VirtRegMap.cpp revision e6ae14e1f413987f3de31a7cad1b20a7893f8cae
1//===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the VirtRegMap class.
11//
12// It also contains implementations of the the Spiller interface, which, given a
13// virtual register map and a machine function, eliminates all virtual
14// references by replacing them with physical register references - adding spill
15// code as necessary.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "spiller"
20#include "VirtRegMap.h"
21#include "llvm/Function.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/SSARegMap.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Support/CommandLine.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/Support/Compiler.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/ADT/STLExtras.h"
32#include <algorithm>
33#include <iostream>
34using namespace llvm;
35
36namespace {
37  static Statistic<> NumSpills("spiller", "Number of register spills");
38  static Statistic<> NumStores("spiller", "Number of stores added");
39  static Statistic<> NumLoads ("spiller", "Number of loads added");
40  static Statistic<> NumReused("spiller", "Number of values reused");
41  static Statistic<> NumDSE   ("spiller", "Number of dead stores elided");
42  static Statistic<> NumDCE   ("spiller", "Number of copies elided");
43
44  enum SpillerName { simple, local };
45
46  static cl::opt<SpillerName>
47  SpillerOpt("spiller",
48             cl::desc("Spiller to use: (default: local)"),
49             cl::Prefix,
50             cl::values(clEnumVal(simple, "  simple spiller"),
51                        clEnumVal(local,  "  local spiller"),
52                        clEnumValEnd),
53             cl::init(local));
54}
55
56//===----------------------------------------------------------------------===//
57//  VirtRegMap implementation
58//===----------------------------------------------------------------------===//
59
60VirtRegMap::VirtRegMap(MachineFunction &mf)
61  : TII(*mf.getTarget().getInstrInfo()), MF(mf),
62    Virt2PhysMap(NO_PHYS_REG), Virt2StackSlotMap(NO_STACK_SLOT) {
63  grow();
64}
65
66void VirtRegMap::grow() {
67  Virt2PhysMap.grow(MF.getSSARegMap()->getLastVirtReg());
68  Virt2StackSlotMap.grow(MF.getSSARegMap()->getLastVirtReg());
69}
70
71int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
72  assert(MRegisterInfo::isVirtualRegister(virtReg));
73  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
74         "attempt to assign stack slot to already spilled register");
75  const TargetRegisterClass* RC = MF.getSSARegMap()->getRegClass(virtReg);
76  int frameIndex = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
77                                                        RC->getAlignment());
78  Virt2StackSlotMap[virtReg] = frameIndex;
79  ++NumSpills;
80  return frameIndex;
81}
82
83void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int frameIndex) {
84  assert(MRegisterInfo::isVirtualRegister(virtReg));
85  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
86         "attempt to assign stack slot to already spilled register");
87  Virt2StackSlotMap[virtReg] = frameIndex;
88}
89
90void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *OldMI,
91                            unsigned OpNo, MachineInstr *NewMI) {
92  // Move previous memory references folded to new instruction.
93  MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(NewMI);
94  for (MI2VirtMapTy::iterator I = MI2VirtMap.lower_bound(OldMI),
95         E = MI2VirtMap.end(); I != E && I->first == OldMI; ) {
96    MI2VirtMap.insert(IP, std::make_pair(NewMI, I->second));
97    MI2VirtMap.erase(I++);
98  }
99
100  ModRef MRInfo;
101  if (TII.getOperandConstraint(OldMI->getOpcode(), OpNo,
102                               TargetInstrInfo::TIED_TO)) {
103    // Folded a two-address operand.
104    MRInfo = isModRef;
105  } else if (OldMI->getOperand(OpNo).isDef()) {
106    MRInfo = isMod;
107  } else {
108    MRInfo = isRef;
109  }
110
111  // add new memory reference
112  MI2VirtMap.insert(IP, std::make_pair(NewMI, std::make_pair(VirtReg, MRInfo)));
113}
114
115void VirtRegMap::print(std::ostream &OS) const {
116  const MRegisterInfo* MRI = MF.getTarget().getRegisterInfo();
117
118  OS << "********** REGISTER MAP **********\n";
119  for (unsigned i = MRegisterInfo::FirstVirtualRegister,
120         e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i) {
121    if (Virt2PhysMap[i] != (unsigned)VirtRegMap::NO_PHYS_REG)
122      OS << "[reg" << i << " -> " << MRI->getName(Virt2PhysMap[i]) << "]\n";
123
124  }
125
126  for (unsigned i = MRegisterInfo::FirstVirtualRegister,
127         e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i)
128    if (Virt2StackSlotMap[i] != VirtRegMap::NO_STACK_SLOT)
129      OS << "[reg" << i << " -> fi#" << Virt2StackSlotMap[i] << "]\n";
130  OS << '\n';
131}
132
133void VirtRegMap::dump() const { print(std::cerr); }
134
135
136//===----------------------------------------------------------------------===//
137// Simple Spiller Implementation
138//===----------------------------------------------------------------------===//
139
140Spiller::~Spiller() {}
141
142namespace {
143  struct VISIBILITY_HIDDEN SimpleSpiller : public Spiller {
144    bool runOnMachineFunction(MachineFunction& mf, VirtRegMap &VRM);
145  };
146}
147
148bool SimpleSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
149  DEBUG(std::cerr << "********** REWRITE MACHINE CODE **********\n");
150  DEBUG(std::cerr << "********** Function: "
151                  << MF.getFunction()->getName() << '\n');
152  const TargetMachine &TM = MF.getTarget();
153  const MRegisterInfo &MRI = *TM.getRegisterInfo();
154  bool *PhysRegsUsed = MF.getUsedPhysregs();
155
156  // LoadedRegs - Keep track of which vregs are loaded, so that we only load
157  // each vreg once (in the case where a spilled vreg is used by multiple
158  // operands).  This is always smaller than the number of operands to the
159  // current machine instr, so it should be small.
160  std::vector<unsigned> LoadedRegs;
161
162  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
163       MBBI != E; ++MBBI) {
164    DEBUG(std::cerr << MBBI->getBasicBlock()->getName() << ":\n");
165    MachineBasicBlock &MBB = *MBBI;
166    for (MachineBasicBlock::iterator MII = MBB.begin(),
167           E = MBB.end(); MII != E; ++MII) {
168      MachineInstr &MI = *MII;
169      for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
170        MachineOperand &MO = MI.getOperand(i);
171        if (MO.isRegister() && MO.getReg())
172          if (MRegisterInfo::isVirtualRegister(MO.getReg())) {
173            unsigned VirtReg = MO.getReg();
174            unsigned PhysReg = VRM.getPhys(VirtReg);
175            if (VRM.hasStackSlot(VirtReg)) {
176              int StackSlot = VRM.getStackSlot(VirtReg);
177              const TargetRegisterClass* RC =
178                MF.getSSARegMap()->getRegClass(VirtReg);
179
180              if (MO.isUse() &&
181                  std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
182                  == LoadedRegs.end()) {
183                MRI.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
184                LoadedRegs.push_back(VirtReg);
185                ++NumLoads;
186                DEBUG(std::cerr << '\t' << *prior(MII));
187              }
188
189              if (MO.isDef()) {
190                MRI.storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot, RC);
191                ++NumStores;
192              }
193            }
194            PhysRegsUsed[PhysReg] = true;
195            MI.getOperand(i).setReg(PhysReg);
196          } else {
197            PhysRegsUsed[MO.getReg()] = true;
198          }
199      }
200
201      DEBUG(std::cerr << '\t' << MI);
202      LoadedRegs.clear();
203    }
204  }
205  return true;
206}
207
208//===----------------------------------------------------------------------===//
209//  Local Spiller Implementation
210//===----------------------------------------------------------------------===//
211
212namespace {
213  /// LocalSpiller - This spiller does a simple pass over the machine basic
214  /// block to attempt to keep spills in registers as much as possible for
215  /// blocks that have low register pressure (the vreg may be spilled due to
216  /// register pressure in other blocks).
217  class VISIBILITY_HIDDEN LocalSpiller : public Spiller {
218    const MRegisterInfo *MRI;
219    const TargetInstrInfo *TII;
220  public:
221    bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
222      MRI = MF.getTarget().getRegisterInfo();
223      TII = MF.getTarget().getInstrInfo();
224      DEBUG(std::cerr << "\n**** Local spiller rewriting function '"
225                      << MF.getFunction()->getName() << "':\n");
226
227      for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
228           MBB != E; ++MBB)
229        RewriteMBB(*MBB, VRM);
230      return true;
231    }
232  private:
233    void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM);
234    void ClobberPhysReg(unsigned PR, std::map<int, unsigned> &SpillSlots,
235                        std::multimap<unsigned, int> &PhysRegs);
236    void ClobberPhysRegOnly(unsigned PR, std::map<int, unsigned> &SpillSlots,
237                            std::multimap<unsigned, int> &PhysRegs);
238    void ModifyStackSlot(int Slot, std::map<int, unsigned> &SpillSlots,
239                         std::multimap<unsigned, int> &PhysRegs);
240  };
241}
242
243/// AvailableSpills - As the local spiller is scanning and rewriting an MBB from
244/// top down, keep track of which spills slots are available in each register.
245///
246/// Note that not all physregs are created equal here.  In particular, some
247/// physregs are reloads that we are allowed to clobber or ignore at any time.
248/// Other physregs are values that the register allocated program is using that
249/// we cannot CHANGE, but we can read if we like.  We keep track of this on a
250/// per-stack-slot basis as the low bit in the value of the SpillSlotsAvailable
251/// entries.  The predicate 'canClobberPhysReg()' checks this bit and
252/// addAvailable sets it if.
253namespace {
254class VISIBILITY_HIDDEN AvailableSpills {
255  const MRegisterInfo *MRI;
256  const TargetInstrInfo *TII;
257
258  // SpillSlotsAvailable - This map keeps track of all of the spilled virtual
259  // register values that are still available, due to being loaded or stored to,
260  // but not invalidated yet.
261  std::map<int, unsigned> SpillSlotsAvailable;
262
263  // PhysRegsAvailable - This is the inverse of SpillSlotsAvailable, indicating
264  // which stack slot values are currently held by a physreg.  This is used to
265  // invalidate entries in SpillSlotsAvailable when a physreg is modified.
266  std::multimap<unsigned, int> PhysRegsAvailable;
267
268  void ClobberPhysRegOnly(unsigned PhysReg);
269public:
270  AvailableSpills(const MRegisterInfo *mri, const TargetInstrInfo *tii)
271    : MRI(mri), TII(tii) {
272  }
273
274  /// getSpillSlotPhysReg - If the specified stack slot is available in a
275  /// physical register, return that PhysReg, otherwise return 0.
276  unsigned getSpillSlotPhysReg(int Slot) const {
277    std::map<int, unsigned>::const_iterator I = SpillSlotsAvailable.find(Slot);
278    if (I != SpillSlotsAvailable.end())
279      return I->second >> 1;  // Remove the CanClobber bit.
280    return 0;
281  }
282
283  const MRegisterInfo *getRegInfo() const { return MRI; }
284
285  /// addAvailable - Mark that the specified stack slot is available in the
286  /// specified physreg.  If CanClobber is true, the physreg can be modified at
287  /// any time without changing the semantics of the program.
288  void addAvailable(int Slot, unsigned Reg, bool CanClobber = true) {
289    // If this stack slot is thought to be available in some other physreg,
290    // remove its record.
291    ModifyStackSlot(Slot);
292
293    PhysRegsAvailable.insert(std::make_pair(Reg, Slot));
294    SpillSlotsAvailable[Slot] = (Reg << 1) | (unsigned)CanClobber;
295
296    DEBUG(std::cerr << "Remembering SS#" << Slot << " in physreg "
297                    << MRI->getName(Reg) << "\n");
298  }
299
300  /// canClobberPhysReg - Return true if the spiller is allowed to change the
301  /// value of the specified stackslot register if it desires.  The specified
302  /// stack slot must be available in a physreg for this query to make sense.
303  bool canClobberPhysReg(int Slot) const {
304    assert(SpillSlotsAvailable.count(Slot) && "Slot not available!");
305    return SpillSlotsAvailable.find(Slot)->second & 1;
306  }
307
308  /// ClobberPhysReg - This is called when the specified physreg changes
309  /// value.  We use this to invalidate any info about stuff we thing lives in
310  /// it and any of its aliases.
311  void ClobberPhysReg(unsigned PhysReg);
312
313  /// ModifyStackSlot - This method is called when the value in a stack slot
314  /// changes.  This removes information about which register the previous value
315  /// for this slot lives in (as the previous value is dead now).
316  void ModifyStackSlot(int Slot);
317};
318}
319
320/// ClobberPhysRegOnly - This is called when the specified physreg changes
321/// value.  We use this to invalidate any info about stuff we thing lives in it.
322void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
323  std::multimap<unsigned, int>::iterator I =
324    PhysRegsAvailable.lower_bound(PhysReg);
325  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
326    int Slot = I->second;
327    PhysRegsAvailable.erase(I++);
328    assert((SpillSlotsAvailable[Slot] >> 1) == PhysReg &&
329           "Bidirectional map mismatch!");
330    SpillSlotsAvailable.erase(Slot);
331    DEBUG(std::cerr << "PhysReg " << MRI->getName(PhysReg)
332                    << " clobbered, invalidating SS#" << Slot << "\n");
333  }
334}
335
336/// ClobberPhysReg - This is called when the specified physreg changes
337/// value.  We use this to invalidate any info about stuff we thing lives in
338/// it and any of its aliases.
339void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
340  for (const unsigned *AS = MRI->getAliasSet(PhysReg); *AS; ++AS)
341    ClobberPhysRegOnly(*AS);
342  ClobberPhysRegOnly(PhysReg);
343}
344
345/// ModifyStackSlot - This method is called when the value in a stack slot
346/// changes.  This removes information about which register the previous value
347/// for this slot lives in (as the previous value is dead now).
348void AvailableSpills::ModifyStackSlot(int Slot) {
349  std::map<int, unsigned>::iterator It = SpillSlotsAvailable.find(Slot);
350  if (It == SpillSlotsAvailable.end()) return;
351  unsigned Reg = It->second >> 1;
352  SpillSlotsAvailable.erase(It);
353
354  // This register may hold the value of multiple stack slots, only remove this
355  // stack slot from the set of values the register contains.
356  std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
357  for (; ; ++I) {
358    assert(I != PhysRegsAvailable.end() && I->first == Reg &&
359           "Map inverse broken!");
360    if (I->second == Slot) break;
361  }
362  PhysRegsAvailable.erase(I);
363}
364
365
366
367// ReusedOp - For each reused operand, we keep track of a bit of information, in
368// case we need to rollback upon processing a new operand.  See comments below.
369namespace {
370  struct ReusedOp {
371    // The MachineInstr operand that reused an available value.
372    unsigned Operand;
373
374    // StackSlot - The spill slot of the value being reused.
375    unsigned StackSlot;
376
377    // PhysRegReused - The physical register the value was available in.
378    unsigned PhysRegReused;
379
380    // AssignedPhysReg - The physreg that was assigned for use by the reload.
381    unsigned AssignedPhysReg;
382
383    // VirtReg - The virtual register itself.
384    unsigned VirtReg;
385
386    ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
387             unsigned vreg)
388      : Operand(o), StackSlot(ss), PhysRegReused(prr), AssignedPhysReg(apr),
389      VirtReg(vreg) {}
390  };
391
392  /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
393  /// is reused instead of reloaded.
394  class VISIBILITY_HIDDEN ReuseInfo {
395    MachineInstr &MI;
396    std::vector<ReusedOp> Reuses;
397  public:
398    ReuseInfo(MachineInstr &mi) : MI(mi) {}
399
400    bool hasReuses() const {
401      return !Reuses.empty();
402    }
403
404    /// addReuse - If we choose to reuse a virtual register that is already
405    /// available instead of reloading it, remember that we did so.
406    void addReuse(unsigned OpNo, unsigned StackSlot,
407                  unsigned PhysRegReused, unsigned AssignedPhysReg,
408                  unsigned VirtReg) {
409      // If the reload is to the assigned register anyway, no undo will be
410      // required.
411      if (PhysRegReused == AssignedPhysReg) return;
412
413      // Otherwise, remember this.
414      Reuses.push_back(ReusedOp(OpNo, StackSlot, PhysRegReused,
415                                AssignedPhysReg, VirtReg));
416    }
417
418    /// GetRegForReload - We are about to emit a reload into PhysReg.  If there
419    /// is some other operand that is using the specified register, either pick
420    /// a new register to use, or evict the previous reload and use this reg.
421    unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
422                             AvailableSpills &Spills,
423                             std::map<int, MachineInstr*> &MaybeDeadStores) {
424      if (Reuses.empty()) return PhysReg;  // This is most often empty.
425
426      for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
427        ReusedOp &Op = Reuses[ro];
428        // If we find some other reuse that was supposed to use this register
429        // exactly for its reload, we can change this reload to use ITS reload
430        // register.
431        if (Op.PhysRegReused == PhysReg) {
432          // Yup, use the reload register that we didn't use before.
433          unsigned NewReg = Op.AssignedPhysReg;
434
435          // Remove the record for the previous reuse.  We know it can never be
436          // invalidated now.
437          Reuses.erase(Reuses.begin()+ro);
438          return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores);
439        } else {
440          // Otherwise, we might also have a problem if a previously reused
441          // value aliases the new register.  If so, codegen the previous reload
442          // and use this one.
443          unsigned PRRU = Op.PhysRegReused;
444          const MRegisterInfo *MRI = Spills.getRegInfo();
445          if (MRI->areAliases(PRRU, PhysReg)) {
446            // Okay, we found out that an alias of a reused register
447            // was used.  This isn't good because it means we have
448            // to undo a previous reuse.
449            MachineBasicBlock *MBB = MI->getParent();
450            const TargetRegisterClass *AliasRC =
451              MBB->getParent()->getSSARegMap()->getRegClass(Op.VirtReg);
452
453            // Copy Op out of the vector and remove it, we're going to insert an
454            // explicit load for it.
455            ReusedOp NewOp = Op;
456            Reuses.erase(Reuses.begin()+ro);
457
458            // Ok, we're going to try to reload the assigned physreg into the
459            // slot that we were supposed to in the first place.  However, that
460            // register could hold a reuse.  Check to see if it conflicts or
461            // would prefer us to use a different register.
462            unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg,
463                                                  MI, Spills, MaybeDeadStores);
464
465            MRI->loadRegFromStackSlot(*MBB, MI, NewPhysReg,
466                                      NewOp.StackSlot, AliasRC);
467            Spills.ClobberPhysReg(NewPhysReg);
468            Spills.ClobberPhysReg(NewOp.PhysRegReused);
469
470            // Any stores to this stack slot are not dead anymore.
471            MaybeDeadStores.erase(NewOp.StackSlot);
472
473            MI->getOperand(NewOp.Operand).setReg(NewPhysReg);
474
475            Spills.addAvailable(NewOp.StackSlot, NewPhysReg);
476            ++NumLoads;
477            DEBUG(MachineBasicBlock::iterator MII = MI;
478                  std::cerr << '\t' << *prior(MII));
479
480            DEBUG(std::cerr << "Reuse undone!\n");
481            --NumReused;
482
483            // Finally, PhysReg is now available, go ahead and use it.
484            return PhysReg;
485          }
486        }
487      }
488      return PhysReg;
489    }
490  };
491}
492
493
494/// rewriteMBB - Keep track of which spills are available even after the
495/// register allocator is done with them.  If possible, avoid reloading vregs.
496void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) {
497
498  DEBUG(std::cerr << MBB.getBasicBlock()->getName() << ":\n");
499
500  // Spills - Keep track of which spilled values are available in physregs so
501  // that we can choose to reuse the physregs instead of emitting reloads.
502  AvailableSpills Spills(MRI, TII);
503
504  // MaybeDeadStores - When we need to write a value back into a stack slot,
505  // keep track of the inserted store.  If the stack slot value is never read
506  // (because the value was used from some available register, for example), and
507  // subsequently stored to, the original store is dead.  This map keeps track
508  // of inserted stores that are not used.  If we see a subsequent store to the
509  // same stack slot, the original store is deleted.
510  std::map<int, MachineInstr*> MaybeDeadStores;
511
512  bool *PhysRegsUsed = MBB.getParent()->getUsedPhysregs();
513
514  for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
515       MII != E; ) {
516    MachineInstr &MI = *MII;
517    MachineBasicBlock::iterator NextMII = MII; ++NextMII;
518
519    /// ReusedOperands - Keep track of operand reuse in case we need to undo
520    /// reuse.
521    ReuseInfo ReusedOperands(MI);
522
523    // Process all of the spilled uses and all non spilled reg references.
524    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
525      MachineOperand &MO = MI.getOperand(i);
526      if (!MO.isRegister() || MO.getReg() == 0)
527        continue;   // Ignore non-register operands.
528
529      if (MRegisterInfo::isPhysicalRegister(MO.getReg())) {
530        // Ignore physregs for spilling, but remember that it is used by this
531        // function.
532        PhysRegsUsed[MO.getReg()] = true;
533        continue;
534      }
535
536      assert(MRegisterInfo::isVirtualRegister(MO.getReg()) &&
537             "Not a virtual or a physical register?");
538
539      unsigned VirtReg = MO.getReg();
540      if (!VRM.hasStackSlot(VirtReg)) {
541        // This virtual register was assigned a physreg!
542        unsigned Phys = VRM.getPhys(VirtReg);
543        PhysRegsUsed[Phys] = true;
544        MI.getOperand(i).setReg(Phys);
545        continue;
546      }
547
548      // This virtual register is now known to be a spilled value.
549      if (!MO.isUse())
550        continue;  // Handle defs in the loop below (handle use&def here though)
551
552      int StackSlot = VRM.getStackSlot(VirtReg);
553      unsigned PhysReg;
554
555      // Check to see if this stack slot is available.
556      if ((PhysReg = Spills.getSpillSlotPhysReg(StackSlot))) {
557
558        // This spilled operand might be part of a two-address operand.  If this
559        // is the case, then changing it will necessarily require changing the
560        // def part of the instruction as well.  However, in some cases, we
561        // aren't allowed to modify the reused register.  If none of these cases
562        // apply, reuse it.
563        bool CanReuse = true;
564        int ti = TII->getOperandConstraint(MI.getOpcode(), i,
565                                           TargetInstrInfo::TIED_TO);
566        if (ti != -1 &&
567            MI.getOperand(ti).isReg() &&
568            MI.getOperand(ti).getReg() == VirtReg) {
569          // Okay, we have a two address operand.  We can reuse this physreg as
570          // long as we are allowed to clobber the value.
571          CanReuse = Spills.canClobberPhysReg(StackSlot);
572        }
573
574        if (CanReuse) {
575          // If this stack slot value is already available, reuse it!
576          DEBUG(std::cerr << "Reusing SS#" << StackSlot << " from physreg "
577                          << MRI->getName(PhysReg) << " for vreg"
578                          << VirtReg <<" instead of reloading into physreg "
579                          << MRI->getName(VRM.getPhys(VirtReg)) << "\n");
580          MI.getOperand(i).setReg(PhysReg);
581
582          // The only technical detail we have is that we don't know that
583          // PhysReg won't be clobbered by a reloaded stack slot that occurs
584          // later in the instruction.  In particular, consider 'op V1, V2'.
585          // If V1 is available in physreg R0, we would choose to reuse it
586          // here, instead of reloading it into the register the allocator
587          // indicated (say R1).  However, V2 might have to be reloaded
588          // later, and it might indicate that it needs to live in R0.  When
589          // this occurs, we need to have information available that
590          // indicates it is safe to use R1 for the reload instead of R0.
591          //
592          // To further complicate matters, we might conflict with an alias,
593          // or R0 and R1 might not be compatible with each other.  In this
594          // case, we actually insert a reload for V1 in R1, ensuring that
595          // we can get at R0 or its alias.
596          ReusedOperands.addReuse(i, StackSlot, PhysReg,
597                                  VRM.getPhys(VirtReg), VirtReg);
598          ++NumReused;
599          continue;
600        }
601
602        // Otherwise we have a situation where we have a two-address instruction
603        // whose mod/ref operand needs to be reloaded.  This reload is already
604        // available in some register "PhysReg", but if we used PhysReg as the
605        // operand to our 2-addr instruction, the instruction would modify
606        // PhysReg.  This isn't cool if something later uses PhysReg and expects
607        // to get its initial value.
608        //
609        // To avoid this problem, and to avoid doing a load right after a store,
610        // we emit a copy from PhysReg into the designated register for this
611        // operand.
612        unsigned DesignatedReg = VRM.getPhys(VirtReg);
613        assert(DesignatedReg && "Must map virtreg to physreg!");
614
615        // Note that, if we reused a register for a previous operand, the
616        // register we want to reload into might not actually be
617        // available.  If this occurs, use the register indicated by the
618        // reuser.
619        if (ReusedOperands.hasReuses())
620          DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI,
621                                                      Spills, MaybeDeadStores);
622
623        // If the mapped designated register is actually the physreg we have
624        // incoming, we don't need to inserted a dead copy.
625        if (DesignatedReg == PhysReg) {
626          // If this stack slot value is already available, reuse it!
627          DEBUG(std::cerr << "Reusing SS#" << StackSlot << " from physreg "
628                          << MRI->getName(PhysReg) << " for vreg"
629                          << VirtReg
630                          << " instead of reloading into same physreg.\n");
631          MI.getOperand(i).setReg(PhysReg);
632          ++NumReused;
633          continue;
634        }
635
636        const TargetRegisterClass* RC =
637          MBB.getParent()->getSSARegMap()->getRegClass(VirtReg);
638
639        PhysRegsUsed[DesignatedReg] = true;
640        MRI->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC);
641
642        // This invalidates DesignatedReg.
643        Spills.ClobberPhysReg(DesignatedReg);
644
645        Spills.addAvailable(StackSlot, DesignatedReg);
646        MI.getOperand(i).setReg(DesignatedReg);
647        DEBUG(std::cerr << '\t' << *prior(MII));
648        ++NumReused;
649        continue;
650      }
651
652      // Otherwise, reload it and remember that we have it.
653      PhysReg = VRM.getPhys(VirtReg);
654      assert(PhysReg && "Must map virtreg to physreg!");
655      const TargetRegisterClass* RC =
656        MBB.getParent()->getSSARegMap()->getRegClass(VirtReg);
657
658      // Note that, if we reused a register for a previous operand, the
659      // register we want to reload into might not actually be
660      // available.  If this occurs, use the register indicated by the
661      // reuser.
662      if (ReusedOperands.hasReuses())
663        PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
664                                                 Spills, MaybeDeadStores);
665
666      PhysRegsUsed[PhysReg] = true;
667      MRI->loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
668      // This invalidates PhysReg.
669      Spills.ClobberPhysReg(PhysReg);
670
671      // Any stores to this stack slot are not dead anymore.
672      MaybeDeadStores.erase(StackSlot);
673      Spills.addAvailable(StackSlot, PhysReg);
674      ++NumLoads;
675      MI.getOperand(i).setReg(PhysReg);
676      DEBUG(std::cerr << '\t' << *prior(MII));
677    }
678
679    // Loop over all of the implicit defs, clearing them from our available
680    // sets.
681    const unsigned *ImpDef = TII->getImplicitDefs(MI.getOpcode());
682    if (ImpDef) {
683      for ( ; *ImpDef; ++ImpDef) {
684        PhysRegsUsed[*ImpDef] = true;
685        Spills.ClobberPhysReg(*ImpDef);
686      }
687    }
688
689    DEBUG(std::cerr << '\t' << MI);
690
691    // If we have folded references to memory operands, make sure we clear all
692    // physical registers that may contain the value of the spilled virtual
693    // register
694    VirtRegMap::MI2VirtMapTy::const_iterator I, End;
695    for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
696      DEBUG(std::cerr << "Folded vreg: " << I->second.first << "  MR: "
697                      << I->second.second);
698      unsigned VirtReg = I->second.first;
699      VirtRegMap::ModRef MR = I->second.second;
700      if (!VRM.hasStackSlot(VirtReg)) {
701        DEBUG(std::cerr << ": No stack slot!\n");
702        continue;
703      }
704      int SS = VRM.getStackSlot(VirtReg);
705      DEBUG(std::cerr << " - StackSlot: " << SS << "\n");
706
707      // If this folded instruction is just a use, check to see if it's a
708      // straight load from the virt reg slot.
709      if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
710        int FrameIdx;
711        if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
712          if (FrameIdx == SS) {
713            // If this spill slot is available, turn it into a copy (or nothing)
714            // instead of leaving it as a load!
715            if (unsigned InReg = Spills.getSpillSlotPhysReg(SS)) {
716              DEBUG(std::cerr << "Promoted Load To Copy: " << MI);
717              MachineFunction &MF = *MBB.getParent();
718              if (DestReg != InReg) {
719                MRI->copyRegToReg(MBB, &MI, DestReg, InReg,
720                                  MF.getSSARegMap()->getRegClass(VirtReg));
721                // Revisit the copy so we make sure to notice the effects of the
722                // operation on the destreg (either needing to RA it if it's
723                // virtual or needing to clobber any values if it's physical).
724                NextMII = &MI;
725                --NextMII;  // backtrack to the copy.
726              }
727              VRM.RemoveFromFoldedVirtMap(&MI);
728              MBB.erase(&MI);
729              goto ProcessNextInst;
730            }
731          }
732        }
733      }
734
735      // If this reference is not a use, any previous store is now dead.
736      // Otherwise, the store to this stack slot is not dead anymore.
737      std::map<int, MachineInstr*>::iterator MDSI = MaybeDeadStores.find(SS);
738      if (MDSI != MaybeDeadStores.end()) {
739        if (MR & VirtRegMap::isRef)   // Previous store is not dead.
740          MaybeDeadStores.erase(MDSI);
741        else {
742          // If we get here, the store is dead, nuke it now.
743          assert(VirtRegMap::isMod && "Can't be modref!");
744          DEBUG(std::cerr << "Removed dead store:\t" << *MDSI->second);
745          MBB.erase(MDSI->second);
746          VRM.RemoveFromFoldedVirtMap(MDSI->second);
747          MaybeDeadStores.erase(MDSI);
748          ++NumDSE;
749        }
750      }
751
752      // If the spill slot value is available, and this is a new definition of
753      // the value, the value is not available anymore.
754      if (MR & VirtRegMap::isMod) {
755        // Notice that the value in this stack slot has been modified.
756        Spills.ModifyStackSlot(SS);
757
758        // If this is *just* a mod of the value, check to see if this is just a
759        // store to the spill slot (i.e. the spill got merged into the copy). If
760        // so, realize that the vreg is available now, and add the store to the
761        // MaybeDeadStore info.
762        int StackSlot;
763        if (!(MR & VirtRegMap::isRef)) {
764          if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
765            assert(MRegisterInfo::isPhysicalRegister(SrcReg) &&
766                   "Src hasn't been allocated yet?");
767            // Okay, this is certainly a store of SrcReg to [StackSlot].  Mark
768            // this as a potentially dead store in case there is a subsequent
769            // store into the stack slot without a read from it.
770            MaybeDeadStores[StackSlot] = &MI;
771
772            // If the stack slot value was previously available in some other
773            // register, change it now.  Otherwise, make the register available,
774            // in PhysReg.
775            Spills.addAvailable(StackSlot, SrcReg, false /*don't clobber*/);
776          }
777        }
778      }
779    }
780
781    // Process all of the spilled defs.
782    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
783      MachineOperand &MO = MI.getOperand(i);
784      if (MO.isRegister() && MO.getReg() && MO.isDef()) {
785        unsigned VirtReg = MO.getReg();
786
787        if (!MRegisterInfo::isVirtualRegister(VirtReg)) {
788          // Check to see if this is a noop copy.  If so, eliminate the
789          // instruction before considering the dest reg to be changed.
790          unsigned Src, Dst;
791          if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
792            ++NumDCE;
793            DEBUG(std::cerr << "Removing now-noop copy: " << MI);
794            MBB.erase(&MI);
795            VRM.RemoveFromFoldedVirtMap(&MI);
796            goto ProcessNextInst;
797          }
798
799          // If it's not a no-op copy, it clobbers the value in the destreg.
800          Spills.ClobberPhysReg(VirtReg);
801
802          // Check to see if this instruction is a load from a stack slot into
803          // a register.  If so, this provides the stack slot value in the reg.
804          int FrameIdx;
805          if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
806            assert(DestReg == VirtReg && "Unknown load situation!");
807
808            // Otherwise, if it wasn't available, remember that it is now!
809            Spills.addAvailable(FrameIdx, DestReg);
810            goto ProcessNextInst;
811          }
812
813          continue;
814        }
815
816        // The only vregs left are stack slot definitions.
817        int StackSlot = VRM.getStackSlot(VirtReg);
818        const TargetRegisterClass *RC =
819          MBB.getParent()->getSSARegMap()->getRegClass(VirtReg);
820
821        // If this def is part of a two-address operand, make sure to execute
822        // the store from the correct physical register.
823        unsigned PhysReg;
824        int TiedOp = TII->findTiedToSrcOperand(MI.getOpcode(), i);
825        if (TiedOp != -1)
826          PhysReg = MI.getOperand(TiedOp).getReg();
827        else
828          PhysReg = VRM.getPhys(VirtReg);
829
830        PhysRegsUsed[PhysReg] = true;
831        MRI->storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot, RC);
832        DEBUG(std::cerr << "Store:\t" << *next(MII));
833        MI.getOperand(i).setReg(PhysReg);
834
835        // Check to see if this is a noop copy.  If so, eliminate the
836        // instruction before considering the dest reg to be changed.
837        {
838          unsigned Src, Dst;
839          if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
840            ++NumDCE;
841            DEBUG(std::cerr << "Removing now-noop copy: " << MI);
842            MBB.erase(&MI);
843            VRM.RemoveFromFoldedVirtMap(&MI);
844            goto ProcessNextInst;
845          }
846        }
847
848        // If there is a dead store to this stack slot, nuke it now.
849        MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
850        if (LastStore) {
851          DEBUG(std::cerr << "Removed dead store:\t" << *LastStore);
852          ++NumDSE;
853          MBB.erase(LastStore);
854          VRM.RemoveFromFoldedVirtMap(LastStore);
855        }
856        LastStore = next(MII);
857
858        // If the stack slot value was previously available in some other
859        // register, change it now.  Otherwise, make the register available,
860        // in PhysReg.
861        Spills.ModifyStackSlot(StackSlot);
862        Spills.ClobberPhysReg(PhysReg);
863        Spills.addAvailable(StackSlot, PhysReg);
864        ++NumStores;
865      }
866    }
867  ProcessNextInst:
868    MII = NextMII;
869  }
870}
871
872
873
874llvm::Spiller* llvm::createSpiller() {
875  switch (SpillerOpt) {
876  default: assert(0 && "Unreachable!");
877  case local:
878    return new LocalSpiller();
879  case simple:
880    return new SimpleSpiller();
881  }
882}
883