ExecutionEngine.cpp revision 64f150fa92180c4176d64522158c4c643184b17c
1//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the common interface used by the various execution engine
11// subclasses.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "jit"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Module.h"
19#include "llvm/ModuleProvider.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/ExecutionEngine/ExecutionEngine.h"
22#include "llvm/ExecutionEngine/GenericValue.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/MutexGuard.h"
25#include "llvm/System/DynamicLibrary.h"
26#include "llvm/Target/TargetData.h"
27using namespace llvm;
28
29STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
30STATISTIC(NumGlobals  , "Number of global vars initialized");
31
32ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0;
33ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0;
34
35ExecutionEngine::ExecutionEngine(ModuleProvider *P) {
36  LazyCompilationDisabled = false;
37  Modules.push_back(P);
38  assert(P && "ModuleProvider is null?");
39}
40
41ExecutionEngine::ExecutionEngine(Module *M) {
42  LazyCompilationDisabled = false;
43  assert(M && "Module is null?");
44  Modules.push_back(new ExistingModuleProvider(M));
45}
46
47ExecutionEngine::~ExecutionEngine() {
48  for (unsigned i = 0, e = Modules.size(); i != e; ++i)
49    delete Modules[i];
50}
51
52/// FindFunctionNamed - Search all of the active modules to find the one that
53/// defines FnName.  This is very slow operation and shouldn't be used for
54/// general code.
55Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
56  for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
57    if (Function *F = Modules[i]->getModule()->getFunction(FnName))
58      return F;
59  }
60  return 0;
61}
62
63
64/// addGlobalMapping - Tell the execution engine that the specified global is
65/// at the specified location.  This is used internally as functions are JIT'd
66/// and as global variables are laid out in memory.  It can and should also be
67/// used by clients of the EE that want to have an LLVM global overlay
68/// existing data in memory.
69void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
70  MutexGuard locked(lock);
71
72  void *&CurVal = state.getGlobalAddressMap(locked)[GV];
73  assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
74  CurVal = Addr;
75
76  // If we are using the reverse mapping, add it too
77  if (!state.getGlobalAddressReverseMap(locked).empty()) {
78    const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr];
79    assert((V == 0 || GV == 0) && "GlobalMapping already established!");
80    V = GV;
81  }
82}
83
84/// clearAllGlobalMappings - Clear all global mappings and start over again
85/// use in dynamic compilation scenarios when you want to move globals
86void ExecutionEngine::clearAllGlobalMappings() {
87  MutexGuard locked(lock);
88
89  state.getGlobalAddressMap(locked).clear();
90  state.getGlobalAddressReverseMap(locked).clear();
91}
92
93/// updateGlobalMapping - Replace an existing mapping for GV with a new
94/// address.  This updates both maps as required.  If "Addr" is null, the
95/// entry for the global is removed from the mappings.
96void ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
97  MutexGuard locked(lock);
98
99  // Deleting from the mapping?
100  if (Addr == 0) {
101    state.getGlobalAddressMap(locked).erase(GV);
102    if (!state.getGlobalAddressReverseMap(locked).empty())
103      state.getGlobalAddressReverseMap(locked).erase(Addr);
104    return;
105  }
106
107  void *&CurVal = state.getGlobalAddressMap(locked)[GV];
108  if (CurVal && !state.getGlobalAddressReverseMap(locked).empty())
109    state.getGlobalAddressReverseMap(locked).erase(CurVal);
110  CurVal = Addr;
111
112  // If we are using the reverse mapping, add it too
113  if (!state.getGlobalAddressReverseMap(locked).empty()) {
114    const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr];
115    assert((V == 0 || GV == 0) && "GlobalMapping already established!");
116    V = GV;
117  }
118}
119
120/// getPointerToGlobalIfAvailable - This returns the address of the specified
121/// global value if it is has already been codegen'd, otherwise it returns null.
122///
123void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
124  MutexGuard locked(lock);
125
126  std::map<const GlobalValue*, void*>::iterator I =
127  state.getGlobalAddressMap(locked).find(GV);
128  return I != state.getGlobalAddressMap(locked).end() ? I->second : 0;
129}
130
131/// getGlobalValueAtAddress - Return the LLVM global value object that starts
132/// at the specified address.
133///
134const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
135  MutexGuard locked(lock);
136
137  // If we haven't computed the reverse mapping yet, do so first.
138  if (state.getGlobalAddressReverseMap(locked).empty()) {
139    for (std::map<const GlobalValue*, void *>::iterator
140         I = state.getGlobalAddressMap(locked).begin(),
141         E = state.getGlobalAddressMap(locked).end(); I != E; ++I)
142      state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second,
143                                                                     I->first));
144  }
145
146  std::map<void *, const GlobalValue*>::iterator I =
147    state.getGlobalAddressReverseMap(locked).find(Addr);
148  return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
149}
150
151// CreateArgv - Turn a vector of strings into a nice argv style array of
152// pointers to null terminated strings.
153//
154static void *CreateArgv(ExecutionEngine *EE,
155                        const std::vector<std::string> &InputArgv) {
156  unsigned PtrSize = EE->getTargetData()->getPointerSize();
157  char *Result = new char[(InputArgv.size()+1)*PtrSize];
158
159  DOUT << "ARGV = " << (void*)Result << "\n";
160  const Type *SBytePtr = PointerType::get(Type::Int8Ty);
161
162  for (unsigned i = 0; i != InputArgv.size(); ++i) {
163    unsigned Size = InputArgv[i].size()+1;
164    char *Dest = new char[Size];
165    DOUT << "ARGV[" << i << "] = " << (void*)Dest << "\n";
166
167    std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
168    Dest[Size-1] = 0;
169
170    // Endian safe: Result[i] = (PointerTy)Dest;
171    EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize),
172                           SBytePtr);
173  }
174
175  // Null terminate it
176  EE->StoreValueToMemory(PTOGV(0),
177                         (GenericValue*)(Result+InputArgv.size()*PtrSize),
178                         SBytePtr);
179  return Result;
180}
181
182
183/// runStaticConstructorsDestructors - This method is used to execute all of
184/// the static constructors or destructors for a program, depending on the
185/// value of isDtors.
186void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
187  const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
188
189  // Execute global ctors/dtors for each module in the program.
190  for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
191    GlobalVariable *GV = Modules[m]->getModule()->getNamedGlobal(Name);
192
193    // If this global has internal linkage, or if it has a use, then it must be
194    // an old-style (llvmgcc3) static ctor with __main linked in and in use.  If
195    // this is the case, don't execute any of the global ctors, __main will do
196    // it.
197    if (!GV || GV->isDeclaration() || GV->hasInternalLinkage()) continue;
198
199    // Should be an array of '{ int, void ()* }' structs.  The first value is
200    // the init priority, which we ignore.
201    ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
202    if (!InitList) continue;
203    for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
204      if (ConstantStruct *CS =
205          dyn_cast<ConstantStruct>(InitList->getOperand(i))) {
206        if (CS->getNumOperands() != 2) break; // Not array of 2-element structs.
207
208        Constant *FP = CS->getOperand(1);
209        if (FP->isNullValue())
210          break;  // Found a null terminator, exit.
211
212        if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
213          if (CE->isCast())
214            FP = CE->getOperand(0);
215        if (Function *F = dyn_cast<Function>(FP)) {
216          // Execute the ctor/dtor function!
217          runFunction(F, std::vector<GenericValue>());
218        }
219      }
220  }
221}
222
223/// runFunctionAsMain - This is a helper function which wraps runFunction to
224/// handle the common task of starting up main with the specified argc, argv,
225/// and envp parameters.
226int ExecutionEngine::runFunctionAsMain(Function *Fn,
227                                       const std::vector<std::string> &argv,
228                                       const char * const * envp) {
229  std::vector<GenericValue> GVArgs;
230  GenericValue GVArgc;
231  GVArgc.Int32Val = argv.size();
232  unsigned NumArgs = Fn->getFunctionType()->getNumParams();
233  if (NumArgs) {
234    GVArgs.push_back(GVArgc); // Arg #0 = argc.
235    if (NumArgs > 1) {
236      GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv.
237      assert(((char **)GVTOP(GVArgs[1]))[0] &&
238             "argv[0] was null after CreateArgv");
239      if (NumArgs > 2) {
240        std::vector<std::string> EnvVars;
241        for (unsigned i = 0; envp[i]; ++i)
242          EnvVars.push_back(envp[i]);
243        GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp.
244      }
245    }
246  }
247  return runFunction(Fn, GVArgs).Int32Val;
248}
249
250/// If possible, create a JIT, unless the caller specifically requests an
251/// Interpreter or there's an error. If even an Interpreter cannot be created,
252/// NULL is returned.
253///
254ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP,
255                                         bool ForceInterpreter) {
256  ExecutionEngine *EE = 0;
257
258  // Unless the interpreter was explicitly selected, try making a JIT.
259  if (!ForceInterpreter && JITCtor)
260    EE = JITCtor(MP);
261
262  // If we can't make a JIT, make an interpreter instead.
263  if (EE == 0 && InterpCtor)
264    EE = InterpCtor(MP);
265
266  if (EE) {
267    // Make sure we can resolve symbols in the program as well. The zero arg
268    // to the function tells DynamicLibrary to load the program, not a library.
269    try {
270      sys::DynamicLibrary::LoadLibraryPermanently(0);
271    } catch (...) {
272    }
273  }
274
275  return EE;
276}
277
278/// getPointerToGlobal - This returns the address of the specified global
279/// value.  This may involve code generation if it's a function.
280///
281void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
282  if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
283    return getPointerToFunction(F);
284
285  MutexGuard locked(lock);
286  void *p = state.getGlobalAddressMap(locked)[GV];
287  if (p)
288    return p;
289
290  // Global variable might have been added since interpreter started.
291  if (GlobalVariable *GVar =
292          const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
293    EmitGlobalVariable(GVar);
294  else
295    assert(0 && "Global hasn't had an address allocated yet!");
296  return state.getGlobalAddressMap(locked)[GV];
297}
298
299/// This macro is used to handle a variety of situations involing integer
300/// values where the action should be done to one of the GenericValue members.
301/// THEINTTY is a const Type * for the integer type. ACTION1 comes before
302/// the GenericValue, ACTION2 comes after.
303#define DO_FOR_INTEGER(THEINTTY, ACTION) \
304   { \
305      unsigned BitWidth = cast<IntegerType>(THEINTTY)->getBitWidth(); \
306      if (BitWidth == 1) {\
307        ACTION(Int1Val); \
308      } else if (BitWidth <= 8) {\
309        ACTION(Int8Val); \
310      } else if (BitWidth <= 16) {\
311        ACTION(Int16Val); \
312      } else if (BitWidth <= 32) { \
313        ACTION(Int32Val); \
314      } else if (BitWidth <= 64) { \
315        ACTION(Int64Val); \
316      } else   {\
317        assert(0 && "Not implemented: integer types > 64 bits"); \
318      } \
319   }
320
321/// This function converts a Constant* into a GenericValue. The interesting
322/// part is if C is a ConstantExpr.
323/// @brief Get a GenericValue for a Constnat*
324GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
325  // Declare the result as garbage.
326  GenericValue Result;
327
328  // If its undefined, return the garbage.
329  if (isa<UndefValue>(C)) return Result;
330
331  // If the value is a ConstantExpr
332  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
333    switch (CE->getOpcode()) {
334    case Instruction::GetElementPtr: {
335      // Compute the index
336      Result = getConstantValue(CE->getOperand(0));
337      SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end());
338      uint64_t Offset =
339        TD->getIndexedOffset(CE->getOperand(0)->getType(),
340                             &Indices[0], Indices.size());
341
342      if (getTargetData()->getPointerSize() == 4)
343        Result.Int32Val += Offset;
344      else
345        Result.Int64Val += Offset;
346      return Result;
347    }
348    case Instruction::Trunc:
349    case Instruction::ZExt:
350    case Instruction::SExt:
351    case Instruction::FPTrunc:
352    case Instruction::FPExt:
353    case Instruction::UIToFP:
354    case Instruction::SIToFP:
355    case Instruction::FPToUI:
356    case Instruction::FPToSI:
357      break;
358    case Instruction::PtrToInt: {
359      Constant *Op = CE->getOperand(0);
360      GenericValue GV = getConstantValue(Op);
361      return GV;
362    }
363    case Instruction::BitCast: {
364      // Bit casts are no-ops but we can only return the GV of the operand if
365      // they are the same basic type (pointer->pointer, packed->packed, etc.)
366      Constant *Op = CE->getOperand(0);
367      GenericValue GV = getConstantValue(Op);
368      if (Op->getType()->getTypeID() == C->getType()->getTypeID())
369        return GV;
370      break;
371    }
372    case Instruction::IntToPtr: {
373      // IntToPtr casts are just so special. Cast to intptr_t first.
374      Constant *Op = CE->getOperand(0);
375      GenericValue GV = getConstantValue(Op);
376#define INT_TO_PTR_ACTION(FIELD) \
377        return PTOGV((void*)(uintptr_t)GV.FIELD)
378      DO_FOR_INTEGER(Op->getType(), INT_TO_PTR_ACTION)
379#undef INT_TO_PTR_ACTION
380      break;
381    }
382    case Instruction::Add:
383      switch (CE->getOperand(0)->getType()->getTypeID()) {
384      default: assert(0 && "Bad add type!"); abort();
385      case Type::IntegerTyID:
386#define ADD_ACTION(FIELD) \
387        Result.FIELD = getConstantValue(CE->getOperand(0)).FIELD + \
388                       getConstantValue(CE->getOperand(1)).FIELD;
389        DO_FOR_INTEGER(CE->getOperand(0)->getType(),ADD_ACTION);
390#undef ADD_ACTION
391        break;
392      case Type::FloatTyID:
393        Result.FloatVal = getConstantValue(CE->getOperand(0)).FloatVal +
394                          getConstantValue(CE->getOperand(1)).FloatVal;
395        break;
396      case Type::DoubleTyID:
397        Result.DoubleVal = getConstantValue(CE->getOperand(0)).DoubleVal +
398                           getConstantValue(CE->getOperand(1)).DoubleVal;
399        break;
400      }
401      return Result;
402    default:
403      break;
404    }
405    cerr << "ConstantExpr not handled as global var init: " << *CE << "\n";
406    abort();
407  }
408
409  switch (C->getType()->getTypeID()) {
410#define GET_CONST_VAL(TY, CTY, CLASS, GETMETH) \
411  case Type::TY##TyID: Result.TY##Val = (CTY)cast<CLASS>(C)->GETMETH(); break
412    GET_CONST_VAL(Float , float         , ConstantFP, getValue);
413    GET_CONST_VAL(Double, double        , ConstantFP, getValue);
414#undef GET_CONST_VAL
415  case Type::IntegerTyID: {
416    unsigned BitWidth = cast<IntegerType>(C->getType())->getBitWidth();
417    if (BitWidth == 1)
418      Result.Int1Val = (bool)cast<ConstantInt>(C)->getZExtValue();
419    else if (BitWidth <= 8)
420      Result.Int8Val = (uint8_t )cast<ConstantInt>(C)->getZExtValue();
421    else if (BitWidth <= 16)
422      Result.Int16Val = (uint16_t )cast<ConstantInt>(C)->getZExtValue();
423    else if (BitWidth <= 32)
424      Result.Int32Val = (uint32_t )cast<ConstantInt>(C)->getZExtValue();
425    else if (BitWidth <= 64)
426      Result.Int64Val = (uint64_t )cast<ConstantInt>(C)->getZExtValue();
427    else
428      assert(0 && "Integers with > 64-bits not implemented");
429    break;
430  }
431
432  case Type::PointerTyID:
433    if (isa<ConstantPointerNull>(C))
434      Result.PointerVal = 0;
435    else if (const Function *F = dyn_cast<Function>(C))
436      Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
437    else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C))
438      Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
439    else
440      assert(0 && "Unknown constant pointer type!");
441    break;
442  default:
443    cerr << "ERROR: Constant unimp for type: " << *C->getType() << "\n";
444    abort();
445  }
446  return Result;
447}
448
449/// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.  Ptr
450/// is the address of the memory at which to store Val, cast to GenericValue *.
451/// It is not a pointer to a GenericValue containing the address at which to
452/// store Val.
453///
454void ExecutionEngine::StoreValueToMemory(GenericValue Val, GenericValue *Ptr,
455                                         const Type *Ty) {
456  if (getTargetData()->isLittleEndian()) {
457    switch (Ty->getTypeID()) {
458    case Type::IntegerTyID: {
459      unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
460      uint64_t BitMask = cast<IntegerType>(Ty)->getBitMask();
461      GenericValue TmpVal = Val;
462      if (BitWidth <= 8)
463        Ptr->Untyped[0] = Val.Int8Val & BitMask;
464      else if (BitWidth <= 16) {
465        TmpVal.Int16Val &= BitMask;
466        Ptr->Untyped[0] = TmpVal.Int16Val        & 255;
467        Ptr->Untyped[1] = (TmpVal.Int16Val >> 8) & 255;
468      } else if (BitWidth <= 32) {
469        TmpVal.Int32Val &= BitMask;
470        Ptr->Untyped[0] =  TmpVal.Int32Val        & 255;
471        Ptr->Untyped[1] = (TmpVal.Int32Val >>  8) & 255;
472        Ptr->Untyped[2] = (TmpVal.Int32Val >> 16) & 255;
473        Ptr->Untyped[3] = (TmpVal.Int32Val >> 24) & 255;
474      } else if (BitWidth <= 64) {
475        TmpVal.Int64Val &= BitMask;
476        Ptr->Untyped[0] = (unsigned char)(TmpVal.Int64Val      );
477        Ptr->Untyped[1] = (unsigned char)(TmpVal.Int64Val >>  8);
478        Ptr->Untyped[2] = (unsigned char)(TmpVal.Int64Val >> 16);
479        Ptr->Untyped[3] = (unsigned char)(TmpVal.Int64Val >> 24);
480        Ptr->Untyped[4] = (unsigned char)(TmpVal.Int64Val >> 32);
481        Ptr->Untyped[5] = (unsigned char)(TmpVal.Int64Val >> 40);
482        Ptr->Untyped[6] = (unsigned char)(TmpVal.Int64Val >> 48);
483        Ptr->Untyped[7] = (unsigned char)(TmpVal.Int64Val >> 56);
484      } else
485        assert(0 && "Integer types > 64 bits not supported");
486      break;
487    }
488Store4BytesLittleEndian:
489    case Type::FloatTyID:
490      Ptr->Untyped[0] =  Val.Int32Val        & 255;
491      Ptr->Untyped[1] = (Val.Int32Val >>  8) & 255;
492      Ptr->Untyped[2] = (Val.Int32Val >> 16) & 255;
493      Ptr->Untyped[3] = (Val.Int32Val >> 24) & 255;
494      break;
495    case Type::PointerTyID:
496      if (getTargetData()->getPointerSize() == 4)
497        goto Store4BytesLittleEndian;
498      /* FALL THROUGH */
499    case Type::DoubleTyID:
500      Ptr->Untyped[0] = (unsigned char)(Val.Int64Val      );
501      Ptr->Untyped[1] = (unsigned char)(Val.Int64Val >>  8);
502      Ptr->Untyped[2] = (unsigned char)(Val.Int64Val >> 16);
503      Ptr->Untyped[3] = (unsigned char)(Val.Int64Val >> 24);
504      Ptr->Untyped[4] = (unsigned char)(Val.Int64Val >> 32);
505      Ptr->Untyped[5] = (unsigned char)(Val.Int64Val >> 40);
506      Ptr->Untyped[6] = (unsigned char)(Val.Int64Val >> 48);
507      Ptr->Untyped[7] = (unsigned char)(Val.Int64Val >> 56);
508      break;
509    default:
510      cerr << "Cannot store value of type " << *Ty << "!\n";
511    }
512  } else {
513    switch (Ty->getTypeID()) {
514    case Type::IntegerTyID: {
515      unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
516      uint64_t BitMask = cast<IntegerType>(Ty)->getBitMask();
517      GenericValue TmpVal = Val;
518      if (BitWidth <= 8)
519        Ptr->Untyped[0] = Val.Int8Val & BitMask;
520      else if (BitWidth <= 16) {
521        TmpVal.Int16Val &= BitMask;
522        Ptr->Untyped[1] =  TmpVal.Int16Val       & 255;
523        Ptr->Untyped[0] = (TmpVal.Int16Val >> 8) & 255;
524      } else if (BitWidth <= 32) {
525        TmpVal.Int32Val &= BitMask;
526        Ptr->Untyped[3] =  TmpVal.Int32Val        & 255;
527        Ptr->Untyped[2] = (TmpVal.Int32Val >>  8) & 255;
528        Ptr->Untyped[1] = (TmpVal.Int32Val >> 16) & 255;
529        Ptr->Untyped[0] = (TmpVal.Int32Val >> 24) & 255;
530      } else if (BitWidth <= 64) {
531        TmpVal.Int64Val &= BitMask;
532        Ptr->Untyped[7] = (unsigned char)(TmpVal.Int64Val      );
533        Ptr->Untyped[6] = (unsigned char)(TmpVal.Int64Val >>  8);
534        Ptr->Untyped[5] = (unsigned char)(TmpVal.Int64Val >> 16);
535        Ptr->Untyped[4] = (unsigned char)(TmpVal.Int64Val >> 24);
536        Ptr->Untyped[3] = (unsigned char)(TmpVal.Int64Val >> 32);
537        Ptr->Untyped[2] = (unsigned char)(TmpVal.Int64Val >> 40);
538        Ptr->Untyped[1] = (unsigned char)(TmpVal.Int64Val >> 48);
539        Ptr->Untyped[0] = (unsigned char)(TmpVal.Int64Val >> 56);
540      } else
541        assert(0 && "Integer types > 64 bits not supported");
542      break;
543    }
544    Store4BytesBigEndian:
545    case Type::FloatTyID:
546      Ptr->Untyped[3] =  Val.Int32Val        & 255;
547      Ptr->Untyped[2] = (Val.Int32Val >>  8) & 255;
548      Ptr->Untyped[1] = (Val.Int32Val >> 16) & 255;
549      Ptr->Untyped[0] = (Val.Int32Val >> 24) & 255;
550      break;
551    case Type::PointerTyID:
552      if (getTargetData()->getPointerSize() == 4)
553        goto Store4BytesBigEndian;
554      /* FALL THROUGH */
555    case Type::DoubleTyID:
556      Ptr->Untyped[7] = (unsigned char)(Val.Int64Val      );
557      Ptr->Untyped[6] = (unsigned char)(Val.Int64Val >>  8);
558      Ptr->Untyped[5] = (unsigned char)(Val.Int64Val >> 16);
559      Ptr->Untyped[4] = (unsigned char)(Val.Int64Val >> 24);
560      Ptr->Untyped[3] = (unsigned char)(Val.Int64Val >> 32);
561      Ptr->Untyped[2] = (unsigned char)(Val.Int64Val >> 40);
562      Ptr->Untyped[1] = (unsigned char)(Val.Int64Val >> 48);
563      Ptr->Untyped[0] = (unsigned char)(Val.Int64Val >> 56);
564      break;
565    default:
566      cerr << "Cannot store value of type " << *Ty << "!\n";
567    }
568  }
569}
570
571/// FIXME: document
572///
573GenericValue ExecutionEngine::LoadValueFromMemory(GenericValue *Ptr,
574                                                  const Type *Ty) {
575  GenericValue Result;
576  if (getTargetData()->isLittleEndian()) {
577    switch (Ty->getTypeID()) {
578    case Type::IntegerTyID: {
579      unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
580      if (BitWidth <= 8)
581        Result.Int8Val  = Ptr->Untyped[0];
582      else if (BitWidth <= 16) {
583        Result.Int16Val =  (unsigned)Ptr->Untyped[0] |
584                          ((unsigned)Ptr->Untyped[1] << 8);
585      } else if (BitWidth <= 32) {
586        Result.Int32Val =  (unsigned)Ptr->Untyped[0] |
587                          ((unsigned)Ptr->Untyped[1] <<  8) |
588                          ((unsigned)Ptr->Untyped[2] << 16) |
589                          ((unsigned)Ptr->Untyped[3] << 24);
590      } else if (BitWidth <= 64) {
591        Result.Int64Val =  (uint64_t)Ptr->Untyped[0] |
592                          ((uint64_t)Ptr->Untyped[1] <<  8) |
593                          ((uint64_t)Ptr->Untyped[2] << 16) |
594                          ((uint64_t)Ptr->Untyped[3] << 24) |
595                          ((uint64_t)Ptr->Untyped[4] << 32) |
596                          ((uint64_t)Ptr->Untyped[5] << 40) |
597                          ((uint64_t)Ptr->Untyped[6] << 48) |
598                          ((uint64_t)Ptr->Untyped[7] << 56);
599      } else
600        assert(0 && "Integer types > 64 bits not supported");
601      break;
602    }
603    Load4BytesLittleEndian:
604    case Type::FloatTyID:
605      Result.Int32Val =  (unsigned)Ptr->Untyped[0] |
606                        ((unsigned)Ptr->Untyped[1] <<  8) |
607                        ((unsigned)Ptr->Untyped[2] << 16) |
608                        ((unsigned)Ptr->Untyped[3] << 24);
609      break;
610    case Type::PointerTyID:
611      if (getTargetData()->getPointerSize() == 4)
612        goto Load4BytesLittleEndian;
613      /* FALL THROUGH */
614    case Type::DoubleTyID:
615      Result.Int64Val =  (uint64_t)Ptr->Untyped[0] |
616                        ((uint64_t)Ptr->Untyped[1] <<  8) |
617                        ((uint64_t)Ptr->Untyped[2] << 16) |
618                        ((uint64_t)Ptr->Untyped[3] << 24) |
619                        ((uint64_t)Ptr->Untyped[4] << 32) |
620                        ((uint64_t)Ptr->Untyped[5] << 40) |
621                        ((uint64_t)Ptr->Untyped[6] << 48) |
622                        ((uint64_t)Ptr->Untyped[7] << 56);
623       break;
624    default:
625      cerr << "Cannot load value of type " << *Ty << "!\n";
626      abort();
627    }
628  } else {
629    switch (Ty->getTypeID()) {
630    case Type::IntegerTyID: {
631      unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
632      if (BitWidth <= 8)
633        Result.Int8Val  = Ptr->Untyped[0];
634      else if (BitWidth <= 16) {
635        Result.Int16Val =  (unsigned)Ptr->Untyped[1] |
636                          ((unsigned)Ptr->Untyped[0] << 8);
637      } else if (BitWidth <= 32) {
638        Result.Int32Val =  (unsigned)Ptr->Untyped[3] |
639                          ((unsigned)Ptr->Untyped[2] <<  8) |
640                          ((unsigned)Ptr->Untyped[1] << 16) |
641                          ((unsigned)Ptr->Untyped[0] << 24);
642      } else if (BitWidth <= 64) {
643        Result.Int64Val =  (uint64_t)Ptr->Untyped[7] |
644                          ((uint64_t)Ptr->Untyped[6] <<  8) |
645                          ((uint64_t)Ptr->Untyped[5] << 16) |
646                          ((uint64_t)Ptr->Untyped[4] << 24) |
647                          ((uint64_t)Ptr->Untyped[3] << 32) |
648                          ((uint64_t)Ptr->Untyped[2] << 40) |
649                          ((uint64_t)Ptr->Untyped[1] << 48) |
650                          ((uint64_t)Ptr->Untyped[0] << 56);
651      } else
652        assert(0 && "Integer types > 64 bits not supported");
653      break;
654    }
655    Load4BytesBigEndian:
656    case Type::FloatTyID:
657      Result.Int32Val =  (unsigned)Ptr->Untyped[3] |
658                        ((unsigned)Ptr->Untyped[2] <<  8) |
659                        ((unsigned)Ptr->Untyped[1] << 16) |
660                        ((unsigned)Ptr->Untyped[0] << 24);
661                            break;
662    case Type::PointerTyID:
663      if (getTargetData()->getPointerSize() == 4)
664        goto Load4BytesBigEndian;
665      /* FALL THROUGH */
666    case Type::DoubleTyID:
667      Result.Int64Val =  (uint64_t)Ptr->Untyped[7] |
668                        ((uint64_t)Ptr->Untyped[6] <<  8) |
669                        ((uint64_t)Ptr->Untyped[5] << 16) |
670                        ((uint64_t)Ptr->Untyped[4] << 24) |
671                        ((uint64_t)Ptr->Untyped[3] << 32) |
672                        ((uint64_t)Ptr->Untyped[2] << 40) |
673                        ((uint64_t)Ptr->Untyped[1] << 48) |
674                        ((uint64_t)Ptr->Untyped[0] << 56);
675      break;
676    default:
677      cerr << "Cannot load value of type " << *Ty << "!\n";
678      abort();
679    }
680  }
681  return Result;
682}
683
684// InitializeMemory - Recursive function to apply a Constant value into the
685// specified memory location...
686//
687void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
688  if (isa<UndefValue>(Init)) {
689    return;
690  } else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(Init)) {
691    unsigned ElementSize =
692      getTargetData()->getTypeSize(CP->getType()->getElementType());
693    for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
694      InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
695    return;
696  } else if (Init->getType()->isFirstClassType()) {
697    GenericValue Val = getConstantValue(Init);
698    StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
699    return;
700  } else if (isa<ConstantAggregateZero>(Init)) {
701    memset(Addr, 0, (size_t)getTargetData()->getTypeSize(Init->getType()));
702    return;
703  }
704
705  switch (Init->getType()->getTypeID()) {
706  case Type::ArrayTyID: {
707    const ConstantArray *CPA = cast<ConstantArray>(Init);
708    unsigned ElementSize =
709      getTargetData()->getTypeSize(CPA->getType()->getElementType());
710    for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
711      InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
712    return;
713  }
714
715  case Type::StructTyID: {
716    const ConstantStruct *CPS = cast<ConstantStruct>(Init);
717    const StructLayout *SL =
718      getTargetData()->getStructLayout(cast<StructType>(CPS->getType()));
719    for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
720      InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
721    return;
722  }
723
724  default:
725    cerr << "Bad Type: " << *Init->getType() << "\n";
726    assert(0 && "Unknown constant type to initialize memory with!");
727  }
728}
729
730/// EmitGlobals - Emit all of the global variables to memory, storing their
731/// addresses into GlobalAddress.  This must make sure to copy the contents of
732/// their initializers into the memory.
733///
734void ExecutionEngine::emitGlobals() {
735  const TargetData *TD = getTargetData();
736
737  // Loop over all of the global variables in the program, allocating the memory
738  // to hold them.  If there is more than one module, do a prepass over globals
739  // to figure out how the different modules should link together.
740  //
741  std::map<std::pair<std::string, const Type*>,
742           const GlobalValue*> LinkedGlobalsMap;
743
744  if (Modules.size() != 1) {
745    for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
746      Module &M = *Modules[m]->getModule();
747      for (Module::const_global_iterator I = M.global_begin(),
748           E = M.global_end(); I != E; ++I) {
749        const GlobalValue *GV = I;
750        if (GV->hasInternalLinkage() || GV->isDeclaration() ||
751            GV->hasAppendingLinkage() || !GV->hasName())
752          continue;// Ignore external globals and globals with internal linkage.
753
754        const GlobalValue *&GVEntry =
755          LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
756
757        // If this is the first time we've seen this global, it is the canonical
758        // version.
759        if (!GVEntry) {
760          GVEntry = GV;
761          continue;
762        }
763
764        // If the existing global is strong, never replace it.
765        if (GVEntry->hasExternalLinkage() ||
766            GVEntry->hasDLLImportLinkage() ||
767            GVEntry->hasDLLExportLinkage())
768          continue;
769
770        // Otherwise, we know it's linkonce/weak, replace it if this is a strong
771        // symbol.
772        if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
773          GVEntry = GV;
774      }
775    }
776  }
777
778  std::vector<const GlobalValue*> NonCanonicalGlobals;
779  for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
780    Module &M = *Modules[m]->getModule();
781    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
782         I != E; ++I) {
783      // In the multi-module case, see what this global maps to.
784      if (!LinkedGlobalsMap.empty()) {
785        if (const GlobalValue *GVEntry =
786              LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) {
787          // If something else is the canonical global, ignore this one.
788          if (GVEntry != &*I) {
789            NonCanonicalGlobals.push_back(I);
790            continue;
791          }
792        }
793      }
794
795      if (!I->isDeclaration()) {
796        // Get the type of the global.
797        const Type *Ty = I->getType()->getElementType();
798
799        // Allocate some memory for it!
800        unsigned Size = TD->getTypeSize(Ty);
801        addGlobalMapping(I, new char[Size]);
802      } else {
803        // External variable reference. Try to use the dynamic loader to
804        // get a pointer to it.
805        if (void *SymAddr =
806            sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName().c_str()))
807          addGlobalMapping(I, SymAddr);
808        else {
809          cerr << "Could not resolve external global address: "
810               << I->getName() << "\n";
811          abort();
812        }
813      }
814    }
815
816    // If there are multiple modules, map the non-canonical globals to their
817    // canonical location.
818    if (!NonCanonicalGlobals.empty()) {
819      for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
820        const GlobalValue *GV = NonCanonicalGlobals[i];
821        const GlobalValue *CGV =
822          LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
823        void *Ptr = getPointerToGlobalIfAvailable(CGV);
824        assert(Ptr && "Canonical global wasn't codegen'd!");
825        addGlobalMapping(GV, getPointerToGlobalIfAvailable(CGV));
826      }
827    }
828
829    // Now that all of the globals are set up in memory, loop through them all
830    // and initialize their contents.
831    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
832         I != E; ++I) {
833      if (!I->isDeclaration()) {
834        if (!LinkedGlobalsMap.empty()) {
835          if (const GlobalValue *GVEntry =
836                LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())])
837            if (GVEntry != &*I)  // Not the canonical variable.
838              continue;
839        }
840        EmitGlobalVariable(I);
841      }
842    }
843  }
844}
845
846// EmitGlobalVariable - This method emits the specified global variable to the
847// address specified in GlobalAddresses, or allocates new memory if it's not
848// already in the map.
849void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
850  void *GA = getPointerToGlobalIfAvailable(GV);
851  DOUT << "Global '" << GV->getName() << "' -> " << GA << "\n";
852
853  const Type *ElTy = GV->getType()->getElementType();
854  size_t GVSize = (size_t)getTargetData()->getTypeSize(ElTy);
855  if (GA == 0) {
856    // If it's not already specified, allocate memory for the global.
857    GA = new char[GVSize];
858    addGlobalMapping(GV, GA);
859  }
860
861  InitializeMemory(GV->getInitializer(), GA);
862  NumInitBytes += (unsigned)GVSize;
863  ++NumGlobals;
864}
865