ExecutionEngine.cpp revision b1919e2f08ecb37140af676fd2916f8d5ed7df3d
1//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the common interface used by the various execution engine
11// subclasses.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "jit"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Module.h"
19#include "llvm/ModuleProvider.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/ExecutionEngine/ExecutionEngine.h"
22#include "llvm/ExecutionEngine/GenericValue.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/MutexGuard.h"
25#include "llvm/System/DynamicLibrary.h"
26#include "llvm/Target/TargetData.h"
27using namespace llvm;
28
29STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
30STATISTIC(NumGlobals  , "Number of global vars initialized");
31
32ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0;
33ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0;
34
35ExecutionEngine::ExecutionEngine(ModuleProvider *P) {
36  LazyCompilationDisabled = false;
37  Modules.push_back(P);
38  assert(P && "ModuleProvider is null?");
39}
40
41ExecutionEngine::ExecutionEngine(Module *M) {
42  LazyCompilationDisabled = false;
43  assert(M && "Module is null?");
44  Modules.push_back(new ExistingModuleProvider(M));
45}
46
47ExecutionEngine::~ExecutionEngine() {
48  for (unsigned i = 0, e = Modules.size(); i != e; ++i)
49    delete Modules[i];
50}
51
52/// FindFunctionNamed - Search all of the active modules to find the one that
53/// defines FnName.  This is very slow operation and shouldn't be used for
54/// general code.
55Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
56  for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
57    if (Function *F = Modules[i]->getModule()->getFunction(FnName))
58      return F;
59  }
60  return 0;
61}
62
63
64/// addGlobalMapping - Tell the execution engine that the specified global is
65/// at the specified location.  This is used internally as functions are JIT'd
66/// and as global variables are laid out in memory.  It can and should also be
67/// used by clients of the EE that want to have an LLVM global overlay
68/// existing data in memory.
69void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
70  MutexGuard locked(lock);
71
72  void *&CurVal = state.getGlobalAddressMap(locked)[GV];
73  assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
74  CurVal = Addr;
75
76  // If we are using the reverse mapping, add it too
77  if (!state.getGlobalAddressReverseMap(locked).empty()) {
78    const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr];
79    assert((V == 0 || GV == 0) && "GlobalMapping already established!");
80    V = GV;
81  }
82}
83
84/// clearAllGlobalMappings - Clear all global mappings and start over again
85/// use in dynamic compilation scenarios when you want to move globals
86void ExecutionEngine::clearAllGlobalMappings() {
87  MutexGuard locked(lock);
88
89  state.getGlobalAddressMap(locked).clear();
90  state.getGlobalAddressReverseMap(locked).clear();
91}
92
93/// updateGlobalMapping - Replace an existing mapping for GV with a new
94/// address.  This updates both maps as required.  If "Addr" is null, the
95/// entry for the global is removed from the mappings.
96void ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
97  MutexGuard locked(lock);
98
99  // Deleting from the mapping?
100  if (Addr == 0) {
101    state.getGlobalAddressMap(locked).erase(GV);
102    if (!state.getGlobalAddressReverseMap(locked).empty())
103      state.getGlobalAddressReverseMap(locked).erase(Addr);
104    return;
105  }
106
107  void *&CurVal = state.getGlobalAddressMap(locked)[GV];
108  if (CurVal && !state.getGlobalAddressReverseMap(locked).empty())
109    state.getGlobalAddressReverseMap(locked).erase(CurVal);
110  CurVal = Addr;
111
112  // If we are using the reverse mapping, add it too
113  if (!state.getGlobalAddressReverseMap(locked).empty()) {
114    const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr];
115    assert((V == 0 || GV == 0) && "GlobalMapping already established!");
116    V = GV;
117  }
118}
119
120/// getPointerToGlobalIfAvailable - This returns the address of the specified
121/// global value if it is has already been codegen'd, otherwise it returns null.
122///
123void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
124  MutexGuard locked(lock);
125
126  std::map<const GlobalValue*, void*>::iterator I =
127  state.getGlobalAddressMap(locked).find(GV);
128  return I != state.getGlobalAddressMap(locked).end() ? I->second : 0;
129}
130
131/// getGlobalValueAtAddress - Return the LLVM global value object that starts
132/// at the specified address.
133///
134const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
135  MutexGuard locked(lock);
136
137  // If we haven't computed the reverse mapping yet, do so first.
138  if (state.getGlobalAddressReverseMap(locked).empty()) {
139    for (std::map<const GlobalValue*, void *>::iterator
140         I = state.getGlobalAddressMap(locked).begin(),
141         E = state.getGlobalAddressMap(locked).end(); I != E; ++I)
142      state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second,
143                                                                     I->first));
144  }
145
146  std::map<void *, const GlobalValue*>::iterator I =
147    state.getGlobalAddressReverseMap(locked).find(Addr);
148  return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
149}
150
151// CreateArgv - Turn a vector of strings into a nice argv style array of
152// pointers to null terminated strings.
153//
154static void *CreateArgv(ExecutionEngine *EE,
155                        const std::vector<std::string> &InputArgv) {
156  unsigned PtrSize = EE->getTargetData()->getPointerSize();
157  char *Result = new char[(InputArgv.size()+1)*PtrSize];
158
159  DOUT << "ARGV = " << (void*)Result << "\n";
160  const Type *SBytePtr = PointerType::get(Type::Int8Ty);
161
162  for (unsigned i = 0; i != InputArgv.size(); ++i) {
163    unsigned Size = InputArgv[i].size()+1;
164    char *Dest = new char[Size];
165    DOUT << "ARGV[" << i << "] = " << (void*)Dest << "\n";
166
167    std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
168    Dest[Size-1] = 0;
169
170    // Endian safe: Result[i] = (PointerTy)Dest;
171    EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize),
172                           SBytePtr);
173  }
174
175  // Null terminate it
176  EE->StoreValueToMemory(PTOGV(0),
177                         (GenericValue*)(Result+InputArgv.size()*PtrSize),
178                         SBytePtr);
179  return Result;
180}
181
182
183/// runStaticConstructorsDestructors - This method is used to execute all of
184/// the static constructors or destructors for a program, depending on the
185/// value of isDtors.
186void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
187  const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
188
189  // Execute global ctors/dtors for each module in the program.
190  for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
191    GlobalVariable *GV = Modules[m]->getModule()->getNamedGlobal(Name);
192
193    // If this global has internal linkage, or if it has a use, then it must be
194    // an old-style (llvmgcc3) static ctor with __main linked in and in use.  If
195    // this is the case, don't execute any of the global ctors, __main will do
196    // it.
197    if (!GV || GV->isDeclaration() || GV->hasInternalLinkage()) continue;
198
199    // Should be an array of '{ int, void ()* }' structs.  The first value is
200    // the init priority, which we ignore.
201    ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
202    if (!InitList) continue;
203    for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
204      if (ConstantStruct *CS =
205          dyn_cast<ConstantStruct>(InitList->getOperand(i))) {
206        if (CS->getNumOperands() != 2) break; // Not array of 2-element structs.
207
208        Constant *FP = CS->getOperand(1);
209        if (FP->isNullValue())
210          break;  // Found a null terminator, exit.
211
212        if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
213          if (CE->isCast())
214            FP = CE->getOperand(0);
215        if (Function *F = dyn_cast<Function>(FP)) {
216          // Execute the ctor/dtor function!
217          runFunction(F, std::vector<GenericValue>());
218        }
219      }
220  }
221}
222
223/// runFunctionAsMain - This is a helper function which wraps runFunction to
224/// handle the common task of starting up main with the specified argc, argv,
225/// and envp parameters.
226int ExecutionEngine::runFunctionAsMain(Function *Fn,
227                                       const std::vector<std::string> &argv,
228                                       const char * const * envp) {
229  std::vector<GenericValue> GVArgs;
230  GenericValue GVArgc;
231  GVArgc.Int32Val = argv.size();
232  unsigned NumArgs = Fn->getFunctionType()->getNumParams();
233  if (NumArgs) {
234    GVArgs.push_back(GVArgc); // Arg #0 = argc.
235    if (NumArgs > 1) {
236      GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv.
237      assert(((char **)GVTOP(GVArgs[1]))[0] &&
238             "argv[0] was null after CreateArgv");
239      if (NumArgs > 2) {
240        std::vector<std::string> EnvVars;
241        for (unsigned i = 0; envp[i]; ++i)
242          EnvVars.push_back(envp[i]);
243        GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp.
244      }
245    }
246  }
247  return runFunction(Fn, GVArgs).Int32Val;
248}
249
250/// If possible, create a JIT, unless the caller specifically requests an
251/// Interpreter or there's an error. If even an Interpreter cannot be created,
252/// NULL is returned.
253///
254ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP,
255                                         bool ForceInterpreter) {
256  ExecutionEngine *EE = 0;
257
258  // Unless the interpreter was explicitly selected, try making a JIT.
259  if (!ForceInterpreter && JITCtor)
260    EE = JITCtor(MP);
261
262  // If we can't make a JIT, make an interpreter instead.
263  if (EE == 0 && InterpCtor)
264    EE = InterpCtor(MP);
265
266  if (EE) {
267    // Make sure we can resolve symbols in the program as well. The zero arg
268    // to the function tells DynamicLibrary to load the program, not a library.
269    try {
270      sys::DynamicLibrary::LoadLibraryPermanently(0);
271    } catch (...) {
272    }
273  }
274
275  return EE;
276}
277
278/// getPointerToGlobal - This returns the address of the specified global
279/// value.  This may involve code generation if it's a function.
280///
281void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
282  if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
283    return getPointerToFunction(F);
284
285  MutexGuard locked(lock);
286  void *p = state.getGlobalAddressMap(locked)[GV];
287  if (p)
288    return p;
289
290  // Global variable might have been added since interpreter started.
291  if (GlobalVariable *GVar =
292          const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
293    EmitGlobalVariable(GVar);
294  else
295    assert("Global hasn't had an address allocated yet!");
296  return state.getGlobalAddressMap(locked)[GV];
297}
298
299/// This macro is used to handle a variety of situations involing integer
300/// values where the action should be done to one of the GenericValue members.
301/// THEINTTY is a const Type * for the integer type. ACTION1 comes before
302/// the GenericValue, ACTION2 comes after.
303#define DO_FOR_INTEGER(THEINTTY, ACTION) \
304   { \
305      unsigned BitWidth = cast<IntegerType>(THEINTTY)->getBitWidth(); \
306      if (BitWidth == 1) {\
307        ACTION(Int1Val); \
308      } else if (BitWidth <= 8) {\
309        ACTION(Int8Val); \
310      } else if (BitWidth <= 16) {\
311        ACTION(Int16Val); \
312      } else if (BitWidth <= 32) { \
313        ACTION(Int32Val); \
314      } else if (BitWidth <= 64) { \
315        ACTION(Int64Val); \
316      } else   {\
317        assert(0 && "Not implemented: integer types > 64 bits"); \
318      } \
319   }
320
321/// This function converts a Constant* into a GenericValue. The interesting
322/// part is if C is a ConstantExpr.
323/// @brief Get a GenericValue for a Constnat*
324GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
325  // Declare the result as garbage.
326  GenericValue Result;
327
328  // If its undefined, return the garbage.
329  if (isa<UndefValue>(C)) return Result;
330
331  // If the value is a ConstantExpr
332  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
333    switch (CE->getOpcode()) {
334    case Instruction::GetElementPtr: {
335      // Compute the index
336      Result = getConstantValue(CE->getOperand(0));
337      std::vector<Value*> Indexes(CE->op_begin()+1, CE->op_end());
338      uint64_t Offset =
339        TD->getIndexedOffset(CE->getOperand(0)->getType(), Indexes);
340
341      if (getTargetData()->getPointerSize() == 4)
342        Result.Int32Val += Offset;
343      else
344        Result.Int64Val += Offset;
345      return Result;
346    }
347    case Instruction::Trunc:
348    case Instruction::ZExt:
349    case Instruction::SExt:
350    case Instruction::FPTrunc:
351    case Instruction::FPExt:
352    case Instruction::UIToFP:
353    case Instruction::SIToFP:
354    case Instruction::FPToUI:
355    case Instruction::FPToSI:
356      break;
357    case Instruction::PtrToInt: {
358      Constant *Op = CE->getOperand(0);
359      GenericValue GV = getConstantValue(Op);
360      return GV;
361    }
362    case Instruction::BitCast: {
363      // Bit casts are no-ops but we can only return the GV of the operand if
364      // they are the same basic type (pointer->pointer, packed->packed, etc.)
365      Constant *Op = CE->getOperand(0);
366      GenericValue GV = getConstantValue(Op);
367      if (Op->getType()->getTypeID() == C->getType()->getTypeID())
368        return GV;
369      break;
370    }
371    case Instruction::IntToPtr: {
372      // IntToPtr casts are just so special. Cast to intptr_t first.
373      Constant *Op = CE->getOperand(0);
374      GenericValue GV = getConstantValue(Op);
375#define INT_TO_PTR_ACTION(FIELD) \
376        return PTOGV((void*)(uintptr_t)GV.FIELD)
377      DO_FOR_INTEGER(Op->getType(), INT_TO_PTR_ACTION)
378#undef INT_TO_PTR_ACTION
379      break;
380    }
381    case Instruction::Add:
382      switch (CE->getOperand(0)->getType()->getTypeID()) {
383      default: assert(0 && "Bad add type!"); abort();
384      case Type::IntegerTyID:
385#define ADD_ACTION(FIELD) \
386        Result.FIELD = getConstantValue(CE->getOperand(0)).FIELD + \
387                       getConstantValue(CE->getOperand(1)).FIELD;
388        DO_FOR_INTEGER(CE->getOperand(0)->getType(),ADD_ACTION);
389#undef ADD_ACTION
390        break;
391      case Type::FloatTyID:
392        Result.FloatVal = getConstantValue(CE->getOperand(0)).FloatVal +
393                          getConstantValue(CE->getOperand(1)).FloatVal;
394        break;
395      case Type::DoubleTyID:
396        Result.DoubleVal = getConstantValue(CE->getOperand(0)).DoubleVal +
397                           getConstantValue(CE->getOperand(1)).DoubleVal;
398        break;
399      }
400      return Result;
401    default:
402      break;
403    }
404    cerr << "ConstantExpr not handled as global var init: " << *CE << "\n";
405    abort();
406  }
407
408  switch (C->getType()->getTypeID()) {
409#define GET_CONST_VAL(TY, CTY, CLASS, GETMETH) \
410  case Type::TY##TyID: Result.TY##Val = (CTY)cast<CLASS>(C)->GETMETH(); break
411    GET_CONST_VAL(Float , float         , ConstantFP, getValue);
412    GET_CONST_VAL(Double, double        , ConstantFP, getValue);
413#undef GET_CONST_VAL
414  case Type::IntegerTyID: {
415    unsigned BitWidth = cast<IntegerType>(C->getType())->getBitWidth();
416    if (BitWidth == 1)
417      Result.Int1Val = (bool)cast<ConstantInt>(C)->getZExtValue();
418    else if (BitWidth <= 8)
419      Result.Int8Val = (uint8_t )cast<ConstantInt>(C)->getZExtValue();
420    else if (BitWidth <= 16)
421      Result.Int16Val = (uint16_t )cast<ConstantInt>(C)->getZExtValue();
422    else if (BitWidth <= 32)
423      Result.Int32Val = (uint32_t )cast<ConstantInt>(C)->getZExtValue();
424    else if (BitWidth <= 64)
425      Result.Int64Val = (uint64_t )cast<ConstantInt>(C)->getZExtValue();
426    else
427      assert("Integers with > 64-bits not implemented");
428    break;
429  }
430
431  case Type::PointerTyID:
432    if (isa<ConstantPointerNull>(C))
433      Result.PointerVal = 0;
434    else if (const Function *F = dyn_cast<Function>(C))
435      Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
436    else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C))
437      Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
438    else
439      assert(0 && "Unknown constant pointer type!");
440    break;
441  default:
442    cerr << "ERROR: Constant unimp for type: " << *C->getType() << "\n";
443    abort();
444  }
445  return Result;
446}
447
448/// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.  Ptr
449/// is the address of the memory at which to store Val, cast to GenericValue *.
450/// It is not a pointer to a GenericValue containing the address at which to
451/// store Val.
452///
453void ExecutionEngine::StoreValueToMemory(GenericValue Val, GenericValue *Ptr,
454                                         const Type *Ty) {
455  if (getTargetData()->isLittleEndian()) {
456    switch (Ty->getTypeID()) {
457    case Type::IntegerTyID: {
458      unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
459      uint64_t BitMask = cast<IntegerType>(Ty)->getBitMask();
460      GenericValue TmpVal = Val;
461      if (BitWidth <= 8)
462        Ptr->Untyped[0] = Val.Int8Val & BitMask;
463      else if (BitWidth <= 16) {
464        TmpVal.Int16Val &= BitMask;
465        Ptr->Untyped[0] = TmpVal.Int16Val        & 255;
466        Ptr->Untyped[1] = (TmpVal.Int16Val >> 8) & 255;
467      } else if (BitWidth <= 32) {
468        TmpVal.Int32Val &= BitMask;
469        Ptr->Untyped[0] =  TmpVal.Int32Val        & 255;
470        Ptr->Untyped[1] = (TmpVal.Int32Val >>  8) & 255;
471        Ptr->Untyped[2] = (TmpVal.Int32Val >> 16) & 255;
472        Ptr->Untyped[3] = (TmpVal.Int32Val >> 24) & 255;
473      } else if (BitWidth <= 64) {
474        TmpVal.Int64Val &= BitMask;
475        Ptr->Untyped[0] = (unsigned char)(TmpVal.Int64Val      );
476        Ptr->Untyped[1] = (unsigned char)(TmpVal.Int64Val >>  8);
477        Ptr->Untyped[2] = (unsigned char)(TmpVal.Int64Val >> 16);
478        Ptr->Untyped[3] = (unsigned char)(TmpVal.Int64Val >> 24);
479        Ptr->Untyped[4] = (unsigned char)(TmpVal.Int64Val >> 32);
480        Ptr->Untyped[5] = (unsigned char)(TmpVal.Int64Val >> 40);
481        Ptr->Untyped[6] = (unsigned char)(TmpVal.Int64Val >> 48);
482        Ptr->Untyped[7] = (unsigned char)(TmpVal.Int64Val >> 56);
483      } else
484        assert(0 && "Integer types > 64 bits not supported");
485      break;
486    }
487Store4BytesLittleEndian:
488    case Type::FloatTyID:
489      Ptr->Untyped[0] =  Val.Int32Val        & 255;
490      Ptr->Untyped[1] = (Val.Int32Val >>  8) & 255;
491      Ptr->Untyped[2] = (Val.Int32Val >> 16) & 255;
492      Ptr->Untyped[3] = (Val.Int32Val >> 24) & 255;
493      break;
494    case Type::PointerTyID:
495      if (getTargetData()->getPointerSize() == 4)
496        goto Store4BytesLittleEndian;
497      /* FALL THROUGH */
498    case Type::DoubleTyID:
499      Ptr->Untyped[0] = (unsigned char)(Val.Int64Val      );
500      Ptr->Untyped[1] = (unsigned char)(Val.Int64Val >>  8);
501      Ptr->Untyped[2] = (unsigned char)(Val.Int64Val >> 16);
502      Ptr->Untyped[3] = (unsigned char)(Val.Int64Val >> 24);
503      Ptr->Untyped[4] = (unsigned char)(Val.Int64Val >> 32);
504      Ptr->Untyped[5] = (unsigned char)(Val.Int64Val >> 40);
505      Ptr->Untyped[6] = (unsigned char)(Val.Int64Val >> 48);
506      Ptr->Untyped[7] = (unsigned char)(Val.Int64Val >> 56);
507      break;
508    default:
509      cerr << "Cannot store value of type " << *Ty << "!\n";
510    }
511  } else {
512    switch (Ty->getTypeID()) {
513    case Type::IntegerTyID: {
514      unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
515      uint64_t BitMask = cast<IntegerType>(Ty)->getBitMask();
516      GenericValue TmpVal = Val;
517      if (BitWidth <= 8)
518        Ptr->Untyped[0] = Val.Int8Val & BitMask;
519      else if (BitWidth <= 16) {
520        TmpVal.Int16Val &= BitMask;
521        Ptr->Untyped[1] =  TmpVal.Int16Val       & 255;
522        Ptr->Untyped[0] = (TmpVal.Int16Val >> 8) & 255;
523      } else if (BitWidth <= 32) {
524        TmpVal.Int32Val &= BitMask;
525        Ptr->Untyped[3] =  TmpVal.Int32Val        & 255;
526        Ptr->Untyped[2] = (TmpVal.Int32Val >>  8) & 255;
527        Ptr->Untyped[1] = (TmpVal.Int32Val >> 16) & 255;
528        Ptr->Untyped[0] = (TmpVal.Int32Val >> 24) & 255;
529      } else if (BitWidth <= 64) {
530        TmpVal.Int64Val &= BitMask;
531        Ptr->Untyped[7] = (unsigned char)(TmpVal.Int64Val      );
532        Ptr->Untyped[6] = (unsigned char)(TmpVal.Int64Val >>  8);
533        Ptr->Untyped[5] = (unsigned char)(TmpVal.Int64Val >> 16);
534        Ptr->Untyped[4] = (unsigned char)(TmpVal.Int64Val >> 24);
535        Ptr->Untyped[3] = (unsigned char)(TmpVal.Int64Val >> 32);
536        Ptr->Untyped[2] = (unsigned char)(TmpVal.Int64Val >> 40);
537        Ptr->Untyped[1] = (unsigned char)(TmpVal.Int64Val >> 48);
538        Ptr->Untyped[0] = (unsigned char)(TmpVal.Int64Val >> 56);
539      } else
540        assert(0 && "Integer types > 64 bits not supported");
541      break;
542    }
543    Store4BytesBigEndian:
544    case Type::FloatTyID:
545      Ptr->Untyped[3] =  Val.Int32Val        & 255;
546      Ptr->Untyped[2] = (Val.Int32Val >>  8) & 255;
547      Ptr->Untyped[1] = (Val.Int32Val >> 16) & 255;
548      Ptr->Untyped[0] = (Val.Int32Val >> 24) & 255;
549      break;
550    case Type::PointerTyID:
551      if (getTargetData()->getPointerSize() == 4)
552        goto Store4BytesBigEndian;
553      /* FALL THROUGH */
554    case Type::DoubleTyID:
555      Ptr->Untyped[7] = (unsigned char)(Val.Int64Val      );
556      Ptr->Untyped[6] = (unsigned char)(Val.Int64Val >>  8);
557      Ptr->Untyped[5] = (unsigned char)(Val.Int64Val >> 16);
558      Ptr->Untyped[4] = (unsigned char)(Val.Int64Val >> 24);
559      Ptr->Untyped[3] = (unsigned char)(Val.Int64Val >> 32);
560      Ptr->Untyped[2] = (unsigned char)(Val.Int64Val >> 40);
561      Ptr->Untyped[1] = (unsigned char)(Val.Int64Val >> 48);
562      Ptr->Untyped[0] = (unsigned char)(Val.Int64Val >> 56);
563      break;
564    default:
565      cerr << "Cannot store value of type " << *Ty << "!\n";
566    }
567  }
568}
569
570/// FIXME: document
571///
572GenericValue ExecutionEngine::LoadValueFromMemory(GenericValue *Ptr,
573                                                  const Type *Ty) {
574  GenericValue Result;
575  if (getTargetData()->isLittleEndian()) {
576    switch (Ty->getTypeID()) {
577    case Type::IntegerTyID: {
578      unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
579      if (BitWidth <= 8)
580        Result.Int8Val  = Ptr->Untyped[0];
581      else if (BitWidth <= 16) {
582        Result.Int16Val =  (unsigned)Ptr->Untyped[0] |
583                          ((unsigned)Ptr->Untyped[1] << 8);
584      } else if (BitWidth <= 32) {
585        Result.Int32Val =  (unsigned)Ptr->Untyped[0] |
586                          ((unsigned)Ptr->Untyped[1] <<  8) |
587                          ((unsigned)Ptr->Untyped[2] << 16) |
588                          ((unsigned)Ptr->Untyped[3] << 24);
589      } else if (BitWidth <= 64) {
590        Result.Int64Val =  (uint64_t)Ptr->Untyped[0] |
591                          ((uint64_t)Ptr->Untyped[1] <<  8) |
592                          ((uint64_t)Ptr->Untyped[2] << 16) |
593                          ((uint64_t)Ptr->Untyped[3] << 24) |
594                          ((uint64_t)Ptr->Untyped[4] << 32) |
595                          ((uint64_t)Ptr->Untyped[5] << 40) |
596                          ((uint64_t)Ptr->Untyped[6] << 48) |
597                          ((uint64_t)Ptr->Untyped[7] << 56);
598      } else
599        assert(0 && "Integer types > 64 bits not supported");
600      break;
601    }
602    Load4BytesLittleEndian:
603    case Type::FloatTyID:
604      Result.Int32Val =  (unsigned)Ptr->Untyped[0] |
605                        ((unsigned)Ptr->Untyped[1] <<  8) |
606                        ((unsigned)Ptr->Untyped[2] << 16) |
607                        ((unsigned)Ptr->Untyped[3] << 24);
608      break;
609    case Type::PointerTyID:
610      if (getTargetData()->getPointerSize() == 4)
611        goto Load4BytesLittleEndian;
612      /* FALL THROUGH */
613    case Type::DoubleTyID:
614      Result.Int64Val =  (uint64_t)Ptr->Untyped[0] |
615                        ((uint64_t)Ptr->Untyped[1] <<  8) |
616                        ((uint64_t)Ptr->Untyped[2] << 16) |
617                        ((uint64_t)Ptr->Untyped[3] << 24) |
618                        ((uint64_t)Ptr->Untyped[4] << 32) |
619                        ((uint64_t)Ptr->Untyped[5] << 40) |
620                        ((uint64_t)Ptr->Untyped[6] << 48) |
621                        ((uint64_t)Ptr->Untyped[7] << 56);
622       break;
623    default:
624      cerr << "Cannot load value of type " << *Ty << "!\n";
625      abort();
626    }
627  } else {
628    switch (Ty->getTypeID()) {
629    case Type::IntegerTyID: {
630      unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
631      if (BitWidth <= 8)
632        Result.Int8Val  = Ptr->Untyped[0];
633      else if (BitWidth <= 16) {
634        Result.Int16Val =  (unsigned)Ptr->Untyped[1] |
635                          ((unsigned)Ptr->Untyped[0] << 8);
636      } else if (BitWidth <= 32) {
637        Result.Int32Val =  (unsigned)Ptr->Untyped[3] |
638                          ((unsigned)Ptr->Untyped[2] <<  8) |
639                          ((unsigned)Ptr->Untyped[1] << 16) |
640                          ((unsigned)Ptr->Untyped[0] << 24);
641      } else if (BitWidth <= 64) {
642        Result.Int64Val =  (uint64_t)Ptr->Untyped[7] |
643                          ((uint64_t)Ptr->Untyped[6] <<  8) |
644                          ((uint64_t)Ptr->Untyped[5] << 16) |
645                          ((uint64_t)Ptr->Untyped[4] << 24) |
646                          ((uint64_t)Ptr->Untyped[3] << 32) |
647                          ((uint64_t)Ptr->Untyped[2] << 40) |
648                          ((uint64_t)Ptr->Untyped[1] << 48) |
649                          ((uint64_t)Ptr->Untyped[0] << 56);
650      } else
651        assert(0 && "Integer types > 64 bits not supported");
652      break;
653    }
654    Load4BytesBigEndian:
655    case Type::FloatTyID:
656      Result.Int32Val =  (unsigned)Ptr->Untyped[3] |
657                        ((unsigned)Ptr->Untyped[2] <<  8) |
658                        ((unsigned)Ptr->Untyped[1] << 16) |
659                        ((unsigned)Ptr->Untyped[0] << 24);
660                            break;
661    case Type::PointerTyID:
662      if (getTargetData()->getPointerSize() == 4)
663        goto Load4BytesBigEndian;
664      /* FALL THROUGH */
665    case Type::DoubleTyID:
666      Result.Int64Val =  (uint64_t)Ptr->Untyped[7] |
667                        ((uint64_t)Ptr->Untyped[6] <<  8) |
668                        ((uint64_t)Ptr->Untyped[5] << 16) |
669                        ((uint64_t)Ptr->Untyped[4] << 24) |
670                        ((uint64_t)Ptr->Untyped[3] << 32) |
671                        ((uint64_t)Ptr->Untyped[2] << 40) |
672                        ((uint64_t)Ptr->Untyped[1] << 48) |
673                        ((uint64_t)Ptr->Untyped[0] << 56);
674      break;
675    default:
676      cerr << "Cannot load value of type " << *Ty << "!\n";
677      abort();
678    }
679  }
680  return Result;
681}
682
683// InitializeMemory - Recursive function to apply a Constant value into the
684// specified memory location...
685//
686void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
687  if (isa<UndefValue>(Init)) {
688    return;
689  } else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(Init)) {
690    unsigned ElementSize =
691      getTargetData()->getTypeSize(CP->getType()->getElementType());
692    for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
693      InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
694    return;
695  } else if (Init->getType()->isFirstClassType()) {
696    GenericValue Val = getConstantValue(Init);
697    StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
698    return;
699  } else if (isa<ConstantAggregateZero>(Init)) {
700    memset(Addr, 0, (size_t)getTargetData()->getTypeSize(Init->getType()));
701    return;
702  }
703
704  switch (Init->getType()->getTypeID()) {
705  case Type::ArrayTyID: {
706    const ConstantArray *CPA = cast<ConstantArray>(Init);
707    unsigned ElementSize =
708      getTargetData()->getTypeSize(CPA->getType()->getElementType());
709    for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
710      InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
711    return;
712  }
713
714  case Type::StructTyID: {
715    const ConstantStruct *CPS = cast<ConstantStruct>(Init);
716    const StructLayout *SL =
717      getTargetData()->getStructLayout(cast<StructType>(CPS->getType()));
718    for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
719      InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
720    return;
721  }
722
723  default:
724    cerr << "Bad Type: " << *Init->getType() << "\n";
725    assert(0 && "Unknown constant type to initialize memory with!");
726  }
727}
728
729/// EmitGlobals - Emit all of the global variables to memory, storing their
730/// addresses into GlobalAddress.  This must make sure to copy the contents of
731/// their initializers into the memory.
732///
733void ExecutionEngine::emitGlobals() {
734  const TargetData *TD = getTargetData();
735
736  // Loop over all of the global variables in the program, allocating the memory
737  // to hold them.  If there is more than one module, do a prepass over globals
738  // to figure out how the different modules should link together.
739  //
740  std::map<std::pair<std::string, const Type*>,
741           const GlobalValue*> LinkedGlobalsMap;
742
743  if (Modules.size() != 1) {
744    for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
745      Module &M = *Modules[m]->getModule();
746      for (Module::const_global_iterator I = M.global_begin(),
747           E = M.global_end(); I != E; ++I) {
748        const GlobalValue *GV = I;
749        if (GV->hasInternalLinkage() || GV->isDeclaration() ||
750            GV->hasAppendingLinkage() || !GV->hasName())
751          continue;// Ignore external globals and globals with internal linkage.
752
753        const GlobalValue *&GVEntry =
754          LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
755
756        // If this is the first time we've seen this global, it is the canonical
757        // version.
758        if (!GVEntry) {
759          GVEntry = GV;
760          continue;
761        }
762
763        // If the existing global is strong, never replace it.
764        if (GVEntry->hasExternalLinkage() ||
765            GVEntry->hasDLLImportLinkage() ||
766            GVEntry->hasDLLExportLinkage())
767          continue;
768
769        // Otherwise, we know it's linkonce/weak, replace it if this is a strong
770        // symbol.
771        if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
772          GVEntry = GV;
773      }
774    }
775  }
776
777  std::vector<const GlobalValue*> NonCanonicalGlobals;
778  for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
779    Module &M = *Modules[m]->getModule();
780    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
781         I != E; ++I) {
782      // In the multi-module case, see what this global maps to.
783      if (!LinkedGlobalsMap.empty()) {
784        if (const GlobalValue *GVEntry =
785              LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) {
786          // If something else is the canonical global, ignore this one.
787          if (GVEntry != &*I) {
788            NonCanonicalGlobals.push_back(I);
789            continue;
790          }
791        }
792      }
793
794      if (!I->isDeclaration()) {
795        // Get the type of the global.
796        const Type *Ty = I->getType()->getElementType();
797
798        // Allocate some memory for it!
799        unsigned Size = TD->getTypeSize(Ty);
800        addGlobalMapping(I, new char[Size]);
801      } else {
802        // External variable reference. Try to use the dynamic loader to
803        // get a pointer to it.
804        if (void *SymAddr =
805            sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName().c_str()))
806          addGlobalMapping(I, SymAddr);
807        else {
808          cerr << "Could not resolve external global address: "
809               << I->getName() << "\n";
810          abort();
811        }
812      }
813    }
814
815    // If there are multiple modules, map the non-canonical globals to their
816    // canonical location.
817    if (!NonCanonicalGlobals.empty()) {
818      for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
819        const GlobalValue *GV = NonCanonicalGlobals[i];
820        const GlobalValue *CGV =
821          LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
822        void *Ptr = getPointerToGlobalIfAvailable(CGV);
823        assert(Ptr && "Canonical global wasn't codegen'd!");
824        addGlobalMapping(GV, getPointerToGlobalIfAvailable(CGV));
825      }
826    }
827
828    // Now that all of the globals are set up in memory, loop through them all
829    // and initialize their contents.
830    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
831         I != E; ++I) {
832      if (!I->isDeclaration()) {
833        if (!LinkedGlobalsMap.empty()) {
834          if (const GlobalValue *GVEntry =
835                LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())])
836            if (GVEntry != &*I)  // Not the canonical variable.
837              continue;
838        }
839        EmitGlobalVariable(I);
840      }
841    }
842  }
843}
844
845// EmitGlobalVariable - This method emits the specified global variable to the
846// address specified in GlobalAddresses, or allocates new memory if it's not
847// already in the map.
848void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
849  void *GA = getPointerToGlobalIfAvailable(GV);
850  DOUT << "Global '" << GV->getName() << "' -> " << GA << "\n";
851
852  const Type *ElTy = GV->getType()->getElementType();
853  size_t GVSize = (size_t)getTargetData()->getTypeSize(ElTy);
854  if (GA == 0) {
855    // If it's not already specified, allocate memory for the global.
856    GA = new char[GVSize];
857    addGlobalMapping(GV, GA);
858  }
859
860  InitializeMemory(GV->getInitializer(), GA);
861  NumInitBytes += (unsigned)GVSize;
862  ++NumGlobals;
863}
864