      // as dead since the store has been deleted and they aren't
893      // being reused.
894      for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
895        bool HasOtherDef = false;
896        if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef)) {
897          MachineInstr *DeadDef = PrevMII;
898          if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
899            // FIXME: This assumes a remat def does not have side
900            // effects.
901            MBB.erase(DeadDef);
902            VRM.RemoveFromFoldedVirtMap(DeadDef);
903            ++NumDRM;
904          }
905        }
906      }
907    }
908  }
909
910  LastStore = next(MII);
911
912  // If the stack slot value was previously available in some other
913  // register, change it now.  Otherwise, make the register available,
914  // in PhysReg.
915  Spills.ModifyStackSlotOrReMat(StackSlot);
916  Spills.ClobberPhysReg(PhysReg);
917  Spills.addAvailable(StackSlot, LastStore, PhysReg);
918  ++NumStores;
919}
920
921/// rewriteMBB - Keep track of which spills are available even after the
922/// register allocator is done with them.  If possible, avid reloading vregs.
923void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) {
924  DOUT << MBB.getBasicBlock()->getName() << ":\n";
925
926  MachineFunction &MF = *MBB.getParent();
927
928  // Spills - Keep track of which spilled values are available in physregs so
929  // that we can choose to reuse the physregs instead of emitting reloads.
930  AvailableSpills Spills(MRI, TII);
931
932  // MaybeDeadStores - When we need to write a value back into a stack slot,
933  // keep track of the inserted store.  If the stack slot value is never read
934  // (because the value was used from some available register, for example), and
935  // subsequently stored to, the original store is dead.  This map keeps track
936  // of inserted stores that are not used.  If we see a subsequent store to the
937  // same stack slot, the original store is deleted.
938  std::vector<MachineInstr*> MaybeDeadStores;
939  MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
940
941  // ReMatDefs - These are rematerializable def MIs which are not deleted.
942  SmallSet<MachineInstr*, 4> ReMatDefs;
943
944  // ReloadedSplits - Splits must be reloaded once per MBB. This keeps track
945  // which have been reloaded.
946  SmallSet<unsigned, 8> ReloadedSplits;
947
948  // Keep track of kill information.
949  BitVector RegKills(MRI->getNumRegs());
950  std::vector<MachineOperand*>  KillOps;
951  KillOps.resize(MRI->getNumRegs(), NULL);
952
953  for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
954       MII != E; ) {
955    MachineBasicBlock::iterator NextMII = MII; ++NextMII;
956
957    VirtRegMap::MI2VirtMapTy::const_iterator I, End;
958    bool Erased = false;
959    bool BackTracked = false;
960    if (PrepForUnfoldOpti(MBB, MII,
961                          MaybeDeadStores, Spills, RegKills, KillOps, VRM))
962      NextMII = next(MII);
963
964    MachineInstr &MI = *MII;
965    const TargetInstrDescriptor *TID = MI.getInstrDescriptor();
966
967    // Insert spills here if asked to.
968    std::vector<unsigned> SpillRegs = VRM.getSpillPtSpills(&MI);
969    for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
970      unsigned VirtReg = SpillRegs[i];
971      const TargetRegisterClass *RC = RegMap->getRegClass(VirtReg);
972      unsigned Phys = VRM.getPhys(VirtReg);
973      int StackSlot = VRM.getStackSlot(VirtReg);
974      MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
975      SpillRegToStackSlot(MBB, MII, i, Phys, StackSlot, RC,
976                          LastStore, Spills, ReMatDefs, RegKills, KillOps, VRM);
977    }
978
979    /// ReusedOperands - Keep track of operand reuse in case we need to undo
980    /// reuse.
981    ReuseInfo ReusedOperands(MI, MRI);
982    // Process all of the spilled uses and all non spilled reg references.
983    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
984      MachineOperand &MO = MI.getOperand(i);
985      if (!MO.isRegister() || MO.getReg() == 0)
986        continue;   // Ignore non-register operands.
987
988      unsigned VirtReg = MO.getReg();
989      if (MRegisterInfo::isPhysicalRegister(VirtReg)) {
990        // Ignore physregs for spilling, but remember that it is used by this
991        // function.
992        MF.setPhysRegUsed(VirtReg);
993        continue;
994      }
995
996      assert(MRegisterInfo::isVirtualRegister(VirtReg) &&
997             "Not a virtual or a physical register?");
998
999      unsigned SubIdx = MO.getSubReg();
1000      if (VRM.isAssignedReg(VirtReg)) {
1001        // This virtual register was assigned a physreg!
1002        unsigned Phys = VRM.getPhys(VirtReg);
1003        MF.setPhysRegUsed(Phys);
1004        if (MO.isDef())
1005          ReusedOperands.markClobbered(Phys);
1006
1007        // If it's a split live interval, insert a reload for the first use
1008        // unless it's previously defined in the MBB.
1009        unsigned SplitReg = VRM.getPreSplitReg(VirtReg);
1010        if (SplitReg) {
1011          if (ReloadedSplits.insert(VirtReg)) {
1012            bool HasUse = MO.isUse();
1013            // If it's a def, we don't need to reload the value unless it's
1014            // a two-address code.
1015            if (!HasUse) {
1016              for (unsigned j = i+1; j != e; ++j) {
1017                MachineOperand &MOJ = MI.getOperand(j);
1018                if (MOJ.isRegister() && MOJ.getReg() == VirtReg) {
1019                  HasUse = true;
1020                  break;
1021                }
1022              }
1023            }
1024
1025            if (HasUse) {
1026              if (VRM.isReMaterialized(VirtReg)) {
1027                MRI->reMaterialize(MBB, &MI, Phys,
1028                                   VRM.getReMaterializedMI(VirtReg));
1029                ++NumReMats;
1030              } else {
1031                const TargetRegisterClass* RC = RegMap->getRegClass(VirtReg);
1032                MRI->loadRegFromStackSlot(MBB, &MI, Phys, VRM.getStackSlot(VirtReg), RC);
1033                ++NumLoads;
1034              }
1035              // This invalidates Phys.
1036              Spills.ClobberPhysReg(Phys);
1037              UpdateKills(*prior(MII), RegKills, KillOps);
1038              DOUT << '\t' << *prior(MII);
1039            }
1040          }
1041        }
1042
1043        unsigned RReg = SubIdx ? MRI->getSubReg(Phys, SubIdx) : Phys;
1044        MI.getOperand(i).setReg(RReg);
1045        continue;
1046      }
1047
1048      // This virtual register is now known to be a spilled value.
1049      if (!MO.isUse())
1050        continue;  // Handle defs in the loop below (handle use&def here though)
1051
1052      bool DoReMat = VRM.isReMaterialized(VirtReg);
1053      int SSorRMId = DoReMat
1054        ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
1055      int ReuseSlot = SSorRMId;
1056
1057      // Check to see if this stack slot is available.
1058      unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1059      if (!PhysReg && DoReMat) {
1060        // This use is rematerializable. But perhaps the value is available in
1061        // a register if the definition is not deleted. If so, check if we can
1062        // reuse the value.
1063        ReuseSlot = VRM.getStackSlot(VirtReg);
1064        if (ReuseSlot != VirtRegMap::NO_STACK_SLOT)
1065          PhysReg = Spills.getSpillSlotOrReMatPhysReg(ReuseSlot);
1066      }
1067
1068      // If this is a sub-register use, make sure the reuse register is in the
1069      // right register class. For example, for x86 not all of the 32-bit
1070      // registers have accessible sub-registers.
1071      // Similarly so for EXTRACT_SUBREG. Consider this:
1072      // EDI = op
1073      // MOV32_mr fi#1, EDI
1074      // ...
1075      //       = EXTRACT_SUBREG fi#1
1076      // fi#1 is available in EDI, but it cannot be reused because it's not in
1077      // the right register file.
1078      if (PhysReg &&
1079          (SubIdx || MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)) {
1080        const TargetRegisterClass* RC = RegMap->getRegClass(VirtReg);
1081        if (!RC->contains(PhysReg))
1082          PhysReg = 0;
1083      }
1084
1085      if (PhysReg) {
1086        // This spilled operand might be part of a two-address operand.  If this
1087        // is the case, then changing it will necessarily require changing the
1088        // def part of the instruction as well.  However, in some cases, we
1089        // aren't allowed to modify the reused register.  If none of these cases
1090        // apply, reuse it.
1091        bool CanReuse = true;
1092        int ti = TID->getOperandConstraint(i, TOI::TIED_TO);
1093        if (ti != -1 &&
1094            MI.getOperand(ti).isRegister() &&
1095            MI.getOperand(ti).getReg() == VirtReg) {
1096          // Okay, we have a two address operand.  We can reuse this physreg as
1097          // long as we are allowed to clobber the value and there isn't an
1098          // earlier def that has already clobbered the physreg.
1099          CanReuse = Spills.canClobberPhysReg(ReuseSlot) &&
1100            !ReusedOperands.isClobbered(PhysReg);
1101        }
1102
1103        if (CanReuse) {
1104          // If this stack slot value is already available, reuse it!
1105          if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1106            DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1107          else
1108            DOUT << "Reusing SS#" << ReuseSlot;
1109          DOUT << " from physreg "
1110               << MRI->getName(PhysReg) << " for vreg"
1111               << VirtReg <<" instead of reloading into physreg "
1112               << MRI->getName(VRM.getPhys(VirtReg)) << "\n";
1113          unsigned RReg = SubIdx ? MRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1114          MI.getOperand(i).setReg(RReg);
1115
1116          // The only technical detail we have is that we don't know that
1117          // PhysReg won't be clobbered by a reloaded stack slot that occurs
1118          // later in the instruction.  In particular, consider 'op V1, V2'.
1119          // If V1 is available in physreg R0, we would choose to reuse it
1120          // here, instead of reloading it into the register the allocator
1121          // indicated (say R1).  However, V2 might have to be reloaded
1122          // later, and it might indicate that it needs to live in R0.  When
1123          // this occurs, we need to have information available that
1124          // indicates it is safe to use R1 for the reload instead of R0.
1125          //
1126          // To further complicate matters, we might conflict with an alias,
1127          // or R0 and R1 might not be compatible with each other.  In this
1128          // case, we actually insert a reload for V1 in R1, ensuring that
1129          // we can get at R0 or its alias.
1130          ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
1131                                  VRM.getPhys(VirtReg), VirtReg);
1132          if (ti != -1)
1133            // Only mark it clobbered if this is a use&def operand.
1134            ReusedOperands.markClobbered(PhysReg);
1135          ++NumReused;
1136
1137          if (MI.getOperand(i).isKill() &&
1138              ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
1139            // This was the last use and the spilled value is still available
1140            // for reuse. That means the spill was unnecessary!
1141            MachineInstr* DeadStore = MaybeDeadStores[ReuseSlot];
1142            if (DeadStore) {
1143              DOUT << "Removed dead store:\t" << *DeadStore;
1144              InvalidateKills(*DeadStore, RegKills, KillOps);
1145              VRM.RemoveFromFoldedVirtMap(DeadStore);
1146              MBB.erase(DeadStore);
1147              MaybeDeadStores[ReuseSlot] = NULL;
1148              ++NumDSE;
1149            }
1150          }
1151          continue;
1152        }  // CanReuse
1153
1154        // Otherwise we have a situation where we have a two-address instruction
1155        // whose mod/ref operand needs to be reloaded.  This reload is already
1156        // available in some register "PhysReg", but if we used PhysReg as the
1157        // operand to our 2-addr instruction, the instruction would modify
1158        // PhysReg.  This isn't cool if something later uses PhysReg and expects
1159        // to get its initial value.
1160        //
1161        // To avoid this problem, and to avoid doing a load right after a store,
1162        // we emit a copy from PhysReg into the designated register for this
1163        // operand.
1164        unsigned DesignatedReg = VRM.getPhys(VirtReg);
1165        assert(DesignatedReg && "Must map virtreg to physreg!");
1166
1167        // Note that, if we reused a register for a previous operand, the
1168        // register we want to reload into might not actually be
1169        // available.  If this occurs, use the register indicated by the
1170        // reuser.
1171        if (ReusedOperands.hasReuses())
1172          DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI,
1173                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1174
1175        // If the mapped designated register is actually the physreg we have
1176        // incoming, we don't need to inserted a dead copy.
1177        if (DesignatedReg == PhysReg) {
1178          // If this stack slot value is already available, reuse it!
1179          if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1180            DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1181          else
1182            DOUT << "Reusing SS#" << ReuseSlot;
1183          DOUT << " from physreg " << MRI->getName(PhysReg) << " for vreg"
1184               << VirtReg
1185               << " instead of reloading into same physreg.\n";
1186          unsigned RReg = SubIdx ? MRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1187          MI.getOperand(i).setReg(RReg);
1188          ReusedOperands.markClobbered(RReg);
1189          ++NumReused;
1190          continue;
1191        }
1192
1193        const TargetRegisterClass* RC = RegMap->getRegClass(VirtReg);
1194        MF.setPhysRegUsed(DesignatedReg);
1195        ReusedOperands.markClobbered(DesignatedReg);
1196        MRI->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC, RC);
1197
1198        MachineInstr *CopyMI = prior(MII);
1199        UpdateKills(*CopyMI, RegKills, KillOps);
1200
1201        // This invalidates DesignatedReg.
1202        Spills.ClobberPhysReg(DesignatedReg);
1203
1204        Spills.addAvailable(ReuseSlot, &MI, DesignatedReg);
1205        unsigned RReg =
1206          SubIdx ? MRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
1207        MI.getOperand(i).setReg(RReg);
1208        DOUT << '\t' << *prior(MII);
1209        ++NumReused;
1210        continue;
1211      } // if (PhysReg)
1212
1213      // Otherwise, reload it and remember that we have it.
1214      PhysReg = VRM.getPhys(VirtReg);
1215      assert(PhysReg && "Must map virtreg to physreg!");
1216
1217      // Note that, if we reused a register for a previous operand, the
1218      // register we want to reload into might not actually be
1219      // available.  If this occurs, use the register indicated by the
1220      // reuser.
1221      if (ReusedOperands.hasReuses())
1222        PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
1223                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1224
1225      MF.setPhysRegUsed(PhysReg);
1226      ReusedOperands.markClobbered(PhysReg);
1227      if (DoReMat) {
1228        MRI->reMaterialize(MBB, &MI, PhysReg, VRM.getReMaterializedMI(VirtReg));
1229        ++NumReMats;
1230      } else {
1231        const TargetRegisterClass* RC = RegMap->getRegClass(VirtReg);
1232        MRI->loadRegFromStackSlot(MBB, &MI, PhysReg, SSorRMId, RC);
1233        ++NumLoads;
1234      }
1235      // This invalidates PhysReg.
1236      Spills.ClobberPhysReg(PhysReg);
1237
1238      // Any stores to this stack slot are not dead anymore.
1239      if (!DoReMat)
1240        MaybeDeadStores[SSorRMId] = NULL;
1241      Spills.addAvailable(SSorRMId, &MI, PhysReg);
1242      // Assumes this is the last use. IsKill will be unset if reg is reused
1243      // unless it's a two-address operand.
1244      if (TID->getOperandConstraint(i, TOI::TIED_TO) == -1)
1245        MI.getOperand(i).setIsKill();
1246      unsigned RReg = SubIdx ? MRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1247      MI.getOperand(i).setReg(RReg);
1248      UpdateKills(*prior(MII), RegKills, KillOps);
1249      DOUT << '\t' << *prior(MII);
1250    }
1251
1252    DOUT << '\t' << MI;
1253
1254
1255    // If we have folded references to memory operands, make sure we clear all
1256    // physical registers that may contain the value of the spilled virtual
1257    // register
1258    SmallSet<int, 2> FoldedSS;
1259    for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
1260      unsigned VirtReg = I->second.first;
1261      VirtRegMap::ModRef MR = I->second.second;
1262      DOUT << "Folded vreg: " << VirtReg << "  MR: " << MR;
1263
1264      // If this is a split live interval, remember we have seen this so
1265      // we do not need to reload it for later uses.
1266      unsigned SplitReg = VRM.getPreSplitReg(VirtReg);
1267      if (SplitReg)
1268        ReloadedSplits.insert(VirtReg);
1269
1270      int SS = VRM.getStackSlot(VirtReg);
1271      if (SS == VirtRegMap::NO_STACK_SLOT)
1272        continue;
1273      FoldedSS.insert(SS);
1274      DOUT << " - StackSlot: " << SS << "\n";
1275
1276      // If this folded instruction is just a use, check to see if it's a
1277      // straight load from the virt reg slot.
1278      if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
1279        int FrameIdx;
1280        unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
1281        if (DestReg && FrameIdx == SS) {
1282          // If this spill slot is available, turn it into a copy (or nothing)
1283          // instead of leaving it as a load!
1284          if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
1285            DOUT << "Promoted Load To Copy: " << MI;
1286            if (DestReg != InReg) {
1287              const TargetRegisterClass *RC = RegMap->getRegClass(VirtReg);
1288              MRI->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC);
1289              // Revisit the copy so we make sure to notice the effects of the
1290              // operation on the destreg (either needing to RA it if it's
1291              // virtual or needing to clobber any values if it's physical).
1292              NextMII = &MI;
1293              --NextMII;  // backtrack to the copy.
1294              BackTracked = true;
1295            } else
1296              DOUT << "Removing now-noop copy: " << MI;
1297
1298            VRM.RemoveFromFoldedVirtMap(&MI);
1299            MBB.erase(&MI);
1300            Erased = true;
1301            goto ProcessNextInst;
1302          }
1303        } else {
1304          unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1305          SmallVector<MachineInstr*, 4> NewMIs;
1306          if (PhysReg &&
1307              MRI->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) {
1308            MBB.insert(MII, NewMIs[0]);
1309            VRM.RemoveFromFoldedVirtMap(&MI);
1310            MBB.erase(&MI);
1311            Erased = true;
1312            --NextMII;  // backtrack to the unfolded instruction.
1313            BackTracked = true;
1314            goto ProcessNextInst;
1315          }
1316        }
1317      }
1318
1319      // If this reference is not a use, any previous store is now dead.
1320      // Otherwise, the store to this stack slot is not dead anymore.
1321      MachineInstr* DeadStore = MaybeDeadStores[SS];
1322      if (DeadStore) {
1323        bool isDead = !(MR & VirtRegMap::isRef);
1324        MachineInstr *NewStore = NULL;
1325        if (MR & VirtRegMap::isModRef) {
1326          unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1327          SmallVector<MachineInstr*, 4> NewMIs;
1328          if (PhysReg &&
1329              DeadStore->findRegisterUseOperandIdx(PhysReg, true) != -1 &&
1330              MRI->unfoldMemoryOperand(MF, &MI, PhysReg, false, true, NewMIs)) {
1331            MBB.insert(MII, NewMIs[0]);
1332            NewStore = NewMIs[1];
1333            MBB.insert(MII, NewStore);
1334            VRM.RemoveFromFoldedVirtMap(&MI);
1335            MBB.erase(&MI);
1336            Erased = true;
1337            --NextMII;
1338            --NextMII;  // backtrack to the unfolded instruction.
1339            BackTracked = true;
1340            isDead = true;
1341          }
1342        }
1343
1344        if (isDead) {  // Previous store is dead.
1345          // If we get here, the store is dead, nuke it now.
1346          DOUT << "Removed dead store:\t" << *DeadStore;
1347          InvalidateKills(*DeadStore, RegKills, KillOps);
1348          VRM.RemoveFromFoldedVirtMap(DeadStore);
1349          MBB.erase(DeadStore);
1350          if (!NewStore)
1351            ++NumDSE;
1352        }
1353
1354        MaybeDeadStores[SS] = NULL;
1355        if (NewStore) {
1356          // Treat this store as a spill merged into a copy. That makes the
1357          // stack slot value available.
1358          VRM.virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
1359          goto ProcessNextInst;
1360        }
1361      }
1362
1363      // If the spill slot value is available, and this is a new definition of
1364      // the value, the value is not available anymore.
1365      if (MR & VirtRegMap::isMod) {
1366        // Notice that the value in this stack slot has been modified.
1367        Spills.ModifyStackSlotOrReMat(SS);
1368
1369        // If this is *just* a mod of the value, check to see if this is just a
1370        // store to the spill slot (i.e. the spill got merged into the copy). If
1371        // so, realize that the vreg is available now, and add the store to the
1372        // MaybeDeadStore info.
1373        int StackSlot;
1374        if (!(MR & VirtRegMap::isRef)) {
1375          if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
1376            assert(MRegisterInfo::isPhysicalRegister(SrcReg) &&
1377                   "Src hasn't been allocated yet?");
1378            // Okay, this is certainly a store of SrcReg to [StackSlot].  Mark
1379            // this as a potentially dead store in case there is a subsequent
1380            // store into the stack slot without a read from it.
1381            MaybeDeadStores[StackSlot] = &MI;
1382
1383            // If the stack slot value was previously available in some other
1384            // register, change it now.  Otherwise, make the register available,
1385            // in PhysReg.
1386            Spills.addAvailable(StackSlot, &MI, SrcReg, false/*don't clobber*/);
1387          }
1388        }
1389      }
1390    }
1391
1392    // Process all of the spilled defs.
1393    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1394      MachineOperand &MO = MI.getOperand(i);
1395      if (!(MO.isRegister() && MO.getReg() && MO.isDef()))
1396        continue;
1397
1398      unsigned VirtReg = MO.getReg();
1399      if (!MRegisterInfo::isVirtualRegister(VirtReg)) {
1400        // Check to see if this is a noop copy.  If so, eliminate the
1401        // instruction before considering the dest reg to be changed.
1402        unsigned Src, Dst;
1403        if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
1404          ++NumDCE;
1405          DOUT << "Removing now-noop copy: " << MI;
1406          MBB.erase(&MI);
1407          Erased = true;
1408          VRM.RemoveFromFoldedVirtMap(&MI);
1409          Spills.disallowClobberPhysReg(VirtReg);
1410          goto ProcessNextInst;
1411        }
1412
1413        // If it's not a no-op copy, it clobbers the value in the destreg.
1414        Spills.ClobberPhysReg(VirtReg);
1415        ReusedOperands.markClobbered(VirtReg);
1416
1417        // Check to see if this instruction is a load from a stack slot into
1418        // a register.  If so, this provides the stack slot value in the reg.
1419        int FrameIdx;
1420        if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
1421          assert(DestReg == VirtReg && "Unknown load situation!");
1422
1423          // If it is a folded reference, then it's not safe to clobber.
1424          bool Folded = FoldedSS.count(FrameIdx);
1425          // Otherwise, if it wasn't available, remember that it is now!
1426          Spills.addAvailable(FrameIdx, &MI, DestReg, !Folded);
1427          goto ProcessNextInst;
1428        }
1429
1430        continue;
1431      }
1432
1433      unsigned SubIdx = MO.getSubReg();
1434      bool DoReMat = VRM.isReMaterialized(VirtReg);
1435      if (DoReMat)
1436        ReMatDefs.insert(&MI);
1437
1438      // The only vregs left are stack slot definitions.
1439      int StackSlot = VRM.getStackSlot(VirtReg);
1440      const TargetRegisterClass *RC = RegMap->getRegClass(VirtReg);
1441
1442      // If this def is part of a two-address operand, make sure to execute
1443      // the store from the correct physical register.
1444      unsigned PhysReg;
1445      int TiedOp = MI.getInstrDescriptor()->findTiedToSrcOperand(i);
1446      if (TiedOp != -1) {
1447        PhysReg = MI.getOperand(TiedOp).getReg();
1448        if (SubIdx) {
1449          unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, MRI);
1450          assert(SuperReg && MRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
1451                 "Can't find corresponding super-register!");
1452          PhysReg = SuperReg;
1453        }
1454      } else {
1455        PhysReg = VRM.getPhys(VirtReg);
1456        if (ReusedOperands.isClobbered(PhysReg)) {
1457          // Another def has taken the assigned physreg. It must have been a
1458          // use&def which got it due to reuse. Undo the reuse!
1459          PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
1460                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1461        }
1462      }
1463
1464      MF.setPhysRegUsed(PhysReg);
1465      unsigned RReg = SubIdx ? MRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1466      ReusedOperands.markClobbered(RReg);
1467      MI.getOperand(i).setReg(RReg);
1468
1469      if (!MO.isDead()) {
1470        MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
1471        SpillRegToStackSlot(MBB, MII, -1, PhysReg, StackSlot, RC, LastStore,
1472                            Spills, ReMatDefs, RegKills, KillOps, VRM);
1473
1474        // Check to see if this is a noop copy.  If so, eliminate the
1475        // instruction before considering the dest reg to be changed.
1476        {
1477          unsigned Src, Dst;
1478          if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
1479            ++NumDCE;
1480            DOUT << "Removing now-noop copy: " << MI;
1481            MBB.erase(&MI);
1482            Erased = true;
1483            VRM.RemoveFromFoldedVirtMap(&MI);
1484            UpdateKills(*LastStore, RegKills, KillOps);
1485            goto ProcessNextInst;
1486          }
1487        }
1488      }
1489    }
1490  ProcessNextInst:
1491    if (!Erased && !BackTracked)
1492      for (MachineBasicBlock::iterator II = MI; II != NextMII; ++II)
1493        UpdateKills(*II, RegKills, KillOps);
1494    MII = NextMII;
1495  }
1496}
1497
1498
1499llvm::Spiller* llvm::createSpiller() {
1500  switch (SpillerOpt) {
1501  default: assert(0 && "Unreachable!");
1502  case local:
1503    return new LocalSpiller();
1504  case simple:
1505    return new SimpleSpiller();
1506  }
1507}
1508