ExecutionEngine.cpp revision 7c2b7c7c75a3549b2d6933edf3110294a33ff2d4
1//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the common interface used by the various execution engine
11// subclasses.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "jit"
16#include "Interpreter/Interpreter.h"
17#include "JIT/JIT.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Module.h"
21#include "llvm/ModuleProvider.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/CodeGen/IntrinsicLowering.h"
24#include "llvm/ExecutionEngine/ExecutionEngine.h"
25#include "llvm/ExecutionEngine/GenericValue.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/System/DynamicLibrary.h"
28#include "llvm/Target/TargetData.h"
29using namespace llvm;
30
31namespace {
32  Statistic<> NumInitBytes("lli", "Number of bytes of global vars initialized");
33  Statistic<> NumGlobals  ("lli", "Number of global vars initialized");
34}
35
36ExecutionEngine::ExecutionEngine(ModuleProvider *P) :
37  CurMod(*P->getModule()), MP(P) {
38  assert(P && "ModuleProvider is null?");
39}
40
41ExecutionEngine::ExecutionEngine(Module *M) : CurMod(*M), MP(0) {
42  assert(M && "Module is null?");
43}
44
45ExecutionEngine::~ExecutionEngine() {
46  delete MP;
47}
48
49/// getGlobalValueAtAddress - Return the LLVM global value object that starts
50/// at the specified address.
51///
52const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
53  MutexGuard locked(lock);
54
55  // If we haven't computed the reverse mapping yet, do so first.
56  if (state.getGlobalAddressReverseMap(locked).empty()) {
57    for (std::map<const GlobalValue*, void *>::iterator I =
58           state.getGlobalAddressMap(locked).begin(), E = state.getGlobalAddressMap(locked).end(); I != E; ++I)
59      state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, I->first));
60  }
61
62  std::map<void *, const GlobalValue*>::iterator I =
63    state.getGlobalAddressReverseMap(locked).find(Addr);
64  return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
65}
66
67// CreateArgv - Turn a vector of strings into a nice argv style array of
68// pointers to null terminated strings.
69//
70static void *CreateArgv(ExecutionEngine *EE,
71                        const std::vector<std::string> &InputArgv) {
72  unsigned PtrSize = EE->getTargetData().getPointerSize();
73  char *Result = new char[(InputArgv.size()+1)*PtrSize];
74
75  DEBUG(std::cerr << "ARGV = " << (void*)Result << "\n");
76  const Type *SBytePtr = PointerType::get(Type::SByteTy);
77
78  for (unsigned i = 0; i != InputArgv.size(); ++i) {
79    unsigned Size = InputArgv[i].size()+1;
80    char *Dest = new char[Size];
81    DEBUG(std::cerr << "ARGV[" << i << "] = " << (void*)Dest << "\n");
82
83    std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
84    Dest[Size-1] = 0;
85
86    // Endian safe: Result[i] = (PointerTy)Dest;
87    EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize),
88                           SBytePtr);
89  }
90
91  // Null terminate it
92  EE->StoreValueToMemory(PTOGV(0),
93                         (GenericValue*)(Result+InputArgv.size()*PtrSize),
94                         SBytePtr);
95  return Result;
96}
97
98/// runFunctionAsMain - This is a helper function which wraps runFunction to
99/// handle the common task of starting up main with the specified argc, argv,
100/// and envp parameters.
101int ExecutionEngine::runFunctionAsMain(Function *Fn,
102                                       const std::vector<std::string> &argv,
103                                       const char * const * envp) {
104  std::vector<GenericValue> GVArgs;
105  GenericValue GVArgc;
106  GVArgc.IntVal = argv.size();
107  unsigned NumArgs = Fn->getFunctionType()->getNumParams();
108  if (NumArgs) {
109    GVArgs.push_back(GVArgc); // Arg #0 = argc.
110    if (NumArgs > 1) {
111      GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv.
112      assert(((char **)GVTOP(GVArgs[1]))[0] &&
113             "argv[0] was null after CreateArgv");
114      if (NumArgs > 2) {
115        std::vector<std::string> EnvVars;
116        for (unsigned i = 0; envp[i]; ++i)
117          EnvVars.push_back(envp[i]);
118        GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp.
119      }
120    }
121  }
122  return runFunction(Fn, GVArgs).IntVal;
123}
124
125
126
127/// If possible, create a JIT, unless the caller specifically requests an
128/// Interpreter or there's an error. If even an Interpreter cannot be created,
129/// NULL is returned.
130///
131ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP,
132                                         bool ForceInterpreter,
133                                         IntrinsicLowering *IL) {
134  ExecutionEngine *EE = 0;
135
136  // Unless the interpreter was explicitly selected, try making a JIT.
137  if (!ForceInterpreter)
138    EE = JIT::create(MP, IL);
139
140  // If we can't make a JIT, make an interpreter instead.
141  if (EE == 0) {
142    try {
143      Module *M = MP->materializeModule();
144      try {
145        EE = Interpreter::create(M, IL);
146      } catch (...) {
147        std::cerr << "Error creating the interpreter!\n";
148      }
149    } catch (std::string& errmsg) {
150      std::cerr << "Error reading the bytecode file: " << errmsg << "\n";
151    } catch (...) {
152      std::cerr << "Error reading the bytecode file!\n";
153    }
154  }
155
156  if (EE == 0)
157    delete IL;
158  else
159    // Make sure we can resolve symbols in the program as well. The zero arg
160    // to the function tells DynamicLibrary to load the program, not a library.
161    sys::DynamicLibrary::LoadLibraryPermanently(0);
162
163  return EE;
164}
165
166/// getPointerToGlobal - This returns the address of the specified global
167/// value.  This may involve code generation if it's a function.
168///
169void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
170  if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
171    return getPointerToFunction(F);
172
173  MutexGuard locked(lock);
174  assert(state.getGlobalAddressMap(locked)[GV] && "Global hasn't had an address allocated yet?");
175  return state.getGlobalAddressMap(locked)[GV];
176}
177
178/// FIXME: document
179///
180GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
181  GenericValue Result;
182  if (isa<UndefValue>(C)) return Result;
183
184  if (ConstantExpr *CE = const_cast<ConstantExpr*>(dyn_cast<ConstantExpr>(C))) {
185    switch (CE->getOpcode()) {
186    case Instruction::GetElementPtr: {
187      Result = getConstantValue(CE->getOperand(0));
188      std::vector<Value*> Indexes(CE->op_begin()+1, CE->op_end());
189      uint64_t Offset =
190        TD->getIndexedOffset(CE->getOperand(0)->getType(), Indexes);
191
192      if (getTargetData().getPointerSize() == 4)
193        Result.IntVal += Offset;
194      else
195        Result.LongVal += Offset;
196      return Result;
197    }
198    case Instruction::Cast: {
199      // We only need to handle a few cases here.  Almost all casts will
200      // automatically fold, just the ones involving pointers won't.
201      //
202      Constant *Op = CE->getOperand(0);
203      GenericValue GV = getConstantValue(Op);
204
205      // Handle cast of pointer to pointer...
206      if (Op->getType()->getTypeID() == C->getType()->getTypeID())
207        return GV;
208
209      // Handle a cast of pointer to any integral type...
210      if (isa<PointerType>(Op->getType()) && C->getType()->isIntegral())
211        return GV;
212
213      // Handle cast of integer to a pointer...
214      if (isa<PointerType>(C->getType()) && Op->getType()->isIntegral())
215        switch (Op->getType()->getTypeID()) {
216        case Type::BoolTyID:    return PTOGV((void*)(uintptr_t)GV.BoolVal);
217        case Type::SByteTyID:   return PTOGV((void*)( intptr_t)GV.SByteVal);
218        case Type::UByteTyID:   return PTOGV((void*)(uintptr_t)GV.UByteVal);
219        case Type::ShortTyID:   return PTOGV((void*)( intptr_t)GV.ShortVal);
220        case Type::UShortTyID:  return PTOGV((void*)(uintptr_t)GV.UShortVal);
221        case Type::IntTyID:     return PTOGV((void*)( intptr_t)GV.IntVal);
222        case Type::UIntTyID:    return PTOGV((void*)(uintptr_t)GV.UIntVal);
223        case Type::LongTyID:    return PTOGV((void*)( intptr_t)GV.LongVal);
224        case Type::ULongTyID:   return PTOGV((void*)(uintptr_t)GV.ULongVal);
225        default: assert(0 && "Unknown integral type!");
226        }
227      break;
228    }
229
230    case Instruction::Add:
231      switch (CE->getOperand(0)->getType()->getTypeID()) {
232      default: assert(0 && "Bad add type!"); abort();
233      case Type::LongTyID:
234      case Type::ULongTyID:
235        Result.LongVal = getConstantValue(CE->getOperand(0)).LongVal +
236                         getConstantValue(CE->getOperand(1)).LongVal;
237        break;
238      case Type::IntTyID:
239      case Type::UIntTyID:
240        Result.IntVal = getConstantValue(CE->getOperand(0)).IntVal +
241                        getConstantValue(CE->getOperand(1)).IntVal;
242        break;
243      case Type::ShortTyID:
244      case Type::UShortTyID:
245        Result.ShortVal = getConstantValue(CE->getOperand(0)).ShortVal +
246                          getConstantValue(CE->getOperand(1)).ShortVal;
247        break;
248      case Type::SByteTyID:
249      case Type::UByteTyID:
250        Result.SByteVal = getConstantValue(CE->getOperand(0)).SByteVal +
251                          getConstantValue(CE->getOperand(1)).SByteVal;
252        break;
253      case Type::FloatTyID:
254        Result.FloatVal = getConstantValue(CE->getOperand(0)).FloatVal +
255                          getConstantValue(CE->getOperand(1)).FloatVal;
256        break;
257      case Type::DoubleTyID:
258        Result.DoubleVal = getConstantValue(CE->getOperand(0)).DoubleVal +
259                           getConstantValue(CE->getOperand(1)).DoubleVal;
260        break;
261      }
262      return Result;
263    default:
264      break;
265    }
266    std::cerr << "ConstantExpr not handled as global var init: " << *CE << "\n";
267    abort();
268  }
269
270  switch (C->getType()->getTypeID()) {
271#define GET_CONST_VAL(TY, CTY, CLASS) \
272  case Type::TY##TyID: Result.TY##Val = (CTY)cast<CLASS>(C)->getValue(); break
273    GET_CONST_VAL(Bool   , bool          , ConstantBool);
274    GET_CONST_VAL(UByte  , unsigned char , ConstantUInt);
275    GET_CONST_VAL(SByte  , signed char   , ConstantSInt);
276    GET_CONST_VAL(UShort , unsigned short, ConstantUInt);
277    GET_CONST_VAL(Short  , signed short  , ConstantSInt);
278    GET_CONST_VAL(UInt   , unsigned int  , ConstantUInt);
279    GET_CONST_VAL(Int    , signed int    , ConstantSInt);
280    GET_CONST_VAL(ULong  , uint64_t      , ConstantUInt);
281    GET_CONST_VAL(Long   , int64_t       , ConstantSInt);
282    GET_CONST_VAL(Float  , float         , ConstantFP);
283    GET_CONST_VAL(Double , double        , ConstantFP);
284#undef GET_CONST_VAL
285  case Type::PointerTyID:
286    if (isa<ConstantPointerNull>(C))
287      Result.PointerVal = 0;
288    else if (const Function *F = dyn_cast<Function>(C))
289      Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
290    else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C))
291      Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
292    else
293      assert(0 && "Unknown constant pointer type!");
294    break;
295  default:
296    std::cout << "ERROR: Constant unimp for type: " << *C->getType() << "\n";
297    abort();
298  }
299  return Result;
300}
301
302/// FIXME: document
303///
304void ExecutionEngine::StoreValueToMemory(GenericValue Val, GenericValue *Ptr,
305                                         const Type *Ty) {
306  if (getTargetData().isLittleEndian()) {
307    switch (Ty->getTypeID()) {
308    case Type::BoolTyID:
309    case Type::UByteTyID:
310    case Type::SByteTyID:   Ptr->Untyped[0] = Val.UByteVal; break;
311    case Type::UShortTyID:
312    case Type::ShortTyID:   Ptr->Untyped[0] = Val.UShortVal & 255;
313                            Ptr->Untyped[1] = (Val.UShortVal >> 8) & 255;
314                            break;
315    Store4BytesLittleEndian:
316    case Type::FloatTyID:
317    case Type::UIntTyID:
318    case Type::IntTyID:     Ptr->Untyped[0] =  Val.UIntVal        & 255;
319                            Ptr->Untyped[1] = (Val.UIntVal >>  8) & 255;
320                            Ptr->Untyped[2] = (Val.UIntVal >> 16) & 255;
321                            Ptr->Untyped[3] = (Val.UIntVal >> 24) & 255;
322                            break;
323    case Type::PointerTyID: if (getTargetData().getPointerSize() == 4)
324                              goto Store4BytesLittleEndian;
325    case Type::DoubleTyID:
326    case Type::ULongTyID:
327    case Type::LongTyID:
328      Ptr->Untyped[0] = (unsigned char)(Val.ULongVal      );
329      Ptr->Untyped[1] = (unsigned char)(Val.ULongVal >>  8);
330      Ptr->Untyped[2] = (unsigned char)(Val.ULongVal >> 16);
331      Ptr->Untyped[3] = (unsigned char)(Val.ULongVal >> 24);
332      Ptr->Untyped[4] = (unsigned char)(Val.ULongVal >> 32);
333      Ptr->Untyped[5] = (unsigned char)(Val.ULongVal >> 40);
334      Ptr->Untyped[6] = (unsigned char)(Val.ULongVal >> 48);
335      Ptr->Untyped[7] = (unsigned char)(Val.ULongVal >> 56);
336      break;
337    default:
338      std::cout << "Cannot store value of type " << *Ty << "!\n";
339    }
340  } else {
341    switch (Ty->getTypeID()) {
342    case Type::BoolTyID:
343    case Type::UByteTyID:
344    case Type::SByteTyID:   Ptr->Untyped[0] = Val.UByteVal; break;
345    case Type::UShortTyID:
346    case Type::ShortTyID:   Ptr->Untyped[1] = Val.UShortVal & 255;
347                            Ptr->Untyped[0] = (Val.UShortVal >> 8) & 255;
348                            break;
349    Store4BytesBigEndian:
350    case Type::FloatTyID:
351    case Type::UIntTyID:
352    case Type::IntTyID:     Ptr->Untyped[3] =  Val.UIntVal        & 255;
353                            Ptr->Untyped[2] = (Val.UIntVal >>  8) & 255;
354                            Ptr->Untyped[1] = (Val.UIntVal >> 16) & 255;
355                            Ptr->Untyped[0] = (Val.UIntVal >> 24) & 255;
356                            break;
357    case Type::PointerTyID: if (getTargetData().getPointerSize() == 4)
358                              goto Store4BytesBigEndian;
359    case Type::DoubleTyID:
360    case Type::ULongTyID:
361    case Type::LongTyID:
362      Ptr->Untyped[7] = (unsigned char)(Val.ULongVal      );
363      Ptr->Untyped[6] = (unsigned char)(Val.ULongVal >>  8);
364      Ptr->Untyped[5] = (unsigned char)(Val.ULongVal >> 16);
365      Ptr->Untyped[4] = (unsigned char)(Val.ULongVal >> 24);
366      Ptr->Untyped[3] = (unsigned char)(Val.ULongVal >> 32);
367      Ptr->Untyped[2] = (unsigned char)(Val.ULongVal >> 40);
368      Ptr->Untyped[1] = (unsigned char)(Val.ULongVal >> 48);
369      Ptr->Untyped[0] = (unsigned char)(Val.ULongVal >> 56);
370      break;
371    default:
372      std::cout << "Cannot store value of type " << *Ty << "!\n";
373    }
374  }
375}
376
377/// FIXME: document
378///
379GenericValue ExecutionEngine::LoadValueFromMemory(GenericValue *Ptr,
380                                                  const Type *Ty) {
381  GenericValue Result;
382  if (getTargetData().isLittleEndian()) {
383    switch (Ty->getTypeID()) {
384    case Type::BoolTyID:
385    case Type::UByteTyID:
386    case Type::SByteTyID:   Result.UByteVal = Ptr->Untyped[0]; break;
387    case Type::UShortTyID:
388    case Type::ShortTyID:   Result.UShortVal = (unsigned)Ptr->Untyped[0] |
389                                              ((unsigned)Ptr->Untyped[1] << 8);
390                            break;
391    Load4BytesLittleEndian:
392    case Type::FloatTyID:
393    case Type::UIntTyID:
394    case Type::IntTyID:     Result.UIntVal = (unsigned)Ptr->Untyped[0] |
395                                            ((unsigned)Ptr->Untyped[1] <<  8) |
396                                            ((unsigned)Ptr->Untyped[2] << 16) |
397                                            ((unsigned)Ptr->Untyped[3] << 24);
398                            break;
399    case Type::PointerTyID: if (getTargetData().getPointerSize() == 4)
400                              goto Load4BytesLittleEndian;
401    case Type::DoubleTyID:
402    case Type::ULongTyID:
403    case Type::LongTyID:    Result.ULongVal = (uint64_t)Ptr->Untyped[0] |
404                                             ((uint64_t)Ptr->Untyped[1] <<  8) |
405                                             ((uint64_t)Ptr->Untyped[2] << 16) |
406                                             ((uint64_t)Ptr->Untyped[3] << 24) |
407                                             ((uint64_t)Ptr->Untyped[4] << 32) |
408                                             ((uint64_t)Ptr->Untyped[5] << 40) |
409                                             ((uint64_t)Ptr->Untyped[6] << 48) |
410                                             ((uint64_t)Ptr->Untyped[7] << 56);
411                            break;
412    default:
413      std::cout << "Cannot load value of type " << *Ty << "!\n";
414      abort();
415    }
416  } else {
417    switch (Ty->getTypeID()) {
418    case Type::BoolTyID:
419    case Type::UByteTyID:
420    case Type::SByteTyID:   Result.UByteVal = Ptr->Untyped[0]; break;
421    case Type::UShortTyID:
422    case Type::ShortTyID:   Result.UShortVal = (unsigned)Ptr->Untyped[1] |
423                                              ((unsigned)Ptr->Untyped[0] << 8);
424                            break;
425    Load4BytesBigEndian:
426    case Type::FloatTyID:
427    case Type::UIntTyID:
428    case Type::IntTyID:     Result.UIntVal = (unsigned)Ptr->Untyped[3] |
429                                            ((unsigned)Ptr->Untyped[2] <<  8) |
430                                            ((unsigned)Ptr->Untyped[1] << 16) |
431                                            ((unsigned)Ptr->Untyped[0] << 24);
432                            break;
433    case Type::PointerTyID: if (getTargetData().getPointerSize() == 4)
434                              goto Load4BytesBigEndian;
435    case Type::DoubleTyID:
436    case Type::ULongTyID:
437    case Type::LongTyID:    Result.ULongVal = (uint64_t)Ptr->Untyped[7] |
438                                             ((uint64_t)Ptr->Untyped[6] <<  8) |
439                                             ((uint64_t)Ptr->Untyped[5] << 16) |
440                                             ((uint64_t)Ptr->Untyped[4] << 24) |
441                                             ((uint64_t)Ptr->Untyped[3] << 32) |
442                                             ((uint64_t)Ptr->Untyped[2] << 40) |
443                                             ((uint64_t)Ptr->Untyped[1] << 48) |
444                                             ((uint64_t)Ptr->Untyped[0] << 56);
445                            break;
446    default:
447      std::cout << "Cannot load value of type " << *Ty << "!\n";
448      abort();
449    }
450  }
451  return Result;
452}
453
454// InitializeMemory - Recursive function to apply a Constant value into the
455// specified memory location...
456//
457void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
458  if (isa<UndefValue>(Init)) {
459    return;
460  } else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(Init)) {
461    unsigned ElementSize =
462      getTargetData().getTypeSize(CP->getType()->getElementType());
463    for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
464      InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
465    return;
466  } else if (Init->getType()->isFirstClassType()) {
467    GenericValue Val = getConstantValue(Init);
468    StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
469    return;
470  } else if (isa<ConstantAggregateZero>(Init)) {
471    memset(Addr, 0, (size_t)getTargetData().getTypeSize(Init->getType()));
472    return;
473  }
474
475  switch (Init->getType()->getTypeID()) {
476  case Type::ArrayTyID: {
477    const ConstantArray *CPA = cast<ConstantArray>(Init);
478    unsigned ElementSize =
479      getTargetData().getTypeSize(CPA->getType()->getElementType());
480    for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
481      InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
482    return;
483  }
484
485  case Type::StructTyID: {
486    const ConstantStruct *CPS = cast<ConstantStruct>(Init);
487    const StructLayout *SL =
488      getTargetData().getStructLayout(cast<StructType>(CPS->getType()));
489    for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
490      InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->MemberOffsets[i]);
491    return;
492  }
493
494  default:
495    std::cerr << "Bad Type: " << *Init->getType() << "\n";
496    assert(0 && "Unknown constant type to initialize memory with!");
497  }
498}
499
500/// EmitGlobals - Emit all of the global variables to memory, storing their
501/// addresses into GlobalAddress.  This must make sure to copy the contents of
502/// their initializers into the memory.
503///
504void ExecutionEngine::emitGlobals() {
505  const TargetData &TD = getTargetData();
506
507  // Loop over all of the global variables in the program, allocating the memory
508  // to hold them.
509  Module &M = getModule();
510  for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
511       I != E; ++I)
512    if (!I->isExternal()) {
513      // Get the type of the global...
514      const Type *Ty = I->getType()->getElementType();
515
516      // Allocate some memory for it!
517      unsigned Size = TD.getTypeSize(Ty);
518      addGlobalMapping(I, new char[Size]);
519    } else {
520      // External variable reference. Try to use the dynamic loader to
521      // get a pointer to it.
522      if (void *SymAddr = sys::DynamicLibrary::SearchForAddressOfSymbol(
523                            I->getName().c_str()))
524        addGlobalMapping(I, SymAddr);
525      else {
526        std::cerr << "Could not resolve external global address: "
527                  << I->getName() << "\n";
528        abort();
529      }
530    }
531
532  // Now that all of the globals are set up in memory, loop through them all and
533  // initialize their contents.
534  for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
535       I != E; ++I)
536    if (!I->isExternal())
537      EmitGlobalVariable(I);
538}
539
540// EmitGlobalVariable - This method emits the specified global variable to the
541// address specified in GlobalAddresses, or allocates new memory if it's not
542// already in the map.
543void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
544  void *GA = getPointerToGlobalIfAvailable(GV);
545  DEBUG(std::cerr << "Global '" << GV->getName() << "' -> " << GA << "\n");
546
547  const Type *ElTy = GV->getType()->getElementType();
548  size_t GVSize = (size_t)getTargetData().getTypeSize(ElTy);
549  if (GA == 0) {
550    // If it's not already specified, allocate memory for the global.
551    GA = new char[GVSize];
552    addGlobalMapping(GV, GA);
553  }
554
555  InitializeMemory(GV->getInitializer(), GA);
556  NumInitBytes += (unsigned)GVSize;
557  ++NumGlobals;
558}
559