ExecutionEngine.cpp revision 60789e419e04c260e36af9a1add5ad316313e490
1//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the common interface used by the various execution engine
11// subclasses.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "jit"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Module.h"
19#include "llvm/ModuleProvider.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/Config/alloca.h"
22#include "llvm/ExecutionEngine/ExecutionEngine.h"
23#include "llvm/ExecutionEngine/GenericValue.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/MutexGuard.h"
26#include "llvm/System/DynamicLibrary.h"
27#include "llvm/System/Host.h"
28#include "llvm/Target/TargetData.h"
29#include <cmath>
30#include <cstring>
31using namespace llvm;
32
33STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
34STATISTIC(NumGlobals  , "Number of global vars initialized");
35
36ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0;
37ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0;
38ExecutionEngine::EERegisterFn ExecutionEngine::ExceptionTableRegister = 0;
39
40
41ExecutionEngine::ExecutionEngine(ModuleProvider *P) : LazyFunctionCreator(0) {
42  LazyCompilationDisabled = false;
43  GVCompilationDisabled   = false;
44  SymbolSearchingDisabled = false;
45  Modules.push_back(P);
46  assert(P && "ModuleProvider is null?");
47}
48
49ExecutionEngine::~ExecutionEngine() {
50  clearAllGlobalMappings();
51  for (unsigned i = 0, e = Modules.size(); i != e; ++i)
52    delete Modules[i];
53}
54
55char* ExecutionEngine::getMemoryForGV(const GlobalVariable* GV) {
56  const Type *ElTy = GV->getType()->getElementType();
57  size_t GVSize = (size_t)getTargetData()->getTypePaddedSize(ElTy);
58  return new char[GVSize];
59}
60
61/// removeModuleProvider - Remove a ModuleProvider from the list of modules.
62/// Relases the Module from the ModuleProvider, materializing it in the
63/// process, and returns the materialized Module.
64Module* ExecutionEngine::removeModuleProvider(ModuleProvider *P,
65                                              std::string *ErrInfo) {
66  for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(),
67        E = Modules.end(); I != E; ++I) {
68    ModuleProvider *MP = *I;
69    if (MP == P) {
70      Modules.erase(I);
71      clearGlobalMappingsFromModule(MP->getModule());
72      return MP->releaseModule(ErrInfo);
73    }
74  }
75  return NULL;
76}
77
78/// deleteModuleProvider - Remove a ModuleProvider from the list of modules,
79/// and deletes the ModuleProvider and owned Module.  Avoids materializing
80/// the underlying module.
81void ExecutionEngine::deleteModuleProvider(ModuleProvider *P,
82                                           std::string *ErrInfo) {
83  for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(),
84      E = Modules.end(); I != E; ++I) {
85    ModuleProvider *MP = *I;
86    if (MP == P) {
87      Modules.erase(I);
88      clearGlobalMappingsFromModule(MP->getModule());
89      delete MP;
90      return;
91    }
92  }
93}
94
95/// FindFunctionNamed - Search all of the active modules to find the one that
96/// defines FnName.  This is very slow operation and shouldn't be used for
97/// general code.
98Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
99  for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
100    if (Function *F = Modules[i]->getModule()->getFunction(FnName))
101      return F;
102  }
103  return 0;
104}
105
106
107/// addGlobalMapping - Tell the execution engine that the specified global is
108/// at the specified location.  This is used internally as functions are JIT'd
109/// and as global variables are laid out in memory.  It can and should also be
110/// used by clients of the EE that want to have an LLVM global overlay
111/// existing data in memory.
112void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
113  MutexGuard locked(lock);
114
115  DOUT << "JIT: Map \'" << GV->getNameStart() << "\' to [" << Addr << "]\n";
116  void *&CurVal = state.getGlobalAddressMap(locked)[GV];
117  assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
118  CurVal = Addr;
119
120  // If we are using the reverse mapping, add it too
121  if (!state.getGlobalAddressReverseMap(locked).empty()) {
122    const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr];
123    assert((V == 0 || GV == 0) && "GlobalMapping already established!");
124    V = GV;
125  }
126}
127
128/// clearAllGlobalMappings - Clear all global mappings and start over again
129/// use in dynamic compilation scenarios when you want to move globals
130void ExecutionEngine::clearAllGlobalMappings() {
131  MutexGuard locked(lock);
132
133  state.getGlobalAddressMap(locked).clear();
134  state.getGlobalAddressReverseMap(locked).clear();
135}
136
137/// clearGlobalMappingsFromModule - Clear all global mappings that came from a
138/// particular module, because it has been removed from the JIT.
139void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
140  MutexGuard locked(lock);
141
142  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) {
143    state.getGlobalAddressMap(locked).erase(FI);
144    state.getGlobalAddressReverseMap(locked).erase(FI);
145  }
146  for (Module::global_iterator GI = M->global_begin(), GE = M->global_end();
147       GI != GE; ++GI) {
148    state.getGlobalAddressMap(locked).erase(GI);
149    state.getGlobalAddressReverseMap(locked).erase(GI);
150  }
151}
152
153/// updateGlobalMapping - Replace an existing mapping for GV with a new
154/// address.  This updates both maps as required.  If "Addr" is null, the
155/// entry for the global is removed from the mappings.
156void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
157  MutexGuard locked(lock);
158
159  std::map<const GlobalValue*, void *> &Map = state.getGlobalAddressMap(locked);
160
161  // Deleting from the mapping?
162  if (Addr == 0) {
163    std::map<const GlobalValue*, void *>::iterator I = Map.find(GV);
164    void *OldVal;
165    if (I == Map.end())
166      OldVal = 0;
167    else {
168      OldVal = I->second;
169      Map.erase(I);
170    }
171
172    if (!state.getGlobalAddressReverseMap(locked).empty())
173      state.getGlobalAddressReverseMap(locked).erase(Addr);
174    return OldVal;
175  }
176
177  void *&CurVal = Map[GV];
178  void *OldVal = CurVal;
179
180  if (CurVal && !state.getGlobalAddressReverseMap(locked).empty())
181    state.getGlobalAddressReverseMap(locked).erase(CurVal);
182  CurVal = Addr;
183
184  // If we are using the reverse mapping, add it too
185  if (!state.getGlobalAddressReverseMap(locked).empty()) {
186    const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr];
187    assert((V == 0 || GV == 0) && "GlobalMapping already established!");
188    V = GV;
189  }
190  return OldVal;
191}
192
193/// getPointerToGlobalIfAvailable - This returns the address of the specified
194/// global value if it is has already been codegen'd, otherwise it returns null.
195///
196void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
197  MutexGuard locked(lock);
198
199  std::map<const GlobalValue*, void*>::iterator I =
200  state.getGlobalAddressMap(locked).find(GV);
201  return I != state.getGlobalAddressMap(locked).end() ? I->second : 0;
202}
203
204/// getGlobalValueAtAddress - Return the LLVM global value object that starts
205/// at the specified address.
206///
207const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
208  MutexGuard locked(lock);
209
210  // If we haven't computed the reverse mapping yet, do so first.
211  if (state.getGlobalAddressReverseMap(locked).empty()) {
212    for (std::map<const GlobalValue*, void *>::iterator
213         I = state.getGlobalAddressMap(locked).begin(),
214         E = state.getGlobalAddressMap(locked).end(); I != E; ++I)
215      state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second,
216                                                                     I->first));
217  }
218
219  std::map<void *, const GlobalValue*>::iterator I =
220    state.getGlobalAddressReverseMap(locked).find(Addr);
221  return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
222}
223
224// CreateArgv - Turn a vector of strings into a nice argv style array of
225// pointers to null terminated strings.
226//
227static void *CreateArgv(ExecutionEngine *EE,
228                        const std::vector<std::string> &InputArgv) {
229  unsigned PtrSize = EE->getTargetData()->getPointerSize();
230  char *Result = new char[(InputArgv.size()+1)*PtrSize];
231
232  DOUT << "JIT: ARGV = " << (void*)Result << "\n";
233  const Type *SBytePtr = PointerType::getUnqual(Type::Int8Ty);
234
235  for (unsigned i = 0; i != InputArgv.size(); ++i) {
236    unsigned Size = InputArgv[i].size()+1;
237    char *Dest = new char[Size];
238    DOUT << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n";
239
240    std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
241    Dest[Size-1] = 0;
242
243    // Endian safe: Result[i] = (PointerTy)Dest;
244    EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize),
245                           SBytePtr);
246  }
247
248  // Null terminate it
249  EE->StoreValueToMemory(PTOGV(0),
250                         (GenericValue*)(Result+InputArgv.size()*PtrSize),
251                         SBytePtr);
252  return Result;
253}
254
255
256/// runStaticConstructorsDestructors - This method is used to execute all of
257/// the static constructors or destructors for a module, depending on the
258/// value of isDtors.
259void ExecutionEngine::runStaticConstructorsDestructors(Module *module, bool isDtors) {
260  const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
261
262  // Execute global ctors/dtors for each module in the program.
263
264 GlobalVariable *GV = module->getNamedGlobal(Name);
265
266 // If this global has internal linkage, or if it has a use, then it must be
267 // an old-style (llvmgcc3) static ctor with __main linked in and in use.  If
268 // this is the case, don't execute any of the global ctors, __main will do
269 // it.
270 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
271
272 // Should be an array of '{ int, void ()* }' structs.  The first value is
273 // the init priority, which we ignore.
274 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
275 if (!InitList) return;
276 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
277   if (ConstantStruct *CS =
278       dyn_cast<ConstantStruct>(InitList->getOperand(i))) {
279     if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
280
281     Constant *FP = CS->getOperand(1);
282     if (FP->isNullValue())
283       break;  // Found a null terminator, exit.
284
285     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
286       if (CE->isCast())
287         FP = CE->getOperand(0);
288     if (Function *F = dyn_cast<Function>(FP)) {
289       // Execute the ctor/dtor function!
290       runFunction(F, std::vector<GenericValue>());
291     }
292   }
293}
294
295/// runStaticConstructorsDestructors - This method is used to execute all of
296/// the static constructors or destructors for a program, depending on the
297/// value of isDtors.
298void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
299  // Execute global ctors/dtors for each module in the program.
300  for (unsigned m = 0, e = Modules.size(); m != e; ++m)
301    runStaticConstructorsDestructors(Modules[m]->getModule(), isDtors);
302}
303
304#ifndef NDEBUG
305/// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
306static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
307  unsigned PtrSize = EE->getTargetData()->getPointerSize();
308  for (unsigned i = 0; i < PtrSize; ++i)
309    if (*(i + (uint8_t*)Loc))
310      return false;
311  return true;
312}
313#endif
314
315/// runFunctionAsMain - This is a helper function which wraps runFunction to
316/// handle the common task of starting up main with the specified argc, argv,
317/// and envp parameters.
318int ExecutionEngine::runFunctionAsMain(Function *Fn,
319                                       const std::vector<std::string> &argv,
320                                       const char * const * envp) {
321  std::vector<GenericValue> GVArgs;
322  GenericValue GVArgc;
323  GVArgc.IntVal = APInt(32, argv.size());
324
325  // Check main() type
326  unsigned NumArgs = Fn->getFunctionType()->getNumParams();
327  const FunctionType *FTy = Fn->getFunctionType();
328  const Type* PPInt8Ty =
329    PointerType::getUnqual(PointerType::getUnqual(Type::Int8Ty));
330  switch (NumArgs) {
331  case 3:
332   if (FTy->getParamType(2) != PPInt8Ty) {
333     cerr << "Invalid type for third argument of main() supplied\n";
334     abort();
335   }
336   // FALLS THROUGH
337  case 2:
338   if (FTy->getParamType(1) != PPInt8Ty) {
339     cerr << "Invalid type for second argument of main() supplied\n";
340     abort();
341   }
342   // FALLS THROUGH
343  case 1:
344   if (FTy->getParamType(0) != Type::Int32Ty) {
345     cerr << "Invalid type for first argument of main() supplied\n";
346     abort();
347   }
348   // FALLS THROUGH
349  case 0:
350   if (FTy->getReturnType() != Type::Int32Ty &&
351       FTy->getReturnType() != Type::VoidTy) {
352     cerr << "Invalid return type of main() supplied\n";
353     abort();
354   }
355   break;
356  default:
357   cerr << "Invalid number of arguments of main() supplied\n";
358   abort();
359  }
360
361  if (NumArgs) {
362    GVArgs.push_back(GVArgc); // Arg #0 = argc.
363    if (NumArgs > 1) {
364      GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv.
365      assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
366             "argv[0] was null after CreateArgv");
367      if (NumArgs > 2) {
368        std::vector<std::string> EnvVars;
369        for (unsigned i = 0; envp[i]; ++i)
370          EnvVars.push_back(envp[i]);
371        GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp.
372      }
373    }
374  }
375  return runFunction(Fn, GVArgs).IntVal.getZExtValue();
376}
377
378/// If possible, create a JIT, unless the caller specifically requests an
379/// Interpreter or there's an error. If even an Interpreter cannot be created,
380/// NULL is returned.
381///
382ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP,
383                                         bool ForceInterpreter,
384                                         std::string *ErrorStr,
385                                         bool Fast) {
386  ExecutionEngine *EE = 0;
387
388  // Make sure we can resolve symbols in the program as well. The zero arg
389  // to the function tells DynamicLibrary to load the program, not a library.
390  if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr))
391    return 0;
392
393  // Unless the interpreter was explicitly selected, try making a JIT.
394  if (!ForceInterpreter && JITCtor)
395    EE = JITCtor(MP, ErrorStr, Fast);
396
397  // If we can't make a JIT, make an interpreter instead.
398  if (EE == 0 && InterpCtor)
399    EE = InterpCtor(MP, ErrorStr, Fast);
400
401  return EE;
402}
403
404ExecutionEngine *ExecutionEngine::create(Module *M) {
405  return create(new ExistingModuleProvider(M));
406}
407
408/// getPointerToGlobal - This returns the address of the specified global
409/// value.  This may involve code generation if it's a function.
410///
411void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
412  if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
413    return getPointerToFunction(F);
414
415  MutexGuard locked(lock);
416  void *p = state.getGlobalAddressMap(locked)[GV];
417  if (p)
418    return p;
419
420  // Global variable might have been added since interpreter started.
421  if (GlobalVariable *GVar =
422          const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
423    EmitGlobalVariable(GVar);
424  else
425    assert(0 && "Global hasn't had an address allocated yet!");
426  return state.getGlobalAddressMap(locked)[GV];
427}
428
429/// This function converts a Constant* into a GenericValue. The interesting
430/// part is if C is a ConstantExpr.
431/// @brief Get a GenericValue for a Constant*
432GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
433  // If its undefined, return the garbage.
434  if (isa<UndefValue>(C))
435    return GenericValue();
436
437  // If the value is a ConstantExpr
438  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
439    Constant *Op0 = CE->getOperand(0);
440    switch (CE->getOpcode()) {
441    case Instruction::GetElementPtr: {
442      // Compute the index
443      GenericValue Result = getConstantValue(Op0);
444      SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end());
445      uint64_t Offset =
446        TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size());
447
448      char* tmp = (char*) Result.PointerVal;
449      Result = PTOGV(tmp + Offset);
450      return Result;
451    }
452    case Instruction::Trunc: {
453      GenericValue GV = getConstantValue(Op0);
454      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
455      GV.IntVal = GV.IntVal.trunc(BitWidth);
456      return GV;
457    }
458    case Instruction::ZExt: {
459      GenericValue GV = getConstantValue(Op0);
460      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
461      GV.IntVal = GV.IntVal.zext(BitWidth);
462      return GV;
463    }
464    case Instruction::SExt: {
465      GenericValue GV = getConstantValue(Op0);
466      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
467      GV.IntVal = GV.IntVal.sext(BitWidth);
468      return GV;
469    }
470    case Instruction::FPTrunc: {
471      // FIXME long double
472      GenericValue GV = getConstantValue(Op0);
473      GV.FloatVal = float(GV.DoubleVal);
474      return GV;
475    }
476    case Instruction::FPExt:{
477      // FIXME long double
478      GenericValue GV = getConstantValue(Op0);
479      GV.DoubleVal = double(GV.FloatVal);
480      return GV;
481    }
482    case Instruction::UIToFP: {
483      GenericValue GV = getConstantValue(Op0);
484      if (CE->getType() == Type::FloatTy)
485        GV.FloatVal = float(GV.IntVal.roundToDouble());
486      else if (CE->getType() == Type::DoubleTy)
487        GV.DoubleVal = GV.IntVal.roundToDouble();
488      else if (CE->getType() == Type::X86_FP80Ty) {
489        const uint64_t zero[] = {0, 0};
490        APFloat apf = APFloat(APInt(80, 2, zero));
491        (void)apf.convertFromAPInt(GV.IntVal,
492                                   false,
493                                   APFloat::rmNearestTiesToEven);
494        GV.IntVal = apf.bitcastToAPInt();
495      }
496      return GV;
497    }
498    case Instruction::SIToFP: {
499      GenericValue GV = getConstantValue(Op0);
500      if (CE->getType() == Type::FloatTy)
501        GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
502      else if (CE->getType() == Type::DoubleTy)
503        GV.DoubleVal = GV.IntVal.signedRoundToDouble();
504      else if (CE->getType() == Type::X86_FP80Ty) {
505        const uint64_t zero[] = { 0, 0};
506        APFloat apf = APFloat(APInt(80, 2, zero));
507        (void)apf.convertFromAPInt(GV.IntVal,
508                                   true,
509                                   APFloat::rmNearestTiesToEven);
510        GV.IntVal = apf.bitcastToAPInt();
511      }
512      return GV;
513    }
514    case Instruction::FPToUI: // double->APInt conversion handles sign
515    case Instruction::FPToSI: {
516      GenericValue GV = getConstantValue(Op0);
517      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
518      if (Op0->getType() == Type::FloatTy)
519        GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
520      else if (Op0->getType() == Type::DoubleTy)
521        GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
522      else if (Op0->getType() == Type::X86_FP80Ty) {
523        APFloat apf = APFloat(GV.IntVal);
524        uint64_t v;
525        bool ignored;
526        (void)apf.convertToInteger(&v, BitWidth,
527                                   CE->getOpcode()==Instruction::FPToSI,
528                                   APFloat::rmTowardZero, &ignored);
529        GV.IntVal = v; // endian?
530      }
531      return GV;
532    }
533    case Instruction::PtrToInt: {
534      GenericValue GV = getConstantValue(Op0);
535      uint32_t PtrWidth = TD->getPointerSizeInBits();
536      GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
537      return GV;
538    }
539    case Instruction::IntToPtr: {
540      GenericValue GV = getConstantValue(Op0);
541      uint32_t PtrWidth = TD->getPointerSizeInBits();
542      if (PtrWidth != GV.IntVal.getBitWidth())
543        GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
544      assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
545      GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
546      return GV;
547    }
548    case Instruction::BitCast: {
549      GenericValue GV = getConstantValue(Op0);
550      const Type* DestTy = CE->getType();
551      switch (Op0->getType()->getTypeID()) {
552        default: assert(0 && "Invalid bitcast operand");
553        case Type::IntegerTyID:
554          assert(DestTy->isFloatingPoint() && "invalid bitcast");
555          if (DestTy == Type::FloatTy)
556            GV.FloatVal = GV.IntVal.bitsToFloat();
557          else if (DestTy == Type::DoubleTy)
558            GV.DoubleVal = GV.IntVal.bitsToDouble();
559          break;
560        case Type::FloatTyID:
561          assert(DestTy == Type::Int32Ty && "Invalid bitcast");
562          GV.IntVal.floatToBits(GV.FloatVal);
563          break;
564        case Type::DoubleTyID:
565          assert(DestTy == Type::Int64Ty && "Invalid bitcast");
566          GV.IntVal.doubleToBits(GV.DoubleVal);
567          break;
568        case Type::PointerTyID:
569          assert(isa<PointerType>(DestTy) && "Invalid bitcast");
570          break; // getConstantValue(Op0)  above already converted it
571      }
572      return GV;
573    }
574    case Instruction::Add:
575    case Instruction::Sub:
576    case Instruction::Mul:
577    case Instruction::UDiv:
578    case Instruction::SDiv:
579    case Instruction::URem:
580    case Instruction::SRem:
581    case Instruction::And:
582    case Instruction::Or:
583    case Instruction::Xor: {
584      GenericValue LHS = getConstantValue(Op0);
585      GenericValue RHS = getConstantValue(CE->getOperand(1));
586      GenericValue GV;
587      switch (CE->getOperand(0)->getType()->getTypeID()) {
588      default: assert(0 && "Bad add type!"); abort();
589      case Type::IntegerTyID:
590        switch (CE->getOpcode()) {
591          default: assert(0 && "Invalid integer opcode");
592          case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
593          case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
594          case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
595          case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
596          case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
597          case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
598          case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
599          case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
600          case Instruction::Or:  GV.IntVal = LHS.IntVal | RHS.IntVal; break;
601          case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
602        }
603        break;
604      case Type::FloatTyID:
605        switch (CE->getOpcode()) {
606          default: assert(0 && "Invalid float opcode"); abort();
607          case Instruction::Add:
608            GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
609          case Instruction::Sub:
610            GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
611          case Instruction::Mul:
612            GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
613          case Instruction::FDiv:
614            GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
615          case Instruction::FRem:
616            GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break;
617        }
618        break;
619      case Type::DoubleTyID:
620        switch (CE->getOpcode()) {
621          default: assert(0 && "Invalid double opcode"); abort();
622          case Instruction::Add:
623            GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
624          case Instruction::Sub:
625            GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
626          case Instruction::Mul:
627            GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
628          case Instruction::FDiv:
629            GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
630          case Instruction::FRem:
631            GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
632        }
633        break;
634      case Type::X86_FP80TyID:
635      case Type::PPC_FP128TyID:
636      case Type::FP128TyID: {
637        APFloat apfLHS = APFloat(LHS.IntVal);
638        switch (CE->getOpcode()) {
639          default: assert(0 && "Invalid long double opcode"); abort();
640          case Instruction::Add:
641            apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
642            GV.IntVal = apfLHS.bitcastToAPInt();
643            break;
644          case Instruction::Sub:
645            apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
646            GV.IntVal = apfLHS.bitcastToAPInt();
647            break;
648          case Instruction::Mul:
649            apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
650            GV.IntVal = apfLHS.bitcastToAPInt();
651            break;
652          case Instruction::FDiv:
653            apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
654            GV.IntVal = apfLHS.bitcastToAPInt();
655            break;
656          case Instruction::FRem:
657            apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
658            GV.IntVal = apfLHS.bitcastToAPInt();
659            break;
660          }
661        }
662        break;
663      }
664      return GV;
665    }
666    default:
667      break;
668    }
669    cerr << "ConstantExpr not handled: " << *CE << "\n";
670    abort();
671  }
672
673  GenericValue Result;
674  switch (C->getType()->getTypeID()) {
675  case Type::FloatTyID:
676    Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
677    break;
678  case Type::DoubleTyID:
679    Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
680    break;
681  case Type::X86_FP80TyID:
682  case Type::FP128TyID:
683  case Type::PPC_FP128TyID:
684    Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
685    break;
686  case Type::IntegerTyID:
687    Result.IntVal = cast<ConstantInt>(C)->getValue();
688    break;
689  case Type::PointerTyID:
690    if (isa<ConstantPointerNull>(C))
691      Result.PointerVal = 0;
692    else if (const Function *F = dyn_cast<Function>(C))
693      Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
694    else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C))
695      Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
696    else
697      assert(0 && "Unknown constant pointer type!");
698    break;
699  default:
700    cerr << "ERROR: Constant unimplemented for type: " << *C->getType() << "\n";
701    abort();
702  }
703  return Result;
704}
705
706/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
707/// with the integer held in IntVal.
708static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
709                             unsigned StoreBytes) {
710  assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
711  uint8_t *Src = (uint8_t *)IntVal.getRawData();
712
713  if (sys::isLittleEndianHost())
714    // Little-endian host - the source is ordered from LSB to MSB.  Order the
715    // destination from LSB to MSB: Do a straight copy.
716    memcpy(Dst, Src, StoreBytes);
717  else {
718    // Big-endian host - the source is an array of 64 bit words ordered from
719    // LSW to MSW.  Each word is ordered from MSB to LSB.  Order the destination
720    // from MSB to LSB: Reverse the word order, but not the bytes in a word.
721    while (StoreBytes > sizeof(uint64_t)) {
722      StoreBytes -= sizeof(uint64_t);
723      // May not be aligned so use memcpy.
724      memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
725      Src += sizeof(uint64_t);
726    }
727
728    memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
729  }
730}
731
732/// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.  Ptr
733/// is the address of the memory at which to store Val, cast to GenericValue *.
734/// It is not a pointer to a GenericValue containing the address at which to
735/// store Val.
736void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
737                                         GenericValue *Ptr, const Type *Ty) {
738  const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty);
739
740  switch (Ty->getTypeID()) {
741  case Type::IntegerTyID:
742    StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
743    break;
744  case Type::FloatTyID:
745    *((float*)Ptr) = Val.FloatVal;
746    break;
747  case Type::DoubleTyID:
748    *((double*)Ptr) = Val.DoubleVal;
749    break;
750  case Type::X86_FP80TyID: {
751      uint16_t *Dest = (uint16_t*)Ptr;
752      const uint16_t *Src = (uint16_t*)Val.IntVal.getRawData();
753      // This is endian dependent, but it will only work on x86 anyway.
754      Dest[0] = Src[4];
755      Dest[1] = Src[0];
756      Dest[2] = Src[1];
757      Dest[3] = Src[2];
758      Dest[4] = Src[3];
759      break;
760    }
761  case Type::PointerTyID:
762    // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
763    if (StoreBytes != sizeof(PointerTy))
764      memset(Ptr, 0, StoreBytes);
765
766    *((PointerTy*)Ptr) = Val.PointerVal;
767    break;
768  default:
769    cerr << "Cannot store value of type " << *Ty << "!\n";
770  }
771
772  if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian())
773    // Host and target are different endian - reverse the stored bytes.
774    std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
775}
776
777/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
778/// from Src into IntVal, which is assumed to be wide enough and to hold zero.
779static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) {
780  assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
781  uint8_t *Dst = (uint8_t *)IntVal.getRawData();
782
783  if (sys::isLittleEndianHost())
784    // Little-endian host - the destination must be ordered from LSB to MSB.
785    // The source is ordered from LSB to MSB: Do a straight copy.
786    memcpy(Dst, Src, LoadBytes);
787  else {
788    // Big-endian - the destination is an array of 64 bit words ordered from
789    // LSW to MSW.  Each word must be ordered from MSB to LSB.  The source is
790    // ordered from MSB to LSB: Reverse the word order, but not the bytes in
791    // a word.
792    while (LoadBytes > sizeof(uint64_t)) {
793      LoadBytes -= sizeof(uint64_t);
794      // May not be aligned so use memcpy.
795      memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
796      Dst += sizeof(uint64_t);
797    }
798
799    memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
800  }
801}
802
803/// FIXME: document
804///
805void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
806                                          GenericValue *Ptr,
807                                          const Type *Ty) {
808  const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty);
809
810  if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) {
811    // Host and target are different endian - reverse copy the stored
812    // bytes into a buffer, and load from that.
813    uint8_t *Src = (uint8_t*)Ptr;
814    uint8_t *Buf = (uint8_t*)alloca(LoadBytes);
815    std::reverse_copy(Src, Src + LoadBytes, Buf);
816    Ptr = (GenericValue*)Buf;
817  }
818
819  switch (Ty->getTypeID()) {
820  case Type::IntegerTyID:
821    // An APInt with all words initially zero.
822    Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
823    LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
824    break;
825  case Type::FloatTyID:
826    Result.FloatVal = *((float*)Ptr);
827    break;
828  case Type::DoubleTyID:
829    Result.DoubleVal = *((double*)Ptr);
830    break;
831  case Type::PointerTyID:
832    Result.PointerVal = *((PointerTy*)Ptr);
833    break;
834  case Type::X86_FP80TyID: {
835    // This is endian dependent, but it will only work on x86 anyway.
836    // FIXME: Will not trap if loading a signaling NaN.
837    uint16_t *p = (uint16_t*)Ptr;
838    union {
839      uint16_t x[8];
840      uint64_t y[2];
841    };
842    x[0] = p[1];
843    x[1] = p[2];
844    x[2] = p[3];
845    x[3] = p[4];
846    x[4] = p[0];
847    Result.IntVal = APInt(80, 2, y);
848    break;
849  }
850  default:
851    cerr << "Cannot load value of type " << *Ty << "!\n";
852    abort();
853  }
854}
855
856// InitializeMemory - Recursive function to apply a Constant value into the
857// specified memory location...
858//
859void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
860  DOUT << "JIT: Initializing " << Addr << " ";
861  DEBUG(Init->dump());
862  if (isa<UndefValue>(Init)) {
863    return;
864  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
865    unsigned ElementSize =
866      getTargetData()->getTypePaddedSize(CP->getType()->getElementType());
867    for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
868      InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
869    return;
870  } else if (isa<ConstantAggregateZero>(Init)) {
871    memset(Addr, 0, (size_t)getTargetData()->getTypePaddedSize(Init->getType()));
872    return;
873  } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
874    unsigned ElementSize =
875      getTargetData()->getTypePaddedSize(CPA->getType()->getElementType());
876    for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
877      InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
878    return;
879  } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
880    const StructLayout *SL =
881      getTargetData()->getStructLayout(cast<StructType>(CPS->getType()));
882    for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
883      InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
884    return;
885  } else if (Init->getType()->isFirstClassType()) {
886    GenericValue Val = getConstantValue(Init);
887    StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
888    return;
889  }
890
891  cerr << "Bad Type: " << *Init->getType() << "\n";
892  assert(0 && "Unknown constant type to initialize memory with!");
893}
894
895/// EmitGlobals - Emit all of the global variables to memory, storing their
896/// addresses into GlobalAddress.  This must make sure to copy the contents of
897/// their initializers into the memory.
898///
899void ExecutionEngine::emitGlobals() {
900
901  // Loop over all of the global variables in the program, allocating the memory
902  // to hold them.  If there is more than one module, do a prepass over globals
903  // to figure out how the different modules should link together.
904  //
905  std::map<std::pair<std::string, const Type*>,
906           const GlobalValue*> LinkedGlobalsMap;
907
908  if (Modules.size() != 1) {
909    for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
910      Module &M = *Modules[m]->getModule();
911      for (Module::const_global_iterator I = M.global_begin(),
912           E = M.global_end(); I != E; ++I) {
913        const GlobalValue *GV = I;
914        if (GV->hasLocalLinkage() || GV->isDeclaration() ||
915            GV->hasAppendingLinkage() || !GV->hasName())
916          continue;// Ignore external globals and globals with internal linkage.
917
918        const GlobalValue *&GVEntry =
919          LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
920
921        // If this is the first time we've seen this global, it is the canonical
922        // version.
923        if (!GVEntry) {
924          GVEntry = GV;
925          continue;
926        }
927
928        // If the existing global is strong, never replace it.
929        if (GVEntry->hasExternalLinkage() ||
930            GVEntry->hasDLLImportLinkage() ||
931            GVEntry->hasDLLExportLinkage())
932          continue;
933
934        // Otherwise, we know it's linkonce/weak, replace it if this is a strong
935        // symbol.  FIXME is this right for common?
936        if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
937          GVEntry = GV;
938      }
939    }
940  }
941
942  std::vector<const GlobalValue*> NonCanonicalGlobals;
943  for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
944    Module &M = *Modules[m]->getModule();
945    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
946         I != E; ++I) {
947      // In the multi-module case, see what this global maps to.
948      if (!LinkedGlobalsMap.empty()) {
949        if (const GlobalValue *GVEntry =
950              LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) {
951          // If something else is the canonical global, ignore this one.
952          if (GVEntry != &*I) {
953            NonCanonicalGlobals.push_back(I);
954            continue;
955          }
956        }
957      }
958
959      if (!I->isDeclaration()) {
960        addGlobalMapping(I, getMemoryForGV(I));
961      } else {
962        // External variable reference. Try to use the dynamic loader to
963        // get a pointer to it.
964        if (void *SymAddr =
965            sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName().c_str()))
966          addGlobalMapping(I, SymAddr);
967        else {
968          cerr << "Could not resolve external global address: "
969               << I->getName() << "\n";
970          abort();
971        }
972      }
973    }
974
975    // If there are multiple modules, map the non-canonical globals to their
976    // canonical location.
977    if (!NonCanonicalGlobals.empty()) {
978      for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
979        const GlobalValue *GV = NonCanonicalGlobals[i];
980        const GlobalValue *CGV =
981          LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
982        void *Ptr = getPointerToGlobalIfAvailable(CGV);
983        assert(Ptr && "Canonical global wasn't codegen'd!");
984        addGlobalMapping(GV, Ptr);
985      }
986    }
987
988    // Now that all of the globals are set up in memory, loop through them all
989    // and initialize their contents.
990    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
991         I != E; ++I) {
992      if (!I->isDeclaration()) {
993        if (!LinkedGlobalsMap.empty()) {
994          if (const GlobalValue *GVEntry =
995                LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())])
996            if (GVEntry != &*I)  // Not the canonical variable.
997              continue;
998        }
999        EmitGlobalVariable(I);
1000      }
1001    }
1002  }
1003}
1004
1005// EmitGlobalVariable - This method emits the specified global variable to the
1006// address specified in GlobalAddresses, or allocates new memory if it's not
1007// already in the map.
1008void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
1009  void *GA = getPointerToGlobalIfAvailable(GV);
1010
1011  if (GA == 0) {
1012    // If it's not already specified, allocate memory for the global.
1013    GA = getMemoryForGV(GV);
1014    addGlobalMapping(GV, GA);
1015  }
1016
1017  // Don't initialize if it's thread local, let the client do it.
1018  if (!GV->isThreadLocal())
1019    InitializeMemory(GV->getInitializer(), GA);
1020
1021  const Type *ElTy = GV->getType()->getElementType();
1022  size_t GVSize = (size_t)getTargetData()->getTypePaddedSize(ElTy);
1023  NumInitBytes += (unsigned)GVSize;
1024  ++NumGlobals;
1025}
1026