ExecutionEngine.cpp revision 5b3701256c6706182ebfaeed8d50a66c6afe2a40
1//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the common interface used by the various execution engine
11// subclasses.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "jit"
16#include "llvm/ExecutionEngine/ExecutionEngine.h"
17
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Module.h"
21#include "llvm/ModuleProvider.h"
22#include "llvm/ExecutionEngine/GenericValue.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/MutexGuard.h"
27#include "llvm/Support/ValueHandle.h"
28#include "llvm/Support/raw_ostream.h"
29#include "llvm/System/DynamicLibrary.h"
30#include "llvm/System/Host.h"
31#include "llvm/Target/TargetData.h"
32#include <cmath>
33#include <cstring>
34using namespace llvm;
35
36STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
37STATISTIC(NumGlobals  , "Number of global vars initialized");
38
39ExecutionEngine *(*ExecutionEngine::JITCtor)(ModuleProvider *MP,
40                                             std::string *ErrorStr,
41                                             JITMemoryManager *JMM,
42                                             CodeGenOpt::Level OptLevel,
43                                             bool GVsWithCode,
44					     CodeModel::Model CMM) = 0;
45ExecutionEngine *(*ExecutionEngine::InterpCtor)(ModuleProvider *MP,
46                                                std::string *ErrorStr) = 0;
47ExecutionEngine::EERegisterFn ExecutionEngine::ExceptionTableRegister = 0;
48
49
50ExecutionEngine::ExecutionEngine(ModuleProvider *P)
51  : EEState(*this),
52    LazyFunctionCreator(0) {
53  CompilingLazily         = false;
54  GVCompilationDisabled   = false;
55  SymbolSearchingDisabled = false;
56  Modules.push_back(P);
57  assert(P && "ModuleProvider is null?");
58}
59
60ExecutionEngine::~ExecutionEngine() {
61  clearAllGlobalMappings();
62  for (unsigned i = 0, e = Modules.size(); i != e; ++i)
63    delete Modules[i];
64}
65
66char* ExecutionEngine::getMemoryForGV(const GlobalVariable* GV) {
67  const Type *ElTy = GV->getType()->getElementType();
68  size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy);
69  return new char[GVSize];
70}
71
72/// removeModuleProvider - Remove a ModuleProvider from the list of modules.
73/// Relases the Module from the ModuleProvider, materializing it in the
74/// process, and returns the materialized Module.
75Module* ExecutionEngine::removeModuleProvider(ModuleProvider *P,
76                                              std::string *ErrInfo) {
77  for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(),
78        E = Modules.end(); I != E; ++I) {
79    ModuleProvider *MP = *I;
80    if (MP == P) {
81      Modules.erase(I);
82      clearGlobalMappingsFromModule(MP->getModule());
83      return MP->releaseModule(ErrInfo);
84    }
85  }
86  return NULL;
87}
88
89/// deleteModuleProvider - Remove a ModuleProvider from the list of modules,
90/// and deletes the ModuleProvider and owned Module.  Avoids materializing
91/// the underlying module.
92void ExecutionEngine::deleteModuleProvider(ModuleProvider *P,
93                                           std::string *ErrInfo) {
94  for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(),
95      E = Modules.end(); I != E; ++I) {
96    ModuleProvider *MP = *I;
97    if (MP == P) {
98      Modules.erase(I);
99      clearGlobalMappingsFromModule(MP->getModule());
100      delete MP;
101      return;
102    }
103  }
104}
105
106/// FindFunctionNamed - Search all of the active modules to find the one that
107/// defines FnName.  This is very slow operation and shouldn't be used for
108/// general code.
109Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
110  for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
111    if (Function *F = Modules[i]->getModule()->getFunction(FnName))
112      return F;
113  }
114  return 0;
115}
116
117
118void *ExecutionEngineState::RemoveMapping(
119  const MutexGuard &, const GlobalValue *ToUnmap) {
120  GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap);
121  void *OldVal;
122  if (I == GlobalAddressMap.end())
123    OldVal = 0;
124  else {
125    OldVal = I->second;
126    GlobalAddressMap.erase(I);
127  }
128
129  GlobalAddressReverseMap.erase(OldVal);
130  return OldVal;
131}
132
133/// addGlobalMapping - Tell the execution engine that the specified global is
134/// at the specified location.  This is used internally as functions are JIT'd
135/// and as global variables are laid out in memory.  It can and should also be
136/// used by clients of the EE that want to have an LLVM global overlay
137/// existing data in memory.
138void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
139  MutexGuard locked(lock);
140
141  DEBUG(dbgs() << "JIT: Map \'" << GV->getName()
142        << "\' to [" << Addr << "]\n";);
143  void *&CurVal = EEState.getGlobalAddressMap(locked)[GV];
144  assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
145  CurVal = Addr;
146
147  // If we are using the reverse mapping, add it too
148  if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
149    AssertingVH<const GlobalValue> &V =
150      EEState.getGlobalAddressReverseMap(locked)[Addr];
151    assert((V == 0 || GV == 0) && "GlobalMapping already established!");
152    V = GV;
153  }
154}
155
156/// clearAllGlobalMappings - Clear all global mappings and start over again
157/// use in dynamic compilation scenarios when you want to move globals
158void ExecutionEngine::clearAllGlobalMappings() {
159  MutexGuard locked(lock);
160
161  EEState.getGlobalAddressMap(locked).clear();
162  EEState.getGlobalAddressReverseMap(locked).clear();
163}
164
165/// clearGlobalMappingsFromModule - Clear all global mappings that came from a
166/// particular module, because it has been removed from the JIT.
167void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
168  MutexGuard locked(lock);
169
170  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) {
171    EEState.RemoveMapping(locked, FI);
172  }
173  for (Module::global_iterator GI = M->global_begin(), GE = M->global_end();
174       GI != GE; ++GI) {
175    EEState.RemoveMapping(locked, GI);
176  }
177}
178
179/// updateGlobalMapping - Replace an existing mapping for GV with a new
180/// address.  This updates both maps as required.  If "Addr" is null, the
181/// entry for the global is removed from the mappings.
182void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
183  MutexGuard locked(lock);
184
185  ExecutionEngineState::GlobalAddressMapTy &Map =
186    EEState.getGlobalAddressMap(locked);
187
188  // Deleting from the mapping?
189  if (Addr == 0) {
190    return EEState.RemoveMapping(locked, GV);
191  }
192
193  void *&CurVal = Map[GV];
194  void *OldVal = CurVal;
195
196  if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty())
197    EEState.getGlobalAddressReverseMap(locked).erase(CurVal);
198  CurVal = Addr;
199
200  // If we are using the reverse mapping, add it too
201  if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
202    AssertingVH<const GlobalValue> &V =
203      EEState.getGlobalAddressReverseMap(locked)[Addr];
204    assert((V == 0 || GV == 0) && "GlobalMapping already established!");
205    V = GV;
206  }
207  return OldVal;
208}
209
210/// getPointerToGlobalIfAvailable - This returns the address of the specified
211/// global value if it is has already been codegen'd, otherwise it returns null.
212///
213void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
214  MutexGuard locked(lock);
215
216  ExecutionEngineState::GlobalAddressMapTy::iterator I =
217    EEState.getGlobalAddressMap(locked).find(GV);
218  return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0;
219}
220
221/// getGlobalValueAtAddress - Return the LLVM global value object that starts
222/// at the specified address.
223///
224const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
225  MutexGuard locked(lock);
226
227  // If we haven't computed the reverse mapping yet, do so first.
228  if (EEState.getGlobalAddressReverseMap(locked).empty()) {
229    for (ExecutionEngineState::GlobalAddressMapTy::iterator
230         I = EEState.getGlobalAddressMap(locked).begin(),
231         E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I)
232      EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second,
233                                                                     I->first));
234  }
235
236  std::map<void *, AssertingVH<const GlobalValue> >::iterator I =
237    EEState.getGlobalAddressReverseMap(locked).find(Addr);
238  return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
239}
240
241// CreateArgv - Turn a vector of strings into a nice argv style array of
242// pointers to null terminated strings.
243//
244static void *CreateArgv(LLVMContext &C, ExecutionEngine *EE,
245                        const std::vector<std::string> &InputArgv) {
246  unsigned PtrSize = EE->getTargetData()->getPointerSize();
247  char *Result = new char[(InputArgv.size()+1)*PtrSize];
248
249  DEBUG(dbgs() << "JIT: ARGV = " << (void*)Result << "\n");
250  const Type *SBytePtr = Type::getInt8PtrTy(C);
251
252  for (unsigned i = 0; i != InputArgv.size(); ++i) {
253    unsigned Size = InputArgv[i].size()+1;
254    char *Dest = new char[Size];
255    DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n");
256
257    std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
258    Dest[Size-1] = 0;
259
260    // Endian safe: Result[i] = (PointerTy)Dest;
261    EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize),
262                           SBytePtr);
263  }
264
265  // Null terminate it
266  EE->StoreValueToMemory(PTOGV(0),
267                         (GenericValue*)(Result+InputArgv.size()*PtrSize),
268                         SBytePtr);
269  return Result;
270}
271
272
273/// runStaticConstructorsDestructors - This method is used to execute all of
274/// the static constructors or destructors for a module, depending on the
275/// value of isDtors.
276void ExecutionEngine::runStaticConstructorsDestructors(Module *module,
277                                                       bool isDtors) {
278  const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
279
280  // Execute global ctors/dtors for each module in the program.
281
282 GlobalVariable *GV = module->getNamedGlobal(Name);
283
284 // If this global has internal linkage, or if it has a use, then it must be
285 // an old-style (llvmgcc3) static ctor with __main linked in and in use.  If
286 // this is the case, don't execute any of the global ctors, __main will do
287 // it.
288 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
289
290 // Should be an array of '{ int, void ()* }' structs.  The first value is
291 // the init priority, which we ignore.
292 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
293 if (!InitList) return;
294 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
295   if (ConstantStruct *CS =
296       dyn_cast<ConstantStruct>(InitList->getOperand(i))) {
297     if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
298
299     Constant *FP = CS->getOperand(1);
300     if (FP->isNullValue())
301       break;  // Found a null terminator, exit.
302
303     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
304       if (CE->isCast())
305         FP = CE->getOperand(0);
306     if (Function *F = dyn_cast<Function>(FP)) {
307       // Execute the ctor/dtor function!
308       runFunction(F, std::vector<GenericValue>());
309     }
310   }
311}
312
313/// runStaticConstructorsDestructors - This method is used to execute all of
314/// the static constructors or destructors for a program, depending on the
315/// value of isDtors.
316void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
317  // Execute global ctors/dtors for each module in the program.
318  for (unsigned m = 0, e = Modules.size(); m != e; ++m)
319    runStaticConstructorsDestructors(Modules[m]->getModule(), isDtors);
320}
321
322#ifndef NDEBUG
323/// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
324static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
325  unsigned PtrSize = EE->getTargetData()->getPointerSize();
326  for (unsigned i = 0; i < PtrSize; ++i)
327    if (*(i + (uint8_t*)Loc))
328      return false;
329  return true;
330}
331#endif
332
333/// runFunctionAsMain - This is a helper function which wraps runFunction to
334/// handle the common task of starting up main with the specified argc, argv,
335/// and envp parameters.
336int ExecutionEngine::runFunctionAsMain(Function *Fn,
337                                       const std::vector<std::string> &argv,
338                                       const char * const * envp) {
339  std::vector<GenericValue> GVArgs;
340  GenericValue GVArgc;
341  GVArgc.IntVal = APInt(32, argv.size());
342
343  // Check main() type
344  unsigned NumArgs = Fn->getFunctionType()->getNumParams();
345  const FunctionType *FTy = Fn->getFunctionType();
346  const Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo();
347  switch (NumArgs) {
348  case 3:
349   if (FTy->getParamType(2) != PPInt8Ty) {
350     llvm_report_error("Invalid type for third argument of main() supplied");
351   }
352   // FALLS THROUGH
353  case 2:
354   if (FTy->getParamType(1) != PPInt8Ty) {
355     llvm_report_error("Invalid type for second argument of main() supplied");
356   }
357   // FALLS THROUGH
358  case 1:
359   if (!FTy->getParamType(0)->isInteger(32)) {
360     llvm_report_error("Invalid type for first argument of main() supplied");
361   }
362   // FALLS THROUGH
363  case 0:
364   if (!isa<IntegerType>(FTy->getReturnType()) &&
365       !FTy->getReturnType()->isVoidTy()) {
366     llvm_report_error("Invalid return type of main() supplied");
367   }
368   break;
369  default:
370   llvm_report_error("Invalid number of arguments of main() supplied");
371  }
372
373  if (NumArgs) {
374    GVArgs.push_back(GVArgc); // Arg #0 = argc.
375    if (NumArgs > 1) {
376      // Arg #1 = argv.
377      GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, argv)));
378      assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
379             "argv[0] was null after CreateArgv");
380      if (NumArgs > 2) {
381        std::vector<std::string> EnvVars;
382        for (unsigned i = 0; envp[i]; ++i)
383          EnvVars.push_back(envp[i]);
384        // Arg #2 = envp.
385        GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, EnvVars)));
386      }
387    }
388  }
389  return runFunction(Fn, GVArgs).IntVal.getZExtValue();
390}
391
392/// If possible, create a JIT, unless the caller specifically requests an
393/// Interpreter or there's an error. If even an Interpreter cannot be created,
394/// NULL is returned.
395///
396ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP,
397                                         bool ForceInterpreter,
398                                         std::string *ErrorStr,
399                                         CodeGenOpt::Level OptLevel,
400                                         bool GVsWithCode) {
401  return EngineBuilder(MP)
402      .setEngineKind(ForceInterpreter
403                     ? EngineKind::Interpreter
404                     : EngineKind::JIT)
405      .setErrorStr(ErrorStr)
406      .setOptLevel(OptLevel)
407      .setAllocateGVsWithCode(GVsWithCode)
408      .create();
409}
410
411ExecutionEngine *ExecutionEngine::create(Module *M) {
412  return EngineBuilder(M).create();
413}
414
415/// EngineBuilder - Overloaded constructor that automatically creates an
416/// ExistingModuleProvider for an existing module.
417EngineBuilder::EngineBuilder(Module *m) : MP(new ExistingModuleProvider(m)) {
418  InitEngine();
419}
420
421ExecutionEngine *EngineBuilder::create() {
422  // Make sure we can resolve symbols in the program as well. The zero arg
423  // to the function tells DynamicLibrary to load the program, not a library.
424  if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr))
425    return 0;
426
427  // If the user specified a memory manager but didn't specify which engine to
428  // create, we assume they only want the JIT, and we fail if they only want
429  // the interpreter.
430  if (JMM) {
431    if (WhichEngine & EngineKind::JIT)
432      WhichEngine = EngineKind::JIT;
433    else {
434      if (ErrorStr)
435        *ErrorStr = "Cannot create an interpreter with a memory manager.";
436      return 0;
437    }
438  }
439
440  // Unless the interpreter was explicitly selected or the JIT is not linked,
441  // try making a JIT.
442  if (WhichEngine & EngineKind::JIT) {
443    if (ExecutionEngine::JITCtor) {
444      ExecutionEngine *EE =
445        ExecutionEngine::JITCtor(MP, ErrorStr, JMM, OptLevel,
446                                 AllocateGVsWithCode, CMModel);
447      if (EE) return EE;
448    }
449  }
450
451  // If we can't make a JIT and we didn't request one specifically, try making
452  // an interpreter instead.
453  if (WhichEngine & EngineKind::Interpreter) {
454    if (ExecutionEngine::InterpCtor)
455      return ExecutionEngine::InterpCtor(MP, ErrorStr);
456    if (ErrorStr)
457      *ErrorStr = "Interpreter has not been linked in.";
458    return 0;
459  }
460
461  if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0) {
462    if (ErrorStr)
463      *ErrorStr = "JIT has not been linked in.";
464  }
465  return 0;
466}
467
468/// getPointerToGlobal - This returns the address of the specified global
469/// value.  This may involve code generation if it's a function.
470///
471void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
472  if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
473    return getPointerToFunction(F);
474
475  MutexGuard locked(lock);
476  void *p = EEState.getGlobalAddressMap(locked)[GV];
477  if (p)
478    return p;
479
480  // Global variable might have been added since interpreter started.
481  if (GlobalVariable *GVar =
482          const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
483    EmitGlobalVariable(GVar);
484  else
485    llvm_unreachable("Global hasn't had an address allocated yet!");
486  return EEState.getGlobalAddressMap(locked)[GV];
487}
488
489/// This function converts a Constant* into a GenericValue. The interesting
490/// part is if C is a ConstantExpr.
491/// @brief Get a GenericValue for a Constant*
492GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
493  // If its undefined, return the garbage.
494  if (isa<UndefValue>(C)) {
495    GenericValue Result;
496    switch (C->getType()->getTypeID()) {
497    case Type::IntegerTyID:
498    case Type::X86_FP80TyID:
499    case Type::FP128TyID:
500    case Type::PPC_FP128TyID:
501      // Although the value is undefined, we still have to construct an APInt
502      // with the correct bit width.
503      Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0);
504      break;
505    default:
506      break;
507    }
508    return Result;
509  }
510
511  // If the value is a ConstantExpr
512  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
513    Constant *Op0 = CE->getOperand(0);
514    switch (CE->getOpcode()) {
515    case Instruction::GetElementPtr: {
516      // Compute the index
517      GenericValue Result = getConstantValue(Op0);
518      SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end());
519      uint64_t Offset =
520        TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size());
521
522      char* tmp = (char*) Result.PointerVal;
523      Result = PTOGV(tmp + Offset);
524      return Result;
525    }
526    case Instruction::Trunc: {
527      GenericValue GV = getConstantValue(Op0);
528      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
529      GV.IntVal = GV.IntVal.trunc(BitWidth);
530      return GV;
531    }
532    case Instruction::ZExt: {
533      GenericValue GV = getConstantValue(Op0);
534      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
535      GV.IntVal = GV.IntVal.zext(BitWidth);
536      return GV;
537    }
538    case Instruction::SExt: {
539      GenericValue GV = getConstantValue(Op0);
540      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
541      GV.IntVal = GV.IntVal.sext(BitWidth);
542      return GV;
543    }
544    case Instruction::FPTrunc: {
545      // FIXME long double
546      GenericValue GV = getConstantValue(Op0);
547      GV.FloatVal = float(GV.DoubleVal);
548      return GV;
549    }
550    case Instruction::FPExt:{
551      // FIXME long double
552      GenericValue GV = getConstantValue(Op0);
553      GV.DoubleVal = double(GV.FloatVal);
554      return GV;
555    }
556    case Instruction::UIToFP: {
557      GenericValue GV = getConstantValue(Op0);
558      if (CE->getType()->isFloatTy())
559        GV.FloatVal = float(GV.IntVal.roundToDouble());
560      else if (CE->getType()->isDoubleTy())
561        GV.DoubleVal = GV.IntVal.roundToDouble();
562      else if (CE->getType()->isX86_FP80Ty()) {
563        const uint64_t zero[] = {0, 0};
564        APFloat apf = APFloat(APInt(80, 2, zero));
565        (void)apf.convertFromAPInt(GV.IntVal,
566                                   false,
567                                   APFloat::rmNearestTiesToEven);
568        GV.IntVal = apf.bitcastToAPInt();
569      }
570      return GV;
571    }
572    case Instruction::SIToFP: {
573      GenericValue GV = getConstantValue(Op0);
574      if (CE->getType()->isFloatTy())
575        GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
576      else if (CE->getType()->isDoubleTy())
577        GV.DoubleVal = GV.IntVal.signedRoundToDouble();
578      else if (CE->getType()->isX86_FP80Ty()) {
579        const uint64_t zero[] = { 0, 0};
580        APFloat apf = APFloat(APInt(80, 2, zero));
581        (void)apf.convertFromAPInt(GV.IntVal,
582                                   true,
583                                   APFloat::rmNearestTiesToEven);
584        GV.IntVal = apf.bitcastToAPInt();
585      }
586      return GV;
587    }
588    case Instruction::FPToUI: // double->APInt conversion handles sign
589    case Instruction::FPToSI: {
590      GenericValue GV = getConstantValue(Op0);
591      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
592      if (Op0->getType()->isFloatTy())
593        GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
594      else if (Op0->getType()->isDoubleTy())
595        GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
596      else if (Op0->getType()->isX86_FP80Ty()) {
597        APFloat apf = APFloat(GV.IntVal);
598        uint64_t v;
599        bool ignored;
600        (void)apf.convertToInteger(&v, BitWidth,
601                                   CE->getOpcode()==Instruction::FPToSI,
602                                   APFloat::rmTowardZero, &ignored);
603        GV.IntVal = v; // endian?
604      }
605      return GV;
606    }
607    case Instruction::PtrToInt: {
608      GenericValue GV = getConstantValue(Op0);
609      uint32_t PtrWidth = TD->getPointerSizeInBits();
610      GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
611      return GV;
612    }
613    case Instruction::IntToPtr: {
614      GenericValue GV = getConstantValue(Op0);
615      uint32_t PtrWidth = TD->getPointerSizeInBits();
616      if (PtrWidth != GV.IntVal.getBitWidth())
617        GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
618      assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
619      GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
620      return GV;
621    }
622    case Instruction::BitCast: {
623      GenericValue GV = getConstantValue(Op0);
624      const Type* DestTy = CE->getType();
625      switch (Op0->getType()->getTypeID()) {
626        default: llvm_unreachable("Invalid bitcast operand");
627        case Type::IntegerTyID:
628          assert(DestTy->isFloatingPoint() && "invalid bitcast");
629          if (DestTy->isFloatTy())
630            GV.FloatVal = GV.IntVal.bitsToFloat();
631          else if (DestTy->isDoubleTy())
632            GV.DoubleVal = GV.IntVal.bitsToDouble();
633          break;
634        case Type::FloatTyID:
635          assert(DestTy->isInteger(32) && "Invalid bitcast");
636          GV.IntVal.floatToBits(GV.FloatVal);
637          break;
638        case Type::DoubleTyID:
639          assert(DestTy->isInteger(64) && "Invalid bitcast");
640          GV.IntVal.doubleToBits(GV.DoubleVal);
641          break;
642        case Type::PointerTyID:
643          assert(isa<PointerType>(DestTy) && "Invalid bitcast");
644          break; // getConstantValue(Op0)  above already converted it
645      }
646      return GV;
647    }
648    case Instruction::Add:
649    case Instruction::FAdd:
650    case Instruction::Sub:
651    case Instruction::FSub:
652    case Instruction::Mul:
653    case Instruction::FMul:
654    case Instruction::UDiv:
655    case Instruction::SDiv:
656    case Instruction::URem:
657    case Instruction::SRem:
658    case Instruction::And:
659    case Instruction::Or:
660    case Instruction::Xor: {
661      GenericValue LHS = getConstantValue(Op0);
662      GenericValue RHS = getConstantValue(CE->getOperand(1));
663      GenericValue GV;
664      switch (CE->getOperand(0)->getType()->getTypeID()) {
665      default: llvm_unreachable("Bad add type!");
666      case Type::IntegerTyID:
667        switch (CE->getOpcode()) {
668          default: llvm_unreachable("Invalid integer opcode");
669          case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
670          case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
671          case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
672          case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
673          case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
674          case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
675          case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
676          case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
677          case Instruction::Or:  GV.IntVal = LHS.IntVal | RHS.IntVal; break;
678          case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
679        }
680        break;
681      case Type::FloatTyID:
682        switch (CE->getOpcode()) {
683          default: llvm_unreachable("Invalid float opcode");
684          case Instruction::FAdd:
685            GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
686          case Instruction::FSub:
687            GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
688          case Instruction::FMul:
689            GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
690          case Instruction::FDiv:
691            GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
692          case Instruction::FRem:
693            GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break;
694        }
695        break;
696      case Type::DoubleTyID:
697        switch (CE->getOpcode()) {
698          default: llvm_unreachable("Invalid double opcode");
699          case Instruction::FAdd:
700            GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
701          case Instruction::FSub:
702            GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
703          case Instruction::FMul:
704            GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
705          case Instruction::FDiv:
706            GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
707          case Instruction::FRem:
708            GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
709        }
710        break;
711      case Type::X86_FP80TyID:
712      case Type::PPC_FP128TyID:
713      case Type::FP128TyID: {
714        APFloat apfLHS = APFloat(LHS.IntVal);
715        switch (CE->getOpcode()) {
716          default: llvm_unreachable("Invalid long double opcode");llvm_unreachable(0);
717          case Instruction::FAdd:
718            apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
719            GV.IntVal = apfLHS.bitcastToAPInt();
720            break;
721          case Instruction::FSub:
722            apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
723            GV.IntVal = apfLHS.bitcastToAPInt();
724            break;
725          case Instruction::FMul:
726            apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
727            GV.IntVal = apfLHS.bitcastToAPInt();
728            break;
729          case Instruction::FDiv:
730            apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
731            GV.IntVal = apfLHS.bitcastToAPInt();
732            break;
733          case Instruction::FRem:
734            apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
735            GV.IntVal = apfLHS.bitcastToAPInt();
736            break;
737          }
738        }
739        break;
740      }
741      return GV;
742    }
743    default:
744      break;
745    }
746    std::string msg;
747    raw_string_ostream Msg(msg);
748    Msg << "ConstantExpr not handled: " << *CE;
749    llvm_report_error(Msg.str());
750  }
751
752  GenericValue Result;
753  switch (C->getType()->getTypeID()) {
754  case Type::FloatTyID:
755    Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
756    break;
757  case Type::DoubleTyID:
758    Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
759    break;
760  case Type::X86_FP80TyID:
761  case Type::FP128TyID:
762  case Type::PPC_FP128TyID:
763    Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
764    break;
765  case Type::IntegerTyID:
766    Result.IntVal = cast<ConstantInt>(C)->getValue();
767    break;
768  case Type::PointerTyID:
769    if (isa<ConstantPointerNull>(C))
770      Result.PointerVal = 0;
771    else if (const Function *F = dyn_cast<Function>(C))
772      Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
773    else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
774      Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
775    else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
776      Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>(
777                                                        BA->getBasicBlock())));
778    else
779      llvm_unreachable("Unknown constant pointer type!");
780    break;
781  default:
782    std::string msg;
783    raw_string_ostream Msg(msg);
784    Msg << "ERROR: Constant unimplemented for type: " << *C->getType();
785    llvm_report_error(Msg.str());
786  }
787  return Result;
788}
789
790/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
791/// with the integer held in IntVal.
792static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
793                             unsigned StoreBytes) {
794  assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
795  uint8_t *Src = (uint8_t *)IntVal.getRawData();
796
797  if (sys::isLittleEndianHost())
798    // Little-endian host - the source is ordered from LSB to MSB.  Order the
799    // destination from LSB to MSB: Do a straight copy.
800    memcpy(Dst, Src, StoreBytes);
801  else {
802    // Big-endian host - the source is an array of 64 bit words ordered from
803    // LSW to MSW.  Each word is ordered from MSB to LSB.  Order the destination
804    // from MSB to LSB: Reverse the word order, but not the bytes in a word.
805    while (StoreBytes > sizeof(uint64_t)) {
806      StoreBytes -= sizeof(uint64_t);
807      // May not be aligned so use memcpy.
808      memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
809      Src += sizeof(uint64_t);
810    }
811
812    memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
813  }
814}
815
816/// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.  Ptr
817/// is the address of the memory at which to store Val, cast to GenericValue *.
818/// It is not a pointer to a GenericValue containing the address at which to
819/// store Val.
820void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
821                                         GenericValue *Ptr, const Type *Ty) {
822  const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty);
823
824  switch (Ty->getTypeID()) {
825  case Type::IntegerTyID:
826    StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
827    break;
828  case Type::FloatTyID:
829    *((float*)Ptr) = Val.FloatVal;
830    break;
831  case Type::DoubleTyID:
832    *((double*)Ptr) = Val.DoubleVal;
833    break;
834  case Type::X86_FP80TyID:
835    memcpy(Ptr, Val.IntVal.getRawData(), 10);
836    break;
837  case Type::PointerTyID:
838    // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
839    if (StoreBytes != sizeof(PointerTy))
840      memset(Ptr, 0, StoreBytes);
841
842    *((PointerTy*)Ptr) = Val.PointerVal;
843    break;
844  default:
845    dbgs() << "Cannot store value of type " << *Ty << "!\n";
846  }
847
848  if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian())
849    // Host and target are different endian - reverse the stored bytes.
850    std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
851}
852
853/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
854/// from Src into IntVal, which is assumed to be wide enough and to hold zero.
855static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) {
856  assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
857  uint8_t *Dst = (uint8_t *)IntVal.getRawData();
858
859  if (sys::isLittleEndianHost())
860    // Little-endian host - the destination must be ordered from LSB to MSB.
861    // The source is ordered from LSB to MSB: Do a straight copy.
862    memcpy(Dst, Src, LoadBytes);
863  else {
864    // Big-endian - the destination is an array of 64 bit words ordered from
865    // LSW to MSW.  Each word must be ordered from MSB to LSB.  The source is
866    // ordered from MSB to LSB: Reverse the word order, but not the bytes in
867    // a word.
868    while (LoadBytes > sizeof(uint64_t)) {
869      LoadBytes -= sizeof(uint64_t);
870      // May not be aligned so use memcpy.
871      memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
872      Dst += sizeof(uint64_t);
873    }
874
875    memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
876  }
877}
878
879/// FIXME: document
880///
881void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
882                                          GenericValue *Ptr,
883                                          const Type *Ty) {
884  const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty);
885
886  switch (Ty->getTypeID()) {
887  case Type::IntegerTyID:
888    // An APInt with all words initially zero.
889    Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
890    LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
891    break;
892  case Type::FloatTyID:
893    Result.FloatVal = *((float*)Ptr);
894    break;
895  case Type::DoubleTyID:
896    Result.DoubleVal = *((double*)Ptr);
897    break;
898  case Type::PointerTyID:
899    Result.PointerVal = *((PointerTy*)Ptr);
900    break;
901  case Type::X86_FP80TyID: {
902    // This is endian dependent, but it will only work on x86 anyway.
903    // FIXME: Will not trap if loading a signaling NaN.
904    uint64_t y[2];
905    memcpy(y, Ptr, 10);
906    Result.IntVal = APInt(80, 2, y);
907    break;
908  }
909  default:
910    std::string msg;
911    raw_string_ostream Msg(msg);
912    Msg << "Cannot load value of type " << *Ty << "!";
913    llvm_report_error(Msg.str());
914  }
915}
916
917// InitializeMemory - Recursive function to apply a Constant value into the
918// specified memory location...
919//
920void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
921  DEBUG(dbgs() << "JIT: Initializing " << Addr << " ");
922  DEBUG(Init->dump());
923  if (isa<UndefValue>(Init)) {
924    return;
925  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
926    unsigned ElementSize =
927      getTargetData()->getTypeAllocSize(CP->getType()->getElementType());
928    for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
929      InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
930    return;
931  } else if (isa<ConstantAggregateZero>(Init)) {
932    memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType()));
933    return;
934  } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
935    unsigned ElementSize =
936      getTargetData()->getTypeAllocSize(CPA->getType()->getElementType());
937    for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
938      InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
939    return;
940  } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
941    const StructLayout *SL =
942      getTargetData()->getStructLayout(cast<StructType>(CPS->getType()));
943    for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
944      InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
945    return;
946  } else if (Init->getType()->isFirstClassType()) {
947    GenericValue Val = getConstantValue(Init);
948    StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
949    return;
950  }
951
952  dbgs() << "Bad Type: " << *Init->getType() << "\n";
953  llvm_unreachable("Unknown constant type to initialize memory with!");
954}
955
956/// EmitGlobals - Emit all of the global variables to memory, storing their
957/// addresses into GlobalAddress.  This must make sure to copy the contents of
958/// their initializers into the memory.
959///
960void ExecutionEngine::emitGlobals() {
961
962  // Loop over all of the global variables in the program, allocating the memory
963  // to hold them.  If there is more than one module, do a prepass over globals
964  // to figure out how the different modules should link together.
965  //
966  std::map<std::pair<std::string, const Type*>,
967           const GlobalValue*> LinkedGlobalsMap;
968
969  if (Modules.size() != 1) {
970    for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
971      Module &M = *Modules[m]->getModule();
972      for (Module::const_global_iterator I = M.global_begin(),
973           E = M.global_end(); I != E; ++I) {
974        const GlobalValue *GV = I;
975        if (GV->hasLocalLinkage() || GV->isDeclaration() ||
976            GV->hasAppendingLinkage() || !GV->hasName())
977          continue;// Ignore external globals and globals with internal linkage.
978
979        const GlobalValue *&GVEntry =
980          LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
981
982        // If this is the first time we've seen this global, it is the canonical
983        // version.
984        if (!GVEntry) {
985          GVEntry = GV;
986          continue;
987        }
988
989        // If the existing global is strong, never replace it.
990        if (GVEntry->hasExternalLinkage() ||
991            GVEntry->hasDLLImportLinkage() ||
992            GVEntry->hasDLLExportLinkage())
993          continue;
994
995        // Otherwise, we know it's linkonce/weak, replace it if this is a strong
996        // symbol.  FIXME is this right for common?
997        if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
998          GVEntry = GV;
999      }
1000    }
1001  }
1002
1003  std::vector<const GlobalValue*> NonCanonicalGlobals;
1004  for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
1005    Module &M = *Modules[m]->getModule();
1006    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
1007         I != E; ++I) {
1008      // In the multi-module case, see what this global maps to.
1009      if (!LinkedGlobalsMap.empty()) {
1010        if (const GlobalValue *GVEntry =
1011              LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) {
1012          // If something else is the canonical global, ignore this one.
1013          if (GVEntry != &*I) {
1014            NonCanonicalGlobals.push_back(I);
1015            continue;
1016          }
1017        }
1018      }
1019
1020      if (!I->isDeclaration()) {
1021        addGlobalMapping(I, getMemoryForGV(I));
1022      } else {
1023        // External variable reference. Try to use the dynamic loader to
1024        // get a pointer to it.
1025        if (void *SymAddr =
1026            sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName()))
1027          addGlobalMapping(I, SymAddr);
1028        else {
1029          llvm_report_error("Could not resolve external global address: "
1030                            +I->getName());
1031        }
1032      }
1033    }
1034
1035    // If there are multiple modules, map the non-canonical globals to their
1036    // canonical location.
1037    if (!NonCanonicalGlobals.empty()) {
1038      for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
1039        const GlobalValue *GV = NonCanonicalGlobals[i];
1040        const GlobalValue *CGV =
1041          LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
1042        void *Ptr = getPointerToGlobalIfAvailable(CGV);
1043        assert(Ptr && "Canonical global wasn't codegen'd!");
1044        addGlobalMapping(GV, Ptr);
1045      }
1046    }
1047
1048    // Now that all of the globals are set up in memory, loop through them all
1049    // and initialize their contents.
1050    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
1051         I != E; ++I) {
1052      if (!I->isDeclaration()) {
1053        if (!LinkedGlobalsMap.empty()) {
1054          if (const GlobalValue *GVEntry =
1055                LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())])
1056            if (GVEntry != &*I)  // Not the canonical variable.
1057              continue;
1058        }
1059        EmitGlobalVariable(I);
1060      }
1061    }
1062  }
1063}
1064
1065// EmitGlobalVariable - This method emits the specified global variable to the
1066// address specified in GlobalAddresses, or allocates new memory if it's not
1067// already in the map.
1068void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
1069  void *GA = getPointerToGlobalIfAvailable(GV);
1070
1071  if (GA == 0) {
1072    // If it's not already specified, allocate memory for the global.
1073    GA = getMemoryForGV(GV);
1074    addGlobalMapping(GV, GA);
1075  }
1076
1077  // Don't initialize if it's thread local, let the client do it.
1078  if (!GV->isThreadLocal())
1079    InitializeMemory(GV->getInitializer(), GA);
1080
1081  const Type *ElTy = GV->getType()->getElementType();
1082  size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy);
1083  NumInitBytes += (unsigned)GVSize;
1084  ++NumGlobals;
1085}
1086
1087ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE)
1088  : EE(EE), GlobalAddressMap(this) {
1089}
1090
1091sys::Mutex *ExecutionEngineState::AddressMapConfig::getMutex(
1092  ExecutionEngineState *EES) {
1093  return &EES->EE.lock;
1094}
1095void ExecutionEngineState::AddressMapConfig::onDelete(
1096  ExecutionEngineState *EES, const GlobalValue *Old) {
1097  void *OldVal = EES->GlobalAddressMap.lookup(Old);
1098  EES->GlobalAddressReverseMap.erase(OldVal);
1099}
1100
1101void ExecutionEngineState::AddressMapConfig::onRAUW(
1102  ExecutionEngineState *, const GlobalValue *, const GlobalValue *) {
1103  assert(false && "The ExecutionEngine doesn't know how to handle a"
1104         " RAUW on a value it has a global mapping for.");
1105}
1106