VirtRegMap.cpp revision cc22a7a2adfea3fc318a6d8ca0c692a8e892105b
1//===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the VirtRegMap class.
11//
12// It also contains implementations of the the Spiller interface, which, given a
13// virtual register map and a machine function, eliminates all virtual
14// references by replacing them with physical register references - adding spill
15// code as necessary.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "spiller"
20#include "VirtRegMap.h"
21#include "llvm/Function.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/SSARegMap.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Support/CommandLine.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/Support/Compiler.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/ADT/STLExtras.h"
32#include <algorithm>
33using namespace llvm;
34
35namespace {
36  static Statistic NumSpills("spiller", "Number of register spills");
37  static Statistic NumStores("spiller", "Number of stores added");
38  static Statistic NumLoads ("spiller", "Number of loads added");
39  static Statistic NumReused("spiller", "Number of values reused");
40  static Statistic NumDSE   ("spiller", "Number of dead stores elided");
41  static Statistic NumDCE   ("spiller", "Number of copies elided");
42
43  enum SpillerName { simple, local };
44
45  static cl::opt<SpillerName>
46  SpillerOpt("spiller",
47             cl::desc("Spiller to use: (default: local)"),
48             cl::Prefix,
49             cl::values(clEnumVal(simple, "  simple spiller"),
50                        clEnumVal(local,  "  local spiller"),
51                        clEnumValEnd),
52             cl::init(local));
53}
54
55//===----------------------------------------------------------------------===//
56//  VirtRegMap implementation
57//===----------------------------------------------------------------------===//
58
59VirtRegMap::VirtRegMap(MachineFunction &mf)
60  : TII(*mf.getTarget().getInstrInfo()), MF(mf),
61    Virt2PhysMap(NO_PHYS_REG), Virt2StackSlotMap(NO_STACK_SLOT) {
62  grow();
63}
64
65void VirtRegMap::grow() {
66  Virt2PhysMap.grow(MF.getSSARegMap()->getLastVirtReg());
67  Virt2StackSlotMap.grow(MF.getSSARegMap()->getLastVirtReg());
68}
69
70int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
71  assert(MRegisterInfo::isVirtualRegister(virtReg));
72  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
73         "attempt to assign stack slot to already spilled register");
74  const TargetRegisterClass* RC = MF.getSSARegMap()->getRegClass(virtReg);
75  int frameIndex = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
76                                                        RC->getAlignment());
77  Virt2StackSlotMap[virtReg] = frameIndex;
78  ++NumSpills;
79  return frameIndex;
80}
81
82void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int frameIndex) {
83  assert(MRegisterInfo::isVirtualRegister(virtReg));
84  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
85         "attempt to assign stack slot to already spilled register");
86  Virt2StackSlotMap[virtReg] = frameIndex;
87}
88
89void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *OldMI,
90                            unsigned OpNo, MachineInstr *NewMI) {
91  // Move previous memory references folded to new instruction.
92  MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(NewMI);
93  for (MI2VirtMapTy::iterator I = MI2VirtMap.lower_bound(OldMI),
94         E = MI2VirtMap.end(); I != E && I->first == OldMI; ) {
95    MI2VirtMap.insert(IP, std::make_pair(NewMI, I->second));
96    MI2VirtMap.erase(I++);
97  }
98
99  ModRef MRInfo;
100  const TargetInstrDescriptor *TID = OldMI->getInstrDescriptor();
101  if (TID->getOperandConstraint(OpNo, TOI::TIED_TO) != -1 ||
102      TID->findTiedToSrcOperand(OpNo) != -1) {
103    // Folded a two-address operand.
104    MRInfo = isModRef;
105  } else if (OldMI->getOperand(OpNo).isDef()) {
106    MRInfo = isMod;
107  } else {
108    MRInfo = isRef;
109  }
110
111  // add new memory reference
112  MI2VirtMap.insert(IP, std::make_pair(NewMI, std::make_pair(VirtReg, MRInfo)));
113}
114
115void VirtRegMap::print(std::ostream &OS) const {
116  OStream LOS(OS);
117  print(LOS);
118}
119
120void VirtRegMap::print(OStream &OS) const {
121  const MRegisterInfo* MRI = MF.getTarget().getRegisterInfo();
122
123  OS << "********** REGISTER MAP **********\n";
124  for (unsigned i = MRegisterInfo::FirstVirtualRegister,
125         e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i) {
126    if (Virt2PhysMap[i] != (unsigned)VirtRegMap::NO_PHYS_REG)
127      OS << "[reg" << i << " -> " << MRI->getName(Virt2PhysMap[i]) << "]\n";
128
129  }
130
131  for (unsigned i = MRegisterInfo::FirstVirtualRegister,
132         e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i)
133    if (Virt2StackSlotMap[i] != VirtRegMap::NO_STACK_SLOT)
134      OS << "[reg" << i << " -> fi#" << Virt2StackSlotMap[i] << "]\n";
135  OS << '\n';
136}
137
138void VirtRegMap::dump() const {
139  OStream OS = DOUT;
140  print(OS);
141}
142
143
144//===----------------------------------------------------------------------===//
145// Simple Spiller Implementation
146//===----------------------------------------------------------------------===//
147
148Spiller::~Spiller() {}
149
150namespace {
151  struct VISIBILITY_HIDDEN SimpleSpiller : public Spiller {
152    bool runOnMachineFunction(MachineFunction& mf, VirtRegMap &VRM);
153  };
154}
155
156bool SimpleSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
157  DOUT << "********** REWRITE MACHINE CODE **********\n";
158  DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
159  const TargetMachine &TM = MF.getTarget();
160  const MRegisterInfo &MRI = *TM.getRegisterInfo();
161  bool *PhysRegsUsed = MF.getUsedPhysregs();
162
163  // LoadedRegs - Keep track of which vregs are loaded, so that we only load
164  // each vreg once (in the case where a spilled vreg is used by multiple
165  // operands).  This is always smaller than the number of operands to the
166  // current machine instr, so it should be small.
167  std::vector<unsigned> LoadedRegs;
168
169  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
170       MBBI != E; ++MBBI) {
171    DOUT << MBBI->getBasicBlock()->getName() << ":\n";
172    MachineBasicBlock &MBB = *MBBI;
173    for (MachineBasicBlock::iterator MII = MBB.begin(),
174           E = MBB.end(); MII != E; ++MII) {
175      MachineInstr &MI = *MII;
176      for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
177        MachineOperand &MO = MI.getOperand(i);
178        if (MO.isRegister() && MO.getReg())
179          if (MRegisterInfo::isVirtualRegister(MO.getReg())) {
180            unsigned VirtReg = MO.getReg();
181            unsigned PhysReg = VRM.getPhys(VirtReg);
182            if (VRM.hasStackSlot(VirtReg)) {
183              int StackSlot = VRM.getStackSlot(VirtReg);
184              const TargetRegisterClass* RC =
185                MF.getSSARegMap()->getRegClass(VirtReg);
186
187              if (MO.isUse() &&
188                  std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
189                  == LoadedRegs.end()) {
190                MRI.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
191                LoadedRegs.push_back(VirtReg);
192                ++NumLoads;
193                DOUT << '\t' << *prior(MII);
194              }
195
196              if (MO.isDef()) {
197                MRI.storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot, RC);
198                ++NumStores;
199              }
200            }
201            PhysRegsUsed[PhysReg] = true;
202            MI.getOperand(i).setReg(PhysReg);
203          } else {
204            PhysRegsUsed[MO.getReg()] = true;
205          }
206      }
207
208      DOUT << '\t' << MI;
209      LoadedRegs.clear();
210    }
211  }
212  return true;
213}
214
215//===----------------------------------------------------------------------===//
216//  Local Spiller Implementation
217//===----------------------------------------------------------------------===//
218
219namespace {
220  /// LocalSpiller - This spiller does a simple pass over the machine basic
221  /// block to attempt to keep spills in registers as much as possible for
222  /// blocks that have low register pressure (the vreg may be spilled due to
223  /// register pressure in other blocks).
224  class VISIBILITY_HIDDEN LocalSpiller : public Spiller {
225    const MRegisterInfo *MRI;
226    const TargetInstrInfo *TII;
227  public:
228    bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
229      MRI = MF.getTarget().getRegisterInfo();
230      TII = MF.getTarget().getInstrInfo();
231      DOUT << "\n**** Local spiller rewriting function '"
232           << MF.getFunction()->getName() << "':\n";
233
234      for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
235           MBB != E; ++MBB)
236        RewriteMBB(*MBB, VRM);
237      return true;
238    }
239  private:
240    void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM);
241    void ClobberPhysReg(unsigned PR, std::map<int, unsigned> &SpillSlots,
242                        std::multimap<unsigned, int> &PhysRegs);
243    void ClobberPhysRegOnly(unsigned PR, std::map<int, unsigned> &SpillSlots,
244                            std::multimap<unsigned, int> &PhysRegs);
245    void ModifyStackSlot(int Slot, std::map<int, unsigned> &SpillSlots,
246                         std::multimap<unsigned, int> &PhysRegs);
247  };
248}
249
250/// AvailableSpills - As the local spiller is scanning and rewriting an MBB from
251/// top down, keep track of which spills slots are available in each register.
252///
253/// Note that not all physregs are created equal here.  In particular, some
254/// physregs are reloads that we are allowed to clobber or ignore at any time.
255/// Other physregs are values that the register allocated program is using that
256/// we cannot CHANGE, but we can read if we like.  We keep track of this on a
257/// per-stack-slot basis as the low bit in the value of the SpillSlotsAvailable
258/// entries.  The predicate 'canClobberPhysReg()' checks this bit and
259/// addAvailable sets it if.
260namespace {
261class VISIBILITY_HIDDEN AvailableSpills {
262  const MRegisterInfo *MRI;
263  const TargetInstrInfo *TII;
264
265  // SpillSlotsAvailable - This map keeps track of all of the spilled virtual
266  // register values that are still available, due to being loaded or stored to,
267  // but not invalidated yet.
268  std::map<int, unsigned> SpillSlotsAvailable;
269
270  // PhysRegsAvailable - This is the inverse of SpillSlotsAvailable, indicating
271  // which stack slot values are currently held by a physreg.  This is used to
272  // invalidate entries in SpillSlotsAvailable when a physreg is modified.
273  std::multimap<unsigned, int> PhysRegsAvailable;
274
275  void ClobberPhysRegOnly(unsigned PhysReg);
276public:
277  AvailableSpills(const MRegisterInfo *mri, const TargetInstrInfo *tii)
278    : MRI(mri), TII(tii) {
279  }
280
281  /// getSpillSlotPhysReg - If the specified stack slot is available in a
282  /// physical register, return that PhysReg, otherwise return 0.
283  unsigned getSpillSlotPhysReg(int Slot) const {
284    std::map<int, unsigned>::const_iterator I = SpillSlotsAvailable.find(Slot);
285    if (I != SpillSlotsAvailable.end())
286      return I->second >> 1;  // Remove the CanClobber bit.
287    return 0;
288  }
289
290  const MRegisterInfo *getRegInfo() const { return MRI; }
291
292  /// addAvailable - Mark that the specified stack slot is available in the
293  /// specified physreg.  If CanClobber is true, the physreg can be modified at
294  /// any time without changing the semantics of the program.
295  void addAvailable(int Slot, unsigned Reg, bool CanClobber = true) {
296    // If this stack slot is thought to be available in some other physreg,
297    // remove its record.
298    ModifyStackSlot(Slot);
299
300    PhysRegsAvailable.insert(std::make_pair(Reg, Slot));
301    SpillSlotsAvailable[Slot] = (Reg << 1) | (unsigned)CanClobber;
302
303    DOUT << "Remembering SS#" << Slot << " in physreg "
304         << MRI->getName(Reg) << "\n";
305  }
306
307  /// canClobberPhysReg - Return true if the spiller is allowed to change the
308  /// value of the specified stackslot register if it desires.  The specified
309  /// stack slot must be available in a physreg for this query to make sense.
310  bool canClobberPhysReg(int Slot) const {
311    assert(SpillSlotsAvailable.count(Slot) && "Slot not available!");
312    return SpillSlotsAvailable.find(Slot)->second & 1;
313  }
314
315  /// ClobberPhysReg - This is called when the specified physreg changes
316  /// value.  We use this to invalidate any info about stuff we thing lives in
317  /// it and any of its aliases.
318  void ClobberPhysReg(unsigned PhysReg);
319
320  /// ModifyStackSlot - This method is called when the value in a stack slot
321  /// changes.  This removes information about which register the previous value
322  /// for this slot lives in (as the previous value is dead now).
323  void ModifyStackSlot(int Slot);
324};
325}
326
327/// ClobberPhysRegOnly - This is called when the specified physreg changes
328/// value.  We use this to invalidate any info about stuff we thing lives in it.
329void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
330  std::multimap<unsigned, int>::iterator I =
331    PhysRegsAvailable.lower_bound(PhysReg);
332  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
333    int Slot = I->second;
334    PhysRegsAvailable.erase(I++);
335    assert((SpillSlotsAvailable[Slot] >> 1) == PhysReg &&
336           "Bidirectional map mismatch!");
337    SpillSlotsAvailable.erase(Slot);
338    DOUT << "PhysReg " << MRI->getName(PhysReg)
339         << " clobbered, invalidating SS#" << Slot << "\n";
340  }
341}
342
343/// ClobberPhysReg - This is called when the specified physreg changes
344/// value.  We use this to invalidate any info about stuff we thing lives in
345/// it and any of its aliases.
346void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
347  for (const unsigned *AS = MRI->getAliasSet(PhysReg); *AS; ++AS)
348    ClobberPhysRegOnly(*AS);
349  ClobberPhysRegOnly(PhysReg);
350}
351
352/// ModifyStackSlot - This method is called when the value in a stack slot
353/// changes.  This removes information about which register the previous value
354/// for this slot lives in (as the previous value is dead now).
355void AvailableSpills::ModifyStackSlot(int Slot) {
356  std::map<int, unsigned>::iterator It = SpillSlotsAvailable.find(Slot);
357  if (It == SpillSlotsAvailable.end()) return;
358  unsigned Reg = It->second >> 1;
359  SpillSlotsAvailable.erase(It);
360
361  // This register may hold the value of multiple stack slots, only remove this
362  // stack slot from the set of values the register contains.
363  std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
364  for (; ; ++I) {
365    assert(I != PhysRegsAvailable.end() && I->first == Reg &&
366           "Map inverse broken!");
367    if (I->second == Slot) break;
368  }
369  PhysRegsAvailable.erase(I);
370}
371
372
373
374// ReusedOp - For each reused operand, we keep track of a bit of information, in
375// case we need to rollback upon processing a new operand.  See comments below.
376namespace {
377  struct ReusedOp {
378    // The MachineInstr operand that reused an available value.
379    unsigned Operand;
380
381    // StackSlot - The spill slot of the value being reused.
382    unsigned StackSlot;
383
384    // PhysRegReused - The physical register the value was available in.
385    unsigned PhysRegReused;
386
387    // AssignedPhysReg - The physreg that was assigned for use by the reload.
388    unsigned AssignedPhysReg;
389
390    // VirtReg - The virtual register itself.
391    unsigned VirtReg;
392
393    ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
394             unsigned vreg)
395      : Operand(o), StackSlot(ss), PhysRegReused(prr), AssignedPhysReg(apr),
396      VirtReg(vreg) {}
397  };
398
399  /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
400  /// is reused instead of reloaded.
401  class VISIBILITY_HIDDEN ReuseInfo {
402    MachineInstr &MI;
403    std::vector<ReusedOp> Reuses;
404    bool *PhysRegsClobbered;
405  public:
406    ReuseInfo(MachineInstr &mi, const MRegisterInfo *mri) : MI(mi) {
407      PhysRegsClobbered = new bool[mri->getNumRegs()];
408      std::fill(PhysRegsClobbered, PhysRegsClobbered+mri->getNumRegs(), false);
409    }
410    ~ReuseInfo() {
411      delete[] PhysRegsClobbered;
412    }
413
414    bool hasReuses() const {
415      return !Reuses.empty();
416    }
417
418    /// addReuse - If we choose to reuse a virtual register that is already
419    /// available instead of reloading it, remember that we did so.
420    void addReuse(unsigned OpNo, unsigned StackSlot,
421                  unsigned PhysRegReused, unsigned AssignedPhysReg,
422                  unsigned VirtReg) {
423      // If the reload is to the assigned register anyway, no undo will be
424      // required.
425      if (PhysRegReused == AssignedPhysReg) return;
426
427      // Otherwise, remember this.
428      Reuses.push_back(ReusedOp(OpNo, StackSlot, PhysRegReused,
429                                AssignedPhysReg, VirtReg));
430    }
431
432    void markClobbered(unsigned PhysReg) {
433      PhysRegsClobbered[PhysReg] = true;
434    }
435
436    bool isClobbered(unsigned PhysReg) const {
437      return PhysRegsClobbered[PhysReg];
438    }
439
440    /// GetRegForReload - We are about to emit a reload into PhysReg.  If there
441    /// is some other operand that is using the specified register, either pick
442    /// a new register to use, or evict the previous reload and use this reg.
443    unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
444                             AvailableSpills &Spills,
445                             std::map<int, MachineInstr*> &MaybeDeadStores) {
446      if (Reuses.empty()) return PhysReg;  // This is most often empty.
447
448      for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
449        ReusedOp &Op = Reuses[ro];
450        // If we find some other reuse that was supposed to use this register
451        // exactly for its reload, we can change this reload to use ITS reload
452        // register.
453        if (Op.PhysRegReused == PhysReg) {
454          // Yup, use the reload register that we didn't use before.
455          unsigned NewReg = Op.AssignedPhysReg;
456          return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores);
457        } else {
458          // Otherwise, we might also have a problem if a previously reused
459          // value aliases the new register.  If so, codegen the previous reload
460          // and use this one.
461          unsigned PRRU = Op.PhysRegReused;
462          const MRegisterInfo *MRI = Spills.getRegInfo();
463          if (MRI->areAliases(PRRU, PhysReg)) {
464            // Okay, we found out that an alias of a reused register
465            // was used.  This isn't good because it means we have
466            // to undo a previous reuse.
467            MachineBasicBlock *MBB = MI->getParent();
468            const TargetRegisterClass *AliasRC =
469              MBB->getParent()->getSSARegMap()->getRegClass(Op.VirtReg);
470
471            // Copy Op out of the vector and remove it, we're going to insert an
472            // explicit load for it.
473            ReusedOp NewOp = Op;
474            Reuses.erase(Reuses.begin()+ro);
475
476            // Ok, we're going to try to reload the assigned physreg into the
477            // slot that we were supposed to in the first place.  However, that
478            // register could hold a reuse.  Check to see if it conflicts or
479            // would prefer us to use a different register.
480            unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg,
481                                                  MI, Spills, MaybeDeadStores);
482
483            MRI->loadRegFromStackSlot(*MBB, MI, NewPhysReg,
484                                      NewOp.StackSlot, AliasRC);
485            Spills.ClobberPhysReg(NewPhysReg);
486            Spills.ClobberPhysReg(NewOp.PhysRegReused);
487
488            // Any stores to this stack slot are not dead anymore.
489            MaybeDeadStores.erase(NewOp.StackSlot);
490
491            MI->getOperand(NewOp.Operand).setReg(NewPhysReg);
492
493            Spills.addAvailable(NewOp.StackSlot, NewPhysReg);
494            ++NumLoads;
495            DEBUG(MachineBasicBlock::iterator MII = MI;
496                  DOUT << '\t' << *prior(MII));
497
498            DOUT << "Reuse undone!\n";
499            --NumReused;
500
501            // Finally, PhysReg is now available, go ahead and use it.
502            return PhysReg;
503          }
504        }
505      }
506      return PhysReg;
507    }
508  };
509}
510
511
512/// rewriteMBB - Keep track of which spills are available even after the
513/// register allocator is done with them.  If possible, avoid reloading vregs.
514void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) {
515
516  DOUT << MBB.getBasicBlock()->getName() << ":\n";
517
518  // Spills - Keep track of which spilled values are available in physregs so
519  // that we can choose to reuse the physregs instead of emitting reloads.
520  AvailableSpills Spills(MRI, TII);
521
522  // MaybeDeadStores - When we need to write a value back into a stack slot,
523  // keep track of the inserted store.  If the stack slot value is never read
524  // (because the value was used from some available register, for example), and
525  // subsequently stored to, the original store is dead.  This map keeps track
526  // of inserted stores that are not used.  If we see a subsequent store to the
527  // same stack slot, the original store is deleted.
528  std::map<int, MachineInstr*> MaybeDeadStores;
529
530  bool *PhysRegsUsed = MBB.getParent()->getUsedPhysregs();
531
532  for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
533       MII != E; ) {
534    MachineInstr &MI = *MII;
535    MachineBasicBlock::iterator NextMII = MII; ++NextMII;
536
537    /// ReusedOperands - Keep track of operand reuse in case we need to undo
538    /// reuse.
539    ReuseInfo ReusedOperands(MI, MRI);
540
541    // Loop over all of the implicit defs, clearing them from our available
542    // sets.
543    const unsigned *ImpDef = TII->getImplicitDefs(MI.getOpcode());
544    if (ImpDef) {
545      for ( ; *ImpDef; ++ImpDef) {
546        PhysRegsUsed[*ImpDef] = true;
547        ReusedOperands.markClobbered(*ImpDef);
548        Spills.ClobberPhysReg(*ImpDef);
549      }
550    }
551
552    // Process all of the spilled uses and all non spilled reg references.
553    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
554      MachineOperand &MO = MI.getOperand(i);
555      if (!MO.isRegister() || MO.getReg() == 0)
556        continue;   // Ignore non-register operands.
557
558      if (MRegisterInfo::isPhysicalRegister(MO.getReg())) {
559        // Ignore physregs for spilling, but remember that it is used by this
560        // function.
561        PhysRegsUsed[MO.getReg()] = true;
562        ReusedOperands.markClobbered(MO.getReg());
563        continue;
564      }
565
566      assert(MRegisterInfo::isVirtualRegister(MO.getReg()) &&
567             "Not a virtual or a physical register?");
568
569      unsigned VirtReg = MO.getReg();
570      if (!VRM.hasStackSlot(VirtReg)) {
571        // This virtual register was assigned a physreg!
572        unsigned Phys = VRM.getPhys(VirtReg);
573        PhysRegsUsed[Phys] = true;
574        if (MO.isDef())
575          ReusedOperands.markClobbered(Phys);
576        MI.getOperand(i).setReg(Phys);
577        continue;
578      }
579
580      // This virtual register is now known to be a spilled value.
581      if (!MO.isUse())
582        continue;  // Handle defs in the loop below (handle use&def here though)
583
584      int StackSlot = VRM.getStackSlot(VirtReg);
585      unsigned PhysReg;
586
587      // Check to see if this stack slot is available.
588      if ((PhysReg = Spills.getSpillSlotPhysReg(StackSlot))) {
589
590        // This spilled operand might be part of a two-address operand.  If this
591        // is the case, then changing it will necessarily require changing the
592        // def part of the instruction as well.  However, in some cases, we
593        // aren't allowed to modify the reused register.  If none of these cases
594        // apply, reuse it.
595        bool CanReuse = true;
596        int ti = MI.getInstrDescriptor()->getOperandConstraint(i, TOI::TIED_TO);
597        if (ti != -1 &&
598            MI.getOperand(ti).isReg() &&
599            MI.getOperand(ti).getReg() == VirtReg) {
600          // Okay, we have a two address operand.  We can reuse this physreg as
601          // long as we are allowed to clobber the value and there is an earlier
602          // def that has already clobbered the physreg.
603          CanReuse = Spills.canClobberPhysReg(StackSlot) &&
604            !ReusedOperands.isClobbered(PhysReg);
605        }
606
607        if (CanReuse) {
608          // If this stack slot value is already available, reuse it!
609          DOUT << "Reusing SS#" << StackSlot << " from physreg "
610               << MRI->getName(PhysReg) << " for vreg"
611               << VirtReg <<" instead of reloading into physreg "
612               << MRI->getName(VRM.getPhys(VirtReg)) << "\n";
613          MI.getOperand(i).setReg(PhysReg);
614
615          // The only technical detail we have is that we don't know that
616          // PhysReg won't be clobbered by a reloaded stack slot that occurs
617          // later in the instruction.  In particular, consider 'op V1, V2'.
618          // If V1 is available in physreg R0, we would choose to reuse it
619          // here, instead of reloading it into the register the allocator
620          // indicated (say R1).  However, V2 might have to be reloaded
621          // later, and it might indicate that it needs to live in R0.  When
622          // this occurs, we need to have information available that
623          // indicates it is safe to use R1 for the reload instead of R0.
624          //
625          // To further complicate matters, we might conflict with an alias,
626          // or R0 and R1 might not be compatible with each other.  In this
627          // case, we actually insert a reload for V1 in R1, ensuring that
628          // we can get at R0 or its alias.
629          ReusedOperands.addReuse(i, StackSlot, PhysReg,
630                                  VRM.getPhys(VirtReg), VirtReg);
631          if (ti != -1)
632            // Only mark it clobbered if this is a use&def operand.
633            ReusedOperands.markClobbered(PhysReg);
634          ++NumReused;
635          continue;
636        }
637
638        // Otherwise we have a situation where we have a two-address instruction
639        // whose mod/ref operand needs to be reloaded.  This reload is already
640        // available in some register "PhysReg", but if we used PhysReg as the
641        // operand to our 2-addr instruction, the instruction would modify
642        // PhysReg.  This isn't cool if something later uses PhysReg and expects
643        // to get its initial value.
644        //
645        // To avoid this problem, and to avoid doing a load right after a store,
646        // we emit a copy from PhysReg into the designated register for this
647        // operand.
648        unsigned DesignatedReg = VRM.getPhys(VirtReg);
649        assert(DesignatedReg && "Must map virtreg to physreg!");
650
651        // Note that, if we reused a register for a previous operand, the
652        // register we want to reload into might not actually be
653        // available.  If this occurs, use the register indicated by the
654        // reuser.
655        if (ReusedOperands.hasReuses())
656          DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI,
657                                                      Spills, MaybeDeadStores);
658
659        // If the mapped designated register is actually the physreg we have
660        // incoming, we don't need to inserted a dead copy.
661        if (DesignatedReg == PhysReg) {
662          // If this stack slot value is already available, reuse it!
663          DOUT << "Reusing SS#" << StackSlot << " from physreg "
664               << MRI->getName(PhysReg) << " for vreg"
665               << VirtReg
666               << " instead of reloading into same physreg.\n";
667          MI.getOperand(i).setReg(PhysReg);
668          ReusedOperands.markClobbered(PhysReg);
669          ++NumReused;
670          continue;
671        }
672
673        const TargetRegisterClass* RC =
674          MBB.getParent()->getSSARegMap()->getRegClass(VirtReg);
675
676        PhysRegsUsed[DesignatedReg] = true;
677        ReusedOperands.markClobbered(DesignatedReg);
678        MRI->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC);
679
680        // This invalidates DesignatedReg.
681        Spills.ClobberPhysReg(DesignatedReg);
682
683        Spills.addAvailable(StackSlot, DesignatedReg);
684        MI.getOperand(i).setReg(DesignatedReg);
685        DOUT << '\t' << *prior(MII);
686        ++NumReused;
687        continue;
688      }
689
690      // Otherwise, reload it and remember that we have it.
691      PhysReg = VRM.getPhys(VirtReg);
692      assert(PhysReg && "Must map virtreg to physreg!");
693      const TargetRegisterClass* RC =
694        MBB.getParent()->getSSARegMap()->getRegClass(VirtReg);
695
696      // Note that, if we reused a register for a previous operand, the
697      // register we want to reload into might not actually be
698      // available.  If this occurs, use the register indicated by the
699      // reuser.
700      if (ReusedOperands.hasReuses())
701        PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
702                                                 Spills, MaybeDeadStores);
703
704      PhysRegsUsed[PhysReg] = true;
705      ReusedOperands.markClobbered(PhysReg);
706      MRI->loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
707      // This invalidates PhysReg.
708      Spills.ClobberPhysReg(PhysReg);
709
710      // Any stores to this stack slot are not dead anymore.
711      MaybeDeadStores.erase(StackSlot);
712      Spills.addAvailable(StackSlot, PhysReg);
713      ++NumLoads;
714      MI.getOperand(i).setReg(PhysReg);
715      DOUT << '\t' << *prior(MII);
716    }
717
718    DOUT << '\t' << MI;
719
720    // If we have folded references to memory operands, make sure we clear all
721    // physical registers that may contain the value of the spilled virtual
722    // register
723    VirtRegMap::MI2VirtMapTy::const_iterator I, End;
724    for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
725      DOUT << "Folded vreg: " << I->second.first << "  MR: "
726           << I->second.second;
727      unsigned VirtReg = I->second.first;
728      VirtRegMap::ModRef MR = I->second.second;
729      if (!VRM.hasStackSlot(VirtReg)) {
730        DOUT << ": No stack slot!\n";
731        continue;
732      }
733      int SS = VRM.getStackSlot(VirtReg);
734      DOUT << " - StackSlot: " << SS << "\n";
735
736      // If this folded instruction is just a use, check to see if it's a
737      // straight load from the virt reg slot.
738      if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
739        int FrameIdx;
740        if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
741          if (FrameIdx == SS) {
742            // If this spill slot is available, turn it into a copy (or nothing)
743            // instead of leaving it as a load!
744            if (unsigned InReg = Spills.getSpillSlotPhysReg(SS)) {
745              DOUT << "Promoted Load To Copy: " << MI;
746              MachineFunction &MF = *MBB.getParent();
747              if (DestReg != InReg) {
748                MRI->copyRegToReg(MBB, &MI, DestReg, InReg,
749                                  MF.getSSARegMap()->getRegClass(VirtReg));
750                // Revisit the copy so we make sure to notice the effects of the
751                // operation on the destreg (either needing to RA it if it's
752                // virtual or needing to clobber any values if it's physical).
753                NextMII = &MI;
754                --NextMII;  // backtrack to the copy.
755              }
756              VRM.RemoveFromFoldedVirtMap(&MI);
757              MBB.erase(&MI);
758              goto ProcessNextInst;
759            }
760          }
761        }
762      }
763
764      // If this reference is not a use, any previous store is now dead.
765      // Otherwise, the store to this stack slot is not dead anymore.
766      std::map<int, MachineInstr*>::iterator MDSI = MaybeDeadStores.find(SS);
767      if (MDSI != MaybeDeadStores.end()) {
768        if (MR & VirtRegMap::isRef)   // Previous store is not dead.
769          MaybeDeadStores.erase(MDSI);
770        else {
771          // If we get here, the store is dead, nuke it now.
772          assert(VirtRegMap::isMod && "Can't be modref!");
773          DOUT << "Removed dead store:\t" << *MDSI->second;
774          MBB.erase(MDSI->second);
775          VRM.RemoveFromFoldedVirtMap(MDSI->second);
776          MaybeDeadStores.erase(MDSI);
777          ++NumDSE;
778        }
779      }
780
781      // If the spill slot value is available, and this is a new definition of
782      // the value, the value is not available anymore.
783      if (MR & VirtRegMap::isMod) {
784        // Notice that the value in this stack slot has been modified.
785        Spills.ModifyStackSlot(SS);
786
787        // If this is *just* a mod of the value, check to see if this is just a
788        // store to the spill slot (i.e. the spill got merged into the copy). If
789        // so, realize that the vreg is available now, and add the store to the
790        // MaybeDeadStore info.
791        int StackSlot;
792        if (!(MR & VirtRegMap::isRef)) {
793          if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
794            assert(MRegisterInfo::isPhysicalRegister(SrcReg) &&
795                   "Src hasn't been allocated yet?");
796            // Okay, this is certainly a store of SrcReg to [StackSlot].  Mark
797            // this as a potentially dead store in case there is a subsequent
798            // store into the stack slot without a read from it.
799            MaybeDeadStores[StackSlot] = &MI;
800
801            // If the stack slot value was previously available in some other
802            // register, change it now.  Otherwise, make the register available,
803            // in PhysReg.
804            Spills.addAvailable(StackSlot, SrcReg, false /*don't clobber*/);
805          }
806        }
807      }
808    }
809
810    // Process all of the spilled defs.
811    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
812      MachineOperand &MO = MI.getOperand(i);
813      if (MO.isRegister() && MO.getReg() && MO.isDef()) {
814        unsigned VirtReg = MO.getReg();
815
816        if (!MRegisterInfo::isVirtualRegister(VirtReg)) {
817          // Check to see if this is a noop copy.  If so, eliminate the
818          // instruction before considering the dest reg to be changed.
819          unsigned Src, Dst;
820          if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
821            ++NumDCE;
822            DOUT << "Removing now-noop copy: " << MI;
823            MBB.erase(&MI);
824            VRM.RemoveFromFoldedVirtMap(&MI);
825            goto ProcessNextInst;
826          }
827
828          // If it's not a no-op copy, it clobbers the value in the destreg.
829          Spills.ClobberPhysReg(VirtReg);
830          ReusedOperands.markClobbered(VirtReg);
831
832          // Check to see if this instruction is a load from a stack slot into
833          // a register.  If so, this provides the stack slot value in the reg.
834          int FrameIdx;
835          if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
836            assert(DestReg == VirtReg && "Unknown load situation!");
837
838            // Otherwise, if it wasn't available, remember that it is now!
839            Spills.addAvailable(FrameIdx, DestReg);
840            goto ProcessNextInst;
841          }
842
843          continue;
844        }
845
846        // The only vregs left are stack slot definitions.
847        int StackSlot = VRM.getStackSlot(VirtReg);
848        const TargetRegisterClass *RC =
849          MBB.getParent()->getSSARegMap()->getRegClass(VirtReg);
850
851        // If this def is part of a two-address operand, make sure to execute
852        // the store from the correct physical register.
853        unsigned PhysReg;
854        int TiedOp = MI.getInstrDescriptor()->findTiedToSrcOperand(i);
855        if (TiedOp != -1)
856          PhysReg = MI.getOperand(TiedOp).getReg();
857        else {
858          PhysReg = VRM.getPhys(VirtReg);
859          if (ReusedOperands.isClobbered(PhysReg)) {
860            // Another def has taken the assigned physreg. It must have been a
861            // use&def which got it due to reuse. Undo the reuse!
862            PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
863                                                     Spills, MaybeDeadStores);
864          }
865        }
866
867        PhysRegsUsed[PhysReg] = true;
868        ReusedOperands.markClobbered(PhysReg);
869        MRI->storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot, RC);
870        DOUT << "Store:\t" << *next(MII);
871        MI.getOperand(i).setReg(PhysReg);
872
873        // Check to see if this is a noop copy.  If so, eliminate the
874        // instruction before considering the dest reg to be changed.
875        {
876          unsigned Src, Dst;
877          if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
878            ++NumDCE;
879            DOUT << "Removing now-noop copy: " << MI;
880            MBB.erase(&MI);
881            VRM.RemoveFromFoldedVirtMap(&MI);
882            goto ProcessNextInst;
883          }
884        }
885
886        // If there is a dead store to this stack slot, nuke it now.
887        MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
888        if (LastStore) {
889          DOUT << "Removed dead store:\t" << *LastStore;
890          ++NumDSE;
891          MBB.erase(LastStore);
892          VRM.RemoveFromFoldedVirtMap(LastStore);
893        }
894        LastStore = next(MII);
895
896        // If the stack slot value was previously available in some other
897        // register, change it now.  Otherwise, make the register available,
898        // in PhysReg.
899        Spills.ModifyStackSlot(StackSlot);
900        Spills.ClobberPhysReg(PhysReg);
901        Spills.addAvailable(StackSlot, PhysReg);
902        ++NumStores;
903      }
904    }
905  ProcessNextInst:
906    MII = NextMII;
907  }
908}
909
910
911
912llvm::Spiller* llvm::createSpiller() {
913  switch (SpillerOpt) {
914  default: assert(0 && "Unreachable!");
915  case local:
916    return new LocalSpiller();
917  case simple:
918    return new SimpleSpiller();
919  }
920}
921