VirtRegMap.cpp revision 8f1d6402ba73b96993ffd1eb9434b28c828d8856
1//===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the VirtRegMap class.
11//
12// It also contains implementations of the the Spiller interface, which, given a
13// virtual register map and a machine function, eliminates all virtual
14// references by replacing them with physical register references - adding spill
15// code as necessary.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "spiller"
20#include "VirtRegMap.h"
21#include "llvm/Function.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/SSARegMap.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Support/CommandLine.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/ADT/STLExtras.h"
31#include <algorithm>
32using namespace llvm;
33
34namespace {
35  Statistic<> NumSpills("spiller", "Number of register spills");
36  Statistic<> NumStores("spiller", "Number of stores added");
37  Statistic<> NumLoads ("spiller", "Number of loads added");
38  Statistic<> NumReused("spiller", "Number of values reused");
39  Statistic<> NumDSE   ("spiller", "Number of dead stores elided");
40
41  enum SpillerName { simple, local };
42
43  cl::opt<SpillerName>
44  SpillerOpt("spiller",
45             cl::desc("Spiller to use: (default: local)"),
46             cl::Prefix,
47             cl::values(clEnumVal(simple, "  simple spiller"),
48                        clEnumVal(local,  "  local spiller"),
49                        clEnumValEnd),
50             cl::init(local));
51}
52
53//===----------------------------------------------------------------------===//
54//  VirtRegMap implementation
55//===----------------------------------------------------------------------===//
56
57void VirtRegMap::grow() {
58  Virt2PhysMap.grow(MF.getSSARegMap()->getLastVirtReg());
59  Virt2StackSlotMap.grow(MF.getSSARegMap()->getLastVirtReg());
60}
61
62int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
63  assert(MRegisterInfo::isVirtualRegister(virtReg));
64  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
65         "attempt to assign stack slot to already spilled register");
66  const TargetRegisterClass* RC = MF.getSSARegMap()->getRegClass(virtReg);
67  int frameIndex = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
68                                                        RC->getAlignment());
69  Virt2StackSlotMap[virtReg] = frameIndex;
70  ++NumSpills;
71  return frameIndex;
72}
73
74void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int frameIndex) {
75  assert(MRegisterInfo::isVirtualRegister(virtReg));
76  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
77         "attempt to assign stack slot to already spilled register");
78  Virt2StackSlotMap[virtReg] = frameIndex;
79}
80
81void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *OldMI,
82                            unsigned OpNo, MachineInstr *NewMI) {
83  // Move previous memory references folded to new instruction.
84  MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(NewMI);
85  for (MI2VirtMapTy::iterator I = MI2VirtMap.lower_bound(OldMI),
86         E = MI2VirtMap.end(); I != E && I->first == OldMI; ) {
87    MI2VirtMap.insert(IP, std::make_pair(NewMI, I->second));
88    MI2VirtMap.erase(I++);
89  }
90
91  ModRef MRInfo;
92  if (!OldMI->getOperand(OpNo).isDef()) {
93    assert(OldMI->getOperand(OpNo).isUse() && "Operand is not use or def?");
94    MRInfo = isRef;
95  } else {
96    MRInfo = OldMI->getOperand(OpNo).isUse() ? isModRef : isMod;
97  }
98
99  // add new memory reference
100  MI2VirtMap.insert(IP, std::make_pair(NewMI, std::make_pair(VirtReg, MRInfo)));
101}
102
103void VirtRegMap::print(std::ostream &OS) const {
104  const MRegisterInfo* MRI = MF.getTarget().getRegisterInfo();
105
106  OS << "********** REGISTER MAP **********\n";
107  for (unsigned i = MRegisterInfo::FirstVirtualRegister,
108         e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i) {
109    if (Virt2PhysMap[i] != (unsigned)VirtRegMap::NO_PHYS_REG)
110      OS << "[reg" << i << " -> " << MRI->getName(Virt2PhysMap[i]) << "]\n";
111
112  }
113
114  for (unsigned i = MRegisterInfo::FirstVirtualRegister,
115         e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i)
116    if (Virt2StackSlotMap[i] != VirtRegMap::NO_STACK_SLOT)
117      OS << "[reg" << i << " -> fi#" << Virt2StackSlotMap[i] << "]\n";
118  OS << '\n';
119}
120
121void VirtRegMap::dump() const { print(std::cerr); }
122
123
124//===----------------------------------------------------------------------===//
125// Simple Spiller Implementation
126//===----------------------------------------------------------------------===//
127
128Spiller::~Spiller() {}
129
130namespace {
131  struct SimpleSpiller : public Spiller {
132    bool runOnMachineFunction(MachineFunction& mf, const VirtRegMap &VRM);
133  };
134}
135
136bool SimpleSpiller::runOnMachineFunction(MachineFunction& MF,
137                                         const VirtRegMap& VRM) {
138  DEBUG(std::cerr << "********** REWRITE MACHINE CODE **********\n");
139  DEBUG(std::cerr << "********** Function: "
140                  << MF.getFunction()->getName() << '\n');
141  const TargetMachine& TM = MF.getTarget();
142  const MRegisterInfo& MRI = *TM.getRegisterInfo();
143
144  // LoadedRegs - Keep track of which vregs are loaded, so that we only load
145  // each vreg once (in the case where a spilled vreg is used by multiple
146  // operands).  This is always smaller than the number of operands to the
147  // current machine instr, so it should be small.
148  std::vector<unsigned> LoadedRegs;
149
150  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
151       MBBI != E; ++MBBI) {
152    DEBUG(std::cerr << MBBI->getBasicBlock()->getName() << ":\n");
153    MachineBasicBlock &MBB = *MBBI;
154    for (MachineBasicBlock::iterator MII = MBB.begin(),
155           E = MBB.end(); MII != E; ++MII) {
156      MachineInstr &MI = *MII;
157      for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
158        MachineOperand &MO = MI.getOperand(i);
159        if (MO.isRegister() && MO.getReg() &&
160            MRegisterInfo::isVirtualRegister(MO.getReg())) {
161          unsigned VirtReg = MO.getReg();
162          unsigned PhysReg = VRM.getPhys(VirtReg);
163          if (VRM.hasStackSlot(VirtReg)) {
164            int StackSlot = VRM.getStackSlot(VirtReg);
165
166            if (MO.isUse() &&
167                std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
168                           == LoadedRegs.end()) {
169              MRI.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot);
170              LoadedRegs.push_back(VirtReg);
171              ++NumLoads;
172              DEBUG(std::cerr << '\t' << *prior(MII));
173            }
174
175            if (MO.isDef()) {
176              MRI.storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot);
177              ++NumStores;
178            }
179          }
180          MI.SetMachineOperandReg(i, PhysReg);
181        }
182      }
183      DEBUG(std::cerr << '\t' << MI);
184      LoadedRegs.clear();
185    }
186  }
187  return true;
188}
189
190//===----------------------------------------------------------------------===//
191//  Local Spiller Implementation
192//===----------------------------------------------------------------------===//
193
194namespace {
195  /// LocalSpiller - This spiller does a simple pass over the machine basic
196  /// block to attempt to keep spills in registers as much as possible for
197  /// blocks that have low register pressure (the vreg may be spilled due to
198  /// register pressure in other blocks).
199  class LocalSpiller : public Spiller {
200    const MRegisterInfo *MRI;
201    const TargetInstrInfo *TII;
202  public:
203    bool runOnMachineFunction(MachineFunction &MF, const VirtRegMap &VRM) {
204      MRI = MF.getTarget().getRegisterInfo();
205      TII = MF.getTarget().getInstrInfo();
206      DEBUG(std::cerr << "\n**** Local spiller rewriting function '"
207                      << MF.getFunction()->getName() << "':\n");
208
209      for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
210           MBB != E; ++MBB)
211        RewriteMBB(*MBB, VRM);
212      return true;
213    }
214  private:
215    void RewriteMBB(MachineBasicBlock &MBB, const VirtRegMap &VRM);
216    void ClobberPhysReg(unsigned PR, std::map<int, unsigned> &SpillSlots,
217                        std::map<unsigned, int> &PhysRegs);
218    void ClobberPhysRegOnly(unsigned PR, std::map<int, unsigned> &SpillSlots,
219                            std::map<unsigned, int> &PhysRegs);
220  };
221}
222
223void LocalSpiller::ClobberPhysRegOnly(unsigned PhysReg,
224                                      std::map<int, unsigned> &SpillSlots,
225                                      std::map<unsigned, int> &PhysRegs) {
226  std::map<unsigned, int>::iterator I = PhysRegs.find(PhysReg);
227  if (I != PhysRegs.end()) {
228    int Slot = I->second;
229    PhysRegs.erase(I);
230    assert(SpillSlots[Slot] == PhysReg && "Bidirectional map mismatch!");
231    SpillSlots.erase(Slot);
232    DEBUG(std::cerr << "PhysReg " << MRI->getName(PhysReg)
233          << " clobbered, invalidating SS#" << Slot << "\n");
234
235  }
236}
237
238void LocalSpiller::ClobberPhysReg(unsigned PhysReg,
239                                  std::map<int, unsigned> &SpillSlots,
240                                  std::map<unsigned, int> &PhysRegs) {
241  for (const unsigned *AS = MRI->getAliasSet(PhysReg); *AS; ++AS)
242    ClobberPhysRegOnly(*AS, SpillSlots, PhysRegs);
243  ClobberPhysRegOnly(PhysReg, SpillSlots, PhysRegs);
244}
245
246
247// ReusedOp - For each reused operand, we keep track of a bit of information, in
248// case we need to rollback upon processing a new operand.  See comments below.
249namespace {
250  struct ReusedOp {
251    // The MachineInstr operand that reused an available value.
252    unsigned Operand;
253
254    // StackSlot - The spill slot of the value being reused.
255    unsigned StackSlot;
256
257    // PhysRegReused - The physical register the value was available in.
258    unsigned PhysRegReused;
259
260    // AssignedPhysReg - The physreg that was assigned for use by the reload.
261    unsigned AssignedPhysReg;
262
263    ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr)
264      : Operand(o), StackSlot(ss), PhysRegReused(prr), AssignedPhysReg(apr) {}
265  };
266}
267
268
269/// rewriteMBB - Keep track of which spills are available even after the
270/// register allocator is done with them.  If possible, avoid reloading vregs.
271void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, const VirtRegMap &VRM) {
272
273  // SpillSlotsAvailable - This map keeps track of all of the spilled virtual
274  // register values that are still available, due to being loaded to stored to,
275  // but not invalidated yet.
276  std::map<int, unsigned> SpillSlotsAvailable;
277
278  // PhysRegsAvailable - This is the inverse of SpillSlotsAvailable, indicating
279  // which physregs are in use holding a stack slot value.
280  std::map<unsigned, int> PhysRegsAvailable;
281
282  DEBUG(std::cerr << MBB.getBasicBlock()->getName() << ":\n");
283
284  std::vector<ReusedOp> ReusedOperands;
285
286  // DefAndUseVReg - When we see a def&use operand that is spilled, keep track
287  // of it.  ".first" is the machine operand index (should always be 0 for now),
288  // and ".second" is the virtual register that is spilled.
289  std::vector<std::pair<unsigned, unsigned> > DefAndUseVReg;
290
291  // MaybeDeadStores - When we need to write a value back into a stack slot,
292  // keep track of the inserted store.  If the stack slot value is never read
293  // (because the value was used from some available register, for example), and
294  // subsequently stored to, the original store is dead.  This map keeps track
295  // of inserted stores that are not used.  If we see a subsequent store to the
296  // same stack slot, the original store is deleted.
297  std::map<int, MachineInstr*> MaybeDeadStores;
298
299  for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
300       MII != E; ) {
301    MachineInstr &MI = *MII;
302    MachineBasicBlock::iterator NextMII = MII; ++NextMII;
303
304    ReusedOperands.clear();
305    DefAndUseVReg.clear();
306
307    // Process all of the spilled uses and all non spilled reg references.
308    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
309      MachineOperand &MO = MI.getOperand(i);
310      if (MO.isRegister() && MO.getReg() &&
311          MRegisterInfo::isVirtualRegister(MO.getReg())) {
312        unsigned VirtReg = MO.getReg();
313
314        if (!VRM.hasStackSlot(VirtReg)) {
315          // This virtual register was assigned a physreg!
316          MI.SetMachineOperandReg(i, VRM.getPhys(VirtReg));
317        } else {
318          // Is this virtual register a spilled value?
319          if (MO.isUse()) {
320            int StackSlot = VRM.getStackSlot(VirtReg);
321            unsigned PhysReg;
322
323            // Check to see if this stack slot is available.
324            std::map<int, unsigned>::iterator SSI =
325              SpillSlotsAvailable.find(StackSlot);
326            if (SSI != SpillSlotsAvailable.end()) {
327              DEBUG(std::cerr << "Reusing SS#" << StackSlot << " from physreg "
328                              << MRI->getName(SSI->second) << " for vreg"
329                              << VirtReg <<" instead of reloading into physreg "
330                              << MRI->getName(VRM.getPhys(VirtReg)) << "\n");
331              // If this stack slot value is already available, reuse it!
332              PhysReg = SSI->second;
333              MI.SetMachineOperandReg(i, PhysReg);
334
335              // The only technical detail we have is that we don't know that
336              // PhysReg won't be clobbered by a reloaded stack slot that occurs
337              // later in the instruction.  In particular, consider 'op V1, V2'.
338              // If V1 is available in physreg R0, we would choose to reuse it
339              // here, instead of reloading it into the register the allocator
340              // indicated (say R1).  However, V2 might have to be reloaded
341              // later, and it might indicate that it needs to live in R0.  When
342              // this occurs, we need to have information available that
343              // indicates it is safe to use R1 for the reload instead of R0.
344              //
345              // To further complicate matters, we might conflict with an alias,
346              // or R0 and R1 might not be compatible with each other.  In this
347              // case, we actually insert a reload for V1 in R1, ensuring that
348              // we can get at R0 or its alias.
349              ReusedOperands.push_back(ReusedOp(i, StackSlot, PhysReg,
350                                                VRM.getPhys(VirtReg)));
351              ++NumReused;
352            } else {
353              // Otherwise, reload it and remember that we have it.
354              PhysReg = VRM.getPhys(VirtReg);
355
356            RecheckRegister:
357              // Note that, if we reused a register for a previous operand, the
358              // register we want to reload into might not actually be
359              // available.  If this occurs, use the register indicated by the
360              // reuser.
361              if (!ReusedOperands.empty())   // This is most often empty.
362                for (unsigned ro = 0, e = ReusedOperands.size(); ro != e; ++ro)
363                  if (ReusedOperands[ro].PhysRegReused == PhysReg) {
364                    // Yup, use the reload register that we didn't use before.
365                    PhysReg = ReusedOperands[ro].AssignedPhysReg;
366                    goto RecheckRegister;
367                  } else {
368                    ReusedOp &Op = ReusedOperands[ro];
369                    unsigned PRRU = Op.PhysRegReused;
370                    for (const unsigned *AS = MRI->getAliasSet(PRRU); *AS; ++AS)
371                      if (*AS == PhysReg) {
372                        // Okay, we found out that an alias of a reused register
373                        // was used.  This isn't good because it means we have
374                        // to undo a previous reuse.
375                        MRI->loadRegFromStackSlot(MBB, &MI, Op.AssignedPhysReg,
376                                                  Op.StackSlot);
377                        ClobberPhysReg(Op.AssignedPhysReg, SpillSlotsAvailable,
378                                       PhysRegsAvailable);
379
380                        // Any stores to this stack slot are not dead anymore.
381                        MaybeDeadStores.erase(Op.StackSlot);
382
383                        MI.SetMachineOperandReg(Op.Operand, Op.AssignedPhysReg);
384                        PhysRegsAvailable[Op.AssignedPhysReg] = Op.StackSlot;
385                        SpillSlotsAvailable[Op.StackSlot] = Op.AssignedPhysReg;
386                        PhysRegsAvailable.erase(Op.PhysRegReused);
387                        DEBUG(std::cerr << "Remembering SS#" << Op.StackSlot
388                              << " in physreg "
389                              << MRI->getName(Op.AssignedPhysReg) << "\n");
390                        ++NumLoads;
391                        DEBUG(std::cerr << '\t' << *prior(MII));
392
393                        DEBUG(std::cerr << "Reuse undone!\n");
394                        ReusedOperands.erase(ReusedOperands.begin()+ro);
395                        --NumReused;
396                        goto ContinueReload;
397                      }
398                  }
399            ContinueReload:
400
401              MRI->loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot);
402              // This invalidates PhysReg.
403              ClobberPhysReg(PhysReg, SpillSlotsAvailable, PhysRegsAvailable);
404
405              // Any stores to this stack slot are not dead anymore.
406              MaybeDeadStores.erase(StackSlot);
407
408              MI.SetMachineOperandReg(i, PhysReg);
409              PhysRegsAvailable[PhysReg] = StackSlot;
410              SpillSlotsAvailable[StackSlot] = PhysReg;
411              DEBUG(std::cerr << "Remembering SS#" << StackSlot <<" in physreg "
412                              << MRI->getName(PhysReg) << "\n");
413              ++NumLoads;
414              DEBUG(std::cerr << '\t' << *prior(MII));
415            }
416
417            // If this is both a def and a use, we need to emit a store to the
418            // stack slot after the instruction.  Keep track of D&U operands
419            // because we already changed it to a physreg here.
420            if (MO.isDef()) {
421              // Remember that this was a def-and-use operand, and that the
422              // stack slot is live after this instruction executes.
423              DefAndUseVReg.push_back(std::make_pair(i, VirtReg));
424            }
425          }
426        }
427      }
428    }
429
430    // Loop over all of the implicit defs, clearing them from our available
431    // sets.
432    const TargetInstrDescriptor &InstrDesc = TII->get(MI.getOpcode());
433    for (const unsigned* ImpDef = InstrDesc.ImplicitDefs; *ImpDef; ++ImpDef)
434      ClobberPhysReg(*ImpDef, SpillSlotsAvailable, PhysRegsAvailable);
435
436    DEBUG(std::cerr << '\t' << MI);
437
438    // If we have folded references to memory operands, make sure we clear all
439    // physical registers that may contain the value of the spilled virtual
440    // register
441    VirtRegMap::MI2VirtMapTy::const_iterator I, End;
442    for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
443      DEBUG(std::cerr << "Folded vreg: " << I->second.first << "  MR: "
444                      << I->second.second);
445      unsigned VirtReg = I->second.first;
446      VirtRegMap::ModRef MR = I->second.second;
447      if (VRM.hasStackSlot(VirtReg)) {
448        int SS = VRM.getStackSlot(VirtReg);
449        DEBUG(std::cerr << " - StackSlot: " << SS << "\n");
450
451        // If this reference is not a use, any previous store is now dead.
452        // Otherwise, the store to this stack slot is not dead anymore.
453        std::map<int, MachineInstr*>::iterator MDSI = MaybeDeadStores.find(SS);
454        if (MDSI != MaybeDeadStores.end()) {
455          if (MR & VirtRegMap::isRef)   // Previous store is not dead.
456            MaybeDeadStores.erase(MDSI);
457          else {
458            // If we get here, the store is dead, nuke it now.
459            assert(MR == VirtRegMap::isMod && "Can't be modref!");
460            MBB.erase(MDSI->second);
461            MaybeDeadStores.erase(MDSI);
462            ++NumDSE;
463          }
464        }
465
466        // If the spill slot value is available, and this is a new definition of
467        // the value, the value is not available anymore.
468        if (MR & VirtRegMap::isMod) {
469          std::map<int, unsigned>::iterator It = SpillSlotsAvailable.find(SS);
470          if (It != SpillSlotsAvailable.end()) {
471            PhysRegsAvailable.erase(It->second);
472            SpillSlotsAvailable.erase(It);
473          }
474        }
475      } else {
476        DEBUG(std::cerr << ": No stack slot!\n");
477      }
478    }
479
480    // Process all of the spilled defs.
481    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
482      MachineOperand &MO = MI.getOperand(i);
483      if (MO.isRegister() && MO.getReg() && MO.isDef()) {
484        unsigned VirtReg = MO.getReg();
485
486        bool TakenCareOf = false;
487        if (!MRegisterInfo::isVirtualRegister(VirtReg)) {
488          // Check to see if this is a def-and-use vreg operand that we do need
489          // to insert a store for.
490          bool OpTakenCareOf = false;
491          if (MO.isUse() && !DefAndUseVReg.empty()) {
492            for (unsigned dau = 0, e = DefAndUseVReg.size(); dau != e; ++dau)
493              if (DefAndUseVReg[dau].first == i) {
494                VirtReg = DefAndUseVReg[dau].second;
495                OpTakenCareOf = true;
496                break;
497              }
498          }
499
500          if (!OpTakenCareOf) {
501            ClobberPhysReg(VirtReg, SpillSlotsAvailable, PhysRegsAvailable);
502            TakenCareOf = true;
503          }
504        }
505
506        if (!TakenCareOf) {
507          // The only vregs left are stack slot definitions.
508          int StackSlot    = VRM.getStackSlot(VirtReg);
509          unsigned PhysReg;
510
511          // If this is a def&use operand, and we used a different physreg for
512          // it than the one assigned, make sure to execute the store from the
513          // correct physical register.
514          if (MO.getReg() == VirtReg)
515            PhysReg = VRM.getPhys(VirtReg);
516          else
517            PhysReg = MO.getReg();
518
519          MRI->storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot);
520          DEBUG(std::cerr << "Store:\t" << *next(MII));
521          MI.SetMachineOperandReg(i, PhysReg);
522
523          // If there is a dead store to this stack slot, nuke it now.
524          MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
525          if (LastStore) {
526            DEBUG(std::cerr << " Killed store:\t" << *LastStore);
527            ++NumDSE;
528            MBB.erase(LastStore);
529          }
530          LastStore = next(MII);
531
532          // If the stack slot value was previously available in some other
533          // register, change it now.  Otherwise, make the register available,
534          // in PhysReg.
535          std::map<int, unsigned>::iterator SSA =
536            SpillSlotsAvailable.find(StackSlot);
537          if (SSA != SpillSlotsAvailable.end()) {
538            // Remove the record for physreg.
539            PhysRegsAvailable.erase(SSA->second);
540            SpillSlotsAvailable.erase(SSA);
541          }
542          ClobberPhysReg(PhysReg, SpillSlotsAvailable, PhysRegsAvailable);
543
544          PhysRegsAvailable[PhysReg] = StackSlot;
545          SpillSlotsAvailable[StackSlot] = PhysReg;
546          DEBUG(std::cerr << "Updating SS#" << StackSlot <<" in physreg "
547                          << MRI->getName(PhysReg) << " for virtreg #"
548                          << VirtReg << "\n");
549
550          ++NumStores;
551          VirtReg = PhysReg;
552        }
553      }
554    }
555    MII = NextMII;
556  }
557}
558
559
560
561llvm::Spiller* llvm::createSpiller() {
562  switch (SpillerOpt) {
563  default: assert(0 && "Unreachable!");
564  case local:
565    return new LocalSpiller();
566  case simple:
567    return new SimpleSpiller();
568  }
569}
570