VirtRegMap.cpp revision 91e2390818080ae2b059e3ff850a9455858e4f7b
1//===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the VirtRegMap class.
11//
12// It also contains implementations of the the Spiller interface, which, given a
13// virtual register map and a machine function, eliminates all virtual
14// references by replacing them with physical register references - adding spill
15// code as necessary.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "spiller"
20#include "VirtRegMap.h"
21#include "llvm/Function.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/SSARegMap.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Support/CommandLine.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/Support/Compiler.h"
30#include "llvm/ADT/BitVector.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/ADT/SmallSet.h"
34#include <algorithm>
35using namespace llvm;
36
37STATISTIC(NumSpills, "Number of register spills");
38STATISTIC(NumStores, "Number of stores added");
39STATISTIC(NumLoads , "Number of loads added");
40STATISTIC(NumReused, "Number of values reused");
41STATISTIC(NumDSE   , "Number of dead stores elided");
42STATISTIC(NumDCE   , "Number of copies elided");
43
44namespace {
45  enum SpillerName { simple, local };
46
47  static cl::opt<SpillerName>
48  SpillerOpt("spiller",
49             cl::desc("Spiller to use: (default: local)"),
50             cl::Prefix,
51             cl::values(clEnumVal(simple, "  simple spiller"),
52                        clEnumVal(local,  "  local spiller"),
53                        clEnumValEnd),
54             cl::init(local));
55}
56
57//===----------------------------------------------------------------------===//
58//  VirtRegMap implementation
59//===----------------------------------------------------------------------===//
60
61VirtRegMap::VirtRegMap(MachineFunction &mf)
62  : TII(*mf.getTarget().getInstrInfo()), MF(mf),
63    Virt2PhysMap(NO_PHYS_REG), Virt2StackSlotMap(NO_STACK_SLOT) {
64  grow();
65}
66
67void VirtRegMap::grow() {
68  Virt2PhysMap.grow(MF.getSSARegMap()->getLastVirtReg());
69  Virt2StackSlotMap.grow(MF.getSSARegMap()->getLastVirtReg());
70}
71
72int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
73  assert(MRegisterInfo::isVirtualRegister(virtReg));
74  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
75         "attempt to assign stack slot to already spilled register");
76  const TargetRegisterClass* RC = MF.getSSARegMap()->getRegClass(virtReg);
77  int frameIndex = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
78                                                        RC->getAlignment());
79  Virt2StackSlotMap[virtReg] = frameIndex;
80  ++NumSpills;
81  return frameIndex;
82}
83
84void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int frameIndex) {
85  assert(MRegisterInfo::isVirtualRegister(virtReg));
86  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
87         "attempt to assign stack slot to already spilled register");
88  Virt2StackSlotMap[virtReg] = frameIndex;
89}
90
91void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *OldMI,
92                            unsigned OpNo, MachineInstr *NewMI) {
93  // Move previous memory references folded to new instruction.
94  MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(NewMI);
95  for (MI2VirtMapTy::iterator I = MI2VirtMap.lower_bound(OldMI),
96         E = MI2VirtMap.end(); I != E && I->first == OldMI; ) {
97    MI2VirtMap.insert(IP, std::make_pair(NewMI, I->second));
98    MI2VirtMap.erase(I++);
99  }
100
101  ModRef MRInfo;
102  const TargetInstrDescriptor *TID = OldMI->getInstrDescriptor();
103  if (TID->getOperandConstraint(OpNo, TOI::TIED_TO) != -1 ||
104      TID->findTiedToSrcOperand(OpNo) != -1) {
105    // Folded a two-address operand.
106    MRInfo = isModRef;
107  } else if (OldMI->getOperand(OpNo).isDef()) {
108    MRInfo = isMod;
109  } else {
110    MRInfo = isRef;
111  }
112
113  // add new memory reference
114  MI2VirtMap.insert(IP, std::make_pair(NewMI, std::make_pair(VirtReg, MRInfo)));
115}
116
117void VirtRegMap::print(std::ostream &OS) const {
118  const MRegisterInfo* MRI = MF.getTarget().getRegisterInfo();
119
120  OS << "********** REGISTER MAP **********\n";
121  for (unsigned i = MRegisterInfo::FirstVirtualRegister,
122         e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i) {
123    if (Virt2PhysMap[i] != (unsigned)VirtRegMap::NO_PHYS_REG)
124      OS << "[reg" << i << " -> " << MRI->getName(Virt2PhysMap[i]) << "]\n";
125
126  }
127
128  for (unsigned i = MRegisterInfo::FirstVirtualRegister,
129         e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i)
130    if (Virt2StackSlotMap[i] != VirtRegMap::NO_STACK_SLOT)
131      OS << "[reg" << i << " -> fi#" << Virt2StackSlotMap[i] << "]\n";
132  OS << '\n';
133}
134
135void VirtRegMap::dump() const {
136  print(DOUT);
137}
138
139
140//===----------------------------------------------------------------------===//
141// Simple Spiller Implementation
142//===----------------------------------------------------------------------===//
143
144Spiller::~Spiller() {}
145
146namespace {
147  struct VISIBILITY_HIDDEN SimpleSpiller : public Spiller {
148    bool runOnMachineFunction(MachineFunction& mf, VirtRegMap &VRM);
149  };
150}
151
152bool SimpleSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
153  DOUT << "********** REWRITE MACHINE CODE **********\n";
154  DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
155  const TargetMachine &TM = MF.getTarget();
156  const MRegisterInfo &MRI = *TM.getRegisterInfo();
157  bool *PhysRegsUsed = MF.getUsedPhysregs();
158
159  // LoadedRegs - Keep track of which vregs are loaded, so that we only load
160  // each vreg once (in the case where a spilled vreg is used by multiple
161  // operands).  This is always smaller than the number of operands to the
162  // current machine instr, so it should be small.
163  std::vector<unsigned> LoadedRegs;
164
165  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
166       MBBI != E; ++MBBI) {
167    DOUT << MBBI->getBasicBlock()->getName() << ":\n";
168    MachineBasicBlock &MBB = *MBBI;
169    for (MachineBasicBlock::iterator MII = MBB.begin(),
170           E = MBB.end(); MII != E; ++MII) {
171      MachineInstr &MI = *MII;
172      for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
173        MachineOperand &MO = MI.getOperand(i);
174        if (MO.isRegister() && MO.getReg())
175          if (MRegisterInfo::isVirtualRegister(MO.getReg())) {
176            unsigned VirtReg = MO.getReg();
177            unsigned PhysReg = VRM.getPhys(VirtReg);
178            if (VRM.hasStackSlot(VirtReg)) {
179              int StackSlot = VRM.getStackSlot(VirtReg);
180              const TargetRegisterClass* RC =
181                MF.getSSARegMap()->getRegClass(VirtReg);
182
183              if (MO.isUse() &&
184                  std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
185                  == LoadedRegs.end()) {
186                MRI.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
187                LoadedRegs.push_back(VirtReg);
188                ++NumLoads;
189                DOUT << '\t' << *prior(MII);
190              }
191
192              if (MO.isDef()) {
193                MRI.storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot, RC);
194                ++NumStores;
195              }
196            }
197            PhysRegsUsed[PhysReg] = true;
198            MI.getOperand(i).setReg(PhysReg);
199          } else {
200            PhysRegsUsed[MO.getReg()] = true;
201          }
202      }
203
204      DOUT << '\t' << MI;
205      LoadedRegs.clear();
206    }
207  }
208  return true;
209}
210
211//===----------------------------------------------------------------------===//
212//  Local Spiller Implementation
213//===----------------------------------------------------------------------===//
214
215namespace {
216  /// LocalSpiller - This spiller does a simple pass over the machine basic
217  /// block to attempt to keep spills in registers as much as possible for
218  /// blocks that have low register pressure (the vreg may be spilled due to
219  /// register pressure in other blocks).
220  class VISIBILITY_HIDDEN LocalSpiller : public Spiller {
221    const MRegisterInfo *MRI;
222    const TargetInstrInfo *TII;
223  public:
224    bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
225      MRI = MF.getTarget().getRegisterInfo();
226      TII = MF.getTarget().getInstrInfo();
227      DOUT << "\n**** Local spiller rewriting function '"
228           << MF.getFunction()->getName() << "':\n";
229
230      for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
231           MBB != E; ++MBB)
232        RewriteMBB(*MBB, VRM);
233      return true;
234    }
235  private:
236    void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM);
237  };
238}
239
240/// AvailableSpills - As the local spiller is scanning and rewriting an MBB from
241/// top down, keep track of which spills slots are available in each register.
242///
243/// Note that not all physregs are created equal here.  In particular, some
244/// physregs are reloads that we are allowed to clobber or ignore at any time.
245/// Other physregs are values that the register allocated program is using that
246/// we cannot CHANGE, but we can read if we like.  We keep track of this on a
247/// per-stack-slot basis as the low bit in the value of the SpillSlotsAvailable
248/// entries.  The predicate 'canClobberPhysReg()' checks this bit and
249/// addAvailable sets it if.
250namespace {
251class VISIBILITY_HIDDEN AvailableSpills {
252  const MRegisterInfo *MRI;
253  const TargetInstrInfo *TII;
254
255  // SpillSlotsAvailable - This map keeps track of all of the spilled virtual
256  // register values that are still available, due to being loaded or stored to,
257  // but not invalidated yet.
258  typedef std::pair<unsigned, MachineInstr*> SSInfo;
259  std::map<int, SSInfo> SpillSlotsAvailable;
260
261  // PhysRegsAvailable - This is the inverse of SpillSlotsAvailable, indicating
262  // which stack slot values are currently held by a physreg.  This is used to
263  // invalidate entries in SpillSlotsAvailable when a physreg is modified.
264  std::multimap<unsigned, int> PhysRegsAvailable;
265
266  void disallowClobberPhysRegOnly(unsigned PhysReg);
267
268  void ClobberPhysRegOnly(unsigned PhysReg);
269public:
270  AvailableSpills(const MRegisterInfo *mri, const TargetInstrInfo *tii)
271    : MRI(mri), TII(tii) {
272  }
273
274  const MRegisterInfo *getRegInfo() const { return MRI; }
275
276  /// getSpillSlotPhysReg - If the specified stack slot is available in a
277  /// physical register, return that PhysReg, otherwise return 0. It also
278  /// returns by reference the instruction that either defines or last uses
279  /// the register.
280  unsigned getSpillSlotPhysReg(int Slot, MachineInstr *&SSMI) const {
281    std::map<int, SSInfo>::const_iterator I = SpillSlotsAvailable.find(Slot);
282    if (I != SpillSlotsAvailable.end()) {
283      SSMI = I->second.second;
284      return I->second.first >> 1;  // Remove the CanClobber bit.
285    }
286    return 0;
287  }
288
289  /// addAvailable - Mark that the specified stack slot is available in the
290  /// specified physreg.  If CanClobber is true, the physreg can be modified at
291  /// any time without changing the semantics of the program.
292  void addAvailable(int Slot, MachineInstr *MI, unsigned Reg,
293                    bool CanClobber = true) {
294    // If this stack slot is thought to be available in some other physreg,
295    // remove its record.
296    ModifyStackSlot(Slot);
297
298    PhysRegsAvailable.insert(std::make_pair(Reg, Slot));
299    SpillSlotsAvailable[Slot] =
300      std::make_pair((Reg << 1) | (unsigned)CanClobber, MI);
301
302    DOUT << "Remembering SS#" << Slot << " in physreg "
303         << MRI->getName(Reg) << "\n";
304  }
305
306  /// canClobberPhysReg - Return true if the spiller is allowed to change the
307  /// value of the specified stackslot register if it desires.  The specified
308  /// stack slot must be available in a physreg for this query to make sense.
309  bool canClobberPhysReg(int Slot) const {
310    assert(SpillSlotsAvailable.count(Slot) && "Slot not available!");
311    return SpillSlotsAvailable.find(Slot)->second.first & 1;
312  }
313
314  /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
315  /// stackslot register. The register is still available but is no longer
316  /// allowed to be modifed.
317  void disallowClobberPhysReg(unsigned PhysReg);
318
319  /// ClobberPhysReg - This is called when the specified physreg changes
320  /// value.  We use this to invalidate any info about stuff we thing lives in
321  /// it and any of its aliases.
322  void ClobberPhysReg(unsigned PhysReg);
323
324  /// ModifyStackSlot - This method is called when the value in a stack slot
325  /// changes.  This removes information about which register the previous value
326  /// for this slot lives in (as the previous value is dead now).
327  void ModifyStackSlot(int Slot);
328};
329}
330
331/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
332/// stackslot register. The register is still available but is no longer
333/// allowed to be modifed.
334void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
335  std::multimap<unsigned, int>::iterator I =
336    PhysRegsAvailable.lower_bound(PhysReg);
337  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
338    int Slot = I->second;
339    I++;
340    assert((SpillSlotsAvailable[Slot].first >> 1) == PhysReg &&
341           "Bidirectional map mismatch!");
342    SpillSlotsAvailable[Slot].first &= ~1;
343    DOUT << "PhysReg " << MRI->getName(PhysReg)
344         << " copied, it is available for use but can no longer be modified\n";
345  }
346}
347
348/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
349/// stackslot register and its aliases. The register and its aliases may
350/// still available but is no longer allowed to be modifed.
351void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
352  for (const unsigned *AS = MRI->getAliasSet(PhysReg); *AS; ++AS)
353    disallowClobberPhysRegOnly(*AS);
354  disallowClobberPhysRegOnly(PhysReg);
355}
356
357/// ClobberPhysRegOnly - This is called when the specified physreg changes
358/// value.  We use this to invalidate any info about stuff we thing lives in it.
359void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
360  std::multimap<unsigned, int>::iterator I =
361    PhysRegsAvailable.lower_bound(PhysReg);
362  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
363    int Slot = I->second;
364    PhysRegsAvailable.erase(I++);
365    assert((SpillSlotsAvailable[Slot].first >> 1) == PhysReg &&
366           "Bidirectional map mismatch!");
367    SpillSlotsAvailable.erase(Slot);
368    DOUT << "PhysReg " << MRI->getName(PhysReg)
369         << " clobbered, invalidating SS#" << Slot << "\n";
370  }
371}
372
373/// ClobberPhysReg - This is called when the specified physreg changes
374/// value.  We use this to invalidate any info about stuff we thing lives in
375/// it and any of its aliases.
376void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
377  for (const unsigned *AS = MRI->getAliasSet(PhysReg); *AS; ++AS)
378    ClobberPhysRegOnly(*AS);
379  ClobberPhysRegOnly(PhysReg);
380}
381
382/// ModifyStackSlot - This method is called when the value in a stack slot
383/// changes.  This removes information about which register the previous value
384/// for this slot lives in (as the previous value is dead now).
385void AvailableSpills::ModifyStackSlot(int Slot) {
386  std::map<int, SSInfo>::iterator It = SpillSlotsAvailable.find(Slot);
387  if (It == SpillSlotsAvailable.end()) return;
388  unsigned Reg = It->second.first >> 1;
389  SpillSlotsAvailable.erase(It);
390
391  // This register may hold the value of multiple stack slots, only remove this
392  // stack slot from the set of values the register contains.
393  std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
394  for (; ; ++I) {
395    assert(I != PhysRegsAvailable.end() && I->first == Reg &&
396           "Map inverse broken!");
397    if (I->second == Slot) break;
398  }
399  PhysRegsAvailable.erase(I);
400}
401
402
403
404// ReusedOp - For each reused operand, we keep track of a bit of information, in
405// case we need to rollback upon processing a new operand.  See comments below.
406namespace {
407  struct ReusedOp {
408    // The MachineInstr operand that reused an available value.
409    unsigned Operand;
410
411    // StackSlot - The spill slot of the value being reused.
412    unsigned StackSlot;
413
414    // PhysRegReused - The physical register the value was available in.
415    unsigned PhysRegReused;
416
417    // AssignedPhysReg - The physreg that was assigned for use by the reload.
418    unsigned AssignedPhysReg;
419
420    // VirtReg - The virtual register itself.
421    unsigned VirtReg;
422
423    ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
424             unsigned vreg)
425      : Operand(o), StackSlot(ss), PhysRegReused(prr), AssignedPhysReg(apr),
426      VirtReg(vreg) {}
427  };
428
429  /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
430  /// is reused instead of reloaded.
431  class VISIBILITY_HIDDEN ReuseInfo {
432    MachineInstr &MI;
433    std::vector<ReusedOp> Reuses;
434    BitVector PhysRegsClobbered;
435  public:
436    ReuseInfo(MachineInstr &mi, const MRegisterInfo *mri) : MI(mi) {
437      PhysRegsClobbered.resize(mri->getNumRegs());
438    }
439
440    bool hasReuses() const {
441      return !Reuses.empty();
442    }
443
444    /// addReuse - If we choose to reuse a virtual register that is already
445    /// available instead of reloading it, remember that we did so.
446    void addReuse(unsigned OpNo, unsigned StackSlot,
447                  unsigned PhysRegReused, unsigned AssignedPhysReg,
448                  unsigned VirtReg) {
449      // If the reload is to the assigned register anyway, no undo will be
450      // required.
451      if (PhysRegReused == AssignedPhysReg) return;
452
453      // Otherwise, remember this.
454      Reuses.push_back(ReusedOp(OpNo, StackSlot, PhysRegReused,
455                                AssignedPhysReg, VirtReg));
456    }
457
458    void markClobbered(unsigned PhysReg) {
459      PhysRegsClobbered.set(PhysReg);
460    }
461
462    bool isClobbered(unsigned PhysReg) const {
463      return PhysRegsClobbered.test(PhysReg);
464    }
465
466    /// GetRegForReload - We are about to emit a reload into PhysReg.  If there
467    /// is some other operand that is using the specified register, either pick
468    /// a new register to use, or evict the previous reload and use this reg.
469    unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
470                             AvailableSpills &Spills,
471                             std::map<int, MachineInstr*> &MaybeDeadStores,
472                             SmallSet<unsigned, 8> &Rejected) {
473      if (Reuses.empty()) return PhysReg;  // This is most often empty.
474
475      for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
476        ReusedOp &Op = Reuses[ro];
477        // If we find some other reuse that was supposed to use this register
478        // exactly for its reload, we can change this reload to use ITS reload
479        // register. That is, unless its reload register has already been
480        // considered and subsequently rejected because it has also been reused
481        // by another operand.
482        if (Op.PhysRegReused == PhysReg &&
483            Rejected.count(Op.AssignedPhysReg) == 0) {
484          // Yup, use the reload register that we didn't use before.
485          unsigned NewReg = Op.AssignedPhysReg;
486          Rejected.insert(PhysReg);
487          return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores, Rejected);
488        } else {
489          // Otherwise, we might also have a problem if a previously reused
490          // value aliases the new register.  If so, codegen the previous reload
491          // and use this one.
492          unsigned PRRU = Op.PhysRegReused;
493          const MRegisterInfo *MRI = Spills.getRegInfo();
494          if (MRI->areAliases(PRRU, PhysReg)) {
495            // Okay, we found out that an alias of a reused register
496            // was used.  This isn't good because it means we have
497            // to undo a previous reuse.
498            MachineBasicBlock *MBB = MI->getParent();
499            const TargetRegisterClass *AliasRC =
500              MBB->getParent()->getSSARegMap()->getRegClass(Op.VirtReg);
501
502            // Copy Op out of the vector and remove it, we're going to insert an
503            // explicit load for it.
504            ReusedOp NewOp = Op;
505            Reuses.erase(Reuses.begin()+ro);
506
507            // Ok, we're going to try to reload the assigned physreg into the
508            // slot that we were supposed to in the first place.  However, that
509            // register could hold a reuse.  Check to see if it conflicts or
510            // would prefer us to use a different register.
511            unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg,
512                                         MI, Spills, MaybeDeadStores, Rejected);
513
514            MRI->loadRegFromStackSlot(*MBB, MI, NewPhysReg,
515                                      NewOp.StackSlot, AliasRC);
516            Spills.ClobberPhysReg(NewPhysReg);
517            Spills.ClobberPhysReg(NewOp.PhysRegReused);
518
519            // Any stores to this stack slot are not dead anymore.
520            MaybeDeadStores.erase(NewOp.StackSlot);
521
522            MI->getOperand(NewOp.Operand).setReg(NewPhysReg);
523
524            Spills.addAvailable(NewOp.StackSlot, MI, NewPhysReg);
525            ++NumLoads;
526            DEBUG(MachineBasicBlock::iterator MII = MI;
527                  DOUT << '\t' << *prior(MII));
528
529            DOUT << "Reuse undone!\n";
530            --NumReused;
531
532            // Finally, PhysReg is now available, go ahead and use it.
533            return PhysReg;
534          }
535        }
536      }
537      return PhysReg;
538    }
539
540    /// GetRegForReload - Helper for the above GetRegForReload(). Add a
541    /// 'Rejected' set to remember which registers have been considered and
542    /// rejected for the reload. This avoids infinite looping in case like
543    /// this:
544    /// t1 := op t2, t3
545    /// t2 <- assigned r0 for use by the reload but ended up reuse r1
546    /// t3 <- assigned r1 for use by the reload but ended up reuse r0
547    /// t1 <- desires r1
548    ///       sees r1 is taken by t2, tries t2's reload register r0
549    ///       sees r0 is taken by t3, tries t3's reload register r1
550    ///       sees r1 is taken by t2, tries t2's reload register r0 ...
551    unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
552                             AvailableSpills &Spills,
553                             std::map<int, MachineInstr*> &MaybeDeadStores) {
554      SmallSet<unsigned, 8> Rejected;
555      return GetRegForReload(PhysReg, MI, Spills, MaybeDeadStores, Rejected);
556    }
557  };
558}
559
560
561/// rewriteMBB - Keep track of which spills are available even after the
562/// register allocator is done with them.  If possible, avoid reloading vregs.
563void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) {
564
565  DOUT << MBB.getBasicBlock()->getName() << ":\n";
566
567  // Spills - Keep track of which spilled values are available in physregs so
568  // that we can choose to reuse the physregs instead of emitting reloads.
569  AvailableSpills Spills(MRI, TII);
570
571  // MaybeDeadStores - When we need to write a value back into a stack slot,
572  // keep track of the inserted store.  If the stack slot value is never read
573  // (because the value was used from some available register, for example), and
574  // subsequently stored to, the original store is dead.  This map keeps track
575  // of inserted stores that are not used.  If we see a subsequent store to the
576  // same stack slot, the original store is deleted.
577  std::map<int, MachineInstr*> MaybeDeadStores;
578
579  bool *PhysRegsUsed = MBB.getParent()->getUsedPhysregs();
580
581  for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
582       MII != E; ) {
583    MachineInstr &MI = *MII;
584    MachineBasicBlock::iterator NextMII = MII; ++NextMII;
585
586    /// ReusedOperands - Keep track of operand reuse in case we need to undo
587    /// reuse.
588    ReuseInfo ReusedOperands(MI, MRI);
589
590    // Loop over all of the implicit defs, clearing them from our available
591    // sets.
592    const TargetInstrDescriptor *TID = MI.getInstrDescriptor();
593    const unsigned *ImpDef = TID->ImplicitDefs;
594    if (ImpDef) {
595      for ( ; *ImpDef; ++ImpDef) {
596        PhysRegsUsed[*ImpDef] = true;
597        ReusedOperands.markClobbered(*ImpDef);
598        Spills.ClobberPhysReg(*ImpDef);
599      }
600    }
601
602    // Process all of the spilled uses and all non spilled reg references.
603    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
604      MachineOperand &MO = MI.getOperand(i);
605      if (!MO.isRegister() || MO.getReg() == 0)
606        continue;   // Ignore non-register operands.
607
608      if (MRegisterInfo::isPhysicalRegister(MO.getReg())) {
609        // Ignore physregs for spilling, but remember that it is used by this
610        // function.
611        PhysRegsUsed[MO.getReg()] = true;
612        ReusedOperands.markClobbered(MO.getReg());
613        continue;
614      }
615
616      assert(MRegisterInfo::isVirtualRegister(MO.getReg()) &&
617             "Not a virtual or a physical register?");
618
619      unsigned VirtReg = MO.getReg();
620      if (!VRM.hasStackSlot(VirtReg)) {
621        // This virtual register was assigned a physreg!
622        unsigned Phys = VRM.getPhys(VirtReg);
623        PhysRegsUsed[Phys] = true;
624        if (MO.isDef())
625          ReusedOperands.markClobbered(Phys);
626        MI.getOperand(i).setReg(Phys);
627        continue;
628      }
629
630      // This virtual register is now known to be a spilled value.
631      if (!MO.isUse())
632        continue;  // Handle defs in the loop below (handle use&def here though)
633
634      int StackSlot = VRM.getStackSlot(VirtReg);
635      unsigned PhysReg;
636
637      // Check to see if this stack slot is available.
638      MachineInstr *SSMI = NULL;
639      if ((PhysReg = Spills.getSpillSlotPhysReg(StackSlot, SSMI))) {
640        // This spilled operand might be part of a two-address operand.  If this
641        // is the case, then changing it will necessarily require changing the
642        // def part of the instruction as well.  However, in some cases, we
643        // aren't allowed to modify the reused register.  If none of these cases
644        // apply, reuse it.
645        bool CanReuse = true;
646        int ti = TID->getOperandConstraint(i, TOI::TIED_TO);
647        if (ti != -1 &&
648            MI.getOperand(ti).isReg() &&
649            MI.getOperand(ti).getReg() == VirtReg) {
650          // Okay, we have a two address operand.  We can reuse this physreg as
651          // long as we are allowed to clobber the value and there isn't an
652          // earlier def that has already clobbered the physreg.
653          CanReuse = Spills.canClobberPhysReg(StackSlot) &&
654            !ReusedOperands.isClobbered(PhysReg);
655        }
656
657        if (CanReuse) {
658          // If this stack slot value is already available, reuse it!
659          DOUT << "Reusing SS#" << StackSlot << " from physreg "
660               << MRI->getName(PhysReg) << " for vreg"
661               << VirtReg <<" instead of reloading into physreg "
662               << MRI->getName(VRM.getPhys(VirtReg)) << "\n";
663          MI.getOperand(i).setReg(PhysReg);
664
665          // Extend the live range of the MI that last kill the register if
666          // necessary.
667          MachineOperand *MOK = SSMI->findRegisterUseOperand(PhysReg, true);
668          if (MOK)
669            MOK->unsetIsKill();
670
671          // The only technical detail we have is that we don't know that
672          // PhysReg won't be clobbered by a reloaded stack slot that occurs
673          // later in the instruction.  In particular, consider 'op V1, V2'.
674          // If V1 is available in physreg R0, we would choose to reuse it
675          // here, instead of reloading it into the register the allocator
676          // indicated (say R1).  However, V2 might have to be reloaded
677          // later, and it might indicate that it needs to live in R0.  When
678          // this occurs, we need to have information available that
679          // indicates it is safe to use R1 for the reload instead of R0.
680          //
681          // To further complicate matters, we might conflict with an alias,
682          // or R0 and R1 might not be compatible with each other.  In this
683          // case, we actually insert a reload for V1 in R1, ensuring that
684          // we can get at R0 or its alias.
685          ReusedOperands.addReuse(i, StackSlot, PhysReg,
686                                  VRM.getPhys(VirtReg), VirtReg);
687          if (ti != -1)
688            // Only mark it clobbered if this is a use&def operand.
689            ReusedOperands.markClobbered(PhysReg);
690          ++NumReused;
691          continue;
692        }
693
694        // Otherwise we have a situation where we have a two-address instruction
695        // whose mod/ref operand needs to be reloaded.  This reload is already
696        // available in some register "PhysReg", but if we used PhysReg as the
697        // operand to our 2-addr instruction, the instruction would modify
698        // PhysReg.  This isn't cool if something later uses PhysReg and expects
699        // to get its initial value.
700        //
701        // To avoid this problem, and to avoid doing a load right after a store,
702        // we emit a copy from PhysReg into the designated register for this
703        // operand.
704        unsigned DesignatedReg = VRM.getPhys(VirtReg);
705        assert(DesignatedReg && "Must map virtreg to physreg!");
706
707        // Note that, if we reused a register for a previous operand, the
708        // register we want to reload into might not actually be
709        // available.  If this occurs, use the register indicated by the
710        // reuser.
711        if (ReusedOperands.hasReuses())
712          DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI,
713                                                      Spills, MaybeDeadStores);
714
715        // If the mapped designated register is actually the physreg we have
716        // incoming, we don't need to inserted a dead copy.
717        if (DesignatedReg == PhysReg) {
718          // If this stack slot value is already available, reuse it!
719          DOUT << "Reusing SS#" << StackSlot << " from physreg "
720               << MRI->getName(PhysReg) << " for vreg"
721               << VirtReg
722               << " instead of reloading into same physreg.\n";
723          MI.getOperand(i).setReg(PhysReg);
724          ReusedOperands.markClobbered(PhysReg);
725          ++NumReused;
726          continue;
727        }
728
729        const TargetRegisterClass* RC =
730          MBB.getParent()->getSSARegMap()->getRegClass(VirtReg);
731
732        PhysRegsUsed[DesignatedReg] = true;
733        ReusedOperands.markClobbered(DesignatedReg);
734        MRI->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC);
735
736        // This invalidates DesignatedReg.
737        Spills.ClobberPhysReg(DesignatedReg);
738
739        Spills.addAvailable(StackSlot, &MI, DesignatedReg);
740        MI.getOperand(i).setReg(DesignatedReg);
741        DOUT << '\t' << *prior(MII);
742        ++NumReused;
743        continue;
744      }
745
746      // Otherwise, reload it and remember that we have it.
747      PhysReg = VRM.getPhys(VirtReg);
748      assert(PhysReg && "Must map virtreg to physreg!");
749      const TargetRegisterClass* RC =
750        MBB.getParent()->getSSARegMap()->getRegClass(VirtReg);
751
752      // Note that, if we reused a register for a previous operand, the
753      // register we want to reload into might not actually be
754      // available.  If this occurs, use the register indicated by the
755      // reuser.
756      if (ReusedOperands.hasReuses())
757        PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
758                                                 Spills, MaybeDeadStores);
759
760      PhysRegsUsed[PhysReg] = true;
761      ReusedOperands.markClobbered(PhysReg);
762      MRI->loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
763      // This invalidates PhysReg.
764      Spills.ClobberPhysReg(PhysReg);
765
766      // Any stores to this stack slot are not dead anymore.
767      MaybeDeadStores.erase(StackSlot);
768      Spills.addAvailable(StackSlot, &MI, PhysReg);
769      ++NumLoads;
770      MI.getOperand(i).setReg(PhysReg);
771      DOUT << '\t' << *prior(MII);
772    }
773
774    DOUT << '\t' << MI;
775
776    // If we have folded references to memory operands, make sure we clear all
777    // physical registers that may contain the value of the spilled virtual
778    // register
779    VirtRegMap::MI2VirtMapTy::const_iterator I, End;
780    for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
781      DOUT << "Folded vreg: " << I->second.first << "  MR: "
782           << I->second.second;
783      unsigned VirtReg = I->second.first;
784      VirtRegMap::ModRef MR = I->second.second;
785      if (!VRM.hasStackSlot(VirtReg)) {
786        DOUT << ": No stack slot!\n";
787        continue;
788      }
789      int SS = VRM.getStackSlot(VirtReg);
790      DOUT << " - StackSlot: " << SS << "\n";
791
792      // If this folded instruction is just a use, check to see if it's a
793      // straight load from the virt reg slot.
794      if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
795        int FrameIdx;
796        if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
797          if (FrameIdx == SS) {
798            // If this spill slot is available, turn it into a copy (or nothing)
799            // instead of leaving it as a load!
800            MachineInstr *Dummy = NULL;
801            if (unsigned InReg = Spills.getSpillSlotPhysReg(SS, Dummy)) {
802              DOUT << "Promoted Load To Copy: " << MI;
803              MachineFunction &MF = *MBB.getParent();
804              if (DestReg != InReg) {
805                MRI->copyRegToReg(MBB, &MI, DestReg, InReg,
806                                  MF.getSSARegMap()->getRegClass(VirtReg));
807                // Revisit the copy so we make sure to notice the effects of the
808                // operation on the destreg (either needing to RA it if it's
809                // virtual or needing to clobber any values if it's physical).
810                NextMII = &MI;
811                --NextMII;  // backtrack to the copy.
812              }
813              VRM.RemoveFromFoldedVirtMap(&MI);
814              MBB.erase(&MI);
815              goto ProcessNextInst;
816            }
817          }
818        }
819      }
820
821      // If this reference is not a use, any previous store is now dead.
822      // Otherwise, the store to this stack slot is not dead anymore.
823      std::map<int, MachineInstr*>::iterator MDSI = MaybeDeadStores.find(SS);
824      if (MDSI != MaybeDeadStores.end()) {
825        if (MR & VirtRegMap::isRef)   // Previous store is not dead.
826          MaybeDeadStores.erase(MDSI);
827        else {
828          // If we get here, the store is dead, nuke it now.
829          assert(VirtRegMap::isMod && "Can't be modref!");
830          DOUT << "Removed dead store:\t" << *MDSI->second;
831          MBB.erase(MDSI->second);
832          VRM.RemoveFromFoldedVirtMap(MDSI->second);
833          MaybeDeadStores.erase(MDSI);
834          ++NumDSE;
835        }
836      }
837
838      // If the spill slot value is available, and this is a new definition of
839      // the value, the value is not available anymore.
840      if (MR & VirtRegMap::isMod) {
841        // Notice that the value in this stack slot has been modified.
842        Spills.ModifyStackSlot(SS);
843
844        // If this is *just* a mod of the value, check to see if this is just a
845        // store to the spill slot (i.e. the spill got merged into the copy). If
846        // so, realize that the vreg is available now, and add the store to the
847        // MaybeDeadStore info.
848        int StackSlot;
849        if (!(MR & VirtRegMap::isRef)) {
850          if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
851            assert(MRegisterInfo::isPhysicalRegister(SrcReg) &&
852                   "Src hasn't been allocated yet?");
853            // Okay, this is certainly a store of SrcReg to [StackSlot].  Mark
854            // this as a potentially dead store in case there is a subsequent
855            // store into the stack slot without a read from it.
856            MaybeDeadStores[StackSlot] = &MI;
857
858            // If the stack slot value was previously available in some other
859            // register, change it now.  Otherwise, make the register available,
860            // in PhysReg.
861            Spills.addAvailable(StackSlot, &MI, SrcReg, false/*don't clobber*/);
862          }
863        }
864      }
865    }
866
867    // Process all of the spilled defs.
868    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
869      MachineOperand &MO = MI.getOperand(i);
870      if (MO.isRegister() && MO.getReg() && MO.isDef()) {
871        unsigned VirtReg = MO.getReg();
872
873        if (!MRegisterInfo::isVirtualRegister(VirtReg)) {
874          // Check to see if this is a noop copy.  If so, eliminate the
875          // instruction before considering the dest reg to be changed.
876          unsigned Src, Dst;
877          if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
878            ++NumDCE;
879            DOUT << "Removing now-noop copy: " << MI;
880            MBB.erase(&MI);
881            VRM.RemoveFromFoldedVirtMap(&MI);
882            Spills.disallowClobberPhysReg(VirtReg);
883            goto ProcessNextInst;
884          }
885
886          // If it's not a no-op copy, it clobbers the value in the destreg.
887          Spills.ClobberPhysReg(VirtReg);
888          ReusedOperands.markClobbered(VirtReg);
889
890          // Check to see if this instruction is a load from a stack slot into
891          // a register.  If so, this provides the stack slot value in the reg.
892          int FrameIdx;
893          if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
894            assert(DestReg == VirtReg && "Unknown load situation!");
895
896            // Otherwise, if it wasn't available, remember that it is now!
897            Spills.addAvailable(FrameIdx, &MI, DestReg);
898            goto ProcessNextInst;
899          }
900
901          continue;
902        }
903
904        // The only vregs left are stack slot definitions.
905        int StackSlot = VRM.getStackSlot(VirtReg);
906        const TargetRegisterClass *RC =
907          MBB.getParent()->getSSARegMap()->getRegClass(VirtReg);
908
909        // If this def is part of a two-address operand, make sure to execute
910        // the store from the correct physical register.
911        unsigned PhysReg;
912        int TiedOp = MI.getInstrDescriptor()->findTiedToSrcOperand(i);
913        if (TiedOp != -1)
914          PhysReg = MI.getOperand(TiedOp).getReg();
915        else {
916          PhysReg = VRM.getPhys(VirtReg);
917          if (ReusedOperands.isClobbered(PhysReg)) {
918            // Another def has taken the assigned physreg. It must have been a
919            // use&def which got it due to reuse. Undo the reuse!
920            PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
921                                                     Spills, MaybeDeadStores);
922          }
923        }
924
925        PhysRegsUsed[PhysReg] = true;
926        ReusedOperands.markClobbered(PhysReg);
927        MRI->storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot, RC);
928        DOUT << "Store:\t" << *next(MII);
929        MI.getOperand(i).setReg(PhysReg);
930
931        // If there is a dead store to this stack slot, nuke it now.
932        MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
933        if (LastStore) {
934          DOUT << "Removed dead store:\t" << *LastStore;
935          ++NumDSE;
936          MBB.erase(LastStore);
937          VRM.RemoveFromFoldedVirtMap(LastStore);
938        }
939        LastStore = next(MII);
940
941        // If the stack slot value was previously available in some other
942        // register, change it now.  Otherwise, make the register available,
943        // in PhysReg.
944        Spills.ModifyStackSlot(StackSlot);
945        Spills.ClobberPhysReg(PhysReg);
946        Spills.addAvailable(StackSlot, LastStore, PhysReg);
947        ++NumStores;
948
949        // Check to see if this is a noop copy.  If so, eliminate the
950        // instruction before considering the dest reg to be changed.
951        {
952          unsigned Src, Dst;
953          if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
954            ++NumDCE;
955            DOUT << "Removing now-noop copy: " << MI;
956            MBB.erase(&MI);
957            VRM.RemoveFromFoldedVirtMap(&MI);
958            goto ProcessNextInst;
959          }
960        }
961      }
962    }
963  ProcessNextInst:
964    MII = NextMII;
965  }
966}
967
968
969
970llvm::Spiller* llvm::createSpiller() {
971  switch (SpillerOpt) {
972  default: assert(0 && "Unreachable!");
973  case local:
974    return new LocalSpiller();
975  case simple:
976    return new SimpleSpiller();
977  }
978}
979